WorldWideScience

Sample records for pathogen streptococcus uberis

  1. Molecular and mathematical epidemiology of Staphylococcus aureus and Streptococcus uberis mastitis in dairy herds

    NARCIS (Netherlands)

    Zadoks, Ruth Nicolet

    2002-01-01

    Mastitis is the most common and costly production disease affecting dairy cows. Staphylococcus aureus and Streptococcus uberis are two major mastitis-causing pathogens. Staphylococcus aureus is traditionally classified as contagious pathogen, while Streptococcus uberis is classified as environmental

  2. Quantification of bovine oxylipids during intramammary Streptococcus uberis infection

    Science.gov (United States)

    Streptococcus uberis mastitis results in severe mammary tissue damage in dairy cows due to uncontrolled inflammation. Oxylipids are potent lipid mediators that orchestrate pathogen-induced inflammatory responses, however, changes in oxylipid biosynthesis during S. uberis mastitis are unknown. Thus, ...

  3. Isolation, pathogenicity and characterization of a novel bacterial pathogen Streptococcus uberis from diseased mandarin fish Siniperca chuatsi.

    Science.gov (United States)

    Luo, Xia; Fu, Xiaozhe; Liao, Guoli; Chang, Ouqin; Huang, Zhibin; Li, Ningqiu

    2017-06-01

    In recent years, mandarin fish had a high mortality rate associated with abnormal swimming, exophthalmia, corneal opacity and eye hemorrhage on a fish farm located at Foshan city, Guangdong province, China. Three isolates of Gram-positive, chain-forming cocci were recovered from moribund fish, and designated as SS131025-1, SS131025-2, and SS131025-3. These isolates were identified as Streptococcus uberis according to their morphologic and physio-biochemical characteristics as well as phylogenetic analysis based on their 16S rRNA and GapC gene sequences. The pathogenicity of S. uberis to mandarin fish was determined by challenge experiments. Results of artificial challenge showed S. uberis infected healthy mandarin fish and lead to death by eyeball injection or immersion route, and the LD 50 of SS131025-1 with eyeball injection was 2.0 × 10 6.42  CFU per fish. Moreover extracellular product (ECP) of the isolated S.uberis induced CPB cell apoptosis and cause death of mandarin fish. In addition, these S. uberis strains could also infect tilapia, but not grass carp and crucian carp, and grew in brain-heart infusion broth with an optimal temperature of 37 °C, pH of 7.0, and salinity of 0%. Antibiotic sensitivity testing indicated that these isolates were susceptible to rifampicin and furazolidone but resistant to 20 kinds of antibiotics. Histopathologically, infection with S. uberis could cause serious pathological changes in brain tissues such as vacuoles in matrix, swollen mitochondria with lysis of cristae and disintegration, and lots of coccus was observed both under electron and light microscope. These results shed some light on the pathogenicity of the isolates and how to prevent and control S. uberis infection in mandarin fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparison of transmission dynamics between Streptococcus uberis and Streptococcus agalactiae intramammary infections.

    Science.gov (United States)

    Leelahapongsathon, Kansuda; Schukken, Ynte Hein; Pinyopummintr, Tanu; Suriyasathaporn, Witaya

    2016-02-01

    The objectives of study were to determine the transmission parameters (β), durations of infection, and basic reproductive numbers (R0) of both Streptococcus agalactiae and Streptococcus uberis as pathogens causing mastitis outbreaks in dairy herds. A 10-mo longitudinal study was performed using 2 smallholder dairy herds with mastitis outbreaks caused by Strep. agalactiae and Strep. uberis, respectively. Both herds had poor mastitis control management and did not change their milking management during the entire study period. Quarter milk samples were collected at monthly intervals from all lactating animals in each herd for bacteriological identification. The durations of infection for Strep. uberis intramammary infection (IMI) and Strep. agalactiae IMI were examined using Kaplan-Meier survival curves, and the Kaplan-Meier survival functions for Strep. uberis IMI and Strep. agalactiae IMI were compared using log rank survival-test. The spread of Strep. uberis and Strep. agalactiae through the population was determined by transmission parameter, β, the probability per unit of time that one infectious quarter will infect another quarter, assuming that all other quarters are susceptible. For the Strep. uberis outbreak herd (31 cows), 56 new infections and 28 quarters with spontaneous cure were observed. For the Strep. agalactiae outbreak herd (19 cows), 26 new infections and 9 quarters with spontaneous cure were observed. The duration of infection for Strep. agalactiae (mean=270.84 d) was significantly longer than the duration of infection for Strep. uberis (mean=187.88 d). The transmission parameters (β) estimated (including 95% confidence interval) for Strep. uberis IMI and Strep. agalactiae IMI were 0.0155 (0.0035-0.0693) and 0.0068 (0.0008-0.0606), respectively. The R0 (including 95% confidence interval) during the study were 2.91 (0.63-13.47) and 1.86 (0.21-16.61) for Strep. uberis IMI and Strep. agalactiae IMI, respectively. In conclusion, the transmission

  5. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Deguo Wang

    2015-05-01

    Full Text Available Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.

  6. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae.

    Science.gov (United States)

    Wang, Deguo; Liu, Yanhong

    2015-05-26

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.

  7. Intravitreal Ampicillin Sodium for Antibiotic-Resistant Endophthalmitis: Streptococcus uberis First Human Intraocular Infection Report

    Directory of Open Access Journals (Sweden)

    Raul Velez-Montoya

    2010-01-01

    Full Text Available Purpose. To describe the clinical characteristics, diagnosis, and treatment with intravitreal ampicillin sodium of a postoperative endophthalmitis case due to Streptococcus uberis; an environmental pathogen commonly seen in mastitis cases of lactating cows. Methods. Case Report. A 52-year-old, Hispanic diabetic patient who suddenly developed severe pain and severe loss of vision, following vitrectomy. Results. The patient was diagnosed with postoperative endophthalmitis secondary to a highly resistant strain of Streptococcus uberis that did not respond to intravitreal antibiotics. He was treated with an air-fluid interchange, anterior chamber washout, intravitreal ampicillin sodium (5 mg/0.1 mL, and silicon oil tamponade (5000 ck. The eye was anatomically stabilized, though there was no functional recovery. Conclusion. Streptococcus uberis is an uncommon pathogen to the human eye, which has unique features that help the strain in developing resistance to antibiotics. While treatment with intravitreal ampicillin is feasible, there are still concerns about its possible toxicity.

  8. Streptococcus uberis and Staphylococcus aureus forefoot and blood stream co-infection in a haemodialysis patient: a case report.

    Science.gov (United States)

    Valentiny, Christine; Dirschmid, Harald; Lhotta, Karl

    2015-05-28

    Streptococcus uberis, the most frequent cause of mastitis in lactating cows, is considered non-pathogenic for humans. Only a few case reports have described human infections with this microorganism, which is notoriously difficult to identify. We report the case of a 75-year-old male haemodialysis patient, who developed a severe foot infection with osteomyelitis and bacteraemia. Both Streptococcus uberis and Staphylococcus aureus were identified in wound secretion and blood samples using mass spectrometry. The presence of Streptococcus uberis was confirmed by superoxide dismutase A sequencing. The patient recovered after amputation of the forefoot and antibiotic treatment with ampicillin/sulbactam. He had probably acquired the infection while walking barefoot on cattle pasture land. This is the first case report of a human infection with Streptococcus uberis with identification of the microorganism using modern molecular technology. We propose that Staphylococcus aureus co-infection was a prerequisite for deep wound and bloodstream infection with Streptococcus uberis.

  9. Short communication: Conservation of Streptococcus uberis adhesion molecule and the sua gene in strains of Streptococcus uberis isolated from geographically diverse areas.

    Science.gov (United States)

    Yuan, Ying; Dego, Oudessa Kerro; Chen, Xueyan; Abadin, Eurife; Chan, Shangfeng; Jory, Lauren; Kovacevic, Steven; Almeida, Raul A; Oliver, Stephen P

    2014-12-01

    The objective was to identify and sequence the sua gene (GenBank no. DQ232760; http://www.ncbi.nlm.nih.gov/genbank/) and detect Streptococcus uberis adhesion molecule (SUAM) expression by Western blot using serum from naturally S. uberis-infected cows in strains of S. uberis isolated in milk from cows with mastitis from geographically diverse areas of the world. All strains evaluated yielded a 4.4-kb sua-containing PCR fragment that was subsequently sequenced. Deduced SUAM AA sequences from those S. uberis strains evaluated shared >97% identity. The pepSUAM sequence located at the N terminus of SUAM was >99% identical among strains of S. uberis. Streptococcus uberis adhesion molecule expression was detected in all strains of S. uberis tested. These results suggest that sua is ubiquitous among strains of S. uberis isolated from diverse geographic locations and that SUAM is immunogenic. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Molecular characterization of Streptococcus agalactiae and Streptococcus uberis isolates from bovine milk.

    Science.gov (United States)

    Shome, Bibek Ranjan; Bhuvana, Mani; Mitra, Susweta Das; Krithiga, Natesan; Shome, Rajeswari; Velu, Dhanikachalam; Banerjee, Apala; Barbuddhe, Sukhadeo B; Prabhudas, Krishnamshetty; Rahman, Habibar

    2012-12-01

    Streptococci are one among the major mastitis pathogens which have a considerable impact on cow health, milk quality, and productivity. The aim of the present study was to investigate the occurrence and virulence characteristics of streptococci from bovine milk and to assess the molecular epidemiology and population structure of the Indian isolates using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Out of a total of 209 bovine composite milk samples screened from four herds (A-D), 30 Streptococcus spp. were isolated from 29 milk samples. Among the 30 isolates, species-specific PCR and partial 16S rRNA gene sequence analysis identified 17 Streptococcus agalactiae arising from herd A and 13 Streptococcus uberis comprising of 5, 7, and 1 isolates from herds B, C, and D respectively. PCR based screening for virulence genes revealed the presence of the cfb and the pavA genes in 17 and 1 S. agalactiae isolates, respectively. Similarly, in S. uberis isolates, cfu gene was present in six isolates from herd C, the pau A/skc gene in all the isolates from herds B, C, and D, whereas the sua gene was present in four isolates from herd B and the only isolate from herd D. On MLST analysis, all the S. agalactiae isolates were found to be of a novel sequence type (ST), ST-483, reported for the first time and is a single locus variant of the predicted subgroup founder ST-310, while the S. uberis isolates were found to be of three novel sequence types, namely ST-439, ST-474, and ST-475, all reported for the first time. ST-474 was a double locus variant of three different STs of global clonal complex ST-143 considered to be associated with clinical and subclinical mastitis, but ST-439 and ST-475 were singletons. Unique sequence types identified for both S. agalactiae and S. uberis were found to be herd specific. On PFGE analysis, identical or closely related restriction patterns for S. agalactiae ST-483 and S. uberis ST-439 in herds A and B

  11. Evaluation of tandem repeats for MLVA typing of Streptococcus uberis isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Lamoureux Jérémy

    2006-11-01

    Full Text Available Abstract Background Streptococcus uberis is a common cause of bovine mastitis and recommended control measures, based on improved milking practice, teat dipping and antibiotic treatment at drying-off, are poorly efficient against this environmental pathogen. A simple and efficient typing method would be helpful in identifying S.uberis sources, virulent strains and cow to cow transmission. The potential of MLVA (Multiple Loci VNTR Analysis; VNTR, Variable Number of Tandem Repeats for S. uberis mastitis isolates genotyping was investigated. Results The genomic sequence of Streptococcus uberis (strain 0104J was analyzed for potential variable number tandem repeats (VNTRs. Twenty-five tandem repeats were identified and amplified by PCR with DNA samples from 24 S. uberis strains. A set of seven TRs were found to be polymorphic and used for MLVA typing of 88 S. uberis isolates. A total of 82 MLVA types were obtained with 22 types among 26 strains isolated from the milk of mastitic cows belonging to our experimental herd, and 61 types for 62 epidemiologically unrelated strains, i.e. collected in different herds and areas. Conclusion The MLVA method can be applied to S. uberis genotyping and constitutes an interesting complement to existing typing methods. This method, which is easy to perform, low cost and can be used in routine, could facilitate investigations of the epidemiology of S. uberis mastitis in dairy cows.

  12. Udder infections with Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis at calving in dairy herds with suboptimal udder health.

    Science.gov (United States)

    Lundberg, Å; Nyman, A-K; Aspán, A; Börjesson, S; Unnerstad, H Ericsson; Waller, K Persson

    2016-03-01

    Udder infections with Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis are common causes of bovine mastitis. To study these pathogens in early lactation, a 12-mo longitudinal, observational study was carried out in 13 herds with suboptimal udder health. The aims of the study were to investigate the occurrence of these pathogens and to identify if presence of the 3 pathogens, and of genotypes within the pathogens, differed with respect to herd, season, and parity. Quarter milk samples, collected at calving and 4 d in milk (DIM), were cultured for the 3 pathogens. Genotyping of staphylococcal and streptococcal isolates was performed using spa typing and pulsed-field gel electrophoresis, respectively. For each of the 3 pathogens, cows with an udder infection at calving or 4 DIM were allocated to 1 of 4 infection types: cleared (pathogen present only at calving), persistent (pathogen present in the same quarter at calving and 4 DIM), new (pathogen present only at 4 DIM), or cleared/new (pathogen present in 1 quarter at calving and in another quarter at 4 DIM). Associations between season or parity and overall occurrence of pathogens or infection types were determined using univariable mixed-effect logistic-regression models and the Fisher's exact test, respectively. The most commonly occurring pathogen was Staph. aureus, followed by Strep. dysgalactiae and Strep. uberis. Persistent infections were the most common infection type among Staph. aureus-infected cows, whereas cleared infections were the most common among Strep. dysgalactiae- and Strep. uberis-positive cows. The proportion of cows with persistent Staph. aureus infections and the proportion of cows having a Strep. uberis infection at calving or 4 DIM were higher in the multiparous cows than in primiparous cows. Infections with Strep. dysgalactiae were less common during the early housing season than during the late housing or pasture seasons, whereas persistent Strep. uberis

  13. Early host response in the mammary gland after experimental Streptococcus uberis challenge in heifers.

    Science.gov (United States)

    de Greeff, Astrid; Zadoks, Ruth; Ruuls, Lisette; Toussaint, Mathilda; Nguyen, Thi Kim Anh; Downing, Alison; Rebel, Johanna; Stockhofe-Zurwieden, Norbert; Smith, Hilde

    2013-06-01

    Streptococcus uberis is a highly prevalent causative agent of bovine mastitis, which leads to large economic losses in the dairy industry. The aim of this study was to examine the host response during acute inflammation after experimental challenge with capsulated Strep. uberis. Gene expression in response to Strep. uberis was compared between infected and control quarters in 3 animals. All quarters (n=16) were sampled at 16 different locations. Microarray data showed that 239 genes were differentially expressed between infected and control quarters. No differences in gene expression were observed between the different locations. Microarray data were confirmed for several genes using quantitative PCR analysis. Genes differentially expressed due to early Strep. uberis mastitis represented several stages of the process of infection: (1) pathogen recognition; (2) chemoattraction of neutrophils; (3) tissue repair mechanisms; and (4) bactericidal activity. Three different pathogen recognition genes were induced: ficolins, lipopolysaccharide binding protein, and toll-like receptor 2. Calgranulins were found to be the most strongly upregulated genes during early inflammation. By histology and immunohistochemistry, we demonstrated that changes in gene expression in response to Strep. uberis were induced both in infiltrating somatic milk cells and in mammary epithelial cells, demonstrating that the latter cell type plays a role in milk production as well as immune responsiveness. Given the rapid development of inflammation or mastitis after infection, early diagnosis of (Strep. uberis) mastitis is required for prevention of disease and spread of the pathogen. Insight into host responses could help to design immunomodulatory therapies to dampen inflammation after (early) diagnosis of Strep. uberis mastitis. Future research should focus on development of these early diagnostics and immunomodulatory components for mastitis treatment. Copyright © 2013 American Dairy Science

  14. Differential Protein Expression in Streptococcus uberis under Planktonic and Biofilm Growth Conditions ▿ †

    Science.gov (United States)

    Crowley, R. C.; Leigh, J. A.; Ward, P. N.; Lappin-Scott, H. M.; Bowler, L. D.

    2011-01-01

    The bovine pathogen Streptococcus uberis was assessed for biofilm growth. The transition from planktonic to biofilm growth in strain 0140J correlated with an upregulation of several gene products that have been shown to be important for pathogenesis, including a glutamine ABC transporter (SUB1152) and a lactoferrin binding protein (gene lbp; protein SUB0145). PMID:21075893

  15. Streptococcus uberis: In vitro biofilm production in response to carbohydrates and skim milk.

    Science.gov (United States)

    Dieser, Silvana A; Fessia, Aluminé S; Ferrari, Miriam P; Raspanti, Claudia G; Odierno, Liliana M

    Streptococcus uberis has become one of the most important environmental pathogens associated with clinical and subclinical bovine mastitis. Biofilm confers to bacteria more resistance to physical and chemical agents as well as to different mechanisms of the innate immune system. The aim of this work was to evaluate the ability of in vitro biofilm production in 32 S. uberis isolates from bovine mastitis and identified by biochemical tests and subsequently confirmed by the amplification of the pauA gene. The isolates were cultivated in TMP broth and TMP broth with the addition of 0.5% glucose, 1% sucrose, 1% lactose or 0.5% skim milk in microtiter plates stained with crystal violet. We demonstrated that S. uberis isolated from bovine mastitis are able to produce biofilms in TMP broth and, also that biofilm formation by S. uberis can be significantly enhanced by the addition of 0.5% glucose or 1% sucrose to TMP broth. This may suggest that the carbohydrates in milk or within the ruminant gut might affect the growth mode of S. uberis. In addition, our results showed that in vitro biofilm production under different conditions of supplementation displays variation among the isolates and that each isolate shows a particular profile of biofilm production. This phenotypic heterogeneity in biofilm production exhibited by S. uberis could at least partly explain why this bacterium has the ability to adapt to different niches facilitating survival to diverse and stressful conditions. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Genetic diversity and virulence genes in Streptococcus uberis strains isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Rafael Ambrósio Loures

    2017-08-01

    Full Text Available Mastitis is one of the most common and costly infectious diseases in dairy cattle worldwide. This is a multifactorial illness caused by different microorganisms, including virus, yeasts, algae, parasites, and several species of bacteria. Among these bacteria, Streptococcus uberis is an important environmental pathogen that is responsible for a large range of clinical and subclinical mammary infections, especially in intensively managed herds. Despite the increasing importance of this pathogen in the etiology of bovine mastitis, data on its virulence and diversity in Brazilian dairy herds are scarce. The aims of the present study were to investigate the virulence characteristics of S. uberis isolated from bovine mastitis and to assess the molecular epidemiology of the Brazilian isolates using pulsed-field gel electrophoresis (PFGE. In this work, 46 strains of S. uberis isolated from bovine mastitis from 26 Brazilian dairy herds were evaluated regarding their genetic diversity by PFGE using with the SmaI enzyme. Additionally, the presence of the virulence genes skc and pauA, which encode plasminogen activators, and the gene sua, which encodes an adhesion molecule in mammary epithelial cells, were assessed by PCR. Our results showed a high genetic diversity in the population, displaying many different patterns in the PFGE analysis. A high proportion of strains was positive for virulence genes in the sampled population (sua [100%], pauA [91%], and skc [91%]. The high frequency of skc, pauA, and sua genes among the studied strains suggests the importance of these virulence factors, possibly helping S. uberis in the colonization of the bovine mammary gland. Surveys of the genetic and molecular characteristics of this pathogen can improve our knowledge of bacterial activity and identify molecules that have roles in the establishment of the infection. This might help in the development of more effective measures to control and prevent bovine mastitis.

  17. Molecular epidemiology and population structure of bovine Streptococcus uberis

    DEFF Research Database (Denmark)

    Rato, M G; Bexiga, R; Nunes, S F

    2008-01-01

    The molecular epidemiology and population structure of 30 bovine subclinical mastitis field isolates of Streptococcus uberis, collected from 6 Portuguese herds (among 12 farms screened) during 2002 and 2003, were examined by using pulsed-field gel electrophoresis (PFGE) for clustering of the isol...

  18. Early host response in the mammary gland after experimental Streptococcus uberis challenge in heifers

    NARCIS (Netherlands)

    Greeff, de A.; Zadoks, R.N.; Ruuls, L.; Toussaint, M.; Nguyen, T.K.; Downing, A.; Rebel, J.M.J.; Stockhofe-Zurwieden, N.; Smith, H.E.

    2013-01-01

    Streptococcus uberis is a highly prevalent causative agent of bovine mastitis, which leads to large economic losses in the dairy industry. The aim of this study was to examine the host response during acute inflammation after experimental challenge with capsulated Strep. uberis. Gene expression in

  19. Early pathogenesis and inflammatory response in experimental bovine mastitis due to Streptococcus uberis

    DEFF Research Database (Denmark)

    Pedersen, L.H.; Aalbæk, B.; Røntved, C.M.

    2003-01-01

    A generally similar clinical response was observed in six lactating Holstein-Friesian cows after intramammary inoculation with approximately 107 colony-forming units of Streptococcus uberis. Increased concentrations of serum amyloid A (SAA) were measured in both milk and serum taken 6 and 11 h af...... proteins as potential diagnostic markers for the early detection of S. uberis-associated mastitis....

  20. Genetic diversity of Streptococcus uberis isolates from dairy cows with subclinical mastitis in Southern Xinjiang Province, China.

    Science.gov (United States)

    Wang, Lijun; Chen, Wei; Zhang, Lili; Zhu, Yaxin

    2013-01-01

    Streptococcus uberis is a common cause of dairy cow mastitis throughout the world. The failure to control bovine mastitis caused by S. uberis is largely attributed to the little known about the epidemiology of this bacteria, especially strain differences in the same area. To define the local epidemiology of S. uberis in the south of Xinjiang, China, we explored the genetic diversity of 28 bovine subclinical mastitis field isolates of S. uberis, collected from 3 Chinese farms during 2009 and 2010, which was examined by using pulsed-field gel electrophoresis (PFGE) for clustering of the isolates and multilocus sequence typing (MLST) to assess the relationship between PFGE patterns and to identify genetic lineages. The 28 isolates were grouped into 13 pulsotypes (U1 to U13), and 1 PFGE type (U1) accounted for almost half of the isolates (13/28, 46.4%). This major type was herd specific, indicating either cow-to-cow transmission or infection with isolates from the same environmental reservoirs. The remaining 12 PFGE types of isolates were from different herds, strongly suggesting environmental sources of S. uberis infection. All 28 isolates were analyzed by MLST and clustered into 8 sequence types (STs), of which 7 STs were found to be novel, either with 5 new alleles of 6 housekeeping and virulence genes (ST158, ST159) or with different combinations of previously assigned alleles (ST153, ST154, ST155, ST156, ST157). To our knowledge, this is the first report that documents molecular typing studies of bovine isolates of S. uberis from southern Xinjiang Province, China, which were shown to represent novel genomic backgrounds of this pathogen.

  1. Use of partial budgeting to determine the economic benefits of antibiotic treatment of chronic subclinical mastitis caused by Streptococcus uberis or Streptococcus dysgalactiae

    NARCIS (Netherlands)

    Swinkels, J.M.; Rooijendijk, J.G.A.; Zadoks, R.N.; Hogeveen, H.

    2005-01-01

    The economic effect of lactational antibiotic treatment of chronic subclinical intramammary infections due to Streptococcus uberis or Streptococcus dysgalactiae was explored by means of partial budgeting. Effects at cow level and herd level were modelled, including prevention of clinical mastitis

  2. Phenotypic and genotypic characterization of Streptococcus uberis isolated from bovine subclinical mastitis in Argentinean dairy farms

    Directory of Open Access Journals (Sweden)

    Mirta C Lasagno

    2011-09-01

    Full Text Available The aim of this study was to investigate the phenotypic and genotypic characteristics of Streptococcus uberis isolated from subclinical mastitis (SCM cases, and to examine the possible association between both characteristics. A total of 32 S. uberis were isolated from 772 quarter milk samples (SCM > 250,000 cells/ml collected from 195 cows selected randomly from 18 dairy farms located in Argentina. The S. uberis strains were characterized phenotypically by the presence of virulence factors as plasminogen activator factor (PAF, hyaluronidase (HYA, capsule (CAP and CAMP factor, and were further characterized genotypically by pulsed-field gel electrophoresis (PFGE. S. uberis strains expressed plasminogen activator factor, hyaluronidase or capsule (65.5 %, 56.3 %, 59.4 %, respectively, but only 25 % of isolates were CAMP factor positive. Thirteen different virulence profiles were identified on the basis of the combination of virulence factors. Eighteen PFGE patterns with 90% of similarity were identified among 32 S. uberis. A great diversity of virulence profiles and PFGE patterns were present among dairy farms. S. uberis strains with the same PFGE pattern showed different virulence profiles. Bovine S. uberis strains causing SCM included in the present study showed heterogeneity in regard to their phenotypic and genotypic characteristics, and the PFGE patterns are not associated with the virulence profiles.Caracterización fenotípica y genotípica de Streptococcus uberis aislados de mastitis bovina subclínica en tambos de Argentina. El objetivo de este estudio fue investigar las características fenotípicas y genotípicas de Streptococcus uberis aislados de casos de mastitis subclínica (MSC y examinar la posible asociación entre ambas características. Un total de 32 cepas de S. uberis fueron aisladas de 772 muestras de leche de cuartos mamarios (MSC > 25 0000 células/ml colectadas de 195 vacas seleccionadas al azar pertenecientes a 18 tambos

  3. Short communication: Antimicrobial efficacy of intramammary treatment with a novel biphenomycin compound against Staphylococcus aureus, Streptococcus uberis, and Escherichia coli-induced mouse mastitis.

    Science.gov (United States)

    Demon, Dieter; Breyne, Koen; Schiffer, Guido; Meyer, Evelyne

    2013-01-01

    Bovine mastitis undermines udder health, jeopardizes milk production, and entails prohibitive costs, estimated at $2 billion per year in the dairy industry of the United States. Despite intensive research, the dairy industry has not managed to eradicate the 3 major bovine mastitis-inducing pathogens: Staphylococcus aureus, Streptococcus uberis, and Escherichia coli. In this study, the antimicrobial efficacy of a newly formulated biphenomycin compound (AIC102827) was assessed against intramammary Staph. aureus, Strep. uberis, and E. coli infections, using an experimental mouse mastitis model. Based on its effective and protective doses, AIC102827 applied into the mammary gland was most efficient to treat Staph. aureus, but also adequately reduced growth of Strep. uberis or E. coli, indicating its potential as a broad-spectrum candidate to treat staphylococcal, streptococcal, and coliform mastitis in dairy cattle. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Gene Regulation in Streptococcus pneumoniae: interplay between nutrition and virulence

    NARCIS (Netherlands)

    W.T. Hendriksen (Wouter)

    2010-01-01

    textabstractStreptococcus pneumoniae (the pneumococcus) is a Gram-positive bacterium, which belongs to the species of streptococci. Other pathogenic bacteria belonging to this class include Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus suis, Streptococcus uberis, Streptococcus

  5. Whole-Genome Sequence Analysis of Antimicrobial Resistance Genes in Streptococcus uberis and Streptococcus dysgalactiae Isolates from Canadian Dairy Herds

    Directory of Open Access Journals (Sweden)

    Julián Reyes Vélez

    2017-05-01

    Full Text Available The objectives of this study are to determine the occurrence of antimicrobial resistance (AMR genes using whole-genome sequence (WGS of Streptococcus uberis (S. uberis and Streptococcus dysgalactiae (S. dysgalactiae isolates, recovered from dairy cows in the Canadian Maritime Provinces. A secondary objective included the exploration of the association between phenotypic AMR and the genomic characteristics (genome size, guanine–cytosine content, and occurrence of unique gene sequences. Initially, 91 isolates were sequenced, and of these isolates, 89 were assembled. Furthermore, 16 isolates were excluded due to larger than expected genomic sizes (>2.3 bp × 1,000 bp. In the final analysis, 73 were used with complete WGS and minimum inhibitory concentration records, which were part of the previous phenotypic AMR study, representing 18 dairy herds from the Maritime region of Canada (1. A total of 23 unique AMR gene sequences were found in the bacterial genomes, with a mean number of 8.1 (minimum: 5; maximum: 13 per genome. Overall, there were 10 AMR genes [ANT(6, TEM-127, TEM-163, TEM-89, TEM-95, Linb, Lnub, Ermb, Ermc, and TetS] present only in S. uberis genomes and 2 genes unique (EF-TU and TEM-71 to the S. dysgalactiae genomes; 11 AMR genes [APH(3′, TEM-1, TEM-136, TEM-157, TEM-47, TetM, bl2b, gyrA, parE, phoP, and rpoB] were found in both bacterial species. Two-way tabulations showed association between the phenotypic susceptibility to lincosamides and the presence of linB (P = 0.002 and lnuB (P < 0.001 genes and the between the presence of tetM (P = 0.015 and tetS (P = 0.064 genes and phenotypic resistance to tetracyclines only for the S. uberis isolates. The logistic model showed that the odds of resistance (to any of the phenotypically tested antimicrobials was 4.35 times higher when there were >11 AMR genes present in the genome, compared with <7 AMR genes (P < 0.001. The odds of resistance was lower for S

  6. Rapid detection of Streptococcus uberis in raw milk by loop-mediated isothermal amplification

    NARCIS (Netherlands)

    Cornelissen, J.B.W.J.; Greeff, De A.; Heuvelink, A.E.; Swarts, M.; Smith, H.E.; Wal, Van der F.J.

    2016-01-01

    A loop-mediated isothermal amplification (LAMP) method to detect Streptococcus uberis in raw milk was developed and evaluated. Three genes (sodA, pauA, cpn60) were assessed for their suitability as targets in LAMP. The analytical sensitivity was 120, 120, and 12 fg per assay for the sodA, pauA,

  7. Evaluation of the antimicrobial efficacy of Minthostachys verticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis.

    Science.gov (United States)

    Montironi, Ivana D; Cariddi, Laura N; Reinoso, Elina B

    Bovine mastitis is a disease that causes great economic losses per year, being Streptococcus uberis the main environmental pathogen involved. The aim of the present study was to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Minthostachys verticillata essential oil and limonene for S. uberis strains isolated from bovine mastitis. In addition, the effect of MIC on biofilm formation was analyzed. MIC values for the essential oil ranged from 14.3 to 114.5mg/ml (1.56-12.5%v/v) and MBC between 114.5 and 229mg/ml (12.5-25%v/v). MICs for limonene ranged from 3.3 to 52.5mg/ml (0.39-6.25%v/v) and MBC was 210mg/ml (25%v/v). Both compounds showed antibacterial activity and affected the biofilm formation of most of the strains tested. In conclusion, these compounds could be used as an alternative and/or complementary therapy for bovine mastitis caused by S. uberis. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Evaluation of environmental and nutritional factors and sua gene on in vitro biofilm formation of Streptococcus uberis isolates.

    Science.gov (United States)

    Moliva, Melina Vanesa; Cerioli, Florencia; Reinoso, Elina Beatriz

    2017-06-01

    The pathogenesis of Streptococcus uberis is attributed to a combination of extracellular factors and properties such as adherence and biofilm formation. The aim of this work was to evaluate the influence of different factors, additives and bovine milk compounds on S. uberis biofilm formation, as the presence of the sua gene by PCR. Additionally, extracellular DNA and the effect of DNaseI were evaluated in the biofilms yielded. Optimal biofilm development was observed when the pH was adjusted to 7.0 and 37 °C. Additives as glucose and lactose reduced biofilm formation as bovine milk compounds tested. PCR assay showed that not all the isolates yielded sua gene. Extrachromosomal ADN was found in cell-free supernatants, suggesting that DNA released spontaneously to the medium. The results contribute to a better understanding of the factors involved in biofilm production of this important pathogen associated with mastitis in order to promote the design of new therapeutic approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell profileration and inhibition of PPARγ signaling as potential mechanism for the negative relationships between immune response and lipid metabolism

    DEFF Research Database (Denmark)

    Moyes, Kasey M; Drackley, James K; Morin, Dawn E

    2009-01-01

    Background Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis) that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare, and decre......Background Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis) that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare....../or metabolic responses to mastitis challenge with S. uberis O140J. Results Streptococcus uberis IMI resulted in 2,102 (1,939 annotated) differentially expressed genes (DEG). Within this set of DEG, we uncovered 20 significantly enriched canonical pathways (with 20 to 61 genes each), the majority of which were...

  10. Activity and milk compositional changes following experimentally induced Streptococcus uberis bovine mastitis.

    Science.gov (United States)

    Kester, H J; Sorter, D E; Hogan, J S

    2015-02-01

    Milk constituents and physical activity of cows experimentally infected with Streptococcus uberis mastitis were compared with those of uninfected cows. Twelve late-lactation Holsteins cows were paired based on milk production and parity. One cow in each pair was experimentally infected in the right front mammary gland with Strep. uberis. The remaining cow in each pair served as an uninfected control. Real-time analyses of milk constituents provided fat, protein, and lactose percentages at each milking. Pedometers were placed on the left front leg of all cows and activity was measured. Intramammary infections with Strep. uberis reduced milk yield in experimental cows by approximately 1.6kg/d in the first week after challenge compared with control cows. Lactose percentage in milk was reduced on d 3, 4, 5, and 6 after challenge in treatment cows compared with controls. Percentages of fat and protein in milk did not differ between infected and uninfected cows the week after infections were induced. Total steps per day were reduced and minutes resting per day were increased the week after experimental challenge in infected cows compared with control cows. The number of resting bouts did not differ between infected and uninfected cows. Changes in percentage of lactose in milk and animal activity caused by experimentally induced Strep. uberis mastitis were detected by the automated milk analyzer and pedometer systems. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Genetic patterns of Streptococcus uberis isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Elina B Reinoso

    2015-06-01

    Full Text Available The aim of this study was to evaluate the genotypic relationships among 40 Streptococcus uberis isolated from bovine mastitis by using pulsed-field gel electrophoresis (PFGE. Additionally, the association between PFGE patterns and virulence profiles was investigated. The isolates exhibited 17 PFGE patterns. Different strains were found within and among herds; however, a low number of isolates within the same herd shared an identical PFGE type. No association between PFGE patterns and virulence profiles was found. However, the detection of specific strains in some herds could indicate that some strains are more virulent than others. Further research needs to be undertaken to elucidate new virulence-associated genes that might contribute to the capability of these strains to produce infection.

  12. The role of Ca(2+) mediated signaling pathways on the effect of taurine against Streptococcus uberis infection.

    Science.gov (United States)

    Dai, Bin; Zhang, Jinqiu; Liu, Ming; Lu, Jinye; Zhang, Yuanshu; Xu, Yuanyuan; Miao, Jinfeng; Yin, Yulong

    2016-08-30

    To provide insight into the mechanisms of taurine attenuation of pro-inflammatory response in mouse mammary epithelial cell line (EpH4-Ev, purchased by ATCC, USA) after Streptococcus uberis (S. uberis, 0140J) challenge, we infected MECs with S. uberis (2.5×10(7)cfumL(-1), MOI=10) for 3h and quantified changes in TLR-2 and calcium (Ca(2+)) mediated signaling pathways. The results indicate that S. uberis infection significantly increases the expression of TLR-2, intracellular Ca(2+) levels, PLC-γ1 and PKC-α, the activities of transcription factors NF-κB and NFAT, and related cytokines (TNF-α, IL-1β, IL-6, G-CSF, IL-2, KC, IL-15, FasL, MCP-1, and LIX) in culture supernatants. Taurine administration downregulated all these indices, the activities of NF-κB and NFAT. Cytokine secretions were similar using special PKC inhibitor Go 6983 and NFAT inhibitor VIVIT. Our data indicate that S. uberis infection induces pro-inflammatory response of MECs through a TLR-2 mediated signaling pathway. In addition, taurine can prevent MEC damage by affecting both PLC-γ1-Ca(2+)-PKC-α-NF-κB and PLC-γ1-Ca(2+)-NFATs signaling pathways. This is the first report to demonstrate the mechanisms of taurine attenuated pro-inflammatory response in MECs after S. uberis challenge. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Genetic patterns of Streptococcus uberis isolated from bovine mastitis.

    Science.gov (United States)

    Reinoso, Elina B; Lasagno, Mirta C; Odierno, Liliana M

    2015-01-01

    The aim of this study was to evaluate the genotypic relationships among 40 Streptococcus uberis isolated from bovine mastitis by using pulsed-field gel electrophoresis (PFGE). Additionally, the association between PFGE patterns and virulence profiles was investigated. The isolates exhibited 17 PFGE patterns. Different strains were found within and among herds; however, a low number of isolates within the same herd shared an identical PFGE type. No association between PFGE patterns and virulence profiles was found. However, the detection of specific strains in some herds could indicate that some strains are more virulent than others. Further research needs to be undertaken to elucidate new virulence-associated genes that might contribute to the capability of these strains to produce infection. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Pathogen profile of clinical mastitis in Irish milk-recording herds reveals a complex aetiology.

    Science.gov (United States)

    Keane, O M; Budd, K E; Flynn, J; McCoy, F

    2013-07-06

    Effective mastitis control requires knowledge of the predominant pathogen challenges on the farm. In order to quantify this challenge, the aetiological agents associated with clinical mastitis in 30 milk-recording dairy herds in Ireland over a complete lactation were investigated. Standard bacteriology was performed on 630 pretreatment quarter milk samples, of which 56 per cent were culture-positive, 42 per cent culture-negative and 2 per cent contaminated. Two micro-organisms were isolated from almost 5 per cent of the culture-positive samples. The bacteria isolated were Staphylococcus aureus (23 per cent), Streptococcus uberis (17 per cent), Escherichia coli (9 per cent), Streptococcus species (6 per cent), coagulase-negative Staphylococci (4 per cent) and other species (1 per cent). A wide variety of bacterial species were associated with clinical mastitis, with S aureus the most prevalent pathogen overall, followed by S uberis. However, the bacterial challenges varied widely from farm to farm. In comparison with previous reports, in the present study, the contagious pathogens S aureus and Streptococcus agalactiae were less commonly associated with clinical mastitis, whereas, the environmental pathogens S uberis and E coli were found more commonly associated with clinical mastitis. While S aureus remains the pathogen most commonly associated with intramammary infection in these herds, environmental pathogens, such as S uberis and E coli also present a considerable challenge.

  15. Dairy cows produce cytokine and cytotoxic T cell responses following vaccination with an antigenic fraction from Streptococcus uberis.

    Science.gov (United States)

    Wedlock, D Neil; Buddle, Bryce M; Williamson, John; Lacy-Hulbert, S Jane; Turner, Sally-Anne; Subharat, Supatsak; Heiser, Axel

    2014-07-15

    Streptococcus uberis is a major cause of mastitis in dairy cows worldwide and currently, there is no vaccine commercially available against this form of mastitis. In the current study, cell-free extracts (CFE) were prepared from each of three different S. uberis strains, designated as #3, #24 and #363 representative of the three main sequence types of S. uberis that cause mastitis in New Zealand. These proteins were formulated into vaccines with Emulsigen-D and the immunogenicity of the vaccines was determined in both calves and dairy cows. Two groups of calves (n=5/group) were vaccinated subcutaneously with CFE from strain #24 or strains #3, #24 and #363 formulated with Emulsigen-D, respectively. A third group (n=5) was vaccinated with CFE from the three strains formulated with Emulsigen-D and also containing recombinant bovine granulocyte macrophage colony-stimulating factor while, a control group (n=5) was not vaccinated. Vaccinated animals produced strong antibody responses to the S. uberis antigens and an antigen-specific cytotoxic effect against blood monocytes/macrophages that had phagocytosed S. uberis, with no significant differences in responses observed between the three vaccinated groups. In a second trial, the safety and immunogenicity of the vaccine containing CFE from all three strains of S. uberis and Emulsigen-D was determined in dairy cows. A group of six cows were vaccinated subcutaneously at 3 and 1 week prior to dry off and revaccinated 2-3 weeks before calving. Immune responses in blood and mammary gland secretions (MGS) were monitored during the dry period and in the subsequent lactation. The vaccine was well tolerated with no adverse effect from vaccination observed in any of the cows. Vaccination induced an antigen-specific cytotoxic effect against blood monocytes/macrophages that had phagocytosed S. uberis, moderate antigen-specific IFN-γ responses in blood and strong antibody responses in both blood and MGS. In conclusion, the results

  16. Detection of mastitis pathogens by analysis of volatile bacterial metabolites

    NARCIS (Netherlands)

    Hettinga, K.A.; Valenberg, van H.J.F.; Lam, T.J.G.M.; Hooijdonk, van A.C.M.

    2008-01-01

    The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In

  17. Genotyping and study of the pauA and sua genes of Streptococcus uberis isolates from bovine mastitis.

    Science.gov (United States)

    Perrig, Melina S; Ambroggio, María B; Buzzola, Fernanda R; Marcipar, Iván S; Calvinho, Luis F; Veaute, Carolina M; Barbagelata, María Sol

    2015-01-01

    This study aimed to determine the clonal relationship among 137 Streptococcus uberis isolates from bovine milk with subclinical or clinical mastitis in Argentina and to assess the prevalence and conservation of pauA and sua genes. This information is critical for the rational design of a vaccine for the prevention of bovine mastitis caused by S. uberis. The isolates were typed by random amplified polymorphic DNA (RAPD) analysis and by pulsed-field gel electrophoresis (PFGE). The 137 isolates exhibited 61 different PFGE types and 25 distinct RAPD profiles. Simpson's diversity index was calculated both for PFGE (0.983) and for RAPD (0.941), showing a high discriminatory power in both techniques. The analysis of the relationship between pairs of isolates showed 92.6% concordance between both techniques indicating that any given pair of isolates distinguished by one method tended to be distinguished by the other. The prevalence of the sua and pauA genes was 97.8% (134/137) and 94.9% (130/137), respectively. Nucleotide and amino acid sequences of the sua and pauA genes from 20 S. uberis selected isolates, based on their PFGE and RAPD types and geographical origin, showed an identity between 95% and 100% with respect to all reference sequences registered in GenBank. These results demonstrate that, in spite of S. uberis clonal diversity, the sua and pauA genes are prevalent and highly conserved, showing their importance to be included in future vaccine studies to prevent S. uberis bovine mastitis. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Prediction of Streptococcus uberis clinical mastitis risk using Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) in dairy herds.

    Science.gov (United States)

    Archer, Simon C; Bradley, Andrew J; Cooper, Selin; Davies, Peers L; Green, Martin J

    2017-09-01

    The purpose of this study was to evaluate whether the risk of Streptococcus uberis clinical mastitis at cow level could be predicted from the historical presence of specific strains of S. uberis on dairy farms. Matrix-assisted laser desorption ionization time of flight mass spectrometry was used to identify S. uberis isolates potentially capable of contagious transmission. Data were available from 10,652 cows from 52 English and Welsh dairy farms over a 14 month period, and 521 isolates of S. uberis from clinical mastitis cases were available for analysis. As well as the temporal herd history of clinical mastitis associated with particular S. uberis strains, other exposure variables included cow parity, stage of lactation, milk yield, and somatic cell count. Observations were structured longitudinally as repeated weekly measures through the study period for each cow. Data were analyzed in a Bayesian framework using multilevel logistic regression models. Similarity of mass spectral profiles between isolates of S. uberis from consecutive clinical cases of mastitis in herds was used to indicate potential for contagious phenotypic characteristics. Cross validation showed that new isolates with these characteristics could be identified with an accuracy of 90% based on bacterial protein mass spectral characteristics alone. The cow-level risk in any week of these S. uberis clinical mastitis cases increased with the presence of the same specific strains of S. uberis in other cows in the herd during the previous 2 weeks. The final statistical model indicated there would be a 2-3 fold increase in the risk of S. uberis clinical mastitis associated with particular strains if these occurred in the herd 1 and 2 weeks previously. The results suggest that specific strains of S. uberis may be involved with contagious transmission, and predictions based on their occurrence could be used as an early warning surveillance system to enhance the control of S. uberis mastitis. Copyright

  19. Stochastic modelling to assess economic effects of treatment of chronic subclinical mastitis caused by Streptococcus uberis.

    Science.gov (United States)

    Steeneveld, Wilma; Swinkels, Jantijn; Hogeveen, Henk

    2007-11-01

    Chronic subclinical mastitis is usually not treated during the lactation. However, some veterinarians regard treatment of some types of subclinical mastitis to be effective. The goal of this research was to develop a stochastic Monte Carlo simulation model to support decisions around treatment of chronic subclinical mastitis caused by Streptococcus uberis. Factors in the model included the probability of cure after treatment, probability of the cow becoming clinically diseased, transmission of infection to other cows, and physiological effects of the infection. Using basic input parameters for Dutch circumstances, the average economic costs per cow of an untreated chronic subclinical mastitis case caused by Str. uberis in a single quarter from day of diagnosis onwards was euro109. With treatment, the average costs were higher (euro120). Thus, for the average cow, treatment was not efficient economically. However, the risk of high costs was much higher when cows with chronic subclinical mastitis were not treated. A sensitivity analysis showed that profitability of treatment of chronic subclinical Str. uberis mastitis depended on farm-specific factors (such as economic value of discarded milk) and cow-specific factors (such as day of diagnosis, duration of infection, amount of transmission to other cows and cure rate). Therefore, herd level protocols are not sufficient and decision support should be cow specific. Given the importance of cow-specific factors, information from the current model could be applied to automatic decision support systems.

  20. Prevalence of Bovine Mastitis Pathogens in Bulk Tank Milk in China

    Science.gov (United States)

    Wang, Ya Jing; Qin, Yun; Guix Vallverdú, Roger; Maldonado García, Jaime; Sun, Wei; Li, Shengli; Cao, Zhijun

    2016-01-01

    The objectives of this study were to estimate the herd prevalence of major mastitis pathogens in bulk tank milk (BTM) in China dairy herds, to determine the relationship between the presence of mastitis pathogens and bulk tank milk somatic cell counts (BTSCC), and to investigate the impact of different dairy cattle farming modes and region on bacterial species. BTM samples collected from 894 dairy herds in China were examined for the presence of mastitis pathogens. The Flinders Technology Associates (FTA) cards were used for BTM sample collection, storage, and transportation and bacterial DNA amplification by real-time PCR. Among contagious pathogens, Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae were detected in 50.1, 92.2, and 72.3% of the 894 BTM samples, respectively. Among environmental pathogens, E. coli, Streptococcus uberis, Enterococcus spp., Klebsiella spp., Serratia marcescens, Corynebacterium bovis, and Arcanobacterium pyogenes were detected in 28.6, 8.9, 35.7, 20.0, 1.3, 17.0, and 67.2% of the BTM samples, respectively. Staphylococcal β-lactamase gene was detected in 61.7% of the BTM samples. The presence of Staphylococcus aureus and Arcanobacterium pyogenes were significantly associated with high BTSCC, respectively. Significant differences were found in presence of Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae in BTM sampled from the small household farms, dairy-farming communities, and large-scaled dairy farms. There were significant differences in the presence of Streptococcus agalactiae, Streptococcus dysgalactiae, Arcanobacterium pyogenes, staphylococcal β-lactamase gene, Staphylococcus spp., Klebsiella spp., Enterococcus spp., and Streptococcus uberis in BTM among Inner Mongolia, Heilongjiang, and Hebei province. In conclusion, contagious mammary pathogens are predominated among pathogens in BTM samples in China. PMID:27187065

  1. Reduction of teat skin mastitis pathogen loads: differences between strains, dips, and contact times.

    Science.gov (United States)

    Enger, B D; Fox, L K; Gay, J M; Johnson, K A

    2015-02-01

    The purpose of these experiments was to (1) assess differences in mastitis pathogen strain sensitivities to teat disinfectants (teat dips), and (2) determine the optimum time for premilking teat dips to remain in contact with teat skin to reduce pathogen loads on teat skin. Two experiments were conducted using the excised teat model. In experiment 1, the differences in mastitis pathogen strain sensitivities to 4 commercially available dips (dip A: 1% H2O2; dip B: 1% chlorine dioxide; dip C: 1% iodophor; and dip D: 0.5% iodophor) were evaluated. Four strains of 11 common mastitis pathogens (Staphylococcus aureus, Streptococcus agalactiae, Mycoplasma bovis, Streptococcus dysgalactiae, Streptococcus uberis, Escherichia coli, Staphylococcus chromogenes, Staphylococcus epidermidis, Staphylococcus hyicus, Staphylococcus xylosus, and Staphylococcus haemolyticus) were tested. In experiment 2, the percentage log reduction of mastitis pathogens (Escherichia coli, Streptococcus uberis, Streptococcus dysgalactiae, Klebsiella species, Staphylococcus chromogenes, Staphylococcus haemolyticus, Staphylococcus xylosus, and Staphylococcus epidermidis) on teat skin with 3 commercially available teat dips: dip A; dip D; and dip E: 0.25% iodophor, using dip contact times of 15, 30, and 45 s, was evaluated. Experiment 1 results indicated significant differences in strain sensitivities to dips within pathogen species: Staphylococcus aureus, Staphylococcus chromogenes, and Streptococcus uberis. Species differences were also found where Mycoplasma bovis (97.9% log reduction) was the most sensitive to tested teat dips and Staphylococcus haemolyticus (71.4% log reduction) the most resistant. Experiment 2 results indicated that contact times of 30 and 45 s were equally effective in reducing recovered bacteria for dips D and E and were also significantly more effective than a 15-s contact time. No differences were seen in recovered bacteria between tested contact times after treatment with dip

  2. The association between bedding material and the bacterial counts of Staphylococcus aureus, Streptococcus uberis and coliform bacteria on teat skin and in teat canals in lactating dairy cattle.

    Science.gov (United States)

    Paduch, Jan-Hendrik; Mohr, Elmar; Krömker, Volker

    2013-05-01

    Several mastitis-causing pathogens are able to colonize the bovine teat canal. The objective of this study was to investigate the association between the treatment of sawdust bedding with a commercial alkaline conditioner and the bacterial counts on teat skin and in the teat canal. The study used a crossover design. Ten lactating Holstein cows that were free of udder infections and mastitis were included in the study. The animals were bedded on either untreated sawdust or sawdust that had been treated with a hydrated lime-based conditioner. Once a day, fresh bedding material was added. After 3 weeks, the bedding material was removed from the cubicles, fresh bedding material was provided, and the cows were rotated between the two bedding material groups. Teat skin and teat canals were sampled using the wet and dry swab technique after weeks 1, 2, 3, 4, 5 and 6. Staphylococcus aureus, Streptococcus uberis, Escherichia coli and other coliform bacteria were detected in the resulting agar plate cultures. The treatment of the bedding material was associated with the teat skin bacterial counts of Str. uberis, Esch. coli and other coliform bacteria. An association was also found between the bedding material and the teat canal bacterial counts of coliform bacteria other than Esch. coli. For Staph. aureus, no associations with the bedding material were found. In general, the addition of a hydrated lime-based conditioner to sawdust reduces the population sizes of environmental pathogens on teat skin and in teat canals.

  3. Quality of bulk tank milk samples from Danish dairy herds based on real-time polymerase chain reaction identification of mastitis pathogens

    DEFF Research Database (Denmark)

    Katholm, Jørgen; Bennedsgaard, T.W.; Koskinen, M.T.

    2012-01-01

    Results of a commercial real-time PCR analysis for 11 mastitis pathogens from bulk tank milk (BTM) samples from all 4,258 Danish dairy herds in November 2009 to January 2010 were compared with somatic cell count (SCC) and total bacteria count (TBC) estimates in BTM. For Streptococcus agalactiae......, Streptococcus dysgalactiae, and Streptococcus uberis, a low real-time PCR cycle threshold (Ct) value (corresponding to high bacterial DNA quantity) was correlated with higher SCC and higher TBC. For Staphylococcus aureus, low Ct values were correlated only with higher SCC. For the environmental mastitis...... pathogens Klebsiella spp., Enterococcus spp., and Escherichia coli, low Ct values had a correlation with higher TBC. Staphylococcus spp. were found in the BTM from all herds, Strep. uberis in 95%, Staph. aureus in 91%, and Strep. dysgalactiae in 86%, whereas E. coli, Klebsiella, and Strep. agalactiae were...

  4. Detection of mastitis pathogens by analysis of volatile bacterial metabolites.

    Science.gov (United States)

    Hettinga, K A; van Valenberg, H J F; Lam, T J G M; van Hooijdonk, A C M

    2008-10-01

    The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In addition, samples from cows without clinical mastitis and with low somatic cell count (SCC) were collected for comparison. All mastitis samples were examined by using classical microbiological methods, followed by headspace analysis for volatile metabolites. Milk from culture-negative samples contained a lower number and amount of volatile components compared with cows with clinical mastitis. Because of variability between samples within a group, comparisons between pathogens were not sufficient for classification of the samples by univariate statistics. Therefore, an artificial neural network was trained to classify the pathogen in the milk samples based on the bacterial metabolites. The trained network differentiated milk from uninfected and infected quarters very well. When comparing pathogens, Staph. aureus produced a very different pattern of volatile metabolites compared with the other samples. Samples with coagulase-negative staphylococci and E. coli had enough dissimilarity with the other pathogens, making it possible to separate these 2 pathogens from each other and from the other samples. The 2 streptococcus species did not show significant differences between each other but could be identified as a different group from the other pathogens. Five groups can thus be identified based on the volatile bacterial metabolites: Staph. aureus, coagulase-negative staphylococci, streptococci (Strep. uberis and Strep. dysgalactiae as one group), E. coli, and uninfected quarters.

  5. Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 2. Label-free relative quantitative proteomics.

    Science.gov (United States)

    Mudaliar, Manikhandan; Tassi, Riccardo; Thomas, Funmilola C; McNeilly, Tom N; Weidt, Stefan K; McLaughlin, Mark; Wilson, David; Burchmore, Richard; Herzyk, Pawel; Eckersall, P David; Zadoks, Ruth N

    2016-08-16

    Mastitis, inflammation of the mammary gland, is the most common and costly disease of dairy cattle in the western world. It is primarily caused by bacteria, with Streptococcus uberis as one of the most prevalent causative agents. To characterize the proteome during Streptococcus uberis mastitis, an experimentally induced model of intramammary infection was used. Milk whey samples obtained from 6 cows at 6 time points were processed using label-free relative quantitative proteomics. This proteomic analysis complements clinical, bacteriological and immunological studies as well as peptidomic and metabolomic analysis of the same challenge model. A total of 2552 non-redundant bovine peptides were identified, and from these, 570 bovine proteins were quantified. Hierarchical cluster analysis and principal component analysis showed clear clustering of results by stage of infection, with similarities between pre-infection and resolution stages (0 and 312 h post challenge), early infection stages (36 and 42 h post challenge) and late infection stages (57 and 81 h post challenge). Ingenuity pathway analysis identified upregulation of acute phase protein pathways over the course of infection, with dominance of different acute phase proteins at different time points based on differential expression analysis. Antimicrobial peptides, notably cathelicidins and peptidoglycan recognition protein, were upregulated at all time points post challenge and peaked at 57 h, which coincided with 10 000-fold decrease in average bacterial counts. The integration of clinical, bacteriological, immunological and quantitative proteomics and other-omic data provides a more detailed systems level view of the host response to mastitis than has been achieved previously.

  6. Complete Genome Sequence and Immunoproteomic Analyses of the Bacterial Fish Pathogen Streptococcus parauberis▿†

    Science.gov (United States)

    Nho, Seong Won; Hikima, Jun-ichi; Cha, In Seok; Park, Seong Bin; Jang, Ho Bin; del Castillo, Carmelo S.; Kondo, Hidehiro; Hirono, Ikuo; Aoki, Takashi; Jung, Tae Sung

    2011-01-01

    Although Streptococcus parauberis is known as a bacterial pathogen associated with bovine udder mastitis, it has recently become one of the major causative agents of olive flounder (Paralichthys olivaceus) streptococcosis in northeast Asia, causing massive mortality resulting in severe economic losses. S. parauberis contains two serotypes, and it is likely that capsular polysaccharide antigens serve to differentiate the serotypes. In the present study, the complete genome sequence of S. parauberis (serotype I) was determined using the GS-FLX system to investigate its phylogeny, virulence factors, and antigenic proteins. S. parauberis possesses a single chromosome of 2,143,887 bp containing 1,868 predicted coding sequences (CDSs), with an average GC content of 35.6%. Whole-genome dot plot analysis and phylogenetic analysis of a 60-kDa chaperonin-encoding gene and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-encoding gene showed that the strain was evolutionarily closely related to Streptococcus uberis. S. parauberis antigenic proteins were analyzed using an immunoproteomic technique. Twenty-one antigenic protein spots were identified in S. parauberis, by reaction with an antiserum obtained from S. parauberis-challenged olive flounder. This work provides the foundation needed to understand more clearly the relationship between pathogen and host and develops new approaches toward prophylactic and therapeutic strategies to deal with streptococcosis in fish. The work also provides a better understanding of the physiology and evolution of a significant representative of the Streptococcaceae. PMID:21531805

  7. Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia

    Science.gov (United States)

    Harjanti, D. W.; Ciptaningtyas, R.; Wahyono, F.; Setiatin, ET

    2018-01-01

    Mastitis is a multi-etiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria. Nearly 83% of lactating dairy cows in Indonesia are infected with mastitis in various inflammation degrees. This study was conducted to isolate and identify the pathogen in milk collected from mastitis-infected dairy cows. The study was carried out in ten smallholder dairy farms in Central Java Indonesia based on animal examination, California mastitis test, isolation bacterial pathogens, Gram staining, Catalase and Coagulase test, and identification of bacteria species using Vitek. Bacteriological examination of milk samples revealed 15 isolates where Streptococcus was predominant species (73.3%) and the coagulase negative Staphylococcus species was identified at the least bacteria (26.7%). The Streptococcus bacteria found were Streptococcus uberis (2 isolates), Streptococcus sanguinis(6 isolates), Streptococcus dysgalactiaessp dysgalactiae(1 isolate) , Streptococcus mitis (1 isolate) and Streptococcus agalactiae (1 isolate). The Staphylococcus isolates comprising of Staphylococcus simulans (1 isolate) and Staphylococcus chromogens (3 isolates). Contamination of raw milkwith pathogenic bacteria can cause outbreaks of human disease (milk borne disease). Thus, proper milk processing method that couldinhibit the growth or kill these pathogenic bacteria is important to ensure the safety of milk and milk products.

  8. Greater expression of TLR2, TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA and HLA-A in bovine blood neutrophils after intramammary mastitis challenge with Streptococcus uberis

    DEFF Research Database (Denmark)

    Moyes, Kasey; Drackley, James K; Morin, Dawn E

    2010-01-01

    Our objectives were to compare gene expression profiles in blood polymorphonuclear cells (PMN) during a Streptococcus uberis intramammary challenge between lactating cows subjected to feed restriction to induce negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive ener...

  9. Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 3. Untargeted metabolomics.

    Science.gov (United States)

    Thomas, Funmilola Clara; Mudaliar, Manikhandan; Tassi, Riccardo; McNeilly, Tom N; Burchmore, Richard; Burgess, Karl; Herzyk, Pawel; Zadoks, Ruth N; Eckersall, P David

    2016-08-16

    Intramammary infection leading to bovine mastitis is the leading disease problem affecting dairy cows and has marked effects on the milk produced by infected udder quarters. An experimental model of Streptococcus uberis mastitis has previously been investigated for clinical, immunological and pathophysiological alteration in milk, and has been the subject of peptidomic and quantitative proteomic investigation. The same sample set has now been investigated with a metabolomics approach using liquid chromatography and mass spectrometry. The analysis revealed over 3000 chromatographic peaks, of which 690 were putatively annotated with a metabolite. Hierarchical clustering analysis and principal component analysis demonstrated that metabolite changes due to S. uberis infection were maximal at 81 hours post challenge with metabolites in the milk from the resolution phase at 312 hours post challenge being closest to the pre-challenge samples. Metabolic pathway analysis revealed that the majority of the metabolites mapped to carbohydrate and nucleotide metabolism show a decreasing trend in concentration up to 81 hours post-challenge whereas an increasing trend was found in lipid metabolites and di-, tri- and tetra-peptides up to the same time point. The increase in these peptides coincides with an increase in larger peptides found in the previous peptidomic analysis and is likely to be due to protease degradation of milk proteins. Components of bile acid metabolism, linked to the FXR pathway regulating inflammation, were also increased. Metabolomic analysis of the response in milk during mastitis provides an essential component to the full understanding of the mammary gland's response to infection.

  10. Economic values and expected effect of selection index for pathogen-specific mastitis under Danish conditions

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Mark, Thomas; Sørensen, M.K.

    2010-01-01

    The objectives of this study were 1) to estimate costs related to 5 different pathogen-specific mastitis traits (susceptibility to different pathogens causing mastitis in dairy cattle) and unspecific mastitis, and 2) to compare selection differentials for an udder health index consisting of 5...... different pathogen-specific mastitis traits and lactation average somatic cell count from 5 to 170 d after first calving (LASCC170) with another index consisting of 1 unspecific mastitis trait and LASCC170. Economic values were estimated for mastitis caused by Staphylococcus aureus, Streptococcus...... dysgalactiae, Escherichia coli, coagulase-negative staphylococci, and Streptococcus uberis using a stochastic simulation model (SimHerd IV). Mastitis incidences for SimHerd IV were from incidences of mastitis treatments in primiparous Danish Holstein cows calving in 2007. Estimated costs ranged from 149 euro...

  11. Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis

    DEFF Research Database (Denmark)

    Rato, Márcia G.; Bexiga, Ricardo; Florindo, Carlos

    2013-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS), Streptococcus dysgalactiae subsp. dysgalactiae (Group C Streptococcus, GCS) and Streptococcus uberis are relevant mastitis pathogens, a highly prevalent and costly disease in dairy industry due to antibiotherapy and loss in milk production. T...

  12. Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden

    Directory of Open Access Journals (Sweden)

    Nyman Ann-Kristin J

    2011-06-01

    Full Text Available Abstract Background A nationwide survey on the microbial etiology of cases of subclinical mastitis in dairy cows was carried out on dairy farms in Sweden. The aim was to investigate the microbial panorama and the occurrence of antimicrobial resistance. Moreover, differences between newly infected cows and chronically infected cows were investigated. Methods In total, 583 quarter milk samples were collected from 583 dairy cows at 226 dairy farms from February 2008 to February 2009. The quarter milk samples were bacteriological investigated and scored using the California Mastitis Test. Staphylococci were tested for betalactamase production and presence of resistance was evaluated in all specific udder pathogens. Differences between newly infected cows and chronically infected cows were statistically investigated using logistic regression analysis. Results The most common isolates of 590 bacteriological diagnoses were Staphylococcus (S aureus (19% and coagulase-negative staphylococci (CNS; 16% followed by Streptococcus (Str dysgalactiae (9%, Str. uberis (8%, Escherichia (E. coli (2.9%, and Streptococcus spp. (1.9%. Samples with no growth or contamination constituted 22% and 18% of the diagnoses, respectively. The distribution of the most commonly isolated bacteria considering only bacteriological positive samples were: S. aureus - 31%, CNS - 27%, Str. dysgalactiae - 15%, Str. uberis - 14%, E. coli - 4.8%, and Streptococcus spp. - 3.1%. There was an increased risk of finding S. aureus, Str. uberis or Str. dysgalactiae in milk samples from chronically infected cows compared to findings in milk samples from newly infected cows. Four percent of the S. aureus isolates and 35% of the CNS isolates were resistant to penicillin G. Overall, resistance to other antimicrobials than penicillin G was uncommon. Conclusions Staphylococcus aureus and CNS were the most frequently isolated pathogens and resistance to antimicrobials was rare.

  13. Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae

    Science.gov (United States)

    Richards, Vincent P.; Lang, Ping; Pavinski Bitar, Paulina D.; Lefébure, Tristan; Schukken, Ynte H.; Zadoks, Ruth N.; Stanhope, Michael J.

    2011-01-01

    In addition to causing severe invasive infections in humans, Streptococcus agalactiae, or group B Streptococcus (GBS), is also a major cause of bovine mastitis. Here we provide the first genome sequence for S. agalactiae isolated from a cow diagnosed with clinical mastitis (strain FSL S3-026). Comparison to eight S. agalactiae genomes obtained from human disease isolates revealed 183 genes specific to the bovine strain. Subsequent polymerase chain reaction (PCR) screening for the presence/absence of a subset of these loci in additional bovine and human strains revealed strong differentiation between the two groups (Fisher exact test: p S. agalactiae with Streptococcus uberis (nisin U operon) and Streptococcus dysgalactiae subsp. dysgalactiae (lactose operon). We also found evidence for LGT, involving the salivaricin operon, between the bovine S. agalactiae strain and either Streptococcus pyogenes or Streptococcus salivarius. Our findings provide insight intomechanismsfacilitatingenvironmentaladaptationandacquisitionofpotential virulence factors, while highlighting both the key role LGT has played in the recent evolution of the bovine S. agalactiae strain, and the importance of LGT among pathogens within a shared environment. PMID:21536150

  14. Streptococcus suis, an emerging drug-resistant animal and human pathogen

    Directory of Open Access Journals (Sweden)

    Claudio ePalmieri

    2011-11-01

    Full Text Available Streptococcus suis, a major porcine pathogen, has been receiving growing attention not only for its role in severe and increasingly reported infections in humans, but also for its involvement in drug resistance. Recent studies and the analysis of sequenced genomes have been providing important insights into the S. suis resistome, and have resulted in the identification of resistance determinants for tetracyclines, macrolides, aminoglycosides, chloramphenicol, antifolate drugs, streptothricin, and cadmium salts. Resistance gene-carrying genetic elements described so far include integrative and conjugative elements, transposons, genomic islands, phages, and chimeric elements. Some of these elements are similar to those reported in major streptococcal pathogens such as Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae and share the same chromosomal insertion sites. The available information strongly suggests that S. suis is an important antibiotic resistance reservoir that can contribute to the spread of resistance genes to the above-mentioned streptococci. S. suis is thus a paradigmatic example of possible intersections between animal and human resistomes.

  15. In vitro growth inhibition of major mastitis pathogens by Staphylococcus chromogenes originating from teat apices of dairy heifers.

    Science.gov (United States)

    De Vliegher, S; Opsomer, G; Vanrolleghem, A; Devriese, L A; Sampimon, O C; Sol, J; Barkema, H W; Haesebrouck, F; de Kruif, A

    2004-07-14

    Earlier field observations suggest that teat apex colonization by Staphylococcus chromogenes pre-partum in dairy heifers protects udder quarters against elevated somatic cell counts early post-partum. To explain these findings, the in vitro inhibitory capability of S. chromogenes from teat apices of heifers towards some major mastitis pathogens was tested using a modified cross-streaking method. Two out of 10 S. chromogenes isolates, both originating from two different teats from the same heifer, consistently inhibited growth of all Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis strains, but none of the Escherichia coli strains. The present study, therefore, supports the protective effect of teat apex colonization by S. chromogenes by in vitro production of inhibitory substances.

  16. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans.

    Science.gov (United States)

    Zadoks, Ruth N; Middleton, John R; McDougall, Scott; Katholm, Jorgen; Schukken, Ynte H

    2011-12-01

    Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine.

  17. Pathogen-specific effects of quantitative trait loci affecting clinical mastitis and somatic cell count in danish holstein cattle

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Guldbrandtsen, Bernt; Thomasen, J.R.

    2008-01-01

    The aim of this study was to investigate whether quantitative trait loci (QTL) affecting the risk of clinical mastitis (CM) and QTL affecting somatic cell score (SCS) exhibit pathogen-specific effects on the incidence of mastitis. Bacteriological data on mastitis pathogens were used to investigate...... pathogen specificity of QTL affecting treatments of mastitis in first parity (CM1), second parity (CM2), and third parity (CM3), and QTL affecting SCS. The 5 most common mastitis pathogens in the Danish dairy population were analyzed: Streptococcus dysgalactiae, Escherichia coli, coagulase...... against coagulase-negative staphylococci and Strep. uberis. Our results show that particular mastitis QTL are highly likely to exhibit pathogen-specificity. However, the results should be interpreted carefully because the results are sensitive to the sampling method and method of analysis. Field data were...

  18. Examining the effect of intramammary infections with minor mastitis pathogens on the acquisition of new intramammary infections with major mastitis pathogens--a systematic review and meta-analysis.

    Science.gov (United States)

    Reyher, K K; Haine, D; Dohoo, I R; Revie, C W

    2012-11-01

    Major mastitis pathogens such as Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, Streptococcus dysgalactiae, and the coliforms are usually considered more virulent and damaging to the udder than minor mastitis pathogens such as Corynebacterium bovis and coagulase-negative staphylococci (CNS). The current literature contains several studies detailing analyses with conflicting results as to whether intramammary infection (IMI) with the minor pathogens decreases, increases, or has no effect on the risk of a quarter acquiring a new intramammary infection (NIMI) with a major pathogen. To investigate the available scientific evidence regarding the effect of IMI with minor pathogens on the acquisition of NIMI with major pathogens, a systematic review and meta-analysis were conducted. The total extant English- and French-language literature in electronic databases was searched and all publications cited by relevant papers were investigated. Results from 68 studies were extracted from 38 relevant papers. Random-effects models were used to investigate the effects of CNS and C. bovis on acquisition of new IMI with any of the major pathogens, as well as individually for the minor pathogens and Staph. aureus. Significant heterogeneity among studies exists, some of which could be accounted for by using meta-regression. Overall, observational studies showed no effect, whereas challenge studies showed strong and significant protective effects, specifically when major pathogens were introduced into the mammary gland via methods bypassing the teat end. Underlying risk can account for several unmeasured factors, and studies with higher underlying risk found more protective effects of minor pathogens. Larger doses of challenge organisms reduced the protective effect of minor pathogens, and studies with more stringent diagnostic criteria for pathogen IMI identified less protection. Smaller studies (those utilizing fewer than 40 cows) also showed a greater

  19. Evaluation of minor pathogen intramammary infection, susceptibility parameters, and somatic cell counts on the development of new intramammary infections with major mastitis pathogens.

    Science.gov (United States)

    Reyher, K K; Dohoo, I R; Scholl, D T; Keefe, G P

    2012-07-01

    Major mastitis pathogens such as Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, and coliforms are usually considered more virulent and damaging to the udder than minor mastitis pathogens such as Corynebacterium spp. and coagulase-negative staphylococci (CNS). The current literature comprises several studies (n=38) detailing analyses with conflicting results as to whether intramammary infections (IMI) with the minor pathogens decrease, increase, or have no effect on the risk of a quarter acquiring a new IMI (NIMI) with a major pathogen. The Canadian Bovine Mastitis Research Network has a large mastitis database derived from a 2-yr data collection on a national cohort of dairy farms, and data from this initiative were used to further investigate the effect of IMI with minor pathogens on the acquisition of new major pathogen infections (defined as a culture-positive quarter sample in a quarter that had been free of that major pathogen in previous samples in the sampling period). Longitudinal milk samplings of clinically normal udders taken over several 6-wk periods as well as samples from cows pre-dry-off and postcalving were used to this end (n=80,397 quarter milk samples). The effects of CNS and Corynebacterium spp. on the major mastitis pathogens Staph. aureus, Strep. uberis, Strep. dysgalactiae, and coliform bacteria (Escherichia coli and Klebsiella spp.) were investigated using risk ratio analyses and multilevel logistic regression models. Quarter-, cow- and herd-level susceptibility parameters were also evaluated and were able to account for the increased susceptibility that exists within herds, cows and quarters, removing it from estimates for the effects of the minor pathogens. Increased quarter-level susceptibility was associated with increased risk of major pathogen NIMI for all pathogens except the coliforms. Increased somatic cell count was consistently associated with elevated risk of new major pathogen infections, but this was

  20. Occurrence of mastitis pathogens in relation to somatic cells

    Directory of Open Access Journals (Sweden)

    Marcela Vyletělová Klimešová

    2013-01-01

    Full Text Available There were examined 161 cows from 4 farms in total. The suspect animals were selected according to viscosity test results, clinical symptoms and somatic cell count (SCC. Milk samples were examined for the presence of pathogens and for SCC. 55 mastitis pathogens were identified. The most frequently isolated species was Enterococcus faecalis (n = 20, followed by Staphylococcus aureus (n = 6 and Streptococcus uberis (n = 5. The SCC ranged from 9 to 24 204 ths.ml−1. There was positive occurrence of bacteria genus Staphylococcus and Enterococcus at lower SCC (50 ths.ml−1 and at higher SCC numbers (> 300 ths. ml−1 bacteria genus Streptococcus, Enterobacter and Escherichia coli. Differences in SCC were significant (P < 0.001 in negative samples xg 131 SCC versus 491 for positive, 611 for staphylococci and 464 ths.ml−1 for other positive. SCC discrimination limit for practical likelihood of pathogen occurrence estimation in infectious sample groups was calculated. This limit for suspicion of infection is 159 for positive group, 113 for staphylococci and 174 ths.ml−1 for other positive. This could be possible to recommend the value 174 ths.ml−1 for practical use with target to apply preventive or curative measures.

  1. Detection of selected antibiotic resistance genes using multiplex PCR assay in mastitis pathogens in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Vladimir Pyatov

    2017-01-01

    Full Text Available The aim of this research was to develop multiplex polymerase chain reaction assays for the detection of aminoglycoside (strA, strB, sulphonamide (sulI, sulII, tetracycline (tetA, tetB, tetK, tetM, tetO, macrolide and lincosamide (msrA, ermA, ermB, ermC, mefA/E genes of resistance in mastitis pathogens (Escherichia coli, Staphylococcus aureus, Streptococcus uberis, Streptococcus agalactiae and Streptococcus dysgalactiae. Applying the established assays, we investigated the distribution of antibiotic resistance genes in the above mentioned species isolated from milk samples in the Czech Republic. Each assay consisted of seven pairs of primers. Six of them amplified fragments of antibiotic resistance genes and one pair a fragment of a species specific gene. Polymerase chain reaction conditions were optimized to amplify seven gene fragments simultaneously in one reaction. In total, 249 isolates were used, among which 111 were positive for E. coli, 52 for S. aureus and 86 for Streptococcus spp. The majority (60.2% of bacteria carried at least one antibiotic resistance gene and 44.6% were multidrug-resistant. The designed multiplex polymerase chain reaction assays may be applied as diagnostic method to replace or complement standard techniques of antibiotic susceptibility testing in the mentioned pathogens.

  2. Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus

    Science.gov (United States)

    Liamocin oil from Aureobasidium pullulans NRRL 50380 was tested for antibacterial activity. Liamocins inhibited growth of Streptococcus agalactiae, S. uberis, S. mitis, S. infantarius, and S. mutans, with minimum inhibitory concentrations from 20 'g/ml to 78 'g/ml. Enterococcus faecalis was less sus...

  3. Udder pathogens and their resistance to antimicrobial agents in dairy cows in Estonia

    Directory of Open Access Journals (Sweden)

    Orro Toomas

    2011-02-01

    Full Text Available Abstract Background The goal of this study was to estimate the distribution of udder pathogens and their antibiotic resistance in Estonia during the years 2007-2009. Methods The bacteriological findings reported in this study originate from quarter milk samples collected from cows on Estonian dairy farms that had clinical or subclinical mastitis. The samples were submitted by local veterinarians to the Estonian Veterinary and Food Laboratory during 2007-2009. Milk samples were examined by conventional bacteriology. In vitro antimicrobial susceptibility testing was performed with the disc diffusion test. Logistic regression with a random herd effect to control for clustering was used for statistical analysis. Results During the study period, 3058 clinical mastitis samples from 190 farms and 5146 subclinical mastitis samples from 274 farms were investigated. Positive results were found in 57% of the samples (4680 out of 8204, and the proportion did not differ according to year (p > 0.05. The proportion of bacteriologically negative samples was 22.3% and that of mixed growth was 20.6%. Streptococcus uberis (Str. uberis was the bacterium isolated most frequently (18.4% from cases of clinical mastitis, followed by Escherichia coli (E. coli (15.9% and Streptococcus agalactiae (Str. agalactiae (11.9%. The bacteria that caused subclinical mastitis were mainly Staphylococcus aureus (S. aureus (20% and coagulase-negative staphylococci (CNS (15.4%. The probability of isolating S. aureus from milk samples was significantly higher on farms that had fewer than 30 cows, when compared with farms that had more than 100 cows (p Str. agalactiae infection was found on farms with more than 600 cows (p = 0.034 compared with smaller farms. The proportion of S. aureus and CNS isolates that were resistant to penicillin was 61.4% and 38.5%, respectively. Among the E. coli isolates, ampicillin, streptomycin and tetracycline resistance were observed in 24.3%, 15.6% and 13

  4. Streptococcus iniae and Streptococcus agalactiae

    Science.gov (United States)

    Streptococcus iniae and S. agalactiae are economically important Gram positive bacterial pathogens of cultured and wild fish with a worldwide distribution. Both bacteria are potential zoonotic pathogens and have been associated most often with infections in immunocompromised people. Streptococcus in...

  5. Cellular and soluble components decrease the viable pathogen counts in milk from dairy cows with subclinical mastitis.

    Science.gov (United States)

    Koshiishi, Tomoko; Watanabe, Masako; Miyake, Hajime; Hisaeda, Keiichi; Isobe, Naoki

    2017-08-10

    The present study was undertaken to clarify the factors that reduce the viable pathogen count in milk collected from the udders of subclinical mastitic cows during preservation. Milk was centrifuged to divide somatic cells (cellular components, precipitates) and antimicrobial peptides (soluble components, supernatants without fat layer); each fraction was cultured with bacteria, and the number of viable bacteria was assessed prior to and after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after collection; this value increased significantly after a 5-hr incubation of milk with cellular components but not with soluble components (48.1 and 28.8%, respectively). After culture with cellular components, the numbers of bacteria (excluding Staphylococcus aureus and Streptococcus uberis) and yeast decreased dramatically, although the differences were not statistically significant. After cultivation with soluble components, only yeasts showed a tendency toward decreased mean viability, whereas the mean bacterial counts of S. uberis and T. pyogenes tended to increase after 5-hr preservation with soluble components. These results suggest that most pathogens in high somatic cell count (SCC) milk decreased during preservation at 15 to 25°C, due to both the cellular components and antimicrobial components in the milk. Particularly, the cellular components more potently reduced bacterial counts during preservation.

  6. Kill rate of mastitis pathogens by a combination of cefalexin and kanamycin.

    Science.gov (United States)

    Maneke, E; Pridmore, A; Goby, L; Lang, I

    2011-01-01

    To assess the bacterial killing rate produced by a combination of cefalexin and kanamycin at two different concentration ratios. Time-kill kinetics of cefalexin and kanamycin, individually and in combination, were determined against one strain each of Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus uberis. The combination was tested using two fixed ratios (cefalexin : kanamycin ratios of 1·25 : 1 and 1 : 2·3) and two concentrations of each ratio. Time-kill curves produced with either ratio were quite similar. Against most bacterial species, higher concentrations produced faster kill. In all cases, the combination of cefalexin and kanamycin showed faster and greater kill at lower antibiotic concentrations than those observed with either drug alone. The combination of cefalexin and kanamycin results in a fast initial killing of major mastitis pathogens at both concentration ratios. The combination of cefalexin and kanamycin achieved rapid bacterial kill at concentrations and ratios that can be achieved in vivo following intramammary infusion of a mastitis treatment. © 2010 Boehringer Ingelheim Vetmedica GmbH. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  7. Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms.

    Science.gov (United States)

    Gao, Jian; Barkema, Herman W; Zhang, Limei; Liu, Gang; Deng, Zhaoju; Cai, Lingjie; Shan, Ruixue; Zhang, Shiyao; Zou, Jiaqi; Kastelic, John P; Han, Bo

    2017-06-01

    Knowledge of the incidence of clinical mastitis (CM) and the distribution of pathogens involved is essential for development of prevention and control programs as well as treatment protocols. No country-wide study on the incidence of CM and the distribution of pathogens involved has been conducted in China. Core objectives of this study were, therefore, to determine the cumulative incidence of CM and the distribution of pathogens causing CM on large Chinese (>500 cows) dairy farms. In addition, associations between the distribution of CM pathogens and bedding materials and seasonal factors were also investigated. Bacterial culture was done on a total of 3,288 CM quarter milk samples from 161 dairy herds (located in 21 provinces) between March 2014 and September 2016. Additional data, including geographical region of herds, herd size, bedding types, and number of CM cases during the last month, were also recorded. Mean cumulative incidence of CM was 3.3 cases per 100 cows per month (range = 1.7 to 8.1). The most frequently isolated pathogens were Escherichia coli (14.4%), Klebsiella spp. (13.0%), coagulase-negative staphylococci (11.3%), Streptococcus dysgalactiae (10.5%), and Staphylococcus aureus (10.2%). Streptococcus agalactiae was isolated from 2.8% of CM samples, whereas Streptococcus uberis were isolated from 2.1% of samples, and 15.8% of 3,288 samples were culture-negative. Coagulase-negative staphylococci, E. coli, and other Enterobacter spp. were more frequently isolated in the northwest than the northeast or south of China. Streptococcus dysgalactiae, other streptococci, and Strep. agalactiae were more frequently isolated in winter (October-March), whereas E. coli and Klebsiella spp. were mostly isolated in summer (April-September). Streptococcus dysgalactiae was more often isolated from CM cases of herds using sand bedding, whereas Klebsiella spp. and other streptococci were more common in herds using organic bedding. The incidence of CM and distribution

  8. Pulsed-field gel electrophoresis (PFGE): application in population structure studies of bovine mastitis-causing streptococci.

    Science.gov (United States)

    Santos-Sanches, Ilda; Chambel, Lélia; Tenreiro, Rogério

    2015-01-01

    Pulsed-field gel electrophoresis (PFGE) separates large DNA molecules by the use of an alternating electrical field, such that greater size resolution can be obtained when compared to normal agarose gel electrophoresis. PFGE is often employed to track pathogens and is a valuable typing scheme to detect and differentiate strains. Particularly, the contour-clamped homogeneous electric field (CHEF) PFGE system is considered to be the gold standard for use in epidemiological studies of many bacterial pathogens. Here we describe a PFGE protocol that was applicable to the study of bovine streptococci, namely, Streptococcus agalactiae (group B Streptococcus, GBS), Streptococcus dysgalactiae subsp. dysgalactiae (group C Streptococcus, GCS), and Streptococcus uberis-which are relevant pathogens causing mastitis, a highly prevalent and costly disease in dairy industry due to antibiotherapy and loss in milk production.

  9. Molecular Detection and Sensitivity to Antibiotics and Bacteriocins of Pathogens Isolated from Bovine Mastitis in Family Dairy Herds of Central Mexico

    Directory of Open Access Journals (Sweden)

    Ma. Fabiola León-Galván

    2015-01-01

    Full Text Available Thirty-two farms (n=535 cows located in the state of Guanajuato, Mexico, were sampled. Pathogens from bovine subclinical mastitis (SCM and clinical mastitis (CLM were identified by 16S rDNA and the sensitivity to both antibiotics and bacteriocins of Bacillus thuringiensis was tested. Forty-six milk samples were selected for their positive California Mastitis Test (CMT (≥3 and any abnormality in the udder or milk. The frequency of SCM and CLM was 39.1% and 9.3%, respectively. Averages for test day milk yield (MY, lactation number (LN, herd size (HS, and number of days in milk (DM were 20.6 kg, 2.8 lactations, 16.7 animals, and 164.1 days, respectively. MY was dependent on dairy herd (DH, LN, HS, and DM P<0.01, and correlations between udder quarters from the CMT were around 0.49 P<0.01. Coagulase-negative staphylococci were mainly identified, as well as Staphylococcus aureus, Streptococcus uberis, Brevibacterium stationis, B. conglomeratum, and Staphylococcus agnetis. Bacterial isolates were resistant to penicillin, clindamycin, ampicillin, and cefotaxime. Bacteriocins synthesized by Bacillus thuringiensis inhibited the growth of multiantibiotic resistance bacteria such as S. agnetis, S. equorum, Streptococcus uberis, Brevibacterium stationis, and Brachybacterium conglomeratum, but they were not active against S. sciuri, a microorganism that showed an 84% resistance to antibiotics tested in this study.

  10. Streptococcus agalactiae: a vaginal pathogen?

    Science.gov (United States)

    Maniatis, A N; Palermos, J; Kantzanou, M; Maniatis, N A; Christodoulou, C; Legakis, N J

    1996-03-01

    The significance of Streptococcus agalactiae as an aetiological agent in vaginitis was evaluated. A total of 6226 samples from women who presented with vaginal symptoms was examined. The presence of >10 leucocytes/high-power field (h.p.f.) was taken to be the criterion of active infection. S. agalactiae was isolated from 10.1% of these samples. The isolation rates of other common pathogens such as Candida spp., Gardnerella vaginalis and Trichomonas spp. were 54.1%, 27.2% and 4.2%, respectively, in the same group of patients. In contrast, the isolation rates of these micro-organisms in the group of patients who had no infection (S. agalactiae was isolated, it was the sole pathogen isolated (83%) and its presence was associated with an inflammatory response in 80% of patients. Furthermore, the relative risk of vaginal infection with S. agalactiae (2.38) in patients with purulent vaginal discharge was greater than that of Candida spp. infection (1.41) and lower than that of Trichomonas spp. infection (8.32). These data suggest that S. agalactiae in symptomatic women with microscopic evidence of inflammation should be considered a causative agent of vaginitis.

  11. Trends in udder health and emerging mastitogenic pathogens in South African dairy herds

    Directory of Open Access Journals (Sweden)

    I.M. Petzer

    2009-05-01

    minor pathogen significantly. Isolations of Streptococcus agalactiae peaked between 2000 and 2005 and decreased again by 2007. Coagulase-negative staphylococcal isolates increased from 2002 and were still on the increase in 2007. Streptococcus agalactiae, Streptococcus uberis and Enterococcus canis were isolated more frequently from milk samples of lactating cows compared with dry cows, while Enterococcus faecalis was isolated more frequently from dry cow samples.

  12. Antimicrobial susceptibility monitoring of mastitis pathogens isolated from acute cases of clinical mastitis in dairy cows across Europe: VetPath results.

    Science.gov (United States)

    Thomas, Valérie; de Jong, Anno; Moyaert, Hilde; Simjee, Shabbir; El Garch, Farid; Morrissey, Ian; Marion, Hervé; Vallé, Michel

    2015-07-01

    VetPath is an ongoing pan-European antimicrobial susceptibility monitoring programme collecting pathogens from diseased cattle, pigs and poultry not recently treated with antibiotics. Non-replicate milk samples were collected from cows with acute clinical mastitis in eight countries. Escherichia coli, Staphylococcus aureus and Streptococcus uberis were isolated by standardised methods. Antimicrobial susceptibility was determined in a central laboratory by CLSI broth microdilution methodology; results were interpreted using clinical breakpoints where available. Among E. coli (n=280), resistance to tetracycline (14.3%) and cefapirin (11.1%) were most common. Resistance to other β-lactam antibiotics was absent (ceftiofur) or very low (cefalexin, amoxicillin/clavulanic acid). The MIC90 of enrofloxacin and marbofloxacin was 0.03 and 0.06μg/mL, respectively, with 0.7% of strains displaying a deviating high MIC. Staphylococcus aureus (n=250) were susceptible to most antibiotics tested, although 36.0% were resistant to penicillin G. For other β-lactam antibiotics where a CLSI breakpoint was available, no resistance was detected. Tetracycline resistance was low (5.2%). Streptococcus uberis (n=282) were susceptible to all β-lactam antibiotics, although 29.8% were intermediately susceptible to penicillin G; 18.8% of strains were resistant to erythromycin and 28.7% to tetracycline. This European study shows that bacteria associated with acute clinical mastitis are susceptible to most antibiotics with the exception of penicillin G against S. aureus, and erythromycin and tetracycline against S. uberis. The results of this study should serve as a reference baseline. This work also highlights the urgent need to set additional clinical breakpoints for antibiotics frequently used to treat mastitis. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  13. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2017-10-01

    Full Text Available Streptococcus agalactiae, or Group B Streptococcus (GBS, is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05, whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.

  14. Susceptibility to antimicrobial agents among bovine mastitis pathogens isolated from North American dairy cattle, 2002-2010.

    Science.gov (United States)

    Lindeman, Cynthia J; Portis, Ellen; Johansen, Lacie; Mullins, Lisa M; Stoltman, Gillian A

    2013-09-01

    Approximately 8,000 isolates of Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Staphylococcus aureus, and Escherichia coli, isolated by 25 veterinary laboratories across North America between 2002 and 2010, were tested for in vitro susceptibility to beta-lactam, macrolide, and lincosamide drugs. The minimal inhibitory concentrations (MICs) of the beta-lactam drugs remained low against most of the Gram-positive strains tested, and no substantial changes in the MIC distributions were seen over time. Of the beta-lactam antimicrobial agents tested, only ceftiofur showed good in vitro activity against E. coli. The MICs of the macrolides and lincosamides also remained low against Gram-positive mastitis pathogens. While the MIC values given by 50% of isolates (MIC50) for erythromycin and pirlimycin and the streptococci were all low (≤0.5 µg/ml), the MIC values given by 90% of isolates (MIC90) were higher and more variable, but with no apparent increase over time. Staphylococcus aureus showed little change in erythromycin susceptibility over time, but there may be a small, numerical increase in pirlimycin MIC50 and MIC90 values. Overall, the results suggest that mastitis pathogens in the United States and Canada have not shown any substantial changes in the in vitro susceptibility to beta-lactam, macrolide, and lincosamide drugs tested over the 9 years of the study.

  15. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    Directory of Open Access Journals (Sweden)

    Richards Vincent P

    2012-12-01

    Full Text Available Abstract Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection. A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs [plasmid, phage, integrative conjugative element (ICE] and comparison to other species provided convincing evidence for lateral gene transfer (LGT between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae, with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST of a subset of the isolates (n = 45 detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types], suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human

  16. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis.

    Science.gov (United States)

    Richards, Vincent P; Zadoks, Ruth N; Pavinski Bitar, Paulina D; Lefébure, Tristan; Lang, Ping; Werner, Brenda; Tikofsky, Linda; Moroni, Paolo; Stanhope, Michael J

    2012-12-18

    Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern

  17. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    Science.gov (United States)

    2012-01-01

    Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus

  18. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens.

    Directory of Open Access Journals (Sweden)

    Matthew T G Holden

    2009-03-01

    Full Text Available The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus. These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A(2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci.

  19. Antibacterial activities of coagulase-negative staphylococci from bovine teat apex skin and their inhibitory effect on mastitis-related pathogens.

    Science.gov (United States)

    Braem, G; Stijlemans, B; Van Haken, W; De Vliegher, S; De Vuyst, L; Leroy, F

    2014-05-01

    To explore antibacterial activities of coagulase-negative staphylococci (CoNS) from teat apices of dairy cows towards mastitis-causing pathogens. Of 254 CoNS, 38 displayed bacteriocin-like activity after a first screening. Seven of these strains displayed activity against at least one mastitis-related pathogen (Streptococcus uberis, Streptococcus dysgalactiae and Staphylococcus aureus). Staphylococcus chromogenes L217 displayed the strongest inhibitory effect, being active against all tested mastitis-related pathogens and most tested CoNS. Based on cation exchange and reversed-phase chromatography, in addition to N-terminal Edman degradation and PCR, the antibacterial peptide was identified as a nukacin-type bacteriocin and named nukacin L217. Although staphylococcal bacteriocins are generally found in the cell-free supernatants of liquid cultures, Staph. chromogenes L217 only led to detectable activity when grown on agar medium. Bacteriocin-like activities are not uncommon among CoNS from teat apices and may inhibit mastitis-causing pathogens, as found for nukacin L217 production by Staph. chromogenes L217. Nukacin L217 is the first identified bacteriocin of the species Staph. chromogenes and displays unusual production kinetics, that is, requiring surface growth of its producer. The fact that nukacins are produced by different CoNS species suggests a role in the teat skin ecosystem. © 2014 The Society for Applied Microbiology.

  20. Effects of pathogen-specific clinical mastitis on probability of conception in Holstein dairy cows.

    Science.gov (United States)

    Hertl, J A; Schukken, Y H; Welcome, F L; Tauer, L W; Gröhn, Y T

    2014-11-01

    The objective of this study was to estimate the effects of pathogen-specific clinical mastitis (CM), occurring in different weekly intervals before or after artificial insemination (AI), on the probability of conception in Holstein cows. Clinical mastitis occurring in weekly intervals from 6 wk before until 6 wk after AI was modeled. The first 4 AI in a cow's lactation were included. The following categories of pathogens were studied: Streptococcus spp. (comprising Streptococcus dysgalactiae, Streptococcus uberis, and other Streptococcus spp.); Staphylococcus aureus; coagulase-negative staphylococci (CNS); Escherichia coli; Klebsiella spp.; cases with CM signs but no bacterial growth (above the level that can be detected from our microbiological procedures) observed in the culture sample and cases with contamination (≥ 3 pathogens in the sample); and other pathogens [including Citrobacter, yeasts, Trueperella pyogenes, gram-negative bacilli (i.e., gram-negative organisms other than E. coli, Klebsiella spp., Enterobacter, and Citrobacter), Corynebacterium bovis, Corynebacterium spp., Pasteurella, Enterococcus, Pseudomonas, Mycoplasma, Prototheca, and others]. Other factors included in the model were parity (1, 2, 3, 4 and higher), season of AI (winter, spring, summer, autumn), day in lactation of first AI, farm, and other non-CM diseases (retained placenta, metritis, ketosis, displaced abomasum). Data from 90,271 AI in 39,361 lactations in 20,328 cows collected from 2003/2004 to 2011 from 5 New York State dairy farms were analyzed in a generalized linear mixed model with a Poisson distribution. The largest reductions in probability of conception were associated with CM occurring in the week before AI or in the 2 wk following AI. Escherichia coli and Klebsiella spp. had the greatest adverse effects on probability of conception. The probability of conception for a cow with any combination of characteristics may be calculated based on the parameter estimates. These

  1. Bright fluorescent Streptococcus pneumoniae for live cell imaging of host-pathogen interactions

    NARCIS (Netherlands)

    Kjos, M.; Aprianto, R.; Fernandes, V.E.; Andrew, P.W.; Strijp, van J.A.G.; Nijland, R.; Veening, J.W.

    2015-01-01

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people, but at the same time one of the major causes of infectious diseases such as pneumonia, meningitis and sepsis. The shift from commensal to pathogen and its interaction with host cells is poorly understood. One of the

  2. Bright Fluorescent Streptococcus pneumoniae for Live-Cell Imaging of Host-Pathogen Interactions

    NARCIS (Netherlands)

    Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E.; Andrew, Peter W.; van Strijp, Jos A. G.; Nijland, Reindert; Veening, Jan-Willem

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the

  3. Proposal for agar disk diffusion interpretive criteria for susceptibility testing of bovine mastitis pathogens using cefoperazone 30μg disks.

    Science.gov (United States)

    Feßler, Andrea T; Kaspar, Heike; Lindeman, Cynthia J; Peters, Thomas; Watts, Jeffrey L; Schwarz, Stefan

    2017-02-01

    Cefoperazone is a third generation cephalosporin which is commonly used for bovine mastitis therapy. Bacterial pathogens involved in bovine mastitis are frequently tested for their susceptibility to cefoperazone. So far, the cefoperazone susceptibility testing using 30μg disks has been hampered by the lack of quality control (QC) ranges as well as the lack of interpretive criteria. In 2014, QC ranges for 30 μg cefoperazone disks have been established for Staphylococcus aureus ATCC ® 25923 and Escherichia coli ATCC ® 25922. As a next step, interpretive criteria for the susceptibility testing of bovine mastitis pathogens should be developed. For this, 637 bovine mastitis pathogens (including 112 S. aureus, 121 coagulase-negative staphylococci (CoNS), 103 E. coli, 101 Streptococcus agalactiae, 100 Streptococcus dysgalactiae and 100 Streptococcus uberis) were investigated by agar disk diffusion according to the document Vet01-A4 of the Clinical and Laboratory Standards Institute (CLSI) using 30μg cefoperazone disks and the results were compared to the corresponding MIC values as determined by broth microdilution also according to the aforementioned CLSI document. Based on the results obtained and taking into account the achievable milk concentration of cefoperazone after regular dosing, the following interpretive criteria were proposed as a guidance for mastitis diagnostic laboratories: for staphylococci and E. coli ≥23mm (susceptible), 18-22mm (intermediate) and ≤17mm (resistant) and for streptococci ≥18mm (susceptible), and ≤17mm (non-susceptible). These proposed interpretive criteria shall contribute to a harmonization of cefoperazone susceptibility testing of bovine mastitis pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mode of action and in vitro susceptibility of mastitis pathogens to macedocin ST91KM and preparation of a teat seal containing the bacteriocin

    Directory of Open Access Journals (Sweden)

    Renee Pieterse

    2010-03-01

    Full Text Available Mastitis is considered to be the most economically costly disease affecting the dairy industry. Regular dosage of animals with antibiotics, including use of prophylactic concentrations, may select for resistant strains. The purpose of this study was to determine the mode of action of a new bacteriocin (macedocin ST91KM, to evaluate the antimicrobial resistance of mastitis pathogens to antibiotics commonly used in treatment remedies, and to introduce the possible use of an alternative antimicrobial agent. The bacteriocin macedocin ST91KM, produced by Streptococcus gallolyticus subsp. macedonicus ST91KM, is bactericidal to Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis and Staphylococcus aureus associated with mastitis infections, including strains resistant to methicillin and oxacillin. Sensitive cells were deformed and secreted nucleotides, K+ and β-galactosidase when exposed to macedocin ST91KM. Adsorption of the peptide to target cells decreased in the presence of solvents, suggesting that receptors on the cell surfaces have lipid moieties. No adsorption was recorded in the presence of MgCl2, KI and Na2CO3, suggesting that ionic strength plays an important role. A teat seal preparation containing macedocin ST91KM effectively released the peptide and inhibited the growth of S. agalactiae. Macedocin ST91KM could form the basis for alternative dry cow therapy to prevent mastitis infections in dairy cows as it is effective against pathogens that display resistance to conventional antibiotic therapy.

  5. Experimental study to evaluate the pathogenicity of Streptococcus iniae in Guppy (Poecilia reticulata

    Directory of Open Access Journals (Sweden)

    Milad Adel

    2015-01-01

    Full Text Available Streptococcus iniae has emerged as an important fish pathogen over the last decade in farmed rainbow trout in Iran. The main objective of this study was to evaluate the pathogenicity of S. iniae in Poecilia reticulata. Atotal of 60 apparently healthy P. reticulata were obtained from ornamental fish pet store and injected intraperitoneally with 1.5×106 cfu of bacteria. For 14 days after challenge, the rate of mortality and clinical signs were recorded. The first clinical signs was observed in challenged fish 48 hrs after injection of S. iniae and first mortality was observed 72 hrs after injection. No significant differences in mortality and clinical signs between both sexes were observed. Streptococcus iniae was collected from internal organs of fishes challenged, and was confirmed using the conventional biochemical tests and PCR. It is concluded that, P. reticulata is susceptible to streptococcosis and can play an important role in transmission of the disease to other ornamental fish species and also cultured fish.

  6. Antimicrobial susceptibility and distribution of inhibition zone diameters of bovine mastitis pathogens in Flanders, Belgium.

    Science.gov (United States)

    Supré, K; Lommelen, K; De Meulemeester, L

    2014-07-16

    In dairy farms, antimicrobial drugs are frequently used for treatment of (sub)clinical mastitis. Determining the antimicrobial susceptibility of mastitis pathogens is needed to come to a correct use of antimicrobials. Strains of Staphylococcus aureus (n=768), Streptococcus uberis (n=939), Streptococcus dysgalactiae (n=444), Escherichia coli (n=563), and Klebsiella species (n=59) originating from routine milk samples from (sub)clinical mastitis were subjected to the disk diffusion method. Disks contained representatives of frequently used antibiotics in dairy. A limited number of clinical breakpoints were available through CLSI, and showed that susceptibility of Staph. aureus, E. coli, and Klebsiella was moderate to high. For streptococcal species however, a large variation between the tested species and the different antimicrobials was observed. In a next step, wild type populations were described based on epidemiological cut off values (EUCAST). Because of the limited number of official cut off values, the data were observed as a mastitis subpopulation and self-generated cut off values were created and a putative wild type population was suggested. The need for accurate clinical breakpoints for veterinary pathogens is high. Despite the lack of these breakpoints, however, a population study can be performed based on the distribution of inhibition zone diameters on the condition that a large number of strains is tested. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. In vitro susceptibility of bovine mastitis pathogens to a combination of penicillin and framycetin: development of interpretive criteria for testing by broth microdilution and disk diffusion.

    Science.gov (United States)

    Pillar, C M; Stoneburner, A; Shinabarger, D L; Abbeloos, E; Goby, L; Bradley, Andrew J

    2014-10-01

    Dry cow therapy is an important part of mastitis control. This therapy typically consists of an antibiotic or antibiotics administered at a single dose by intramammary infusion at dry off to treat or prevent infection by prevalent mastitis pathogens. A combination dry cow therapy consisting of the active components penicillin and framycetin is currently used in several countries. Despite its use, standardized methods for the susceptibility testing of this combination against mastitis pathogens have not been established. In this study, which used Clinical and Laboratory Standards Institute methodology, preliminary interpretive criteria for the broth microdilution minimum inhibitory concentration (MIC) testing of mastitis pathogens to penicillin combined with framycetin (2:1 wt/wt) were established based on the amount of drug achieved and maintained postadministration in the udder. Based on resulting MIC distributions of recent veterinary field isolates and a subset of isolates preselected for resistance to β-lactams or aminoglycosides and concentrations achieved postadministration, criteria for broth microdilution testing of the combination (susceptible, intermediate, resistant in micrograms per milliliter) were set as follows: Escherichia coli ≤8/4, 16/8, ≥32/16; Staphylococcus spp. ≤2/1, 4/2-8/4, >16/8; Streptococcus uberis and Streptococcus dysgalactiae 4/2. A disk diffusion test using disks containing 100 μg of framycetin and 10 IU of penicillin was also developed, and preliminary interpretive criteria (susceptible, intermediate, resistant in millimeters) were set based on correlation to broth MIC values and the minimization of interpretive errors between isolates tested concurrently by broth microdilution and disk diffusion as follows: E. coli ≥18, 16-17, ≤15; Staphylococcus spp. ≥21, 18-20, ≤17; Strep. uberis and Strep. dysgalactiae ≥21, 19-20, ≤18. In addition, ranges for the quality control of the testing of this combination by both broth

  8. Characterization of a Streptococcus suis tet(O/W/32/O)-carrying element transferable to major streptococcal pathogens.

    Science.gov (United States)

    Palmieri, Claudio; Magi, Gloria; Mingoia, Marina; Bagnarelli, Patrizia; Ripa, Sandro; Varaldo, Pietro E; Facinelli, Bruna

    2012-09-01

    Mosaic tetracycline resistance determinants are a recently discovered class of hybrids of ribosomal protection tet genes. They may show different patterns of mosaicism, but their final size has remained unaltered. Initially thought to be confined to a small group of anaerobic bacteria, mosaic tet genes were then found to be widespread. In the genus Streptococcus, a mosaic tet gene [tet(O/W/32/O)] was first discovered in Streptococcus suis, an emerging drug-resistant pig and human pathogen. In this study, we report the molecular characterization of a tet(O/W/32/O) gene-carrying mobile element from an S. suis isolate. tet(O/W/32/O) was detected, in tandem with tet(40), in a circular 14,741-bp genetic element (39.1% G+C; 17 open reading frames [ORFs] identified). The novel element, which we designated 15K, also carried the macrolide resistance determinant erm(B) and an aminoglycoside resistance four-gene cluster including aadE (streptomycin) and aphA (kanamycin). 15K appeared to be an unstable genetic element that, in the absence of recombinases, is capable of undergoing spontaneous excision under standard growth conditions. In the integrated form, 15K was found inside a 54,879-bp integrative and conjugative element (ICE) (50.5% G+C; 55 ORFs), which we designated ICESsu32457. An ∼1.3-kb segment that apparently served as the att site for excision of the unstable 15K element was identified. The novel ICE was transferable at high frequency to recipients from pathogenic Streptococcus species (S. suis, Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae), suggesting that the multiresistance 15K element can successfully spread within streptococcal populations.

  9. Delineation of Streptococcus dysgalactiae, its subspecies, and its clinical and phylogenetic relationship to Streptococcus pyogenes

    DEFF Research Database (Denmark)

    Jensen, Anders; Kilian, Mogens

    2011-01-01

    The close phylogenetic relationship of the important pathogen Streptococcus pneumoniae and several species of commensal streptococci, particularly Streptococcus mitis and Streptococcus pseudopneumoniae, and the recently demonstrated sharing of genes and phenotypic traits previously considered...

  10. Incidence rate of clinical mastitis on Canadian dairy farms.

    Science.gov (United States)

    Olde Riekerink, R G M; Barkema, H W; Kelton, D F; Scholl, D T

    2008-04-01

    No nationwide studies of the incidence rate of clinical mastitis (IRCM) have been conducted in Canada. Because the IRCM and distribution of mastitis-causing bacteria may show substantial geographic variation, the primary objective of this study was to determine regional pathogen-specific IRCM on Canadian dairy farms. Additionally, the association of pathogen-specific IRCM with bulk milk somatic cell count (BMSCC) and barn type were determined. In total, 106 dairy farms in 10 provinces of Canada participated in the study for a period of 1 yr. Participating producers recorded 3,149 cases of clinical mastitis. The most frequently isolated mastitis pathogens were Staphylococcus aureus, Escherichia coli, Streptococcus uberis, and coagulase-negative staphylococci. Overall mean and median IRCM were 23.0 and 16.7 cases per 100 cow-years in the selected herds, respectively, with a range from 0.7 to 97.4 per herd. No association between BMSCC and overall IRCM was found, but E. coli and culture-negative IRCM were highest and Staph. aureus IRCM was lowest in low and medium BMSCC herds. Staphylococcus aureus, Strep. uberis, and Streptococcus dysgalactiae IRCM were lowest in the Western provinces. Staphylococcus aureus and Strep. dysgalactiae IRCM were highest in Québec. Cows in tie-stalls had higher incidences of Staph. aureus, Strep. uberis, coagulase-negative staphylococci, and other streptococcal IRCM compared with those in free-stalls, whereas cows in free stalls had higher Klebsiella spp. and E. coli IRCM than those in tie-stall barns. The focus of mastitis prevention and control programs should differ between regions and should be tailored to farms based on housing type and BMSCC.

  11. Genome of the opportunistic pathogen Streptococcus sanguinis.

    Science.gov (United States)

    Xu, Ping; Alves, Joao M; Kitten, Todd; Brown, Arunsri; Chen, Zhenming; Ozaki, Luiz S; Manque, Patricio; Ge, Xiuchun; Serrano, Myrna G; Puiu, Daniela; Hendricks, Stephanie; Wang, Yingping; Chaplin, Michael D; Akan, Doruk; Paik, Sehmi; Peterson, Darrell L; Macrina, Francis L; Buck, Gregory A

    2007-04-01

    The genome of Streptococcus sanguinis is a circular DNA molecule consisting of 2,388,435 bp and is 177 to 590 kb larger than the other 21 streptococcal genomes that have been sequenced. The G+C content of the S. sanguinis genome is 43.4%, which is considerably higher than the G+C contents of other streptococci. The genome encodes 2,274 predicted proteins, 61 tRNAs, and four rRNA operons. A 70-kb region encoding pathways for vitamin B(12) biosynthesis and degradation of ethanolamine and propanediol was apparently acquired by horizontal gene transfer. The gene complement suggests new hypotheses for the pathogenesis and virulence of S. sanguinis and differs from the gene complements of other pathogenic and nonpathogenic streptococci. In particular, S. sanguinis possesses a remarkable abundance of putative surface proteins, which may permit it to be a primary colonizer of the oral cavity and agent of streptococcal endocarditis and infection in neutropenic patients.

  12. The Road to Infection: Host-Microbe Interactions Defining the Pathogenicity of Streptococcus bovis/Streptococcus equinus Complex Members

    Directory of Open Access Journals (Sweden)

    Christoph Jans

    2018-04-01

    Full Text Available The Streptococcus bovis/Streptococcus equinus complex (SBSEC comprises several species inhabiting the animal and human gastrointestinal tract (GIT. They match the pathobiont description, are potential zoonotic agents and technological organisms in fermented foods. SBSEC members are associated with multiple diseases in humans and animals including ruminal acidosis, infective endocarditis (IE and colorectal cancer (CRC. Therefore, this review aims to re-evaluate adhesion and colonization abilities of SBSEC members of animal, human and food origin paired with genomic and functional host-microbe interaction data on their road from colonization to infection. SBSEC seem to be a marginal population during GIT symbiosis that can proliferate as opportunistic pathogens. Risk factors for human colonization are considered living in rural areas and animal-feces contact. Niche adaptation plays a pivotal role where Streptococcus gallolyticus subsp. gallolyticus (SGG retained the ability to proliferate in various environments. Other SBSEC members have undergone genome reduction and niche-specific gene gain to yield important commensal, pathobiont and technological species. Selective colonization of CRC tissue is suggested for SGG, possibly related to increased adhesion to cancerous cell types featuring enhanced collagen IV accessibility. SGG can colonize, proliferate and may shape the tumor microenvironment to their benefit by tumor promotion upon initial neoplasia development. Bacteria cell surface structures including lipotheichoic acids, capsular polysaccharides and pilus loci (pil1, pil2, and pil3 govern adhesion. Only human blood-derived SGG contain complete pilus loci and other disease-associated surface proteins. Rumen or feces-derived SGG and other SBSEC members lack or harbor mutated pili. Pili also contribute to binding to fibrinogen upon invasion and translocation of cells from the GIT into the blood system, subsequent immune evasion, human contact

  13. The Road to Infection: Host-Microbe Interactions Defining the Pathogenicity of Streptococcus bovis/Streptococcus equinus Complex Members

    Science.gov (United States)

    Jans, Christoph; Boleij, Annemarie

    2018-01-01

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises several species inhabiting the animal and human gastrointestinal tract (GIT). They match the pathobiont description, are potential zoonotic agents and technological organisms in fermented foods. SBSEC members are associated with multiple diseases in humans and animals including ruminal acidosis, infective endocarditis (IE) and colorectal cancer (CRC). Therefore, this review aims to re-evaluate adhesion and colonization abilities of SBSEC members of animal, human and food origin paired with genomic and functional host-microbe interaction data on their road from colonization to infection. SBSEC seem to be a marginal population during GIT symbiosis that can proliferate as opportunistic pathogens. Risk factors for human colonization are considered living in rural areas and animal-feces contact. Niche adaptation plays a pivotal role where Streptococcus gallolyticus subsp. gallolyticus (SGG) retained the ability to proliferate in various environments. Other SBSEC members have undergone genome reduction and niche-specific gene gain to yield important commensal, pathobiont and technological species. Selective colonization of CRC tissue is suggested for SGG, possibly related to increased adhesion to cancerous cell types featuring enhanced collagen IV accessibility. SGG can colonize, proliferate and may shape the tumor microenvironment to their benefit by tumor promotion upon initial neoplasia development. Bacteria cell surface structures including lipotheichoic acids, capsular polysaccharides and pilus loci (pil1, pil2, and pil3) govern adhesion. Only human blood-derived SGG contain complete pilus loci and other disease-associated surface proteins. Rumen or feces-derived SGG and other SBSEC members lack or harbor mutated pili. Pili also contribute to binding to fibrinogen upon invasion and translocation of cells from the GIT into the blood system, subsequent immune evasion, human contact system

  14. First Isolation of Streptococcus halichoeri and Streptococcus phocae from a Steller Sea Lion (Eumetopias jubatus) in South Korea.

    Science.gov (United States)

    Lee, Kichan; Kim, Ji-Yeon; Jung, Suk Chan; Lee, Hee-Soo; Her, Moon; Chae, Chanhee

    2016-01-01

    Streptococcus species are emerging potential pathogens in marine mammals. We report the isolation and identification of Streptococcus halichoeri and Streptococcus phocae in a Steller sea lion (Eumetopias jubatus) in South Korea.

  15. Incidence of bovine clinical mastitis in Jammu region and antibiogram of isolated pathogens

    Directory of Open Access Journals (Sweden)

    Adil Majid Bhat

    2017-08-01

    Full Text Available Aim: This study was conducted to evaluate the incidence of clinical mastitis in bovines of Jammu region, to identify the infectious organisms responsible for it, and the antimicrobial sensitivity of isolated pathogens. Materials and Methods: The study was conducted on cases that were presented to the Medicine Division of Teaching Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, R.S. Pura, Jammu, Jammu and Kashmir. A total of 260 cases of bovines were presented from June 30, 2012, to July 01, 2013, out of which 30 cases were of clinical mastitis. The diagnosis of clinical mastitis was made on the basis of history and clinical examination of affected animals. Results: Animal and quarter-wise incidence of clinical mastitis were found to be 11.5% and 5.76%, respectively. Of the 23 isolates obtained, Staphylococcus aureus (60.87% was the most frequently isolated organism, followed by coagulase negative Staphylococci (13.04%, Streptococcus uberis (4.35%, Streptococcus dysgalactiae (8.69%, and Escherichia coli (13.04%. The antimicrobial sensitivity of isolates revealed maximum sensitivity to enrofloxacin, gentamicin, amoxicillin/ sulbactam, ceftriaxone/tazobactam, ceftizoxime, ampicillin/sulbactam and least sensitivity for oxytetracycline and penicillin. Conclusion: Staphylococcus spp. is the major causative agent of clinical mastitis in bovines of Jammu region. The causative agents of the clinical mastitis were most sensitive to enrofloxacin and gentamicin.

  16. Bioeconomic modeling of intervention against clinical mastitis caused by contagious pathogens

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq

    2012-01-01

    The objective of this study was to assess the epidemiologic and economic consequences of intervention against contagious clinical mastitis during lactation. A bioeconomic model of intramammary infections (IMI) was used to simulate contagious spread of Staphylococcus aureus, Streptococcus uberis......, and Streptococcus dysgalactiae, and an environmental spread of Escherichia coli IMI in a 100-cow dairy herd during 1 quota year. The costs of clinical IMI, subclinical IMI, and intervention were calculated into the total annual net costs of IMI during lactation per scenario and compared with a default scenario....... Input parameter values were based on the scientific literature. The scenarios were 3-d intramammary lactational treatment (default), 5-d intramammary treatment, 5-d intramammary treatment and 3-d systemic treatment, 3-d intramammary treatment and culling bacteriologically unrecovered clinical IMI cows...

  17. Gene repertoire evolution of Streptococcus pyogenes inferred from phylogenomic analysis with Streptococcus canis and Streptococcus dysgalactiae.

    Directory of Open Access Journals (Sweden)

    Tristan Lefébure

    Full Text Available Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46% of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86% in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i the integration of new virulence factors (e.g. speB, and the sal locus and (ii the construction of new regulation networks (e.g. rgg, and to some extent speB.

  18. Epidemiological Studies of Potent Environmental Pathogen: Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Nazir A. Brohi

    2016-12-01

    Full Text Available A general survey for six months was undertaken for the prevalence of environmental bacterium Streptococcus pneumoniae among the different age groups (3-65 years including both sexes from various hospitals of Hyderabad city. Laboratory examinations revealed S. pneumoniae as most potent environmental pathogen from the sputum and throat swabs of old aged patients and children respectively. During observations, 39 specimens were growth positive; the biochemistry of isolates revealed that they were coagulase, catalase and oxidase negative, TSI, gel hydrolysis positive and were able to ferment glucose, lactose, maltose, galactose, fructose, sucrose, starch and raffinose. The results of antimicrobial activity showed that pneumococci were resistant to the cefspan, septran, cravit, pipemetic acid, azomax, bacitracin, and penicillin and a clear zone of inhibition was observed on clithromycin, optochin, cefizox, genatamycin, minocyclin, levoflaxacin, and vancomycin. There were intermediate zone of inhibition found on claforan, nalidixic acid, amoxycillin, fosfomycin, fortum, and erythromycin on Mueller Hinton’s agar after 24 hours incubation

  19. Epidemiological studies of potent environment pathogen streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Brohi, N.A.; Tunio, S.A.

    2016-01-01

    A general survey for six months was undertaken for the prevalence of environmental bacterium Streptococcus pneumoniae among the different age groups (3-65 years) including both sexes from various hospitals of Hyderabad city. Laboratory examinations revealed S. pneumoniae as most potent environmental pathogen from the sputum and throat swabs of old aged patients and children respectively. During observations, 39 specimens were growth positive; the biochemistry of isolates revealed that they were coagulase, catalase and oxidase negative, TSI, gel hydrolysis positive and were able to ferment glucose, lactose, maltose, galactose, fructose, sucrose, starch and raffinose. The results of antimicrobial activity showed that pneumococci were resistant to the cefspan, septran, cravit, pipemetic acid, azomax, bacitracin, and penicillin and a clear zone of inhibition was observed on clithromycin, optochin, cefizox, genatamycin, minocyclin, levoflaxacin, and vancomycin. There were intermediate zone of inhibition found on claforan, nalidixic acid, amoxycillin, fosfomycin, fortum, and erythromycin on Mueller Hinton's agar after 24 hours incubation. (author)

  20. Association of viridans group streptococci from pregnant women with bacterial vaginosis and upper genital tract infection.

    Science.gov (United States)

    Rabe, L K; Winterscheid, K K; Hillier, S L

    1988-06-01

    The prevalence and role of viridans group streptococci in the female genital tract have not been well described. In this study of 482 pregnant women, 147 (30%) were culture positive for viridans group streptococci. Of 392 women with predominant Lactobacillus morphotypes by Gram stain (normal), 110 (28%) were colonized with viridans group streptococci, compared with 37 (41%) of 90 women with bacterial vaginosis (BV) (P = 0.02). To determine whether any species were associated with BV, 177 consecutively isolated viridans group streptococci from the vagina were identified to the species level by using the Facklam scheme. The most frequently isolated species from the vagina was Streptococcus intermedius (13%), followed by Streptococcus acidominimus (6%), Streptococcus constellatus (5%), Streptococcus sanguis II (4%), Streptococcus mitis (2%), Streptococcus salivarius (2%), Streptococcus morbillorum (2%), Streptococcus sanguis I (1%), Streptococcus mutans (0.2%), and Streptococcus uberis (0.2%) with an average of 1.2 species per woman. The distribution of the species among women with BV compared with normal women was not significantly different, with the exception of two species which were associated with BV: S. acidominimus (18% versus 3%, P less than 0.001) and S. morbillorum (6% versus 0.7%, P = 0.005). Amniotic fluid and placenta cultures yielded 54 isolates: S. sanguis II (13 isolates), S. acidominimus (9 isolates), S. intermedius (10 isolates), S. constellatus (3 isolates), S. mitis (4 isolates), S. sanguis I (4 isolates), S. morbillorum (5 isolates), S. mutans (2 isolates), S. uberis (1 isolate), mannitol-positive S. intermedius (1 isolate), and 2 isolates which were not classified. The distribution of species isolated from the upper genital tract was not a reflection of the distribution in the lower genital tract. Dextran-producing species of viridans group streptococci may have a greater pathogenic potential in the placenta than the non

  1. Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex.

    Science.gov (United States)

    Papadimitriou, Konstantinos; Anastasiou, Rania; Mavrogonatou, Eleni; Blom, Jochen; Papandreou, Nikos C; Hamodrakas, Stavros J; Ferreira, Stéphanie; Renault, Pierre; Supply, Philip; Pot, Bruno; Tsakalidou, Effie

    2014-04-08

    Within the genus Streptococcus, only Streptococcus thermophilus is used as a starter culture in food fermentations. Streptococcus macedonicus though, which belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is also frequently isolated from fermented foods mainly of dairy origin. Members of the SBSEC have been implicated in human endocarditis and colon cancer. Here we compare the genome sequence of the dairy isolate S. macedonicus ACA-DC 198 to the other SBSEC genomes in order to assess in silico its potential adaptation to milk and its pathogenicity status. Despite the fact that the SBSEC species were found tightly related based on whole genome phylogeny of streptococci, two distinct patterns of evolution were identified among them. Streptococcus macedonicus, Streptococcus infantarius CJ18 and Streptococcus pasteurianus ATCC 43144 seem to have undergone reductive evolution resulting in significantly diminished genome sizes and increased percentages of potential pseudogenes when compared to Streptococcus gallolyticus subsp. gallolyticus. In addition, the three species seem to have lost genes for catabolizing complex plant carbohydrates and for detoxifying toxic substances previously linked to the ability of S. gallolyticus to survive in the rumen. Analysis of the S. macedonicus genome revealed features that could support adaptation to milk, including an extra gene cluster for lactose and galactose metabolism, a proteolytic system for casein hydrolysis, auxotrophy for several vitamins, an increased ability to resist bacteriophages and horizontal gene transfer events with the dairy Lactococcus lactis and S. thermophilus as potential donors. In addition, S. macedonicus lacks several pathogenicity-related genes found in S. gallolyticus. For example, S. macedonicus has retained only one (i.e. the pil3) of the three pilus gene clusters which may mediate the binding of S. gallolyticus to the extracellular matrix. Unexpectedly, similar findings were

  2. Short communication: Genotypic and phenotypic identification of environmental streptococci and association of Lactococcus lactis ssp. lactis with intramammary infections among different dairy farms.

    Science.gov (United States)

    Werner, B; Moroni, P; Gioia, G; Lavín-Alconero, L; Yousaf, A; Charter, M E; Carter, B Moslock; Bennett, J; Nydam, D V; Welcome, F; Schukken, Y H

    2014-11-01

    Lactococcus species are counted among a large and closely related group of environmental streptococci and streptococci-like bacteria that include bovine mastitis pathogenic Streptococcus, Enterococcus, and Aerococcus species. Phenotypic and biochemical identification methods can be inaccurate and unreliable for species within this group, particularly for Lactococcus spp. As a result, the incidence of Lactococcus spp. on the farm may have been historically underreported and consequently little is known about the clinical importance of this genus as a mastitis pathogen. We used molecular genetic identification methods to accurately differentiate 60 environmental streptococci and streptococci-like bacteria isolated from cows with high somatic cell count and chronic intramammary infection (IMI; >2 somatic cell scores above 4) among 5 geographically distinct farms in New York and Minnesota that exhibited an observed increase in IMI. These isolates were phenotypically identified as Streptococcus uberis and Streptococcus spp. Genetic methods identified 42 isolates (70%) as Lactococcus lactis ssp. lactis, including all 10 isolates originally phenotypically identified as Streptococcus uberis. Antibiotic inhibition testing of all Lc. lactis ssp. lactis showed that 7 isolates were resistant to tetracycline. In the present study, a predominance of Lc. lactis ssp. lactis was identified in association with chronic, clinical bovine IMI among all 5 farms and characterized antimicrobial resistance for treatment therapies. Routine use by mastitis testing labs of molecular identification methods for environmental streptococci and streptococci-like bacteria can further define the role and prevalence of Lc. lactis ssp. lactis in association with bovine IMI and may lead to more targeted therapies. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC).

    Science.gov (United States)

    Jans, Christoph; Meile, Leo; Lacroix, Christophe; Stevens, Marc J A

    2015-07-01

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) is a group of human and animal derived streptococci that are commensals (rumen and gastrointestinal tract), opportunistic pathogens or food fermentation associates. The classification of SBSEC has undergone massive changes and currently comprises 7 (sub)species grouped into four branches based on sequences identities: the Streptococcus gallolyticus, the Streptococcus equinus, the Streptococcus infantarius and the Streptococcus alactolyticus branch. In animals, SBSEC are causative agents for ruminal acidosis, potentially laminitis and infective endocarditis (IE). In humans, a strong association was established between bacteraemia, IE and colorectal cancer. Especially the SBSEC-species S. gallolyticus subsp. gallolyticus is an emerging pathogen for IE and prosthetic joint infections. S. gallolyticus subsp. pasteurianus and the S. infantarius branch are further associated with biliary and urinary tract infections. Knowledge on pathogenic mechanisms is so far limited to colonization factors such as pili and biofilm formation. Certain strain variants of S. gallolyticus subsp. macedonicus and S. infantarius subsp. infantarius are associated with traditional dairy and plant-based food fermentations and display traits suggesting safety. However, due to their close relationship to virulent strains, their use in food fermentation has to be critically assessed. Additionally, implementing accurate and up-to-date taxonomy is critical to enable appropriate treatment of patients and risk assessment of species and strains via recently developed multilocus sequence typing schemes to enable comparative global epidemiology. Comparative genomics revealed that SBSEC strains harbour genomics islands (GI) that seem acquired from other streptococci by horizontal gene transfer. In case of virulent strains these GI frequently encode putative virulence factors, in strains from food fermentation the GI encode functions that are

  4. Endocytosis‒Mediated Invasion and Pathogenicity of Streptococcus agalactiae in Rat Cardiomyocyte (H9C2)

    OpenAIRE

    Pooja, Sharma; Pushpanathan, Muthuirulan; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2015-01-01

    Streptococcus agalactiae infection causes high mortality in cardiovascular disease (CVD) patients, especially in case of setting prosthetic valve during cardiac surgery. However, the pathogenesis mechanism of S. agalactiae associate with CVD has not been well studied. Here, we have demonstrated the pathogenicity of S. agalactiae in rat cardiomyocytes (H9C2). Interestingly, both live and dead cells of S. agalactiae were uptaken by H9C2 cells. To further dissect the process of S. agalactiae int...

  5. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans.

    Science.gov (United States)

    Huang, Xuelian; Palmer, Sara R; Ahn, Sang-Joon; Richards, Vincent P; Williams, Matthew L; Nascimento, Marcelle M; Burne, Robert A

    2016-01-29

    The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)-ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Simultaneous intramammary and intranasal inoculation of lactating cows with bovine herpesvirus 4 induce subclinical mastitis

    NARCIS (Netherlands)

    Wellenberg, G.J.; Bruschke, C.J.M.; Wisselink, H.J.; Barkema, H.W.; Oirschot, van J.T.

    2002-01-01

    In this study, we examined whether an experimental bovine herpesvirus 4 (BHV4) infection can induce bovine mastitis, or can enhance bovine mastitis induced by Streptococcus uberis (S. uberis). Four lactating cows were inoculated intramammarily and intranasally with BHV4, and four lactating control

  7. Preliminary X-ray crystallographic analysis of SMU.2055 protein from the caries pathogen Streptococcus mutans

    International Nuclear Information System (INIS)

    Zhao, Wang-Hong; Zhan, Xiu-Rong; Gao, Xiong-Zhuo; Liu, Xiang; Zhang, Yi-Fei; Lin, Jiuxiang; Li, Lan-Fen; Wei, Shi-Cheng; Su, Xio-Dong

    2010-01-01

    The SMU.2055 gene from the major caries pathogen Streptococcus mutans was cloned and native and SeMet-labelled SMU.2055 proteins were expressed at a high level. Diffraction-quality crystals of SeMet-labelled SMU.2055 were obtained using the sitting-drop vapour-diffusion method and diffracted to a resolution of 2.5 Å. The SMU.2055 gene from the major caries pathogen Streptococcus mutans is annotated as a putative acetyltransferase with 163 amino-acid residues. In order to identify its function via structural studies, the SMU.2055 gene was cloned into the expression vector pET28a. Native and SeMet-labelled SMU.2055 proteins with a His 6 tag at the N-terminus were expressed at a high level in Escherichia coli strain BL21 (DE3) and purified to homogeneity by Ni 2+ -chelating affinity chromatography. Diffraction-quality crystals of SeMet-labelled SMU.2055 were obtained using the sitting-drop vapour-diffusion method and diffracted to a resolution of 2.5 Å on beamline BL17A at the Photon Factory, Tsukuba, Japan. The crystals belong to the orthorhombic space group C222 1 , with unit-cell parameters a = 92.0, b = 95.0, c = 192.2 Å. The asymmetric unit contained four molecules, with a solvent content of 57.1%

  8. Antimicrobial Susceptibility Patterns of Environmental Streptococci Recovered from Bovine Milk Samples in the Maritime Provinces of Canada

    Directory of Open Access Journals (Sweden)

    Marguerite Cameron

    2016-09-01

    Full Text Available Determination of antimicrobial susceptibility of bovine mastitis pathogens is important for guiding antimicrobial treatment decisions and for the detection of emerging resistance. Environmental streptococci are ubiquitous in the farm environment and are a frequent cause of mastitis in dairy cows. The aim of the study was to determine patterns of antimicrobial susceptibility among species of environmental streptococci isolated from dairy cows in the Maritime Provinces of Canada. The collection consisted of 192 isolates identified in milk samples collected from 177 cows originating from 18 dairy herds. Results were aggregated into: 1 Streptococcus uberis (n = 70, 2 Streptococcus dysgalactiae (n = 28, 3 other Streptococci spp. (n = 35, 4, Lactococcus spp. (n = 32, and 5 Enterococcus spp. (n = 27. Minimum inhibitory concentrations (MIC were determined using the Sensititre microdilution system and mastitis plate format. Multilevel logistic regression models were used to analyze the data, with antimicrobial susceptibility as the outcome. The proportion of susceptible Streptococcus uberis ranged from 23% (for penicillin to 99% (for penicillin/novobiocin, with a median of 82%. All Streptococcus dysgalactiae were susceptible to all antimicrobials except for penicillin (93% susceptible and tetracycline (18% susceptible. The range of susceptibility for other Streptococcus spp. was 43% (for tetracycline to 100%, with a median percent susceptibility of 92%. Lactococcus spp. isolates displayed percent susceptibilities ranging from 0% (for penicillin to 97% (for erythromycin, median 75%. For the antimicrobials tested, the MIC were higher for Enterococcus spp. than for the other species. According to the multilevel models, there was a significant interaction between antimicrobial and bacterial species, indicating that susceptibility against a particular antimicrobial varied among the species of environmental streptococci and vice versa. Generally

  9. Host-pathogen Interaction at the Intestinal Mucosa Correlates With Zoonotic Potential of Streptococcus suis

    DEFF Research Database (Denmark)

    Ferrando, Maria Laura; de Greeff, Astrid; van Rooijen, Willemien J. M.

    2015-01-01

    Background. Streptococcus suis has emerged as an important cause of bacterial meningitis in adults. The ingestion of undercooked pork is a risk factor for human S. suis serotype 2 (SS2) infection. Here we provide experimental evidence indicating that the gastrointestinal tract is an entry site of...... be considered a food-borne pathogen. S. suis interaction with human and pig IEC correlates with S. suis serotype and genotype, which can explain the zoonotic potential of SS2....... of SS2 infection. Methods. We developed a noninvasive in vivo model to study oral SS2 infection in piglets. We compared in vitro interaction of S. suis with human and porcine intestinal epithelial cells (IEC). Results. Two out of 15 piglets showed clinical symptoms compatible with S. suis infection 24......Background. Streptococcus suis has emerged as an important cause of bacterial meningitis in adults. The ingestion of undercooked pork is a risk factor for human S. suis serotype 2 (SS2) infection. Here we provide experimental evidence indicating that the gastrointestinal tract is an entry site...

  10. Quantotypic Properties of QconCAT Peptides Targeting Bovine Host Response to Streptococcus uberis

    DEFF Research Database (Denmark)

    Bislev, Stine Lønnerup; Kusebauch, Ulrike; Codrea, Marius Cosmin

    2012-01-01

    with host response to pathogens remains a challenging task. In this paper we present a targeted proteome analysis of a panel of 20 proteins that are widely believed to be key players and indicators of bovine host response to mastitis pathogens. Stable isotope labeled variants of two concordant proteotypic...

  11. Evaluation of the Minnesota Easy Culture System II Bi-Plate and Tri-Plate for identification of common mastitis pathogens in milk.

    Science.gov (United States)

    Royster, E; Godden, S; Goulart, D; Dahlke, A; Rapnicki, P; Timmerman, J

    2014-01-01

    The objective of this study was to validate use of the Minnesota Easy Culture System II Bi-Plate and Tri-Plate (University of Minnesota Laboratory for Udder Health, St. Paul) to identify common mastitis pathogens in milk. A total of 283 quarter and composite milk samples submitted to the University of Minnesota Laboratory for Udder Health during the spring of 2010 were cultured simultaneously using 3 methods: standard laboratory culture (reference method) and the Minnesota Easy Culture System II Bi-Plate and Tri-Plate methods. Bi-Plate and Tri-Plate cultures were incubated for 18 to 24h and interpreted by 2 independent, untrained readers within 5h of each other. An experienced technician completed the standard laboratory culture. For each sample, all 3 study personnel recorded the culture result (yes/no) for each of the following diagnostic categories: no bacterial growth (NG), mixed (2 organisms), contaminated (3 or more organisms), gram-positive (GP), gram-negative (GN), Staphylococcus spp., Streptococcus spp., Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Enterococcus spp., Staphylococcus aureus, coagulase-negative staphylococci, Escherichia coli, Klebsiella spp., and other. For each category, the prevalence, sensitivity, specificity, accuracy, and predictive values of a positive and negative test were calculated, and the agreement between readers and between each reader and the laboratory was assessed. Specificity, overall accuracy, and negative predictive values were generally high (>80%) for the Bi-Plate and Tri-Plate for each category. Sensitivity and positive predictive values were intermediate (>60%) or high (>80%) for the broad categories of NG, GP, GN, Staphylococcus spp. and Streptococcus spp., and for Staph. aureus, but were generally lower (negative predictive value for Streptococcus spp., and higher interreader agreement for some of the more specific categories. Our conclusion was that Bi-Plate and Tri-Plate results will

  12. In silico assessment of virulence factors in strains of Streptococcus oralis and Streptococcus mitis isolated from patients with Infective Endocarditis

    DEFF Research Database (Denmark)

    Rasmussen, Louise H.; Iversen, Katrine Højholt; Dargis, Rimtas

    2017-01-01

    Streptococcus oralis and Streptococcus mitis belong to the Mitis group, which are mostly commensals in the human oral cavity. Even though S. oralis and S. mitis are oral commensals, they can be opportunistic pathogens causing infective endocarditis. A recent taxonomic re-evaluation of the Mitis...

  13. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR.

    Science.gov (United States)

    Kannika, K; Pisuttharachai, D; Srisapoome, P; Wongtavatchai, J; Kondo, H; Hirono, I; Unajak, S; Areechon, N

    2017-06-01

    This study aimed to biotype Streptococcus agalactiae isolated from tilapia farms in Thailand based on molecular biotyping methods and to determine the correlation between the serotype and virulence of bacteria. In addition to a biotyping (serotyping) technique based on multiplex PCR of cps genes, in this study, we developed multiplex PCR typing of Group B streptococcus (GBS) virulence genes to examine three clusters of virulence genes and their correlation with the pathogenicity of S. agalactiae. The epidemiology of S. agalactiae in Thailand was analysed to provide bacterial genetic information towards a future rational vaccine strategy for tilapia culture systems. Streptococcus agalactiae were isolated from diseased tilapia from different areas of Thailand. A total of 124 S. agalactiae isolates were identified by phenotypic analysis and confirmed by 16S rRNA PCR. Bacterial genotyping was conducted based on (i) molecular serotyping of the capsular polysaccharide (cps) gene cluster and (ii) virulence gene profiling using multiplex PCR analysis of 14 virulence genes (lmb, scpB, pavA, cspA, spb1, cyl, bca, rib, fbsA, fbsB, cfb, hylB, bac and pbp1A/ponA). Only serotypes Ia and III were found in this study; serotype Ia lacks the lmb, scpB and spb1 genes, whereas serotype III lacks only the bac gene. Virulence tests in juvenile Nile tilapia demonstrated a correlation between the pathogenicity of the bacteria and their virulence gene profile, with serotype III showing higher virulence than serotype Ia. Epidemiological analysis showed an almost equal distribution in all regions of Thailand, except serotype III was found predominantly in the southern areas. Only two serotypes of S. agalactiae were isolated from diseased tilapia in Thailand. Serotype Ia showed fewer virulence genes and lower virulence than serotype III. Both serotypes showed a similar distribution throughout Thailand. We identified two major serotypes of S. agalactiae isolates associated with the outbreak in

  14. Characterization of a new CAMP factor carried by an integrative and conjugative element in Streptococcus agalactiae and spreading in Streptococci.

    Directory of Open Access Journals (Sweden)

    Sarah Chuzeville

    Full Text Available Genetic exchanges between Streptococci occur frequently and contribute to their genome diversification. Most of sequenced streptococcal genomes carry multiple mobile genetic elements including Integrative and Conjugative Elements (ICEs that play a major role in these horizontal gene transfers. In addition to genes involved in their mobility and regulation, ICEs also carry genes that can confer selective advantages to bacteria. Numerous elements have been described in S. agalactiae especially those integrated at the 3' end of a tRNA(Lys encoding gene. In strain 515 of S. agalactiae, an invasive neonate human pathogen, the ICE (called 515_tRNA(Lys is functional and carries different putative virulence genes including one encoding a putative new CAMP factor in addition to the one previously described. This work demonstrated the functionality of this CAMP factor (CAMP factor II in Lactococcus lactis but also in pathogenic strains of veterinary origin. The search for co-hemolytic factors in a collection of field strains revealed their presence in S. uberis, S. dysgalactiae, but also for the first time in S. equisimilis and S. bovis. Sequencing of these genes revealed the prevalence of a species-specific factor in S. uberis strains (Uberis factor and the presence of a CAMP factor II encoding gene in S. bovis and S. equisimilis. Furthermore, most of the CAMP factor II positive strains also carried an element integrated in the tRNA(Lys gene. This work thus describes a CAMP factor that is carried by a mobile genetic element and has spread to different streptococcal species.

  15. Isolation and Pathogenicity of Streptococcus iniae in Cultured Red Hybrid Tilapia in Malaysia.

    Science.gov (United States)

    Rahmatullah, M; Ariff, M; Kahieshesfandiari, M; Daud, H M; Zamri-Saad, M; Sabri, M Y; Amal, M N A; Ina-Salwany, M Y

    2017-12-01

    This study describes the isolation and pathogenicity of Streptococcus iniae in cultured red hybrid tilapia (Nile Tilapia Oreochromis niloticus × Mozambique Tilapia O. mossambicus) in Malaysia. The isolated gram-positive S. iniae appeared punctiform, transparently white, catalase and oxidase negative and produced complete β-hemolysis on blood agar, while a PCR assay resulted in the amplification of the 16 S rRNA gene and lactate oxidase encoded genes. The isolate was sensitive to tetracycline, vancomycin, and bacitracin but was resistant to streptomycin, ampicillin, penicillin, and erythromycin. Pathogenicity trials conducted in local red hybrid tilapia (mean ± SE = 20.00 ± 0.45 g) showed 90.0, 96.7, and 100.0% mortality within 14 d postinfection following intraperitoneal exposure to 10 4 , 10 6 , and 10 8 CFU/mL of the pathogen, respectively. The clinical signs included erratic swimming, lethargy, and inappetance at 6 h postinfection, while mortality was recorded at less than 24 h postinfection in all infected groups. The LD 50-336 h of S. iniae against the red hybrid tilapia was 10 2 CFU/mL. The post mortem examinations revealed congested livers, kidneys, and spleens of the infected fish. This is the first report of S. iniae experimental infection in cultured red hybrid tilapia in Malaysia. Received January 20, 2017; accepted July 16, 2017.

  16. Induction of Endoplasmic Reticulum Stress and Unfolded Protein Response Constitutes a Pathogenic Strategy of group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Emanuel eHanski

    2014-08-01

    Full Text Available The connection between bacterial pathogens and unfolded protein response (UPR is poorly explored. In this review we highlight the evidence showing that group A streptococcus (GAS induces endoplasmic reticulum (ER stress and UPR through which it captures the amino acid asparagine (ASN from the host. GAS acts extracellularly and during adherence to host cells it delivers the hemolysin toxins; streptolysin O (SLO and streptolysin S (SLS. By poorly understood pathways, these toxins trigger UPR leading to the induction of the transcriptional regulator ATF4 and consequently to the upregulation of asparagine synthetase (ASNS transcription leading to production and release of ASN. GAS senses ASN and alters gene expression profile accordingly, and increases the rate of multiplication. We suggest that induction of UPR by GAS and by other bacterial pathogens represent means through which bacterial pathogens gain nutrients from the host, obviating the need to become internalized or inflict irreversible cell damage.

  17. Streptococcus suis infection

    Science.gov (United States)

    Feng, Youjun; Zhang, Huimin; Wu, Zuowei; Wang, Shihua; Cao, Min; Hu, Dan; Wang, Changjun

    2014-01-01

    Streptococcus suis (S. suis) is a family of pathogenic gram-positive bacterial strains that represents a primary health problem in the swine industry worldwide. S. suis is also an emerging zoonotic pathogen that causes severe human infections clinically featuring with varied diseases/syndromes (such as meningitis, septicemia, and arthritis). Over the past few decades, continued efforts have made significant progress toward better understanding this zoonotic infectious entity, contributing in part to the elucidation of the molecular mechanism underlying its high pathogenicity. This review is aimed at presenting an updated overview of this pathogen from the perspective of molecular epidemiology, clinical diagnosis and typing, virulence mechanism, and protective antigens contributing to its zoonosis. PMID:24667807

  18. The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles.

    Science.gov (United States)

    Biagini, Massimiliano; Garibaldi, Manuela; Aprea, Susanna; Pezzicoli, Alfredo; Doro, Francesco; Becherelli, Marco; Taddei, Anna Rita; Tani, Chiara; Tavarini, Simona; Mora, Marirosa; Teti, Giuseppe; D'Oro, Ugo; Nuti, Sandra; Soriani, Marco; Margarit, Immaculada; Rappuoli, Rino; Grandi, Guido; Norais, Nathalie

    2015-08-01

    Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Studies on Antimicrobial and Immunomodulatory Effects of Hot Aqueous Extract of Acacia nilotica L. Leaves against Common Veterinary Pathogens

    Directory of Open Access Journals (Sweden)

    Arvind Kumar Sharma

    2014-01-01

    Full Text Available Acacia nilotica is a plant species that is almost ubiquitously found in different parts of the world. Various preparations of it have been advocated in folk medicine for the treatment of tuberculosis, leprosy, smallpox, dysentery, cough, ophthalmia, toothache, skin cancer as astringent, antispasmodic, and aphrodisiac since immemorial times. The present study investigates the antibacterial, antifungal, antiviral, and immunomodulatory potential of hot aqueous extract (HAE of Acacia nilotica leaves. On dry matter basis, the filtered HAE had a good extraction ratio (33.46% and was found to have carbohydrates, glycosides, phytosterols, phenolic compounds, saponins, and flavonoids as major constituents. HAE produced dose dependent zone of inhibition against Klebsiella pneumoniae, Pseudomonas aeruginosa, E. coli, Bacillus cereus, Staphylococcus aureus, and Streptococcus uberis and fungal pathogens Aspergillus niger and Aspergillus fumigates; however, no antiviral activity was recorded against IBR virus. HAE of A. nilotica revealed both proliferative and inhibitory effects on the rat splenocytes and IL-10 release depending on the dose. Detailed studies involving wide spectrum of bacterial, fungal, and viral species are required to prove or know the exact status of each constituents of the plant extract.

  20. The streptococcal phage SA2 and B30 endolysins act synergistically and kill mastitis causing streptococci in milk

    Science.gov (United States)

    Bovine mastitis results in billion dollar losses annually in the United States alone. Among the most relevant causative agents of this disease are members of the genus Streptococcus, particularly the species S. agalactiae (Group B Streptococcus; GBS), S. dysgalactiae (Group C; GCS), and S. uberis....

  1. Prevalence and Antimicrobial Susceptibility Profiles of Pathogen Isolated from Bovine Mastitis Milk in Transylvania, Romania

    Directory of Open Access Journals (Sweden)

    Cosmina Bouari

    2016-11-01

    Full Text Available Mastitis in cows, one of the most common and economically important infectious diseases of dairy cattle, all over the world, with significant impact due to economic losses, occurs when the udder becomes inflamed because the leukocytes are released into the mammary gland usually in response to bacteria invasion of the teat canal. The main objective of this study was to evaluate the in vitro antimicrobial susceptibility of bacteria isolated from milk in order to design specific control programs for bovine mastitis in this area. A total of 204 milk samples aseptically collected both from farms and private owners were processed during May 2014 and March 2016 within the Microbiology Laboratory of the Faculty of Veterinary Cluj-Napoca, Romania. The microbiological examination was carried out by inoculation on blood agar and MacConkey medium. After the overnight incubation in aerobic conditions, the identification of the isolates was performed using microscopic, cultural and biochemical methods. Biochemical identification was based on API 20 Biomerieux system. Susceptibility to antibiotics was evaluated using Kirby Bauer disk diffusion method on Mueller-Hinton agar; the antibiotics were represented by Amoxicillin and Clavulanic Acid, Ceftiofur, Florfenicol, Mastidiscs, Enrofloxacin, Penicillin and Tetracycline. Staphylococcus spp. was the most common isolated pathogen, in 54.9% of the specimens, followed by Streptococcus spp. in 20.1%, Escherichia coli in 10.78%, Klebsiella spp. in 8.34%, Bacillus spp. in 5.88%. The most frequent associations were represented by staphylococci-streptococci in 62.7% of the samples, followed by streptococci-bacillus in 19.8% of the samples. The most important etiological agents identified were Staphylococcus aureus, S uberis, Streptococcus agalactiae, and Escherichia coli. Antimicrobial susceptibility test for the total isolates revealed good sensitivity to Enrofloxacin, Mastidiscs and Amoxicillin and Clavulanic Acid

  2. Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland.

    Science.gov (United States)

    Kaczorek, E; Małaczewska, J; Wójcik, R; Rękawek, W; Siwicki, A K

    2017-08-01

    Mastitis of dairy cattle is one of the most frequently diagnosed diseases worldwide. The main etiological agents of mastitis are bacteria of the genus Streptococcus spp., in which several antibiotic resistance mechanisms have been identified. However, detailed studies addressing this problem have not been conducted in northeastern Poland. Therefore, the aim of our study was to analyze, on phenotypic and genotypic levels, the antibiotic resistance pattern of Streptococcus spp. isolated from clinical cases of mastitis from dairy cattle in this region of Poland. The research was conducted using 135 strains of Streptococcus (Streptococcus uberis, n = 53; Streptococcus dysgalactiae, n = 41; Streptococcus agalactiae, n = 27; other streptococci, n = 14). The investigation of the antimicrobial susceptibility to 8 active substances applied in therapy in the analyzed region, as well as a selected bacteriocin (nisin), was performed using the minimum inhibitory concentration method. The presence of selected resistance genes (n = 14) was determined via PCR. We also investigated the correlation between the presence of resistance genes and the antimicrobial susceptibility of the examined strains in vitro. The highest observed resistance of Streptococcus spp. was toward gentamicin, kanamycin, and tetracycline, whereas the highest susceptibility occurred toward penicillin, enrofloxacin, and marbofloxacin. Additionally, the tested bacteriocin showed high efficacy. The presence of 13 analyzed resistance genes was observed in the examined strains [gene mef(A) was not detected]. In most strains, at least one resistance gene, mainly responsible for resistance to tetracyclines [tet(M), tet(K), tet(L)], was observed. However, a relationship between the presence of a given resistance gene and antimicrobial susceptibility on the phenotypic level was not always observed. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Streptococcus equi subsp zooepidemicus Invades and Survives in Epithelial Cells

    DEFF Research Database (Denmark)

    Skive, Bolette; Rohde, Manfred; Molinari, Gabriella

    2017-01-01

    Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is an opportunistic pathogen of several species including humans. S. zooepidemicus is found on mucus membranes of healthy horses, but can cause acute and chronic endometritis. Recently S. zooepidemicus was found able to reside in the endo......Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is an opportunistic pathogen of several species including humans. S. zooepidemicus is found on mucus membranes of healthy horses, but can cause acute and chronic endometritis. Recently S. zooepidemicus was found able to reside...

  4. Septicemia with Streptococcus pseudopneumoniae

    DEFF Research Database (Denmark)

    Fuursted, Kurt; Littauer, Pia Jeanette; Greve, Thomas

    2016-01-01

    Streptococcus pseudopneumoniae was described in 2004 as a new human pathogen, acknowledged in a range of clinical infections typically associated to the respiratory tract. This report demonstrates that S. pseudopneumoniae has the potential to cause invasive infection. In blood cultures from three...... and the antibiogram and resistome revealed no antibiotic resistance....

  5. Lung abscess due to Streptococcus pneumoniae: a case series and brief review of the literature.

    Science.gov (United States)

    Nicolini, Antonello; Cilloniz, Catia; Senarega, Renata; Ferraioli, Gianluca; Barlascini, Cornelius

    2014-01-01

    Anaerobes used to be the most common cause of community-acquired lung abscess, and Streptococcus species used to be the second most common cause. In recent years, this has been changing. Klebsiella pneumoniae is now an increasing cause of community- acquired lung abscess, but Streptococcus species continue to be major pathogens. Necrotizing pneumonia has generally been regarded as a rare complication of pneumococcal infection in adults. Type 3 Streptococcus pneumoniae was the single most common type implicated in necrosis; however, many other serotypes were implicated. This entity predominately infects children, but is present also in adults. Lung abscess in adults due to Streptococcus pneumoniae is not common. In this regard we present a case series of pulmonary cavitation due to Streptococcus pneumoniae and discuss the possible pathogenic mechanism of the disease.

  6. Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine as Exemplified by the Swine Pathogen Streptococcus suis.

    Science.gov (United States)

    Seitz, Maren; Valentin-Weigand, Peter; Willenborg, Jörg

    2016-01-01

    Use of antimicrobial agents in veterinary medicine is essential to control infectious diseases, thereby keeping animals healthy and animal products safe for the consumer. On the other hand, development and spread of antimicrobial resistance is of major concern for public health. Streptococcus (S.) suis reflects a typical bacterial pathogen in modern swine production due to its facultative pathogenic nature and wide spread in the pig population. Thus, in the present review we focus on certain current aspects and problems related to antimicrobial use and resistance in S. suis as a paradigm for a bacterial pathogen affecting swine husbandry worldwide. The review includes (i) general aspects of antimicrobial use and resistance in veterinary medicine with emphasis on swine, (ii) genetic resistance mechanisms of S. suis known to contribute to bacterial survival under antibiotic selection pressure, and (iii) possible other factors which may contribute to problems in antimicrobial therapy of S. suis infections, such as bacterial persister cell formation, biofilm production, and co-infections. The latter shows that we hardly understand the complexity of factors affecting the success of antimicrobial treatment of (porcine) infectious diseases and underlines the need for further research in this field.

  7. Evaluation of a culture-based pathogen identification kit for bacterial causes of bovine mastitis.

    Science.gov (United States)

    Viora, L; Graham, E M; Mellor, D J; Reynolds, K; Simoes, P B A; Geraghty, T E

    2014-07-26

    Accurate identification of mastitis-causing bacteria supports effective management and can be used to implement selective use of antimicrobials for treatment. The objectives of this study were to compare the results from a culture-based mastitis pathogen detection test kit ('VetoRapid', Vétoquinol) with standard laboratory culture and to evaluate the potential suitability of the test kit to inform a selective treatment programme. Overall 231 quarter milk samples from five UK dairy farms were collected. The sensitivity and specificity of the test kit for the identification of Escherichia coli, Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis and Enterococcus spp. ranged from 17 per cent to 84 per cent and 92 per cent to 98 per cent, respectively. In total, 23 of 68 clinical samples were assigned as meeting the requirement for antimicrobial treatment (Gram-positive organism cultured) according to standard culture results, with the test kit results having sensitivity and specificity of 91 per cent and 78 per cent, respectively. Several occurrences of misidentification are reported, including S. aureus being misidentified as coagulase-negative staphylococci and vice versa. The test kit provides rapid preliminary identification of five common causes of bovine mastitis under UK field conditions and is likely to be suitable for informing selective treatment of clinical mastitis caused by Gram-positive organisms. British Veterinary Association.

  8. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.

    Science.gov (United States)

    Lewis, Megan L; Surewaard, Bas G J

    2018-03-01

    Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.

  9. STREPTOCOCCUS: A WORLDWIDE FISH HEALTH PROBLEM

    Science.gov (United States)

    Streptococcus iniae and S. agalactiae are important emergent pathogens that affect many fish species worldwide, especially in warm-water regions. In marine and freshwater systems, these Gram-positive bacteria cause significant economic losses, estimated at hundreds of millions of dollars annually. ...

  10. Preliminary crystallographic studies of purine nucleoside phosphorylase from the cariogenic pathogen Streptococcus mutans

    International Nuclear Information System (INIS)

    Hou, Qiao-Ming; Liu, Xiang; Brostromer, Erik; Li, Lan-Fen; Su, Xiao-Dong

    2009-01-01

    Purine nucleoside phosphorylase (PNP), which is a pivotal enzyme in the nucleotide-salvage pathway, has been expressed in Escherichia coli strain BL21 (DE3) in a soluble form at a high level. After purification of the PNP enzyme, the protein was crystallized using the sitting-drop vapour-diffusion technique. The punA gene of the cariogenic pathogen Streptococcus mutans encodes purine nucleoside phosphorylase (PNP), which is a pivotal enzyme in the nucleotide-salvage pathway, catalyzing the phosphorolysis of purine nucleosides to generate purine bases and α-ribose 1-phosphate. In the present work, the PNP protein was expressed in Escherichia coli strain BL21 (DE3) in a soluble form at a high level. After purification of the PNP enzyme, the protein was crystallized using the sitting-drop vapour-diffusion technique; the crystals diffracted to 1.6 Å resolution at best. The crystals belonged to space group H3, with unit-cell parameters a = b = 113.0, c = 60.1 Å

  11. Host-pathogen interaction during Streptococcus pneumoniae colonization and infection

    NARCIS (Netherlands)

    D. Bogaert (Debby)

    2004-01-01

    markdownabstract__Abstract__ Streptococcus pneumoniae was discovered by Sternberg and Pasteur in 1880. It took another six years to discover that this microorganism, called the pneumococcus, was the actual cause of bacterial pneumonia . Subsequently, this bacterium has been shown to provoke an

  12. A Visual Review of the Human Pathogen Streptococcus pneumoniae

    DEFF Research Database (Denmark)

    Engholm, Ditte Høyer; Kilian, Mogens; Goodsell, David

    2017-01-01

    Being the principal causative agent of bacterial pneumonia, otitis media, meningitis and septicemia, the bacterium Streptococcus pneumoniae is a major global health problem. To highlight the molecular basis of this problem, we have portrayed essential biological processes of the pneumococcal life...

  13. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae

    Science.gov (United States)

    Beaussart, Audrey; Péchoux, Christine; Trieu-Cuot, Patrick; Hols, Pascal; Mistou, Michel-Yves; Dufrêne, Yves F.

    2014-11-01

    The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the ``pellicle'') overlaid by a 15-45 nm thick layer of CPS (the ``capsule''). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.

  14. Crystallization and preliminary X-ray crystallographic analysis of SMU.412c protein from the caries pathogen Streptococcus mutans

    International Nuclear Information System (INIS)

    Ye, Zhao-Yang; Hou, Qiao-Ming; Li, Lan-Fen; Su, Xiao-Dong

    2009-01-01

    Crystallization of SMU.412c protein from the caries pathogen Streptococcus mutans can easily appear in the condition 2.8 M sodium acetate pH 7.0 and its crystal belongs to space group P4 1 2 1 2. The smu.412c gene encodes a putative histidine triad-like protein (SMU.412c) with 139 residues that is involved in cell-cycle regulation in Streptococcus mutans. The gene was cloned into the expression vector pET28a and subsequently expressed in Escherichia coli strain BL21 (DE3) to give a substantially soluble form of SMU.412c with a His 6 tag at its N-terminus. The recombinant protein was purified to homogeneity in a two-step procedure involving Ni 2+ -chelating and size-exclusion chromatography. Crystals suitable for X-ray diffraction were obtained using the sitting-drop vapour-diffusion method and diffracted to 1.8 Å resolution on beamline BL6A at Photon Factory, Tsukuba, Japan. The crystal belonged to space group P4 1 2 1 2, with unit-cell parameters a = b = 53.5, c = 141.1 Å

  15. Polymers for binding of the gram-positive oral pathogen Streptococcus mutans

    Science.gov (United States)

    Magennis, Eugene P.; Francini, Nora; Mastrotto, Francesca; Catania, Rosa; Redhead, Martin; Fernandez-Trillo, Francisco; Bradshaw, David; Churchley, David; Winzer, Klaus; Alexander, Cameron

    2017-01-01

    Streptococcus mutans is the most significant pathogenic bacterium implicated in the formation of dental caries and, both directly and indirectly, has been associated with severe conditions such as multiple sclerosis, cerebrovascular and peripheral artery disease. Polymers able to selectively bind S. mutans and/or inhibit its adhesion to oral tissue in a non-lethal manner would offer possibilities for addressing pathogenicity without selecting for populations resistant against bactericidal agents. In the present work two libraries of 2-(dimethylamino)ethyl methacrylate (pDMAEMA)-based polymers were synthesized with various proportions of either N,N,N-trimethylethanaminium cationic- or sulfobetaine zwitterionic groups. These copolymers where initially tested as potential macromolecular ligands for S. mutans NCTC 10449, whilst Escherichia coli MG1655 was used as Gram-negative control bacteria. pDMAEMA-derived materials with high proportions of zwitterionic repeating units were found to be selective for S. mutans, in both isolated and S. mutans–E. coli mixed bacterial cultures. Fully sulfobetainized pDMAEMA was subsequently found to bind/cluster preferentially Gram-positive S. mutans and S. aureus compared to Gram negative E. coli and V. harveyi. A key initial stage of S. mutans pathogenesis involves a lectin-mediated adhesion to the tooth surface, thus the range of potential macromolecular ligands was further expanded by investigating two glycopolymers bearing α-mannopyranoside and β-galactopyranoside pendant units. Results with these polymers indicated that preferential binding to either S. mutans or E. coli can be obtained by modulating the glycosylation pattern of the chosen multivalent ligands without incurring unacceptable cytotoxicity in a model gastrointestinal cell line. Overall, our results allowed to identify a structure–property relationship for the potential antimicrobial polymers investigated, and suggest that preferential binding to Gram-positive S

  16. Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus) and its transmission potential to cohabitated sheepshead minnows (Cyprinodon variegatus)

    Science.gov (United States)

    Streptococcus agalactiae has emerged as an economically important bacterial pathogen affecting global aquaculture. Worldwide aquaculture losses due to S. agalactiae are estimated around U.S. $1 billion, annually. Streptococcus agalactiae also known as a Lancefield Group B Streptococcus (GBS) is a Gr...

  17. Whole genome investigation of a divergent clade of the pathogen Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Abiyad eBaig

    2015-11-01

    Full Text Available Streptococcus suis is a major porcine and zoonotic pathogen responsible for significant economic losses in the pig industry and an increasing number of human cases. Multiple isolates of S. suis show marked genomic diversity. Here we report the analysis of whole genome sequences of nine pig isolates that caused disease typical of S. suis and had phenotypic characteristics of S. suis, but their genomes were divergent from those of many other S. suis isolates. Comparison of protein sequences predicted from divergent genomes with those from normal S. suis reduced the size of core genome from 793 to only 397 genes. Divergence was clear if phylogenetic analysis was performed on reduced core genes and MLST alleles. Phylogenies based on certain other genes (16S rRNA, sodA, recN and cpn60 did not show divergence for all isolates, suggesting recombination between some divergent isolates with normal S. suis for these genes. Indeed, there is evidence of recent recombination between the divergent and normal S. suis genomes for 249 of 397 core genes. In addition, phylogenetic analysis based on the 16S rRNA gene and 132 genes that were conserved between the divergent isolates and representatives of the broader Streptococcus genus showed that divergent isolates were more closely related to S. suis. Six out of nine divergent isolates possessed a S. suis-like capsule region with variation in capsular gene sequences but the remaining three did not have a discrete capsule locus. The majority (40/70, of virulence-associated genes in normal S. suis were present in the divergent genomes. Overall, the divergent isolates extend the current diversity of S. suis species but the phenotypic similarities and the large amount of gene exchange with normal S. suis gives insufficient evidence to assign these isolates to a new species or subspecies. Further sampling and whole genome analysis of more isolates is warranted to understand the diversity of the species.

  18. Capsular Polysaccharide Expression in Commensal Streptococcus Species

    DEFF Research Database (Denmark)

    Skov Sørensen, Uffe B; Yao, Kaihu; Yang, Yonghong

    2016-01-01

    Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule....... pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S...... of Streptococcus pneumoniae and is the basis for successful vaccines against infections caused by this important pathogen. Contrasting with previous assumptions, this study showed that expression of capsular polysaccharides by the same genetic mechanisms is a general property of closely related species...

  19. Mediation analysis to estimate direct and indirect milk losses due to clinical mastitis in dairy cattle.

    Science.gov (United States)

    Detilleux, J; Kastelic, J P; Barkema, H W

    2015-03-01

    Milk losses associated with mastitis can be attributed to either effects of pathogens per se (i.e., direct losses) or effects of the immune response triggered by intramammary infection (indirect losses). The distinction is important in terms of mastitis prevention and treatment. Regardless, the number of pathogens is often unknown (particularly in field studies), making it difficult to estimate direct losses, whereas indirect losses can be approximated by measuring the association between increased somatic cell count (SCC) and milk production. An alternative is to perform a mediation analysis in which changes in milk yield are allocated into their direct and indirect components. We applied this method on data for clinical mastitis, milk and SCC test-day recordings, results of bacteriological cultures (Escherichia coli, Staphylococcus aureus, Streptococcus uberis, coagulase-negative staphylococci, Streptococcus dysgalactiae, and streptococci other than Strep. dysgalactiae and Strep. uberis), and cow characteristics. Following a diagnosis of clinical mastitis, the cow was treated and changes (increase or decrease) in milk production before and after a diagnosis were interpreted counterfactually. On a daily basis, indirect changes, mediated by SCC increase, were significantly different from zero for all bacterial species, with a milk yield decrease (ranging among species from 4 to 33g and mediated by an increase of 1000 SCC/mL/day) before and a daily milk increase (ranging among species from 2 to 12g and mediated by a decrease of 1000 SCC/mL/day) after detection. Direct changes, not mediated by SCC, were only different from zero for coagulase-negative staphylococci before diagnosis (72g per day). We concluded that mixed structural equation models were useful to estimate direct and indirect effects of the presence of clinical mastitis on milk yield. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. High-level fluorescence labeling of gram-positive pathogens.

    Directory of Open Access Journals (Sweden)

    Simone Aymanns

    Full Text Available Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

  1. Capsular typing of Streptococcus agalactiae (Lancefield group B streptococci) from fish using multiplex PCR and serotyping

    Science.gov (United States)

    Streptococcus spp. including Streptococcus agalactiae (Lancefield group B streptococci) are considered emerging pathogens responsible for approximately $1 billion USD in annual losses to the global tilapia (Oreochromis sp.) aquaculture industry. This study evaluated a published multiplex PCR capsul...

  2. Streptococcus dysgalactiae subsp. dysgalactiae isolated from milk of the bovine udder as emerging pathogens: In vitro and in vivo infection of human cells and zebrafish as biological models.

    Science.gov (United States)

    Alves-Barroco, Cinthia; Roma-Rodrigues, Catarina; Raposo, Luís R; Brás, Catarina; Diniz, Mário; Caço, João; Costa, Pedro M; Santos-Sanches, Ilda; Fernandes, Alexandra R

    2018-03-25

    Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is a major cause of bovine mastitis and has been regarded as an animal-restricted pathogen, although rare infections have been described in humans. Previous studies revealed the presence of virulence genes encoded by phages of the human pathogen Group A Streptococcus pyogenes (GAS) in SDSD isolated from the milk of bovine udder with mastitis. The isolates SDSD VSD5 and VSD13 could adhere and internalize human primary keratinocyte cells, suggesting a possible human infection potential of bovine isolates. In this work, the in vitro and in vivo potential of SDSD to internalize/adhere human cells of the respiratory track and zebrafish as biological models was evaluated. Our results showed that, in vitro, bovine SDSD strains could interact and internalize human respiratory cell lines and that this internalization was dependent on an active transport mechanism and that, in vivo, SDSD are able to cause invasive infections producing zebrafish morbidity and mortality. The infectious potential of these isolates showed to be isolate-specific and appeared to be independent of the presence or absence of GAS phage-encoded virulence genes. Although the infection ability of the bovine SDSD strains was not as strong as the human pathogenic S. pyogenes in the zebrafish model, results suggested that these SDSD isolates are able to interact with human cells and infect zebrafish, a vertebrate infectious model, emerging as pathogens with zoonotic capability. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  3. Antibacterial activity of Euphorbia hirta against Streptococcus ...

    African Journals Online (AJOL)

    This investigation was conducted to determine the in-vitro effect of aqueous, ethanol and methanol crude extracts of Euphorbia hirta at concentrations ranging from 10mg/ml – 100mg/ml against three pathogenic bacteria (Streptococcus pneumoniae, Klebsiella pneumoniae and Proteus vulgaris) using cup plate method.

  4. Molecular Epidemiology and Genomics of Group A Streptococcus

    Science.gov (United States)

    Bessen, Debra E.; McShan, W. Michael; Nguyen, Scott V.; Shetty, Amol; Agrawal, Sonia; Tettelin, Hervé

    2014-01-01

    Streptococcus pyogenes (group A streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed. PMID:25460818

  5. Influence of impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus pneumoniae

    NARCIS (Netherlands)

    Pribyl, Thomas; Moche, Martin; Dreisbach, Annette; Bijlsma, Jetta J E; Saleh, Malek; Abdullah, Mohammed R; Hecker, Michael; van Dijl, Jan Maarten; Becher, Dörte; Hammerschmidt, Sven

    2014-01-01

    Surface proteins are important for the fitness and virulence of the Gram-positive pathogen Streptococcus pneumoniae. They are crucial for interaction of the pathogen with its human host during infection. Therefore, the analysis of the pneumococcal surface proteome is an important task that requires

  6. Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part II – Pathogenesis

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2018-03-01

    Full Text Available Streptococcus suis is a re-emerging zoonotic pathogen that may cause severe disease, mostly meningitis, in pigs and in humans having occupational contact with pigs and pork, such as farmers, slaughterhose workers and butchers. The first stage of the pathogenic process, similar in pigs and humans, is adherence to and colonisation of mucosal and/or epithelial surface(s of the host. The second stage is invasion into deeper tissue and extracellular translocation of bacterium in the bloodstream, either free in circulation or attached to the surface of monocytes. If S. suis present in blood fails to cause fatal septicaemia, it is able to progress into the third stage comprising penetration into host’s organs, mostly by crossing the blood-brain barrier and/or blood–cerebrospinal fluid barrier to gain access to the central nervous system (CNS and cause meningitis. The fourth stage is inflammation that plays a key role in the pathogen esis of both systemic and CNS infections caused by S. suis . The pathogen may induce the overproduction of pro-inflammatory cytokines that cause septic shock and/or the recruitment and activation of different leukocyte populations, causing acute inflammation of the CNS. Streptococcus suis can also evoke – through activation of microglial cells, astrocytes and possibly other cell types – a fulminant inflammatory reaction of the brain which leads to intracranial complications, including brain oedema, increased intracranial pressure, cerebrovascular insults, and deafness, as a result of cochlear sepsis. In all stages of the pathogenic process, S. suis interacts with many types of immunocompetent host’s cells, such as polymorphonuclear leukocytes, mononuclear macrophages, lymphocytes, dendritic cells and microglia, using a range of versatile virulence factors for evasion of the innate and adaptive immune defence of the host, and for overcoming environmental stress. It is estimated that S. suis produces more than

  7. Mechanisms of genome evolution of Streptococcus.

    Science.gov (United States)

    Andam, Cheryl P; Hanage, William P

    2015-07-01

    The genus Streptococcus contains 104 recognized species, many of which are associated with human or animal hosts. A globally prevalent human pathogen in this group is Streptococcus pneumoniae (the pneumococcus). While being a common resident of the upper respiratory tract, it is also a major cause of otitis media, pneumonia, bacteremia and meningitis, accounting for a high burden of morbidity and mortality worldwide. Recent findings demonstrate the importance of recombination and selection in driving the population dynamics and evolution of different pneumococcal lineages, allowing them to successfully evade the impacts of selective pressures such as vaccination and antibiotic treatment. We highlight the ability of pneumococci to respond to these pressures through processes including serotype replacement, capsular switching and horizontal gene transfer (HGT) of antibiotic resistance genes. The challenge in controlling this pathogen also lies in the exceptional genetic and phenotypic variation among different pneumococcal lineages, particularly in terms of their pathogenicity and resistance to current therapeutic strategies. The widespread use of pneumococcal conjugate vaccines, which target only a small subset of the more than 90 pneumococcal serotypes, provides us with a unique opportunity to elucidate how the processes of selection and recombination interact to generate a remarkable level of plasticity and heterogeneity in the pneumococcal genome. These processes also play an important role in the emergence and spread of multi-resistant strains, which continues to pose a challenge in disease control and/or eradication. The application of population of genomic approaches at different spatial and temporal scales will help improve strategies to control this global pathogen, and potentially other pathogenic streptococci. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Streptococcus agalactiae vaginitis: nonhemolytic variant on the Liofilchem® Chromatic StreptoB

    OpenAIRE

    Savini, Vincenzo; Marrollo, Roberta; D’Antonio, Marianna; D’Amario, Claudio; Fazii, Paolo; D’Antonio, Domenico

    2013-01-01

    Streptococcus agalactiae (group B Streptococcus, GBS) vaginal pathogenicity is not uniformly acknowledged throughout the literature; accordingly, in women, genital itching and burning, along with leukorrhea are commonly and almost exclusively referred to bacterial vaginosis, candidiasis and trichomoniasis. Conversely, GBS virulence for vagina was recognized in the past, as the organism has been observed to potentially cause local inflammation and discharge, as well as lactobacilli rarefaction...

  9. Detection of Streptococcus iniae and Lactococcus garvieae by ...

    African Journals Online (AJOL)

    Streptococcosis is one of the most important bacterial diseases in farmed salmonid fishes. Streptococcus iniae and Lactococcus garvieae are known as the major pathogens of streptococcosis and lactococcosis in the rainbow trout, Oncorhynchus mykiss. The present study accomplished the detection of the two mentioned ...

  10. Mammary gene expression profiles during an intramammary challenge reveal potential mechanisms linking negative energy balance with impaired immune response

    DEFF Research Database (Denmark)

    Moyes, Kasey; Drackley, J K; Morin, D E

    2010-01-01

    Our objective was to compare mammary tissue gene expression profiles during a Streptococcus uberis (S. uberis) mastitis challenge between lactating cows subjected to dietary-induced negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive energy balance (PEB; n = 5...... 0.05), with 86 DEG up-regulated and 201 DEG down-regulated. Canonical pathways most affected by NEB were IL-8 Signaling (10 genes), Glucocorticoid Receptor Signaling (13), and NRF2-mediated Oxidative Stress Response (10). Among genes differentially expressed by NEB, Cell Growth and Proliferation (48...

  11. Comparison of bacteriological culture and PCR for detection of bacteria in ovine milk--sheep are not small cows.

    Science.gov (United States)

    Zadoks, Ruth N; Tassi, Riccardo; Martin, Elena; Holopainen, Jani; McCallum, Sarah; Gibbons, James; Ballingall, Keith T

    2014-10-01

    Mastitis, inflammation of the mammary gland, is an important cause of disease, mortality, and production losses in dairy and meat sheep. Mastitis is commonly caused by intramammary infection with bacteria, which can be detected by bacterial culture or PCR. PathoProof (Thermo Fisher Scientific Ltd., Vantaa, Finland) is a commercially available real-time PCR system for the detection of bovine mastitis pathogens. Sheep differ from cattle in the bacterial species or bacterial strains that cause mastitis, as well as in the composition of their milk. The aim of this study was to evaluate whether the PathoProof system was suitable for detection of mastitis pathogens in sheep milk. Milk samples were collected aseptically from 219 udder halves of 113 clinically healthy ewes in a single flock. Aliquots were used for bacteriological culture and real-time PCR-based detection of bacteria. For species identified by culture, the diagnosis was confirmed by species-specific conventional PCR or by sequencing of a housekeeping gene. The majority of samples were negative by culture (74.4% of 219 samples) and real-time PCR (82.3% of 192 samples). Agreement was observed for 138 of 192 samples. Thirty-four samples were positive by culture only, mostly due to presence of species that are not covered by primers in the PCR system (e.g., Mannheimia spp.). Two samples were positive for Streptococcus uberis by culture but not by PCR directly from the milk samples. This was not due to inability of the PCR primers to amplify ovine Streptococcus uberis, as diluted DNA extracts from the same samples and DNA extracts from the bacterial isolates were positive by real-time PCR. For samples containing Staphylococcus spp., 11 samples were positive by culture and PCR, 9 by culture only, and 20 by PCR only. Samples that were negative by either method had lower bacterial load than samples that were positive for both methods, whereas no clear relation with species identity was observed. This study provides

  12. Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus

    Science.gov (United States)

    Barnett, Timothy C.; McArthur, Jason D.; Cole, Jason N.; Gillen, Christine M.; Henningham, Anna; Sriprakash, K. S.; Sanderson-Smith, Martina L.; Nizet, Victor

    2014-01-01

    SUMMARY Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority. PMID:24696436

  13. Complete genome and comparative analysis of Streptococcus gallolyticus subsp. gallolyticus, an emerging pathogen of infective endocarditis

    Directory of Open Access Journals (Sweden)

    Dreier Jens

    2011-08-01

    Full Text Available Abstract Background Streptococcus gallolyticus subsp. gallolyticus is an important causative agent of infectious endocarditis, while the pathogenicity of this species is widely unclear. To gain insight into the pathomechanisms and the underlying genetic elements for lateral gene transfer, we sequenced the entire genome of this pathogen. Results We sequenced the whole genome of S. gallolyticus subsp. gallolyticus strain ATCC BAA-2069, consisting of a 2,356,444 bp circular DNA molecule with a G+C-content of 37.65% and a novel 20,765 bp plasmid designated as pSGG1. Bioinformatic analysis predicted 2,309 ORFs and the presence of 80 tRNAs and 21 rRNAs in the chromosome. Furthermore, 21 ORFs were detected on the plasmid pSGG1, including tetracycline resistance genes telL and tet(O/W/32/O. Screening of 41 S. gallolyticus subsp. gallolyticus isolates revealed one plasmid (pSGG2 homologous to pSGG1. We further predicted 21 surface proteins containing the cell wall-sorting motif LPxTG, which were shown to play a functional role in the adhesion of bacteria to host cells. In addition, we performed a whole genome comparison to the recently sequenced S. gallolyticus subsp. gallolyticus strain UCN34, revealing significant differences. Conclusions The analysis of the whole genome sequence of S. gallolyticus subsp. gallolyticus promotes understanding of genetic factors concerning the pathogenesis and adhesion to ECM of this pathogen. For the first time we detected the presence of the mobilizable pSGG1 plasmid, which may play a functional role in lateral gene transfer and promote a selective advantage due to a tetracycline resistance.

  14. PREVALENCE AND ETIOLOGY OF SUBCLINIC BOVINE MASTITES IN DAIRY PROPERTIES WITH MECHANICAL MILKING PROCESS IN THE STATE OF GOIÁS PREVALÊNCIA E ETIOLOGIA DE MASTITE BOVINA SUBCLÍNICA EM PROPRIEDADES DO ESTADO DE GOIÁS QUE UTILIZAM ORDENHADEIRAS NA OBTENÇÃO DO LEITE

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora Andrade

    2007-09-01

    Full Text Available

    Samples from 942 cows were tested by the California Mastitis Test – CMT. Most of them were black and white holstein, apparently healthy animals, from 25 dairy farms, located in the State of Goiás, in which milking process was made mechanically. It was found that 375 (39.8% animals showed positive results to CMT in values ranging from +, ++, +++. Milk from each CMT reactive teat, 667 samples in total, was bacteriologically analised in an attempt to isolate and identify microorganisms associated with intramammarian infections, obtaining 938 strains in pure culture or in association, as follows: Staphylococcus aureus, 291 times (30.2%; Corynebacterium bovis, 120 times (12.5%; coagulase negative Staphylococcus, 112 times (11.6%; Streptococcus agalactiae, 14 times (1.5%; Streptococcus uberis, 36 times (3.7%; Streptococcus pyogenes, 12 times (1.2%; Streptococcus spp, 66 times (6.9%; Pseudomonas spp., 96 times (10.0%; Corynebacterium pyogenes, 24 times (2.5%; Escherichia coli, 60 times (6.2%; Nocardia spp.p. 14 times (1.5% and others, 93 times (9.6%. These microorganisms were considered as being either primarily pathogens (55.8% or contaminants (41.6%.

    KEY-WORDS: Subclinical mastitis; primarily pathogens; contaminant pathogens.

    Foram submetidas ao California Mastitis Test (CMT 942 vacas, em sua maioria da raça holandesa preta e branca, aparentemente saudáveis, de 25 propriedades leiteiras, que utilizavam ordenhadeira mecânica na obtenção do leite, localizadas no Estado de Goiás. Observou-se que 375 (39,8% animais apresentaram resultado de +, ++, +++ ao CMT. Os leites de cada teto que reagiram ao CMT, perfazendo

  15. Occurrence of Clinical and Sub-Clinical Mastitis in Dairy Herds in the West Littoral Region in Uruguay

    Directory of Open Access Journals (Sweden)

    Rivero R

    2002-12-01

    Full Text Available Twenty-nine dairy farms were selected to determine the incidence of clinical mastitis, prevalence of sub-clinical mastitis and bacterial aetiology in the West Littoral Region of Uruguay. In samples taken by the owner and frozen at -20°C during a week the incidence rate of clinical mastitis was determined as 1.2 cases per 100 cow-months at risk. Staphylococcus aureus was the most common isolated pathogen in 37.5% of 40 milk samples from clinical cases obtained in 1 month. No bacteria grew in the 32.5% of the total samples. A sub-sample including 1077 dairy cows from randomly selected farms was used to determine the prevalence of sub-clinical mastitis. These samples were taken on one visit to each farm. The prevalence was 52.4% on a cow basis and 26.7% on an udder quarter basis. In 55.1% of the quarters of the selected animals with more than 300 000 cells/ml there was no growth. The isolated pathogens from sub-clinical cases and their relative frequencies were: Staphylococcus aureus 62.8%, Streptococcus agalactiae 11.3%, Enterococcus sp. 8%, coagulase-negative staphylococci 7.4%, Streptococus uberis 6.4%, Streptococcus dysgalactiae 1.8%, Escherichia coli 1.5% and Staphylococcus hyicus coagulase-positive 0.6%.

  16. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    Science.gov (United States)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  17. In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens.

    Science.gov (United States)

    Sampaio, Fábio C; Pereira, Maria do Socorro V; Dias, Celidarque S; Costa, Vicente Carlos O; Conde, Nikeila C O; Buzalaf, Marília A R

    2009-07-15

    In the Amazon region of Brazil, the fruits of Caesalpinia ferrea Martius (Brazilian ironwood) are widely used as an antimicrobial and healing medicine in many situations including oral infections. This study aimed to evaluate the antimicrobial activity of Caesalpinia ferrea Martius fruit extract against oral pathogens. Polyphenols estimation and spectral analysis ((1)H NMR) of the methanol extract were carried out. The microorganisms Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were tested using the microdilution method for planktonic cells (MIC) and a multispecies biofilm model. Chlorhexidine was used as positive control. Polyphenols in the extract were estimated at 7.3% and (1)H NMR analysis revealed hydroxy phenols and methoxilated compounds. MIC values for Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were 25.0, 40.0, 66.0, 100.0, 66.0 microg/mL, respectively. For the biofilm assay, chlorhexidine and plant extract showed no growth at 10(-4) and 10(-5) microbial dilution, respectively. At 10(-4) and 10(-5) the growth values (mean+/-SD) of the negative controls (DMSO and saline solution) for Streptococcus mutans, Streptococcus sp. and Candida albicans were 8.1+/-0.7, 7.0+/-0.6 and 5.9+/-0.9 x 10(6)CFU, respectively. Caesalpinia ferrea fruit extract can inhibit in vitro growth of oral pathogens in planktonic and biofilm models supporting its use for oral infections.

  18. Secondary infection with Streptococcus suis serotype 7 increases the virulence of highly pathogenic porcine reproductive and respiratory syndrome virus in pigs.

    Science.gov (United States)

    Xu, Min; Wang, Shujie; Li, Linxi; Lei, Liancheng; Liu, Yonggang; Shi, Wenda; Wu, Jiabin; Li, Liqin; Rong, Fulong; Xu, Mingming; Sun, Guangli; Xiang, Hua; Cai, Xuehui

    2010-08-09

    Porcine reproductive and respiratory syndrome virus (PRRSV) and Streptococcus suis are common pathogens in pigs. In samples collected during the porcine high fever syndrome (PHFS) outbreak in many parts of China, PRRSV and S. suis serotype 7 (SS7) have always been isolated together. To determine whether PRRSV-SS7 coinfection was the cause of the PHFS outbreak, we evaluated the pathogenicity of PRRSV and/or SS7 in a pig model of single and mixed infection. Respiratory disease, diarrhea, and anorexia were observed in all infected pigs. Signs of central nervous system (CNS) disease were observed in the highly pathogenic PRRSV (HP-PRRSV)-infected pigs (4/12) and the coinfected pigs (8/10); however, the symptoms of the coinfected pigs were clearly more severe than those of the HP-PRRSV-infected pigs. The mortality rate was significantly higher in the coinfected pigs (8/10) than in the HP-PRRSV- (2/12) and SS7-infected pigs (0/10). The deceased pigs of the coinfected group had symptoms typical of PHFS, such as high fever, anorexia, and red coloration of the ears and the body. The isolation rates of HP-PRRSV and SS7 were higher and the lesion severity was greater in the coinfected pigs than in monoinfected pigs. HP-PRRSV infection increased susceptibility to SS7 infection, and coinfection of HP-PRRSV with SS7 significantly increased the pathogenicity of SS7 to pigs.

  19. Secondary infection with Streptococcus suis serotype 7 increases the virulence of highly pathogenic porcine reproductive and respiratory syndrome virus in pigs

    Directory of Open Access Journals (Sweden)

    Xu Min

    2010-08-01

    Full Text Available Abstract Background Porcine reproductive and respiratory syndrome virus (PRRSV and Streptococcus suis are common pathogens in pigs. In samples collected during the porcine high fever syndrome (PHFS outbreak in many parts of China, PRRSV and S. suis serotype 7 (SS7 have always been isolated together. To determine whether PRRSV-SS7 coinfection was the cause of the PHFS outbreak, we evaluated the pathogenicity of PRRSV and/or SS7 in a pig model of single and mixed infection. Results Respiratory disease, diarrhea, and anorexia were observed in all infected pigs. Signs of central nervous system (CNS disease were observed in the highly pathogenic PRRSV (HP-PRRSV-infected pigs (4/12 and the coinfected pigs (8/10; however, the symptoms of the coinfected pigs were clearly more severe than those of the HP-PRRSV-infected pigs. The mortality rate was significantly higher in the coinfected pigs (8/10 than in the HP-PRRSV- (2/12 and SS7-infected pigs (0/10. The deceased pigs of the coinfected group had symptoms typical of PHFS, such as high fever, anorexia, and red coloration of the ears and the body. The isolation rates of HP-PRRSV and SS7 were higher and the lesion severity was greater in the coinfected pigs than in monoinfected pigs. Conclusion HP-PRRSV infection increased susceptibility to SS7 infection, and coinfection of HP-PRRSV with SS7 significantly increased the pathogenicity of SS7 to pigs.

  20. Carrier state of Haemophilus influenzae type b (Hib, Streptococcus pneumoniae, Streptococcus pyogenes, Neisseria meningitidis and Corynebacterium diphtheriae among school children in Pokhara, Nepal

    Directory of Open Access Journals (Sweden)

    Dharm Raj Bhatta

    2014-02-01

    Full Text Available Objective: To determine the incidence of carrier state of Haemophilus influenzae type b, Streptococcus pneumoniae (S. pneumoniae, Streptococcus pyogenes, Neisseria meningitidis and Corynebacterium diphtheriae among school children. Methods: Specimen from posterior pharyngeal wall and tonsils were collected on calcium alginate coated swabs from 1 02 participants. Processing of specimen and antimicrobial susceptibility testing was done by standard procedures. Results: Potential pathogens isolated in our study were S. pneumoniae (14.7%, Staphylococcus aureus (12.7%, Corynebacterium diphtheriae (3.9%, Streptococcus pyogenes (3.9% and Haemophilus influenzae (1.9%. Important findings in antibiogram include high resistance of S. pneumoniae to penicillin (73% and resistance of Staphylococcus aureus to oxacillin (23%. Conclusions: Pharyngeal colonization by S. pneumoniae among school children was found high and there is need of introduction of pneumococcal vaccines among children. Despite expected universal vaccination, pharyngeal colonization by Corynebacterium diphtheriae is possible and there is possibility of transmission.

  1. Transcriptional Profiling of the Oral Pathogen Streptococcus mutans in Response to Competence Signaling Peptide XIP.

    Science.gov (United States)

    Wenderska, Iwona B; Latos, Andrew; Pruitt, Benjamin; Palmer, Sara; Spatafora, Grace; Senadheera, Dilani B; Cvitkovitch, Dennis G

    2017-01-01

    In the cariogenic Streptococcus mutans , competence development is regulated by the ComRS signaling system comprised of the ComR regulator and the ComS prepeptide to the competence signaling peptide XIP (ComX-inducing peptide). Aside from competence development, XIP signaling has been demonstrated to regulate cell lysis, and recently, the expression of bacteriocins, small antimicrobial peptides used by bacteria to inhibit closely related species. Our study further explores the effect of XIP signaling on the S. mutans transcriptome. RNA sequencing revealed that XIP induction resulted in a global change in gene expression that was consistent with a stress response. An increase in several membrane-bound regulators, including HdrRM and BrsRM, involved in bacteriocin production, and the VicRKX system, involved in acid tolerance and biofilm formation, was observed. Furthermore, global changes in gene expression corresponded to changes observed during the stringent response to amino acid starvation. Effects were also observed on genes involved in sugar transport and carbon catabolite repression and included the levQRST and levDEFG operons. Finally, our work identified a novel heat shock-responsive intergenic region, encoding a small RNA, with a potential role in competence shutoff. IMPORTANCE Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans , DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans , XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a

  2. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    NARCIS (Netherlands)

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G; Kuipers, Oscar P; Vinga, Susana; Neves, Ana R

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose

  3. The disease complex of the gypsy moth. II. Aerobic bacterial pathogens

    Science.gov (United States)

    J.D. Podgwaite; R.W. Campbell

    1972-01-01

    Eighty-six pathogenic aerobic bacterial isolates from diseased gypsy moth larvae collected in both sparse and dense populations were characterized and identified as members of the families Bacillaceae, Enterobacteriaceae, Lactobacillaceae, Pseudomonadaceae, and Achromobacteraceae. The commonest pathogens were Streptococcus faecalis, Bacillus cereus, Bacillus...

  4. Mastitis diagnosis in ten Galician dairy herds (NW Spain) with automatic milking systems

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.; Pereira, J.M.; Amiama, C.; Bueno, J.

    2015-07-01

    Over the last few years, the adoption of automatic milking systems (AMS) has experienced significant increase. However, hardly any studies have been conducted to investigate the distribution of mastitis pathogens in dairy herds with AMS. Because quick mastitis detection in AMS is very important, the primary objective of this study was to determine operational reliability and sensibility of mastitis detection systems from AMS. Additionally, the frequency of pathogen-specific was determined. For this purpose, 228 cows from ten farms in Galicia (NW Spain) using this system were investigated. The California Mastitis Test (CMT) was considered the gold-standard test for mastitis diagnosis and milk samples were analysed from CMT-positive cows for the bacterial examination. Mean farm prevalence of clinical mastitis was 9% and of 912 milk quarters examined, 23% were positive to the AMS mastitis detection system and 35% were positive to the CMT. The majority of CMT-positive samples had a score of 1 or 2 on a 1 (lowest mastitis severity) to 4 (highest mastitis severity) scale. The average sensitivity and specificity of the AMS mastitis detection system were 58.2% and 94.0% respectively being similar to other previous studies, what could suggest limitations for getting higher values of reliability and sensibility in the current AMSs. The most frequently isolated pathogens were Streptococcus dysgalactiae (8.8%), followed by Streptococcus uberis (8.3%) and Staphylococcus aureus (3.3%). The relatively high prevalence of these pathogens indicates suboptimal cleaning and disinfection of teat dipping cups, brushes and milk liners in dairy farms with AMS in the present study. (Author)

  5. Streptococcus pneumoniae enhances human respiratory syncytial virus infection in vitro and in vivo

    NARCIS (Netherlands)

    D.T. Nguyen (Tien); R.P.L. Louwen (Rogier); Elberse, K. (Karin); G. van Amerongen (Geert); S. Yüksel (Selma); A. Luijendijk (Ad); A.D.M.E. Osterhaus (Albert); W.P. Duprex (William Paul); R.L. de Swart (Rik)

    2015-01-01

    textabstractHuman respiratory syncytial virus (HRSV) and Streptococcus pneumoniae are important causative agents of respiratory tract infections. Both pathogens are associated with seasonal disease outbreaks in the pediatric population, and can often be detected simultaneously in infants

  6. Genetic parameters of pathogen-specific incidence of clinical mastitis in dairy cows

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Veerkamp, R.F.

    2002-01-01

    The objective of this study was to estimate heritabilities for and genetic correlations among different pathogen-specific mastitis traits. The traits were unspecific mastitis, which is all mastitis treatments regardless of the causative pathogen as well as mastitis caused by Streptococcus

  7. Chromosomal islands of Streptococcus pyogenes and related streptococci: molecular switches for survival and virulence.

    Science.gov (United States)

    Nguyen, Scott V; McShan, William M

    2014-01-01

    Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5' end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges.

  8. Epidemiology of Streptococcus pneumoniae and Staphylococcus aureus colonization in healthy Venezuelan children

    NARCIS (Netherlands)

    Quintero, B.; Araque, M.; Gaast-de Jongh, C.E. van der; Escalona, F.; Correa, M.; Morillo-Puente, S.; Vielma, S.; Hermans, P.W.M.

    2011-01-01

    Streptococcus pneumoniae and Staphylococcus aureus cause significant morbidity and mortality worldwide. We investigated both the colonization and co-colonization characteristics for these pathogens among 250 healthy children from 2 to 5 years of age in Merida, Venezuela, in 2007. The prevalence of

  9. Intramammary infections during the periparturient period in Argentine dairy heifers Infecciones intramamarias durante el periparto en vaquillonas en Argentina

    Directory of Open Access Journals (Sweden)

    L. F. Calvinho

    2007-06-01

    Full Text Available Prevalence of intramammary infections at prepartum and postpartum in primigravid heifers from five dairy herds located in the central dairy area of Argentina was determined. Mammary secretion samples from 140 heifers (560 mammary quarters were obtained 14 days prior to the expected calving day and within 7 days after parturition and subjected to bacteriological analysis. No clinical mastitis cases were detected during the study. The number of infected heifers in at least one mammary quarter at pre and postpartum was 87 (62.2% and 53 (37.8%, respectively. The most prevalent mastitis pathogens at prepartum among samples yielding a positive bacteriological culture were coagulasenegative staphylococci (69.07%, Staphylococcus aureus (12.71% and Streptococcus uberis (4.42%. A decrease on isolation frequency of coagulase-negative staphylococci (53.41% and S. uberis (2.27% was observed at postpartum, while that of S. aureus showed an increase (21.59%. Presence of intramammary infections appeared to be associated with some management conditions. These results highlighted the need to improve diagnosis and control measures in replacement heifers.Se determinó la prevalencia al preparto y posparto de infecciones intramamarias causadas por organismos patógenos de mastitis en vaquillonas primíparas de cinco establecimientos lecheros ubicados en la cuenca central santafesina. Se tomaron muestras de secreción mamaria de 140 vaquillonas (560 cuartos mamarios aproximadamente 14 días antes de la fecha probable de parto y dentro de los 7 días posparto, y se procesaron bacteriológicamente. No se detectaron casos de mastitis clínicas durante el estudio. El número de vaquillonas infectadas en al menos un cuarto mamario al preparto y posparto fue de 87 (62,2% y 53 (37,8%, respectivamente. Los organismos patógenos más prevalentes al preparto entre las muestras con cultivo bacteriológico positivo fueron estafilococos coagulasa negativos (69,07%, Staphylococcus

  10. Comparative genome analysis identifies two large deletions in the genome of highly-passaged attenuated Streptococcus agalactiae strain YM001 compared to the parental pathogenic strain HN016.

    Science.gov (United States)

    Wang, Rui; Li, Liping; Huang, Yan; Luo, Fuguang; Liang, Wanwen; Gan, Xi; Huang, Ting; Lei, Aiying; Chen, Ming; Chen, Lianfu

    2015-11-04

    Streptococcus agalactiae (S. agalactiae), also known as group B Streptococcus (GBS), is an important pathogen for neonatal pneumonia, meningitis, bovine mastitis, and fish meningoencephalitis. The global outbreaks of Streptococcus disease in tilapia cause huge economic losses and threaten human food hygiene safety as well. To investigate the mechanism of S. agalactiae pathogenesis in tilapia and develop attenuated S. agalactiae vaccine, this study sequenced and comparatively analyzed the whole genomes of virulent wild-type S. agalactiae strain HN016 and its highly-passaged attenuated strain YM001 derived from tilapia. We performed Illumina sequencing of DNA prepared from strain HN016 and YM001. Sequencedreads were assembled and nucleotide comparisons, single nucleotide polymorphism (SNP) , indels were analyzed between the draft genomes of HN016 and YM001. Clustered regularly interspaced short palindromic repeats (CRISPRs) and prophage were detected and analyzed in different S. agalactiae strains. The genome of S. agalactiae YM001 was 2,047,957 bp with a GC content of 35.61 %; it contained 2044 genes and 88 RNAs. Meanwhile, the genome of S. agalactiae HN016 was 2,064,722 bp with a GC content of 35.66 %; it had 2063 genes and 101 RNAs. Comparative genome analysis indicated that compared with HN016, YM001 genome had two significant large deletions, at the sizes of 5832 and 11,116 bp respectively, resulting in the deletion of three rRNA and ten tRNA genes, as well as the deletion and functional damage of ten genes related to metabolism, transport, growth, anti-stress, etc. Besides these two large deletions, other ten deletions and 28 single nucleotide variations (SNVs) were also identified, mainly affecting the metabolism- and growth-related genes. The genome of attenuated S. agalactiae YM001 showed significant variations, resulting in the deletion of 10 functional genes, compared to the parental pathogenic strain HN016. The deleted and mutated functional genes all

  11. Genetic parameters for pathogen-specific mastitis resistance in Danish Holstein cattle

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Madsen, P.; Mark, Thomas

    2009-01-01

    The objective of this study was to estimate heritabilities for and genetic correlations among different pathogen-specific mastitis traits. The traits were unspecific mastitis, which is all mastitis treatments regardless of the causative pathogen as well as mastitis caused by Streptococcus...... caused by different pathogens has been shown to differ greatly. Sampling bias may be present because there were not pathogen information on all mastitis treatments and because some farms do not record pathogen information. Therefore, improved recording of pathogen information and mastitis treatment sin...

  12. Virulence Gene Pool Detected in Bovine Group C Streptococcus dysgalactiae subsp. dysgalactiae Isolates by Use of a Group A S. pyogenes Virulence Microarray ▿

    Science.gov (United States)

    Rato, Márcia G.; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F.; Vilela, Cristina L.; Santos-Sanches, Ilda; Chhatwal, Gursharan S.

    2011-01-01

    A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans. PMID:21525223

  13. Competition between yogurt probiotics and periodontal pathogens in vitro.

    Science.gov (United States)

    Zhu, Yunwo; Xiao, Liying; Shen, Da; Hao, Yuqing

    2010-09-01

    To investigate the competition between probiotics in bio-yogurt and periodontal pathogens in vitro. The antimicrobial activity of bio-yogurt was studied by agar diffusion assays, using eight species of putative periodontal pathogens and a 'protective bacteria' as indicator strains. Four probiotic bacterial species (Lactobacillus bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, and Bifidobacterium) were isolated from yogurt and used to rate the competitive exclusion between probiotics and periodontal pathogens. Fresh yogurt inhibited all the periodontal pathogens included in this work, showing inhibition zones ranging from 9.3 (standard deviation 0.6) mm to 17.3 (standard deviation 1.7) mm, whereas heat-treated yogurt showed lower antimicrobial activity. In addition, neither fresh yogurt nor heat-treated yogurt inhibited the 'protective bacteria', Streptococcus sanguinis. The competition between yogurt probiotics and periodontal pathogens depended on the sequence of inoculation. When probiotics were inoculated first, Bifidobacterium inhibited Porphyromonas gingivalis, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas circumdentaria, and Prevotella nigrescens; L. acidophilus inhibited P. gingivalis, A. actinomycetemcomitans, P. circumdentaria, P. nigrescens, and Peptostreptococcus anaerobius; L. bulgaricus inhibited P. gingivalis, A. actinomycetemcomitans, and P. nigrescens; and S. thermophilus inhibited P. gingivalis, F. nucleatum, and P. nigrescens. However, their antimicrobial properties were reduced when both species (probiotics and periodontal pathogens) were inoculated simultaneously. When periodontal pathogens were inoculated first, Prevotella intermedia inhibited Bifidobacterium and S. thermophilus. The results demonstrated that bio-yogurt and the probiotics that it contains are capable of inhibiting specific periodontal pathogens but have no effect on the periodontal protective bacteria.

  14. Protein preparation, crystallization and preliminary X-ray crystallographic analysis of SMU.961 protein from the caries pathogen Streptococcus mutans

    International Nuclear Information System (INIS)

    Gao, Xiong-Zhuo; Li, Lan-Fen; Su, Xiao-Dong; Zhao, XiaoJun; Liang, Yu-He

    2007-01-01

    The SMU.961 protein from S. mutans was crystallized and preliminary characterization of the crystals, which diffracted to 2.9 Å resolution, shows them to belong to space group C2. The smu.961 gene encodes a putative protein of 183 residues in Streptococcus mutans, a major pathogen in human dental caries. The gene was cloned into expression vector pET28a and expressed in a substantial quantity in Escherichia coli strain BL21 (DE3) with a His tag at its N-terminus. The recombinant protein SMU.961 was purified to homogeneity in a two-step procedure consisting of Ni 2+ -chelating and size-exclusion chromatography. Crystals suitable for X-ray diffraction were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.9 Å resolution at beamline I911-3, MAX-II-lab, Sweden. The crystal belonged to space group C2, with unit-cell parameters a = 98.62, b = 73.73, c = 184.73 Å, β = 98.82°

  15. Protein preparation, crystallization and preliminary X-ray crystallographic analysis of SMU.961 protein from the caries pathogen Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiong-Zhuo [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Li, Lan-Fen; Su, Xiao-Dong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Zhao, XiaoJun, E-mail: zhaoxj@scu.edu.cn [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liang, Yu-He, E-mail: zhaoxj@scu.edu.cn [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China)

    2007-10-01

    The SMU.961 protein from S. mutans was crystallized and preliminary characterization of the crystals, which diffracted to 2.9 Å resolution, shows them to belong to space group C2. The smu.961 gene encodes a putative protein of 183 residues in Streptococcus mutans, a major pathogen in human dental caries. The gene was cloned into expression vector pET28a and expressed in a substantial quantity in Escherichia coli strain BL21 (DE3) with a His tag at its N-terminus. The recombinant protein SMU.961 was purified to homogeneity in a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Crystals suitable for X-ray diffraction were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.9 Å resolution at beamline I911-3, MAX-II-lab, Sweden. The crystal belonged to space group C2, with unit-cell parameters a = 98.62, b = 73.73, c = 184.73 Å, β = 98.82°.

  16. The analysis of milk components and pathogenic bacteria isolated from bovine raw milk in Korea.

    Science.gov (United States)

    Park, Y K; Koo, H C; Kim, S H; Hwang, S Y; Jung, W K; Kim, J M; Shin, S; Kim, R T; Park, Y H

    2007-12-01

    Bovine mastitis can be diagnosed by abnormalities in milk components and somatic cell count (SCC), as well as by clinical signs. We examined raw milk in Korea by analyzing SCC, milk urea nitrogen (MUN), and the percentages of milk components (milk fat, protein, and lactose). The associations between SCC or MUN and other milk components were investigated, as well as the relationships between the bacterial species isolated from milk. Somatic cell counts, MUN, and the percentages of milk fat, protein, and lactose were analyzed in 30,019 raw milk samples collected from 2003 to 2006. The regression coefficients of natural logarithmic-transformed SCC (SCCt) on milk fat (-0.0149), lactose (-0.8910), and MUN (-0.0096), and those of MUN on milk fat (-0.3125), protein (-0.8012), and SCCt (-0.0671) were negative, whereas the regression coefficient of SCCt on protein was positive (0.3023). When the data were categorized by the presence or absence of bacterial infection in raw milk, SCCt was negatively associated with milk fat (-0.0172), protein (-0.2693), and lactose (-0.4108). The SCCt values were significantly affected by bacterial species. In particular, 104 milk samples infected with Staphylococcus aureus had the highest SCCt (1.67) compared with milk containing other mastitis-causing bacteria: coagulase-negative staphylococci (n = 755, 1.50), coagulase-positive staphylococci (except Staphylococcus aureus; n = 77, 1.59), Streptococcus spp. (Streptococcus dysgalactiae, n = 37; Streptococcus uberis, n = 12, 0.83), Enterococcus spp. (n = 46, 1.04), Escherichia coli (n = 705, 1.56), Pseudomonas spp. (n = 456, 1.59), and yeast (n = 189, 1.52). These results show that high SCC and MUN negatively affect milk components and that a statistical approach associating SCC, MUN, and milk components by bacterial infection can explain the patterns among them. Bacterial species present in raw milk are an important influence on SCC in Korea.

  17. Streptococcus suis, an important pig pathogen and emerging zoonotic agent—an update on the worldwide distribution based on serotyping and sequence typing

    Science.gov (United States)

    Goyette-Desjardins, Guillaume; Auger, Jean-Philippe; Xu, Jianguo; Segura, Mariela; Gottschalk, Marcelo

    2014-01-01

    Streptococcus suis is an important pathogen causing economic problems in the pig industry. Moreover, it is a zoonotic agent causing severe infections to people in close contact with infected pigs or pork-derived products. Although considered sporadic in the past, human S. suis infections have been reported during the last 45 years, with two large outbreaks recorded in China. In fact, the number of reported human cases has significantly increased in recent years. In this review, we present the worldwide distribution of serotypes and sequence types (STs), as determined by multilocus sequence typing, for pigs (between 2002 and 2013) and humans (between 1968 and 2013). The methods employed for S. suis identification and typing, the current epidemiological knowledge regarding serotypes and STs and the zoonotic potential of S. suis are discussed. Increased awareness of S. suis in both human and veterinary diagnostic laboratories and further establishment of typing methods will contribute to our knowledge of this pathogen, especially in regions where complete and/or recent data is lacking. More research is required to understand differences in virulence that occur among S. suis strains and if these differences can be associated with specific serotypes or STs. PMID:26038745

  18. Human Streptococcus agalactiae strains in aquatic mammals and fish

    Science.gov (United States)

    2013-01-01

    Background In humans, Streptococcus agalactiae or group B streptococcus (GBS) is a frequent coloniser of the rectovaginal tract, a major cause of neonatal infectious disease and an emerging cause of disease in non-pregnant adults. In addition, Streptococcus agalactiae causes invasive disease in fish, compromising food security and posing a zoonotic hazard. We studied the molecular epidemiology of S. agalactiae in fish and other aquatic species to assess potential for pathogen transmission between aquatic species and humans. Methods Isolates from fish (n = 26), seals (n = 6), a dolphin and a frog were characterized by pulsed-field gel electrophoresis, multilocus sequence typing and standardized 3-set genotyping, i.e. molecular serotyping and profiling of surface protein genes and mobile genetic elements. Results Four subpopulations of S. agalactiae were identified among aquatic isolates. Sequence type (ST) 283 serotype III-4 and its novel single locus variant ST491 were detected in fish from Southeast Asia and shared a 3-set genotype identical to that of an emerging ST283 clone associated with invasive disease of adult humans in Asia. The human pathogenic strain ST7 serotype Ia was also detected in fish from Asia. ST23 serotype Ia, a subpopulation that is normally associated with human carriage, was found in all grey seals, suggesting that human effluent may contribute to microbial pollution of surface water and exposure of sea mammals to human pathogens. The final subpopulation consisted of non-haemolytic ST260 and ST261 serotype Ib isolates, which belong to a fish-associated clonal complex that has never been reported from humans. Conclusions The apparent association of the four subpopulations of S. agalactiae with specific groups of host species suggests that some strains of aquatic S. agalactiae may present a zoonotic or anthroponotic hazard. Furthermore, it provides a rational framework for exploration of pathogenesis and host-associated genome content of S

  19. [Analysis of pathogenic bacteria and drug resistance in neonatal purulent meningitis].

    Science.gov (United States)

    Zhu, Minli; Hu, Qianhong; Mai, Jingyun; Lin, Zhenlang

    2015-01-01

    To study the clinical characteristics, pathogenic bacteria, and antibiotics resistance of neonatal purulent meningitis in order to provide the guide for early diagnosis and appropriate treatment. A retrospective review was performed and a total of 112 cases of neonatal purulent meningitis (male 64, female 58) were identified in the neonatal intensive care unit of Yuying Children's Hospital of Wenzhou Medical University seen from January 1, 2004 to December 31, 2013. The clinical information including pathogenic bacterial distribution, drug sensitivity, head imageology and therapeutic outcome were analyzed. Numeration data were shown in ratio and chi square test was applied for group comparison. Among 112 cases, 46 were admitted from 2004 to 2008 and 66 from 2009 to 2013, 23 patients were preterm and 89 were term, 20 were early onset (occurring within 3 days of life) and 92 were late onset meningitis (occurring after 3 days of life). In 62 (55.4%) cases the pathogens were Gram-positive bacteria and in 50 (44.6%) were Gram-negative bacteria. The five most frequently isolated pathogens were Escherichia coli (32 cases, 28.6%), coagulase-negative staphylococcus (CNS, 20 cases, 17.9%), Streptococcus (18 cases, 16.1%, Streptococcus agalactiae 15 cases), Enterococci (13 cases, 11.6%), Staphylococcus aureus (9 cases, 8.0%). Comparison of pathogenic bacterial distribution between 2004-2008 and 2009-2013 showed that Gram-positive bacteria accounted for more than 50% in both period. Escherichia coli was the most common bacterium, followed by Streptococcus in last five years which was higher than the first five years (22.7% (15/66) vs. 6.5% (3/46), χ(2) = 5.278, P bacteria in early onset meningitis and higher than those in late onset meningitis (35.0% (7/20) vs. 12.0% (11/92), χ(2) = 4.872, P pathogens responsible for neonatal purulent meningitis over the past ten years. There were increasing numbers of cases with Streptococcus meningitis which are more common in early onset

  20. Overcoming function annotation errors in the Gram-positive pathogen Streptococcus suis by a proteomics-driven approach

    Directory of Open Access Journals (Sweden)

    Bárcena José A

    2008-12-01

    Full Text Available Abstract Background Annotation of protein-coding genes is a key step in sequencing projects. Protein functions are mainly assigned on the basis of the amino acid sequence alone by searching of homologous proteins. However, fully automated annotation processes often lead to wrong prediction of protein functions, and therefore time-intensive manual curation is often essential. Here we describe a fast and reliable way to correct function annotation in sequencing projects, focusing on surface proteomes. We use a proteomics approach, previously proven to be very powerful for identifying new vaccine candidates against Gram-positive pathogens. It consists of shaving the surface of intact cells with two proteases, the specific cleavage-site trypsin and the unspecific proteinase K, followed by LC/MS/MS analysis of the resulting peptides. The identified proteins are contrasted by computational analysis and their sequences are inspected to correct possible errors in function prediction. Results When applied to the zoonotic pathogen Streptococcus suis, of which two strains have been recently sequenced and annotated, we identified a set of surface proteins without cytoplasmic contamination: all the proteins identified had exporting or retention signals towards the outside and/or the cell surface, and viability of protease-treated cells was not affected. The combination of both experimental evidences and computational methods allowed us to determine that two of these proteins are putative extracellular new adhesins that had been previously attributed a wrong cytoplasmic function. One of them is a putative component of the pilus of this bacterium. Conclusion We illustrate the complementary nature of laboratory-based and computational methods to examine in concert the localization of a set of proteins in the cell, and demonstrate the utility of this proteomics-based strategy to experimentally correct function annotation errors in sequencing projects. This

  1. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Valerie E. Ryman

    2016-01-01

    Full Text Available Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1 metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE, can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE, is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.

  2. Primer prueba de desafio controlado en tilapia del Nilo Para Resistencia a Streptococcus iniae

    Science.gov (United States)

    Intensification of tilapia production has resulted in disease outbreaks that negatively affect commercial fish farmers. One bacterial pathogen that commonly causes losses in tilapia production is Streptococcus iniae. Control and prevention of S. iniae can be difficult and requires an integrated fish...

  3. [Streptococcus milleri: An unusual cause of skull extensive osteomyelitis in an immunocompetent patient].

    Science.gov (United States)

    Duquenne, C; Dernis, E; Zehrouni, A; Bizon, A; Duquenne, M

    2017-09-01

    Streptococcus milleri (Streptococcus anginosus, intermedius and constellatus) are commensal organisms, which can become pathogenic and cause infection with frequent abscess formation, local or metastatic extension. Osteomyelitis of the skull has been rarely reported in this type of infection. Skull osteomyelitis due to Streptococcus milleri is reported in a 61-year-old immunocompetent man without any medical history, occurring 10 months after a head injury without any wound or complication at initial presentation. A progressive right parieto-occipital headache with worsening and increased acute phase reactants evoked a giant cell arteritis. After few days of corticosteroid therapy (0.5 mg/kg/day), diagnosis of subcutaneous abscess associated to an extensive osteomyelitis of the skull due to Streptococcus milleri was diagnosed. The outcome was favorable after drainage of one liter of pus, irrigation, debridement and antibiotherapy by amoxicillin for 8 weeks. It is necessary to discuss the differential diagnosis of giant cell arteritis particularly when symptoms are unusual. Even a short-term corticosteroid therapy may dramatically exacerbate an undetected infection. Copyright © 2017. Published by Elsevier SAS.

  4. Isolation, Characterization and Biological Properties of Membrane Vesicles Produced by the Swine Pathogen Streptococcus suis.

    Directory of Open Access Journals (Sweden)

    Bruno Haas

    Full Text Available Streptococcus suis, more particularly serotype 2, is a major swine pathogen and an emerging zoonotic agent worldwide that mainly causes meningitis, septicemia, endocarditis, and pneumonia. Although several potential virulence factors produced by S. suis have been identified in the last decade, the pathogenesis of S. suis infections is still not fully understood. In the present study, we showed that S. suis produces membrane vesicles (MVs that range in diameter from 13 to 130 nm and that appear to be coated by capsular material. A proteomic analysis of the MVs revealed that they contain 46 proteins, 9 of which are considered as proven or suspected virulence factors. Biological assays confirmed that S. suis MVs possess active subtilisin-like protease (SspA and DNase (SsnA. S. suis MVs degraded neutrophil extracellular traps, a property that may contribute to the ability of the bacterium to escape the host defense response. MVs also activated the nuclear factor-kappa B (NF-κB signaling pathway in both monocytes and macrophages, inducing the secretion of pro-inflammatory cytokines, which may in turn contribute to increase the permeability of the blood brain barrier. The present study brought evidence that S. suis MVs may play a role as a virulence factor in the pathogenesis of S. suis infections, and given their composition be an excellent candidate for vaccine development.

  5. Quarter and cow risk factors associated with the occurrence of clinical mastitis in dairy cows in the United Kingdom.

    Science.gov (United States)

    Breen, J E; Green, M J; Bradley, A J

    2009-06-01

    Quarter and cow risk factors associated with the development of clinical mastitis (CM) during lactation were investigated during a 12-mo longitudinal study on 8 commercial Holstein-Friesian dairy farms in the southwest of England. The individual risk factors studied on 1,677 cows included assessments of udder and leg hygiene, teat-end callosity, and hyperkeratosis; body condition score; and measurements of monthly milk quality and yield. Several outcome variables for CM were used for statistical analysis, which included use of generalized linear mixed models. Significant covariates associated with an increased risk of CM were increasing parity, decreasing month of lactation, cows with very dirty udders, and quarters with only very severe hyperkeratosis of the teat-end. Thin and moderate smooth teat-end callosity scores were not associated with an increased risk for CM. Cows that recorded a somatic cell count >199,000 cells/mL and a milk protein percentage cow body condition score and incidence of CM. Of the cases of CM available for culture, 171 (26.7%) were confirmed as being caused by Escherichia coli and 121 (18.9%) confirmed as being caused by Streptococcus uberis. Quarters with moderate and very severe hyperkeratosis of the teat-end were at significantly increased risk of clinical E. coli mastitis before the next visit. Quarters with very severe hyperkeratosis of the teat-end were significantly more likely to develop clinical Strep. uberis mastitis before the next visit. There were strong trends within the data to suggest an association between very dirty udders (an increased risk of clinical E. coli mastitis) and teat-ends with no callosity ring present (an increased risk of clinical Strep. uberis mastitis). These results highlight the importance of individual quarter- and cow-level risk factors in determining the risk of CM associated with environmental pathogens during lactation.

  6. Evaluation of The Antibacterial Effects of The New Benzothiazole and Tetrahydropyrimidine Derivatives against Streptococcus Iniae, Edwardsiella Tarda and Aeromonas Hydrophila as Some Zoonotic Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Reza Aryan

    2016-09-01

    Full Text Available Background & Objective: The novel stronger antibacterial compounds such as the thiazole and pyrimidine derivatives are needed in order to remove the threat of bacterial antibiotic resistance in zoonotic aquatic bacterial pathogens. In this study, we evaluated the inhibitory effect of the new benzothiazole and tetrahydropyrimidine derivatives against three important zoonotic aquatic pathogens including Streptococcus iniae, Edwardsiella tarda and Aeromonas hydrophila. Material & Methods: Benzothiazole and tetrahydropyrimidine derivatives were synthesized and dissolved in DMSO with a concentration of 8129 μg/mL. Then, the disk diffusion and broth microdilution methods were applied to evaluate the antibacterial effects. Results were recorded as the minimum inhibitory concentration (MIC and the growth inhibition zone diameter. Results: The study showed that the two tetrahydropyrimidine derivatives had no inhibition effects on all of the studied bacteria. Moreover, no inhibitory effect was observed from the three banzothiazole derivatives against A. hydrophila. However, the benzothiazole derivatives showed significant inhibitory effect against S. iniae and E. tarda with MIC of 256-1024 µg/mL and the growth inhibition zone diameter of 4.3±0.3-18.2±0.1 mm. Conclusion: The antibacterial effect of the new banzothiazole derivatives was confirmed on S. iniae and E. tarda pathogens for the first time.  

  7. Streptococcus tangierensis sp. nov. and Streptococcus cameli sp. nov., two novel Streptococcus species isolated from raw camel milk in Morocco.

    Science.gov (United States)

    Kadri, Zaina; Vandamme, Peter; Ouadghiri, Mouna; Cnockaert, Margo; Aerts, Maarten; Elfahime, El Mostafa; Farricha, Omar El; Swings, Jean; Amar, Mohamed

    2015-02-01

    Biochemical and molecular genetic studies were performed on two unidentified Gram-stain positive, catalase and oxidase negative, non-hemolytic Streptococcus-like organisms recovered from raw camel milk in Morocco. Phenotypic characterization and comparative 16S rRNA gene sequencing demonstrated that the two strains were highly different from each other and that they did not correspond to any recognized species of the genus Streptococcus. Phylogenetic analysis based on 16S rRNA gene sequences showed the unidentified organisms each formed a hitherto unknown sub-line within the genus Streptococcus, displaying a close affinity with Streptococcus moroccensis, Streptococcus minor and Streptococcus ovis. DNA G+C content determination, MALDI-TOF mass spectrometry and biochemical tests demonstrated the bacterial isolates represent two novel species. Based on the phenotypic distinctiveness of the new bacteria and molecular genetic evidence, it is proposed to classify the two strains as Streptococcus tangierensis sp. nov., with CCMM B832(T) (=LMG 27683(T)) as the type strain, and Streptococcus cameli sp. nov., with CCMM B834(T) (=LMG 27685(T)) as the type strain.

  8. Streptococcus agalactiae infection in domestic rabbits, Oryctolagus cuniculus.

    Science.gov (United States)

    Ren, S Y; Geng, Y; Wang, K Y; Zhou, Z Y; Liu, X X; He, M; Peng, X; Wu, C Y; Lai, W M

    2014-12-01

    Streptococcus agalactiae (Group B streptococcus, GBS) has emerged as an important pathogen that affects humans and animals, including aquatic species. In August 2011, a severe infectious disease affecting rabbits, which caused 42% mortality, occurred in Mianyang, Sichuan Province, China. The main clinical signs included acute respiratory distress syndrome, fever, paddling and convulsions. A Gram-positive, chain-forming coccus was isolated from the primary organs and tissues of diseased rabbits and then identified as S. agalactiae by morphology, biochemical and physiological characteristics, 16S rDNA and gyrB gene sequences analysis. All isolates of S. agalactiae showed a similar antibiotic susceptibility, which were sensitive to florfenicol, ampicillin,gentamicin and norfloxacin, as well as being resistant to penicillin, amoxicillin and tetracycline. To our knowledge, this is the first report on S. agalactiae natural infection in domestic rabbits. © 2013 Blackwell Verlag GmbH.

  9. Draft genome sequences of nine Streptococcus suis strains isolated in the United States

    Science.gov (United States)

    Streptococcus suis is a swine pathogen responsible for economic losses to the pig industry worldwide. Additionally, it is a zoonotic agent that can cause severe infections in those in close contact with infected pigs and/or who consume uncooked or undercooked pork products. Here, we report nine draf...

  10. Group B Streptococcus and the Vaginal Microbiota.

    Science.gov (United States)

    Rosen, Geoffrey H; Randis, Tara M; Desai, Purnahamsi V; Sapra, Katherine J; Ma, Bing; Gajer, Pawel; Humphrys, Michael S; Ravel, Jacques; Gelber, Shari E; Ratner, Adam J

    2017-09-15

    Streptococcus agalactiae (group B Streptococcus [GBS]) is an important neonatal pathogen and emerging cause of disease in adults. The major risk factor for neonatal disease is maternal vaginal colonization. However, little is known about the relationship between GBS and vaginal microbiota. Vaginal lavage samples from nonpregnant women were tested for GBS, and amplicon-based sequencing targeting the 16S ribosomal RNA V3-V4 region was performed. Four hundred twenty-eight of 432 samples met the high-quality read threshold. There was no relationship between GBS carriage and demographic characteristics, α-diversity, or overall vaginal microbiota community state type (CST). Within the non-Lactobacillus-dominant CST IV, GBS positive status was significantly more prevalent in CST IV-A than CST IV-B. Significant clustering by GBS status was noted on principal coordinates analysis, and 18 individual taxa were found to be significantly associated with GBS carriage by linear discriminant analysis. After adjusting for race/ethnicity, 4 taxa were positively associated with GBS, and 6 were negatively associated. Vaginal microbiota CST and α-diversity are not related to GBS status. However, specific microbial taxa are associated with colonization of this important human pathogen, highlighting a potential role for the microbiota in promotion or inhibition of GBS colonization. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  11. Live and heat-killed Lactobacillus spp. interfere with Streptococcus mutans and Streptococcus oralis during biofilm development on titanium surface.

    Science.gov (United States)

    Ciandrini, E; Campana, R; Baffone, W

    2017-06-01

    This research investigates the ability of live and heat-killed (HK) Lactic Acid Bacteria (LAB) to interfere with Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 during biofilm formation. Eight Lactobacillus spp. and two oral colonizers, pathogenic Streptococcus mutans and resident Streptococcus oralis, were characterized for their aggregation abilities, cell surface properties and biofilm formation ability on titanium surface. Then, the interference activity of selected live and HK Lactobacillus spp. during S. mutans and S. oralis biofilm development were performed. The cell-free culture supernatants (CFCS) anti-biofilm activity was also determined. LAB possess good abilities of auto-aggregation (from 14.19 to 28.97%) and of co-aggregation with S. oralis. The cell-surfaces characteristics were most pronounced in S. mutans and S. oralis, while the highest affinities to xylene and chloroform were observed in Lactobacillus rhamnosus ATCC 53103 (56.37%) and Lactobacillus paracasei B21060 (43.83%). S. mutans and S. oralis developed a biofilm on titanium surface, while LAB showed a limited or no ability to create biofilm. Live and HK L. rhamnosus ATCC 53103 and L. paracasei B21060 inhibited streptococci biofilm formation by competition and displacement mechanisms with no substantial differences. The CFCSs of both LAB strains, particularly the undiluted one of L. paracasei B21060, decreased S. mutans and S. oralis biofilm formation. This study evidenced the association of LAB aggregation abilities and cell-surface properties with the LAB-mediated inhibition of S. mutans and S. oralis biofilm formation. Lactobacilli showed different mechanisms of action and peculiar strain-specific characteristics, maintained also in the heat-killed LAB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc.

    Science.gov (United States)

    Cao, Kun; Li, Nan; Wang, Hongcui; Cao, Xin; He, Jiaojiao; Zhang, Bing; He, Qing-Yu; Zhang, Gong; Sun, Xuesong

    2018-04-20

    Zinc is an essential metal in bacteria. One important bacterial zinc transporter is AdcA, and most bacteria possess AdcA homologs that are single-domain small proteins due to better efficiency of protein biogenesis. However, a double-domain AdcA with two zinc-binding sites is significantly overrepresented in Streptococcus species, many of which are major human pathogens. Using molecular simulation and experimental validations of AdcA from Streptococcus pyogenes , we found here that the two AdcA domains sequentially stabilize the structure upon zinc binding, indicating an organization required for both increased zinc affinity and transfer speed. This structural organization appears to endow Streptococcus species with distinct advantages in zinc-depleted environments, which would not be achieved by each single AdcA domain alone. This enhanced zinc transport mechanism sheds light on the significance of the evolution of the AdcA domain fusion, provides new insights into double-domain transporter proteins with two binding sites for the same ion, and indicates a potential target of antimicrobial drugs against pathogenic Streptococcus species. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The Streptococcus pyogenes serotype M49 Nra-Ralp3 transcriptional regulatory network and its control of virulence factor expression from the novel eno ralp3 epf sagA pathogenicity region.

    Science.gov (United States)

    Kreikemeyer, Bernd; Nakata, Masanobu; Köller, Thomas; Hildisch, Hendrikje; Kourakos, Vassilios; Standar, Kerstin; Kawabata, Shigetada; Glocker, Michael O; Podbielski, Andreas

    2007-12-01

    Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known

  14. Possibility of application of dodicin hydrochloride in prevention of mastitis in cows

    Directory of Open Access Journals (Sweden)

    Joksović Svetlana

    2006-01-01

    Full Text Available The main approach to curbing mastitis is to prevent the entry of microorganisms from the outer environment into the mammary gland, which is achieved by the use of papilla disinfection following every time of milking. The objective of this work was to examine the antimicrobial activity of the disinfectant dodicin hydrochloride, in fact the preparation that contains this disinfectant (DESU® M, against bacteria, the most frequent causes of mastitis in cows. The efficacy of modified DESU® Mwas examined under laboratory conditions using the quantitative test against the following microorganisms: Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae and Streptococcus uberis, under the conditions in the field. The udders of an experimental group of 20 cows of the Holstein-Friesian breed were immersed in a solution of the modified preparation DESU ® M following every time of milking over a period of three months. In the second group of 10 cows of the Holstein-Friesian breed, marked as the control group, no disinfection was applied following the milkings. The preparation DESU® Mexhibited satisfactory antimicrobial efficacy against the most frequent causes (Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae and Streptococcus uberis of mastitis in cows under laboratory conditions. With the application of the preparation DESU® M, following every time of milking over a period of three months, the number of somatic cells was reduced by almost one half in comparison with their number at the start of the experiment. No residue of the modified preparation DESU ® M were found in any sample of milk from the experimental group of cows.

  15. Antibacterial activity of Iranian medicinal plants against Streptococcus iniae isolated from rainbow trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Pirbalouti Ghasemi Abdollah

    2011-01-01

    Full Text Available Streptococcus iniae is among the major pathogens of a large number of fish species cultured in fresh and marine recirculating and net pen production systems. Ten Iranian medicinal plants were assessed for their antimicrobial activity against Streptococcus iniae isolates obtained from diseased Oncorhynchus mykiss (Salmonidae; Walbaum, 1972 collected from fish farms in Iran. The antibacterial activity of ethanol extracts of Punica granatum, Quercus branti, Glycyrrhiza glabra and essential oils of Heracleum lasiopetalum, Satureja bachtiarica, Thymus daenensis, Myrtus communis, Echinophora platyloba, Kelussia odoratissima and Stachys lavandulifolia against Steptococcus iniae was evaluated by disc diffusion and serial dilution assays. Most of the extracts and essential oils showed a relatively high antibacterial activity against Streptococcus iniae. Of the plants studied, the most active extracts were those obtained from the essential oils of Satureja bachtiarica, Echinophora platyloba, Thymus daenensis and the ethanol extract of Quercus branti. Some of the extracts were active against Streptococcus iniae. Two essential oils showed lower MIC values; Heracleum lasiopetalum (78 μg/ml and Satureja bachtiarica (39 μg/ml. The essential oil of Satureja bachtiarica could be an important source of antibacterial compounds against the Streptococcus iniae isolated from rainbow trout.

  16. Modeling Group B Streptococcus and Blood-Brain Barrier Interaction by Using Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells

    OpenAIRE

    Kim, Brandon J.; Bee, Olivia B.; McDonagh, Maura A.; Stebbins, Matthew J.; Palecek, Sean P.; Doran, Kelly S.; Shusta, Eric V.

    2017-01-01

    ABSTRACT Bacterial meningitis is a serious infection of the central nervous system (CNS) that occurs after bacteria interact with and penetrate the blood-brain barrier (BBB). The BBB is comprised of highly specialized brain microvascular endothelial cells (BMECs) that function to separate the circulation from the CNS and act as a formidable barrier for toxins and pathogens. Certain bacteria, such as Streptococcus agalactiae (group B Streptococcus [GBS]), possess the ability to interact with a...

  17. Streptococcus agalactie como agente etiológico de Doença Sexualmente Transmissível Streptococcus agalactie involved in the etiology of Sexually Transmitted Diseases

    Directory of Open Access Journals (Sweden)

    Marcos Noronha Frey

    2011-12-01

    Full Text Available O Streptococcus agalactie é um importante micro-organismo causador de doenças em gestantes, neonatos, idosos (maiores de 65 anos de idade, e portadores de doenças crônicas debilitantes, sendo um patógeno incomum em pacientes que não se enquadrem nestas faixas etárias ou perfil clínico (1-5, e, raramente, é descrito como agente causador de doenças sexualmente transmissíveis. Descrevemos o caso de um adulto jovem hígido de 19 anos, apresentando lesões ulceradas genitais e oral, assim como corrimento uretral e ocular, sugestivas de terem sido causadas pelo Streptococcus agalactie, e adquiridas através do contato sexual (doenças sexualmente transmissíveis.Streptococcus agalactiae is an important microorganism involved in a number of conditions in pregnant women, newborns, elderly people (over 65 years of age and individuals with chronic disabling illnesses. This pathogen is infrequently found among patients outside this age range or clinical profile(1-5 and is rarely reported in the etiology of sexually transmitted diseases. Here we describe a case of an otherwise healthy 19 year-old male, who presented with ulcerative genital and oral lesions in association with urethral and ocular discharge, suggestive of Streptococcus agalactiae infection acquired through sexual contact.

  18. Pathogens associated with bovine mastitis in dairy herds in the south region of Brazil

    Directory of Open Access Journals (Sweden)

    Marta Bañolas Jobim

    2010-02-01

    Full Text Available In this work, through microbiological examinations, the etiology of bovine mastitis in 628 milk samples coming from dairy farms from Paraná, Santa Catarina and Rio Grande do Sul along the year of 2007 were evaluated. Out of this total 1,382 microorganisms were isolated. By taking into account the total of isolations, the following microorganisms and their percentage, respectively were found: Staphylococcus spp. (30.53%, Escherichia coli (21.64%, Streptococcus bovis (17.08%, Streptococcus agalactiae (11.07%, Enterobacter spp. (7.53%, Pseudomonas spp. (4.12% and others (8.03%. The microorganisms grouped into the others are: Streptococcus spp., Proteus spp., gram negative rods, Shigella spp., Alcaligenes spp., Klebsiella spp., Edwarsiella spp., Citrobacter spp., Serratia spp., Salmonella spp. e Corynebacterium spp. The environmental pathogens predominated among the isolated microorganisms; 33.13% of the cultures presented more than three pathogens, suggesting contamination of the samples; in the mounts of November and December, there was an increase of the samples sent.

  19. Clonal Streptococcus equi subsp. zooepidemicus post breeding endometritis in thoroughbred broodmares

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Söderlind, Maja; Rydemann Rudefalk, Sofia

    Streptococcus equi subsp. zooepidemicus is one of the most commonly isolated pathogens from the uterus of mares with infectious endometritis. Its ability to cause chronic latent infection by residing deep within the endometrial tissue has previously been described. The aim of the study was to inv......Streptococcus equi subsp. zooepidemicus is one of the most commonly isolated pathogens from the uterus of mares with infectious endometritis. Its ability to cause chronic latent infection by residing deep within the endometrial tissue has previously been described. The aim of the study...... was to investigate whether clonal or genetically distinct S. zooepidemicus strains isolated from mares with endometritis were associated with mare risk factors and the outcome of natural cover. Uterine swabs were obtained from mares with intrauterine fluid after natural cover (n=31) at thoroughbred stud farms...... in Australia. Fifty two percent of the mares (n=16) were diagnosed with infectious endometritis, and S.zooepidemicus was isolated in 81% (n=13) of these mares. Up to four S. zooepidemicus isolates were selected from each mare with growth of S. zooepidemicus and isolates from an additional five mares were...

  20. Streptococcus pyogenes udgående fra tonsilfokus som mulig årsag til alvorlig sepsis

    DEFF Research Database (Denmark)

    Alimoradi, Jalal; Lisby, Gorm; Jeppesen, Jørgen

    2009-01-01

    Streptococcus pyogenes (SP) is a common bacterial pathogen. For the past two decades, several studies have reported an increase in the severity and the incidence of SP infections. Case: a 60-year-old female admitted to the hospital with tonsillitis acuta verified by strep-A test was initially...

  1. Streptococcus pyogenes udgående fra tonsilfokus som mulig årsag til alvorlig sepsis

    DEFF Research Database (Denmark)

    Alimoradi, Jalal; Lisby, Gorm; Jeppesen, Jørgen

    2009-01-01

    Streptococcus pyogenes (SP) is a common bacterial pathogen. For the past two decades, several studies have reported an increase in the severity and the incidence of SP infections. Case: a 60-year-old female admitted to the hospital with tonsillitis acuta verified by strep-A test was initially tre...

  2. Evolution and Diversity of the Antimicrobial Resistance Associated Mobilome in Streptococcus suis: A Probable Mobile Genetic Elements Reservoir for Other Streptococci.

    Science.gov (United States)

    Huang, Jinhu; Ma, Jiale; Shang, Kexin; Hu, Xiao; Liang, Yuan; Li, Daiwei; Wu, Zuowei; Dai, Lei; Chen, Li; Wang, Liping

    2016-01-01

    Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis . Integrative conjugative elements (ICEs), prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species ( Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes , and S. suis ) revealed the existence of different groups of MGEs, including Tn5252, ICE Sp 1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICE Sa 2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs' expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICE Sa 2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs.

  3. Evolution and diversity of the antimicrobial resistance associated mobilome in Streptococcus suis: a probable mobile genetic elements reservoir for other streptococci

    Directory of Open Access Journals (Sweden)

    Jinhu Huang

    2016-10-01

    Full Text Available Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR determinants. Although previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis. Integrative conjugative elements (ICEs, prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species (Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and S. suis revealed the existence of different groups of MGEs, including Tn5252, ICESp1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICESa2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs’ expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICESa2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs.

  4. Evaluation of the udder health status in subclinical mastitis affected dairy cows through bacteriological culture, somatic cell count and thermographic imaging.

    Science.gov (United States)

    Bortolami, A; Fiore, E; Gianesella, M; Corrò, M; Catania, S; Morgante, M

    2015-01-01

    Subclinical mastitis in dairy cows is a big economic loss for farmers. The monitoring of subclinical mastitis is usually performed through Somatic Cell Count (SCC) in farm but there is the need of new diagnostic systems able to quickly identify cows affected by subclinical infections of the udder. The aim of this study was to evaluate the potential application of thermographic imaging compared to SCC and bacteriological culture for infection detection in cow affected by subclinical mastitis and possibly to discriminate between different pathogens. In this study we evaluated the udder health status of 98 Holstein Friesian dairy cows with high SCC in 4 farms. From each cow a sample of milk was collected from all the functional quarters and submitted to bacteriological culture, SCC and Mycoplasma spp. culture. A thermographic image was taken from each functional udder quarter and nipple. Pearson's correlations and Analysis of Variance were performed in order to evaluate the different diagnostic techniques. The most frequent pathogen isolated was Staphylococcus aureus followed by Coagulase Negative Staphylococci (CNS), Streptococcus uberis, Streptococcus agalactiae and others. The Somatic Cell Score (SCS) was able to discriminate (pnegative at the bacteriological culture except for cows with infection caused by CNS. Infrared thermography was correlated to SCS (pnegative cows. Thermographic imaging seems to be promising in evaluating the inflammation status of cows affected by subclinical mastitis but seems to have a poor diagnostic value.

  5. SCM-positive Streptococcus canis are predominant among pet-associated group G streptococci.

    Science.gov (United States)

    Verkühlen, Gerd-Josef; Pägelow, Dennis; Valentin-Weigand, Peter; Fulde, Marcus

    2016-01-01

    Streptococcus (S.) canis is a neglected zoonotic pathogen with increasing impor- tance. Since knowledge about its distribution in pets in Germany is scant, we designed a study and tested 335 dogs and 71 cats for colonization by S. canis. S. canis was isolated from swabs taken from the perianal region by culture and subsequent identification was performed biochemically as well as by PCR. In total, 15.8% (53) of the canine and 8.5% (six) of the feline strains grown on Staphlyo- coccus/Streptococcus Selective Agar were tested positive for the Lancefield group G antigen. The vast majority of strains expressing the Lancefield Group G carbohy- drate (56 out of 59) were further identified as S. canis underlining their outstanding role among animal-associated Group G streptococci (GGS). Furthermore, 90.0% of the canine and 83.3% of the feline S. canis strains harbour the species-specific anti- phagocytic M protein homologue SCM, which has been described as an important virulence factor. In contrast, emm-genes typically encoded by human-specific GGS could not be detected in any of the S. canis isolates. Taken together, this study provides insights into the distribution of the neglected zoonotic pathogen S. canis in a population of pets in Germany. The presence of SCM in the vast majority of strains indicates their pathogenic potential.

  6. Comparative genomic characterization of three Streptococcus parauberis strains in fish pathogen, as assessed by wide-genome analyses.

    Directory of Open Access Journals (Sweden)

    Seong-Won Nho

    Full Text Available Streptococcus parauberis, which is the main causative agent of streptococcosis among olive flounder (Paralichthys olivaceus in northeast Asia, can be distinctly divided into two groups (type I and type II by an agglutination test. Here, the whole genome sequences of two Japanese strains (KRS-02083 and KRS-02109 were determined and compared with the previously determined genome of a Korean strain (KCTC 11537. The genomes of S. parauberis are intermediate in size and have lower GC contents than those of other streptococci. We annotated 2,236 and 2,048 genes in KRS-02083 and KRS-02109, respectively. Our results revealed that the three S. parauberis strains contain different genomic insertions and deletions. In particular, the genomes of Korean and Japanese strains encode different factors for sugar utilization; the former encodes the phosphotransferase system (PTS for sorbose, whereas the latter encodes proteins for lactose hydrolysis, respectively. And the KRS-02109 strain, specifically, was the type II strain found to be able to resist phage infection through the clustered regularly interspaced short palindromic repeats (CRISPR/Cas system and which might contribute valuably to serologically distribution. Thus, our genome-wide association study shows that polymorphisms can affect pathogen responses, providing insight into biological/biochemical pathways and phylogenetic diversity.

  7. The Streptococcus pyogenes Serotype M49 Nra-Ralp3 Transcriptional Regulatory Network and Its Control of Virulence Factor Expression from the Novel eno ralp3 epf sagA Pathogenicity Region▿ †

    Science.gov (United States)

    Kreikemeyer, Bernd; Nakata, Masanobu; Köller, Thomas; Hildisch, Hendrikje; Kourakos, Vassilios; Standar, Kerstin; Kawabata, Shigetada; Glocker, Michael O.; Podbielski, Andreas

    2007-01-01

    Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known

  8. Ecology and pathogenicity of gastrointestinal Streptococcus bovis.

    Science.gov (United States)

    Herrera, Paul; Kwon, Young Min; Ricke, Steven C

    2009-01-01

    Streptococcus bovis is an indigenous resident in the gastrointestinal tracts of both humans and animals. S. bovis is one of the major causes of bacterial endocarditis and has been implicated in the incidence of human colon cancer, possibly due to chronic inflammatory response at the site of intestinal colonization. Certain feeding regimens in ruminants can lead to overgrowth of S. bovis in the rumen, resulting in the over-production of lactate and capsular polysaccharide causing acute ruminal acidosis and bloat, respectively. There are multiple strategies in controlling acute lactic acidosis and bloat. The incidence of the two diseases may be controlled by strict dietary management. Gradual introduction of grain-based diets and the feeding of coarsely chopped roughage decrease the incidence of the two disease entities. Ionophores, which have been used to enhance feed conversion and growth rate in cattle, have been shown to inhibit the growth of lactic acid bacteria in the rumen. Other methods of controlling lactic acid bacteria in the ruminal environment (dietary supplementation of long-chain fatty acids, induction of passive and active immune responses to the bacteria, and the use of lytic bacteriophages) have also been investigated. It is anticipated that through continued in-depth ecological analysis of S. bovis the characteristics responsible for human and animal pathogenesis would be sufficiently identified to a point where more effective control strategies for the control of this bacteria can be developed.

  9. Lung abscess due to Streptococcus pneumoniae simulating pulmonary tuberculosis: presentation of two cases

    Directory of Open Access Journals (Sweden)

    Alessandro Perazzo

    2014-03-01

    Full Text Available In the past, anaerobes were the most common cause of community-acquired lung abscess; Streptococcus species were the second most common cause. In recent years, this has changed. Klebsiella pneumoniae is now most common cause of community- acquired lung abscess, although Streptococcus species remain pathogen of major importance. We present two cases of pulmonary cavitation due to Streptococcus pneumoniae which resembled pulmonary tuberculosis with regards to their history and radiological findings. These are examples of a common diagnosis presenting in an uncommon way. Our cases had some peculiarities: they had a clinical picture strongly suggestive of pulmonary tuberculosis or lung cancer rather than necrotizing infectious pneumonia in patients with no comorbidities or underlying diseases (including oral or dental pathologies. Radiological findings did not help the clinicians: pulmonary tuberculosis was the first diagnostic hypothesis in both cases. An underlying lung cancer was excluded in the first case only after invasive pulmonary procedures.

  10. Meningoencephalitis in farmed monosex Nile tilapia (Oreochromis niloticus L. caused by Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Adikesavalu Harresh

    2017-09-01

    Full Text Available Aquaculture of tilapia is a new research venture in India. With intensification in farming practices, tilapia are increasingly susceptible to bacterial infections. This article describes the isolation and identification of pathogenic bacteria from cultured monosex Nile tilapia, Oreochromis niloticus (L., that experienced moderate to severe mortalities in West Bengal, India between September and August 2014 and histopathological alterations in various organs. Gram-positive diplococci, identified as Streptococcus agalactiae with Streptococcus identification kits and 16S rDNA sequencing analysis, were isolated from the brain, operculum, and kidney. Other bacteria from the kidney were identified as Aeromonas sobria, A. caviae, Klebsiella pneumoniae ssp. pneumoniae, Escherichia coli, and Enterobacter cloacae. Staphylococcus epidermis was isolated from opercular hemorrhages. Histological sections of the infected tilapia brain revealed meningoencephalitis and granulomatous lesions. Sections from other organs indicated congestion, hemorrhagic and hyperplastic cells, necrosis, vacuolation, hemosiderin deposition, hypertrophic nuclei, melanomacrophage aggregation, and ruptured veins. This report is the first description of S. agalactiae as a primary pathogen causing meningoencephalitis in cultured tilapia in India.

  11. [Orbital cellulitis complicated by subperiosteal abscess due to Streptococcus pyogenes infection].

    Science.gov (United States)

    Ruíz Carrillo, José Daniel; Vázquez Guerrero, Edwin; Mercado Uribe, Mónica Cecilia

    Orbital cellulitis is an infectious disease that is very common in pediatric patients, in which severe complications may develop. Etiological agents related to this disease are Haemophilus influenzae B, Staphylococcus aureus, Streptococcus pneumoniae and Moraxella catarrhalis, which correspond to 95% of cases. Moreover, Streptococcus beta hemolytic and anaerobic microorganisms may also be present corresponding to < 5% of the cases. We present an uncommon case of cellulitis complicated by sub-periosteal abscess caused by Streptococcus pyogenes (Group A beta hemolytic streptococcus). A 9-year-old male patient with a history of deficit disorder and hyperactivity since 5 years of age. His current condition started with erythema in the external edge of the right eye, increase in peri-orbicular volume with limitation of eyelid opening, progression to proptosis, pain with eye movements and conjunctival purulent discharge. Image studies reported subperiosteal abscess and preseptal right with extraocular cellulitis. The patient started with empirical antibiotic treatment, surgical drainage and culture of purulent material from which Streptococcus pyogenes was isolated. Due to the implementation of vaccination schemes against H. influenza and S. pneumoniae since the 90s, the cases by these pathogens have decreased, causing new bacteria to take place as the cause of the infection. The importance of considering S. pyogenes as an etiology of orbital cellulitis is the rapid progression to abscess formation, and the few cases described in the literature. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  12. Phylogenomic and MALDI-TOF MS analysis of Streptococcus sinensis HKU4T reveals a distinct phylogenetic clade in the genus Streptococcus.

    Science.gov (United States)

    Teng, Jade L L; Huang, Yi; Tse, Herman; Chen, Jonathan H K; Tang, Ying; Lau, Susanna K P; Woo, Patrick C Y

    2014-10-20

    Streptococcus sinensis is a recently discovered human pathogen isolated from blood cultures of patients with infective endocarditis. Its phylogenetic position, as well as those of its closely related species, remains inconclusive when single genes were used for phylogenetic analysis. For example, S. sinensis branched out from members of the anginosus, mitis, and sanguinis groups in the 16S ribosomal RNA gene phylogenetic tree, but it was clustered with members of the anginosus and sanguinis groups when groEL gene sequences used for analysis. In this study, we sequenced the draft genome of S. sinensis and used a polyphasic approach, including concatenated genes, whole genomes, and matrix-assisted laser desorption ionization-time of flight mass spectrometry to analyze the phylogeny of S. sinensis. The size of the S. sinensis draft genome is 2.06 Mb, with GC content of 42.2%. Phylogenetic analysis using 50 concatenated genes or whole genomes revealed that S. sinensis formed a distinct cluster with Streptococcus oligofermentans and Streptococcus cristatus, and these three streptococci were clustered with the "sanguinis group." As for phylogenetic analysis using hierarchical cluster analysis of the mass spectra of streptococci, S. sinensis also formed a distinct cluster with S. oligofermentans and S. cristatus, but these three streptococci were clustered with the "mitis group." On the basis of the findings, we propose a novel group, named "sinensis group," to include S. sinensis, S. oligofermentans, and S. cristatus, in the Streptococcus genus. Our study also illustrates the power of phylogenomic analyses for resolving ambiguities in bacterial taxonomy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Capsular Sialyltransferase Specificity Mediates Different Phenotypes in Streptococcus suis and Group B Streptococcus

    Directory of Open Access Journals (Sweden)

    David Roy

    2018-04-01

    Full Text Available The capsular polysaccharide (CPS represents a key virulence factor for most encapsulated streptococci. Streptococcus suis and Group B Streptococcus (GBS are both well-encapsulated pathogens of clinical importance in veterinary and/or human medicine and responsible for invasive systemic diseases. S. suis and GBS are the only Gram-positive bacteria which express a sialylated CPS at their surface. An important difference between these two sialylated CPSs is the linkage between the side-chain terminal galactose and sialic acid, being α-2,6 for S. suis but α-2,3 for GBS. It is still unclear how sialic acid may affect CPS production and, consequently, the pathogenesis of the disease caused by these two bacterial pathogens. Here, we investigated the role of sialic acid and the putative effect of sialic acid linkage modification in CPS synthesis using inter-species allelic exchange mutagenesis. To this aim, a new molecular biogenetic approach to express CPS with modified sialic acid linkage was developed. We showed that sialic acid (and its α-2,6 linkage is crucial for S. suis CPS synthesis, whereas for GBS, CPS synthesis may occur in presence of an α-2,6 sialyltransferase or in absence of sialic acid moiety. To evaluate the effect of the CPS composition/structure on sialyltransferase activity, two distinct capsular serotypes within each bacterial species were compared (S. suis serotypes 2 and 14 and GBS serotypes III and V. It was demonstrated that the observed differences in sialyltransferase activity and specificity between S. suis and GBS were serotype unrestricted. This is the first time that a study investigates the interspecies exchange of capsular sialyltransferase genes in Gram-positive bacteria. The obtained mutants represent novel tools that could be used to further investigate the immunomodulatory properties of sialylated CPSs. Finally, in spite of common CPS structural characteristics and similarities in the cps loci, sialic acid exerts

  14. Cow-specific risk factors for clinical mastitis in Brazilian dairy cattle.

    Science.gov (United States)

    Oliveira, C S F; Hogeveen, H; Botelho, A M; Maia, P V; Coelho, S G; Haddad, J P A

    2015-10-01

    Information related to mastitis risk factors is useful for the design and implementation of clinical mastitis (CM) control programs. The first objective of our study was to model the risk of CM under Brazilian conditions, using cow-specific risk factors. Our second objective was to explore which risk factors were associated with the occurrence of the most common pathogens involved in Brazilian CM infections. The analyses were based on 65 months of data from 9,789 dairy cows and 12,464 CM cases. Cow-specific risk factors that could easily be measured in standard Brazilian dairy farms were used in the statistical analyses, which included logistic regression and multinomial logistic regression. The first month of lactation, high somatic cell count, rainy season and history of clinical mastitis cases were factors associated with CM for both primiparous and multiparous cows. In addition, parity and breed were also associated risk factors for multiparous cows. Of all CM cases, 54% showed positive bacteriological culturing results from which 57% were classified as environmental pathogens, with a large percentage of coliforms (35%). Coagulase-negative Staphylococcus (16%), Streptococcus uberis (9%), Streptococcus agalactiae (7%) and other Streptococci (9%) were also common pathogens. Among the pathogens analyzed, the association of cow-specific risk factors, such as Zebu breed (OR=5.84, 95%CI 3.77-10.77) and accumulated history of SCC (1.76, 95%CI 1.37-2.27), was different for CM caused by Coagulase-negative Staphylococcus and S. agalactiae in comparison to CM caused by coliforms. Our results suggest that CM control programs in Brazil should specially consider the recent history of clinical mastitis cases and the beginning of the lactations, mainly during the rainy season as important risk factor for mastitis. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Complete Genome Sequence of Streptococcus thermophilus KLDS 3.1003, A Strain with High Antimicrobial Potential against Foodborne and Vaginal Pathogens

    Directory of Open Access Journals (Sweden)

    Smith E. Evivie

    2017-07-01

    Full Text Available Lactic acid bacteria play increasingly important roles in the food industry. Streptococcus thermophilus KLDS 3.1003 strain was isolated from traditional yogurt in Inner Mongolia, China. It has shown high antimicrobial activity against selected foodborne and vaginal pathogens. In this study, we investigated and analyzed its complete genome sequence. The S. thermophilus KLDS 3.1003 genome comprise of a 1,899,956 bp chromosome with a G+C content of 38.92%, 1,995 genes, and 6 rRNAs. With the exception of S. thermophilus M17TZA496, S. thermophilus KLDS 3.1003 has more tRNAs (amino acid coding genes compared to some S. thermophilus strains available on the National Centre for Biotechnology Information database. MG-RAST annotation showed that this strain has 317 subsystems with most genes associated with amino acid and carbohydrate metabolism. This strain also has a unique EPS gene cluster containing 23 genes, and may be a mixed dairy starter culture. This information provides more insight into the molecular basis of its potentials for further applications in the dairy and allied industries.

  16. Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus.

    Science.gov (United States)

    Jensen, Anders; Scholz, Christian F P; Kilian, Mogens

    2016-11-01

    The Mitis group of the genus Streptococcus currently comprises 20 species with validly published names, including the pathogen S. pneumoniae. They have been the subject of much taxonomic confusion, due to phenotypic overlap and genetic heterogeneity, which has hampered a full appreciation of their clinical significance. The purpose of this study was to critically re-examine the taxonomy of the Mitis group using 195 publicly available genomes, including designated type strains for phylogenetic analyses based on core genomes, multilocus sequences and 16S rRNA gene sequences, combined with estimates of average nucleotide identity (ANI) and in silico and in vitro analyses of specific phenotypic characteristics. Our core genomic phylogenetic analyses revealed distinct clades that, to some extent, and from the clustering of type strains represent known species. However, many of the genomes have been incorrectly identified adding to the current confusion. Furthermore, our data show that 16S rRNA gene sequences and ANI are unsuitable for identifying and circumscribing new species of the Mitis group of the genus Streptococci. Based on the clustering patterns resulting from core genome phylogenetic analysis, we conclude that S. oligofermentans is a later synonym of S. cristatus. The recently described strains of the species Streptococcus dentisani includes one previously referred to as 'S. mitis biovar 2'. Together with S. oralis, S. dentisani and S. tigurinus form subclusters within a coherent phylogenetic clade. We propose that the species S. oralis consists of three subspecies: S. oralis subsp. oralis subsp. nov., S. oralis subsp. tigurinus comb. nov., and S. oralis subsp. dentisani comb. nov.

  17. Activation of TAFI on the surface of Streptococcus pyogenes evokes inflammatory reactions by modulating the kallikrein/kinin system

    NARCIS (Netherlands)

    Bengtson, Sara H.; Sandén, Caroline; Mörgelin, Matthias; Marx, Pauline F.; Olin, Anders I.; Leeb-Lundberg, L. M. Fredrik; Meijers, Joost C. M.; Herwald, Heiko

    2008-01-01

    Bacteria-controlled regulation of host responses to infection is an important virulence mechanism that has been demonstrated to contribute to disease progression. Here we report that the human pathogen Streptococcus pyogenes employs the procarboxypeptidase TAFI (thrombin-activatable fibrinolysis

  18. Rapid Detection and Identification of Streptococcus Iniae Using a Monoclonal Antibody-Based Indirect Fluorescent Antibody Technique

    Science.gov (United States)

    Streptococcus iniae is among the major pathogens of a large number of fish species cultured in fresh and marine recirculating and net pen production systems . The traditional plate culture technique to detect and identify S. iniae is time consuming and may be problematic due to phenotypic variations...

  19. Identifikasi Carrier Bakteri Streptococcus β hemolyticus Group A pada Murid SD Negeri 13 Padang Berdasarkan Perbedaan Umur dan Jenis Kelamin

    Directory of Open Access Journals (Sweden)

    Fadhila Aini

    2016-01-01

    Full Text Available AbstrakStreptococcus β hemolyticus Grup A atau yang disebut juga Streptococcus pyogenes merupakan salah satu bakteri patogen yang banyak menginfeksi manusia.Bakteri ini dapat ditemukan sebagai carrier di saluran pernafasan terutama pada anak-anak, tidak menimbulkan penyakit tetapi berisiko untuk menyebarkan penyakit. Tujuan penelitian ini adalah menentukan jumlah carrier  bakteri Streptococcus β hemolyticus Grup A pada murid berdasarkan perbedaan umur dan jenis kelamin. Jenis penelitian ini adalah deskriptif cross-sectional dengan menggunakan sampel seluruh murid SD Negeri 13 Padang. Hasil penelitian adalah didapatkan 2 orang murid yang menderita carrier, yaitu pada kelompok usia>8-9 tahun dan >11 tahun. Berdasarkan jenis kelamin yang terdiri dari 54 orang laki-laki dan 50 orang perempuan, didapatkan 2 orang carrier yaitu hanya pada anak laki-laki. Hasil penelitian menunjukkan bahwa carrier bakteri Streptococcus β hemolyticus Group  A terdapat pada anak usia tersebut karena masih kurangnya pengetahuan tentang kebersihan. Carrier yang ditemukan hanya pada anak laki-laki kemungkinan disebabkan mereka lebih sering bermain di luar rumah dan terpapar dengan berbagai bakteri patogen dan kurang memperhatikan kebersihan diri.Kata kunci: carrier, streptococcus β hemolyticus grup A, umur, jenis kelamin AbstractGroup A Streptococcus β hemolyticus or also called Streptococcus pyogenes is one of many pathogenic bacteria that infect humans. These bacteria can be found as a carrier in the respiratory tract especially in children, do not cause disease but can be a risk for spreading the disease. This objective of this study was to determine the amount of the carrier of bacteria group A Streptococcus β hemolyticus based on age and gender differences. This research is a descriptive cross - sectional study using a sample of all students of SD Negeri 13 Padang. Based on the age of 104 students found that students who suffer 2 carrier, which is in the age

  20. Isolation of Arcobacter spp from the milk of dairy cows in Brazil Isolamento de Arcobacter spp do leite de vacas leiteiras no Brasil

    Directory of Open Access Journals (Sweden)

    Celso Pianta

    2007-02-01

    Full Text Available Bacteriologic examinations were performed on 188 milk samples collected from cows from 11 farms for diagnosis of mastitis in three cities of Rio Grande do Sul, Brazil. Among the common causes of mastitis, the most frequent isolates were Staphylococcus aureus, followed by Corynebacterium sp, Streptococcus uberis, Streptococcus dysgalactiae and Streptococcus agalactiae. Bacteriologic examination of 32 milk samples from one farm didn't show bacteria known as common etiologic agent of mastitis. Six samples of Arcobacter spp typed by genotypic tests as Arcobacter cryaerophilus (five strains and Arcobacter butzleri (one strain were isolated from cows' milk of that farm. It is reported the isolation of Arcobacter species from the milk of cows in absence of clinical signs of mastitis. This is the first report of the detection of the microorganisms in the milk of dairy cows in Brazil. No previous reports are known from other countries.Foram realizados exames bacteriológicos em 188 amostras de leite colhidas de vacas de 11 propriedades leiteiras para diagnóstico de mastite, em três municípios no Rio Grande do Sul, Brasil. Entre as causas comuns de mastite, os isolados mais freqüentes foram Staphylococcus aureus, seguido de Corynebacterium sp, Streptococcus uberis, Streptococcus dysgalactiae e Streptococcus agalactiae. O exame bacteriológico realizado em 32 amostras de leite de vacas de uma propriedade não demonstrou a presença de bactérias conhecidas como causadoras de mastite. Foram isoladas do leite de vacas desta propriedade seis amostras de Arcobacter spp, classificadas por testes moleculares como Arcobacter cryaerophilus (cinco amostras e Arcobacter butzleri (uma amostra. É relatado o isolamento de espécies de Arcobacter do leite de vacas na ausência de sinais clínicos de mastite. Este é o primeiro relato da detecção dos microorganismos no leite de vacas leiteiras no Brasil.

  1. Evidence for Rare Capsular Switching in Streptococcus agalactiae▿

    Science.gov (United States)

    Martins, Elisabete Raquel; Melo-Cristino, José; Ramirez, Mário

    2010-01-01

    The polysaccharide capsule is a major antigenic factor in Streptococcus agalactiae (Lancefield group B streptococcus [GBS]). Previous observations suggest that exchange of capsular loci is likely to occur rather frequently in GBS, even though GBS is not known to be naturally transformable. We sought to identify and characterize putative capsular switching events, by means of a combination of phenotypic and genotypic methods, including pulsed-field gel electrophoretic profiling, multilocus sequence typing, and surface protein and pilus gene profiling. We show that capsular switching by horizontal gene transfer is not as frequent as previously suggested. Serotyping errors may be the main reason behind the overestimation of capsule switching, since phenotypic techniques are prone to errors of interpretation. The identified putative capsular transformants involved the acquisition of the entire capsular locus and were not restricted to the serotype-specific central genes, the previously suggested main mechanism underlying capsular switching. Our data, while questioning the frequency of capsular switching, provide clear evidence for in vivo capsular transformation in S. agalactiae, which may be of critical importance in planning future vaccination strategies against this pathogen. PMID:20023016

  2. [A case of pulmonary abscess in which Haemophilus parainfluenzae and Streptococcus intermedius were isolated by percutaneous needle aspiration].

    Science.gov (United States)

    Miyamoto, Atsushi; Tsuboi, Eiyasu; Takaya, Hisashi; Sugino, Keishi; Sakamoto, Susumu; Kawabata, Masateru; Kishi, Kazuma; Narui, Koji; Homma, Sakae; Nakatani, Tatsuo; Nakata, Koichiro; Yoshimura, Kunihiko

    2006-08-01

    Some microbes, including the Bacteroides species, Staphylococcus aureus and Streptococcus milleri groups, can cause pulmonary abscess. Haemophilus parainfluenzae is usually categorized as one of the normal flora which colonizes in the ears and the nasopharynx, and it has been long considered that H. parainfluenzae has little pathogenicity in the lower respiratory tract and lung parenchymal. In this report, we present a case of pulmonary abscess caused by both H. parainfluenzae and Streptococcus intermedius. The patient was a 75-year-old man who had had total esophageo-gastrectomy because of esophageal cancer. He presented with purulent sputum, and chest X-ray film showed a dense consolidation in the right upper lung field. CT-guided transcutaneous fine needle aspiration was performed as a diagnostic procedure. Since both H. parainfluenzae and S. intermedius had been isolated from the lesion, pulmonary abscess caused by these two pathogens was diagnosed. The patient was treated with panipenem/betamipron, and his symptoms and pulmonary infiltrates on the chest X-ray film improved thereafter. So far, very few cases have been reported in which H. parainfluenzae caused lower respiratory tract infection. Although S. intermedius is known as one of the pathogens of pulmonary abscess, it is possible that H. parainfluenzae could also be pathogenic in infectious diseases of the lung.

  3. Streptococcus agalactiae vaginitis: nonhemolytic variant on the Liofilchem® Chromatic StreptoB.

    Science.gov (United States)

    Savini, Vincenzo; Marrollo, Roberta; D'Antonio, Marianna; D'Amario, Claudio; Fazii, Paolo; D'Antonio, Domenico

    2013-01-01

    Streptococcus agalactiae (group B Streptococcus, GBS) vaginal pathogenicity is not uniformly acknowledged throughout the literature; accordingly, in women, genital itching and burning, along with leukorrhea are commonly and almost exclusively referred to bacterial vaginosis, candidiasis and trichomoniasis. Conversely, GBS virulence for vagina was recognized in the past, as the organism has been observed to potentially cause local inflammation and discharge, as well as lactobacilli rarefaction. We depict here a case where a nonhemolytic (γ-hemolytic) GBS strain was found to be the etiologic agent of vaginal infection. Such uncommon S. agalactiae phenotypes are hard to be recognized and may be therefore responsible for misdiagnosing and underestimation of GBS vaginitis prevalence; here, we had the support of the Liofilchem(®) Chromatic StreptoB medium, that successfully detected such an atypical variant.

  4. Characterization of a Multipeptide Lantibiotic Locus in Streptococcus pneumoniae.

    Science.gov (United States)

    Maricic, Natalie; Anderson, Erica S; Opipari, AnneMarie E; Yu, Emily A; Dawid, Suzanne

    2016-01-26

    Bacterial communities are established through a combination of cooperative and antagonistic interactions between the inhabitants. Competitive interactions often involve the production of antimicrobial substances, including bacteriocins, which are small antimicrobial peptides that target other community members. Despite the nearly ubiquitous presence of bacteriocin-encoding loci, inhibitory activity has been attributed to only a small fraction of gene clusters. In this study, we characterized a novel locus (the pld locus) in the pathogen Streptococcus pneumoniae that drives the production of a bacteriocin called pneumolancidin, which has broad antimicrobial activity. The locus encodes an unusual tandem array of four inhibitory peptides, three of which are absolutely required for antibacterial activity. The three peptide sequences are similar but appear to play distinct roles in regulation and inhibition. A modification enzyme typically found in loci encoding a class of highly modified bacteriocins called lantibiotics was required for inhibitory activity. The production of pneumolancidin is controlled by a two-component regulatory system that is activated by the accumulation of modified peptides. The locus is located on a mobile element that has been found in many pneumococcal lineages, although not all elements carry the pld genes. Intriguingly, a minimal region containing only the genes required for pneumolancidin immunity was found in several Streptococcus mitis strains. The pneumolancidin-producing strain can inhibit nearly all pneumococci tested to date and provided a competitive advantage in vivo. These peptides not only represent a unique strategy for bacterial competition but also are an important resource to guide the development of new antimicrobials. Successful colonization of a polymicrobial host surface is a prerequisite for the subsequent development of disease for many bacterial pathogens. Bacterial factors that directly inhibit the growth of neighbors

  5. Stochastic modelling to evaluate the economic efficiency of treatment of chronic subclinical mastitis

    OpenAIRE

    Steeneveld, W.; Hogeveen, H.; Borne, van den, B.H.P.; Swinkels, J.M.

    2006-01-01

    Treatment of subclinical mastitis is traditionally no common practice. However, some veterinarians regard treatment of some types of subclinical mastitis to be effective. The goal of this research was to develop a stochastic Monte Carlo simulation model to support decisions around treatment of chronic subclinical mastitis caused by Streptococcus uberis. Factors in the model include, amongst others, the probability of spontaneous cure, probability of the cow becoming clinically diseased, trans...

  6. A STUDY OF SUBCLINICAL MASTITIS IN TWO HERDS, ONE MANAGED ORGANICALLY, THE OTHER CONVENTIONALLY, AND THE EFFECT OF DIFFERENT MANAGEMENT STRATEGIES

    OpenAIRE

    Thatcher, A.; Petrovski, K.; Shadbolt, N.; Martin, N.

    2014-01-01

    Mastitis in two herds managed as a comparison between organic and conventional dairy farming systems was monitored for 9 years utilising regular bacterial culture of milk samples, individual and bulk somatic cell counts and observation by farm staff. The most important isolates in pure cultures were coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, and Bacillus spp. Positive cultures were generally not associated with subclinical mastitis. The objective was to dev...

  7. In vitro photoinactivation of bovine mastitis related pathogens.

    Science.gov (United States)

    Sellera, Fábio Parra; Sabino, Caetano Padial; Ribeiro, Martha Simões; Gargano, Ronaldo Gomes; Benites, Nilson Roberti; Melville, Priscilla Anne; Pogliani, Fabio Celidonio

    2016-03-01

    Bovine mastitis is considered the most important disease of worldwide dairy industry. Treatment of this disease is based on the application intramammary antibiotic, which favors an increase in the number of resistant bacteria in the last decade. Photodynamic inactivation (PDI) has been investigated in different areas of Health Sciences, and has shown great potential for inactivating different pathogens, without any selection of resistant microorganisms. The objective of this study was to investigate the efficacy of PDI in the inactivation of pathogens associated with bovine mastitis. We tested the effectiveness of PDI against antibiotic resistant strains, isolated from bovine mastitis, from the following species: Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae, Corynebacterium bovis, and the alga Prototheca zopfii. Nine experimental groups were evaluated: control, no treatment; light only, irradiation of a red light-emitting diode (λ=662 (20) nm) for 180 s; exposure to 50 μM methylene blue alone for 5 min; and PDI for 5, 10, 30, 60, 120 and 180 s. S. dysgalactiae, S. aureus, and C. bovis were inactivated after 30s of irradiation, whereas S. agalactiae was inactivated after 120 s and P. zopfii at 180 s of irradiation. These results show that PDI can be an interesting tool for inactivating pathogens for bovine mastitis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A Critical Role of Zinc Importer AdcABC in Group A Streptococcus-Host Interactions During Infection and Its Implications for Vaccine Development

    Directory of Open Access Journals (Sweden)

    Nishanth Makthal

    2017-07-01

    Full Text Available Bacterial pathogens must overcome host immune mechanisms to acquire micronutrients for successful replication and infection. Streptococcus pyogenes, also known as group A streptococcus (GAS, is a human pathogen that causes a variety of clinical manifestations, and disease prevention is hampered by lack of a human GAS vaccine. Herein, we report that the mammalian host recruits calprotectin (CP to GAS infection sites and retards bacterial growth by zinc limitation. However, a GAS-encoded zinc importer and a nuanced zinc sensor aid bacterial defense against CP-mediated growth inhibition and contribute to GAS virulence. Immunization of mice with the extracellular component of the zinc importer confers protection against systemic GAS challenge. Together, we identified a key early stage host-GAS interaction and translated that knowledge into a novel vaccine strategy against GAS infection. Furthermore, we provided evidence that a similar struggle for zinc may occur during other streptococcal infections, which raises the possibility of a broad-spectrum prophylactic strategy against multiple streptococcal pathogens.

  9. Isolation and identification of main mastitis pathogens in Mexico

    Directory of Open Access Journals (Sweden)

    H. Castañeda Vázquez

    2013-04-01

    Full Text Available The present work is a large epidemiological study aiming to detect the prevalence of subclinical mastitis and to investigate the major udder pathogens in Jalisco State, western Mexico. For this purpose, 2205 dairy cows, representing 33 Mexican dairy herds, were involved. Of 2205 cows, 752 mastitic animals were diagnosed and only 2,979 milk samples could be obtained for further investigation. All 2979 milk samples were subjected to California Mastitis Test (CMT to differentiate clinical cases from subclinical ones where 1996 samples (67 % reacted positively. Of these, 1087 samples (54.5% came from cows suffering from clinical cases of mastitis. Bacteriological identification of the causative agents revealed the presence of a major group of pathogens including the Coagulase negative staphylococci (CNS, S.aureus, S.agalactiae, Corynebacterium spp. and Coliform bacteria which were detected in 464 (15.6%, 175 (5.9%, 200 (6.8%, 417 (14% and 123 (4.1% of the 2927 investigated quarters, 295 (15.4%, 118 (15.7%, 111 (14.8%, 227 (30.2% and 109 (14.5% of the 752 examined cows and in 33 (100%, 22 (66.7%, 19 (57.6%, 30 (90.1% and 27 (81.8% of the 33 herds involved, respectively. Other pathogens could be detected in the investigated milk samples such as S. dysgalactiae (0.4%, S.uberis (0.37%, Bacillus spp. (1%, Nocardia spp. (0.6% und Candida spp. (0.1%. Meanwhile, others were present in a negligible ratio; including the Aerococcus viridans, and Enterococcus spp., Lactococcus lactis, S. bovis.

  10. Bioeconomic modeling of lactational antimicrobial treatment of new bovine subclinical intramammary infections caused by contagious pathogens

    DEFF Research Database (Denmark)

    Van den Borne, B. H. P.; Hisham Beshara Halasa, Tariq; Van Schaik, G.

    2010-01-01

    This study determined the direct and indirect epidemiologic and economic effects of lactational treatment of new bovine subclinical intramammary infections (IMI) caused by contagious pathogens using an existing bioeconomic model. The dynamic and stochastic model simulated the dynamics...... of uncured cows after 2 mo of infection. Model behavior was observed for variation in parameter input values. Compared with no lactational intervention, lactational intervention of new subclinical IMI resulted in fewer clinical flare ups, less transmission within the herd, and much lower combined total....... Changing the probability of cure resulted in a nonlinear change in the cumulative incidence of IMI cases and associated costs. Lactational treatment was able to prevent IMI epidemics in dairy herds at high transmission rates of Strep. uberis, Strep. dysgalactiae, and E. coli. Lactational treatment did...

  11. Antibiotic Susceptibility of Periodontal Streptococcus Constellatus and Streptococcus Intermedius Clinical Isolates

    NARCIS (Netherlands)

    Rams, Thomas E; Feik, Diane; Mortensen, Joel E; Degener, John E; van Winkelhoff, Arie J

    2014-01-01

    Background: Streptococcus constellatus and Streptococcus intermedius in subgingival dental plaque biofilms may contribute to forms of periodontitis that resist treatment with conventional mechanical root debridement/surgical procedures and may additionally participate in some extraoral infections.

  12. Evolution of Streptococcus pneumoniae and its close commensal relatives

    DEFF Research Database (Denmark)

    Kilian, Mogens; Poulsen, Knud; Blomqvist, Trinelise

    2008-01-01

    Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial...... of unique genes and their origin support the model that the entire cluster of S. pneumoniae, S. pseudopneumoniae, and S. mitis lineages evolved from pneumococcus-like bacteria presumably pathogenic to the common immediate ancestor of hominoids. During their adaptation to a commensal life style, most...

  13. The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses

    NARCIS (Netherlands)

    K. Overweg (Karin); A. Kerr; M. Sluijter (Marcel); M.H. Jackson; T.J. Mitchell; A.P. de Jong; R. de Groot (Ronald); P.W.M. Hermans (Peter)

    2000-01-01

    textabstractSurface-exposed proteins often play an important role in the interaction between pathogenic bacteria and their host. We isolated a pool of hydrophobic, surface-associated proteins of Streptococcus pneumoniae. The opsonophagocytic activity of hyperimmune

  14. Group B Streptococcus and Pregnancy

    Science.gov (United States)

    ... B Strep and Pregnancy • What is group B streptococcus (GBS)? • What does it mean to be colonized ... planned cesarean birth? •Glossary What is group B streptococcus (GBS)? Group B streptococcus is one of the ...

  15. Potential antibiotic and anti-infective effects of rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. on Streptococcus pyogenes as revealed by proteomics

    NARCIS (Netherlands)

    Limsuwan, Surasak; Voravuthikunchai, Supayang Piyawan; van Dijl, Jan Maarten; Kayser, Oliver; Meinders, Hesseling A.

    2011-01-01

    Rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. leaf extract has a strong antibacterial activity against the bacterial pathogen Streptococcus pyogenes. Our previous studies indicated that the bactericidal activity of rhodomyrtone might involve intracellular targets. In the present studies we

  16. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    Science.gov (United States)

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  17. A visual review of the human pathogen Streptococcus pneumoniae.

    Science.gov (United States)

    Engholm, Ditte Høyer; Kilian, Mogens; Goodsell, David S; Andersen, Ebbe Sloth; Kjærgaard, Rikke Schmidt

    2017-11-01

    Being the principal causative agent of bacterial pneumonia, otitis media, meningitis and septicemia, the bacterium Streptococcus pneumoniae is a major global health problem. To highlight the molecular basis of this problem, we have portrayed essential biological processes of the pneumococcal life cycle in eight watercolor paintings. The paintings are done to a consistent nanometer scale based on currently available data from structural biology and proteomics. In this review article, the paintings are used to provide a visual review of protein synthesis, carbohydrate metabolism, cell wall synthesis, cell division, teichoic acid synthesis, virulence, transformation and pilus synthesis based on the available scientific literature within the field of pneumococcal biology. Visualization of the molecular details of these processes reveals several scientific questions about how molecular components of the pneumococcal cell are organized to allow biological function to take place. By the presentation of this visual review, we intend to stimulate scientific discussion, aid in the generation of scientific hypotheses and increase public awareness. A narrated video describing the biological processes in the context of a whole-cell illustration accompany this article. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Establishment of a Cre recombinase based mutagenesis protocol for markerless gene deletion in Streptococcus suis.

    Science.gov (United States)

    Koczula, A; Willenborg, J; Bertram, R; Takamatsu, D; Valentin-Weigand, P; Goethe, R

    2014-12-01

    The lack of knowledge about pathogenicity mechanisms of Streptococcus (S.) suis is, at least partially, attributed to limited methods for its genetic manipulation. Here, we established a Cre-lox based recombination system for markerless gene deletions in S. suis serotype 2 with high selective pressure and without undesired side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Endocytosis‒Mediated Invasion and Pathogenicity of Streptococcus agalactiae in Rat Cardiomyocyte (H9C2).

    Science.gov (United States)

    Pooja, Sharma; Pushpanathan, Muthuirulan; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2015-01-01

    Streptococcus agalactiae infection causes high mortality in cardiovascular disease (CVD) patients, especially in case of setting prosthetic valve during cardiac surgery. However, the pathogenesis mechanism of S. agalactiae associate with CVD has not been well studied. Here, we have demonstrated the pathogenicity of S. agalactiae in rat cardiomyocytes (H9C2). Interestingly, both live and dead cells of S. agalactiae were uptaken by H9C2 cells. To further dissect the process of S. agalactiae internalization, we chemically inhibited discrete parts of cellular uptake system in H9C2 cells using genistein, chlorpromazine, nocodazole and cytochalasin B. Chemical inhibition of microtubule and actin formation by nocodazole and cytochalasin B impaired S. agalactiae internalization into H9C2 cells. Consistently, reverse‒ transcription PCR (RT‒PCR) and quantitative real time‒PCR (RT-qPCR) analyses also detected higher levels of transcripts for cytoskeleton forming genes, Acta1 and Tubb5 in S. agalactiae‒infected H9C2 cells, suggesting the requirement of functional cytoskeleton in pathogenesis. Host survival assay demonstrated that S. agalactiae internalization induced cytotoxicity in H9C2 cells. S. agalactiae cells grown with benzyl penicillin reduced its ability to internalize and induce cytotoxicity in H9C2 cells, which could be attributed with the removal of surface lipoteichoic acid (LTA) from S. agalactiae. Further, the LTA extracted from S. agalactiae also exhibited dose‒dependent cytotoxicity in H9C2 cells. Taken together, our data suggest that S. agalactiae cells internalized H9C2 cells through energy‒dependent endocytic processes and the LTA of S. agalactiae play major role in host cell internalization and cytotoxicity induction.

  20. The clinical features of respiratory infections caused by the Streptococcus anginosus group

    OpenAIRE

    Noguchi, Shingo; Yatera, Kazuhiro; Kawanami, Toshinori; Yamasaki, Kei; Naito, Keisuke; Akata, Kentaro; Shimabukuro, Ikuko; Ishimoto, Hiroshi; Yoshii, Chiharu; Mukae, Hiroshi

    2015-01-01

    Background The Streptococcus anginosus group (SAG) play important roles in respiratory infections. It is ordinarily difficult to distinguish them from contaminations as the causative pathogens of respiratory infections because they are often cultured in respiratory specimens. Therefore, it is important to understand the clinical characteristics and laboratory findings of respiratory infections caused by the SAG members. The aim of this study is to clarify the role of the SAG bacteria in respi...

  1. Epidemiology of Streptococcus pneumoniae and Staphylococcus aureus colonization in healthy Venezuelan children

    OpenAIRE

    Quintero, B.; Araque, M.; van der Gaast-de Jongh, C.; Escalona, F.; Correa, M.; Morillo-Puente, S.; Vielma, S.; Hermans, P. W. M.

    2010-01-01

    Streptococcus pneumoniae and Staphylococcus aureus cause significant morbidity and mortality worldwide. We investigated both the colonization and co-colonization characteristics for these pathogens among 250 healthy children from 2 to 5?years of age in Merida, Venezuela, in 2007. The prevalence of S. pneumoniae colonization, S. aureus colonization, and S. pneumoniae?S. aureus co-colonization was 28%, 56%, and 16%, respectively. Pneumococcal serotypes 6B (14%), 19F (12%), 23F (12%), 15 (9%), 6...

  2. Genetic correlations between pathogen-specific mastitis and somatic cell count in Danish Holsteins

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Mark, Thomas; Madsen, P.

    2009-01-01

    _170) or 300 d (LASCC_300) after calving, and the mastitis traits were unspecific mastitis (all mastitis treatments, both clinical and subclinical, regardless of the causative pathogen) and mastitis caused by either Streptococcus dysgalactiae, Escherichia coli, coagulase-negative staphylococci (CNS...

  3. Cloning, characterization and anion inhibition study of a β-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans.

    Science.gov (United States)

    Dedeoglu, Nurcan; De Luca, Viviana; Isik, Semra; Yildirim, Hatice; Kockar, Feray; Capasso, Clemente; Supuran, Claudiu T

    2015-07-01

    The oral pathogenic bacterium involved in human dental caries formation Streptococcus mutans, encodes for two carbonic anhydrase (CA, EC 4.2.1.1) one belonging to the α- and the other one to the β-class. This last enzyme (SmuCA) has been cloned, characterized and investigated for its inhibition profile with a major class of CA inhibitors, the inorganic anions. Here we show that SmuCA has a good catalytic activity for the CO2 hydration reaction, with kcat 4.2×10(5)s(-1) and kcat/Km of 5.8×10(7)M(-1)×s(-1), being inhibited by cyanate, carbonate, stannate, divannadate and diethyldithiocarbamate in the submillimolar range (KIs of 0.30-0.64mM) and more efficiently by sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid (KIs of 15-46μM). The anion inhibition profile of the S. mutans enzyme is very different from other α- and β-CAs investigated earlier. Identification of effective inhibitors of this new enzyme may lead to pharmacological tools useful for understanding the role of S. mutans CAs in dental caries formation, and eventually the development of pharmacological agents with a new mechanism of antibacterial action. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Isolation of Streptococcus tigurinus - a novel member of Streptococcus mitis group from a case of periodontitis.

    Science.gov (United States)

    Dhotre, Shree V; Mehetre, Gajanan T; Dharne, Mahesh S; Suryawanshi, Namdev M; Nagoba, Basavraj S

    2014-08-01

    Streptococcus tigurinus is a new member of the Streptococcus viridians group and is closely related to Streptococcus mitis, Streptococcus pneumoniae, Streptococcus pseudopneumoniae, Streptococcus oralis, and Streptococcus infantis. The type strain AZ_3a(T) of S. tigurinus was originally isolated from a patient with infective endocarditis. Accurate identification of S. tigurinus is facilitated only by newer molecular methods like 16S rRNA gene analysis. During the course of study on bacteraemia and infective endocarditis with reference to periodontitis and viridians group of streptococci, a strain of S. tigurinus isolated from subgingival plaque of a patient with periodontitis identified by 16S rRNA gene analysis, which was originally identified as Streptococcus pluranimalium by Vitek 2. Confirmation by 16S rRNA gene analysis showed 99.39% similarity (1476/1485 bp) with S. tigurinus AZ_3a(T) (AORU01000002). To the best of our knowledge, this is the first report of isolation of S. tigurinus from the oral cavity of a periodontitis patient. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Streptococcus thermophilus bacteraemia in a patient with transient bowel ischaemia secondary to polycythaemia

    OpenAIRE

    Stephens, Joanna; Turner, David P.J.

    2015-01-01

    Introduction: The ability of Streptococcus thermophilus to convert lactose into lactic acid has long been utilised by the dairy industry. A seemingly low-pathogenicity organism, there have been no previously published reports linking the consumption of foodstuffs to bacteraemia with this bacterium.\\ud Case Presentation: Here we present a case of a regular consumer of Activia yoghurt who developed S. thermophilus bacteraemia probably due to transient bowel ischaemia secondary to polycythaemia....

  6. D-Tagatose inhibits the growth and biofilm formation of Streptococcus mutans

    OpenAIRE

    Hasibul, Khaleque; Nakayama-Imaohji, Haruyuki; Hashimoto, Masahito; Yamasaki, Hisashi; Ogawa, Takaaki; Waki, Junpei; Tada, Ayano; Yoneda, Saori; Tokuda, Masaaki; Miyake, Minoru; Kuwahara, Tomomi

    2017-01-01

    Dental caries is an important global health concern and Streptococcus mutans has been established as a major cariogenic bacterial species. Reports indicate that a rare sugar, D-tagatose, is not easily catabolized by pathogenic bacteria. In the present study, the inhibitory effects of D-tagatose on the growth and biofilm formation of S. mutans GS-5 were examined. Monitoring S. mutans growth over a 24 h period revealed that D-tagatose prolonged the lag phase without interfering with the final c...

  7. Successful management of late-onset Streptococcus mitis endophthalmitis

    Directory of Open Access Journals (Sweden)

    Chon J

    2017-10-01

    Full Text Available Jinmann Chon,1 Moosang Kim2 1Department of Rehabilitation Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, 2Department of Ophthalmology, School of Medcine, Kangwon National University, Chuncheon, Korea Abstract: Endophthalmitis following intraocular surgery can be devastating. This case report demonstrates successful management of late-onset Streptococcus mitis endophthalmitis treated by vitrectomy, panretinal photocoagulation (PRP and silicone oil tamponade. A 75-year-old man presented with painful vision loss in his right eye. The patient had uneventful phacoemulsification and intraocular lens implantation in the right eye at an outside clinic 6 weeks prior. Examination disclosed hypopyon and vitritis, as well as discrete inflammatory collections in the vitreous. The patient underwent vitrectomy with PRP and silicone oil tamponade. Vitreous cultures were positive for S. mitis, a pathogen associated with severe tissue damage and poor clinical outcomes. One month after the surgery, intraocular inflammation was stabilized, and visual acuity was improved from light perception to 20/200. Aggressive surgical management may play a role in improving outcomes in these patients. Keywords: late-onset endophthalmitis, Streptococcus mitis, vitrectomy 

  8. Draft Genome Sequence of Streptococcus agalactiae Serotype Ia Strain M19, a Multidrug-Resistant Isolate from a Cow with Bovine Mastitis

    OpenAIRE

    Yang, Feng; Li, Hongsheng; Zhang, Shidong; Wang, Xurong

    2016-01-01

    Streptococcus agalactiae is a major contagious pathogen causing bovine mastitis worldwide. We report here the draft sequence of S.?agalactiae Ia strain M19, a multidrug-resistant isolate from a bovine mastitis case in Ningxia Hui autonomous region, China.

  9. New and emerging pathogens in canine infectious respiratory disease.

    Science.gov (United States)

    Priestnall, S L; Mitchell, J A; Walker, C A; Erles, K; Brownlie, J

    2014-03-01

    Canine infectious respiratory disease is a common, worldwide disease syndrome of multifactorial etiology. This review presents a summary of 6 viruses (canine respiratory coronavirus, canine pneumovirus, canine influenza virus, pantropic canine coronavirus, canine bocavirus, and canine hepacivirus) and 2 bacteria (Streptococcus zooepidemicus and Mycoplasma cynos) that have been associated with respiratory disease in dogs. For some pathogens a causal role is clear, whereas for others, ongoing research aims to uncover their pathogenesis and contribution to this complex syndrome. Etiology, clinical disease, pathogenesis, and epidemiology are described for each pathogen, with an emphasis on recent discoveries or novel findings.

  10. [Effect of the 10 kb sequence of piscine Streptococcus agalactiae on bacterial virulence].

    Science.gov (United States)

    Liu, Guangjin; Zhu, Jielian; Shi, Ziwei; Ding, Ming; Wang, Ruyi; Yao, Huochun; Lu, Chengping; Xu, Pao

    2016-01-04

    From the previous comparative genomic analysis, we found a specific unknown 10 kb sequence (including 11 Open reading Frames) in Chinese piscine strain GD201008-001 genome. To study the role of 10 kb in the pathogenicity of piscine S. agalactiae, the 10 kb sequence was deleted from the GD201008-001 genome. The isogenic mutant Δ10 kb was constructed by using the temperature-sensitive Streptococcus-E. coli shuttle vector pSET4s. We compared the growth characteristics, adherence to HEp-2 cell and bacterial virulence in a zebrafish infection model between wild strain and mutant. Meanwhile the expressions of the known virulence genes from GD201008-001 and Δ10 kb were also quantified by real-time PCR. The Δ10 kb showed no significant differences in bacterial morphology and adherence to HEp-2 cells compared with the wild-type strain, but the speed of growth was slightly slower than the wild strain. Furthermore the 50% lethal dose of Δ10 kb was decreased up to 10-fold (P kb sequence of piscine Streptococcus agalactiae exerts a significant effect on bacterial virulence and probably regulates the virulence genes expression of GD20 1008-001.

  11. In vitro antagonistic growth effects of Lactobacillus fermentum and lactobacillus salivarius and their fermentative broth on periodontal pathogens.

    Science.gov (United States)

    Chen, Ling-Ju; Tsai, Hsiu-Ting; Chen, Wei-Jen; Hsieh, Chu-Yang; Wang, Pi-Chieh; Chen, Chung-Shih; Wang, Lina; Yang, Chi-Chiang

    2012-10-01

    As lactobacilli possess an antagonistic growth property, these bacteria may be beneficial as bioprotective agents for infection control. However, whether the antagonistic growth effects are attributed to the lactobacilli themselves or their fermentative broth remains unclear. The antagonistic growth effects of Lactobacillus salivarius and Lactobacillus fermentum as well as their fermentative broth were thus tested using both disc agar diffusion test and broth dilution method, and their effects on periodontal pathogens, including Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis in vitro at different concentrations and for different time periods were also compared. Both Lactobacillus salivarius and Lactobacillus fermentum and their concentrated fermentative broth were shown to inhibit significantly the growth of Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis, although different inhibitory effects were observed for different pathogens. The higher the counts of lactobacilli and the higher the folds of concentrated fermentative broth, the stronger the inhibitory effects are observed. The inhibitory effect is demonstrated to be dose-dependent. Moreover, for the lactobacilli themselves, Lactobacillus fermentum showed stronger inhibitory effects than Lactobacillus salivarius. However, the fermentative broth of Lactobacillus fermentum showed weaker inhibitory effects than that of Lactobacillus salivarius. These data suggested that lactobacilli and their fermentative broth exhibit antagonistic growth activity, and consumption of probiotics or their broth containing lactobacilli may benefit oral health.

  12. In vitro antagonistic growth effects of Lactobacillus fermentum and Lactobacillus salivarius and their fermentative broth on periodontal pathogens

    Directory of Open Access Journals (Sweden)

    Ling-Ju Chen

    2012-12-01

    Full Text Available As lactobacilli possess an antagonistic growth property, these bacteria may be beneficial as bioprotective agents for infection control. However, whether the antagonistic growth effects are attributed to the lactobacilli themselves or their fermentative broth remains unclear. The antagonistic growth effects of Lactobacillus salivarius and Lactobacillus fermentum as well as their fermentative broth were thus tested using both disc agar diffusion test and broth dilution method, and their effects on periodontal pathogens, including Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalisin vitro at different concentrations and for different time periods were also compared. Both Lactobacillus salivarius and Lactobacillus fermentum and their concentrated fermentative broth were shown to inhibit significantly the growth of Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis, althoughdifferent inhibitory effects were observed for different pathogens. The higher the counts of lactobacilli and the higher the folds of concentrated fermentative broth, the stronger the inhibitory effects are observed. The inhibitory effect is demonstrated to be dose-dependent. Moreover, for the lactobacilli themselves, Lactobacillus fermentum showed stronger inhibitory effects than Lactobacillus salivarius. However, the fermentative broth of Lactobacillus fermentum showed weaker inhibitory effects than that of Lactobacillus salivarius. These data suggested that lactobacilli and their fermentative broth exhibit antagonistic growth activity, and consumption of probiotics or their broth containing lactobacilli may benefit oral health.

  13. Streptococcus moroccensis sp. nov. and Streptococcus rifensis sp. nov., isolated from raw camel milk.

    Science.gov (United States)

    Kadri, Zaina; Amar, Mohamed; Ouadghiri, Mouna; Cnockaert, Margo; Aerts, Maarten; El Farricha, Omar; Vandamme, Peter

    2014-07-01

    Two catalase- and oxidase-negative Streptococcus-like strains, LMG 27682(T) and LMG 27684(T), were isolated from raw camel milk in Morocco. Comparative 16S rRNA gene sequencing assigned these bacteria to the genus Streptococcus with Streptococcus rupicaprae 2777-2-07(T) as their closest phylogenetic neighbour (95.9% and 95.7% similarity, respectively). 16S rRNA gene sequence similarity between the two strains was 96.7%. Although strains LMG 27682(T) and LMG 27684(T) shared a DNA-DNA hybridization value that corresponded to the threshold level for species delineation (68%), the two strains could be distinguished by multiple biochemical tests, sequence analysis of the phenylalanyl-tRNA synthase (pheS), RNA polymerase (rpoA) and ATP synthase (atpA) genes and by their MALDI-TOF MS profiles. On the basis of these considerable phenotypic and genotypic differences, we propose to classify both strains as novel species of the genus Streptococcus, for which the names Streptococcus moroccensis sp. nov. (type strain, LMG 27682(T)  = CCMM B831(T)) and Streptococcus rifensis sp. nov. (type strain, LMG 27684(T)  = CCMM B833(T)) are proposed. © 2014 IUMS.

  14. Use of MALDI-TOF Mass Spectrometry for the Fast Identification of Gram-Positive Fish Pathogens

    Science.gov (United States)

    Assis, Gabriella B. N.; Pereira, Felipe L.; Zegarra, Alexandra U.; Tavares, Guilherme C.; Leal, Carlos A.; Figueiredo, Henrique C. P.

    2017-01-01

    Gram-positive cocci, such as Streptococcus agalactiae, Lactococcus garvieae, Streptococcus iniae, and Streptococcus dysgalactiae subsp. dysgalactiae, are found throughout the world, particularly in outbreaks in farmed fish, and are thus associated with high economic losses, especially in the cultivation of Nile Tilapia. The aim of this study was to evaluate the efficacy of matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF) mass spectrometry (MS) as an alternative for the diagnosis of these pathogens. One hundred and thirty-one isolates from Brazilian outbreaks assisted by the national authority were identified using a MALDI Biotyper from Bruker Daltonics. The results showed an agreement with respect to identification (Kappa = 1) between this technique and 16S ribosomal RNA gene sequencing for S. agalactiae and L. garvieae. However, for S. iniae and S. dysgalactiae subsp. dysgalactiae, perfect agreement was only achieved after the creation of a custom main spectra profile, as well as further comparisons with 16S ribosomal RNA and multilocus sequence analysis. MALDI-TOF MS was shown to be an efficient technology for the identification of these Gram-positive pathogens, yielding a quick and precise diagnosis. PMID:28848512

  15. Group B streptococcus - pregnancy

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000511.htm Group B streptococcus - pregnancy To use the sharing features on this page, please enable JavaScript. Group B streptococcus (GBS) is a type of bacteria that some ...

  16. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens.

    Science.gov (United States)

    Elshikh, Mohamed; Funston, Scott; Chebbi, Alif; Ahmed, Syed; Marchant, Roger; Banat, Ibrahim M

    2017-05-25

    Biosurfactants are naturally occurring surface active compounds that have mainly been exploited for environmental applications and consumer products, with their biomedical efficacy an emerging area of research. Rhamnolipids area major group of biosurfactants that have been reported for their antimicrobial and antibiofilm efficacy. One of the main limiting factors for scaled up production and downstream applications of rhamnolipids is the fact that they are predominantly produced from the opportunistic pathogen Pseudomonas aeruginosa. In this article, we have reported the production and characterisation of long chain rhamnolipids from non-pathogenic Burkholderia thailandensis E264 (ATCC 700388). We have also investigated the antibacterial and antibiofilm properties of these rhamnolipids against some oral pathogens (Streptococcus oralis, Actinomyces naeslundii, Neisseria mucosa and Streptococcus sanguinis), important for oral health and hygiene. Treating these bacteria with different concentrations of long chain rhamnolipids resulted in a reduction of 3-4 log of bacterial viability, placing these rhamnolipids close to being classified as biocidal. Investigating long chain rhamnolipid efficacy as antibiofilm agents for prospective oral-related applications revealed good potency against oral-bacteria biofilms in a co-incubation experiments, in a pre-coated surface format, in disrupting immature biofilms and has shown excellent combination effect with Lauryl Sodium Sulphate which resulted in a drastic decrease in its minimal inhibitory concentration against different bacteria. Investigating the rhamnolipid permeabilization effect along with their ability to induce the formation of reactive oxygen species has shed light on the mechanism through which inhibition/killing of bacteria may occur. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chronic mastitis in cows caused by Streptococcus dysgalactiae: Case report

    Directory of Open Access Journals (Sweden)

    Cojkić Aleksandar

    2015-01-01

    Full Text Available Mastitis in dairy cows is an economically important disease because it makes up 38% of all diseases that occur in intensive cattle breeding. Mastitis affects milk production, either temporarily or permanently, depending on the course of infection and type of pathogen agent. Regular and timely therapy of mastitis based on the application antimicrobials, apart from prophylaxis, is very important for good health of breeding stock. This paper presents the case of repeated mastitis in a cow, Holstein-Friesian breed, 5 years old, which did not respond to antibiotic therapy. Milk samples from each separate quarter of the udder were collected under aseptic conditions and sent to the laboratory for further bacteriological tests, for isolation and identification of pathogens, as well as to test pathogen resistance to some antibiotics. On the basis of bacteriological examinations, there was confirmed the presence of Streptococcus dysgalactiae, which showed sensitivity to ampicillin, cloxacillin and augmentin, intermediate resistance to tetracycline and resistance to kotrimeksazol.(cotrimoxazole-proveriti [Projekat Ministarstva nauke Republike Srbije, br. TR 31085

  18. Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus pneumoniae and mutans

    Science.gov (United States)

    Shanker, Erin; Federle, Michael J.

    2017-01-01

    The human pathogens Streptococcus pneumoniae and Streptococcus mutans have both evolved complex quorum sensing (QS) systems that regulate the production of bacteriocins and the entry into the competent state, a requirement for natural transformation. Natural transformation provides bacteria with a mechanism to repair damaged genes or as a source of new advantageous traits. In S. pneumoniae, the competence pathway is controlled by the two-component signal transduction pathway ComCDE, which directly regulates SigX, the alternative sigma factor required for the initiation into competence. Over the past two decades, effectors of cellular killing (i.e., fratricides) have been recognized as important targets of the pneumococcal competence QS pathway. Recently, direct interactions between the ComCDE and the paralogous BlpRH pathway, regulating bacteriocin production, were identified, further strengthening the interconnections between these two QS systems. Interestingly, a similar theme is being revealed in S. mutans, the primary etiological agent of dental caries. This review compares the relationship between the bacteriocin and the competence QS pathways in both S. pneumoniae and S. mutans, and hopes to provide clues to regulatory pathways across the genus Streptococcus as a potential tool to efficiently investigate putative competence pathways in nontransformable streptococci. PMID:28067778

  19. Vaccination against group B streptococcus.

    Science.gov (United States)

    Heath, Paul T; Feldman, Robert G

    2005-04-01

    Streptococcus agalactiae (Group B streptococcus) is an important cause of disease in infants, pregnant women, the elderly and in immunosuppressed adults. An effective vaccine is likely to prevent the majority of infant disease (both early and late onset), as well as Group B streptococcus-related stillbirths and prematurity, to avoid the current real and theoretical limitations of intrapartum antibiotic prophylaxis, and to be cost effective. The optimal time to administer such a vaccine would be in the third trimester of pregnancy. The main limitations on the production of a Group B streptococcus vaccine are not technical or scientific, but regulatory and legal. A number of candidates including capsular conjugate vaccines using traditional carrier proteins such as tetanus toxoid and mutant diphtheria toxin CRM197, as well as Group B streptococcus-specific proteins such as C5a peptidase, protein vaccines using one or more Group B streptococcus surface proteins and mucosal vaccines, have the potential to be successful vaccines. The capsular conjugate vaccines using tetanus and CRM197 carrier proteins are the most advanced candidates, having already completed Phase II human studies including use in the target population of pregnant women (tetanus toxoid conjugate), however, no definitive protein conjugates have yet been trialed. However, unless the regulatory environment is changed specifically to allow the development of a Group B streptococcus vaccine, it is unlikely that one will ever reach the market.

  20. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae capsular type Ib: is genetic resistance correlated?

    Science.gov (United States)

    Streptococcus (S.) iniae and S. agalactiae are both economically important Gram positive bacterial pathogens affecting the globally farmed tilapia (Oreochromis spp.). Historically control of these bacteria in tilapia culture has included biosecurity, therapeutants and vaccination strategies. Genet...

  1. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    Science.gov (United States)

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. © FEMS 2015.

  2. Sequencing and comparative genome analysis of two pathogenic Streptococcus gallolyticus subspecies: genome plasticity, adaptation and virulence.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I and S. pasteurianus ATCC 43144 (biotype II.2. The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92% and 1607 (86% of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops.

  3. Antimicrobial activity of nisin against the swine pathogen Streptococcus suis and its synergistic interaction with antibiotics.

    Science.gov (United States)

    Lebel, Geneviève; Piché, Fanny; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel

    2013-12-01

    Streptococcus suis serotype 2 is known to cause severe infections in pigs, including meningitis, endocarditis and pneumonia. Furthermore, this bacterium is considered an emerging zoonotic agent. Recently, increased antibiotic resistance in S. suis has been reported worldwide. The objective of this study was to evaluate the potential of nisin, a bacteriocin of the lantibiotic class, as an antibacterial agent against the pathogen S. suis serotype 2. In addition, the synergistic activity of nisin in combination with conventional antibiotics was assessed. Using a plate assay, the nisin-producing strain Lactococcus lactis ATCC 11454 proved to be capable of inhibiting the growth of S. suis (n=18) belonging to either sequence type (ST)1, ST25, or ST28. In a microdilution broth assay, the minimum inhibitory concentration (MIC) of purified nisin ranged between 1.25 and 5 μg/mL while the minimum bactericidal concentration (MBC) was between 5 and 10 μg/mL toward S. suis. The use of a capsule-deficient mutant of S. suis indicated that the presence of this polysaccharidic structure has no marked impact on susceptibility to nisin. Following treatment of S. suis with nisin, transmission electron microscopy observations revealed lysis of bacteria resulting from breakdown of the cell membrane. A time-killing curve showed a rapid bactericidal activity of nisin. Lastly, synergistic effects of nisin were observed in combination with several antibiotics, including penicillin, amoxicillin, tetracycline, streptomycin and ceftiofur. This study brought clear evidence supporting the potential of nisin for the prevention and treatment of S. suis infections in pigs. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159

    Science.gov (United States)

    Zeng, Lin; Culp, David J.

    2018-01-01

    ABSTRACT Transposon mutagenesis coupled with next-generation DNA sequencing (Tn-seq) is a powerful tool for discovering regions of the genome that are required for the survival of bacteria in different environments. We adapted this technique to the dental caries pathogen Streptococcus mutans UA159 and identified 11% of the genome as essential, with many genes encoding products required for replication, translation, lipid metabolism, and cell wall biogenesis. Comparison of the essential genome of S. mutans UA159 with those of selected other streptococci for which such information is available revealed several metabolic pathways and genes that are required in S. mutans, but not in some Streptococcus spp. We further identified genes that are essential for sustained growth in rich or defined medium, as well as for persistence in vivo in a rodent model of oral infection. Collectively, our results provide a novel and comprehensive view of the genes required for essential processes of S. mutans, many of which could represent potential targets for therapeutics. IMPORTANCE Tooth decay (dental caries) is a common cause of pain, impaired quality of life, and tooth loss in children and adults. It begins because of a compositional change in the microorganisms that colonize the tooth surface driven by repeated and sustained carbohydrate intake. Although several bacterial species are associated with tooth decay, Streptococcus mutans is the most common cause. Therefore, it is important to identify biological processes that contribute to the survival of S. mutans in the human mouth, with the aim of disrupting the processes with antimicrobial agents. We successfully applied Tn-seq to S. mutans, discovering genes that are required for survival, growth, and persistence, both in laboratory environments and in a mouse model of tooth decay. This work highlights new avenues for the control of an important human pathogen. PMID:29435491

  5. Controlled Human Infection for Vaccination Against Streptococcus Pyogenes

    Science.gov (United States)

    2018-04-26

    Streptococcus Pyogenes Pharyngitis; Streptococcus Pharyngitis; Strep Throat; Streptococcus Pyogenes Infection; Group A Streptococcus: B Hemolytic Pharyngitis; Group A Streptococcal Infection; Gram-Positive Bacterial Infections; Bacterial Infections

  6. The homodimeric GBS1074 from Streptococcus agalactiae

    International Nuclear Information System (INIS)

    Shukla, Anshuman; Pallen, Mark; Anthony, Mark; White, Scott A.

    2010-01-01

    The homodimeric nature of the ESAT-6 homologue GBS1074 and the potential for fibre-like assemblies are revealed by the 2 Å resolution crystal structure. ESAT-6 is a well characterized secreted protein from Mycobacterium tuberculosis and represents the archetype of the WXG100 family of proteins. Genes encoding ESAT-6 homologues have been identified in the genome of the human pathogen Streptococcus agalactiae; one of these genes, esxA, has been cloned and the recombinant protein has been crystallized. In contrast to M. tuberculosis ESAT-6, the crystal structure of GBS1074 reveals a homodimeric structure similar to homologous structures from Staphylococcus aureus and Helicobacter pylori. Intriguingly, GBS1074 forms elongated fibre-like assemblies in the crystal structure

  7. Streptococcal toxic-shock syndrome due to Streptococcus dysgalactiae subspecies equisimilis in breast cancer-related lymphedema: a case report.

    Science.gov (United States)

    Sumazaki, Makoto; Saito, Fumi; Ogata, Hideaki; Yoshida, Miho; Kubota, Yorichika; Magoshi, Syunsuke; Kaneko, Hironori

    2017-07-14

    Breast cancer-related lymphedema often causes cellulitis and is one of the most common complications after breast cancer surgery. Streptococci are the major pathogens underlying such cellulitis. Among the streptococci, the importance of the Lancefield groups C and G is underappreciated; most cases involve Streptococcus dysgalactiae subspecies equisimilis. Despite having a relatively weak toxicity compared with group A streptococci, Streptococcus dysgalactiae subspecies equisimilis is associated with a mortality rate that is as high as that of group A streptococci in cases of invasive infection because Streptococcus dysgalactiae subspecies equisimilis mainly affects elderly individuals who already have various comorbidities. An 83-year-old Japanese woman with breast cancer-related lymphedema in her left upper limb was referred to our hospital with high fever and acute pain with erythema in her left arm. She showed septic shock with disseminated intravascular coagulation. Blood culture showed positive results for Streptococcus dysgalactiae subspecies equisimilis, confirming a diagnosis of streptococcal toxic-shock syndrome. She survived after successful intensive care. To the best of our knowledge, this case represents the first report of Streptococcus dysgalactiae subspecies equisimilis-induced streptococcal toxic-shock syndrome in a patient with breast cancer-related lymphedema. Breast cancer-related lymphedema is a common problem, and we must pay attention to invasive streptococcal soft tissue infections, particularly in elderly patients with chronic disease.

  8. [Distribution and drug resistance of the pathogenic bacteria from sputum specimens of 1 125 children with tracheo bronchial foreign bodies].

    Science.gov (United States)

    Wen, Xin; Su, Jinzhu; Cui, Li; Wang, Juan; Zuo, Lujie

    2015-02-01

    To analyze the distribution and drug susceptibility of the pathogenic bacteria in the airway secretions in children with tracheobronchial foreign bodies so as to assist physicians in clinical prescription. Sputum specimens of 1 125 children with tracheobronchial foreign bodies were collected in removal of the foreign bodies by rigid bronchoscope, and the drug susceptibility test was performed. Pathogenic bacteria were detected in 218 (19.4%) of 1 125 sputum specimens. Among the pathogenic bacteria, 126 (57.79%) strains were gram-negative bacilli, consisting of 76 (34.86%) strains of Haemophilus influenzae, 10 (4.59%) strains of Escherichia coli, 7 (3.21%) strains of Sewer enterobacter, 7 (3.21%) strains of Pseudomonas aeruginosa, and 6 (2.75%) strains of Klebsiella bacillus; and 92 (42.21%) strains were gram-positive bacilli, consisting of 80 (36.69%) strains of Streptococcus pneumonia and 10 (4.59%) strains of Escherichia coli. Most of detected gram-negative bacilli were highly sensitive to cefepime, ceftazidine, imipenem and amikacin, no strains were resistant to meropenem and ciprofloxacin. None of the detected gram-positive bacilli were resistant to cefepime, vancomycin, levofloxacin and teicoplanin. The Haemophilus influenzae of gram-negative bacilli and the Streptococcus pneumonia of gram-positive bacilli are the main pathogenic bacteria existing in the airway secretions of children with tracheobronchial foreign bodies. The Haemophilus influenzae were highly sensitive to cephalosporin, imipenem and amikacin, and the Streptococcus pneumonia to cefepime, vancomycin, levofloxacin and teicoplanin.

  9. MALDI-TOF mass spectrometry for differentiation between Streptococcus pneumoniae and Streptococcus pseudopneumoniae.

    Science.gov (United States)

    van Prehn, Joffrey; van Veen, Suzanne Q; Schelfaut, Jacqueline J G; Wessels, Els

    2016-05-01

    We compared the Vitek MS and Microflex MALDI-TOF mass spectrometry platform for species differentiation within the Streptococcus mitis group with PCR assays targeted at lytA, Spn9802, and recA as reference standard. The Vitek MS correctly identified 10/11 Streptococcus pneumoniae, 13/13 Streptococcus pseudopneumoniae, and 12/13 S. mitis/oralis. The Microflex correctly identified 9/11 S. pneumoniae, 0/13 S. pseudopneumoniae, and 13/13 S. mitis/oralis. MALDI-TOF is a powerful tool for species determination within the mitis group. Diagnostic accuracy varies depending on platform and database used. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Pathogenic bacteria colonizing the airways in asymptomatic neonates stimulates topical inflammatory mediator release

    DEFF Research Database (Denmark)

    Følsgaard, Nilofar Vahman; Schjørring, Susanne; Chawes, Bo Lund Krogsgaard

    2013-01-01

    Rationale: Bacterial colonization of neonatal airways with the pathogenic bacterial species, Moraxella catarrhalis, Streptococcus pneumoniae, and Haemophilus influenzae, is associated with later development of childhood asthma. Objectives: To study a possible association between colonization...... with pathogenic bacterial strains and the immune signature of the upper airways in healthy neonates. Methods: A total of 20 cytokines and chemokines were quantified in vivo in the airway mucosal lining fluid of 662 neonates from the Copenhagen Prospective Study of Asthma in Childhood 2010 birth cohort...

  11. The Streptococcus sanguinis competence regulon is not required for infective endocarditis virulence in a rabbit model.

    Science.gov (United States)

    Callahan, Jill E; Munro, Cindy L; Kitten, Todd

    2011-01-01

    Streptococcus sanguinis is an important component of dental plaque and a leading cause of infective endocarditis. Genetic competence in S. sanguinis requires a quorum sensing system encoded by the early comCDE genes, as well as late genes controlled by the alternative sigma factor, ComX. Previous studies of Streptococcus pneumoniae and Streptococcus mutans have identified functions for the >100-gene com regulon in addition to DNA uptake, including virulence. We investigated this possibility in S. sanguinis. Strains deleted for the comCDE or comX master regulatory genes were created. Using a rabbit endocarditis model in conjunction with a variety of virulence assays, we determined that both mutants possessed infectivity equivalent to that of a virulent control strain, and that measures of disease were similar in rabbits infected with each strain. These results suggest that the com regulon is not required for S. sanguinis infective endocarditis virulence in this model. We propose that the different roles of the S. sanguinis, S. pneumoniae, and S. mutans com regulons in virulence can be understood in relation to the pathogenic mechanisms employed by each species.

  12. Evaluation of colorimetric loop-mediated isothermal amplification assay for visual detection of Streptococcus agalactiae and Streptococcus iniae in tilapia.

    Science.gov (United States)

    Suebsing, R; Kampeera, J; Tookdee, B; Withyachumnarnkul, B; Turner, W; Kiatpathomchai, W

    2013-10-01

    Streptococcus agalactiae and Strep. iniae are bacterial pathogens that cause streptococcosis in many fish species. An accelerated colorimetric loop-mediated isothermal amplification (LAMP) assay with pre-addition of calcein was established, and the transmission and detection of Strep. agalactiae and Strep. iniae in tilapia under natural aquatic environment were investigated. A positive reaction was observed by a colour change from orange to green through the naked eyes after completion at 63°C for 30 min with 10 times higher sensitivity than that of nested PCR assays and without cross-amplification with other fish bacterial pathogens. All sample types of Nile and red tilapia (broodstock, fertilized egg, fry) were Strep. agalactiae- and Strep. iniae positive by this new method, implying that they could be vertically transmitted. With its application for screening broodstock and fry before stocking and for monitoring fish health in grow-out ponds, the method would become very useful in fish farming industry. The application of colorimetric LAMP with pre-addition of calcein offers simple, rapid and sensitive technique with applicability for small field laboratories. This technique explored the possible vertical transmission mode of Strep. agalactiae and Strep. iniae under natural aquatic environment. It could be such preliminary data provided for the screening broodstock before breeding and/or the specific-pathogen-free production. © 2013 The Society for Applied Microbiology.

  13. Potential of Piper betle extracts on inhibition of oral pathogens.

    Science.gov (United States)

    Phumat, Pimpak; Khongkhunthian, Sakornrat; Wanachantararak, Phenphichar; Okonogi, Siriporn

    2017-01-01

    In the present study, antimicrobial activity of Piper betle crude ethanol extract against 4 strains of oral pathogens; Candida albicans DMST 8684, C. albicans DMST 5815, Streptococcus gordonii DMST 38731 and Streptococcus mutans DMST 18777 was compared with other medicinal plants. P. betle showed the strongest antimicrobial activity against all tested strains. Fractionated extracts of P. betle using hexane, ethyl acetate, and ethanol, respectively, were subjected to antimicrobial assay. The result revealed that the fractionated extract from ethyl acetate (F-EtOAc) possessed the strongest antimicrobial activity against all tested strains. Its inhibition zones against those pathogens were 23.00 ± 0.00, 24.33 ± 0.58, 12.50 ± 0.70 and 11.00 ± 0.00 mm, respectively and its minimum inhibitory concentrations were 0.50, 1.00, 0.50 and 1.00 mg/mL, respectively. Interestingly, the minimum concentration to completely kill those pathogens was the same for all strains and found to be 2.00 mg/mL. Killing kinetic study revealed that the activity of F-EtOAc was dose dependent. HPLC chromatograms of P. betle extracts were compared with its antimicrobial activity. An obvious peak at a retention time of 4.11 min was found to be a major component of F-EtOAc whereas it was a minor compound in the other extracts. This peak was considered to be an active compound of P. betle as it was consistent with the antimicrobial activity of F-EtOAc, the most potential extract against the tested pathogens. It is suggested that F-EtOAc is a promising extract of P. betle for inhibition of oral pathogens. Separation and structure elucidation of the active compound of this extract will be further investigated.

  14. Comparative genomics of Streptococcus pyogenes M1 isolates differing in virulence and propensity to cause systemic infection in mice

    NARCIS (Netherlands)

    Fiebig, A.; Loof, T.G.; Babbar, A.; Itzeg, A.; Koehorst, J.J.; Schaap, P.J.; Nitsche-Schmitz, D.P.

    2015-01-01

    Streptococcus pyogenes serotype M1 is a frequent cause of severe infections in humans. Some M1 isolates are pathogenic in mice and used in studies on infection pathogenesis. We observed marked differences in murine infections caused by M1 strain SF370, 5448, 5448AP or AP1 which prompted us to

  15. Streptococcus pneumoniae Drugs Resistance in Acute Rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Chong Jie Hao

    2016-03-01

    Full Text Available Background: Acute rhinosinusitis that usually caused by Streptococcus pneumoniae becomes the reason why patients seek for medical care. Drugs resistance in Streptococcus pneumoniae is increasing worldwide. This study was conducted to determine drugs resistance of Streptococcus pneumonia from acute rhinosinusitis in Dr. Hasan Sadikin General Hospital. Methods: A descriptive laboratory study was conducted in June–October 2014 at the Laboratory of Microbiology Faculty of Medicine Universitas Padjadjaran. The sample was taken using nasopharyngeal swabbing from 100 acute rhinosinusitis patients in Dr. Hasan Sadikin General Hospital and planted on tryptic soy agar containing 5% sheep blood and 5 μg/ml of gentamicin sulphate and then incubated in 5% CO2 incubator at 37°C for 24 hours. The identification of Streptococcus pneumonia was performed by optochin test. The susceptibility test against Streptococcus pneumoniae was done using disk diffusion method.The antibiotic disks were trimethoprim-sulfamethoxazole, oxacillin, levofloxacin, azithromycin, and doxycycline. Results: Out of 100 samples, 8 of them were tested positive for Streptococcus pneumoniae. Three of Streptococcus pneumoniae isolates died with unknown reason after it were stored at -80 .The drugs resistance test showed the resistance of Streptococcus pneumonia to oxacillin, azithromycin and trimethoprim were 6, whereas levofloxacin and doxycycline are 4. Conclusions: Streptococcus pneumonia drugs resistance in acute rhinosinusitis shows the resistance of Streptococcus pneumoniae to oxacillin, azithromycin and trimethoprim are 6, whereas the resistance to levofloxacin and doxycycline are 4.

  16. Purification and characterization of ribosomal proteins L27 and L30 having antimicrobial activity produced by the Lactobacillus salivarius SGL 03.

    Science.gov (United States)

    Pidutti, P; Federici, F; Brandi, J; Manna, L; Rizzi, E; Marini, U; Cecconi, D

    2018-02-01

    The aim of this study was to investigate the antimicrobial potential of proteins secreted by a new strain of Lactobacillus salivarius. The secretome of L. salivarius SGL 03 strain was analysed by gel-assisted fractionation and MS/MS to identify low-molecular-mass proteins. This strategy allowed us to identify 10 secreted proteins. Then, a combination of heterologous expression and agar well diffusion was used to characterize them as to their antimicrobial activity, mechanisms of action and stability. Our findings indicate that L27 and L30 proteins of the 50S ribosomal subunit have antimicrobial activity against Streptococcus pyogenes, Streptococcus uberis and Enterococcus faecium. In addition, both proteins are bactericidal against S. pyogenes and maintain their antimicrobial activity after different protease treatments, at acidic pH, after heat treatment, and if stored in a refrigerated ambient at least at 4°C. The overall results demonstrated that the L27 and L30 ribosomal proteins are of interest as new antimicrobial molecules to prevent the growth of S. pyogenes, S. uberis and E. faecium. Our results provide the first insight into the extra-ribosomal activity of L27 and L30 secreted proteins of L. salivarius. This study demonstrated the capacity of L. salivarius SGL 03 to produce antimicrobial molecules and suggested this strain as a promising probiotic candidate. © 2017 The Society for Applied Microbiology.

  17. Construction of improved tools for protein localization studies in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Mafalda X Henriques

    Full Text Available We have constructed a set of plasmids that allow efficient expression of both N- and C-terminal fusions of proteins of interest to fluorescent proteins mCherry, Citrine, CFP and GFP in the Gram-positive pathogen Streptococcus pneumoniae. In order to improve expression of the fluorescent fusions to levels that allow their detection by fluorescence microscopy, we have introduced a 10 amino acid tag, named i-tag, at the N-terminal end of the fluorescent proteins. This caused increased expression due to improved translation efficiency and did not interfere with the protein localization in pneumococcal bacteria. Localizing fluorescent derivatives of FtsZ, Wzd and Wze in dividing bacteria validated the developed tools. The availability of the new plasmids described in this work should greatly facilitate studies of protein localization in an important clinical pathogen.

  18. Virulence Factors of Streptococcus mutans.

    Science.gov (United States)

    1986-08-01

    763512/715242 Final Report U VIRULENCE FACTORS OF STREPTOCOCCUS MUTANS U Samuel Rosen Department of Oral Biology For the Period April 1, 1983 - June 30...00 FINAL REPORT VIRULENCE FACTORS OF STREPTOCOCCUS MUTANS Sam Rosen, Irving Shklair, E. X. Beck and F. M. Beck Ohio State University Columbus,Oh and...206-212. Johnson CP, Gorss S, Hillman JD (1978). Cariogenic properties of LDH deficient mutants of streptococcus mutans . J Dent Res 57, Special Issue

  19. Whole-cell vaccine of Streptococcus agalactiae in Oreochromis sp. with immersion method

    Directory of Open Access Journals (Sweden)

    , Sukenda

    2015-05-01

    Full Text Available ABSTRACT The study was aimed to evaluate the efficacy of formalin-killed non-hemolytic Streptococcus agalactiae N14G and NK1 isolates whole-killed vaccine to prevent streptococcosis in tilapia. Ten fishes were reared in a tank 60x30x35 cm3 with an average body weight at 10.79±0.99 g. Fish was vaccinated through bath immersion at a concentration of 109 cfu/mL. Fish was subsequently challenged by intraperitonial injection of Streptococcus agalactiae 105 cfu/mL at 11 days post-vaccination. Parameters observed were survival, relative percent survival (RPS, total leukocyte, phagocytic activity, antibody titer, total erythrocyte, haemoglobin level, haematocrit level, dan water quality. Samplings were performed in day-0, 20, and 30 after vaccination. Both vaccines have shown higher survival (60% and RPS (40% when challenged with pathogenic Streptococcus N14G isolates than other treatments. Based on RPS percentage observed, those vaccine were still not sufficiently effective to combat S. agalactiae infection. Keywords: tilapia, bath immersion, Streptococcus agalactiae, whole-cell vaccine ABSTRAK Penelitian ini bertujuan untuk mengevaluasi efikasi vaksin formalin-killed cell Streptococcus agalactiae tipe isolat nonhemolitik N14G dan NK1 se utuh yang diberikan melalui perendaman dalam mencegah penyakit streptococcosis pada ikan nila. Ikan nila yang digunakan memiliki bobot 10,79±0,99 g, dipelihara sebanyak sepuluh ekor dalam akuarium ukuran 60x30x35 cm3. Ikan divaksinasi dengan metode perendaman dengan dosis 109 cfu/mL. Uji tantang dilakukan pada hari ke-11 pascavaksinasi dengan dosis 105 cfu/mL. Parameter yang diamati meliputi sintasan (SR, sintasan relatif/relative percent survival (RPS, total leukosit, aktivitas fagositik, titer antibodi, total eritrosit, kadar hemoglobin, kadar hematokrit, dan kualitas air. Pengamatan parameter dilakukan pada hari ke-0, ke-10, ke-20, dan ke-30. Hasil penelitian menunjukkan perlakuan kedua vaksin yang diinfeksi

  20. Transcriptome adaptation of group B Streptococcus to growth in human amniotic fluid.

    Directory of Open Access Journals (Sweden)

    Izabela Sitkiewicz

    Full Text Available BACKGROUND: Streptococcus agalactiae (group B Streptococcus is a bacterial pathogen that causes severe intrauterine infections leading to fetal morbidity and mortality. The pathogenesis of GBS infection in this environment is poorly understood, in part because we lack a detailed understanding of the adaptation of this pathogen to growth in amniotic fluid. To address this knowledge deficit, we characterized the transcriptome of GBS grown in human amniotic fluid (AF and compared it with the transcriptome in rich laboratory medium. METHODS: GBS was grown in Todd Hewitt-yeast extract medium and human AF. Bacteria were collected at mid-logarithmic, late-logarithmic and stationary growth phase. We performed global expression microarray analysis using a custom-made Affymetrix GeneChip. The normalized hybridization values derived from three biological replicates at each growth point were obtained. AF/THY transcript ratios representing greater than a 2-fold change and P-value exceeding 0.05 were considered to be statistically significant. PRINCIPAL FINDINGS: We have discovered that GBS significantly remodels its transcriptome in response to exposure to human amniotic fluid. GBS grew rapidly in human AF and did not exhibit a global stress response. The majority of changes in GBS transcripts in AF compared to THY medium were related to genes mediating metabolism of amino acids, carbohydrates, and nucleotides. The majority of the observed changes in transcripts affects genes involved in basic bacterial metabolism and is connected to AF composition and nutritional requirements of the bacterium. Importantly, the response to growth in human AF included significant changes in transcripts of multiple virulence genes such as adhesins, capsule, and hemolysin and IL-8 proteinase what might have consequences for the outcome of host-pathogen interactions. CONCLUSIONS/SIGNIFICANCE: Our work provides extensive new information about how the transcriptome of GBS responds

  1. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus

    Science.gov (United States)

    2011-01-01

    Background Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus. Methods 16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis. Results The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach. Conclusions The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus. PMID:21702978

  2. Identification of organic acids in Cichorium intybus inhibiting virulence-related properties of oral pathogenic bacteria

    NARCIS (Netherlands)

    Papetti, A.; Mascherpa, D.; Carazzone, C.; Stauder, M.; Spratt, D.A.; Wilson, M.; Pratten, J.; Ciric, L.; Lingström, P.; Zaura, E.; Weiss, E.; Ofek, I.; Signoretto, C.; Pruzzo, C.; Gazzani, G.

    2013-01-01

    The low molecular mass (LMM) extract of Cichorium intybus var. silvestre (red chicory) has been shown to inhibit virulence-linked properties of oral pathogens including Streptococcus mutans, Actinomyces naeslundii and Prevotella intermedia. In the present study HPLC-DAD-ESI/MS2 was used to

  3. Relation of Growth of Streptococcus lactis and Streptococcus cremoris to Amino Acid Transport

    NARCIS (Netherlands)

    Poolman, Bert; Konings, Wil N.

    The maximum specific growth rate of Streptococcus lactis and Streptococcus cremoris on synthetic medium containing glutamate but no glutamine decreases rapidly above pH 7. Growth of these organisms is extended to pH values in excess of 8 in the presence of glutamine. These results can be explained

  4. Recommended conservation of the names Streptococcus sanguis, Streptococcus rattus, Streptococcus cricetus, and seven other names included in the Approved Lists of Bacterial Names. Request for an opinion

    DEFF Research Database (Denmark)

    Kilian, Mogens

    2001-01-01

    With reference to the first Principle of the International Code of Nomenclature of Bacteria, which emphasizes stability of names, it is proposed that the original names Streptococcus sanguis, Streptococcus rattus, Streptococcus cricetus, Erwinia ananas, Eubacterium tarantellus, Lactobacillus sake......, Nitrosococcus oceanus, Pseudomonas betle, Rickettsia canada and Streptomyces rangoon, all included in the Approved Lists of Bacterial Names, be conserved. Request for an Opinion...

  5. Streptococcus loxodontisalivarius sp. nov. and Streptococcus saliviloxodontae sp. nov., isolated from oral cavities of elephants.

    Science.gov (United States)

    Saito, Masanori; Shinozaki-Kuwahara, Noriko; Hirasawa, Masatomo; Takada, Kazuko

    2014-09-01

    Four Gram-stain-positive, catalase-negative, coccoid-shaped organisms were isolated from elephant oral cavities. The isolates were tentatively identified as streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequencing studies confirmed the organisms to be members of the genus Streptococcus. Two isolates (NUM 6304(T) and NUM 6312) were related most closely to Streptococcus salivarius with 96.8 % and 93.1 % similarity based on the 16S rRNA gene and the RNA polymerase β subunit encoding gene (rpoB), respectively, and to Streptococcus vestibularis with 83.7 % similarity based on the 60 kDa heat-shock protein gene (groEL). The other two isolates (NUM 6306(T) and NUM 6318) were related most closely to S. vestibularis with 97.0 % and 82.9 % similarity based on the 16S rRNA and groEL genes, respectively, and to S. salivarius with 93.5 % similarity based on the rpoB gene. Based on phylogenetic and phenotypic evidence, these isolates are suggested to represent novel species of the genus Streptococcus, for which the names Streptococcus loxodontisalivarius sp. nov. (type strain NUM 6304(T) = JCM 19287(T) = DSM 27382(T)) and Streptococcus saliviloxodontae sp. nov. (type strain NUM 6306(T) = JCM 19288(T) = DSM 27513(T)) are proposed. © 2014 IUMS.

  6. Probing genomic diversity and evolution of Streptococcus suis serotype 2 by NimbleGen tiling arrays

    Directory of Open Access Journals (Sweden)

    Liao Hui

    2011-05-01

    Full Text Available Abstract Background Our previous studies revealed that a new disease form of streptococcal toxic shock syndrome (STSS is associated with specific Streptococcus suis serotype 2 (SS2 strains. To achieve a better understanding of the pathogenicity and evolution of SS2 at the whole-genome level, comparative genomic analysis of 18 SS2 strains, selected on the basis of virulence and geographic origin, was performed using NimbleGen tiling arrays. Results Our results demonstrate that SS2 isolates have highly divergent genomes. The 89K pathogenicity island (PAI, which has been previously recognized as unique to the Chinese epidemic strains causing STSS, was partially included in some other virulent and avirulent strains. The ABC-type transport systems, encoded by 89K, were hypothesized to greatly contribute to the catastrophic features of STSS. Moreover, we identified many polymorphisms in genes encoding candidate or known virulence factors, such as PlcR, lipase, sortases, the pilus-associated proteins, and the response regulator RevS and CtsR. On the basis of analysis of regions of differences (RDs across the entire genome for the 18 selected SS2 strains, a model of microevolution for these strains is proposed, which provides clues into Streptococcus pathogenicity and evolution. Conclusions Our deep comparative genomic analysis of the 89K PAI present in the genome of SS2 strains revealed details into how some virulent strains acquired genes that may contribute to STSS, which may lead to better environmental monitoring of epidemic SS2 strains.

  7. Passive maternal exposure to environmental microbes selectively modulates the innate defences of chicken egg white by increasing some of its antibacterial activities.

    Science.gov (United States)

    Bedrani, Larbi; Helloin, Emmanuelle; Guyot, Nicolas; Réhault-Godbert, Sophie; Nys, Yves

    2013-06-07

    Egg defence against bacterial contamination relies on immunoglobulins (IgY) concentrated in the yolk and antimicrobial peptides/proteins predominantly localized in the egg white (EW). Hens contaminated with pathogenic microorganisms export specific IgYs to the egg (adaptative immunity). No evidence of such regulation has been reported for the antimicrobial peptides/proteins (innate immunity) which are preventively secreted by the hen oviduct and are active against a large range of microbes. We investigated whether the egg innate defences can be stimulated by the environmental microbial contamination by comparing the antimicrobial activity of EW of hens raised in three extreme breeding conditions: Germ-free (GF), Specific Pathogen Free (SPF) and Conventional (C) hens. The difference in the immunological status of GF, SPF and C hens was confirmed by the high stimulation of IL-1β, IL-8 and TLR4 genes in the intestine of C and SPF groups. EW from C and SPF groups demonstrated higher inhibitory effect against Staphylococcus aureus (13 to 18%) and against Streptococcus uberis (31 to 35%) as compared to GF but showed similar activity against Salmonella Enteritidis, Salmonella Gallinarum, Escherichia coli and Listeria monocytogenes. To further investigate these results, we explored putative changes amongst the three main mechanisms of egg antimicrobial defence: the sequestration of bacterial nutrients, the inactivation of exogenous proteases and the direct lytic action on microorganisms. Lysozyme activity, chymotrypsin-, trypsin- and papain-inhibiting potential of EW and the expression of numerous antimicrobial genes were not stimulated suggesting that these are not responsible for the change in anti-S. aureus and anti-S. uberis activity. Moreover, whereas the expression levels of IL-1β, IL-8 and TLR4 genes were modified by the breeding conditions in the intestine of C and SPF groups they were not modified in the magnum where egg white is formed. Altogether, these data

  8. Identification of salivary mucin MUC7 binding proteins from Streptococcus gordonii

    Directory of Open Access Journals (Sweden)

    Thornton David J

    2009-08-01

    Full Text Available Abstract Background The salivary mucin MUC7 (previously known as MG2 can adhere to various strains of streptococci that are primary colonizers and predominant microorganisms of the oral cavity. Although there is a growing interest in interaction between oral pathogens and salivary mucins, studies reporting the specific binding sites on the bacteria are rather limited. Identification and characterization of the specific interacting proteins on the bacterial cell surface, termed adhesins, are crucial to further understand host-pathogen interactions. Results We demonstrate here, using purified MUC7 to overlay blots of SDS-extracts of Streptococcus gordonii cell surface proteins, 4 MUC7-binding bands, with apparent molecular masses of 62, 78, 84 and 133 kDa from the Streptococcus gordonii strain, PK488. Putative adhesins were identified by in-gel digestion and subsequent nanoLC-tandem mass spectrometry analysis of resultant peptides. The 62 kDa and 84 kDa bands were identified as elongation factor (EF Tu and EF-G respectively. The 78 kDa band was a hppA gene product; the 74 kDa oligopeptide-binding lipoprotein. The 133 kDa band contained two proteins; alpha enolase and DNA-directed RNA polymerase, beta' subunit. Some of these proteins, for example alpha enolase are expected to be intracellular, however, flow cytometric analysis confirmed its location on the bacterial surface. Conclusion Our data demonstrated that S. gordonii expressed a number of putative MUC7 recognizing proteins and these contribute to MUC7 mucin binding of this streptococcal strain.

  9. An Unusual Cause of Flexor Tenosynovitis: Streptococcus mitis

    Science.gov (United States)

    Ulucay, Cağatay; Ozler, Turhan

    2014-01-01

    Summary: Streptococcus mitis is a commensal organism of the human oropharynx that rarely causes infection in healthy individuals. Herein, we describe a previously healthy 35-year-old woman who presented with acute pyogenic flexor tenosynovitis of the left index finger due to S. mitis infection. The patient’s infection was treated successfully via surgical and medical interventions, and during follow-up, it was determined that she was complement component C3 deficient. Tenosynovitis is an emergent clinical syndrome that can result in permanent disability or amputation. To the best of our knowledge, this case report is the first to describe tenosynovitis due to S. mitis; in addition, it highlights the importance of initiating therapy with antibiotics that are effective against this rare pathogen. PMID:25587497

  10. An Unusual Cause of Flexor Tenosynovitis: Streptococcus mitis

    Directory of Open Access Journals (Sweden)

    Ugur Anil Bingol, MD

    2014-12-01

    Full Text Available Summary: Streptococcus mitis is a commensal organism of the human oropharynx that rarely causes infection in healthy individuals. Herein, we describe a previously healthy 35-year-old woman who presented with acute pyogenic flexor tenosynovitis of the left index finger due to S. mitis infection. The patient’s infection was treated successfully via surgical and medical interventions, and during follow-up, it was determined that she was complement component C3 deficient. Tenosynovitis is an emergent clinical syndrome that can result in permanent disability or amputation. To the best of our knowledge, this case report is the first to describe tenosynovitis due to S. mitis; in addition, it highlights the importance of initiating therapy with antibiotics that are effective against this rare pathogen.

  11. Pleural empyema and streptococcal toxic shock syndrome due to Streptococcus pyogenes in a healthy Spanish traveler in Japan

    Directory of Open Access Journals (Sweden)

    Tetsuya Sakai

    2017-01-01

    Full Text Available Group A Streptococcus (GAS, Streptococcus pyogenes causes invasive infections including streptococcal toxic shock syndrome (STSS and local infections. To our knowledge, this is the first report of a case of an invasive GAS infection with pneumonia and pleural empyema (PE followed by STSS (disseminated intravascular coagulation [DIC] and acute renal insufficiency in a healthy male adult. He received combined supportive therapies of PE drainage, anti-DIC agent, hemodialysis, and antimicrobials and eventually made a clinical recovery. GAS isolated from PE was found to have emm1/speA genes, suggestive of a pathogenic strain. Clinicians should be aware of the possibility of this disease entity (pneumonia, PE, and STSS in healthy male adults as well as children and adult women.

  12. Consideraciones sobre elaislamiento en exudados vaginales de Streptococcus morbillorum

    Directory of Open Access Journals (Sweden)

    J.M. F. Egido

    1995-06-01

    Full Text Available De el estúdio de 195 exudados vaginales enviados por el Servicio de Ginecologia de este hospital, durante el período 1988-1990, hemos seleccionado aquellos en los que el cultivo fue positivo para estreptococos, 58 (30% de los cuales 26 (44.8% correspondia a Streptococcus morbillorum, 9 (15.5% a Gardnerella vaginalis, 5 (8.6% a Enterococcus faecalis-durans, y a Streptococcus agalactiae, 3 (5.1% a Streptococcus mitis y Streptococcus mitis, 2 (3-4% a Streptococcus bovis y Streptococcus cremoris y 1 (1.7% a Streptococcus salivarius, Streptococcus equinus y Strptococcus sanguis II respectivamente. En todos los casos se observo antecedentes de actuacción medico- quirurjica en el tracto genital, y en el 52.8% de los casos fuô concomitante con el diagnostico clinico-micologico de candidiasis vaginal. La ideittificaccion bacteriologica se realizo mediante el sistema API 20 STREP (sistema api bioMêríeux GmbH, Nütingen, Alemania dando un patron tipico ("excelente identificacción" para el Streptococcus morbillorum.We have tested 195 vaginal secretions sent by Gynecology Service of this hospital between the years 1988 - 1990. We achieved positive culture for streptococci in 58 (30% of these cultures, 26 (44.8% corresponding to Streptococcus morbillorum 9 (15.5%, to Gardnerella vaginalis 5 (8.6%, to Enterococcus faecalis-durans and to Streptococcus agalactiae, 3 (5.1 % to Streptococcus mitis and milleri 2 (3-4%, to Streptococcus bovis and cremoris, and 1 (1.7% to Streptococcus salivarius, equinus and sanguis II respectively. We previously found that 52.8% of these patients were positive for vaginal candidiasis. The bacteriological identification done by the API 20 STREP System (bioMerieux GmbH, Nútingen, Germanyprovides a typical pattern ("good identification" for the Streptococcus morbillorum.

  13. Adenoid Reservoir for Pathogenic Biofilm Bacteria▿

    Science.gov (United States)

    Nistico, L.; Kreft, R.; Gieseke, A.; Coticchia, J. M.; Burrows, A.; Khampang, P.; Liu, Y.; Kerschner, J. E.; Post, J. C.; Lonergan, S.; Sampath, R.; Hu, F. Z.; Ehrlich, G. D.; Stoodley, P.; Hall-Stoodley, L.

    2011-01-01

    Biofilms of pathogenic bacteria are present on the middle ear mucosa of children with chronic otitis media (COM) and may contribute to the persistence of pathogens and the recalcitrance of COM to antibiotic treatment. Controlled studies indicate that adenoidectomy is effective in the treatment of COM, suggesting that the adenoids may act as a reservoir for COM pathogens. To investigate the bacterial community in the adenoid, samples were obtained from 35 children undergoing adenoidectomy for chronic OM or obstructive sleep apnea. We used a novel, culture-independent molecular diagnostic methodology, followed by confocal microscopy, to investigate the in situ distribution and organization of pathogens in the adenoids to determine whether pathogenic bacteria exhibited criteria characteristic of biofilms. The Ibis T5000 Universal Biosensor System was used to interrogate the extent of the microbial diversity within adenoid biopsy specimens. Using a suite of 16 broad-range bacterial primers, we demonstrated that adenoids from both diagnostic groups were colonized with polymicrobial biofilms. Haemophilus influenzae was present in more adenoids from the COM group (P = 0.005), but there was no significant difference between the two patient groups for Streptococcus pneumoniae or Staphylococcus aureus. Fluorescence in situ hybridization, lectin binding, and the use of antibodies specific for host epithelial cells demonstrated that pathogens were aggregated, surrounded by a carbohydrate matrix, and localized on and within the epithelial cell surface, which is consistent with criteria for bacterial biofilms. PMID:21307211

  14. STREPTOCOCCUS PHOCAE IN MARINE MAMMALS OF NORTHEASTERN PACIFIC AND ARCTIC CANADA: A RETROSPECTIVE ANALYSIS OF 85 POSTMORTEM INVESTIGATIONS.

    Science.gov (United States)

    Taurisano, Nicole D; Butler, Brian P; Stone, Diana; Hariharan, Harry; Fields, Paul J; Ferguson, Hugh W; Haulena, Martin; Cotrell, Paul; Nielsen, Ole; Raverty, Stephen

    2018-01-01

    :  Streptococcus phocae is a pathogen of marine mammals, although its pathogenicity remains poorly understood. Recovery of this bacterium from asymptomatic carriers suggests that it is an opportunistic pathogen. We investigated the role of S. phocae in naturally occurring disease and its significance as a pathogen based on postmortem investigations. Between 2007 and 2012, 1,696 whole carcasses, tissue samples, or both were submitted from the northeastern Pacific and Arctic Canada for diagnostic testing. Streptococcus phocae was cultured from phocids ( n=66), otariids ( n=12), harbor porpoises ( Phocoena phocoena; n=5), and sea otters ( Enhydra lutris; n=2). Pathologic manifestations of S. phocae-associated disease included localized, as well as systemic, inflammatory lesions with common findings of suppurative bronchopneumonia ( n=17) and bacteremia ( n=27). Lung lesions were frequently culture-positive for S. phocae, suggesting commensal colonization of the oropharynx with subsequent opportunistic infection of the respiratory tract during tissue injury, coinfection, immunosuppression, or other debilitating conditions. The presence of a positive spleen culture, and interpretations at necropsy and histopathology, were used to determine the presence of S. phocae bacteremia. Less frequent lesions that were culture positive for S. phocae included abscesses ( n=9), meningitis ( n=7), and cellulitis ( n=1). The majority of cases with S. phocae lesions featured pre-existing conditions that presumably contributed to some degree of debilitation or immunosuppression, including emaciation ( n=29), liver mercury accumulation ( n=29), trauma ( n=22), severe pulmonary or cardiovascular nematodiasis ( n=9), concurrent bacterial or viral infections ( n=8), or sarcocystosis ( n=6). These findings suggest that S. phocae could be characterized as an opportunistic pathogen, associated with debilitating conditions in stranded and rehabilitating marine mammals. Wildlife investigators

  15. Streptococcus oligofermentans inhibits Streptococcus mutans in biofilms at both neutral pH and cariogenic conditions

    NARCIS (Netherlands)

    Bao, X.; de Soet, J.J.; Tong, H.; Gao, X.; He, L.; van Loveren, C.; Deng, D.M.

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide

  16. The Streptococcus sanguinis competence regulon is not required for infective endocarditis virulence in a rabbit model.

    Directory of Open Access Journals (Sweden)

    Jill E Callahan

    Full Text Available Streptococcus sanguinis is an important component of dental plaque and a leading cause of infective endocarditis. Genetic competence in S. sanguinis requires a quorum sensing system encoded by the early comCDE genes, as well as late genes controlled by the alternative sigma factor, ComX. Previous studies of Streptococcus pneumoniae and Streptococcus mutans have identified functions for the >100-gene com regulon in addition to DNA uptake, including virulence. We investigated this possibility in S. sanguinis. Strains deleted for the comCDE or comX master regulatory genes were created. Using a rabbit endocarditis model in conjunction with a variety of virulence assays, we determined that both mutants possessed infectivity equivalent to that of a virulent control strain, and that measures of disease were similar in rabbits infected with each strain. These results suggest that the com regulon is not required for S. sanguinis infective endocarditis virulence in this model. We propose that the different roles of the S. sanguinis, S. pneumoniae, and S. mutans com regulons in virulence can be understood in relation to the pathogenic mechanisms employed by each species.

  17. Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae.

    Science.gov (United States)

    Rosinski-Chupin, Isabelle; Sauvage, Elisabeth; Sismeiro, Odile; Villain, Adrien; Da Cunha, Violette; Caliot, Marie-Elise; Dillies, Marie-Agnès; Trieu-Cuot, Patrick; Bouloc, Philippe; Lartigue, Marie-Frédérique; Glaser, Philippe

    2015-05-30

    Streptococcus agalactiae, or Group B Streptococcus, is a leading cause of neonatal infections and an increasing cause of infections in adults with underlying diseases. In an effort to reconstruct the transcriptional networks involved in S. agalactiae physiology and pathogenesis, we performed an extensive and robust characterization of its transcriptome through a combination of differential RNA-sequencing in eight different growth conditions or genetic backgrounds and strand-specific RNA-sequencing. Our study identified 1,210 transcription start sites (TSSs) and 655 transcript ends as well as 39 riboswitches and cis-regulatory regions, 39 cis-antisense non-coding RNAs and 47 small RNAs potentially acting in trans. Among these putative regulatory RNAs, ten were differentially expressed in response to an acid stress and two riboswitches sensed directly or indirectly the pH modification. Strikingly, 15% of the TSSs identified were associated with the incorporation of pseudo-templated nucleotides, showing that reiterative transcription is a pervasive process in S. agalactiae. In particular, 40% of the TSSs upstream genes involved in nucleotide metabolism show reiterative transcription potentially regulating gene expression, as exemplified for pyrG and thyA encoding the CTP synthase and the thymidylate synthase respectively. This comprehensive map of the transcriptome at the single nucleotide resolution led to the discovery of new regulatory mechanisms in S. agalactiae. It also provides the basis for in depth analyses of transcriptional networks in S. agalactiae and of the regulatory role of reiterative transcription following variations of intra-cellular nucleotide pools.

  18. Genomic Comparison among Lethal Invasive Strains of Streptococcus pyogenes Serotype M1

    Directory of Open Access Journals (Sweden)

    Gabriel R. Fernandes

    2017-10-01

    Full Text Available Streptococcus pyogenes, also known as group A Streptococcus (GAS, is a human pathogen that causes diverse human diseases including streptococcal toxic shock syndrome (STSS. A GAS outbreak occurred in Brasilia, Brazil, during the second half of the year 2011, causing 26 deaths. Whole genome sequencing was performed using Illumina platform. The sequences were assembled and genes were predicted for comparative analysis with emm type 1 strains: MGAS5005 and M1 GAS. Genomics comparison revealed one of the invasive strains that differ from others isolates and from emm 1 reference genomes. Also, the new invasive strain showed differences in the content of virulence factors compared to other isolated in the same outbreak. The evolution of contemporary GAS strains is strongly associated with horizontal gene transfer. This is the first genomic study of a Streptococcal emm 1 outbreak in Brazil, and revealed the rapid bacterial evolution leading to new clones. The emergence of new invasive strains can be a consequence of the injudicious use of antibiotics in Brazil during the past decades.

  19. Identification and characterization of a novel protective antigen, Enolase of Streptococcus suis serotype 2.

    Science.gov (United States)

    Zhang, Anding; Chen, Bo; Mu, Xiaofeng; Li, Ran; Zheng, Pei; Zhao, Yaxin; Chen, Huanchun; Jin, Meilin

    2009-02-25

    Streptococcus suis serotype 2 (SS2) is a porcine and human pathogen with adhesive and invasive properties. The absence of suitable vaccine or virulent marker can be the bottleneck to control SS2 infection. In the present study, a novel immunogenic Enolase identified in the previous study was inducibly overexpressed in Escherichia coli, and the purified recombinant protein could elicit a significant humoral antibody response and confer efficient immunity against challenge with lethal dose of SS2 or SS7 infection in mouse model. The roles Enolase plays in pathogenicity of SS2 were also explored as reasons for which Enolase could be a protective antigen. The Enolase was an in vivo-induced antigen confirmed by the real-time PCR and could adhere to the Hep-2 cells by the indirect immunofluorescent assay and the inhibition assay. These suggested that Enolase could play important roles in pathogenicity and may serve as a novel vaccine candidate against SS2 infection.

  20. A traditional Sudanese fermented camel's milk product, Gariss, as a habitat of Streptococcus infantarius subsp. infantarius

    DEFF Research Database (Denmark)

    Abdelgadir, Warda; Nielsen, Dennis Sandris; Hamad, Siddig

    2008-01-01

    glucosyltransferase gene (gtf). All thirteen isolates were identified as Streptococcus infantarius subsp. infantarius, a potential human pathogen. The gene encoding the virulence determinant gtf was detected in 10 of the 13 tested strains. The same isolates were able to survive exposure to 0.3% (w/v) oxgall for 4 h...

  1. The high vaginal swab in general practice: clinical correlates of possible pathogens.

    Science.gov (United States)

    Dykhuizen, R S; Harvey, G; Gould, I M

    1995-06-01

    Clinical features, diagnosis and treatment of 286 women whose high vaginal swabs (HVS) submitted by their general practitioners showed pure, heavy growth of Staphylococcus aureus, beta haemolytic streptococci groups A, C or G, Streptococcus milleri, Streptococcus pneumoniae or Haemophilus influenzae were analysed. Women with group A, C and G streptococci frequently had clinical vulvovaginitis and although the numbers were too small for statistical confirmation, S. pneumoniae and H. influenzae appeared to cause clinical disease as well. The association of S. aureus or S. milleri with clinical vulvovaginitis was much less convincing. It seems relevant for laboratories to report sensitivities for group A, C and G streptococci. Further research is needed to determine the pathogenicity of S. pneumoniae and H. influenzae.

  2. Phenotypic and genotypic heterogeneity among Streptococcus iniae isolates recovered from cultured and wild fish in North America, Central America and the Caribbean Islands

    Science.gov (United States)

    Streptococcus iniae, the etiological agent of streptococcosis in fish, is an important pathogen of cultured and wild fish worldwide. During the last decade outbreaks of streptococcosis have occurred in a wide range of cultured and wild fish in the Americas and Caribbean islands. To gain a better und...

  3. Functional variation of the antigen I/II surface protein in Streptococcus mutans and Streptococcus intermedius

    NARCIS (Netherlands)

    Petersen, FC; Assev, S; van der Mei, HC; Busscher, HJ; Scheie, AA

    Although Streptococcus intermedius and Streptococcus mutans are regarded as members of the commensal microflora of the body, S. intermedius is often associated with deep-seated purulent infections, whereas S. mutans is frequently associated with dental caries. In this study, we investigated the

  4. Consideraciones sobre elaislamiento en exudados vaginales de Streptococcus morbillorum

    Directory of Open Access Journals (Sweden)

    J.M. F. Egido

    1995-06-01

    Full Text Available De el estúdio de 195 exudados vaginales enviados por el Servicio de Ginecologia de este hospital, durante el período 1988-1990, hemos seleccionado aquellos en los que el cultivo fue positivo para estreptococos, 58 (30% de los cuales 26 (44.8% correspondia a Streptococcus morbillorum, 9 (15.5% a Gardnerella vaginalis, 5 (8.6% a Enterococcus faecalis-durans, y a Streptococcus agalactiae, 3 (5.1% a Streptococcus mitis y Streptococcus mitis, 2 (3-4% a Streptococcus bovis y Streptococcus cremoris y 1 (1.7% a Streptococcus salivarius, Streptococcus equinus y Strptococcus sanguis II respectivamente. En todos los casos se observo antecedentes de actuacción medico- quirurjica en el tracto genital, y en el 52.8% de los casos fuô concomitante con el diagnostico clinico-micologico de candidiasis vaginal. La ideittificaccion bacteriologica se realizo mediante el sistema API 20 STREP (sistema api bioMêríeux GmbH, Nütingen, Alemania dando un patron tipico ("excelente identificacción" para el Streptococcus morbillorum.

  5. Modulation of Quorum Sensing in a Gram Positive Pathogen by Linear Imprinted Copolymers with anti-Infective Properties

    NARCIS (Netherlands)

    Motib, Anfal; Guerreiro, Antonio; Al-Bayati, Firas; Piletska, Elena; Manzoor, Irfan; Shafeeq, Sulman; Kadam, Anagha; Kuipers, Oscar; Hiller, Luisa; Cowen, Todd; Piletsky, Sergey; Andrew, Peter; Yesilkaya, Hasan

    2017-01-01

    Here we describe the development, characterization and biological testing of a new type of linear molecularly imprinted polymer (LMIP) designed to act as anti-infective by blocking the quorum sensing (QS) mechanism and so preventing virulence of the pathogen Streptococcus pneumoniae. The LMIP is

  6. Comparative analysis of prophages in Streptococcus mutans genomes

    Science.gov (United States)

    Fu, Tiwei; Fan, Xiangyu; Long, Quanxin; Deng, Wanyan; Song, Jinlin

    2017-01-01

    Prophages have been considered genetic units that have an intimate association with novel phenotypic properties of bacterial hosts, such as pathogenicity and genomic variation. Little is known about the genetic information of prophages in the genome of Streptococcus mutans, a major pathogen of human dental caries. In this study, we identified 35 prophage-like elements in S. mutans genomes and performed a comparative genomic analysis. Comparative genomic and phylogenetic analyses of prophage sequences revealed that the prophages could be classified into three main large clusters: Cluster A, Cluster B, and Cluster C. The S. mutans prophages in each cluster were compared. The genomic sequences of phismuN66-1, phismuNLML9-1, and phismu24-1 all shared similarities with the previously reported S. mutans phages M102, M102AD, and ϕAPCM01. The genomes were organized into seven major gene clusters according to the putative functions of the predicted open reading frames: packaging and structural modules, integrase, host lysis modules, DNA replication/recombination modules, transcriptional regulatory modules, other protein modules, and hypothetical protein modules. Moreover, an integrase gene was only identified in phismuNLML9-1 prophages. PMID:29158986

  7. Características laboratoriais das ceratites e conjuntivites causadas por Streptococcus sp Laboratorial findings of Streptococcus keratitis and conjunctivitis

    Directory of Open Access Journals (Sweden)

    Helena Parente Solari

    2004-10-01

    Full Text Available OBJETIVOS: Analisar os resultados laboratoriais de conjuntivites e ceratites com cultura positiva para Streptococcus sp, avaliando a incidência das diferentes espécies e os dados dos antibiogramas. MÉTODOS: Estudo retrospectivo de revisão de prontuários de pacientes encaminhados ao laboratório de Doenças Externas do Departamento de Oftalmologia da UNIFESP com resultado de cultivo bacteriano positivo de córnea ou conjuntiva e com identificação de alguma cepa do gênero Streptococcus sp, no período de janeiro de 1995 a dezembro de 2001. Analisou-se idade do paciente, espécie de Streptococcus e os testes de sensibilidade aos seguintes antibióticos: cefalotina, amicacina, gentamicina, tobramicina, ciprofloxacina, lomefloxacina, ofloxacina, norfloxacina e vancomicina. RESULTADOS: As espécies mais encontradas foram Streptococcus pneumoniae e Streptococcus viridans. Com relação aos antibióticos, a sensibilidade foi maior à cefalotina, às quinolonas e à vancomicina. CONCLUSÕES: Considerando-se os antibióticos tópicos comercialmente disponíveis, as quinolonas apresentam melhor espectro de ação quando comparadas aos aminoglicosídios.PURPOSE: To evaluate laboratorial findings of Streptococcus keratitis and conjunctivitis, analyzing the different species and the results of bacterial susceptibility to an antibiotics. METHODS: Retrospective study of the records from the External Disease Laboratory of the Ophthalmology Department of the Federal University of São Paulo, with conjunctival or corneal positive bacterial culture for Streptococcus sp, between January 1995 and December 2001. The collected data were age, Streptococcus species and the bacterial susceptibility to the following antibiotics: cephalotin, amikacin, gentamicin, tobramicin, ciprofloxacin, lomefloxacin, ofloxacin, norfloxacin and vancomicin. RESULTS: The most frequent species were Streptococcus pneumoniae and Streptococcus viridans. Regarding bacterial

  8. Mastitis diagnosis in dairy cows using PathoProof real-time polymerase chain reaction assay in comparison with conventional bacterial culture in a Northern German field study.

    Science.gov (United States)

    Spittel, Susanne; Hoedemaker, Martina

    2012-01-01

    In the following field study, the commercial PathoProof Mastitis PCR Assay, a real-time PCR for identifying eleven mastitis pathogens and the staphylococcal beta-lactamase gene, was compared with conventional bacterial culture. For this purpose, 681 udder quarter samples from 173 clinically healthy cows with varying somatic cell count from four dairy herds in the region of Osnabrück, Lower Saxony, Germany, were collected between July 2010 and February 2011 and subjected to PCR and bacterial culture. The frequency of positive pathogen signals was markedly higher with PCR compared with culture (70.6% vs. 32.2%). This was accompanied by a substantial higher percentage of multiple pathogen identifications and a lower percentage of single identifications in the PCR compared with bacterial culture. Using bacterial culture as gold standard, moderate to high sensitivities (76.9-100%) and specificities (63.3-98.7%) were calculated for six out of seven pathogens with sufficient detection numbers. For Enterococcus spp, the sensitivity was only 9.1%. When the PCR results of pooled udder quarter samples of the 173 cows were compared with the single udder quarter samples, in 72% of the cases, major pathogen DNA was either not found in both types of samples, or in the case of a positive pool sample, the respective pathogens were found in at least one udder quarter sample. With both methods, the most frequently detected mastitis pathogens were coryneform bacteria (PCR: Corynebacterium bovis), coagulase-negative staphylococci (CNS) and Staphylococcus (S.) aureus, followed by Arcanobacterium pyogenes/Peptoniphilus indolicus with PCR, and then with both methods, Streptococcus uberis. The staphylococcal beta-lactamase gene was found in 27.7% of the S. aureus and in 37.0% of the CNS identifications.

  9. The Regulatory Small RNA MarS Supports Virulence of Streptococcus pyogenes.

    Science.gov (United States)

    Pappesch, Roberto; Warnke, Philipp; Mikkat, Stefan; Normann, Jana; Wisniewska-Kucper, Aleksandra; Huschka, Franziska; Wittmann, Maja; Khani, Afsaneh; Schwengers, Oliver; Oehmcke-Hecht, Sonja; Hain, Torsten; Kreikemeyer, Bernd; Patenge, Nadja

    2017-09-25

    Small regulatory RNAs (sRNAs) play a role in the control of bacterial virulence gene expression. In this study, we investigated an sRNA that was identified in Streptococcus pyogenes (group A Streptococcus, GAS) but is conserved throughout various streptococci. In a deletion strain, expression of mga, the gene encoding the multiple virulence gene regulator, was reduced. Accordingly, transcript and proteome analyses revealed decreased expression of several Mga-activated genes. Therefore, and because the sRNA was shown to interact with the 5' UTR of the mga transcript in a gel-shift assay, we designated it MarS for m ga-activating regulatory sRNA. Down-regulation of important virulence factors, including the antiphagocytic M-protein, led to increased susceptibility of the deletion strain to phagocytosis and reduced adherence to human keratinocytes. In a mouse infection model, the marS deletion mutant showed reduced dissemination to the liver, kidney, and spleen. Additionally, deletion of marS led to increased tolerance towards oxidative stress. Our in vitro and in vivo results indicate a modulating effect of MarS on virulence gene expression and on the pathogenic potential of GAS.

  10. Development of a multiplex PCR assay for rapid and simultaneous detection of four genera of fish pathogenic bacteria.

    Science.gov (United States)

    Zhang, D F; Zhang, Q Q; Li, A H

    2014-11-01

    Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This m

  11. Metabolic Mechanism for l-Leucine-Induced Metabolome To Eliminate Streptococcus iniae.

    Science.gov (United States)

    Du, Chao-Chao; Yang, Man-Jun; Li, Min-Yi; Yang, Jun; Peng, Bo; Li, Hui; Peng, Xuan-Xian

    2017-05-05

    Crucial metabolites that modulate hosts' metabolome to eliminate bacterial pathogens have been documented, but the metabolic mechanisms are largely unknown. The present study explores the metabolic mechanism for l-leucine-induced metabolome to eliminate Streptococcus iniae in tilapia. GC-MS-based metabolomics was used to investigate the tilapia liver metabolic profile in the presence of exogenous l-leucine. Thirty-seven metabolites of differential abundance were determined, and 11 metabolic pathways were enriched. Pattern recognition analysis identified serine and proline as crucial metabolites, which are the two metabolites identified in survived tilapias during S. iniae infection, suggesting that the two metabolites play crucial roles in l-leucine-induced elimination of the pathogen by the host. Exogenous l-serine reduces the mortality of tilapias infected by S. iniae, providing a robust proof supporting the conclusion. Furthermore, exogenous l-serine elevates expression of genes IL-1β and IL-8 in tilapia spleen, but not TNFα, CXCR4 and Mx, suggesting that the metabolite promotes a phagocytosis role of macrophages, which is consistent with the finding that l-leucine promotes macrophages to kill both Gram-positive and Gram-negative bacterial pathogens. Therefore, the ability of phagocytosis enhanced by exogenous l-leucine is partly attributed to elevation of l-serine. These results demonstrate a metabolic mechanism by which exogenous l-leucine modulates tilapias' metabolome to enhance innate immunity and eliminate pathogens.

  12. Current Taxonomical Situation of Streptococcus suis.

    Science.gov (United States)

    Okura, Masatoshi; Osaki, Makoto; Nomoto, Ryohei; Arai, Sakura; Osawa, Ro; Sekizaki, Tsutomu; Takamatsu, Daisuke

    2016-06-24

    Streptococcus suis, a major porcine pathogen and an important zoonotic agent, is considered to be composed of phenotypically and genetically diverse strains. However, recent studies reported several "S. suis-like strains" that were identified as S. suis by commonly used methods for the identification of this bacterium, but were regarded as distinct species from S. suis according to the standards of several taxonomic analyses. Furthermore, it has been suggested that some S. suis-like strains can be assigned to several novel species. In this review, we discuss the current taxonomical situation of S. suis with a focus on (1) the classification history of the taxon of S. suis; (2) S. suis-like strains revealed by taxonomic analyses; (3) methods for detecting and identifying this species, including a novel method that can distinguish S. suis isolates from S. suis-like strains; and (4) current topics on the reclassification of S. suis-like strains.

  13. Role of Streptococcus Anginosus on the formation of dental caries

    Directory of Open Access Journals (Sweden)

    Yetty Herdiyati Nonong

    2011-11-01

    Full Text Available Generally, the etiology of dental caries is the cariogenic properties of bacteria, these are always associated with Streptococcus mutans. Glucosyltransferase fragment (Gtf are also in other strains of Streptococcus such as Streptococcus anginosus, Streptococcus milleri which includes beta hemolysis. Genotypically B Streptococcus anginosus has genetic characteristics that are similar to Streptococcus mutans. The research objective was to determine the existence of Gtf B/C gene as a cause of caries in Streptococcus anginosus. The study was conducted in experimental laboratories with PCR technique by taking a sample of 20 children who had caries. The results showed there was the amplification of Streptococcus anginosus with a level of homology 96%, 97%, and 99%. The results of the Gtf genes amplification fragment B/C provided 600 pb ribbon. The conclusion was Streptococcus anginosus classified as cariogenic bacteria because they had Gtf B/C genes.

  14. [Synthesis and degradation of hyaluronic acid by bacteria of Streptococcus genus].

    Science.gov (United States)

    Beloded, A V; Samoĭlenko, I I; Tsepilov, R N

    2010-01-01

    Modern data on metabolism of hyaluronic acid by bacteria from Streptococcus genus are presented. Several species of bacteria forming capsule from hyaluronic acid, which is analogous to glycosaminoglycan of vertebrates, are considered. Different aspects of hyaluronic acid synthesis are described: biochemical synthesis pathway, genetic basis, regulation of expression of genes belonging to hyaluronic acid synthesis operon. Biological role and physiologic importance of hyaluronic acid for bacteria, including its role in overcoming immune barrier by pathogenic species, are discussed. Process of depolymerization of hyaluronic acid in presence of hyaluronatlyases secreted by certain streptococci is considered. Characteristic of streptococcal enzyme hyaluronatlyase, its mechanism of catalytic effect, and biological function are presented.

  15. Influence of pH on inhibition of Streptococcus mutans by Streptococcus oligofermentans.

    Science.gov (United States)

    Liu, Ying; Chu, Lei; Wu, Fei; Guo, Lili; Li, Mengci; Wang, Yinghui; Wu, Ligeng

    2014-02-01

    Streptococcus oligofermentans is a novel strain of oral streptococcus that can specifically inhibit the growth of Streptococcus mutans. The aims of this study were to assess the growth of S. oligofermentans and the ability of S. oligofermentans to inhibit growth of Streptococcus mutans at different pH values. Growth inhibition was investigated in vitro using an interspecies competition assay. The 4-aminoantipyine method was used to measure the initial production rate and the total yield of hydrogen peroxide in S. oligofermentans. S. oligofermentans grew best at pH 7.0 and showed the most pronounced inhibitory effect when it was inoculated earlier than S. mutans. In terms of the total yield and the initial production rate of hydrogen peroxide by S. oligofermentans, the effects of the different culture pH values were as follows: pH 7.0 > 6.5 > 6.0 > 7.5 > 5.5 = 8.0 (i.e. there was no significant difference between pH 5.5 and pH 8.0). Environmental pH and the sequence of inoculation significantly affected the ability of S. oligofermentans to inhibit the growth of S. mutans. The degree of inhibition may be attributed to the amount of hydrogen peroxide produced. © 2013 Eur J Oral Sci.

  16. Evasion of Neutrophil Extracellular Traps by Respiratory Pathogens.

    Science.gov (United States)

    Storisteanu, Daniel M L; Pocock, Joanna M; Cowburn, Andrew S; Juss, Jatinder K; Nadesalingam, Angalee; Nizet, Victor; Chilvers, Edwin R

    2017-04-01

    The release of neutrophil extracellular traps (NETs) is a major immune mechanism intended to capture pathogens. These histone- and protease-coated DNA structures are released by neutrophils in response to a variety of stimuli, including respiratory pathogens, and have been identified in the airways of patients with respiratory infection, cystic fibrosis, acute lung injury, primary graft dysfunction, and chronic obstructive pulmonary disease. NET production has been demonstrated in the lungs of mice infected with Staphylococcus aureus, Klebsiella pneumoniae, and Aspergillus fumigatus. Since the discovery of NETs over a decade ago, evidence that "NET evasion" might act as an immune protection strategy among respiratory pathogens, including group A Streptococcus, Bordetella pertussis, and Haemophilus influenzae, has been growing, with the majority of these studies being published in the past 2 years. Evasion strategies fall into three main categories: inhibition of NET release by down-regulating host inflammatory responses; degradation of NETs using pathogen-derived DNases; and resistance to the microbicidal components of NETs, which involves a variety of mechanisms, including encapsulation. Hence, the evasion of NETs appears to be a widespread strategy to allow pathogen proliferation and dissemination, and is currently a topic of intense research interest. This article outlines the evidence supporting the three main strategies of NET evasion-inhibition, degradation, and resistance-with particular reference to common respiratory pathogens.

  17. Development and Validation of a Multiplex PCR-Based Assay for the Upper Respiratory Tract Bacterial Pathogens Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis.

    Science.gov (United States)

    Post; White; Aul; Zavoral; Wadowsky; Zhang; Preston; Ehrlich

    1996-06-01

    Background: Conventional simplex polymerase chain reaction (PCR)-based assays are limited in that they only provide for the detection of a single infectious agent. Many clinical diseases, however, present in a nonspecific, or syndromic, fashion, thereby necessitating the simultaneous assessment of multiple pathogens. Panel-based molecular diagnostic testing can be accomplished by the development of multiplex PCR-based assays, which can detect, individually or severally, different pathogens that are associated with syndromic illness. As part of a larger program of panel development, an assay that can simultaneously detect Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis was developed. These organisms were chosen as they are the most common bacterial pathogens associated with both the acute and chronic forms of otitis media; they are also responsible for a high percentage of sinus infections in both children and adults. In addition, H. influenzae and S. pneumoniae are commonly associated with septic meningitits. Methods and Results: Multiple individual PCR-based assays were developed for each of the three target organisms which were then evaluated for sensitivity and specificity. Utilizing the simplex assays that met our designated performance criteria, a matrix style approach was used to develop a duplex H. influenzae-S. pneumoniae assay. The duplex assay was then used as a single component in the development of a triplex assay, wherein the various M. catarrhalis primer-probe sets were tested for compatibility with the existing assay. A single-step PCR protocol, with species-specific primers for each of the three target organisms and a liquid hybridization-gel retardation amplimer detection system, was developed, which amplifies and then discriminates among each of the amplification products according to size. This assay is able to detect all three organisms in a specific manner, either individually or severally. Dilutional experiments

  18. Activity of Genital Tract Secretions and Synthetic Antimicrobial Peptides against Group B Streptococcus.

    Science.gov (United States)

    Agarwal, Nidhi; Buckley, Niall; Nakra, Natasha; Gialanella, Philip; Yuan, Weirong; Ghartey, Jeny P

    2015-12-01

    Genital tract secretions inhibit Escherichia coli (E. coli) through antimicrobial peptides (AMP) secreted by the host and vaginal microbiota. However, there are limited data against group B Streptococcus (GBS). Group B Streptococcus were incubated with cervico-vaginal lavage (CVL) samples from healthy non-pregnant women (n = 12) or synthetic AMP and monitored for bacterial growth using a turbidimetric approach. E. coli inhibitory activity was determined by a colony-forming unit assay. None of the CVL samples inhibited GBS. The human neutrophil peptide-1 and human defensin 5 inhibited GBS growth by ≥80% at concentrations ≥20 μg/mL and ≥50 μg/mL, respectively, while human beta-defensin 2 and LL-37 did not inhibit at highest concentration tested (100 μg/mL). In contrast, all AMP inhibited E. coli. Antimicrobial peptides may protect against E. coli colonization but have more limited activity against GBS. Future studies will focus on augmenting host defense with specific AMP to prevent genitourinary infection with these pathogenic organisms. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Identification of immunoreactive proteins of Streptococcus agalactiae isolated from cultured tilapia in China.

    Science.gov (United States)

    Liu, Guangjin; Zhang, Wei; Lu, Chengping

    2013-12-01

    Streptococcus agalactiae (Group B streptococcus, GBS) is an important zoonotic pathogen that can cause lethal infections in humans and animals, including aquatic species. Immunoreactive proteins of the S. agalactiae strain, GD201008-001, isolated from cultured tilapia in China, were screened by immunoproteomics using hyperimmune sera, convalescent guinea pig sera and GD201008-001-infected tilapia antisera as primary detection antibodies. A total of 16 different proteins were identified including 13 novel immunoreactive proteins of S. agalactiae. Four proteins, serine-rich repeat glycoprotein 1, branched-chain alpha-keto acid dehydrogenase (BKD) subunit E2, 5'-nucleotidase family protein and ornithine carbamoyltransferase, were shown to react with the three types of sera and thus were considered to represent novel S. agalactiae vaccine candidate antigens. Our findings represent the basis for vaccine development for piscine S. agalactiae and are necessary for understanding virulence factors and immunogenicity of S. agalactiae with different hosts. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Genetic Transformation of Streptococcus mutans

    OpenAIRE

    Perry, Dennis; Kuramitsu, Howard K.

    1981-01-01

    Three strains of Streptococcus mutans belonging to serotypes a, c, and f were transformed to streptomycin resistance by deoxyribonucleic acids derived from homologous and heterologous streptomycin-resistant strains of S. mutans and Streptococcus sanguis strain Challis. Homologous transformation of S. mutans was less efficient than heterologous transformation by deoxyribonucleic acids from other strains of S. mutans.

  1. Antibiotic resistance of Streptococcus pneumoniae in children with acute otitis media treatment failure.

    Science.gov (United States)

    Zielnik-Jurkiewicz, Beata; Bielicka, Anna

    2015-12-01

    The emergence of antibiotic-resistant bacteria is a major cause of treatment failure in children with acute otitis media (AOM). This study aimed to analyze the types of bacterial strains in fluid isolated from the middle ear of children with AOM who did not respond to oral antibiotic treatment. We also determined the antibiotic resistance of the most frequently isolated bacterial strain (Streptococcus pneumoniae) found in these children. This was a prospective study of 157 children with AOM aged from 6 months to 7 years admitted due to unsuccessful oral antibiotic treatment. All children underwent a myringotomy, and samples of the middle ear fluid were collected for bacteriological examination. Positive bacterial cultures were obtained in 104 patients (66.2%), with Streptococcus pneumoniae (39.69%), Haemophilus influenzae (16.03%) Staphylococcus aureus (16.03%), Staphylococcus haemolyticus (6.9%) and Streptococcus pyogenes (5.34%) found most frequently. The majority (65.4%) of S. pneumoniae strains were penicillin-intermediate-resistant or penicillin-resistant, and 67.2% strains of S. pneumoniae were multidrug-resistant. We identified S. pneumoniae as the most frequently isolated pathogen from the middle ear in children with AOM treatment failure and determined that the majority of strains were antibiotic-resistant. We propose that the microbiological identification of bacterial strains and their degree of antibiotic resistance should be performed prior to therapy in order to choose the most appropriate antibiotic therapy for children with AOM treatment failure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Population diversity and dynamics of Streptococcus mitis, Streptococcus oralis, and Streptococcus infantis in the upper respiratory tracts of adults, determined by a nonculture strategy

    DEFF Research Database (Denmark)

    Bek-Thomsen, Malene; Tettelin, H; Hance, I

    2008-01-01

    . A culture-independent method was used, based on cloning and sequencing of PCR amplicons of the housekeeping gene gdh, which shows remarkable, yet species-specific, genetic polymorphism. Samples were collected from all potential ecological niches in the oral cavity and pharynx of two adults on two occasions......We reinvestigated the clonal diversity and dynamics of Streptococcus mitis and two other abundant members of the commensal microbiota of the upper respiratory tract, Streptococcus oralis and Streptococcus infantis, to obtain information about the origin of frequently emerging clones in this habitat...... with loss and acquisition from contacts. These findings provide a platform for understanding the mechanisms that govern the balance within the complex microbiota at mucosal sites and between the microbiota and the mucosal immune system of the host....

  3. Secondary metabolites of Antarctic fungi antagonistic to aquatic pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Zhao Huibin

    2018-03-01

    Full Text Available Polar microbial derived antibiotics have potential as alternatives to traditional antibiotics in treating fish against pathogenic bacteria. In this paper, 23 strains of polar fungi were fermented to detect bacteriostatic products on three aquatic pathogenic bacteria, subsequently the active fungus was identified. It was indicated that secondary metabolites of 23 strains weredistinct; of these, the extract of strain B-7 (belonging to Bjerkandera according to molecular identification demonstrated a strong antibacterial activity to Streptococcus agalactiae, Vibrio anguillarum and Aeromonas hydrophila ATCC7966 by Kirby-Bauerpaper strip method. During one fermentation cycle, the pH curve of the fermentation liquor became lowest (4.0 on the 4th day and rose back to 7.6 finally after 5 days, The residual sugar curve was decreased before stablising on the 6th day. It is presumed that a large amount of alkaline secondary metabolites might have been produced during fermentation. This study focuses on antagonism between aquatic pathogenic bacteria and fermentation metabolites from Antarctic fungi for the first time, which may provide data on research of antibiotics against aquatic pathogenic bacteria.

  4. Streptococcus suis meningitis, a poacher's risk

    NARCIS (Netherlands)

    Halaby, T.; Hoitsma, E.; Hupperts, R.; Spanjaard, L.; Luirink, M.; Jacobs, J.

    2000-01-01

    Streptococcus suis infection is a zoonosis that has been mainly reported in pig-rearing and pork-consuming countries. The most common disease manifestation is meningitis, often associated with cochleovestibular signs. The causative agent is Streptococcus suis serotype 2, found as a commensal in the

  5. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans

    Science.gov (United States)

    Moye, Zachary D.; Zeng, Lin; Burne, Robert A.

    2014-01-01

    The nature of the oral cavity and host behaviors has mandated that the oral microbiota evolve mechanisms for coping with environmental fluctuations, especially changes in the type and availability of carbohydrates. In the case of human dental caries, the presence of excess carbohydrates is often responsible for altering the local environment to be more favorable for species associated with the initiation and progression of disease, including Streptococcus mutans. Some of the earliest endeavors to understand how cariogenic species respond to environmental perturbations were carried out using chemostat cultivation, which provides fine control over culture conditions and bacterial behaviors. The development of genome-scale methodologies has allowed for the combination of sophisticated cultivation technologies with genome-level analysis to more thoroughly probe how bacterial pathogens respond to environmental stimuli. Recent investigations in S. mutans and other closely related streptococci have begun to reveal that carbohydrate metabolism can drastically impact pathogenic potential and highlight the important influence that nutrient acquisition has on the success of pathogens; inside and outside of the oral cavity. Collectively, research into pathogenic streptococci, which have evolved in close association with the human host, has begun to unveil the essential nature of careful orchestration of carbohydrate acquisition and catabolism to allow the organisms to persist and, when conditions allow, initiate or worsen disease. PMID:25317251

  6. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Zachary D. Moye

    2014-09-01

    Full Text Available The nature of the oral cavity and host behaviors has mandated that the oral microbiota evolve mechanisms for coping with environmental fluctuations, especially changes in the type and availability of carbohydrates. In the case of human dental caries, the presence of excess carbohydrates is often responsible for altering the local environment to be more favorable for species associated with the initiation and progression of disease, including Streptococcus mutans. Some of the earliest endeavors to understand how cariogenic species respond to environmental perturbations were carried out using chemostat cultivation, which provides fine control over culture conditions and bacterial behaviors. The development of genome-scale methodologies has allowed for the combination of sophisticated cultivation technologies with genome-level analysis to more thoroughly probe how bacterial pathogens respond to environmental stimuli. Recent investigations in S. mutans and other closely related streptococci have begun to reveal that carbohydrate metabolism can drastically impact pathogenic potential and highlight the important influence that nutrient acquisition has on the success of pathogens; inside and outside of the oral cavity. Collectively, research into pathogenic streptococci, which have evolved in close association with the human host, has begun to unveil the essential nature of careful orchestration of carbohydrate acquisition and catabolism to allow the organisms to persist and, when conditions allow, initiate or worsen disease.

  7. Distinct Biological Potential of Streptococcus gordonii and Streptococcus sanguinis Revealed by Comparative Genome Analysis

    OpenAIRE

    Zheng, Wenning; Tan, Mui Fern; Old, Lesley A.; Paterson, Ian C.; Jakubovics, Nicholas S.; Choo, Siew Woh

    2017-01-01

    Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virule...

  8. Streptococcus intermedius Bacteremia and Liver Abscess following a Routine Dental Cleaning

    Directory of Open Access Journals (Sweden)

    Lachara V. Livingston

    2014-01-01

    Full Text Available Streptococcus intermedius is a member of the Streptococcus anginosus group of bacteria. This group is part of the normal flora of the oropharynx, genitourinary, and gastrointestinal tracts; however, they have been known to cause a variety of purulent infections including meningitis, endocarditis, and abscesses, even in immunocompetent hosts. In particular, S. intermedius has been associated with the development of liver and brain abscesses. There have been several case reports of S. intermedius liver abscesses with active periodontal infection. To our knowledge, however, there has not been a case following a routine dental procedure. In fact, the development of liver abscesses secondary to dental procedures is very rare in general, and there are only a few case reports in the literature describing this in relation to any pathogen. We present a rare case of S. intermedius bacteremia and liver abscess following a dental cleaning. This case serves to further emphasize that even routine dental procedures can place a patient at risk of the development of bacteremia and liver abscesses. For this reason, the clinician must be sure to perform a detailed history and careful examination. Timely diagnosis of pyogenic liver abscesses is vital, as they are typically fatal if left untreated.

  9. Molecular and antimicrobial susceptibility profiling of atypical Streptococcus species from porcine clinical specimens.

    Science.gov (United States)

    Moreno, Luisa Z; Matajira, Carlos E C; Gomes, Vasco T M; Silva, Ana Paula S; Mesquita, Renan E; Christ, Ana Paula G; Sato, Maria Inês Z; Moreno, Andrea M

    2016-10-01

    The Streptococcus species present broad phenotypic variation, making identification difficult using only traditional microbiological methods. Even though Streptococcus suis is the most important species for the worldwide swine industry, other Streptococcus species appear to be able to cause disease in swine and could represent a higher underestimated risk for porcine health. The aim of this study was to identify Streptococcus-like isolates by MALDI-TOF MS and 16S rRNA sequencing and further molecular and antibiotic susceptibility characterization of the atypical Streptococcus species capable of causing disease in swine. Fifty presumptive Streptococcus isolates from diseased pigs isolated from different Brazilian States between 2002 and 2014 were evaluated. Among the studied isolates, 26% were identified as Streptococcus hyovaginalis, 24% as Streptococcus plurianimalium, 12% as Streptococcus alactolyticus, 10% as Streptococcus hyointestinalis, and the remaining isolates belonged to Streptococcus henryi (6%), Streptococcus thoraltensis (6%), Streptococcus gallolyticus (6%), Streptococcus gallinaceus (4%), Streptococcus sanguinis (4%), and Streptococcus mitis (2%). The Streptococcus isolates were successfully identified by spectral cluster analysis and 16S rRNA sequencing with 96% of concordance between the techniques. The SE-AFLP analysis also supported Streptococcus species distinction and enabled further observation of higher genetic heterogeneity intra-species. The identified Streptococcus species presented variable MIC values to β-lactams, enrofloxacin and florfenicol, and high resistance rates to tetracyclines and macrolides, which appear to be directly related to the industry's antimicrobial usage and resistance selection. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part I - Epidemiology.

    Science.gov (United States)

    Dutkiewicz, Jacek; Sroka, Jacek; Zając, Violetta; Wasiński, Bernard; Cisak, Ewa; Sawczyn, Anna; Kloc, Anna; Wójcik-Fatla, Angelina

    2017-12-23

    Streptococcus suis (ex Elliot 1966, Kilpper-Bälz & Schleifer 1987) is a facultatively anaerobic Gram-positive ovoid or coccal bacterium surrounded by a polysaccharide capsule. Based on the antigenic diversity of the capsule, S. suis strains are classified serologically into 35 serotypes. Streptococcus suis is a commensal of pigs, commonly colonizing their tonsils and nasal cavities, mostly in weaning piglets between 4-10 weeks of age. This species occurs also in cattle and other mammals, in birds and in humans. Some strains, mostly those belonging to serotype 2, are also pathogenic for pigs, as well as for other animals and humans. Meningitis is the primary disease syndrome caused by S. suis, both in pigs and in humans. It is estimated that meningitis accounted for 68.0% of all cases of human disease reported until the end of 2012, followed by septicaemia (including life-threatening condition described as 'streptococcal toxic shock-like syndrome' - STSLS), arthritis, endocarditis, and endophthalmitis. Hearing loss and/or ves tibular dysfunction are the most common sequelae after recovery from meningitis caused by S. suis, occurring in more than 50% of patients. In the last two decades, the number of reported human cases due to S. suis has dramatically increased, mostly due to epidemics recorded in China in 1998 and 2005, and the fulminant increase in morbidity in the countries of south-eastern Asia, mostly Vietnam and Thailand. Out of 1,642 cases of S. suis infections identified between 2002-2013 worldwide in humans, 90.2% occurred in Asia, 8.5% in Europe and 1.3% in other parts of the globe. The human disease has mostly a zoonotic and occupational origin and occurs in pig breeders, abattoir workers, butchers and workers of meat processing facilities, veterinarians and meat inspectors. Bacteria are transmitted to workers by close contact with pigs or pig products, usually through contamination of minor cuts or abrasions on skin of hands and/or arms, or by pig bite

  11. Molecular Basis of Resistance to Selected Antimicrobial Agents in the Emerging Zoonotic Pathogen Streptococcus suis.

    Science.gov (United States)

    Gurung, Mamata; Tamang, Migma Dorji; Moon, Dong Chan; Kim, Su-Ran; Jeong, Jin-Ha; Jang, Geum-Chan; Jung, Suk-Chan; Park, Yong-Ho; Lim, Suk-Kyung

    2015-07-01

    Characterization of 227 Streptococcus suis strains isolated from pigs during 2010 to 2013 showed high levels of resistance to clindamycin (95.6%), tilmicosin (94.7%), tylosin (93.8%), oxytetracycline (89.4%), chlortetracycline (86.8%), tiamulin (72.7%), neomycin (70.0%), enrofloxacin (56.4%), penicillin (56.4%), ceftiofur (55.9%), and gentamicin (55.1%). Resistance to tetracyclines, macrolides, aminoglycosides, and fluoroquinolone was attributed to the tet gene, erm(B), erm(C), mph(C), and mef(A) and/or mef(E) genes, aph(3')-IIIa and aac(6')-Ie-aph(2″)-Ia genes, and single point mutations in the quinolone resistance-determining region of ParC and GyrA, respectively. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Efflux inhibitor suppresses Streptococcus mutans virulence properties.

    Science.gov (United States)

    Zeng, Huihui; Liu, Jia; Ling, Junqi

    2017-04-01

    It is well established that efflux pumps play important roles in bacterial pathogenicity and efflux inhibitors (EIs) have been proved to be effective in suppressing bacterial virulence properties. However, little is known regarding the EI of Streptococcus mutans, a well-known caries-inducing bacterium. In this study, we identified the EI of S. mutans through ethidium bromide efflux assay and investigated how EI affected S. mutans virulence regarding the cariogenicity and stress response. Results indicated that reserpine, the identified EI, suppressed acid tolerance, mutacin production and transformation efficiency of S. mutans, and modified biofilm architecture and extracellular polysaccharide distribution. Suppressed glycosyltransferase activity was also noted after reserpine exposure. The data from quantitative real-time-PCR demonstrated that reserpine significantly altered the expression profile of quorum-sensing and virulence-associated genes. These findings suggest that reserpine represents a promising adjunct anticariogenic agent in that it suppresses virulence properties of S. mutans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Development of Streptococcus agalactiae vaccines for tilapia.

    Science.gov (United States)

    Liu, Guangjin; Zhu, Jielian; Chen, Kangming; Gao, Tingting; Yao, Huochun; Liu, Yongjie; Zhang, Wei; Lu, Chengping

    2016-12-21

    Vaccination is a widely accepted and effective method to prevent most pathogenic diseases in aquaculture. Various species of tilapia, especially Nile tilapia Oreochromis niloticus, are farmed worldwide because of their high consumer demand. Recently, the tilapia-breeding industry has been hampered by outbreaks of Streptococcus agalactiae infection, which cause high mortality and huge economic losses. Many researchers have attempted to develop effective S. agalactiae vaccines for tilapia. This review provides a summary of the different kinds of S. agalactiae vaccines for tilapia that have been developed recently. Among the various vaccine types, inactivated S. agalactiae vaccines showed superior protection efficiency when compared with live attenuated, recombinant and DNA vaccines. With respect to vaccination method, injecting the vaccine into tilapia provided the most effective immunoprotection. Freund's incomplete adjuvant appeared to be suitable for tilapia vaccines. Other factors, such as immunization duration and number, fish size and challenge dose, also influenced the vaccine efficacy.

  14. Streptococcus pneumoniae urinary tract infection in pedeatrics.

    Science.gov (United States)

    Pougnet, Richard; Sapin, Jeanne; De Parscau, Loïc; Pougnet, Laurence

    2017-06-01

    Streptococcus pneumoniae infections in children are most often lung infections or meningitis. Urinary tract infections are much rarer. We present the case of a urinary tract infection with Streptococcus pneumoniae. The clinical picture was classical. The urine culture showed the presence of Streptococcus pneumoniae in urine (10 4 UFC/mL; with 2 × 10 4 leucocytes/mL). The literature mentions a few cases of such infections. In some studies, the prevalence of Streptococcus pneumoniae in urine of children is less than 1%. Those children mostly present abnormalities of urinary tract. In our case, urinary ultrasound scan have shown the presence of an ectopic kidney in this child. The discussion between the clinician and the biologist has contributed to the discovery of this renal anomaly.

  15. 21 CFR 866.3720 - Streptococcus spp. exo-enzyme reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Streptococcus spp. exo-enzyme reagents. 866.3720... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3720 Streptococcus spp. exo-enzyme reagents. (a) Identification. Streptococcus spp. exoenzyme reagents are devices used...

  16. Diversity of human small intestinal Streptococcus and Veillonella populations.

    Science.gov (United States)

    van den Bogert, Bartholomeus; Erkus, Oylum; Boekhorst, Jos; de Goffau, Marcus; Smid, Eddy J; Zoetendal, Erwin G; Kleerebezem, Michiel

    2013-08-01

    Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed abundant populations of Streptococcus spp. most affiliated with S. salivarius, S. thermophilus, and S. parasanguinis, as well as Veillonella spp. affiliated with V. atypica, V. parvula, V. dispar, and V. rogosae. Relative abundances varied per subject and time of sampling. Streptococcus and Veillonella isolates were cultured using selective media from ileostoma effluent samples collected at two time points from a single subject. The richness of the Streptococcus and Veillonella isolates was assessed at species and strain level by 16S rRNA gene sequencing and genetic fingerprinting, respectively. A total of 160 Streptococcus and 37 Veillonella isolates were obtained. Genetic fingerprinting differentiated seven Streptococcus lineages from ileostoma effluent, illustrating the strain richness within this ecosystem. The Veillonella isolates were represented by a single phylotype. Our study demonstrated that the small intestinal Streptococcus populations displayed considerable changes over time at the genetic lineage level because only representative strains of a single Streptococcus lineage could be cultivated from ileostoma effluent at both time points. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. The association between subclinical mastitis around calving and reproductive performance in grazing dairy cows.

    Science.gov (United States)

    Villa-Arcila, N A; Sanchez, J; Ratto, M H; Rodriguez-Lecompte, J C; Duque-Madrid, P C; Sanchez-Arias, S; Ceballos-Marquez, A

    2017-10-01

    The objective of this study was to evaluate the effect of subclinical mastitis (SCM) on calving-to-first-service interval (CFS), calving-to-conception interval (CC), and on the number of services per conception (S/C) in grazing Holstein and Normande cows. Primiparous (n=43) and multiparous (n=165) cows were selected from five dairy herds. Two composite milk samples were aseptically collected from each cow at drying-off, and then every week during the first postpartum month. One sample was used for somatic cell count (SCC), and the other one for bacteriological analysis. Cows were followed up to 300 d after calving. Non-parametric and parametric survival models, and negative binomial regression were used to assess the association between SCM, evaluated by SCC and milk culture, and reproductive indices. Staphylococcus aureus, CNS, and Streptococcus uberis were the most frequent isolated pathogens. Subclinical mastitis in the first month of lactation was not associated with CFS; however, the CC interval was longer in cows with SCM compared to healthy cows, the former also had a higher number of S/C. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis.

    Science.gov (United States)

    Puttipan, Rinrampai; Wanachantararak, Penpicha; Khongkhunthian, Sakornrat; Okonogi, Siriporn

    2017-01-01

    The present study explores antimicrobial activities of Caesalpinia sappan extracts against three strains of oral pathogenic bacteria; Streptococcus mutans DMST9567 (Smu9), Streptococcus mutans DMST41283 (Smu4), and Streptococcus intermedius DMST42700 (Si). Ethanol crude extract of C. sappan (Cs-EtOH) was firstly compared to that of other medicinal plants using disc diffusion method. Cs-EtOH showed significantly higher effective inhibition against all tested strains than other extracts and 0.12% chlorhexidine with the inhibition zone of 17.5 ± 0.5, 18.5 ± 0.0, and 17.0 ± 0.0 mm against Smu9, Smu4, and Si, respectively. Three fractionated extracts of C. sappan using hexane, ethyl acetate, and ethanol, respectively, were further investigated. The fractionated extract from ethanol (F-EtOH) presented the strongest activities with the minimum bactericidal concentration (MBC) of 125-250 µg/mL. Killing kinetics of F-EtOH was depended on the bacterial species and the concentration of F-EtOH. Two-fold MBC of F-EtOH could kill all tested strains within 12 h whereas its 4-fold MBC showed killing effect against Si within 6 h. Separation of F-EtOH by column chromatography using chloroform/methanol mixture as an eluent yielded 11 fractions (F1-F11). The fingerprints of these fractions by high-performance liquid chromatography at 280 nm revealed that F-EtOH consisted of at least 5 compounds. F6 possessed the significantly highest antimicrobial activity among 11 fractions, however less than F-EtOH. It is considered that F-EtOH is the promising extract of C. sappan for inhibiting oral pathogenic bacteria and appropriate as natural antiseptic for further develop of oral hygiene products.

  19. The novel species Streptococcus tigurinus and its association with oral infection.

    Science.gov (United States)

    Zbinden, Andrea; Bostanci, Nagihan; Belibasakis, Georgios N

    2015-01-01

    Streptococcus tigurinus is a novel species of viridans streptococci, shown to cause severe invasive infections such as infective endocarditis, spondylodiscitis and meningitis. S. tigurinus belongs to the Streptococcus mitis group and is most closely related to Streptococcus mitis, Streptococcus oralis, Streptococcus pneumoniae, Streptococcus pseudopneumoniae and Streptococcus infantis. The presence of S. tigurinus in the human oral cavity has been documented, including in patients with periodontal disease. This review addresses the available scientific knowledge on S. tigurinus and its association with closely related streptococci, and discusses its putative involvement in common oral infections. While there is as yet no strong evidence on the involvement of S. tigurinus with oral infections, its presence in the oral cavity and its association with endocarditis warrants special attention for a link between oral and systemic infection.

  20. Streptococcus suis

    DEFF Research Database (Denmark)

    Poggenborg, René; Gaïni, Shahin; Kjaeldgaard, Poul

    2008-01-01

    Meningitis and spondylodiscitis caused by Streptococcus suis is a rare disease which is contracted by occupational exposure to pigs. We report a 54-y-old pig-farm worker with S. suis meningitis and septicaemia complicated with thoracal and lumbar spine spondylodiscitis. The S. suis strain involved...

  1. Ceftaroline activity tested against contemporary Latin American bacterial pathogens (2011

    Directory of Open Access Journals (Sweden)

    Robert K. Flamm

    2014-03-01

    Full Text Available A total of 2484 target bacterial pathogens were collected (one per patient episode from patients in 16 Latin American medical centers located in seven nations during 2011. Isolate identity was confirmed at a coordinating laboratory and susceptibility testing was performed for ceftaroline and comparator agents according to reference broth microdilution methods. A total of 30.0% of isolates were from respiratory tract, 29.4% from skin and skin structure, 21.4% from blood stream, 7.9% from urinary tract and 11.3% from other sites. Ceftaroline was active against Staphylococcus aureus (42.8% MRSA with 83.6% of the isolates at ≤1 mg/L and all isolates at ≤2 mg/L (MIC5090, 0.25/2 mg/L. National MRSA rates ranged from a low of 28.8% in Colombia to a high of 68.1% in Chile. All Streptococcus pyogenes and Streptococcus agalactiae were susceptible to ceftaroline (MIC50/90 values were at ≤0.015/≤0.015 mg/L for both. All Streptococcus pneumoniae were susceptible to ceftaroline, linezolid, tigecycline and vancomycin. Susceptibility to ceftriaxone was at 88.4% (CLSI non-meningitis interpretive criteria and 73.9% (CLSI meningitis interpretive criteria for all S. pneumoniae. Ceftriaxone susceptibility was only at 33.3% (CLSI non-meningitis interpretive criteria and 0.0% (CLSI meningitis interpretive criteria for penicillin-intermediate (penicillin MIC, 4 mg/L strains. All Haemophilus influenzae (29.4% β-lactamase-positive isolates were susceptible to ceftaroline, amoxicillin–clavulanate, ceftriaxone, and levofloxacin. For the Latin American region, the ESBL-phenotype rate was 37.6% for Escherichia coli and 53.3% for Klebsiella pneumoniae. Ceftaroline was not active against ESBL-phenotype strains but was active against >90.0% of the non-ESBL-phenotype. The spectrum of activity of ceftaroline against pathogens from Latin America indicates that it merits further study for its potential use in the Latin American region.

  2. Effect of fluoride varnish on Streptococcus mutans counts in plaque of caries-free children using Dentocult SM strip mutans test: a randomized controlled triple blind study.

    Science.gov (United States)

    Jeevarathan, J; Deepti, A; Muthu, M S; Rathna Prabhu, V; Chamundeeswari, G S

    2007-01-01

    Dental caries is one of the most prevalent infectious diseases and although of multifactorial origin, Streptococcus mutans is considered the chief pathogen in its development. Fluoride is one of the most effective agents used for the reduction of dental caries apart from oral hygiene maintenance. The aim of this study was to estimate the counts of Streptococcus mutans and to evaluate the effect of Fluor Protector fluoride varnish on these counts in the plaque of caries-free children using Dentocult SM Strip Mutans. Thirty caries-free subjects were selected for the study based on the information obtained from a questionnaire and were randomly assigned to the control group consisting of ten subjects and the study group consisting of twenty subjects. Plaque samples were collected on the strips from the Dentocult SM kit and after incubation, the presence of Streptococcus mutans was evaluated using the manufacturer's chart. The study group was subjected to a Fluor Protector fluoride varnish application following which the samples were collected again after 24 hours. The average Streptococcus mutans counts in the primary dentition of caries-free children before and after the application of Fluor Protector fluoride varnish were 10(4)-10(5) colony forming units (CFU)/ml and <10(4) CFU/ml respectively. The results showed that the study group had a statistically significant reduction in the plaque Streptococcus mutans counts than the control group.

  3. Streptococcus pyogenes biofilms – formation, biology,and clinical relevance

    Directory of Open Access Journals (Sweden)

    Tomas eFiedler

    2015-02-01

    Full Text Available Streptococcus pyogenes (group A streptococci, GAS is an exclusive human bacterial pathogen. The virulence potential of this species is tremendous. Interactions with humans range from asymptomatic carriage over mild and superficial infections of skin and mucosal membranes up to systemic purulent toxic-invasive disease manifestations. Particularly the latter are a severe threat for predisposed patients and lead to significant death tolls worldwide. This places GAS among the most important Gram-positive bacterial pathogens. Many recent reviews have highlighted the GAS repertoire of virulence factors, regulators and regulatory circuits/networks that enable GAS to colonize the host and to deal with all levels of the host immune defense. This covers in vitro and in vivo studies, including animal infection studies based on mice and more relevant, macaque monkeys. It is now appreciated that GAS, like many other bacterial species, do not necessarily exclusively live in a planktonic lifestyle. GAS is capable of microcolony and biofilm formation on host cells and tissues. We are now beginning to understand that this feature significantly contributes to GAS pathogenesis. In this review we will discuss the current knowledge on GAS biofilm formation, the biofilm-phenotype associated virulence factors, regulatory aspects of biofilm formation, the clinical relevance, and finally contemporary treatment regimens and future treatment options.

  4. Comparative supragenomic analyses among the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae Using a modification of the finite supragenome model

    Directory of Open Access Journals (Sweden)

    Yu Susan

    2011-04-01

    Full Text Available Abstract Background Staphylococcus aureus is associated with a spectrum of symbiotic relationships with its human host from carriage to sepsis and is frequently associated with nosocomial and community-acquired infections, thus the differential gene content among strains is of interest. Results We sequenced three clinical strains and combined these data with 13 publically available human isolates and one bovine strain for comparative genomic analyses. All genomes were annotated using RAST, and then their gene similarities and differences were delineated. Gene clustering yielded 3,155 orthologous gene clusters, of which 2,266 were core, 755 were distributed, and 134 were unique. Individual genomes contained between 2,524 and 2,648 genes. Gene-content comparisons among all possible S. aureus strain pairs (n = 136 revealed a mean difference of 296 genes and a maximum difference of 476 genes. We developed a revised version of our finite supragenome model to estimate the size of the S. aureus supragenome (3,221 genes, with 2,245 core genes, and compared it with those of Haemophilus influenzae and Streptococcus pneumoniae. There was excellent agreement between RAST's annotations and our CDS clustering procedure providing for high fidelity metabolomic subsystem analyses to extend our comparative genomic characterization of these strains. Conclusions Using a multi-species comparative supragenomic analysis enabled by an improved version of our finite supragenome model we provide data and an interpretation explaining the relatively larger core genome of S. aureus compared to other opportunistic nasopharyngeal pathogens. In addition, we provide independent validation for the efficiency and effectiveness of our orthologous gene clustering algorithm.

  5. Microbial infections are associated with embryo mortality in Arctic-nesting geese.

    Science.gov (United States)

    Hansen, Cristina M.; Meixell, Brandt W.; Van Hemert, Caroline R.; Hare, Rebekah F.; Hueffer, Karsten

    2015-01-01

    To address the role of bacterial infection in hatching failure of wild geese, we monitored embryo development in a breeding population of Greater white-fronted geese (Anser albifrons) on the Arctic Coastal Plain of Alaska. During 2013, we observed mortality of normally developing embryos and collected 36 addled eggs for analysis. We also collected 17 infertile eggs for comparison. Using standard culture methods and gene sequencing to identify bacteria within collected eggs, we identified a potentially novel species of Neisseria in 33 eggs, Macrococcus caseolyticus in 6 eggs, and Streptococcus uberis and Rothia nasimurium in 4 eggs each. We detected seven other bacterial species at lower frequencies. Sequences of the 16S rRNA genes from the Neisseria isolates most closely matched sequences from N. animaloris and N. canis (96 to 97% identity), but phylogenetic analysis suggested substantial genetic differentiation between egg isolates and known Neisseria species. Although definitive sources of the bacteria remain unknown, we detected Neisseria DNA from swabs of eggshells, nest contents, and cloacae of nesting females. To assess the pathogenicity of bacteria identified in contents of addled eggs, we inoculated isolates of Neisseria, Macrococcus, Streptococcus, and Rothia at various concentrations into developing chicken eggs. Seven-day mortality rates varied from 70 to 100%, depending on the bacterial species and inoculation dose. Our results suggest that bacterial infections are a source of embryo mortality in wild geese in the Arctic.    

  6. Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae.

    Science.gov (United States)

    Vásquez, Gersson; Rey, Alba; Rivera, Camilo; Iregui, Carlos; Orozco, Jahir

    2017-01-15

    Pathogenic bacteria are responsible for several diseases in humans and in a variety of hosts. Detection of pathogenic bacteria is imperative to avoid and/or fight their potential harmful effects. This work reports on the first amperometric biosensor for the rapid detection of Streptococcus agalactiae (S. agalactiae). The biosensor relies on a single biotinylated antibody that immobilizes the bacteria on a screen-printed carbon electrode while is further linked to a streptavidin-conjugated HRP reporter. The biotinylated antibody provides selectivity to the biosensor whereas serves as an anchoring point to the reporter for further amplification of the electrochemical signal. The resultant immunosensor is simple, responds rapidly, and allows for the selective and highly sensitive quantification of S. agalactiae cells in a concentration range of 10 1 -10 7 CFUml -1 , with a detection limit of 10CFUml -1 . The approach not only enables a rapid detection and quantification of S. agalactiae in environmental samples but also opens up new opportunities for the simple fabrication of electrochemical immunosensors for different target pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part I – Epidemiology

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2017-12-01

    Full Text Available Streptococcus suis (ex Elliot 1966, Kilpper-Bälz & Schleifer 1987 is a facultatively anaerobic Gram-positive ovoid or coccal bacterium surrounded by a polysaccharide capsule. Based on the antigenic diversity of the capsule, S. suis strains are classified serologically into 35 serotypes. Streptococcus suis is a commensal of pigs, commonly colonizing their tonsils and nasal cavities, mostly in weaning piglets between 4–10 weeks of age. This species occurs also in cattle and other mammals, in birds and in humans. Some strains, mostly those belonging to serotype 2, are also pathogenic for pigs, as well as for other animals and humans. Meningitis is the primary disease syndrome caused by S. suis , both in pigs and in humans. It is estimated that meningitis accounted for 68.0% of all cases of human disease reported until the end of 2012, followed by septicaemia (including life-threatening condition described as ‘streptococcal toxic shock-like syndrome’ – STSLS, arthritis, endocarditis, and endophthalmitis. Hearing loss and/or ves tibular dysfunction are the most common sequelae after recovery from meningitis caused by S. suis , occurring in more than 50% of patients. In the last two decades, the number of reported human cases due to S. suis has dramatically increased, mostly due to epidemics recorded in China in 1998 and 2005, and the fulminant increase in morbidity in the countries of south-eastern Asia, mostly Vietnam and Thailand. Out of 1,642 cases of S. suis infections identified between 2002–2013 worldwide in humans, 90.2% occurred in Asia, 8.5% in Europe and 1.3% in other parts of the globe. The human disease has mostly a zoonotic and occupational origin and occurs in pig breeders, abattoir workers, butchers and workers of meat processing facilities, veterinarians and meat inspectors. Bacteria are transmitted to workers by close contact with pigs or pig products, usually through contamination of minor cuts or abrasions on skin of

  8. Streptococcus bovis/S. equinus complex septicemia in a group of calves following intramuscular vaccination.

    Science.gov (United States)

    Clarke, Lorelei L; Fathke, Robert L; Sanchez, Susan; Stanton, James B

    2016-07-01

    Organisms previously classified as Streptococcus bovis (i.e., the S. bovis/S. equinus complex) are common in cattle feces, but may also act as opportunistic pathogens. In the current work, Streptococcus infantarius subsp. coli, a member of this complex, was associated of a cluster of calves that died within hours of injection with a modified live viral vaccine. Within 12 h of vaccination of 46 calves at a cow/calf operation, 4 calves had died, 3 calves were ill, and 1 unvaccinated cow was dead. Autopsies were performed on the cow, 2 dead calves, and 1 affected surviving calf, which was euthanized ~24 h after vaccine administration. The animals had similar gross anatomic and microscopic lesions, including subcutaneous and intramuscular dark hemorrhage on the caudal neck, multiorgan ecchymosis and petechiation, and alveolitis to interstitial pneumonia. Gram-positive cocci were in the vasculature of the lung and skeletal muscle, and S. infantarius subsp. coli was cultured from tissues and from the vaccines used on affected animals, but not in vials used on unaffected animals. Together, these findings suggest death caused by streptococcal septicemia and toxemia as a result of contamination. © 2016 The Author(s).

  9. Antimicrobial activity of 1,4-naphthoquinones by metal complexation Atividade antimicrobiana de 1,4-naftoquinonas por complexação com metais

    Directory of Open Access Journals (Sweden)

    Adriano Brandelli

    2004-06-01

    Full Text Available The effect of metal complexation on the antimicrobial activity of 1,4-naphthoquinones was investigated. Nickel-, chromium-, iron-, copper-, and cobalt-containing metal chelates of 5-amino-8-hydroxy-1,4-naphtoquinone (2 and its acyl-derivatives (3-8 were synthesized and characterized, and their antimicrobial activity was evaluated. Data from infrared spectroscopy indicate that naphthoquinones coordinate through oxygen and nitrogen atoms for 2, and through oxygen atoms when ligands were acyl derivatives 3-8. Susceptibility tests for antimicrobial activity showed that 2 and its acyl derivatives were effective on inhibiting the growth of pathogenic bacteria such as Staphylococcus aureus, Streptococcus uberis and Bacillus cereus, but not Gram-negative bacteria. The metal complexation often caused decrease of biological activity. Nickel complex of 2 was the most effective against Gram-positive bacteria, showing MIC values ranging from 375 to 1400 mg/ml. Metal chelates may be useful tools for the understanding of the antimicrobial mechanism of 1,4-naphthoquinones on these bacteria.O efeito da complexação com metais sobre a atividade antimicrobiana de 1,4-naftoquinonas foi investigado. Complexos contendo níquel, cromo, ferro, cobre e cobalto da 5-amino-8-hidroxi-1,4-naftoquinona (2 e seus acil-derivados (3-8 foram sintetizados e caracterizados e sua atividade antimicrobiana foi avaliada. Dados de espectroscopia de infravermelho indicaram que as naftoquinonas coordenam os metais através dos átomos de oxigênio e nitrogênio para 2 e através de átomos de oxigênio, quando os ligantes são os acil-derivados 3-8. Testes de sensibilidade antimicrobiana demonstraram que 2 e seus derivados foram efetivos na inibição do crescimento de bactérias patogênicas como Staphylococcus aureus, Streptococcus uberis e Bacillus cereus, mas não apresentaram efeito contra bactérias Gram-negativas. A complexação de metais geralmente causou diminuição da

  10. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms

    Science.gov (United States)

    Castillo Pedraza, Midian C.; Novais, Tatiana F.; Faustoferri, Roberta C.; Quivey, Robert G.; Terekhov, Anton; Hamaker, Bruce R.; Klein, Marlise I.

    2018-01-01

    Streptococcus mutans -derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA – ΔlytS and ΔlytT; LTA – ΔdltA and ΔdltD; and insoluble exopolysaccharide – ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms. PMID:28946780

  11. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms.

    Science.gov (United States)

    Castillo Pedraza, Midian C; Novais, Tatiana F; Faustoferri, Roberta C; Quivey, Robert G; Terekhov, Anton; Hamaker, Bruce R; Klein, Marlise I

    2017-10-01

    Streptococcus mutans-derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA - ∆lytS and ∆lytT; LTA - ∆dltA and ∆dltD; and insoluble exopolysaccharide - ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms.

  12. Streptococcus sinensis may react with Lancefield group F antiserum.

    Science.gov (United States)

    Woo, Patrick C Y; Teng, Jade L L; Leung, Kit-wah; Lau, Susanna K P; Tse, Herman; Wong, Beatrice H L; Yuen, Kwok-yung

    2004-11-01

    Lancefield group F streptococci have been found almost exclusively as members of the 'Streptococcus milleri' group, although they have been reported very occasionally in some other streptococcal species. Among 302 patients with bacteraemia caused by viridans streptococci over a 6-year period, three cases were caused by Streptococcus sinensis (type strain HKU4T, HKU5 and HKU6). All three patients had infective endocarditis complicating their underlying chronic rheumatic heart diseases. Gene sequencing showed no base differences between the 16S rRNA gene sequences of HKU5 and HKU6 and that of HKU4T. All three strains were Gram-positive, non-spore-forming cocci arranged in chains. All grew on sheep blood agar as alpha-haemolytic, grey colonies of 0.5-1 mm in diameter after 24 h incubation at 37 degrees C in ambient air. Lancefield grouping revealed that HKU5 and HKU6 were Lancefield group F, but HKU4T was non-groupable with Lancefield groups A, B, C, D, F or G antisera. HKU4T was identified by the Vitek system (GPI), API system (20 STREP) and ATB system (ID32 STREP) as 99 % Streptococcus intermedius, 51.3 % S. intermedius and 99.9 % Streptococcus anginosus, respectively. Using the same tests, HKU5 was identified as 87 % Streptococcus sanguinis/Streptococcus gordonii, 59 % Streptococcus salivarius and 99.6 % S. anginosus, respectively, and HKU6 as 87 % S. sanguinis/S. gordonii, 77 % Streptococcus pneumoniae and 98.3 % S. anginosus, respectively. The present data revealed that a proportion of Lancefield group F streptococci could be S. sinensis. Lancefield group F streptococci should not be automatically reported as 'S. milleri'.

  13. Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation

    Science.gov (United States)

    2013-01-01

    Background The Streptococcus Anginosus Group (SAG) represents three closely related species of the viridans group streptococci recognized as commensal bacteria of the oral, gastrointestinal and urogenital tracts. The SAG also cause severe invasive infections, and are pathogens during cystic fibrosis (CF) pulmonary exacerbation. Little genomic information or description of virulence mechanisms is currently available for SAG. We conducted intra and inter species whole-genome comparative analyses with 59 publically available Streptococcus genomes and seven in-house closed high quality finished SAG genomes; S. constellatus (3), S. intermedius (2), and S. anginosus (2). For each SAG species, we sequenced at least one numerically dominant strain from CF airways recovered during acute exacerbation and an invasive, non-lung isolate. We also evaluated microevolution that occurred within two isolates that were cultured from one individual one year apart. Results The SAG genomes were most closely related to S. gordonii and S. sanguinis, based on shared orthologs and harbor a similar number of proteins within each COG category as other Streptococcus species. Numerous characterized streptococcus virulence factor homologs were identified within the SAG genomes including; adherence, invasion, spreading factors, LPxTG cell wall proteins, and two component histidine kinases known to be involved in virulence gene regulation. Mobile elements, primarily integrative conjugative elements and bacteriophage, account for greater than 10% of the SAG genomes. S. anginosus was the most variable species sequenced in this study, yielding both the smallest and the largest SAG genomes containing multiple genomic rearrangements, insertions and deletions. In contrast, within the S. constellatus and S. intermedius species, there was extensive continuous synteny, with only slight differences in genome size between strains. Within S. constellatus we were able to determine important SNPs and changes in

  14. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2.

    Directory of Open Access Journals (Sweden)

    Jiaqi Tang

    2006-05-01

    Full Text Available BACKGROUND: Streptococcus suis serotype 2 (S. suis 2, SS2 is a major zoonotic pathogen that causes only sporadic cases of meningitis and sepsis in humans. Most if not all cases of Streptococcal toxic shock syndrome (STSS that have been well-documented to date were associated with the non-SS2 group A streptococcus (GAS. However, a recent large-scale outbreak of SS2 in Sichuan Province, China, appeared to be caused by more invasive deep-tissue infection with STSS, characterized by acute high fever, vascular collapse, hypotension, shock, and multiple organ failure. METHODS AND FINDINGS: We investigated this outbreak of SS2 infections in both human and pigs, which took place from July to August, 2005, through clinical observation and laboratory experiments. Clinical and pathological characterization of the human patients revealed the hallmarks of typical STSS, which to date had only been associated with GAS infection. Retrospectively, we found that this outbreak was very similar to an earlier outbreak in Jiangsu Province, China, in 1998. We isolated and analyzed 37 bacterial strains from human specimens and eight from pig specimens of the recent outbreak, as well as three human isolates and two pig isolates from the 1998 outbreak we had kept in our laboratory. The bacterial isolates were examined using light microscopy observation, pig infection experiments, multiplex-PCR assay, as well as restriction fragment length polymorphisms (RFLP and multiple sequence alignment analyses. Multiple lines of evidence confirmed that highly virulent strains of SS2 were the causative agents of both outbreaks. CONCLUSIONS: We report, to our knowledge for the first time, two outbreaks of STSS caused by SS2, a non-GAS streptococcus. The 2005 outbreak was associated with 38 deaths out of 204 documented human cases; the 1998 outbreak with 14 deaths out of 25 reported human cases. Most of the fatal cases were characterized by STSS; some of them by meningitis or severe

  15. Prevalence of bloodstream pathogens is higher in neonatal encephalopathy cases vs. controls using a novel panel of real-time PCR assays.

    Science.gov (United States)

    Tann, Cally J; Nkurunziza, Peter; Nakakeeto, Margaret; Oweka, James; Kurinczuk, Jennifer J; Were, Jackson; Nyombi, Natasha; Hughes, Peter; Willey, Barbara A; Elliott, Alison M; Robertson, Nicola J; Klein, Nigel; Harris, Kathryn A

    2014-01-01

    In neonatal encephalopathy (NE), infectious co-morbidity is difficult to diagnose accurately, but may increase the vulnerability of the developing brain to hypoxia-ischemia. We developed a novel panel of species-specific real-time PCR assays to identify bloodstream pathogens amongst newborns with and without NE in Uganda. Multiplex real-time PCR assays for important neonatal bloodstream pathogens (gram positive and gram negative bacteria, cytomegalovirus (CMV), herpes simplex virus(HSV) and P. falciparum) were performed on whole blood taken from 202 encephalopathic and 101 control infants. Automated blood culture (BACTEC) was performed for all cases and unwell controls. Prevalence of pathogenic bacterial species amongst infants with NE was 3.6%, 6.9% and 8.9%, with culture, PCR and both tests in combination, respectively. More encephalopathic infants than controls had pathogenic bacterial species detected (8.9%vs2.0%, p = 0.028) using culture and PCR in combination. PCR detected bacteremia in 11 culture negative encephalopathic infants (3 Group B Streptococcus, 1 Group A Streptococcus, 1 Staphylococcus aureus and 6 Enterobacteriacae). Coagulase negative staphylococcus, frequently detected by PCR amongst case and control infants, was considered a contaminant. Prevalence of CMV, HSV and malaria amongst cases was low (1.5%, 0.5% and 0.5%, respectively). This real-time PCR panel detected more bacteremia than culture alone and provides a novel tool for detection of neonatal bloodstream pathogens that may be applied across a range of clinical situations and settings. Significantly more encephalopathic infants than controls had pathogenic bacterial species detected suggesting that infection may be an important risk factor for NE in this setting.

  16. Prevalence of bloodstream pathogens is higher in neonatal encephalopathy cases vs. controls using a novel panel of real-time PCR assays.

    Directory of Open Access Journals (Sweden)

    Cally J Tann

    Full Text Available In neonatal encephalopathy (NE, infectious co-morbidity is difficult to diagnose accurately, but may increase the vulnerability of the developing brain to hypoxia-ischemia. We developed a novel panel of species-specific real-time PCR assays to identify bloodstream pathogens amongst newborns with and without NE in Uganda.Multiplex real-time PCR assays for important neonatal bloodstream pathogens (gram positive and gram negative bacteria, cytomegalovirus (CMV, herpes simplex virus(HSV and P. falciparum were performed on whole blood taken from 202 encephalopathic and 101 control infants. Automated blood culture (BACTEC was performed for all cases and unwell controls.Prevalence of pathogenic bacterial species amongst infants with NE was 3.6%, 6.9% and 8.9%, with culture, PCR and both tests in combination, respectively. More encephalopathic infants than controls had pathogenic bacterial species detected (8.9%vs2.0%, p = 0.028 using culture and PCR in combination. PCR detected bacteremia in 11 culture negative encephalopathic infants (3 Group B Streptococcus, 1 Group A Streptococcus, 1 Staphylococcus aureus and 6 Enterobacteriacae. Coagulase negative staphylococcus, frequently detected by PCR amongst case and control infants, was considered a contaminant. Prevalence of CMV, HSV and malaria amongst cases was low (1.5%, 0.5% and 0.5%, respectively.This real-time PCR panel detected more bacteremia than culture alone and provides a novel tool for detection of neonatal bloodstream pathogens that may be applied across a range of clinical situations and settings. Significantly more encephalopathic infants than controls had pathogenic bacterial species detected suggesting that infection may be an important risk factor for NE in this setting.

  17. Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus

    Science.gov (United States)

    Richards, Vincent P.; Palmer, Sara R.; Pavinski Bitar, Paulina D.; Qin, Xiang; Weinstock, George M.; Highlander, Sarah K.; Town, Christopher D.; Burne, Robert A.; Stanhope, Michael J.

    2014-01-01

    The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group. PMID:24625962

  18. Factors That Cause Trimethoprim Resistance in Streptococcus pyogenes

    Science.gov (United States)

    Bergmann, René; van der Linden, Mark; Chhatwal, Gursharan S.

    2014-01-01

    The use of trimethoprim in treatment of Streptococcus pyogenes infections has long been discouraged because it has been widely believed that this pathogen is resistant to this antibiotic. To gain more insight into the extent and molecular basis of trimethoprim resistance in S. pyogenes, we tested isolates from India and Germany and sought the factors that conferred the resistance. Resistant isolates were identified in tests for trimethoprim or trimethoprim-sulfamethoxazole (SXT) susceptibility. Resistant isolates were screened for the known horizontally transferable trimethoprim-insensitive dihydrofolate reductase (dfr) genes dfrG, dfrF, dfrA, dfrD, and dfrK. The nucleotide sequence of the intrinsic dfr gene was determined for resistant isolates lacking the horizontally transferable genes. Based on tentative criteria, 69 out of 268 isolates (25.7%) from India were resistant to trimethoprim. Occurring in 42 of the 69 resistant isolates (60.9%), dfrF appeared more frequently than dfrG (23 isolates; 33.3%) in India. The dfrF gene was also present in a collection of SXT-resistant isolates from Germany, in which it was the only detected trimethoprim resistance factor. The dfrF gene caused resistance in 4 out of 5 trimethoprim-resistant isolates from the German collection. An amino acid substitution in the intrinsic dihydrofolate reductase known from trimethoprim-resistant Streptococcus pneumoniae conferred resistance to S. pyogenes isolates of emm type 102.2, which lacked other aforementioned dfr genes. Trimethoprim may be more useful in treatment of S. pyogenes infections than previously thought. However, the factors described herein may lead to the rapid development and spread of resistance of S. pyogenes to this antibiotic agent. PMID:24492367

  19. Antagonistic activity of antibiotic producing Streptomyces sp. against fish and human pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Nazmul Hossain

    2014-04-01

    Full Text Available In this study, attempts were made to isolate Streptomyces sp. from soil samples of two different regions of Bangladesh and evaluate their antagonistic activity against fish and human pathogenic bacteria. A total of 10 isolates were identified as Streptomyces sp. based on several morphological, physiological and biochemical tests. Cross streak method was used to observe the antagonistic activity of the Streptomyces sp. isolates against different fish pathogens belonging to the genus Aeromonas, Pseudomonas and Edwardsiella and human clinical isolates belonging to the genus Klebsiella, Salmonella and Streptococcus. Seven Streptomyces sp. isolates showed antagonism against both fish and human pathogenic bacteria. Four isolates viz., N24, N26, N28 and N47 showed broad spectrum of antagonistic activity (80-100% against all genera of fish and human pathogenic bacteria. The isolate N49 exhibited highest spectrum of antagonism against all fish pathogens (90-100% but comparatively lower degree of antagonism against human pathogens (50-60%. Rest of the two isolates (N21 and N23 showed variability in their antagonism. Results showed that broad spectrum antibiotic(s could be developed from the isolates N24, N26, N28 and N47against several human and fish pathogens. The isolate N49 could be a potential source of antibiotic, especially for fish pathogenic bacteria.

  20. Simultaneous Detection of 13 Key Bacterial Respiratory Pathogens by Combination of Multiplex PCR and Capillary Electrophoresis.

    Science.gov (United States)

    Jiang, Lu Xi; Ren, Hong Yu; Zhou, Hai Jian; Zhao, Si Hong; Hou, Bo Yan; Yan, Jian Ping; Qin, Tian; Chen, Yu

    2017-08-01

    Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebacterium diphtheriae, and Streptococcus pyogenes. Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 152 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. This study revealed that the MPCE assay is a rapid, reliable, and high-throughput method with high specificity and sensitivity. This assay has great potential in the molecular epidemiological survey of respiratory pathogens. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. Characterization of a Multipeptide Lantibiotic Locus in Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Natalie Maricic

    2016-01-01

    Full Text Available Bacterial communities are established through a combination of cooperative and antagonistic interactions between the inhabitants. Competitive interactions often involve the production of antimicrobial substances, including bacteriocins, which are small antimicrobial peptides that target other community members. Despite the nearly ubiquitous presence of bacteriocin-encoding loci, inhibitory activity has been attributed to only a small fraction of gene clusters. In this study, we characterized a novel locus (the pld locus in the pathogen Streptococcus pneumoniae that drives the production of a bacteriocin called pneumolancidin, which has broad antimicrobial activity. The locus encodes an unusual tandem array of four inhibitory peptides, three of which are absolutely required for antibacterial activity. The three peptide sequences are similar but appear to play distinct roles in regulation and inhibition. A modification enzyme typically found in loci encoding a class of highly modified bacteriocins called lantibiotics was required for inhibitory activity. The production of pneumolancidin is controlled by a two-component regulatory system that is activated by the accumulation of modified peptides. The locus is located on a mobile element that has been found in many pneumococcal lineages, although not all elements carry the pld genes. Intriguingly, a minimal region containing only the genes required for pneumolancidin immunity was found in several Streptococcus mitis strains. The pneumolancidin-producing strain can inhibit nearly all pneumococci tested to date and provided a competitive advantage in vivo. These peptides not only represent a unique strategy for bacterial competition but also are an important resource to guide the development of new antimicrobials.

  2. Veillonella Catalase Protects the Growth of Fusobacterium nucleatum in Microaerophilic and Streptococcus gordonii-Resident Environments.

    Science.gov (United States)

    Zhou, Peng; Li, Xiaoli; Huang, I-Hsiu; Qi, Fengxia

    2017-10-01

    The oral biofilm is a multispecies community in which antagonism and mutualism coexist among friends and foes to keep an ecological balance of community members. The pioneer colonizers, such as Streptococcus gordonii , produce H 2 O 2 to inhibit the growth of competitors, like the mutans streptococci, as well as strict anaerobic middle and later colonizers of the dental biofilm. Interestingly, Veillonella species, as early colonizers, physically interact (coaggregate) with S. gordonii A putative catalase gene ( catA ) is found in most sequenced Veillonella species; however, the function of this gene is unknown. In this study, we characterized the ecological function of catA from Veillonella parvula PK1910 by integrating it into the only transformable strain, Veillonella atypica OK5, which is catA negative. The strain (OK5- catA ) became more resistant to H 2 O 2 Further studies demonstrated that the catA gene expression is induced by the addition of H 2 O 2 or coculture with S. gordonii Mixed-culture experiments further revealed that the transgenic OK5- catA strain not only enhanced the growth of Fusobacterium nucleatum , a strict anaerobic periodontopathogen, under microaerophilic conditions, but it also rescued F. nucleatum from killing by S. gordonii A potential role of catalase in veillonellae in biofilm ecology and pathogenesis is discussed here. IMPORTANCE Veillonella species, as early colonizers, can coaggregate with many bacteria, including the initial colonizer Streptococcus gordonii and periodontal pathogen Fusobacterium nucleatum , during various stages of oral biofilm formation. In addition to providing binding sites for many microbes, our previous study also showed that Veillonella produces nutrients for the survival and growth of periodontal pathogens. These findings indicate that Veillonella plays an important "bridging" role in the development of oral biofilms and the ecology of the human oral cavity. In this study, we demonstrated that the reducing

  3. Multiple lung abscesses caused by Streptococcus constellatus

    Directory of Open Access Journals (Sweden)

    Vanina Rognoni

    2018-02-01

    Full Text Available Despite numerous descriptions of body abscesses produced by Streptococcus milleri group bacteria, lung abscesses caused by this group remain under-reported and the clinical and laboratory features have yet to be fully characterised. We present the case of a patient admitted with lung multiple abscesses produced by Streptococcus constellatus.

  4. Group A Streptococcus vulvovaginitis in breastfeeding women.

    Science.gov (United States)

    Rahangdale, Lisa; Lacy, Judith; Hillard, Paula A

    2008-08-01

    Group A beta-hemolytic streptococcus-associated vulvovaginitis is uncommon in adult women. Clinicians should include group A beta-hemolytic streptococcus as a possible cause of vulvovaginal symptoms in breastfeeding women. Along with appropriate antibiotic therapy, vaginal estrogen therapy may be considered to diminish susceptibility to recurrent infection in women with vaginal atrophy.

  5. Photoinactivation of major bacterial pathogens in aquaculture

    Directory of Open Access Journals (Sweden)

    Heyong Jin Roh

    2016-08-01

    Full Text Available Abstract Background Significant increases in the bacterial resistance to various antibiotics have been found in fish farms. Non-antibiotic therapies for infectious diseases in aquaculture are needed. In recent years, light-emitting diode technology has been applied to the inactivation of pathogens, especially those affecting humans. The purpose of this study was to assess the effect of blue light (wavelengths 405 and 465 nm on seven major bacterial pathogens that affect fish and shellfish important in aquaculture. Results We successfully demonstrate inactivation activity of a 405/465-nm LED on selected bacterial pathogens. Although some bacteria were not fully inactivated by the 465-nm light, the 405-nm light had a bactericidal effect against all seven pathogens, indicating that blue light can be effective without the addition of a photosensitizer. Photobacterium damselae, Vibrio anguillarum, and Edwardsiella tarda were the most susceptible to the 405-nm light (36.1, 41.2, and 68.4 J cm−2, respectively, produced one log reduction in the bacterial populations, whereas Streptococcus parauberis was the least susceptible (153.8 J cm−2 per one log reduction. In general, optical density (OD values indicated that higher bacterial densities were associated with lower inactivating efficacy, with the exception of P. damselae and Vibrio harveyi. In conclusion, growth of the bacterial fish and shellfish pathogens evaluated in this study was inactivated by exposure to either the 405- or 465-nm light. In addition, inactivation was dependent on exposure time. Conclusions This study presents that blue LED has potentially alternative therapy for treating fish and shellfish bacterial pathogens. It has great advantages in aspect of eco-friendly treating methods differed from antimicrobial methods.

  6. Amino Sugars Enhance the Competitiveness of Beneficial Commensals with Streptococcus mutans through Multiple Mechanisms.

    Science.gov (United States)

    Zeng, Lin; Farivar, Tanaz; Burne, Robert A

    2016-06-15

    Biochemical and genetic aspects of the metabolism of the amino sugars N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) by commensal oral streptococci and the effects of these sugars on interspecies competition with the dental caries pathogen Streptococcus mutans were explored. Multiple S. mutans wild-type isolates displayed long lag phases when transferred from glucose-containing medium to medium with GlcNAc as the primary carbohydrate source, but commensal streptococci did not. Competition in liquid coculture or dual-species biofilms between S. mutans and Streptococcus gordonii showed that S. gordonii was particularly dominant when the primary carbohydrate was GlcN or GlcNAc. Transcriptional and enzymatic assays showed that the catabolic pathway for GlcNAc was less highly induced in S. mutans than in S. gordonii Exposure to H2O2, which is produced by S. gordonii and antagonizes the growth of S. mutans, led to reduced mRNA levels of nagA and nagB in S. mutans When the gene for the transcriptional regulatory NagR was deleted in S. gordonii, the strain produced constitutively high levels of nagA (GlcNAc-6-P deacetylase), nagB (GlcN-6-P deaminase), and glmS (GlcN-6-P synthase) mRNA. Similar to NagR of S. mutans (NagRSm), the S. gordonii NagR protein (NagRSg) could bind to consensus binding sites (dre) in the nagA, nagB, and glmS promoter regions of S. gordonii Notably, NagRSg binding was inhibited by GlcN-6-P, but G-6-P had no effect, unlike for NagRSm This study expands the understanding of amino sugar metabolism and NagR-dependent gene regulation in streptococci and highlights the potential for therapeutic applications of amino sugars to prevent dental caries. Amino sugars are abundant in the biosphere, so the relative efficiency of particular bacteria in a given microbiota to metabolize these sources of carbon and nitrogen might have a profound impact on the ecology of the community. Our investigation reveals that several oral commensal bacteria have a much

  7. Bacteriophages for detection of bacterial pathogens

    International Nuclear Information System (INIS)

    Kutateladze, M.

    2009-01-01

    The G. Eliava Institute of Bacteriophages, Microbiology and Virology (Tbilisi, Georgia) is one of the most famous institutions focused on bacteriophage research for the elaboration of appropriate phage methodologies for human and animal protection. The main direction of the institute is the study and production of bacteriophages against intestinal disorders (dysentery, typhoid, intesti) and purulent-septic infections (staphylococcus, streptococcus, pyophage, etc.). These preparations were successfully introduced during the Soviet era, and for decades were used throughout the former Soviet Union and in other Socialist countries for the treatment, prophylaxis, and diagnosis of various infectious diseases, including those caused by antibiotic-resistant bacterial strains. Bacteriophages were widely used for identifying and detecting infections caused by the most dangerous pathogens and causative agents of epidemiological outbreaks. The specific topic of this presentation is the phage typing of bacterial species, which can be an important method for epidemiological diagnostics. Together with different genetic methodologies - such as PCR-based methods, PFGE, plasmid fingerprinting, and ribosomal typing - phage typing is one method for identifying bacterial pathogens. The method has a high percentage of determination of phage types, high specificity of reaction, and is easy for interpretation and use by health workers. Phage typing was applied for inter-species differentiation of different species of Salmonella, S. typhi, Brucella spp, Staphylococcus aureus, E. col,i Clostridium deficile, Vibrio cholerae, Yersinia pestis, Yersinia enterocolitica, Lysteria monocytogenes, Clostridium perfringens, Clostridium tetani, plant pathogens, and other bacterial pathogens. In addition to addressing the utility and efficacy of phage typing, the paper will discuss the isolation and selection of diagnostic typing phages for interspecies differentiation of pathogens that is necessary

  8. Effect of fluoride varnish on Streptococcus mutans counts in plaque of caries-free children using dentocult SM strip mutans test: A randomized controlled triple blind study

    Directory of Open Access Journals (Sweden)

    Jeevarathan J

    2007-01-01

    Full Text Available Dental caries is one of the most prevalent infectious diseases and although of multifactorial origin, Streptococcus mutans is considered the chief pathogen in its development. Fluoride is one of the most effective agents used for the reduction of dental caries apart from oral hygiene maintenance. Aims: The aim of this study was to estimate the counts of Streptococcus mutans and to evaluate the effect of Fluor Protector fluoride varnish on these counts in the plaque of caries-free children using Dentocult SM Strip Mutans. Materials and Methods: Thirty caries-free subjects were selected for the study based on the information obtained from a questionnaire and were randomly assigned to the control group consisting of ten subjects and the study group consisting of twenty subjects. Plaque samples were collected on the strips from the Dentocult SM kit and after incubation, the presence of Streptococcus mutans was evaluated using the manufacturer′s chart. The study group was subjected to a Fluor Protector fluoride varnish application following which the samples were collected again after 24 hours. Results: The average Streptococcus mutan s counts in the primary dentition of caries-free children before and after the application of Fluor Protector fluoride varnish were 10 4 -10 5 colony forming units (CFU/ml and < 10 4 CFU/ml respectively. Conclusion: The results showed that the study group had a statistically significant reduction in the plaque Streptococcus mutans counts than the control group.

  9. [A Patient with a Wedge-shaped Pulmonary Lesion Associated with Streptococcus parasanguinis].

    Science.gov (United States)

    Miyamoto, Hiroya; Gomi, Harumi; Ishioka, Haruhiko; Shirokawa, Taijiro

    2016-05-01

    An 84-year-old man was admitted to our hospital with bloody sputum. He was found to have a right lower lobe wedge-shaped nodular lesion with chest X-ray and computed tomography of the chest. Ceftriaxone and minocycline were started empirically based on a working diagnosis of community-acquired pneumonia. Streptococcus parasanguinis was isolated with sputum cultures obtained on three consecutive days and was identified based on its biochemical properties. S. parasanguinis is a member of the sanguinis group of viridans Streptococci. It is known as a causative pathogen for endocarditis. There are very few reports of S. parasanguinis associated with pulmonary infections. The present report describes the association of S. parasanguinis with a wedge-shaped nodular lesion in the lungs.

  10. A Novel Approach for Pathogen Reduction in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Dhevagi Periasamy

    2013-06-01

    Full Text Available Many sewage waste treatment systems are aiming for complete pathogen removal which necessitates search for novel approaches that does not harm the environment. One such novel approach is exploring the possibilities of bacteriophages for pathogen removal. Hospital wastewater was collected from different locations of Tamil Nadu and used for the study. The total heterotroph and total coliform population ranged from 1.6 × 105 to 8.3 × 106 per mL and from 1.2 × 103 to 1.6 × 103/ 100 mL of sample respectively. Higher frequency of antibiotic resistant E. coli, Pseudomonas sp. Streptococcus sp and Bacillus spp were observed in all the places, which clearly indicated the extent of pollution. All the samples had specific phages against E. coli and none of the samples had phages against MTCC culture. E. coli specific phage was isolated and the population of phage required for effective killing of E. coli has been standardized as 3 × 104 pfu / mL of lysate. The inoculation resulted in 100% removal of pathogen from sewage water within 14 hours of incubation.

  11. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    International Nuclear Information System (INIS)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6- 3 H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces. (author)

  12. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6-/sup 3/H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces.

  13. Identification and characterization of a novel protective antigen, Sec_205 of Streptococcus equi ssp. Zooepidemicus.

    Science.gov (United States)

    Liang, Huihuang; Tang, Bin; Zhao, Pengpeng; Deng, Mingyong; Yan, Lili; Zhai, Pan; Wei, Zigong

    2018-02-01

    Streptococcus equi ssp. zooepidemicus (SEZ) is an important pathogen of swine streptococcal diseases and can infect a wide range of animals as well as human beings. The absence of effective vaccine confounds the control of SEZ infection. Sec_205, a novel protein identified in the previous study, was inducibly over-expressed in Escherichia coli in the present study. The purified recombinant protein could elicit a significant humoral antibody response and provide efficient protection against lethal challenge of SEZ C55138 in mouse model. The protection against SEZ infection was mediated by specific antibodies to Sec_205 to some extent and was identified by the passive protection assay. The Sec_205 was an in vivo-induced antigen confirmed by the real-time PCR and could adhere to the Hep-2 cells by the inhibition assay. These suggest that Sec_205 may play a vital role in pathogenicity and serve as a new vaccine candidate against SEZ infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Beyond Streptococcus mutans: Dental Caries Onset Linked to Multiple Species by 16S rRNA Community Analysis

    Science.gov (United States)

    Gross, Erin L.; Beall, Clifford J.; Kutsch, Stacey R.; Firestone, Noah D.; Leys, Eugene J.; Griffen, Ann L.

    2012-01-01

    Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This may have

  15. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens

    Directory of Open Access Journals (Sweden)

    M.A. Botelho

    2007-03-01

    Full Text Available Dental caries and periodontal disease are associated with oral pathogens. Several plant derivatives have been evaluated with respect to their antimicrobial effects against such pathogenic microorganisms. Lippia sidoides Cham (Verbenaceae, popularly known as "Alecrim-pimenta" is a typical shrub commonly found in the Northeast of Brazil. Many plant species belonging to the genus Lippia yield very fragrant essential oils of potential economic value which are used by the industry for the commercial production of perfumes, creams, lotions, and deodorants. Since the leaves of L. sidoides are also extensively used in popular medicine for the treatment of skin wounds and cuts, the objective of the present study was to evaluate the composition and antimicrobial activity of L. sidoides essential oil. The essential oil was obtained by hydro-distillation and analyzed by GC-MS. Twelve compounds were characterized, having as major constituents thymol (56.7% and carvacrol (16.7%. The antimicrobial activity of the oil and the major components was tested against cariogenic bacterial species of the genus Streptococcus as well as Candida albicans using the broth dilution and disk diffusion assays. The essential oil and its major components thymol and carvacrol exhibited potent antimicrobial activity against the organisms tested with minimum inhibitory concentrations ranging from 0.625 to 10.0 mg/mL. The most sensitive microorganisms were C. albicans and Streptococcus mutans. The essential oil of L. sidoides and its major components exert promising antimicrobial effects against oral pathogens and suggest its likely usefulness to combat oral microbial growth.

  16. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens.

    Science.gov (United States)

    Botelho, M A; Nogueira, N A P; Bastos, G M; Fonseca, S G C; Lemos, T L G; Matos, F J A; Montenegro, D; Heukelbach, J; Rao, V S; Brito, G A C

    2007-03-01

    Dental caries and periodontal disease are associated with oral pathogens. Several plant derivatives have been evaluated with respect to their antimicrobial effects against such pathogenic microorganisms. Lippia sidoides Cham (Verbenaceae), popularly known as "Alecrim-pimenta" is a typical shrub commonly found in the Northeast of Brazil. Many plant species belonging to the genus Lippia yield very fragrant essential oils of potential economic value which are used by the industry for the commercial production of perfumes, creams, lotions, and deodorants. Since the leaves of L. sidoides are also extensively used in popular medicine for the treatment of skin wounds and cuts, the objective of the present study was to evaluate the composition and antimicrobial activity of L. sidoides essential oil. The essential oil was obtained by hydro-distillation and analyzed by GC-MS. Twelve compounds were characterized, having as major constituents thymol (56.7%) and carvacrol (16.7%). The antimicrobial activity of the oil and the major components was tested against cariogenic bacterial species of the genus Streptococcus as well as Candida albicans using the broth dilution and disk diffusion assays. The essential oil and its major components thymol and carvacrol exhibited potent antimicrobial activity against the organisms tested with minimum inhibitory concentrations ranging from 0.625 to 10.0 mg/mL. The most sensitive microorganisms were C. albicans and Streptococcus mutans. The essential oil of L. sidoides and its major components exert promising antimicrobial effects against oral pathogens and suggest its likely usefulness to combat oral microbial growth.

  17. Occurrence of clinical mastitis in primiparous Estonian dairy cows in different housing conditions

    Directory of Open Access Journals (Sweden)

    Aasmäe Birgit

    2006-11-01

    Full Text Available Abstract Background Objectives of the study were to document the impact of some management factors on the occurrence of clinical mastitis in primiparous dairy cows and to identify common udder pathogens of clinical mastitis in freshly calved heifers and multiparous cows on the day of calving. Methods A one-year study was conducted during 2004 and 2005 in 11 selected Estonian dairy herds. Data consisted of 68 heifers with clinical mastitis and 995 heifers without clinical mastitis on the day of calving. Multivariable logistic regression with a random herd effect was used to investigate any association between housing system or the time interval from movement of heifers to the calving facility and day of calving on occurrence of clinical mastitis. Milk samples for bacteriological analysis were collected from affected heifers and multiparous cows on the day of calving Results Clinical mastitis occurrence in the study population of freshly calved heifers equalled 6.1 %. Housing system was not a significant risk factor for clinical mastitis of freshly calved heifers. Moving heifers to the cowbarn less than two weeks before calving in tiestall farms increased risk (OR = 5.9 p = 0.001 for clinical mastitis at parturition. The most frequently isolated udder pathogens among heifers were Escherichia coli (22.1%, Streptococcus uberis (19.1% and coagulase-negative staphylococci (8.8%. In comparison, the main pathogen in multiparous cows with clinical mastitis at parturition was Staphylococcus aureus (11.2%. Conclusion Moving heifers to the calving facilities too late in tiestall farms increased risk for clinical mastitis at parturition. The isolated udder pathogens did not differ significantly in tiestall farms compared to freestall farms in heifers, but differences were found between heifers and multiparous cows at parturition.

  18. Death and Survival in Streptococcus mutans: Differing Outcomes of a Quorum-Sensing Signalling Peptide

    Directory of Open Access Journals (Sweden)

    Vincent eLeung

    2015-10-01

    Full Text Available Bacteria are considered ‘social’ organisms able to communicate with one another using small hormone-like molecules (pheromones in a process called quorum-sensing. These signalling molecules increase in concentration as a function of bacterial cell density. For most human pathogens, quorum-sensing is critical for virulence and biofilm formation, and the opportunity to interfere with bacterial quorum-sensing could provide a sophisticated means for manipulating the composition of pathogenic biofilms, and possibly eradicating the infection. Streptococcus mutans is a well-characterized resident of the dental plaque biofilm, and is the major pathogen of dental caries (tooth decay. In S. mutans, its CSP quorum-sensing signalling peptide does not act as a classical quorum-sensing signal by accumulating passively in proportion to cell density. In fact, particular stresses such as those encountered in the oral cavity, induces the production of the CSP pheromone, suggesting that the pheromone most probably functions as a stress-inducible alarmone by triggering the signalling to the bacterial population to initiate an adaptive response that results in different phenotypic outcomes. This mini-review discusses two different CSP-induced phenotypes, bacterial ‘suicide’ and dormancy, and the underlying mechanisms by which S. mutans utilizes the same quorum-sensing signalling peptide to regulate two opposite phenotypes.

  19. Pathogen-Reactive T Helper Cell Analysis in the Pig

    Directory of Open Access Journals (Sweden)

    Friederike Ebner

    2017-05-01

    Full Text Available There is growing interest in studying host–pathogen interactions in human-relevant large animal models such as the pig. Despite the progress in developing immunological reagents for porcine T cell research, there is an urgent need to directly assess pathogen-specific T cells—an extremely rare population of cells, but of upmost importance in orchestrating the host immune response to a given pathogen. Here, we established that the activation marker CD154 (CD40L, known from human and mouse studies, identifies also porcine antigen-reactive CD4+ T lymphocytes. CD154 expression was upregulated early after antigen encounter and CD4+CD154+ antigen-reactive T cells coexpressed cytokines. Antigen-induced expansion and autologous restimulation enabled a time- and dose-resolved analysis of CD154 regulation and a significantly increased resolution in phenotypic profiling of antigen-responsive cells. CD154 expression identified T cells responding to staphylococcal Enterotoxin B superantigen stimulation as well as T cells responding to the fungus Candida albicans and T cells specific for a highly prevalent intestinal parasite, the nematode Ascaris suum during acute and trickle infection. Antigen-reactive T cells were further detected after immunization of pigs with a single recombinant bacterial antigen of Streptococcus suis only. Thus, our study offers new ways to study antigen-specific T lymphocytes in the pig and their contribution to host–pathogen interactions.

  20. Streptococcus oriloxodontae sp. nov., isolated from the oral cavities of elephants.

    Science.gov (United States)

    Shinozaki-Kuwahara, Noriko; Saito, Masanori; Hirasawa, Masatomo; Takada, Kazuko

    2014-11-01

    Two strains were isolated from oral cavity samples of healthy elephants. The isolates were Gram-positive, catalase-negative, coccus-shaped organisms that were tentatively identified as a streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequence analysis suggested classification of these organisms in the genus Streptococcus with Streptococcus criceti ATCC 19642(T) and Streptococcus orisuis NUM 1001(T) as their closest phylogenetic neighbours with 98.2 and 96.9% gene sequence similarity, respectively. When multi-locus sequence analysis using four housekeeping genes, groEL, rpoB, gyrB and sodA, was carried out, similarity of concatenated sequences of the four housekeeping genes from the new isolates and Streptococcus mutans was 89.7%. DNA-DNA hybridization experiments suggested that the new isolates were distinct from S. criceti and other species of the genus Streptococcus. On the basis of genotypic and phenotypic differences, it is proposed that the novel isolates are classified in the genus Streptococcus as representatives of Streptococcus oriloxodontae sp. nov. The type strain of S. oriloxodontae is NUM 2101(T) ( =JCM 19285(T) =DSM 27377(T)). © 2014 IUMS.

  1. Streptococcus caprae sp. nov., isolated from Iberian ibex (Capra pyrenaica hispanica).

    Science.gov (United States)

    Vela, A I; Mentaberre, G; Lavín, S; Domínguez, L; Fernández-Garayzábal, J F

    2016-01-01

    Biochemical and molecular genetic studies were performed on a novel Gram-stain-positive, catalase-negative, coccus-shaped organism isolated from tonsil samples of two Iberian ibexes. The micro-organism was identified as a streptococcal species based on its cellular, morphological and biochemical characteristics. 16S rRNA gene sequence comparison studies confirmed its identification as a member of the genus Streptococcus, but the organism did not correspond to any species of this genus. The nearest phylogenetic relative of the unknown coccus from ibex was Streptococcus porci 2923-03T (96.6 % 16S rRNA gene sequence similarity). Analysis based on rpoB and sodA gene sequences revealed sequence similarity values lower than 86.0 and 83.8 %, respectively, from the type strains of recognized Streptococcus species. The novel bacterial isolate was distinguished from Streptococcus porci and other Streptococcus species using biochemical tests. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be classified as representing a novel species of the genus Streptococcus, for which the name Streptococcus caprae sp. nov. is proposed. The type strain is DICM07-02790-1CT ( = CECT 8872T = CCUG 67170T).

  2. Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens.

    Science.gov (United States)

    Jeong, Dana; Kim, Dong-Hyeon; Song, Kwang-Young; Seo, Kun-Ho

    2018-01-01

    Background : Streptococcus mutans and Streptococcus sobrinus are major causative bacterial pathogens of dental caries. Objective : We investigated the applicability of three Lactobacillus strains ( L. kefiranofaciens DD2, DD5, and DD6) isolated from kefir and three commercial Lactobacillus strains ( L. plantarum ATCC 10,012, L. johnsonii JCM 1022, and L. rhamnosus ATCC 7469) as potential oral probiotics with respect to their survivability in an experimental oral environment, antimicrobial activity, and anti-biofilm formation activity against S. mutans and S. sobrinus . Results : Strains DD2, ATCC 10012, ATCC 7469, and JCM 1022 had the best oral survivability, including aerotolerance and enzymatic resistance, and inhibited the growth and biofilm formation of S. mutans and S. sobrinus . In particular, DD2 suppressed all three classes of biofilm formation-associated genes: those associated with carbohydrate metabolism and those encoding regulatory biofilm and adhesion proteins. Conclusions : These results indicate that the novel kefir isolate L. kefiranofaciens DD2 effectively and directly inhibits S. mutans and S. sobrinus .

  3. In vitro synergistic activities of cefazolin and nisin A against mastitis pathogens.

    Science.gov (United States)

    Kitazaki, Kohei; Koga, Shoko; Nagatoshi, Kohei; Kuwano, Koichi; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji; Ano, Hitoshi; Katamoto, Hiromu

    2017-09-12

    First-generation cephalosporins such as cefazolin (CEZ) have been widely used for mastitis treatment in dairy cattle. However, the use of antibiotics results in the presence of antibiotic residues in milk, which is used for human consumption. Nisin A, a bacteriocin produced by Lactococcus lactis, has been used as a broad-spectrum food preservative for over 50 years. Therefore, a combination of CEZ and nisin A might provide an extended activity spectrum against mastitis pathogens and reduce the antibiotic dose for mastitis treatment. This study aimed to evaluate the combined effect of CEZ and nisin A against mastitis pathogens using the checkerboard and time-kill assays. In the checkerboard assay, the CEZ-nisin A combination exhibited a synergistic effect against Staphylococcus aureus (n=20/20) and Enterococcus faecalis (n=13/18), and meanwhile exhibited a mostly additive effect against Staphylococcus intermedius (n=12/20), Streptococcus agalactiae (n=10/10), Streptococcus dysgalactiae (n=18/18), and Escherichia coli (n=14/18). There were no indifferent or antagonistic effects between CEZ and nisin A. In the time-kill assay, the CEZ-nisin A combination at 0.5 × or 1 × minimum inhibitory concentration exhibited synergistic reduction of bacterial growth by over 3 log 10 colony forming units per ml relative to that observed with either antimicrobial substance alone. These results suggest that the CEZ-nisin A combination can be used for developing an intramammary infusion for mastitis treatment, with lower antibiotic concentrations than normal.

  4. Efficacy of some synthetic antibiotics on Streptococcus pneumoniae ...

    African Journals Online (AJOL)

    Effects of some synthetic antibiotics on Streptococcus pnemoniae and Proteus mirabilis isolated from cultured Clarias gariepinus, an important food fish raised in a concrete tank was carried out to ascertain their remedies on mortalities of the Clarias gariepinus adult fish. Streptococcus pnemoniae and Proteus mirabilis were ...

  5. Group B Streptococcus Induces Neutrophil Recruitment to Gestational Tissues and Elaboration of Extracellular Traps and Nutritional Immunity.

    Science.gov (United States)

    Kothary, Vishesh; Doster, Ryan S; Rogers, Lisa M; Kirk, Leslie A; Boyd, Kelli L; Romano-Keeler, Joann; Haley, Kathryn P; Manning, Shannon D; Aronoff, David M; Gaddy, Jennifer A

    2017-01-01

    Streptococcus agalactiae , or Group B Streptococcus (GBS), is a gram-positive bacterial pathogen associated with infection during pregnancy and is a major cause of morbidity and mortality in neonates. Infection of the extraplacental membranes surrounding the developing fetus, a condition known as chorioamnionitis, is characterized histopathologically by profound infiltration of polymorphonuclear cells (PMNs, neutrophils) and greatly increases the risk for preterm labor, stillbirth, or neonatal GBS infection. The advent of animal models of chorioamnionitis provides a powerful tool to study host-pathogen relationships in vivo and ex vivo . The purpose of this study was to evaluate the innate immune response elicited by GBS and evaluate how antimicrobial strategies elaborated by these innate immune cells affect bacteria. Our work using a mouse model of GBS ascending vaginal infection during pregnancy reveals that clinically isolated GBS has the capacity to invade reproductive tissues and elicit host immune responses including infiltration of PMNs within the choriodecidua and placenta during infection, mirroring the human condition. Upon interacting with GBS, murine neutrophils elaborate DNA-containing extracellular traps, which immobilize GBS and are studded with antimicrobial molecules including lactoferrin. Exposure of GBS to holo- or apo-forms of lactoferrin reveals that the iron-sequestration activity of lactoferrin represses GBS growth and viability in a dose-dependent manner. Together, these data indicate that the mouse model of ascending infection is a useful tool to recapitulate human models of GBS infection during pregnancy. Furthermore, this work reveals that neutrophil extracellular traps ensnare GBS and repress bacterial growth via deposition of antimicrobial molecules, which drive nutritional immunity via metal sequestration strategies.

  6. Remodeling of the Streptococcus agalactiae transcriptome in response to growth temperature.

    Directory of Open Access Journals (Sweden)

    Laurent Mereghetti

    Full Text Available BACKGROUND: To act as a commensal bacterium and a pathogen in humans and animals, Streptococcus agalactiae (group B streptococcus, GBS must be able to monitor and adapt to different environmental conditions. Temperature variation is a one of the most commonly encountered variables. METHODOLOGY/PRINCIPAL FINDINGS: To understand the extent to which GBS modify gene expression in response to temperatures encountered in the various hosts, we conducted a whole genome transcriptome analysis of organisms grown at 30 degrees C and 40 degrees C. We identified extensive transcriptome remodeling at various stages of growth, especially in the stationary phase (significant transcript changes occurred for 25% of the genes. A large proportion of genes involved in metabolism was up-regulated at 30 degrees C in stationary phase. Conversely, genes up-regulated at 40 degrees C relative to 30 degrees C include those encoding virulence factors such as hemolysins and extracellular secreted proteins with LPXTG motifs. Over-expression of hemolysins was linked to larger zones of hemolysis and enhanced hemolytic activity at 40 degrees C. A key theme identified by our study was that genes involved in purine metabolism and iron acquisition were significantly up-regulated at 40 degrees C. CONCLUSION/SIGNIFICANCE: Growth of GBS in vitro at different temperatures resulted in extensive remodeling of the transcriptome, including genes encoding proven and putative virulence genes. The data provide extensive new leads for molecular pathogenesis research.

  7. Endocarditis caused by Streptococcus canis: an emerging zoonosis?

    Science.gov (United States)

    Lacave, Guillaume; Coutard, Aymeric; Troché, Gilles; Augusto, Sandrine; Pons, Stéphanie; Zuber, Benjamin; Laurent, Virginie; Amara, Marlène; Couzon, Brigitte; Bédos, Jean-Pierre; Pangon, Béatrice; Grimaldi, David

    2016-02-01

    We report a human case of infective endocarditis caused by Streptococcus canis. Identification was carried out from positive blood culture using mass spectrometry and SodA gene sequencing. S. canis related zoonotic invasive infections may have been previously underdiagnosed due to inadequate identification of group G Streptococcus species.

  8. Transcriptional Analysis of the bgIP Gene from Streptococcus mutans

    Science.gov (United States)

    2006-04-21

    bglP gene from Streptococcus mutans Christopher K Cote1,2 and Allen L Honeyman*1,3 Address: 1Department of Medical Microbiology and Immunology... Streptococcus mutans . A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately...longisporum [3], Lactobacillus plantarium [4], Bacillus subtilis [5,6], and Streptococcus mutans [7]. All of these organisms rely on the phosphoe

  9. Bacteriological etiology and treatment of mastitis in Finnish dairy herds.

    Science.gov (United States)

    Vakkamäki, Johanna; Taponen, Suvi; Heikkilä, Anna-Maija; Pyörälä, Satu

    2017-05-25

    The Finnish dairy herd recording system maintains production and health records of cows and herds. Veterinarians and farmers register veterinary treatments in the system. Milk samples for microbiological analysis are routinely taken from mastitic cows. The laboratory of the largest dairy company in Finland, Valio Ltd., analyzes most samples using real-time PCR. This study addressed pathogen-specific microbiological data and treatment and culling records, in combination with cow and herd characteristics, from the Finnish dairy herd recording system during 2010-2012. The data derived from 240,067 quarter milk samples from 93,529 dairy cows with mastitis; 238,235 cows from the same herds served as the control group. No target pathogen DNA was detected in 12% of the samples. In 49% of the positive samples, only one target species and in 19%, two species with one dominant species were present. The most common species in the samples with a single species only were coagulase-negative staphylococci (CNS) (43%), followed by Staphylococcus aureus (21%), Streptococcus uberis (9%), Streptococcus dysgalactiae (8%), Corynebacterium bovis (7%), and Escherichia coli (5%). On average, 36% of the study cows and 6% of the control cows had recorded mastitis treatments during lactation. The corresponding proportions were 16 and 6% at drying-off. For more than 75% of the treatments during lactation, diagnosis was acute clinical mastitis. In the milk samples from cows with a recorded mastitis treatment during lactation, CNS and S. aureus were most common, followed by streptococci. Altogether, 48% of the cows were culled during the study. Mastitis was reported as the most common reason to cull; 49% of study cows and 18% of control cows were culled because of mastitis. Culling was most likely if S. aureus was detected in the milk sample submitted during the culling year. The PCR test has proven to be an applicable method also for large-scale use in bacterial diagnostics. In the present

  10. Rapid Assessment of Resistance to Antibiotic Inhibitors of Protein Synthesis in the Gram-Positive Pathogens, Enterococcus faecalis and Streptococcus pneumoniae, Based on Evaluation of the Lytic Response.

    Science.gov (United States)

    Otero, Fátima; Tamayo, María; Santiso, Rebeca; Gosálvez, Jaime; Bou, Germán; Fernández, José Luis

    2017-04-01

    A novel assay for rapid determination of resistance to antibiotic inhibitors of protein synthesis was developed for the gram-positive pathogens, Enterococcus faecalis and Streptococcus pneumoniae. To this purpose, a lytic response was obtained by a brief incubation with lysozyme or a mixture of lysozyme, Triton X-100, and EDTA for E. faecalis (n = 82) and S. pneumoniae (n = 51), respectively. Lysis was quantified by visualizing the released nucleoids. Antibiotic-susceptible bacteria treated with Clinical and Laboratory Standards Institute (CLSI) breakpoint doses of erythromycin, azithromycin, or doxycycline that inhibited protein synthesis demonstrated a large reduction of lysed cells with respect to the control, that is, without antibiotics. However, cell lysis prevention was much lower in nonsusceptible strains, with unsuccessful inhibition of protein synthesis. ROC analysis showed that a reduction value of ≥35.6% and ≥40.4% discriminates susceptible and nonsusceptible strains for erythromycin and for doxycycline, respectively, in E. faecalis, whereas ≥20.0% is adequate for both macrolides and doxycycline in S. pneumoniae. Resistant stains were identified in 90-120 min with sensitivity and specificity between 91.7% and 100%. This is a proof of concept that evaluation of the lytic response may be a rapid and efficient test for determination of resistance to antibiotic inhibitors of protein synthesis.

  11. Utilización de la penicilina en la infección extrameníngea por Streptococcus pneumoniae Use of penicillin in the extrameningeal infection from Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Amauri Lázaro Noda Albelo

    2011-12-01

    Full Text Available La resistencia del Streptococcus pneumoniae a los antibióticos betalactámicos es relativa, y puede ser superada si se incrementa la dosis de esta clase de medicamentos. La definición de susceptibilidad y resistencia del Streptococcus pneumoniae se creó originalmente para predecir respuesta al tratamiento de la infección del sistema nervioso central. La infección fuera del sistema nervioso central por la mayoría de las cepas de S. pneumoniae responde a las dosis habituales de antibióticos betalactámicos. Se realiza una revisión de los nuevos puntos de corte del Laboratory Standars Institute para sensibilidad a penicilina del patógeno, y se analiza su implicación en la terapéutica actual de la enfermedad extrameníngea por S. pneumoniae.The beta-lactamase resistance of Strepcoccus pneumoniae is relative and may to be overcome if the dose of this type of drugs is increased. The definition of oversensitivity and of resistance of above mentioned bacteria was originally created to predict the infection response of central nervous system (CNS to treatment. The infection outside of the CNS by most of strains of S. pneumoniae responds to habitual dose of betalactamic antibiotics. A review of the new cut points of Laboratory Standards Institute for the sensitivity to pathogen penicillin and its implication in current therapy of extrameningeal disease by S. pneumoniae is analyzed.

  12. Human milk oligosaccharides inhibit growth of group B Streptococcus

    NARCIS (Netherlands)

    Lin, Ann E; Autran, Chloe A; Szyszka, Alexandra; Escajadillo, Tamara; Huang, Mia; Godula, Kamil; Prudden, Anthony R; Boons, Geert-Jan; Lewis, Amanda L; Doran, Kelly S; Nizet, Victor; Bode, Lars

    2017-01-01

    Streptococcus agalactiae (group B Streptococcus, GBS) is a leading cause of invasive bacterial infections in newborns, typically acquired vertically during childbirth secondary to maternal vaginal colonization. Human milk oligosaccharides (HMOs) have important nutritional and biological activities

  13. [Streptococcus suis infection--clinical manifestations].

    Science.gov (United States)

    Dragojlović, Julijana; Milosević, Branko; Sasić, Neda; Pelemis, Mijomir; Sasić, Milan

    2005-01-01

    Streptococcus suis is a bacterium causing a disease in pigs and rarely in humans. This zoonosis is mostly found as a sporadic disease in individuals that were in contact with the affected or infected pigs: farmers, veterinarians and workers engaged in fresh pork processing. It is assumed that the bacterium enters the body through a cut abrasion in the skin. Initially, the condition resembles a flu, followed by signs of bacteriemia and sepsis. The most frequent clinical manifestation of Streptococcus suis infection is meningitis, leading to hearing loss in over 75% of patients, and subsequent arthritis, endophtalmitis, endocarditis and pneumonia. Toxic shock syndrome with hemorhagic manifestations rarely develops. This study included five male patients aged 22 to 63 years treated in the Intensive Care Unit of the Institute of Infectious and Tropical Diseases in Belgrade, due to Streptococcus suis infection. The aim of this study was to point to the existence of this bacteria in our environment, to describe clinical manifestations of the disease and to point out the importance of its prevention. All patients had epidemiological evidence of being in contact with pork meat. There were no data about diseased pigs. The estimated incubation period was 4 to 8 days. All patients had meningeal signs. Clinical symptoms included shivering, fever, vomiting, headache, malaise, vertigo and tinitus. Three patients presented with alerterd level of awarrness. Four patients developed very severe bilateral hearing impairment, whereas one endophtalmtis and one developed endocarditis. The cerebrospinal fluid (CSF) was opalescent in four patients, and only one patient presented with clear CSF. CSF examination showed typical changes characteristic for bacterial meningitis. Streptoccocus suis was isolated in CSF in all patients, and in one patient the bacteria was isolated in blood as well. All patients underwent treatement with II and III generation cephalosporins and one with one

  14. MsmK, an ATPase, Contributes to Utilization of Multiple Carbohydrates and Host Colonization of Streptococcus suis.

    Science.gov (United States)

    Tan, Mei-Fang; Gao, Ting; Liu, Wan-Quan; Zhang, Chun-Yan; Yang, Xi; Zhu, Jia-Wen; Teng, Mu-Ye; Li, Lu; Zhou, Rui

    2015-01-01

    Acquisition and metabolism of carbohydrates are essential for host colonization and pathogenesis of bacterial pathogens. Different bacteria can uptake different lines of carbohydrates via ABC transporters, in which ATPase subunits energize the transport though ATP hydrolysis. Some ABC transporters possess their own ATPases, while some share a common ATPase. Here we identified MsmK, an ATPase from Streptococcus suis, an emerging zoonotic bacterium causing dead infections in pigs and humans. Genetic and biochemistry studies revealed that the MsmK was responsible for the utilization of raffinose, melibiose, maltotetraose, glycogen and maltotriose. In infected mice, the msmK-deletion mutant showed significant defects of survival and colonization when compared with its parental and complementary strains. Taken together, MsmK is an ATPase that contributes to multiple carbohydrates utilization and host colonization of S. suis. This study gives new insight into our understanding of the carbohydrates utilization and its relationship to the pathogenesis of this zoonotic pathogen.

  15. Acute Bacterial Meningitis and Systemic Abscesses due to Streptococcus dysgalactiae subsp. equisimilis Infection

    Directory of Open Access Journals (Sweden)

    M. Jourani

    2017-01-01

    Full Text Available Disseminated abscesses due to group G β-hemolytic Streptococcus dysgalactiae were observed in a 57-year-old cirrhotic patient with the skin being the putative way of entry for the pathogen. S. dysgalactiae is a rare agent in human infections responsible for acute pyogenic meningitis. The mortality rate associated with S. dysgalactiae bacteraemia and meningitis may be as high as 50%, particularly in the presence of endocarditis or brain abscesses. In our patient, main sites of infections were meningitis and ventriculitis, spondylodiscitis, septic arthritis, and soft-tissue infections. In contrast, no endocarditis was evidenced. Cirrhosis-related immune suppression was considered as a pathophysiological cofactor for the condition. Fortunately, clinical status improved after long-term (3 months antimicrobial therapy.

  16. Aciduricity and acid tolerance mechanisms of Streptococcus anginosus.

    Science.gov (United States)

    Sasaki, Minoru; Kodama, Yoshitoyo; Shimoyama, Yu; Ishikawa, Taichi; Kimura, Shigenobu

    2018-04-17

    Although Streptococcus anginosus constitutes a proportion of the normal flora of the gastrointestinal and genital tracts, and the oral cavity, it has been reported that S. anginosus infection could be closely associated with abscesses at various body sites, infective endocarditis, and upper gastrointestinal cancers. The colonization in an acidic environment due to the aciduricity of S. anginosus could be the etiology of the systemic infection of the bacteria. To elucidate the aciduricity and acid tolerance mechanisms of the microbe, we examined the viability and growth of S. anginosus under acidic conditions. The viabilities of S. anginosus NCTC 10713 and Streptococcus mutans ATCC 25175 at pH 4.0 showed as being markedly higher than those of Streptococcus sanguinis ATCC 10556, Streptococcus gordonii ATCC 10558, and Streptococcus mitis ATCC 49456; however, the viability was partially inhibited by dicyclohexylcarbodiimide, an H + -ATPase inhibitor, suggesting that H + -ATPase could play a role in the viability of S. anginosus under acidic conditions. In addition, S. anginosus NCTC 10713 could grow at pH 5.0 and showed a marked arginine deiminase (ADI) activity, unlike its ΔarcA mutant, deficient in the gene encoding ADI, and other streptococcal species, which indicated that ADI could also be associated with aciduricity. These results suggest that S. anginosus has significant aciduric properties, which can be attributed to these enzyme activities.

  17. Streptococcus pyogenes pharyngeal colonization resulting in recurrent, prepubertal vulvovaginitis.

    Science.gov (United States)

    Hansen, Megan T; Sanchez, Veronica T; Eyster, Kathleen; Hansen, Keith A

    2007-10-01

    Recurrent, prepubertal, vaginal infections are an uncommon, troublesome problem for the patient and her family. Failure of initial therapy to alleviate vulvovaginitis may be related to vulvar skin disease, foreign body, sexual abuse, pinworms, reactions to medications, anatomic anomalies, or allergies. This report describes a case of recurrent Streptococcus pyogenes vulvovaginitis secondary to presumed vaginal re-inoculation from pharyngeal colonization. A 4-yr-old presented with one year of culture proven, recurrent Streptococcus pyogenes vulvovaginitis. Her symptoms repeatedly resolved with penicillin therapy, but continued to recur following cessation of antibiotic therapy. Evaluation included physical examination, trans-abdominal pelvic ultrasound, and vaginoscopy which all revealed normal upper and lower genital tract anatomy. Both the patient and her mother demonstrated culture proven, Group A Streptococcus pharyngeal colonization. Because of the possibility of repeated inoculations of the vaginal area from the colonized pharynx, they were both treated for decolonization with a regimen of amoxicillin and rifampin for ten days. Following this therapy there was resolution of vaginal symptoms with no further recurrence. Follow-up pharyngeal culture done on both mother and child on their last visit were negative for Group A Streptococcus. This case demonstrated an unusual specific cause of recurrent vaginitis resulting from presumed self or maternal re-inoculation with group A beta-hemolytic streptococcus from pharyngeal colonization. Group A beta-hemolytic streptococcus are consistently sensitive to penicillin, but up to 25% of acute pharyngitis cases treated with penicillin having continued asymptomatic, bacterial carriage within the nasopharynx. Thus initial alleviation of symptoms in a patient with Group A beta-hemolytic vulvovaginitis treated with penicillin, can have continued asymptomatic pharyngeal colonization which can result in recurrence of the

  18. [A novel TaqMan® MGB probe for specifically detecting Streptococcus mutans].

    Science.gov (United States)

    Zheng, Hui; Lin, Jiu-Xiang; DU, Ning; Chen, Feng

    2013-10-18

    To design a new TaqMan® MGB probe for improving the specificity of Streptococcus mutans's detection. We extracted six DNA samples from different streptococcal strains for PCR reaction. Conventional nested PCR and TaqMan® MGB real-time PCR were applied independently. The first round of nested PCR was carried out with the bacterial universal primers, while a second PCR was conducted by using primers specific for the 16S rRNA gene of Streptococcus mutans. The TaqMan® MGB probe for Streptococcus mutans was designed from sequence analyses, and the primers were the same as nested PCR. Streptococcus mutans DNA with 2.5 mg/L was sequentially diluted at 5-fold intervals to 0.16 μg/L. Standard DNA samples were used to generate standard curves by TaqMan® MGB real-time PCR. In the nested PCR, the primers specific for Streptococcus mutans also detected Streptococcus gordonii with visible band of 282 bp, giving false-positive results. In the TaqMan® MGB real-time PCR reaction, only Streptococcus mutans was detected. The detection limitation of TaqMan® MGB real-time PCR for Streptococcus mutans 16S rRNA gene was 20 μg/L. We designed a new TaqMan® MGB probe, and successfully set up a PCR based method for detecting oral Streptococcus mutans. TaqMan® MGB real-time PCR is a both specific and sensitive bacterial detection method.

  19. [THE DIAGNOSTIC APPROACHES TO VERIFICATION OF STREPTOCOCCUS INFECTION IN PATIENTS WITH INFECTIOUS MONONUCLEOSIS].

    Science.gov (United States)

    Kim, M A; Labushkina, A V; Simovanian, E N; Kharseeva, G G

    2015-11-01

    The Rostovskii state medical university of Minzdrav of Russia, 344022 Rostov-on-Don, Russia The analysis is applied concerning significance of laboratory techniques of verification of streptococcus infection (bacteriological analysis, detection of anti-streptolysin O in pair serums) in 148 patients with infectious mononucleosis aged from 3 to 15 years. The content of anti-streptolysin O exceeded standard in 41 ± 4.8% of patients with concomitant in acute period and in 49.5 ± 4.9% during period of re-convalescence. This data differed from analogous indicator in patients with negative result of examination on streptococcus infection independently of period of disease (9.3 ± 2.8%). The exceeding of standard of anti-streptolysin O was detected more frequently (t ≥ 2, P ≥ 95%) in patients with isolation of Streptococcus pyogenes (56.9 ± 5.8%) than in patients with Streptococcus viridans (31.2 ± 6.5%). The concentration of anti-streptolysin 0 in patients with concomitant streptococcus infection varied within limits 200-1800 IE/ml. The minimal level of anti-streptolysin O (C = 200 IE/mI) was detected independently of type of isolated Streptococcus and period of disease. The high levels of anti-streptolysin O were observed exclusively in patients with isolation of Streptococcus pyogenes. In blood serum ofpatient with concomitant streptococcus infection (Streptococcus pyogenes + Streptococcus viridans) increasing of level of anti-streptolysin O was detected in dynamics of diseases from minimal (C = 200 IE/ ml) to moderately high (200 mononucleosis the anamnesis data is to be considered. The complex bacteriological and serological examination ofpatients is to be implemented This is necessary for early detection ofpatients with streptococcus infection and decreasing risk of formation of streptococcus carrier state.

  20. Case Report of Necrotizing Fasciitis Associated with Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Lei Jiao

    2016-01-01

    Full Text Available Necrotizing fasciitis, caused by Streptococcus pneumoniae, is an extremely rare and life-threatening bacterial soft tissue infection. We report a case of early necrotizing fasciitis associated with Streptococcus pneumoniae infection in a 26-year-old man who was immunocompromised with mixed connective tissue disease. The patient presented with acute, painful, erythematous, and edematous skin lesions of his right lower back, which rapidly progressed to the right knee. The patient underwent surgical exploration, and a diagnosis of necrotizing fasciitis was confirmed by pathological evidence of necrosis of the fascia and neutrophil infiltration in tissue biopsies. Cultures of fascial tissue biopsies and blood samples were positive for Streptococcus pneumoniae. To our knowledge, this is the first report of necrotizing fasciitis resulting from Streptococcus pneumoniae diagnosed at early phase; the patient recovered well without surgical debridement.

  1. Novel IgG-Degrading Enzymes of the IgdE Protease Family Link Substrate Specificity to Host Tropism of Streptococcus Species.

    Science.gov (United States)

    Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J; Paton, Lois; Woof, Jenny M; von Pawel-Rammingen, Ulrich

    2016-01-01

    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use.

  2. Screening for Sexually Transmitted Infection Pathogens in Semen Samples

    Directory of Open Access Journals (Sweden)

    RW Peeling

    2005-01-01

    Full Text Available The transmission of sexually transmitted infection (STI pathogens from an infected donor to the recipient of a semen donation in assisted conception may result not only in acute infection but also in long-term reproductive complications or adverse outcomes of pregnancy, including infection of the offspring. Screening for bacterial STI pathogens, Chlamydia trachomatis and Neisseria gonorrhoeae is strongly recommended because these pathogens can cause serious reproductive complications in the recipients of semen donations and infection in their offspring. Screening for these pathogens should be performed using the most sensitive methods, such as nucleic acid amplified tests. False-negative results due to inhibitory substances in the semen sample should be monitored using amplification controls. Where specimen transport is not a problem and culture facilities are available, N gonorrhoeae can also be detected by culture. Laboratories performing screening should subscribe to proficiency programs and have strict quality controls. Although Trichomonas vaginalis, group B streptococcus and genital mycoplasmas have been associated with adverse outcomes of pregnancy, the frequent finding of these organisms in healthy individuals brings into question the validity of mandatory inclusion of these organisms in the screening panel. Although viral STI pathogens and Treponema pallidum -- the causative agent of syphilis -- may be detected in semen, their presence may be more sensitively detected through antibody testing of the donor. Screening donors for HIV, hepatitis B and syphilis by serology is uniformly recommended in all of the guidelines, but the value of screening either donors or semen samples for cytomegalovirus, herpes simplex viruses and human papilloma viruses is less clear.

  3. Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome.

    Science.gov (United States)

    Garcia, S S; Blackledge, M S; Michalek, S; Su, L; Ptacek, T; Eipers, P; Morrow, C; Lefkowitz, E J; Melander, C; Wu, H

    2017-07-01

    Dental caries is a costly and prevalent disease characterized by the demineralization of the tooth's enamel. Disease outcome is influenced by host factors, dietary intake, cariogenic bacteria, and other microbes. The cariogenic bacterial species Streptococcus mutans metabolizes sucrose to initiate biofilm formation on the tooth surface and consequently produces lactic acid to degrade the tooth's enamel. Persistence of S. mutans biofilms in the oral cavity can lead to tooth decay. To date, no anticaries therapies that specifically target S. mutans biofilms but do not disturb the overall oral microbiome are available. We screened a library of 2-aminoimidazole antibiofilm compounds with a biofilm dispersion assay and identified a small molecule that specifically targets S. mutans biofilms. At 5 µM, the small molecule annotated 3F1 dispersed 50% of the established S. mutans biofilm but did not disperse biofilms formed by the commensal species Streptococcus sanguinis or Streptococcus gordonii. 3F1 dispersed S. mutans biofilms independently of biofilm-related factors such as antigen I/II and glucosyltransferases. 3F1 treatment effectively prevented dental caries by controlling S. mutans in a rat caries model without perturbing the oral microbiota. Our study demonstrates that selective targeting of S. mutans biofilms by 3F1 was able to effectively reduce dental caries in vivo without affecting the overall oral microbiota shaped by the intake of dietary sugars, suggesting that the pathogenic biofilm-specific treatment is a viable strategy for disease prevention.

  4. The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Tsukasa, E-mail: akasaka@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586 (Japan); Matsuoka, Makoto [Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586 (Japan); Hashimoto, Takeshi [Meijo Nano Carbon Co. Ltd., Otsubashi bldg. 4F, 3-4-10 Marunouchi, Naka-ku, Nagoya 460-0002 (Japan); Abe, Shigeaki; Uo, Motohiro; Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586 (Japan)

    2010-10-15

    Dental caries are mainly associated with oral pathogens, and Streptococcus mutans is a primary cariogenic organism. Many methods have been established to eliminate S. mutans from the oral cavity. This study aimed to evaluate the effect of carbon nanotube (CNT)/agar composites irradiated with near-infrared (NIR) light on S. mutans, as a potential photothermal antimicrobial nanotherapy. A colony-forming unit assay clearly showed that CNT/agar composites attain bactericidal activity after NIR light irradiation; this bactericidal activity is higher than that of graphite (GP)/agar and activated carbon (AC)/agar composites. Furthermore, it was observed that longer irradiation times immobilized S. mutans in the CNT/agar composite.

  5. The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans

    International Nuclear Information System (INIS)

    Akasaka, Tsukasa; Matsuoka, Makoto; Hashimoto, Takeshi; Abe, Shigeaki; Uo, Motohiro; Watari, Fumio

    2010-01-01

    Dental caries are mainly associated with oral pathogens, and Streptococcus mutans is a primary cariogenic organism. Many methods have been established to eliminate S. mutans from the oral cavity. This study aimed to evaluate the effect of carbon nanotube (CNT)/agar composites irradiated with near-infrared (NIR) light on S. mutans, as a potential photothermal antimicrobial nanotherapy. A colony-forming unit assay clearly showed that CNT/agar composites attain bactericidal activity after NIR light irradiation; this bactericidal activity is higher than that of graphite (GP)/agar and activated carbon (AC)/agar composites. Furthermore, it was observed that longer irradiation times immobilized S. mutans in the CNT/agar composite.

  6. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22 and 26: Streptococcus parasuis sp. nov.

    Science.gov (United States)

    Nomoto, R; Maruyama, F; Ishida, S; Tohya, M; Sekizaki, T; Osawa, Ro

    2015-02-01

    In order to clarify the taxonomic position of serotypes 20, 22 and 26 of Streptococcus suis, biochemical and molecular genetic studies were performed on isolates (SUT-7, SUT-286(T), SUT-319, SUT-328 and SUT-380) reacted with specific antisera of serotypes 20, 22 or 26 from the saliva of healthy pigs as well as reference strains of serotypes 20, 22 and 26. Comparative recN gene sequencing showed high genetic relatedness among our isolates, but marked differences from the type strain S. suis NCTC 10234(T), i.e. 74.8-75.7 % sequence similarity. The genomic relatedness between the isolates and other strains of species of the genus Streptococcus, including S. suis, was calculated using the average nucleotide identity values of whole genome sequences, which indicated that serotypes 20, 22 and 26 should be removed taxonomically from S. suis and treated as a novel genomic species. Comparative sequence analysis revealed 99.0-100 % sequence similarities for the 16S rRNA genes between the reference strains of serotypes 20, 22 and 26, and our isolates. Isolate STU-286(T) had relatively high 16S rRNA gene sequence similarity with S. suis NCTC 10234(T) (98.8 %). SUT-286(T) could be distinguished from S. suis and other closely related species of the genus Streptococcus using biochemical tests. Due to its phylogenetic and phenotypic similarities to S. suis we propose naming the novel species Streptococcus parasuis sp. nov., with SUT-286(T) ( = JCM 30273(T) = DSM 29126(T)) as the type strain. © 2015 IUMS.

  7. Bioinformatics and structural characterization of a hypothetical protein from Streptococcus mutans: implication of antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Jie Nan

    2009-10-01

    Full Text Available As an oral bacterial pathogen, Streptococcus mutans has been known as the aetiologic agent of human dental caries. Among a total of 1960 identified proteins within the genome of this organism, there are about 500 without any known functions. One of these proteins, SMU.440, has very few homologs in the current protein databases and it does not fall into any protein functional families. Phylogenetic studies showed that SMU.440 is related to a particular ecological niche and conserved specifically in some oral pathogens, due to lateral gene transfer. The co-occurrence of a MarR protein within the same operon among these oral pathogens suggests that SMU.440 may be associated with antibiotic resistance. The structure determination of SMU.440 revealed that it shares the same fold and a similar pocket as polyketide cyclases, which indicated that it is very likely to bind some polyketide-like molecules. From the interlinking structural and bioinformatics studies, we have concluded that SMU.440 could be involved in polyketide-like antibiotic resistance, providing a better understanding of this hypothetical protein. Besides, the combination of multiple methods in this study can be used as a general approach for functional studies of a protein with unknown function.

  8. Streptococcus pneumoniae necrotizing fasciitis in systemic lupus erythematosus.

    Science.gov (United States)

    Sánchez, A; Robaina, R; Pérez, G; Cairoli, E

    2016-04-01

    Necrotizing fasciitis is a rapidly progressive destructive soft tissue infection with high mortality. Streptococcus pneumoniae as etiologic agent of necrotizing fasciitis is extremely unusual. The increased susceptibility to Streptococcus pneumoniae infection in patients with systemic lupus erythematosus is probably a multifactorial phenomenon. We report a case of a patient, a 36-year-old Caucasian female with 8-year history of systemic lupus erythematosus who presented a fatal Streptococcus pneumoniae necrotizing fasciitis. The role of computed tomography and the high performance of blood cultures for isolation of the causative microorganism are emphasized. Once diagnosis is suspected, empiric antibiotic treatment must be prescribed and prompt surgical exploration is mandatory. © The Author(s) 2015.

  9. Streptococcus pyogenes Infection and the Human Proteome with a Special Focus on the Immunoglobulin G-cleaving Enzyme IdeS.

    Science.gov (United States)

    Karlsson, Christofer A Q; Järnum, Sofia; Winstedt, Lena; Kjellman, Christian; Björck, Lars; Linder, Adam; Malmström, Johan A

    2018-06-01

    Infectious diseases are characterized by a complex interplay between host and pathogen, but how these interactions impact the host proteome is unclear. Here we applied a combined mass spectrometry-based proteomics strategy to investigate how the human proteome is transiently modified by the pathogen Streptococcus pyogenes , with a particular focus on bacterial cleavage of IgG in vivo In invasive diseases, S. pyogenes evokes a massive host response in blood, whereas superficial diseases are characterized by a local leakage of several blood plasma proteins at the site of infection including IgG. S. pyogenes produces IdeS, a protease cleaving IgG in the lower hinge region and we find highly effective IdeS-cleavage of IgG in samples from local IgG poor microenvironments. The results show that IdeS contributes to the adaptation of S. pyogenes to its normal ecological niches. Additionally, the work identifies novel clinical opportunities for in vivo pathogen detection. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    Directory of Open Access Journals (Sweden)

    Lu Thea

    2012-06-01

    Full Text Available Abstract Background Fatty acid modifying enzyme (FAME has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS. However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment.

  11. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA.

    Directory of Open Access Journals (Sweden)

    David Sychantha

    2017-10-01

    Full Text Available The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain. We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.

  12. Amixicile, a novel strategy for targeting oral anaerobic pathogens.

    Science.gov (United States)

    Hutcherson, Justin A; Sinclair, Kathryn M; Belvin, Benjamin R; Gui, Qin; Hoffman, Paul S; Lewis, Janina P

    2017-09-05

    The oral microflora is composed of both health-promoting as well as disease-initiating bacteria. Many of the disease-initiating bacteria are anaerobic and include organisms such as Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Tannerella forsythia. Here we investigated a novel therapeutic, amixicile, that targets pyruvate:ferredoxin oxidoreductase (PFOR), a major metabolic enzyme involved in energy generation through oxidative decarboxylation of pyruvate. PFOR is present in these anaerobic pathogenic bacteria and thus we hypothesized that amixicile would effectively inhibit their growth. In general, PFOR is present in all obligate anaerobic bacteria, while oral commensal aerobes, including aerotolerant ones, such as Streptococcus gordonii, use pyruvate dehydrogenase to decarboxylate pyruvate. Accordingly, we observed that growth of the PFOR-containing anaerobic periodontal pathogens, grown in both monospecies as well as multispecies broth cultures was inhibited in a dose-dependent manner while that of S. gordonii was unaffected. Furthermore, we also show that amixicile is effective against these pathogens grown as monospecies and multispecies biofilms. Finally, amixicile is the first selective therapeutic agent active against bacteria internalized by host cells. Together, the results show that amixicile is an effective inhibitor of oral anaerobic bacteria and as such, is a good candidate for treatment of periodontal diseases.

  13. Streptococcus mutans: a new Gram-positive paradigm?

    Science.gov (United States)

    Quivey, Robert G.; Koo, Hyun; Abranches, Jacqueline

    2013-01-01

    Despite the enormous contributions of the bacterial paradigms Escherichia coli and Bacillus subtilis to basic and applied research, it is well known that no single organism can be a perfect representative of all other species. However, given that some bacteria are difficult, or virtually impossible, to cultivate in the laboratory, that some are recalcitrant to genetic and molecular manipulation, and that others can be extremely dangerous to manipulate, the use of model organisms will continue to play an important role in the development of basic research. In particular, model organisms are very useful for providing a better understanding of the biology of closely related species. Here, we discuss how the lifestyle, the availability of suitable in vitro and in vivo systems, and a thorough understanding of the genetics, biochemistry and physiology of the dental pathogen Streptococcus mutans have greatly advanced our understanding of important areas in the field of bacteriology such as interspecies biofilms, competence development and stress responses. In this article, we provide an argument that places S. mutans, an organism that evolved in close association with the human host, as a novel Gram-positive model organism. PMID:23393147

  14. In-Vitro Activity of Saponins of Bauhinia Purpurea Madhuca Longifolia Celastrus Paniculatus and Semecarpus Anacardium on Selected Oral Pathogens

    Directory of Open Access Journals (Sweden)

    K. S. Jyothi

    2012-01-01

    Full Text Available Objective: Dental caries, periodontitis and other mucosal diseases are caused by a complex community of microorganisms. This study aimed to investigate the antimicrobial properties of saponins of four important oil yielding medicinal plant extracts on selected oral pathogens that are involved in such diseases.Materials and Methods: Saponins were extracted from Bauhinia purpurea, Madhuca longifolia, Celastrus paniculatus and Semecarpus anacardium and purified. Antimicrobial properties of these saponins against Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Staphylococcus aureus and Lactobacillus acidophilus were determined using well diffusion method. The minimum inhibitory concentration (MIC was determined as the lowest concentration of saponins inhibiting bacterial growth after 14 h of incubation at 37°C. The bactericidal activity was evaluated using the viable cell count method.Results: The minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC of Madhuca longifolia saponin on Streptococcus mutans MTCC 890, Streptococcus mitis and Staphylococcus aureus was 18.3 ± 0.15/34.4 ± 0.24 µg/ml, 19.0 ± 0.05/32.2 ± 0.0 µg/ml and 21.2 ± 0.35/39.0 ± 0.30 µg/ml, respectively and Bauhinia purpurea saponin on Streptococcus mutans MTCC 890, Staphylococcus aureus and Lactobacillus acidophilus was 26.4 ± 0.20/43.0 ± 0.40 µg/ml, 29.0 ± 0.30/39.6 ± 0.12 µg/ml and 20.2 ± 0.05/36.8 ± 0.23 µg/ml, respectively.Conclusion: The strong antimicrobial activity of Madhuca longifolia and Bauhinia purpurea may be due to the presence of complex triterpenoid saponins, oleanane type triterpenoid glycosides or atypical pentacyclic triterpenoid saponin. Hence, these extracted saponins may be used in food and oral products to prevent and control oral diseases.

  15. In-Vitro Activity of Saponins of Bauhinia Purpurea, Madhuca Longifolia, Celastrus Paniculatus and Semecarpus Anacardium on Selected Oral Pathogens

    Science.gov (United States)

    Jyothi, K. S.; Seshagiri, M.

    2012-01-01

    Objective: Dental caries, periodontitis and other mucosal diseases are caused by a complex community of microorganisms. This study aimed to investigate the antimicrobial properties of saponins of four important oil yielding medicinal plant extracts on selected oral pathogens that are involved in such diseases. Materials and Methods: Saponins were extracted from Bauhinia purpurea, Madhuca longifolia, Celastrus paniculatus and Semecarpus anacardium and purified. Antimicrobial properties of these saponins against Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Staphylococcus aureus and Lactobacillus acidophilus were determined using well diffusion method. The minimum inhibitory concentration (MIC) was determined as the lowest concentration of saponins inhibiting bacterial growth after 14 h of incubation at 37°C. The bactericidal activity was evaluated using the viable cell count method. Results: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Madhuca longifolia saponin on Streptococcus mutans MTCC 890, Streptococcus mitis and Staphylococcus aureus was 18.3 ± 0.15/34.4 ± 0.24 μg/ml, 19.0 ± 0.05/32.2 ± 0.0 μg/ml and 21.2 ± 0.35/39.0 ± 0.30 μg/ml, respectively and Bauhinia purpurea saponin on Streptococcus mutans MTCC 890, Staphylococcus aureus and Lactobacillus acidophilus was 26.4 ± 0.20/43.0 ± 0.40 μg/ml, 29.0 ± 0.30/39.6 ± 0.12 μg/ml and 20.2 ± 0.05/36.8 ± 0.23 μg/ml, respectively. Conclusion: The strong antimicrobial activity of Madhuca longifolia and Bauhinia purpurea may be due to the presence of complex triterpenoid saponins, oleanane type triterpenoid glycosides or atypical pentacyclic triterpenoid saponin. Hence, these extracted saponins may be used in food and oral products to prevent and control oral diseases. PMID:23323183

  16. Crystallization and preliminary X-ray crystallographic analysis of the tRNA-specific adenosine deaminase from Streptococcus pyogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Min-Je [Functional Proteomics Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Won-Ho [Functional Proteomics Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biotechnology and Genetic Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Nam, Ki-hyun; Rhee, Kyeong-hee [Biomedical Research Center, Life Science Division, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Ki-Seog [Biotechnology and Genetic Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Eunice EunKyung [Biomedical Research Center, Life Science Division, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Yu, Myung-Hee [Functional Proteomics Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Hwang, Kwang Yeon, E-mail: hwangky@kist.re.kr [Biomedical Research Center, Life Science Division, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Functional Proteomics Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2005-04-01

    The tRNA-specific adenosine deaminase from the pathogenic bacteria S. pyogenes has been overexpressed and crystallized. The tRNA-specific adenosine deaminase from the pathogenic bacteria Streptococcus pyogenes (spTAD) has been overexpressed in Escherichia coli and crystallized in the presence of Zn{sup 2+} ion at 295 K using ammonium sulfate as a precipitant. Flash-cooled crystals of spTAD diffracted to 2.0 Å using 30%(v/v) glycerol as a cryoprotectant. X-ray diffraction data have been collected to 2.0 Å using synchrotron radiation. The crystal belongs to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 81.042, c = 81.270 Å. The asymmetric unit contains one subunit of spTAD, with a corresponding crystal volume per protein weight (V{sub M}) of 3.3 Å{sup 3} Da{sup −1} and a solvent content of 62.7%.

  17. Group B Streptococcus Induces Neutrophil Recruitment to Gestational Tissues and Elaboration of Extracellular Traps and Nutritional Immunity

    Science.gov (United States)

    Kothary, Vishesh; Doster, Ryan S.; Rogers, Lisa M.; Kirk, Leslie A.; Boyd, Kelli L.; Romano-Keeler, Joann; Haley, Kathryn P.; Manning, Shannon D.; Aronoff, David M.; Gaddy, Jennifer A.

    2017-01-01

    Streptococcus agalactiae, or Group B Streptococcus (GBS), is a gram-positive bacterial pathogen associated with infection during pregnancy and is a major cause of morbidity and mortality in neonates. Infection of the extraplacental membranes surrounding the developing fetus, a condition known as chorioamnionitis, is characterized histopathologically by profound infiltration of polymorphonuclear cells (PMNs, neutrophils) and greatly increases the risk for preterm labor, stillbirth, or neonatal GBS infection. The advent of animal models of chorioamnionitis provides a powerful tool to study host-pathogen relationships in vivo and ex vivo. The purpose of this study was to evaluate the innate immune response elicited by GBS and evaluate how antimicrobial strategies elaborated by these innate immune cells affect bacteria. Our work using a mouse model of GBS ascending vaginal infection during pregnancy reveals that clinically isolated GBS has the capacity to invade reproductive tissues and elicit host immune responses including infiltration of PMNs within the choriodecidua and placenta during infection, mirroring the human condition. Upon interacting with GBS, murine neutrophils elaborate DNA-containing extracellular traps, which immobilize GBS and are studded with antimicrobial molecules including lactoferrin. Exposure of GBS to holo- or apo-forms of lactoferrin reveals that the iron-sequestration activity of lactoferrin represses GBS growth and viability in a dose-dependent manner. Together, these data indicate that the mouse model of ascending infection is a useful tool to recapitulate human models of GBS infection during pregnancy. Furthermore, this work reveals that neutrophil extracellular traps ensnare GBS and repress bacterial growth via deposition of antimicrobial molecules, which drive nutritional immunity via metal sequestration strategies. PMID:28217556

  18. SEARCH FOR MICROORGANISMS IN UTENSILS, MILK AND CHEESE OF THE CRAFT PRODUCTION IN SMALL UNITS OF PRODUCTION IN SEROPÉDICA, RIO DE JANEIRO PESQUISA DE MICRORGANISMOS EM UTENSÍLIOS, LEITE E QUEIJOS DE PRODUÇÃO ARTESANAL EM UNIDADES DE PRODUÇÃO FAMILIAR NO MUNICÍPIO DE SEROPÉDICA, RIO DE JANEIRO.

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso Landgraf Botteon

    2009-04-01

    Full Text Available This work was performed in order to evaluate the hygienical and sanitary features of homemade production of “Minas Frescal” cheese in small units of production in Seropédica, RJ. Samples of subclinical and clinical mastitic cows milk, production stuffs and cheese were analyzed. Several microorganisms were detected in 100% of the samples, including Salmonella spp. in a sample of cheese. The main isolated agents were Escherichia coli, Staphylococcus aureus, Staphylococcus schleiferi coagulans, Staphylococcus spp., Enterobacter spp., Enterobacter aerogenes, Bacillus spp., Klebsiella pneumoniae, Streptococcus uberis, Streptococcus spp. and Micrococcus spp. Microorganisms were isolated from the milk of clinical and subclinical mastitis cows, the production stuffs and storage and also from the cheese, confirming the inadequate thermic treatment and hygienic procedures of the utensils. The inadequate hygienic quality of the homemade cheese evaluated is of concern once the isolated microorganisms represent potential hazards to health and the product sale is direct to the consumers.

    KEY WORDS: Food safety, homemade cheese, hygienic quality.
    Este trabalho foi desenvolvido para avaliar aspectos higiênico-sanitários da produção artesanal de queijo minas frescal em pequenas unidades de produção em um assentamento de reforma agrária em Seropédica, RJ. Analisaram-se amostras de leite, queijo e utensílios utilizados em diferentes etapas da linha de produção. Verificou-se a presença de microrganismos diversos, incluindo-se Salmonella spp. em uma amostra de queijo. Os principais agentes isolados foram Escherichia coli, Staphylococcus aureus, Staphylococcus schleiferi coagulans, Staphylococcus spp., Enterobacter spp., Enterobacter aerogenes, Bacillus spp, Klebsiella pneumoniae, Streptococcus uberis, Streptococcus spp. e Micrococcus spp. Isolaram-se microrganismos de quartos mamários de vacas com mastite clínica ou subcl

  19. Aortitis with bacteraemia by Streptococcus equi Zooepidemicus

    International Nuclear Information System (INIS)

    Betancur, Carlos Alberto; Giraldo, Juan David; Saldarriaga Eugenia Lucia

    2005-01-01

    Infections by Streptococcus equi subspecies zooepidemicus occur in animals. In human beings these infections are generally accidental, and few cases have been reported. We present the case of a 56-year-old male, a butcher, who presented with abdominal pain. Aneurismatic dilatation of the aorta below the renal arteries was documented by CT-scanning. A purulent collection and arterial ulceration were found during surgery; Streptococcus equi zooepidemicus was isolated from the collection and from blood cultures

  20. Identification of organic acids in Cichorium intybus inhibiting virulence-related properties of oral pathogenic bacteria.

    Science.gov (United States)

    Papetti, Adele; Mascherpa, Dora; Carazzone, Chiara; Stauder, Monica; Spratt, David A; Wilson, Michael; Pratten, Jonathan; Ciric, Lena; Lingström, Peter; Zaura, Egija; Weiss, Ervin; Ofek, Itzak; Signoretto, Caterina; Pruzzo, Carla; Gazzani, Gabriella

    2013-06-01

    The low molecular mass (LMM) extract of Cichorium intybus var. silvestre (red chicory) has been shown to inhibit virulence-linked properties of oral pathogens including Streptococcus mutans, Actinomyces naeslundii and Prevotella intermedia. In the present study HPLC-DAD-ESI/MS(2) was used to investigate the compounds contained in this extract for their anti-virulence activity. The extract contained a number of components, including oxalic, succinic, shikimic and quinic acids, which interfere with the growth and virulence traits (i.e., biofilm formation, adherence to epithelial cells and hydroxyapatite) of oral pathogens involved in gingivitis and tooth decay. Succinic and quinic acid seem to be the most potent, mainly by interfering with the ability of oral pathogens to form biofilms (either through inhibition of their development or promotion of their disruption). Our findings suggest that one or more of these compounds may modulate plaque formation in vivo, which is a prerequisite for the development of both caries and gingivitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Icu Pathogens: A Continuous Challenge

    International Nuclear Information System (INIS)

    Hafeez, A.; Munir, T.; Najeeb, S.; Rehman, S.; Gilani, M.

    2016-01-01

    Objective: To determine the frequency and antibiogram of pathogens in an intensive care unit (ICU). Study Design: Cross-sectional, observational study. Place and Duration of Study: Department of Microbiology, Army Medical College, National University of Science and Technology, Islamabad, from January 2013 to January 2014. Methodology: Clinical samples, received from patients admitted in ICU, were inoculated on various medias like blood agar, chocolate agar, MacConkey agar and urine samples on CLED. These were then incubated at 37 degree C for 24 hours. Isolates were identified by colony morphology, Gram reaction, catalase test, oxidase test. Species identification in case of Gram Negative Rods was done by using API 20E (BioMerieux). Antibiotic susceptibility was done by using modified KirbyBauer disc diffusion technique. Bacterial isolates were prepared and inoculated on Mueller-Hinton agar plates followed by application of various antibiotic disc (Oxoid, UK) as per manufacturer's instructions. The plates were then incubated at 37 degree C aerobically for 18 - 24 hours. Zone diameters were measured and interpreted as sensitive and resistant, according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Results: Out of the 367 positive cultures, 116 (31.08 percent) were Acinetobacter baumanniisusceptible to minocycline and tigecycline followed by Klebsiella pneumoniae (n=71, 16 percent) susceptible to tigecycline and meropenem. Others were Pseudomonas aeruginosa, Escherichia coli Coagulase Negative Staphylococcus, Staphylococcus aureus, Enterococcus spp., Streptococcus spp., Klebsiella oxytoca, Stenotrophomonas maltophilia, and Candida spp. Conclusion: Acinetobacter baumannii was the most frequently isolated pathogen. Most of the cultures yielding pathogens were from respiratory tract samples. Gram negative isolates were multidrug resistant but most were tigecycline and susceptible to meropenem. (author)

  2. Infective endocarditis case due to streptococcus parasanguinis presented with spondylodiscitis

    Directory of Open Access Journals (Sweden)

    ismail Necati Hakyemez

    2016-09-01

    Full Text Available Streptococcus parasanguinis is a natural member of oral flora. It is an opportunistic pathogen, and rarely cause systemic infections due to it's low virulence. Subacute infective endocarditis may present with various clinical manifestations (eg., spondylodiscitis. A sixty-five years old male patient from Northern Iraq has referred to our emergency service with high fever, weight loss, back pain and inability to walk. The patient was a veterinarian. He was operated three years ago for colonic carcinoma and irradiated. In magnetic resonance imaging, spondylodiscitis was detected localized in lumbar 1-2 region. Transthorasic echocardiography demonstrated aortic valve vegetation. S. parasanguinis was identified in the blood cultures. In conclusion; all in all, it's remarkable to isolate S. parasanguinis as a causal agent of infective endocarditis in a patient who is a veterinarian with history of colonic carcinoma presented with clinical manifestation of spondylodiscitis. [Cukurova Med J 2016; 41(3.000: 591-594

  3. Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis

    Science.gov (United States)

    Xu, Yifan; Itzek, Andreas

    2014-01-01

    Hydrogen peroxide (H2O2) is produced by several members of the genus Streptococcus mainly through the pyruvate oxidase SpxB under aerobic growth conditions. The acute toxic nature of H2O2 raises the interesting question of how streptococci cope with intrinsically produced H2O2, which subsequently accumulates in the microenvironment and threatens the closely surrounding population. Here, we investigate the H2O2 susceptibility of oral Streptococcus gordonii and Streptococcus sanguinis and elucidate potential mechanisms of how they protect themselves from the deleterious effect of H2O2. Both organisms are considered primary colonizers and occupy the same intraoral niche making them potential targets for H2O2 produced by other species. We demonstrate that S. gordonii produces relatively more H2O2 and has a greater ability for resistance to H2O2 stress. Functional studies show that, unlike in Streptococcus pneumoniae, H2O2 resistance is not dependent on a functional SpxB and confirms the important role of the ferritin-like DNA-binding protein Dps. However, the observed increased H2O2 resistance of S. gordonii over S. sanguinis is likely to be caused by an oxidative stress protection machinery present even under anaerobic conditions, while S. sanguinis requires a longer period of time for adaptation. The ability to produce more H2O2 and be more resistant to H2O2 might aid S. gordonii in the competitive oral biofilm environment, since it is lower in abundance yet manages to survive quite efficiently in the oral biofilm. PMID:25280752

  4. Association between pathogens from tracheal aspirate and oral biofilm of patients on mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Luana Carneiro Diniz SOUZA

    2017-06-01

    Full Text Available Abstract The aim of this study was to detect possible associations between respiratory pathogens from tracheal aspirate and oral biofilm samples in intubated patients in an intensive care unit (ICU, and to identify the most common respiratory pathogens in oral biofilm, particularly in patients that developed ventilator-associated pneumonia (VAP. Two oral biofilm samples were collected from the tongue of intubated patients (at admission and after 48 hours and analyzed by culture with the Antibiotic Sensitivity Test. The results from the tongue biofilm samples were compared with the tracheal secretions samples. A total of 59.37% of patients exhibited the same species of pathogens in their tracheal aspirate and oral biofilm, of which 8 (42.1% developed VAP, 10 (52.63% did not develop pneumonia and one (5.26% had aspiration pneumonia. There was a statistically significant association between presence of microorganisms in the tracheal and mouth samples for the following pathogens: Klebsiella pneumoniae, Candida albicans, Pseudomonas aeruginosa, Enterobacter gergoviae, Streptococcus spp and Serratia marcescens (p < 0.05. Pathogens that are present in tracheal aspirates of intubated patients can be detected in their oral cavity, especially in those who developed VAP or aspiration pneumonia. Thus, the results indicate that an improved oral care in these patients could decrease ICU pneumonia rates.

  5. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2012-04-01

    Full Text Available Rene Hernandez-Delgadillo1, Donaji Velasco-Arias2, David Diaz2, Katiushka Arevalo-Niño1, Marianela Garza-Enriquez1, Myriam A De la Garza-Ramos1, Claudio Cabral-Romero11Instituto de Biotecnologia, Centro de Investigacion y Desarrollo en Ciencias de la Salud, CIDICS, Facultad de Odontologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Nuevo Leon, 2Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Distrito Federal, MexicoBackground and methods: Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities.Results: Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM.Conclusion: These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation.Keywords: zerovalent bismuth nanoparticles, antimicrobial agent, biofilm, Streptococcus mutans

  6. Bacteremia with Streptococcus pneumoniae

    DEFF Research Database (Denmark)

    Christensen, J S; Jensen, T G; Kolmos, H J

    2012-01-01

    We conducted a hospital-based cohort study among adult patients with first-time Streptococcus pneumoniae bacteremia (SPB) from 2000 through 2008. Patients were identified in a population-based bacteremia database and followed up for mortality through the Danish Civil Registration System (CRS...

  7. Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses.

    Science.gov (United States)

    McConnell, Kevin W; McDunn, Jonathan E; Clark, Andrew T; Dunne, W Michael; Dixon, David J; Turnbull, Isaiah R; Dipasco, Peter J; Osberghaus, William F; Sherman, Benjamin; Martin, James R; Walter, Michael J; Cobb, J Perren; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2010-01-01

    Pathogens that cause pneumonia may be treated in a targeted fashion by antibiotics, but if this therapy fails, then treatment involves only nonspecific supportive measures, independent of the inciting infection. The purpose of this study was to determine whether host response is similar after disparate infections with similar mortalities. Prospective, randomized controlled study. Animal laboratory in a university medical center. Pneumonia was induced in FVB/N mice by either Streptococcus pneumoniae or two different concentrations of Pseudomonas aeruginosa. Plasma and bronchoalveolar lavage fluid from septic animals was assayed by a microarray immunoassay measuring 18 inflammatory mediators at multiple time points. The host response was dependent on the causative organism as well as kinetics of mortality, but the pro-inflammatory and anti-inflammatory responses were independent of inoculum concentration or degree of bacteremia. Pneumonia caused by different concentrations of the same bacteria, Pseudomonas aeruginosa, also yielded distinct inflammatory responses; however, inflammatory mediator expression did not directly track the severity of infection. For all infections, the host response was compartmentalized, with markedly different concentrations of inflammatory mediators in the systemic circulation and the lungs. Hierarchical clustering analysis resulted in the identification of five distinct clusters of the host response to bacterial infection. Principal components analysis correlated pulmonary macrophage inflammatory peptide-2 and interleukin-10 with progression of infection, whereas elevated plasma tumor necrosis factor sr2 and macrophage chemotactic peptide-1 were indicative of fulminant disease with >90% mortality within 48 hrs. Septic mice have distinct local and systemic responses to Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia. Targeting specific host inflammatory responses induced by distinct bacterial infections could represent a

  8. Clinical behavior of Streptococcus pneumoniae meningoencephalitis Comportamiento clinico y terapéutico de la meningoencefalitis por Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Raisa Bu-Coifiu Fanego

    2009-12-01

    Full Text Available OBJECTIVE: There was an increased number of cases of meningoencephalitis caused by Streptococcus pneumoniae, after the successful vaccination campaigns against Neisseria meningitidis and Haemophilus influenzae. This paper aims at describing the clinical characteristics, the laboratory findings, the complications, and the therapeutic management of these patients, who have been suffering from this disease since 1993 to 2006. METHOD: Twelve children with Streptococcus pneumoniae meningoencephalitis admitted to the pediatric hospital of San Miguel del Padron, City of Havana in this period were assessed. RESULTS: Children under one year are the most frequently affected. Septic shock and brain edema were the most severe complications. Three patients died, implying that this disease has a serious course. Early treatment of brain edema is very important to reduce mortality. The elective drugs for treatment of these cases of Streptococcus pneumoniae meningoencephalitis were vancomycin combined with cephalosporin, cefotaxime or ceftriaxone type. CONCLUSION: Patients with Streptococcus pneumoniae meningoencephalitis show clinical characteristics, complications, and sequels that are different to other bacterial meningoencephalitis, meaning that they could be helpful for physicians considering the differential diagnosis of meningoencephalitis.OBJETIVO: Existe un incremento de la meningoencefalitis producida por Streptococcus pneumoniae, después de las campañas exitosas de vacunación contra Neisseria meningitidis y Haemophilus influenzae. El objetivo de este trabajo es describir las caracteristicas clinicas, los hallazgos de laboratorio, las complicaciones y el manejo terapéutico de los pacientes que sufrieron esta enfermedad desde 1993 a 2006. MÉTODO: Se estudiaron doce niños con meningoencefalitis por Streptococcus pneumoniae ingresados en el Hospital Pediátrico de San Miguel del Padrón, Ciudad de La Habana en este periodo. RESULTADOS: Los ni

  9. Lung abscess caused by Streptococcus pneumoniae serotype 6B

    Directory of Open Access Journals (Sweden)

    Yuhei Ito

    Full Text Available Lung abscess has been considered to be a rare complication of pneumococcal infection, and most cases are reported to be Streptococcus pneumoniae serotype 3. A 67-year-old man presented with fever and was diagnosed to have lung abscess caused by S. pneumoniae serotype 6B. The minimal inhibitory concentration (MIC of penicillin for the isolate was 1 μg/mL. He was treated with high-dose intravenous sulbactam/ampicillin as definitive therapy based on susceptibility testing for S. pneumoniae and recovered successfully without surgical intervention. S. pneumoniae serotype 6B can cause lung abscess. Keywords: Streptococcus pneumoniae, Lung abscess, Serotype 6B, Penicillin-resistant Streptococcus pneumoniae

  10. Surveillance of antimicrobial resistance in clinical isolates of Pasteurella multocida and Streptococcus suis from Ontario swine

    Science.gov (United States)

    Glass-Kaastra, Shiona K.; Pearl, David L.; Reid-Smith, Richard J.; McEwen, Beverly; Slavic, Durda; Fairles, Jim; McEwen, Scott A.

    2014-01-01

    Susceptibility results for Pasteurella multocida and Streptococcus suis isolated from swine clinical samples were obtained from January 1998 to October 2010 from the Animal Health Laboratory at the University of Guelph, Guelph, Ontario, and used to describe variation in antimicrobial resistance (AMR) to 4 drugs of importance in the Ontario swine industry: ampicillin, tetracycline, tiamulin, and trimethoprim–sulfamethoxazole. Four temporal data-analysis options were used: visualization of trends in 12-month rolling averages, logistic-regression modeling, temporal-scan statistics, and a scan with the “What’s strange about recent events?” (WSARE) algorithm. The AMR trends varied among the antimicrobial drugs for a single pathogen and between pathogens for a single antimicrobial, suggesting that pathogen-specific AMR surveillance may be preferable to indicator data. The 4 methods provided complementary and, at times, redundant results. The most appropriate combination of analysis methods for surveillance using these data included temporal-scan statistics with a visualization method (rolling-average or predicted-probability plots following logistic-regression models). The WSARE algorithm provided interesting results for quality control and has the potential to detect new resistance patterns; however, missing data created problems for displaying the results in a way that would be meaningful to all surveillance stakeholders. PMID:25355992

  11. Biofilm formation, hemolysin production and antimicrobial susceptibilities of Streptococcus agalactiae isolated from the mastitis milk of dairy cows in Shahrekord district, Iran

    Directory of Open Access Journals (Sweden)

    Azizollah Ebrahimi

    2014-12-01

    Full Text Available Streptococcus agalactiae is a major contagious pathogen causing bovine sub-clinical mastitis. The present investigation was carried out to determine some phenotypic characteristics of the S. agalactiae strains isolated from bovine mastitis cases in dairy cows of Shahrekord in the west-center of Iran. One hundred eighty California mastitis test (CMT positive milk samples were bacteriologically studied. A total of 31 (17.2% S. agalactiae isolated. Twenty eight (90.3% of the isolates were biofilm producers. This finding may indicate the high potential of pathogenicity in isolated strains. Sixteen (51.6% isolates were α hemolysin producers. Only 19.3%, 22.5% and 29.0% of the isolates were sensitive to streptomycin, flumequine and kanamycin, respectively. None of these three agents is recommended for treatment of mastitis cases.

  12. Antimicrobial Property of Extracts of Indian Lichen against Human Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Priya Srivastava

    2013-01-01

    Full Text Available Context. Usnea ghattensis G. Awasthi (Usneaceae endemic fruticose lichen found growing luxuriantly in Northern Western Ghats of India, it also contains Usnic acid as a major chemical and tested against some human pathogenic bacteria. Objective. To explore antimicrobial properties of Usnea ghattensis against some human pathogenic bacteria. Materials and Methods. The lichen was extracted in acetone, methanol, and ethanol. In vitro antimicrobial activity was tested initially by Kirby-Bauer technique of disc diffusion method and was confirmed by minimum inhibitory concentration using Broth microdilution method according to the NCCLS guidelines. Results. Ethanol extract was most effective against Bacillus cereus and Pseudomonas aeruginosa with a zone of inhibition 29.8 ± 0.6 mm and 12.3 ± 0.5 mm diameters at a concentration of 0.2 mg/mL. Acetone and methanol extract demonstrated almost similar activity against Staphylococcus aureus and the zone of inhibition was 24.6 ± 0.5 and 24.7 ± 0.4 mm. Only methanol extract was showing activity against Streptococcus faecalis with a 13.5 ± 0.8 mm zone. MIC value noted against Staphylococcus aureus and Streptococcus faecalis was 6.25 μg/mL and 25 μg/mL, whereas against Bacillus cereus and Pseudomonas aeruginosa, MIC calculated was 3.125 μg/mL and 200 μg/mL, respectively. Conclusion. The present study demonstrates the relatively higher activity of this lichen against not only gram (+ but significantly also against gram (− bacteria. This indicates that this lichen might be a rich source of effective antimicrobial agents.

  13. Inhibitory Activity of Lactid Acid Bacteria Isolated from Tape Waterlily Seed to Enteric Pathogenic Bacteria (Vibrio cholera, Salmonella typhi, Shigella disentri, and E.coli and Its’ Susceptibility to Antibiotic, Bile Salt and Acidic Condition

    Directory of Open Access Journals (Sweden)

    Iin Khusnul Khotimah

    2012-03-01

    Full Text Available The aim of this research was to observe inhibitory activity of LAB isolated from tape waterlily seed to enteric pathogenic bacteria (Vibrio cholera, Salmonella typhi, Shigella disentri, E.coli ATCC 25922 and it’s susceptibility to antibiotic, in bile salt and under acidic condition. Microbia in the tape ( a fermented product of waterlily seed to showed were Streptococcus thermophilus (IKH-1, Pediococcus pentosaceus (IKH-2 and Leuconostoc mesentroides (IKH-8. Streptococcus thermophillus showed inhibition against the growth of Shigella disentri with inhibition zones 16,28 mm, but did not against the growth of V. Cholera, S. typhi, E.coli. Pediococcus pentosaceus inhibit Vibrio cholera, dan Salmonella thypi with inhibition zones 18,59 mm dan 7,91 mm. So that, Leuconostoc mesenteroides inhibit Salmonella thypi with zones inhibits average 8,25 mm. Chloramfenicol at 0.05 mg concentrations did not show inhibition against the growth of isolated Streptococcus thermophillus, Pediococcus pentosaceus and Leuconostoc mesentroides. These isolates could survive too in bile salt (2% and acidified media (pH 3.   Keyword : The tape of  waterlily seed, LAB, probiotic and enteric pathogenic   KEMAMPUAN PENGHAMBATAN BAKTERI ASAM LAKTAT DARI TAPE BIJI TERATAI TERHADAP PATOGENIK ENTERIK (VIBRIO CHOLERA, SALMONELLA THYPI, SHIGELLA DISENTRI, E. COLI, ANTIBIOTIK, KETAHANANNYA TERHADAP BILE SALT DAN ASAM   ABSTRAK   Penelitian ini bertujuan untuk menguji kemampuan penghambatan bakteri asam laktat yang diisolasi dari tape biji teratai terhadap patogenik enterik (Vibrio cholera, Salmonella thypi, Shigella disentri, E. Coli ATCC 25922, antibiotik, bile salt dan asam. Jenis bakteri yang diketahui tumbuh selama fermentasi tape biji teratai adalah Streptococcus thermopilus (IKH-1, Pediococcus pentosaceus(IKH-2, dan Leuconostoc mesentroides (IKH-8. Pengamatan terhadap uji penghambatan patogenik enterik (Vibrio cholera, Salmonella thypi, Shigella disentri, dan E. Coli ATCC

  14. Influence of impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus pneumoniae.

    Science.gov (United States)

    Pribyl, Thomas; Moche, Martin; Dreisbach, Annette; Bijlsma, Jetta J E; Saleh, Malek; Abdullah, Mohammed R; Hecker, Michael; van Dijl, Jan Maarten; Becher, Dörte; Hammerschmidt, Sven

    2014-02-07

    Surface proteins are important for the fitness and virulence of the Gram-positive pathogen Streptococcus pneumoniae. They are crucial for interaction of the pathogen with its human host during infection. Therefore, the analysis of the pneumococcal surface proteome is an important task that requires powerful tools. In this study, two different methods, an optimized biotinylation approach and shaving with trypsin beads, were applied to study the pneumococcal surface proteome and to identify surface-exposed protein domains, respectively. The identification of nearly 95% of the predicted lipoproteins and 75% of the predicted sortase substrates reflects the high coverage of the two classical surface protein classes accomplished in this study. Furthermore, the biotinylation approach was applied to study the impact of an impaired lipoprotein maturation pathway on the cell envelope proteome and exoproteome. Loss of the lipoprotein diacylglyceryl transferase Lgt leads to striking changes in the lipoprotein distribution. Many lipoproteins disappear from the surface proteome and accumulate in the exoproteome. Further insights into lipoprotein processing in pneumococci are provided by immunoblot analyses of bacterial lysates and corresponding supernatant fractions. Taken together, the first comprehensive overview of the pneumococcal surface and exoproteome is presented, and a model for lipoprotein processing in S. pneumoniae is proposed.

  15. S-carboxymethylcysteine inhibits adherence of Streptococcus pneumoniae to human alveolar epithelial cells.

    Science.gov (United States)

    Sumitomo, Tomoko; Nakata, Masanobu; Yamaguchi, Masaya; Terao, Yutaka; Kawabata, Shigetada

    2012-01-01

    Streptococcus pneumoniae is a major pathogen of respiratory infections that utilizes platelet-activating factor receptor (PAFR) for firm adherence to host cells. The mucolytic agent S-carboxymethylcysteine (S-CMC) has been shown to exert inhibitory effects against infection by several respiratory pathogens including S. pneumoniae in vitro and in vivo. Moreover, clinical studies have implicated the benefits of S-CMC in preventing exacerbation of chronic obstructive pulmonary disease, which is considered to be related to respiratory infections. In this study, to assess whether the potency of S-CMC is attributable to inhibition of pneumococcal adherence to host cells, an alveolar epithelial cell line stimulated with interleukin-1α was used as a model of inflamed epithelial cells. Despite upregulation of PAFR by inflammatory activation, treatment with S-CMC efficiently inhibited pneumococcal adherence to host epithelial cells. In order to gain insight into the inhibitory mechanism, the effects of S-CMC on PAFR expression were also investigated. Following treatment with S-CMC, PAFR expression was reduced at both mRNA and post-transcriptional levels. Interestingly, S-CMC was also effective in inhibiting pneumococcal adherence to cells transfected with PAFR small interfering RNAs. These results indicate S-CMC as a probable inhibitor targeting numerous epithelial receptors that interact with S. pneumoniae.

  16. IgA anti-Streptococcus mutans em crianças com e sem cárie dentária Anti-Streptococcus mutans IgA in children with and without dental caries

    Directory of Open Access Journals (Sweden)

    Suzete Cristina YAZAKI

    1999-07-01

    Full Text Available A cárie dentária é uma doença infecciosa crônica que necessita pelo menos quatro componentes para desenvolver-se: hospedeiro suscetível, microbiota patogênica, dieta rica em sacarose e tempo. Este trabalho estuda as correlações existentes entre estreptococos salivares do grupo mutans, placa bacteriana e anticorpos IgA anti-Streptococcus mutans em crianças com e sem experiência de cárie. Para tanto, utilizou-se o meio Mitis Salivarius (DIFCO para determinar o número de Unidades Formadoras de Colônias (UFC/ml, o Índice de Higiene Oral Simplificado (IHOS para mensurar a quantidade de placa bacteriana e a técnica ELISA para detectar anticorpos anti-S. mutans. Os resultados obtidos mostraram que não existe uma correlação entre os níveis salivares de estreptococos (UFC/ml e IgA anti-S. mutans na população estudada. No grupo com cárie, uma correlação positiva, estatisticamente significante, foi observada entre o Índice de placa e IgA específica.Dental caries is a chronic infectious disease that needs at least four components to develop. As a susceptible host, a pathogenic microbiota, a high-sucrose diet and time. This work assess the relationships between Streptococcus mutans and dental plaque; Streptococcus mutans and IgA antibodies in children with and without caries experience. In order to achieve this goal we have used Mitis Salivarius bacitracin agar (DIFCO to determine the colony forming units (CFU/mL, the simplified oral hygiene index (SOHI for measuring bacterial plaque and ELISA for antibody detection. The results obtained have not shown any correlations between colony forming units of S. mutans and IgA antibodies. A significant correlation was found between bacterial plaque index and specific IgA in children with carious lesions.

  17. Role of the Group B antigen of Streptococcus agalactiae: a peptidoglycan-anchored polysaccharide involved in cell wall biogenesis.

    Directory of Open Access Journals (Sweden)

    Élise Caliot

    Full Text Available Streptococcus agalactiae (Group B streptococcus, GBS is a leading cause of infections in neonates and an emerging pathogen in adults. The Lancefield Group B carbohydrate (GBC is a peptidoglycan-anchored antigen that defines this species as a Group B Streptococcus. Despite earlier immunological and biochemical characterizations, the function of this abundant glycopolymer has never been addressed experimentally. Here, we inactivated the gene gbcO encoding a putative UDP-N-acetylglucosamine-1-phosphate:lipid phosphate transferase thought to catalyze the first step of GBC synthesis. Indeed, the gbcO mutant was unable to synthesize the GBC polymer, and displayed an important growth defect in vitro. Electron microscopy study of the GBC-depleted strain of S. agalactiae revealed a series of growth-related abnormalities: random placement of septa, defective cell division and separation processes, and aberrant cell morphology. Furthermore, vancomycin labeling and peptidoglycan structure analysis demonstrated that, in the absence of GBC, cells failed to initiate normal PG synthesis and cannot complete polymerization of the murein sacculus. Finally, the subcellular localization of the PG hydrolase PcsB, which has a critical role in cell division of streptococci, was altered in the gbcO mutant. Collectively, these findings show that GBC is an essential component of the cell wall of S. agalactiae whose function is reminiscent of that of conventional wall teichoic acids found in Staphylococcus aureus or Bacillus subtilis. Furthermore, our findings raise the possibility that GBC-like molecules play a major role in the growth of most if not all beta-hemolytic streptococci.

  18. A case of infective endocarditis along with a ruptured valve caused by Streptococcus agalactiae in an immunocompetent man.

    Science.gov (United States)

    Suzuki, Kiyozumi; Hirai, Yuji; Morita, Fujiko; Uehara, Yuki; Oshima, Hiroko; Mitsuhashi, Kazunori; Amano, Atsushi; Naito, Toshio

    2016-01-01

    Streptococcus agalactiae ( S. agalactiae ) is a major cause of invasive disease in neonates and pregnant women, but has also recently been observed among non-pregnant adults, especially elderly persons or persons with underlying chronic disease. S. agalactiae is also a rare cause of infective endocarditis, and most cases require early surgery. We report the case of a 43-year-old previously healthy man who experienced rapid progressive culture-negative infective endocarditis with aortic valve vegetation and severe aortic regurgitation, which was complicated by lumbar spondylodiscitis. Emergency aortic valve replacement was performed on the day of his admission, which revealed a congenital bicuspid aortic valve was ruptured by the vegetation. The resected aortic valve specimen was submitted for 16S ribosomal RNA gene sequencing, which revealed that the pathogen was S. agalactiae . Therefore, S. agalactiae should be considered a potentially causative pathogen in cases of rapid progressive infective endocarditis, even if it occurs in a non-pregnant immunocompetent adult.

  19. The antimicrobial activity of bupivacaine, lidocaine and mepivacaine against equine pathogens

    DEFF Research Database (Denmark)

    Adler, D. M. T.; Damborg, P.; Verwilghen, D. R.

    2017-01-01

    Lameness is the most commonly reported health problem in horses, and lameness investigations which include local anaesthetic injections are routinely performed by equine practitioners. Through this process, bacteria can enter the tissues perforated by the needle and may cause local infections...... the antimicrobial activity of the local anaesthetics bupivacaine, lidocaine and mepivacaine against 40 equine clinical bacterial isolates of the Actinobacillus, Corynebacterium, Enterobacter, Escherichia, Pseudomonas, Rhodococcus, Staphylococcus and Streptococcus genera. Minimum inhibitory and minimum bactericidal...... also bactericidal. The tested local anaesthetics possessed antimicrobial activity against equine pathogens at concentrations that are routinely applied in clinical cases. However, this antimicrobial activity should not discourage antiseptic preparation prior to local anaesthetic injections....

  20. Monoclonal Idiotope Vaccine against Streptococcus pneumoniae Infection

    Science.gov (United States)

    McNamara, Mary K.; Ward, Ronald E.; Kohler, Heinz

    1984-12-01

    A monoclonal anti-idiotope antibody coupled to a carrier protein was used to immunize BALB/c mice against a lethal Streptococcus pneumoniae infection. Vaccinated mice developed a high titer of antibody to phosphorylcholine, which is known to protect against infection with Streptococcus pneumoniae. Measurement of the median lethal dose of the bacteria indicated that anti-idiotope immunization significantly increased the resistance of BALB/c mice to the bacterial challenge. Antibody to an idiotope can thus be used as an antigen substitute for the induction of protective immunity.

  1. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows.

    Science.gov (United States)

    Hertl, J A; Schukken, Y H; Welcome, F L; Tauer, L W; Gröhn, Y T

    2014-03-01

    The objective of this study was to estimate the effects of clinical mastitis (CM) cases due to different pathogens on milk yield in Holstein cows. The first 3 CM cases in a cow's lactation were modeled. Eight categories of pathogens were included: Streptococcus spp.; Staphylococcus aureus; coagulase-negative staphylococci (CNS); Escherichia coli; Klebsiella spp.; cases with CM signs but no bacterial growth (above the level detectable by our microbiological procedures) observed in the culture sample, and cases with contamination (≥ 3 pathogens in the sample); other pathogens that may be treated with antibiotics (included Citrobacter, Corynebacterium bovis, Enterobacter, Enterococcus, Pasteurella, Pseudomonas; "other treatable"); and other pathogens not successfully treated with antibiotics (Trueperella pyogenes, Mycoplasma, Prototheca, yeasts; "other not treatable"). Data from 38,276 lactations in cows from 5 New York State dairy herds, collected from 2003-2004 until 2011, were analyzed. Mixed models with an autoregressive correlation structure (to account for correlation among the repeated measures of milk yield within a lactation) were estimated. Primiparous (lactation 1) and multiparous (lactations 2 and 3) cows were analyzed separately, as the shapes of their lactation curves differed. Primiparas were followed for up to 48 wk of lactation and multiparas for up to 44 wk. Fixed effects included parity, calving season, week of lactation, CM (type, case number, and timing of CM in relation to milk production cycle), and other diseases (milk fever, retained placenta, metritis, ketosis, displaced abomasum). Herd was modeled as a random effect. Clinical mastitis was more common in multiparas than in primiparas. In primiparas, Streptococcus spp. occurred most frequently as the first case. In multiparas, E. coli was most common as the first case. In subsequent cases, CM cases with no specific growth or contamination were most common in both parity groups. The hazard of

  2. Antibacterial activity of different honeys against pathogenic bacteria.

    Science.gov (United States)

    Voidarou, C; Alexopoulos, A; Plessas, S; Karapanou, A; Mantzourani, I; Stavropoulou, E; Fotou, K; Tzora, A; Skoufos, I; Bezirtzoglou, E

    2011-12-01

    To study the antimicrobial activity of honey, 60 samples of various botanical origin were evaluated for their antimicrobial activities against 16 clinical pathogens and their respective reference strains. The microbiological quality of honeys and the antibiotic susceptibility of the various isolates were also examined. The bioassay applied for determining the antimicrobial effect employs the well-agar diffusion method and the estimation of minimum active dilution which produces a 1mm diameter inhibition zone. All honey samples, despite their origin (coniferous, citrus, thyme or polyfloral), showed antibacterial activity against the pathogenic and their respective reference strains at variable levels. Coniferous and thyme honeys showed the highest activity with an average minimum dilution of 17.4 and 19.2% (w/v) followed by citrus and polyfloral honeys with 20.8 and 23.8% respectively. Clinical isolates of Staphylococcus aureus subsp. aureus, Escherichia coli, Salmonella enterica subsp. Enterica, Streptococcus pyogenes, Bacillus cereus and Bacillus subtilis were proven to be up to 60% more resistant than their equal reference strains thus emphasizing the variability in the antibacterial effect of honey and the need for further research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Streptococcus suis meningitis can require a prolonged treatment course

    Directory of Open Access Journals (Sweden)

    Jean Dejace

    2017-12-01

    Full Text Available We report a case of recrudescent Streptococcus suis meningitis requiring a prolonged treatment course. A few similar cases can be found in the burgeoning literature on what remains a relatively uncommon disease in humans, and these patients should be monitored carefully upon completion of therapy. Keywords: Meningitis, Relapse, Duration, Streptococcus suis

  4. Phenotypic, Genotypic, and Antimicrobial Characteristics of Streptococcus halichoeri Isolates from Humans, Proposal To Rename Streptococcus halichoeri as Streptococcus halichoeri subsp. halichoeri, and Description of Streptococcus halichoeri subsp. hominis subsp. nov., a Bacterium Associated with Human Clinical Infections.

    Science.gov (United States)

    Shewmaker, P L; Whitney, A M; Humrighouse, B W

    2016-03-01

    Phenotypic, genotypic, and antimicrobial characteristics of six phenotypically distinct human clinical isolates that most closely resembled the type strain of Streptococcus halichoeri isolated from a seal are presented. Sequencing of the 16S rRNA, rpoB, sodA, and recN genes; comparative whole-genome analysis; conventional biochemical and Rapid ID 32 Strep identification methods; and antimicrobial susceptibility testing were performed on the human isolates, the type strain of S. halichoeri, and type strains of closely related species. The six human clinical isolates were biochemically indistinguishable from each other and showed 100% 16S rRNA, rpoB, sodA, and recN gene sequence similarity. Comparative 16S rRNA gene sequencing analysis revealed 98.6% similarity to S. halichoeri CCUG 48324(T), 97.9% similarity to S. canis ATCC 43496(T), and 97.8% similarity to S. ictaluri ATCC BAA-1300(T). A 3,530-bp fragment of the rpoB gene was 98.8% similar to the S. halichoeri type strain, 84.6% to the S. canis type strain, and 83.8% to the S. ictaluri type strain. The S. halichoeri type strain and the human clinical isolates were susceptible to the antimicrobials tested based on CLSI guidelines for Streptococcus species viridans group with the exception of tetracycline and erythromycin. The human isolates were phenotypically distinct from the type strain isolated from a seal; comparative whole-genome sequence analysis confirmed that the human isolates were S. halichoeri. On the basis of these results, a novel subspecies, Streptococcus halichoeri subsp. hominis, is proposed for the human isolates and Streptococcus halichoeri subsp. halichoeri is proposed for the gray seal isolates. The type strain of the novel subspecies is SS1844(T) = CCUG 67100(T) = LMG 28801(T). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans.

    Science.gov (United States)

    Moye, Zachary D; Son, Minjun; Rosa-Alberty, Ariana E; Zeng, Lin; Ahn, Sang-Joon; Hagen, Stephen J; Burne, Robert A

    2016-08-01

    The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence-stimulating peptide (CSP

  6. Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans

    Science.gov (United States)

    Moye, Zachary D.; Son, Minjun; Rosa-Alberty, Ariana E.; Zeng, Lin; Ahn, Sang-Joon

    2016-01-01

    ABSTRACT The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans. IMPORTANCE The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence

  7. Lactobacilli interfere with Streptococcus pyogenes hemolytic activity and adherence to host epithelial cells

    Directory of Open Access Journals (Sweden)

    Sunil D Saroj

    2016-07-01

    Full Text Available Streptococcus pyogenes (Group A streptococcus (GAS, a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of GAS. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS. Conditioned medium (CM from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289 and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics.

  8. Comparative Genomics of the Bacterial Genus Streptococcus Illuminates Evolutionary Implications of Species Groups

    Science.gov (United States)

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706

  9. Streptococcus himalayensis sp. nov., isolated from the respiratory tract of Marmota himalayana.

    Science.gov (United States)

    Niu, Lina; Lu, Shan; Lai, Xin-He; Hu, Shoukui; Chen, Cuixia; Zhang, Gui; Yang, Jing; Jin, Dong; Wang, Yi; Lan, Ruiting; Lu, Gang; Xie, Yingping; Ye, Changyun; Xu, Jianguo

    2017-02-01

    Five strains of Gram-positive-staining, catalase-negative, coccus-shaped, chain-forming organisms isolated separately from the respiratory tracts of five Marmota himalayana animals in the Qinghai-Tibet Plateau of China were subjected to phenotypic and molecular taxonomic analyses. Comparative analysis of the 16S rRNA gene indicated that these singular organisms represent a new member of the genus Streptococcus, being phylogenetically closest to Streptococcus marmotae DSM 101995T (98.4 % similarity). The groEL, sodA and rpoB sequence analysis showed interspecies similarity values between HTS2T and Streptococcus. marmotae DSM 101995T, its closest phylogenetic relative based on 16S rRNA gene sequences, of 98.2, 78.8 and 93.7 %, respectively. A whole-genome phylogenetic tree built from 82 core genes of genomes from 16 species of the genus Streptococcus validated that HTS2T forms a distinct subline and exhibits specific phylogenetic affinity with S. marmotae. In silico DNA-DNA hybridization of HTS2T showed an estimated DNA reassociation value of 40.5 % with Streptococcus. marmotae DSM 101995T. On the basis of their phenotypic characteristics and phylogenetic findings, it is proposed that the five isolates be classified as representatives of a novel species of the genus Streptococcus, Streptococcus himalayensis sp. nov. The type strain is HTS2T (=DSM 101997T=CGMCC 1.15533T). The genome of Streptococcus himalayensis sp. nov. strain HTS2T contains 2195 genes with a size of 2 275 471 bp and a mean DNA G+C content of 41.3 mol%.

  10. Frequency and levels of candidate endodontic pathogens in acute apical abscesses as compared to asymptomatic apical periodontitis

    Science.gov (United States)

    Rôças, Isabela N.

    2018-01-01

    Introduction Acute apical abscess is caused by bacteria that leave the infected dental root canal to invade the periodontal tissues. Most species occurring in abscesses are also found in asymptomatic infections; therefore, the possibility exists that not only the presence of certain species but also their specific counts influence the appearance of symptoms. This molecular study compared the frequency and levels of several candidate endodontic pathogens in teeth with acute apical abscesses and asymptomatic apical periodontitis. Methods Samples were taken from the root canals of teeth with asymptomatic apical periodontitis (n = 73) and by aspiration of purulent exudate from acute abscesses (n = 55). DNA was extracted from samples and bacterial identifications were performed by a closed-ended semi-quantitative reverse-capture checkerboard approach targeting 40 bacterial species/phylotypes. Results Bacterial DNA was detected in all cases. In abscesses, the most prevalent taxa were Fusobacterium nucleatum (60%), Porphyromonas endodontalis (53%), Parvimonas micra (51%), and Streptococcus species (45%). The most frequently detected taxa in asymptomatic teeth were P. endodontalis (63%), Dialister invisus (58%), Olsenella uli (56%), and F. nucleatum (51%). None of the targeted taxa were significantly associated with abscesses when only mere presence was evaluated (p>0.05). However, semi-quantitative data demonstrated that P. endodontalis, Prevotella baroniae, Treponema denticola and Streptococcus species were significantly more frequent at levels >105 in abscesses than in asymptomatic cases (pabscesses in terms of frequency. However, some taxa were significantly found in higher levels in abscesses. Presence of a potentially virulent pathogen in high counts may increase the collective pathogenicity of the bacterial community and give rise to symptoms. PMID:29293651

  11. Frequency and levels of candidate endodontic pathogens in acute apical abscesses as compared to asymptomatic apical periodontitis.

    Science.gov (United States)

    Rôças, Isabela N; Siqueira, José F

    2018-01-01

    Acute apical abscess is caused by bacteria that leave the infected dental root canal to invade the periodontal tissues. Most species occurring in abscesses are also found in asymptomatic infections; therefore, the possibility exists that not only the presence of certain species but also their specific counts influence the appearance of symptoms. This molecular study compared the frequency and levels of several candidate endodontic pathogens in teeth with acute apical abscesses and asymptomatic apical periodontitis. Samples were taken from the root canals of teeth with asymptomatic apical periodontitis (n = 73) and by aspiration of purulent exudate from acute abscesses (n = 55). DNA was extracted from samples and bacterial identifications were performed by a closed-ended semi-quantitative reverse-capture checkerboard approach targeting 40 bacterial species/phylotypes. Bacterial DNA was detected in all cases. In abscesses, the most prevalent taxa were Fusobacterium nucleatum (60%), Porphyromonas endodontalis (53%), Parvimonas micra (51%), and Streptococcus species (45%). The most frequently detected taxa in asymptomatic teeth were P. endodontalis (63%), Dialister invisus (58%), Olsenella uli (56%), and F. nucleatum (51%). None of the targeted taxa were significantly associated with abscesses when only mere presence was evaluated (p>0.05). However, semi-quantitative data demonstrated that P. endodontalis, Prevotella baroniae, Treponema denticola and Streptococcus species were significantly more frequent at levels >105 in abscesses than in asymptomatic cases (p<0.05). None of the target species/phylotypes were associated with abscesses in terms of frequency. However, some taxa were significantly found in higher levels in abscesses. Presence of a potentially virulent pathogen in high counts may increase the collective pathogenicity of the bacterial community and give rise to symptoms.

  12. Epidemiology and clinical profile of pathogens responsible for the hospitalization of children in Sousse area, Tunisia.

    Directory of Open Access Journals (Sweden)

    Ines Brini

    Full Text Available This study aimed to identify a broad spectrum of respiratory pathogens from hospitalized and not-preselected children with acute respiratory tract infections in the Farhat Hached University-hospital of Sousse, Tunisia. Between September 2013 and December 2014, samples from 372 children aged between 1 month and 5 years were collected, and tested using multiplex real-time RT-PCR by a commercial assay for 21 respiratory pathogens. In addition, samples were screened for the presence of Streptococcus pneumoniae 16S rDNA using real-time PCR. The viral distribution and its association with clinical symptoms were statistically analyzed. Viral pathogens were detected in 342 (91.93% of the samples of which 28.76% were single positive and 63.17% had multiple infections. The most frequent detected viruses were rhinovirus (55.64%, respiratory syncytial virus A/B (33.06%, adenovirus (25.00%, coronavirus NL63, HKU1, OC43, and 229E (21.50%, and metapneumovirus A/B (16.12%. Children in the youngest age group (1-3 months exhibited the highest frequencies of infection. Related to their frequency of detection, RSV A/B was the most associated pathogen with patient's demographic situation and clinical manifestations (p<0.05. Parainfluenza virus 1-4 and parechovirus were found to increase the risk of death (p<0.05. Adenovirus was statistically associated to the manifestation of gastroenteritis (p = 0.004. Rhinovirus infection increases the duration of oxygen support (p = 0.042. Coronavirus group was statistically associated with the manifestation of bronchiolitis (p = 0.009 and laryngitis (p = 0.017. Streptococcus pneumoniae DNA was detected in 143 (38.44% of tested samples. However, only 53 samples had a concentration of C-reactive protein from equal to higher than 20 milligrams per liter, and 6 of them were single positive for Streptocuccus pneumoniae. This study confirms the high incidence of respiratory viruses in children hospitalized for acute respiratory tract

  13. Immune receptors involved in Streptococcus suis recognition by dendritic cells.

    Directory of Open Access Journals (Sweden)

    Marie-Pier Lecours

    Full Text Available Streptococcus suis is an important swine pathogen and an emerging zoonotic agent of septicemia and meningitis. Knowledge on host immune responses towards S. suis, and strategies used by this pathogen for subversion of these responses is scarce. The objective of this study was to identify the immune receptors involved in S. suis recognition by dendritic cells (DCs. Production of cytokines and expression of co-stimulatory molecules by DCs were shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize S. suis and become activated mostly through Toll-like receptor (TLR signaling. Supporting this fact, TLR2(-/- DCs were severely impaired in the release of several cytokines and the surface expression of CD86 and MHC-II. The release of IL-12p70 and CXC10, and the expression of CD40 were found to depend on signaling by both TLR2 and TLR9. The release of IL-23 and CXCL1 were partially dependent on NOD2. Finally, despite the fact that MyD88 signaling was crucial for DC activation and maturation, MyD88-dependent pathways were not implicated in S. suis internalization by DCs. This first study on receptors involved in DC activation by S. suis suggests a major involvement of MyD88 signaling pathways, mainly (but not exclusively through TLR2. A multimodal recognition involving a combination of different receptors seems essential for DC effective response to S. suis.

  14. Potential Transmission Pathways of Streptococcus gallolyticus subsp. gallolyticus.

    Directory of Open Access Journals (Sweden)

    Jessika Dumke

    Full Text Available Streptococcus gallolyticus subsp. gallolyticus (S. gallolyticus subsp. gallolyticus, a member of group D streptococci, is an inhabitant of the animal and human gastrointestinal tract. Furthermore, it is a facultative pathogen which causes e.g. endocarditis, septicemia and mastitis. S. gallolyticus subsp. gallolyticus may be transmitted either directly or indirectly between animals and humans. However, the transmission routes are an unsolved issue. In this study, we present systematic analyses of an S. gallolyticus subsp. gallolyticus isolate of an infective endocarditis patient in relation to isolates of his laying hen flock. Isolates from pooled droppings of laying hens, pooled dust samples and human blood culture were characterized by using multilocus sequence typing (MLST and DNA fingerprinting. MLST revealed the same allelic profile of isolates from the human blood culture and from the droppings of laying hens. In addition, these isolates showed clonal identity regarding a similar DNA fingerprinting pattern. For the first time, we received a hint that transmission of S. gallolyticus subsp. gallolyticus between poultry and humans may occur. This raises the question about the zoonotic potential of isolates from poultry and should be considered in future studies.

  15. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens.

    Science.gov (United States)

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N

    2015-01-01

    Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90) were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA) in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.

  16. Characterization of Streptococcus suis through serotyping, SE-AFLP and virulence profile

    Directory of Open Access Journals (Sweden)

    Franco F. Calderaro

    Full Text Available Abstract: Streptococcus suis is one of most important pathogens in the swine industry worldwide. Despite its importance, studies of S. suis characterization in South America are still rare. This study evaluates S. suis isolates from distinct Brazilian states, from 1999 to 2004, and its molecular and serological characterization. A total of 174 isolates were studied. S. suis identification was confirmed by PCR and isolates were further serotyped and genotyped by SE-AFLP and amplification of virulence markers. Serotype 1, 2, 3, 4, 7, 18, 22 and 32 were identified among the studied isolates, and only 4% were characterized as non-typeable. The mrp+/epf+/sly+ genotype was the most frequent. The SE-AFLP analysis resulted in 29 patterns distributed in three main clusters with over 65% of genetic similarity. Isolates presented a slight tendency to cluster according to serotype and origin; however, no further correlation with virulence genotypes was observed.

  17. Regulation of virulence by a two-component system in group B streptococcus.

    Science.gov (United States)

    Jiang, Sheng-Mei; Cieslewicz, Michael J; Kasper, Dennis L; Wessels, Michael R

    2005-02-01

    Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.

  18. Recombination-deficient Streptococcus sanguis

    International Nuclear Information System (INIS)

    Daneo-Moore, L.; Volpe, A.

    1985-01-01

    A UV-sensitive derivative was obtained from Streptococcus sanguis Challis. The organism could be transformed with a number of small streptococcal plasmids at frequencies equal to, or 1 logarithm below, the transformation frequencies for the parent organism. However, transformation with chromosomal DNA was greatly impaired in the UV-sensitive derivative

  19. Antimicrobial susceptibility of Streptococcus suis isolated from clinically healthy swine in Brazil.

    Science.gov (United States)

    Soares, Taíssa Cook Siqueira; Paes, Antonio Carlos; Megid, Jane; Ribolla, Paulo Eduardo Martins; Paduan, Karina dos Santos; Gottschalk, Marcelo

    2014-04-01

    Streptococcus suis is an important pathogen in the swine industry. This study is the first to report on the antimicrobial susceptibility of S. suis isolated from clinically healthy pigs in Brazil; the fourth major pork producer in the world. The antimicrobial susceptibility of 260 strains was determined by disc diffusion method. Strains were commonly susceptible to ceftiofur, cephalexin, chloramphenicol, and florfenicol, with more than 80% of the strains being susceptible to these antimicrobials. A high frequency of resistance to some of the antimicrobial agents was demonstrated, with resistance being most common to sulfa-trimethoprim (100%), tetracycline (97.69%), clindamycin (84.61%), norfloxacin (76.92%), and ciprofloxacin (61.15%). A high percentage of multidrug resistant strains (99.61%) were also found. The results of this study indicate that ceftiofur, cephalexin, and florfenicol are the antimicrobials of choice for empirical control of the infections caused by S. suis.

  20. Nasopharyngeal carriage of Streptococcus pneumonia in pneumonia-prone age groups in Semarang, Java Island, Indonesia.

    Science.gov (United States)

    Farida, Helmia; Severin, Juliëtte A; Gasem, M Hussein; Keuter, Monique; Wahyono, Hendro; van den Broek, Peterhans; Hermans, Peter W M; Verbrugh, Henri A

    2014-01-01

    Streptococcus pneumoniae is a worldwide occurring pathogen Nasopharyngeal carriage of Streptococcus pneumoniae precedes pneumonia and other pneumococcal diseases in the community. Little is known about S. pneumoniae carriage in Indonesia, complicating strategies to control pneumococcal diseases. We investigated nasopharyngeal carriage of S. pneumoniae in Semarang, Indonesia. A population-based survey was performed in Semarang, Indonesia. Nasopharyngeal swabs and questionnaires were taken from 496 healthy young (6-60 month-old) children and 45-70 year-old adults. Forty-three percent of children aged 6-60 months and 11% of adults aged 45-75 years carried S. pneumoniae. Determinants of carriage were being a child (OR 7.7; 95% CI = 4.5-13.0), passive smoking (OR 2.1; 95% CI = 1.3-3.4), and contact with toddler(s) at home (OR 3.0; 95% CI = 1.9-4.7). The most frequent serotypes found were 6A/B and 15B/C. The current commercially available vaccines cover <50% serotypes found in children. Twenty-four percent of S. pneumoniae strains were penicillin non-susceptible, and 45% were resistant to cotrimoxazol. The limited coverage of commercially available vaccines against the serotypes found in this population, and the high proportion of non-susceptibility to penicillin and cotrimoxazol suggest the need for region-specific information and strategies to control S. pneumoniae.

  1. Human case of bacteremia caused by Streptococcus canis sequence type 9 harboring the scm gene.

    Science.gov (United States)

    Taniyama, Daisuke; Abe, Yoshihiko; Sakai, Tetsuya; Kikuchi, Takahide; Takahashi, Takashi

    2017-01-01

    Streptococcus canis (Sc) is a zoonotic pathogen that is transferred mainly from companion animals to humans. One of the major virulence factors in Sc is the M-like protein encoded by the scm gene, which is involved in anti-phagocytic activities, as well as the recruitment of plasminogen to the bacterial surface in cooperation with enolase, and the consequent enhancement of bacterial transmigration and survival. This is the first reported human case of uncomplicated bacteremia following a dog bite, caused by Streptococcus canis harboring the scm gene. The similarity of the 16S rRNA from the infecting species to that of the Sc type strain, as well as the amplification of the species-specific cfg gene, encoding a co-hemolysin, was used to confirm the species identity. Furthermore, the isolate was confirmed as sequence type 9. The partial scm gene sequence harbored by the isolate was closely related to those of other two Sc strains. While this isolate did not possess the erm (A), erm (B), or mef (A), macrolide/lincosamide resistance genes, it was not susceptible to azithromycin: its susceptibility was intermediate. Even though human Sc bacteremia is rare, clinicians should be aware of this microorganism, as well as Pasteurella sp., Prevotella sp., and Capnocytophaga sp., when examining and treating patients with fever who maintain close contact with companion animals.

  2. Genomic analysis reveals the molecular basis for capsule loss in the group B Streptococcus population.

    Directory of Open Access Journals (Sweden)

    Roberto Rosini

    Full Text Available The human and bovine bacterial pathogen Streptococcus agalactiae (Group B Streptococcus, GBS expresses a thick polysaccharide capsule that constitutes a major virulence factor and vaccine target. GBS can be classified into ten distinct serotypes differing in the chemical composition of their capsular polysaccharide. However, non-typeable strains that do not react with anti-capsular sera are frequently isolated from colonized and infected humans and cattle. To gain a comprehensive insight into the molecular basis for the loss of capsule expression in GBS, a collection of well-characterized non-typeable strains was investigated by genome sequencing. Genome based phylogenetic analysis extended to a wide population of sequenced strains confirmed the recently observed high clonality among GBS lineages mainly containing human strains, and revealed a much higher degree of diversity in the bovine population. Remarkably, non-typeable strains were equally distributed in all lineages. A number of distinct mutations in the cps operon were identified that were apparently responsible for inactivation of capsule synthesis. The most frequent genetic alterations were point mutations leading to stop codons in the cps genes, and the main target was found to be cpsE encoding the portal glycosyl transferase of capsule biosynthesis. Complementation of strains carrying missense mutations in cpsE with a wild-type gene restored capsule expression allowing the identification of amino acid residues essential for enzyme activity.

  3. Antimicrobial activity of vanadium chloroperoxidase on planktonic Streptococcus mutans cells and Streptococcus mutans biofilms

    NARCIS (Netherlands)

    Hoogenkamp, M.A.; Crielaard, W.; ten Cate, J.M.; Wever, R.; Hartog, A.F.; Renirie, R.

    2009-01-01

    The aim of this study was to investigate the antimicrobial activity of vanadium chloroperoxidase (VCPO) reaction products on planktonic and biofilm cellsof Streptococcus mutans C180-2. Planktonic and biofilm cells were incubated in a buffered reaction mixture containing VCPO, halide (either chloride

  4. Control of Glycolysis by Glyceraldehyde-3-Phosphate Dehydrogenase in Streptococcus cremoris and Streptococcus lactis

    NARCIS (Netherlands)

    POOLMAN, B; BOSMAN, B; KONINGS, WN

    1987-01-01

    The decreased response of the energy metabolism of lactose-starved Streptococcus cremoris upon readdition of lactose is caused by a decrease of the glycolytic activity. The decrease in glycolysis is accompanied by a decrease in the activities of glyceraldehyde-3-phosphate dehydrogenase and

  5. Infecciones por Streptococcus agalactiae en un servicio de neonatología abierto Infections due to Streptococcus agalactiae at an open neonatology service

    Directory of Open Access Journals (Sweden)

    Manuel Díaz Álvarez

    2008-12-01

    Full Text Available INTRODUCCIÓN. El objetivo del presente estudio fue conocer las características clínicas y epidemiológicas de las infecciones por estreptococo del grupo B en recién nacidos egresados de los hospitales maternos. MÉTODOS. Se realizó un estudio descriptivo, que incluyó a recién nacidos consecutivos con infecciones por Streptococcus agalactiae, ingresados en el Servicio de Neonatología del Hospital Pediátrico Universitario «Juan M. Márquez» entre febrero de 1992 y diciembre del 2007. Se procesaron y analizaron distintas variables clínicas y epidemiológicas, con cálculo de tasas de incidencia y letalidad, así como relación entre variables categóricas. RESULTADOS. Hubo 76 recién nacidos con infección por Streptococcus agalactiae, lo cual constituyó una tasa promedio anual de 1,9 x 100 ingresos. Predominaron las infecciones de inicio tardío y las adquiridas en la comunidad (89,5 % y 93,4 %, respectivamente. La meningitis fue la forma clínica más frecuente, seguida de la bacteriemia aislada. Hubo 56 de 76 recién nacidos con bacteriemia (73,7 %. El Streptococcus agalactiae tuvo elevada sensibilidad ante la penicilina, la eritromicina, la vancomicina, la cefotaxima y el cloranfenicol. Hubo 7 fallecidos (9,2 % y todos fueron pacientes con infección del sistema nervioso central. CONCLUSIONES. Streptococcus agalactiae es un agente causal de infecciones que afectan al recién nacido, tanto en la comunidad como en el medio hospitalario. Estas infecciones pueden ser letales en algunos pacientes con infección del sistema nervioso central con bacteriemia o sin ella, aún manteniendo un patrón de elevada susceptibilidad a los antibióticos betalactámicos.INTRODUCCIÓN. The objective of the present study was to know the clinical and epidemiological characteristics of the infections caused by group B Streptococcus in newborns discharged from maternal hospitals. METHODS. A descriptive study that included consecutive infants with

  6. Live Attenuated Influenza Vaccine Enhances Colonization of Streptococcus pneumoniae and Staphylococcus aureus in Mice

    Science.gov (United States)

    Mina, Michael J.; McCullers, Jonathan A.; Klugman, Keith P.

    2014-01-01

    ABSTRACT Community interactions at mucosal surfaces between viruses, like influenza virus, and respiratory bacterial pathogens are important contributors toward pathogenesis of bacterial disease. What has not been considered is the natural extension of these interactions to live attenuated immunizations, and in particular, live attenuated influenza vaccines (LAIVs). Using a mouse-adapted LAIV against influenza A (H3N2) virus carrying the same mutations as the human FluMist vaccine, we find that LAIV vaccination reverses normal bacterial clearance from the nasopharynx and significantly increases bacterial carriage densities of the clinically important bacterial pathogens Streptococcus pneumoniae (serotypes 19F and 7F) and Staphylococcus aureus (strains Newman and Wright) within the upper respiratory tract of mice. Vaccination with LAIV also resulted in 2- to 5-fold increases in mean durations of bacterial carriage. Furthermore, we show that the increases in carriage density and duration were nearly identical in all aspects to changes in bacterial colonizing dynamics following infection with wild-type (WT) influenza virus. Importantly, LAIV, unlike WT influenza viruses, had no effect on severe bacterial disease or mortality within the lower respiratory tract. Our findings are, to the best of our knowledge, the first to demonstrate that vaccination with a live attenuated viral vaccine can directly modulate colonizing dynamics of important and unrelated human bacterial pathogens, and does so in a manner highly analogous to that seen following wild-type virus infection. PMID:24549845

  7. Two Gene Clusters Coordinate Galactose and Lactose Metabolism in Streptococcus gordonii

    Science.gov (United States)

    Zeng, Lin; Martino, Nicole C.

    2012-01-01

    Streptococcus gordonii is an early colonizer of the human oral cavity and an abundant constituent of oral biofilms. Two tandemly arranged gene clusters, designated lac and gal, were identified in the S. gordonii DL1 genome, which encode genes of the tagatose pathway (lacABCD) and sugar phosphotransferase system (PTS) enzyme II permeases. Genes encoding a predicted phospho-β-galactosidase (LacG), a DeoR family transcriptional regulator (LacR), and a transcriptional antiterminator (LacT) were also present in the clusters. Growth and PTS assays supported that the permease designated EIILac transports lactose and galactose, whereas EIIGal transports galactose. The expression of the gene for EIIGal was markedly upregulated in cells growing on galactose. Using promoter-cat fusions, a role for LacR in the regulation of the expressions of both gene clusters was demonstrated, and the gal cluster was also shown to be sensitive to repression by CcpA. The deletion of lacT caused an inability to grow on lactose, apparently because of its role in the regulation of the expression of the genes for EIILac, but had little effect on galactose utilization. S. gordonii maintained a selective advantage over Streptococcus mutans in a mixed-species competition assay, associated with its possession of a high-affinity galactose PTS, although S. mutans could persist better at low pHs. Collectively, these results support the concept that the galactose and lactose systems of S. gordonii are subject to complex regulation and that a high-affinity galactose PTS may be advantageous when S. gordonii is competing against the caries pathogen S. mutans in oral biofilms. PMID:22660715

  8. Origins of heterogeneity in Streptococcus mutans competence: interpreting an environment-sensitive signaling pathway

    Science.gov (United States)

    Hagen, Stephen J.; Son, Minjun

    2017-02-01

    Bacterial pathogens rely on chemical signaling and environmental cues to regulate disease-causing behavior in complex microenvironments. The human pathogen Streptococcus mutans employs a particularly complex signaling and sensing scheme to regulate genetic competence and other virulence behaviors in the oral biofilms it inhabits. Individual S. mutans cells make the decision to enter the competent state by integrating chemical and physical cues received from their microenvironment along with endogenously produced peptide signals. Studies at the single-cell level, using microfluidics to control the extracellular environment, provide physical insight into how the cells process these inputs to generate complex and often heterogeneous outputs. Fine changes in environmental stimuli can dramatically alter the behavior of the competence circuit. Small shifts in pH can switch the quorum sensing response on or off, while peptide-rich media appear to switch the output from a unimodal to a bimodal behavior. Therefore, depending on environmental cues, the quorum sensing circuitry can either synchronize virulence across the population, or initiate and amplify heterogeneity in that behavior. Much of this complex behavior can be understood within the framework of a quorum sensing system that can operate both as an intercellular signaling mechanism and intracellularly as a noisy bimodal switch.

  9. Development of a loop-mediated isothermal amplification assay for the detection of Streptococcus agalactiae in bovine milk.

    Science.gov (United States)

    Bosward, Katrina L; House, John K; Deveridge, Amber; Mathews, Karen; Sheehy, Paul A

    2016-03-01

    Streptococcus agalactiae is a well-characterized bovine mastitis pathogen that is known to be highly contagious and capable of spreading rapidly in affected dairy herds. Loop-mediated isothermal amplification (LAMP) is a novel molecular diagnostic method that has the capability to provide rapid, cost-effective screening for pathogens to support on-farm disease control and eradication programs. In the current study, a LAMP test was developed to detect S. agalactiae in milk. The assay was validated on a bank of existing clinical mastitis milk samples that had previously been identified as S. agalactiae positive via traditional microbiological culture techniques and PCR. The LAMP assay was conducted on bacterial colonies and DNA extracted from milk in tube- and plate-based formats using multiple detection platforms. The 1-h assay conducted at 64 °C exhibited repeatability (coefficient of variation) of 2.07% (tube) and 8.3% (plate), sensitivity to ~20 pg of extracted DNA/reaction, and specificity against a panel of known bacterial mastitis pathogens. Of the 109 known S. agalactiae isolates assessed by LAMP directly from bacterial cells in culture, 108 were identified as positive, in accordance with PCR analysis. The LAMP analysis from the corresponding milk samples indicated that 104 of these milks exhibited a positive amplification curve. Although exhibiting some limitations, this assay provides an opportunity for rapid screening of milk samples to facilitate on-farm management of this pathogen. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae : Implications for the microbial "pan-genome"

    NARCIS (Netherlands)

    Tettelin, H; Masignani, [No Value; Cieslewicz, MJ; Donati, C; Medini, D; Ward, NL; Angiuoli, SV; Crabtree, J; Jones, AL; Durkin, AS; DeBoy, RT; Davidsen, TM; Mora, M; Scarselli, M; Ros, IMY; Peterson, JD; Hauser, CR; Sundaram, JP; Nelson, WC; Madupu, R; Brinkac, LM; Dodson, RJ; Rosovitz, MJ; Sullivan, SA; Daugherty, SC; Haft, DH; Selengut, J; Gwinn, ML; Zhou, LW; Zafar, N; Khouri, H; Radune, D; Dimitrov, G; Watkins, K; O'Connor, KJB; Smith, S; Utterback, TR; White, O; Rubens, CE; Grandi, G; Madoff, LC; Kasper, DL; Telford, JL; Wessels, MR; Rappuoli, R; Fraser, CM

    2005-01-01

    The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and

  11. Streptococcus pneumoniae-induced ototoxicity in organ of Corti explant cultures.

    Science.gov (United States)

    Perny, Michael; Solyga, Magdalena; Grandgirard, Denis; Roccio, Marta; Leib, Stephen L; Senn, Pascal

    2017-07-01

    Hearing loss remains the most common long-term complication of pneumococcal meningitis (PM) reported in up to 30% of survivors. Streptococcus pneumoniae have been shown to possess different ototoxic properties. Here we present a novel ex vivo experimental setup to examine in detail the pattern of hair cell loss upon exposure to different S. pneumoniae strains, therefore recapitulating pathogen derived aspects of PM-induced hearing loss. Our results show a higher susceptibility towards S. pneumoniae-induced cochlear damage for outer hair cells (OHC) compared to inner hair cells (IHC), which is consistent with in vivo data. S. pneumoniae-induced hair cell loss was both time and dose-dependent. Moreover, we have found significant differences in the level of cell damage between tissue from the basal and the apical turns. This shows that the higher vulnerability of hair cells located at high frequency regions observed in vivo cannot be explained solely by the spatial organisation and bacterial infiltration from the basal portion of the cochlea. Using a wild type D39 strain and a mutant defective for the pneumolysin (PLY) gene, we also have shown that the toxin PLY is an important factor involved in ototoxic damages. The obtained results indicate that PLY can cause both IHC and OHC loss. Finally, we are reporting here for the first time a higher vulnerability of HC located at the basal and middle cochlear region to pneumolysin-induced damage. The detailed description of the susceptibility of hair cells to Streptococcus pneumoniae provided in this report can in the future determine the choice and the development of novel otoprotective therapies during pneumococcal meningitis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. [Sensitivity profile of Staphylococcus spp. and Streptococcus spp. isolated from toys used in a teaching hospital playroom].

    Science.gov (United States)

    Boretti, Vanessa Stolf; Corrêa, Renata Nunes; dos Santos, Silvana Soléo Ferreira; Leão, Mariella Vieira Pereira; Gonçalves e Silva, Célia Regina

    2014-09-01

    To evaluate the presence of microorganisms of the genus Staphylococcus and Streptococcus on toys in the playroom of a teaching hospital, as well to as analyze the antimicrobial from the isolated strains. Samples were collected from 60 toys, using wet swabs, soon after being used by the children. The samples were inoculated in enriched and selective agar for isolation and later identification of the microorganisms. Antibiogram testing was performed by agar diffusion technique. The genus Staphylococcus was present in 87.0% (52/60) of the toys. Seventythree strains were isolated, with 29.0% (21/73) coagulase-positive and 71.0% (52/73) coagulase-negative. Among the coagulase-negative strains, 90.4% were resistant to penicillin, 65.4% to oxacillin, 28.8% to clarithromycin, 61.5% to clindamycin, and none to vancomycin. Among the coagulase-positive strains, 76.2% were resistant to penicillin, 23.8% to oxacillin, 23.8% to clarithromycin, 47.6% to clindamycin, and none to vancomycin. The genus Streptococcus was not detected in any of the evaluated toys. Toys can be contaminated with potentially pathogenic bacteria with antimicrobial resistance, representing a possible source of nosocomial infection for patients who are already debilitated. Copyright © 2014 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  13. Sensitivity profile of Staphylococcus spp. and Streptococcus spp. isolated from toys used in a teaching hospital playroom☆

    Science.gov (United States)

    Boretti, Vanessa Stolf; Corrêa, Renata Nunes; dos Santos, Silvana Soléo Ferreira; Leão, Mariella Vieira Pereira; Silva, Célia Regina Gonçalves e

    2014-01-01

    Objective: To evaluate the presence of microorganisms of the genus Staphylococcus and Streptococcus on toys in the playroom of a teaching hospital, as well to as analyze the antimicrobial resistance from isolated strains. Methods: Samples were collected from 60 toys, using wet swabs, soon after being used by the children. The samples were inoculated in enriched and selective agar for isolation and later identification of the microorganisms. Antibiogram testing was performed by agar diffusion technique. Results: The genus Staphylococcus was present in 87.0% (52/60) of the toys. Seventy-three strains were isolated, with 29.0% (21/73) coagulase-positive and 71.0% (52/73) coagulasenegative. Among the coagulase-negative strains, 90.4% were resistant to penicillin, 65.4% to oxacillin, 28.8% to clarithromycin, 61.5% to clindamycin, and none to vancomycin. Among the coagulase-positive strains, 76.2% were resistant to penicillin, 23.8% to oxacillin, 23.8% to clarithromycin, 47.6% to clindamycin, and none to vancomycin. The genus Streptococcus was not detected in any of the evaluated toys. Conclusions: Toys can be contaminated with potentially pathogenic bacteria with antimicrobial resistance, representing a possible source of nosocomial infection for patients who are already debilitated. PMID:25479842

  14. PERBEDAAN DAYA HAMBAT PASTA GIGI BERBAHAN HERBAL TERHADAP PERTUMBUHAN STREPTOCOCCUS MUTANS

    Directory of Open Access Journals (Sweden)

    Susi Susi

    2015-09-01

    Full Text Available AbstrakKaries gigi dan penyakit periodontal dapat dicegah dengan mengontrol pembentukan plak secara teratur. Penggunaan pasta gigi herbal dapat memberikan efek kimia untuk mengontrol pembentukan plak. Studi terdahulu mendapatkan bahwa pasta gigi herbal dapat mengurangi jumlah bakteri utama pada rongga mulut yaitu Streptococcus mutans. Penelitian ini bertujuan untuk meneliti perbedaan daya hambat beberapa pasta gigi herbal (mengandung siwak, cengkeh, dan daun sirih terhadap pertumbuhan Streptococcus mutans. Metode penelitian adalah eksperimental dengan meletakkan cakram yang sudah direndam dengan pasta gigi ke medium agar darah yang mengandung koloni Streptococcus mutans. Uji daya hambat bakteri dilakukan dengan metode difusi. Terbentuknya zona bening di sekitar koloni bakteri menunjukkan adanya penghambatan pertumbuhan bakteri uji. Hasil uji satu arah ANOVA menunjukkan adanya perbedaan daya hambat yang bermakna antar pasta gigi herbal yang digunakan (p<0.05. Ketiga pasta gigi didapakan memiliki kemampuan antibakteri kuat dengan rata-rata zona hambat 16.075 mm, 13.375 mm dan 11.080 mm. Jadi dapat disimpulkan bahwa pasta gigi herbal mempunyai efek anti bakteri terhadap pertumbuhan Streptococcus mutans dengan efek anti bakteri terkuat di tunjukkan oleh pasta gigi mengandung cengkeh.AbstractDental caries and periodontal disease can be eliminated by regularly control plaque formation. The usage of herbal toothpaste is able to give chemical effect toward plaque control. Previous studies shown that the usage of herbal toothpaste was able to reduce the growth of Streptococcus mutans, the main bacteria in the mouth. The study aimed at investigating the difference of zone of inhibition of several herbal toothpastes (siwak- , cloves- , and betel leaves- contained toward the growth of Streptococcus mutans.This study was experimental research using disc that had been immersed and subsequently put it onto Blood agar medium that contain Streptococcus mutans

  15. ALTERNATIVAS EN EL MANEJO DE LA MASTITIS EN NOVILLAS

    Directory of Open Access Journals (Sweden)

    Genaro A. Contreras

    2009-04-01

    Full Text Available La mastitis en novillas es un problema que ha alcanzado importantes dimensiones a medida que las explotaciones lecheras se han especializado. Las hembras bovinas son susceptibles a infecciones intramamarias (IIM desde el momento en que la glándula mamaria se ha desarrollado completamente en el feto. Factores relacionados al animal, al medio en que se desarrolla y al manejo incrementan o reducen el riesgo de contraer IIM. El grupo de bacterias mas usualmente asociadas con IIM en novillas gestantes son los Staphylococcus coagulasa negativos (SCN, pero otras bacterias como Staphylococus aureus, Mycoplasma spp, Streptococcus uberis y Streptococcus agalactiae, son tambien importantes agentes etiológicos de IIM. Las alternativas al manejo de la mastitis en novillas están dirigidas a la reducción de factores de riesgo y se complementan con la administración de terapias de sellamiento físico del pezón, desinfectantes o antibióticas, previa evaluación de los programas de sanidad de hato con que cuenta cada explotación.

  16. Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis.

    Science.gov (United States)

    Schmelcher, Mathias; Powell, Anne M; Camp, Mary J; Pohl, Calvin S; Donovan, David M

    2015-10-01

    Bovine mastitis results in billion dollar losses annually in the USA alone. Streptococci are among the most relevant causative agents of this disease. Conventional antibiotic therapy is often unsuccessful and contributes to development of antibiotic resistance. Bacteriophage endolysins represent a new class of antimicrobials against these bacteria. In this work, we characterized the endolysins (lysins) of the streptococcal phages λSA2 and B30 and evaluated their potential as anti-mastitis agents. When tested in vitro against live streptococci, both enzymes exhibited near-optimum lytic activities at ionic strengths, pH, and Ca(2+) concentrations consistent with cow milk. When tested in combination in a checkerboard assay, the lysins were found to exhibit strong synergy. The λSA2 lysin displayed high activity in milk against Streptococcus dysgalactiae (reduction of CFU/ml by 3.5 log units at 100 μg/ml), Streptococcus agalactiae (2 log), and Streptococcus uberis (4 log), whereas the B30 lysin was less effective. In a mouse model of bovine mastitis, both enzymes significantly reduced intramammary concentrations of all three streptococcal species (except for B30 vs. S. dysgalactiae), and the effects on mammary gland wet weights and TNFα concentrations were consistent with these findings. Unexpectedly, the synergistic effect determined for the two enzymes in vitro was not observed in the mouse model. Overall, our results illustrate the potential of endolysins for treatment of Streptococcus-induced bovine mastitis.

  17. Combined treatment of solar energy and gamma irradiation to eliminate pathogenic bacteria in dewatered sludge

    International Nuclear Information System (INIS)

    Hilmy, N.; Harsoyo, S.; Suwirma, S.

    1987-01-01

    Combined treatment of solar energy and gamma irradiation to eliminate pathogenic bacteria in dewatered sludge. A combined treatment of solar energy and gamma irradiation has been done to eliminate the pathogenic microbes contaminating dewatered sludge. Samples were collected during dry season, i.e. from June to September 1985. To reduce the water content from 70% to 20%, solar energy from sun rays was used, i.e. from 9 a.m. to 2 p.m. for 4 days. Total bacterial count coliform bacteria Escherichia coli, Fecal Streptococcus, Enterobacteriaceae, and Pseudomonas sp were found to be 7.4x10 8 per g, 4.1x10 3 per g, 4.5x10 2 per g, 3.1x10 5 per g, 3.6x10 4 per g, and 5.4x10 3 per g of samples respectively. The combined treatment could reduce the irradiation dose needed to eliminate the pathogenic microbes of samples investigated from 6 to 2 kGy. (author). 5 figs, 11 refs

  18. Association between pathogens from tracheal aspirate and oral biofilm of patients on mechanical ventilation.

    Science.gov (United States)

    Souza, Luana Carneiro Diniz; Mota, Vanise Barros Rodrigues da; Carvalho, Alícia Valéria Dos Santos Zaranza de; Corrêa, Rita da Graça Carvalhal Frazão; Libério, Silvana Amado; Lopes, Fernanda Ferreira

    2017-06-05

    The aim of this study was to detect possible associations between respiratory pathogens from tracheal aspirate and oral biofilm samples in intubated patients in an intensive care unit (ICU), and to identify the most common respiratory pathogens in oral biofilm, particularly in patients that developed ventilator-associated pneumonia (VAP). Two oral biofilm samples were collected from the tongue of intubated patients (at admission and after 48 hours) and analyzed by culture with the Antibiotic Sensitivity Test. The results from the tongue biofilm samples were compared with the tracheal secretions samples. A total of 59.37% of patients exhibited the same species of pathogens in their tracheal aspirate and oral biofilm, of which 8 (42.1%) developed VAP, 10 (52.63%) did not develop pneumonia and one (5.26%) had aspiration pneumonia. There was a statistically significant association between presence of microorganisms in the tracheal and mouth samples for the following pathogens: Klebsiella pneumoniae, Candida albicans, Pseudomonas aeruginosa, Enterobacter gergoviae, Streptococcus spp and Serratia marcescens (p aspirates of intubated patients can be detected in their oral cavity, especially in those who developed VAP or aspiration pneumonia. Thus, the results indicate that an improved oral care in these patients could decrease ICU pneumonia rates.

  19. Identification of a novel streptococcal gene cassette mediating SOS mutagenesis in Streptococcus uberis

    NARCIS (Netherlands)

    Varhimo, Emilia; Savijoki, Kirsi; Jalava, Jari; Kuipers, Oscar P.; Varmanen, Pekka

    Streptococci have been considered to lack the classical SOS response, defined by increased mutation after UV exposure and regulation by LexA. Here we report the identification of a potential self-regulated SOS mutagenesis gene cassette in the Streptococcaceae family. Exposure to UV light was found

  20. [Isolation and identification of the temperate bacteriophage from isolated strains of Streptococcus suis serotype 2].

    Science.gov (United States)

    Ma, Yuling; Lu, Chengping; Fan, Hongjie

    2008-04-01

    A PCR assay was developed to study the distributional characteristics of phage integrase gene in Streptococcus suis serotype 2 (SS2). A 323bp distinct DNA target can be amplified in 25 strains of virulent SS2, while can not be amplified in avirulent strain T15, 5 strains of other serotypes (SS1, SS7, SS9) and strains of group C Streptococcus strains from pigs, which suggested that the phage integrase gene may be related to the pathogenicity of SS2 and can be consider as a detection factor of the virulent gene of SS2. The sequencing and restriction endonuclease analysis of the PCR products were also done. Comparisons between the sequences of phage integrase gene with that of SS2 strain, showed a high homology with SS2 China strains 98HAH33, 05ZYH33 and North American strain 89-1591. Complete cell lysis was observed with SS2 virulent strains but not with avirulent strain T15 after the induction by mitomycin C. Electron microscopy analysis of the lysate from SS2 virulent strains HA9801 and ZY05719 revealed the presence of phage particles. The induced phage, named SS2-HA and SS2-ZY, both have a small isometric nucleocapsid approximately 50 nm in diameter and have no tail and is therefore a member of the Tectiviridae family. The phage integrase gene sequence of phage SS2-HA and SS2-ZY shared high homologue identities with virulent SS2 strains, which suggested that the phage integrase gene of SS2 has high specify. The temperate phage and phage integrase gene can only detected from SS2 virulent strains but not from avirulent strain, and the detection of phage integrase gene was related to the virulence-associate factors of SS2, such as the muramidase-released protein gene (mrp), which suggested that the temperate phage of SS2 may be related to the pathogenicity of SS2.

  1. Antibacterial screening of traditional herbal plants and standard antibiotics against some human bacterial pathogens.

    Science.gov (United States)

    Awan, Uzma Azeem; Andleeb, Saiqa; Kiyani, Ayesha; Zafar, Atiya; Shafique, Irsa; Riaz, Nazia; Azhar, Muhammad Tehseen; Uddin, Hafeez

    2013-11-01

    Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent.

  2. Clonal structure of Streptococcus sanguinis strains isolated from endocarditis cases and the oral cavity.

    Science.gov (United States)

    Do, T; Gilbert, S C; Klein, J; Warren, S; Wade, W G; Beighton, D

    2011-10-01

    A collection of Streptococcus sanguinis strains from patients with endocarditis (n = 21) and from the oral cavity (n = 34) was subjected to a multi-locus sequence typing analysis using seven housekeeping genes, carbamoyl-phosphate synthetase (carB), Co/Zn/Cd efflux system component (czcD), d-alanyl-d-alanine ligase (ddl), DNA polymerase III (dnaX), glucose-6-phosphate dehydrogenase (gdh), DNA-directed RNA polymerase, beta subunit (rpoB) and superoxide dismutase (sodA). The scheme was expanded by the inclusion of two the putative virulence genes, bacitracin-resistance protein (bacA) and saliva-binding protein (ssaB), to increase strain discrimination. Extensive intra-species recombination was apparent in all genes but inter-species recombination was also apparent with strains apparently harbouring gdh and ddl from unidentified sources and one isolate harboured a sodA allele apparently derived from Streptococcus oralis. The recombination/mutation ratio for the concatenated housekeeping gene sequences was 1.67 (95% confidence limits 1.25-2.72) and for the two virulence genes the r/m ratio was 3.99 (95% confidence limits 1.61-8.72); recombination was the major driver for genetic variation. All isolates were distinct and the endocarditis strains did not form distinct sub-clusters when the data were analysed using ClonalFrame. These data support the widely held opinion that infecting S. sanguinis strains are opportunistic human pathogens. © 2011 John Wiley & Sons A/S.

  3. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans

    Science.gov (United States)

    Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui

    2018-01-01

    Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616

  4. The Collagen Binding Proteins of Streptococcus mutans and Related Streptococci

    Science.gov (United States)

    Avilés-Reyes, Alejandro; Miller, James H.; Lemos, José A.; Abranches, Jacqueline

    2016-01-01

    Summary The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms utilized by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. PMID:26991416

  5. Emergence of respiratory Streptococcus agalactiae isolates in cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Vera Eickel

    Full Text Available Streptococcus agalactiae is a well-known pathogen for neonates and immunocompromized adults. Beyond the neonatal period, S. agalactiae is rarely found in the respiratory tract. During 2002-2008 we noticed S. agalactiae in respiratory secretions of 30/185 (16% of cystic fibrosis (CF patients. The median age of these patients was 3-6 years older than the median age CF patients not harboring S. agalactiae. To analyze, if the S. agalactiae isolates from CF patients were clonal, further characterization of the strains was achieved by capsular serotyping, surface protein determination and multilocus sequence typing (MLST. We found a variety of sequence types (ST among the isolates, which did not substantially differ from the MLST patterns of colonizing strains from Germany. However serotype III, which is often seen in colonizing strains and invasive infections was rare among CF patients. The emergence of S. agalactiae in the respiratory tract of CF patients may represent the adaptation to a novel host environment, supported by the altered surfactant composition in older CF patients.

  6. Antimicrobial Activity of Carbon Nanoparticles Isolated from Natural Sources against Pathogenic Gram-Negative and Gram-Positive Bacteria

    International Nuclear Information System (INIS)

    Varghese, S.; Jose, S.; Varghese, S.; Kuriakose, S.; Jose, S.

    2013-01-01

    This paper describes the isolation of carbon nanoparticles (CNPs) from kitchen soot, characterization of the CNPs by UV/visible spectroscopy, SEM and XRD, and their antimicrobial action. The antibacterial activity of the isolated carbon nanoparticles was tested against various pathogenic bacterial strains such as Gram-negative Proteus refrigere and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus and Streptococcus haemolyticus. The inhibition zones were measured, and it was found that the carbon nanoparticles isolated from natural sources are active against these Gram-negative and Gram-positive bacterial strains

  7. 9230 FECAL ENTEROCOCCUS/STREPTOCOCCUS GROUPS

    Science.gov (United States)

    In 1903 the genus name Enterococcus was proposed for gram-positive, catalase-negative, coccoid-shaped bacterial of intestinal origin. Several years later, it was suggested that the genus name be changed to Streptococcus because of the organisms' ability to form chains of coccoid...

  8. Streptococcus ovuberis sp. nov., isolated from a subcutaneous abscess in the udder of a sheep.

    Science.gov (United States)

    Zamora, Leydis; Pérez-Sancho, Marta; Fernández-Garayzábal, Jose Francisco; Orden, Jose Antonio; Domínguez-Bernal, Gustavo; de la Fuente, Ricardo; Domínguez, Lucas; Vela, Ana Isabel

    2017-11-01

    One unidentified, Gram-stain-positive, catalase-negative coccus-shaped organism was recovered from a subcutaneous abscess of the udder of a sheep and subjected to a polyphasic taxonomic analysis. Based on cellular morphology and biochemical criteria, the isolate was tentatively assigned to the genus Streptococcus, although the organism did not appear to match any recognized species. 16S rRNA gene sequence comparison studies confirmed its identification as a member of the genus Streptococcus and showed that the nearest phylogenetic relatives of the unknown coccus corresponded to Streptococcus moroccensis and Streptococcus cameli (95.9 % 16S rRNA gene sequence similarity). The sodA sequence analysis showed less than 89.3 % sequence similarity with the currently recognized species of the genus Streptococcus. The novel bacterial isolate was distinguished from close relatives of the genus Streptococcusby using biochemical tests. A mass spectrometry profile was also obtained for the novel isolate using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be classified as a representative of a novel species of the genus Streptococcus, Streptococcus ovuberis sp. nov. The type strain of Streptococcus ovuberissp. nov. is VB15-00779 T (=CECT 9179 T =CCUG 69612 T ).

  9. Composition and Antibacterial Activity of the Essential Oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack against Pathogenic Oral Bacteria.

    Science.gov (United States)

    Azizan, Nuramirah; Mohd Said, Shahida; Zainal Abidin, Zamirah; Jantan, Ibrahim

    2017-12-05

    In this study, the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack were evaluated for their antibacterial activity against invasive oral pathogens, namely Enterococcus faecalis , Streptococcus mutans , Streptococcus mitis , Streptococcus salivarius , Aggregatibacter actinomycetemcomitans , Porphyromonas gingivalis and Fusobacterium nucleatum . Chemical composition of the oils was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils and their major constituents were investigated using the broth microdilution method (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)). Susceptibility test, anti-adhesion, anti-biofilm, checkerboard and time-kill assays were also carried out. Physiological changes of the bacterial cells after exposure to the oils were observed under the field emission scanning electron microscope (FESEM). O. stamineus and F. deltoidea oils mainly consisted of sesquiterpenoids (44.6% and 60.9%, respectively), and β-caryophyllene was the most abundant compound in both oils (26.3% and 36.3%, respectively). Other compounds present in O. stamineus were α-humulene (5.1%) and eugenol (8.1%), while α-humulene (5.5%) and germacrene D (7.7%) were dominant in F. deltoidea . The oils of both plants showed moderate to strong inhibition against all tested bacteria with MIC and MBC values ranging 0.63-2.5 mg/mL. However, none showed any inhibition on monospecies biofilms. The time-kill assay showed that combination of both oils with amoxicillin at concentrations of 1× and 2× MIC values demonstrated additive antibacterial effect. The FESEM study showed that both oils produced significant alterations on the cells of Gram-negative bacteria as they became pleomorphic and lysed. In conclusion, the study indicated that the oils of O. stamineus and F. deltoidea possessed moderate to strong antibacterial properties against the seven strains

  10. Delayed-onset streptococcus pyogenes endophthalmitis following Ahmed glaucoma valve implantation.

    Science.gov (United States)

    Bayraktar, Zerrin; Kapran, Ziya; Bayraktar, Sükrü; Acar, Nur; Unver, Yaprak Banu; Gök, Kemran

    2005-01-01

    To report a case of delayed-onset Streptococcus pyogenes endophthalmitis following implantation of an Ahmed glaucoma valve. A 10-year-old patient presented with acute endophthalmitis 1 year after Ahmed glaucoma valve implantation. The conjunctiva and Tenon's capsule over the valve plate had been penetrated by one of the polypropylene fixation sutures. The valve was removed, and pars plana vitrectomy was performed. Vitreous specimens and removal of the discharge over the plate revealed Streptococcus pyogenes. This is the first documented case of Streptococcus pyogenes endophthalmitis following Ahmed glaucoma valve implantation. We think the conjunctival buttonhole caused by the polypropylene suture provided an entry site for the infection. (c) Japanese Ophthalmological Society 2005.

  11. Acquisition through Horizontal Gene Transfer of Plasmid pSMA198 by Streptococcus macedonicus ACA-DC 198 Points towards the Dairy Origin of the Species

    Science.gov (United States)

    Papadimitriou, Konstantinos; Anastasiou, Rania; Maistrou, Eleni; Plakas, Thomas; Papandreou, Nikos C.; Hamodrakas, Stavros J.; Ferreira, Stéphanie; Supply, Philip; Renault, Pierre; Pot, Bruno; Tsakalidou, Effie

    2015-01-01

    Background Streptococcus macedonicus is an intriguing streptococcal species whose most frequent source of isolation is fermented foods similarly to Streptococcus thermophilus. However, S. macedonicus is closely related to commensal opportunistic pathogens of the Streptococcus bovis/Streptococcus equinus complex. Methodology/Principal Findings We analyzed the pSMA198 plasmid isolated from the dairy strain Streptococcus macedonicus ACA-DC 198 in order to provide novel clues about the main ecological niche of this bacterium. pSMA198 belongs to the narrow host range pCI305/pWV02 family found primarily in lactococci and to the best of our knowledge it is the first such plasmid to be reported in streptococci. Comparative analysis of the pSMA198 sequence revealed a high degree of similarity with plasmids isolated from Lactococcus lactis strains deriving from milk or its products. Phylogenetic analysis of the pSMA198 Rep showed that the vast majority of closely related proteins derive from lactococcal dairy isolates. Additionally, cloning of the pSMA198 ori in L. lactis revealed a 100% stability of replication over 100 generations. Both pSMA198 and the chromosome of S. macedonicus exhibit a high percentage of potential pseudogenes, indicating that they have co-evolved under the same gene decay processes. We identified chromosomal regions in S. macedonicus that may have originated from pSMA198, also supporting a long co-existence of the two replicons. pSMA198 was also found in divergent biotypes of S. macedonicus and in strains isolated from dispersed geographic locations (e.g. Greece and Switzerland) showing that pSMA198’s acquisition is not a recent event. Conclusions/Significance Here we propose that S. macedonicus acquired plasmid pSMA198 from L. lactis via an ancestral genetic exchange event that took place most probably in milk or dairy products. We provide important evidence that point towards the dairy origin of this species. PMID:25584532

  12. Characterization of the Pathogenicity of Streptococcus intermedius TYG1620 Isolated from a Human Brain Abscess Based on the Complete Genome Sequence with Transcriptome Analysis and Transposon Mutagenesis in a Murine Subcutaneous Abscess Model.

    Science.gov (United States)

    Hasegawa, Noriko; Sekizuka, Tsuyoshi; Sugi, Yutaka; Kawakami, Nobuhiro; Ogasawara, Yumiko; Kato, Kengo; Yamashita, Akifumi; Takeuchi, Fumihiko; Kuroda, Makoto

    2017-02-01

    Streptococcus intermedius is known to cause periodontitis and pyogenic infections in the brain and liver. Here we report the complete genome sequence of strain TYG1620 (genome size, 2,006,877 bp; GC content, 37.6%; 2,020 predicted open reading frames [ORFs]) isolated from a brain abscess in an infant. Comparative analysis of S. intermedius genome sequences suggested that TYG1620 carries a notable type VII secretion system (T7SS), two long repeat regions, and 19 ORFs for cell wall-anchored proteins (CWAPs). To elucidate the genes responsible for the pathogenicity of TYG1620, transcriptome analysis was performed in a murine subcutaneous abscess model. The results suggest that the levels of expression of small hypothetical proteins similar to phenol-soluble modulin β1 (PSMβ1), a staphylococcal virulence factor, significantly increased in the abscess model. In addition, an experiment in a murine subcutaneous abscess model with random transposon (Tn) mutant attenuation suggested that Tn mutants with mutations in 212 ORFs in the Tn mutant library were attenuated in the murine abscess model (629 ORFs were disrupted in total); the 212 ORFs are putatively essential for abscess formation. Transcriptome analysis identified 37 ORFs, including paralogs of the T7SS and a putative glucan-binding CWAP in long repeat regions, to be upregulated and attenuated in vivo This study provides a comprehensive characterization of S. intermedius pathogenicity based on the complete genome sequence and a murine subcutaneous abscess model with transcriptome and Tn mutagenesis, leading to the identification of pivotal targets for vaccines or antimicrobial agents for the control of S. intermedius infections. Copyright © 2017 American Society for Microbiology.

  13. Nationwide surveillance of bacterial respiratory pathogens conducted by the surveillance committee of Japanese Society of Chemotherapy, the Japanese Association for Infectious Diseases, and the Japanese Society for Clinical Microbiology in 2012: General view of the pathogens' antibacterial susceptibility.

    Science.gov (United States)

    Yanagihara, Katsunori; Watanabe, Akira; Aoki, Nobuki; Matsumoto, Tetsuya; Yoshida, Masaki; Sato, Junko; Wakamura, Tomotaro; Sunakawa, Keisuke; Kadota, Junichi; Kiyota, Hiroshi; Iwata, Satoshi; Kaku, Mitsuo; Hanaki, Hideaki; Ohsaki, Yoshinobu; Fujiuchi, Satoru; Takahashi, Manabu; Takeuchi, Kenichi; Takeda, Hiroaki; Ikeda, Hideki; Miki, Makoto; Nakanowatari, Susumu; Takahashi, Hiroshi; Utagawa, Mutsuko; Nishiya, Hajime; Kawakami, Sayoko; Morino, Eriko; Takasaki, Jin; Mezaki, Kazuhisa; Chonabayashi, Naohiko; Tanaka, Chie; Sugiura, Hideko; Goto, Hajime; Saraya, Takeshi; Kurai, Daisuke; Katono, Yasuhiro; Inose, Rika; Niki, Yoshihito; Takuma, Takahiro; Kudo, Makoto; Ehara, Shigeru; Sato, Yoshimi; Tsukada, Hiroki; Watabe, Nobuei; Honma, Yasuo; Mikamo, Hiroshige; Yamagishi, Yuka; Nakamura, Atsushi; Ohashi, Minoru; Seki, Masafumi; Hamaguchi, Shigeto; Toyokawa, Masahiro; Fujikawa, Yasunori; Mitsuno, Noriko; Ukimura, Akira; Miyara, Takayuki; Nakamura, Takahito; Mikasa, Keiichi; Kasahara, Kei; Ui, Koji; Fukuda, Saori; Nakamura, Akihiro; Morimura, Mika; Yamashita, Mikio; Takesue, Yoshio; Wada, Yasunao; Sugimoto, Keisuke; Kusano, Nobuchika; Nose, Motoko; Mihara, Eiichirou; Kuwabara, Masao; Doi, Masao; Watanabe, Yaeko; Tokuyasu, Hirokazu; Hino, Satoshi; Negayama, Kiyoshi; Mukae, Hiroshi; Kawanami, Toshinori; Ota, Toshiyuki; Fujita, Masaki; Honda, Junichi; Hiramatsu, Kazufumi; Aoki, Yosuke; Fukuoka, Mami; Magarifuchi, Hiroki; Nagasawa, Zenzo; Kaku, Norihito; Fujita, Jiro; Higa, Futoshi; Tateyama, Masao

    2017-09-01

    The nationwide surveillance on antimicrobial susceptibility of bacterial respiratory pathogens from the patients in Japan was conducted by Japanese Society of Chemotherapy, Japanese association for infectious diseases and Japanese society for Clinical Microbiology in 2012. The isolates were collected from clinical specimens obtained from well-diagnosed adult patients with respiratory tract infections during the period between January and December in 2012 by three societies. Antimicrobial susceptibility testing was conducted at the central reference laboratory according to the method recommended by Clinical Laboratory Standard Institutes. Susceptibility testing was evaluated in 1236 strains (232 Staphylococcus aureus, 225 Streptococcus pneumoniae, 16 Streptococcus pyogenes, 231 Haemophilus influenzae, 147 Moraxella catarrhalis, 167 Klebsiella pneumoniae and 218 Pseudomonas aeruginosa). Ratio of methicillin-resistant S. aureus was 51.3%, and those of penicillin-intermediate S. pneumoniae was 0.4%. Among H. influenzae, 5.6% of them were found to be β-lactamase-producing ampicillin-resistant strains, and 37.2% to be β-lactamase-non-producing ampicillin-resistant strains. Extended spectrum β-lactamase-producing K. pneumoniae and multi-drug resistant P. aeruginosa with metallo β-lactamase were 4.2% and 3.2%, respectively. Continuous national surveillance is important to determine the actual situation of the resistance shown by bacterial respiratory pathogens to antimicrobial agents. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Reactive oxygen species induced by Streptococcus pyogenes invasion trigger apoptotic cell death in infected epithelial cells.

    Science.gov (United States)

    Aikawa, Chihiro; Nozawa, Takashi; Maruyama, Fumito; Tsumoto, Kohei; Hamada, Shigeyuki; Nakagawa, Ichiro

    2010-06-01

    Streptococcus pyogenes (group A streptococcus, GAS), one of the most common pathogens of humans, attaches and invades into human pharyngeal or skin epithelial cells. We have previously reported that induction of apoptosis is associated with GAS invasion, which induces mitochondrial dysfunction and apoptotic cell death. We demonstrate here that GAS-induced apoptosis is mediated by reactive oxygen species (ROS) production. Both the induction of apoptosis and ROS production markedly increased upon invasion of wild-type GAS strain JRS4 into HeLa cells; however, the apoptotic response was not observed in fibronectin-binding protein F1-disrupted mutant SAM1-infected cells. In Bcl-2-overexpressing HeLa cells (HBD98-2-4), the induction of apoptosis, ROS production and mitochondrial dysfunction were significantly suppressed, whereas the numbers of invaded GAS was not different between HeLa (mock cells) and the HeLa HBD98-2-4 cells. Whereas Rac1 activation occurred during GAS invasion, ROS production in GAS-infected cells was clearly inhibited by transfection with the Rac1 mutants (L37 or V12L37), but not by the dominant active mutant (V12L61) or by the dominant negative mutant (N17). These observations indicate that GAS invasion triggers ROS production through Rac1 activation and generated ROS induced mitochondrial dysfunction leading to cellular apoptosis.

  15. Crystallization and preliminary crystallographic analysis of recombinant immunoglobulin G-binding protein from Streptococcus suis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abdul Hamid; Chu, Fuliang; Feng, Youjun; Zhang, Qinagmin [Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Qi, Jianxun [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Gao, George Fu, E-mail: gaof@im.ac.cn [Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2008-08-01

    Crystallization of recombinant IgG-binding protein expressed in Escherichia coli using the hanging-drop vapour-diffusion method is described. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å. Streptococcus suis, an important zoonotic pathogen, expresses immunoglobulin G-binding protein, which is thought to be helpful to the organism in eluding the host defence system. Recombinant IgG-binding protein expressed in Escherichia coli has been crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å and one molecule in the asymmetric unit. Diffraction data were collected to 2.60 Å resolution.

  16. A Study of Streptococcus Viridans in the Maxillofacial Region

    Directory of Open Access Journals (Sweden)

    Y. Refoua

    2005-12-01

    Full Text Available Statement of Problem: Streptococcus viridans is one of the most important microorganisms in the establishment of infections leading to dental caries and heart valve damages. Therefore the diagnosis and prevention of these infections is critical in health care.Purpose: The aim of this in-vivo study was to determine the prevalence of viridans streptococci in abscesses occurring in the maxillofacial region.Materials and Methods: The study sample consisted of 39 patients with maxillofacial abscesses, referred to the Department of Oral Surgery Faculty of Dentistry Tehran University of Medical Sciences and Dr. Shariati Hospital, Tehran University of Medical Sciences. Extra-oral incision, drainage and pus collection followed by culture, staining and biochemical and sugar fermentation tests were carried out for all participants.Results: In the present study %53.84 and 46.16% of the patients had negative and positive culture results, respectively. In the positive culture group, %2.5 of the viridans streptococci were streptococcus salivarius, %4.6 streptococcus sanguis and %17.9 were streptococcus mutans.Conclusion: The findings of this study showed that viridans streptococci are an important factor in the development of metastatic and maxillofacial infections which can pose a significant threat to the patient’s life.

  17. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens.

    Directory of Open Access Journals (Sweden)

    Shankar Thangamani

    Full Text Available Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90 were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.

  18. Analysis of bacterial metagenomes from the Southwestern Gulf of Mexico for pathogens detection.

    Science.gov (United States)

    Escobedo-Hinojosa, Wendy; Pardo-López, Liliana

    2017-07-31

    Little is known about the diversity of bacteria in the Southwestern Gulf of Mexico. The aim of the study illustrated in this perspective was to search for the presence of bacterial pathogens in this ecosystem, using metagenomic data recently generated by the Mexican research group known as the Gulf of Mexico Research Consortium. Several genera of bacteria annotated as pathogens were detected in water and sediment marine samples. As expected, native and ubiquitous pathogenic bacteria genera such as Burkolderia, Halomonas, Pseudomonas, Shewanella and Vibrio were highly represented. Surprisingly, non-native genera of public health concern were also detected, including Borrelia, Ehrlichia, Leptospira, Mycobacterium, Mycoplasma, Salmonella, Staphylococcus, Streptococcus and Treponema. While there are no previous metagenomics studies of this environment, the potential influences of natural, anthropogenic and ecological factors on the diversity of putative pathogenic bacteria found in it are reviewed. The taxonomic annotation herein reported provides a starting point for an improved understanding of bacterial biodiversity in the Southwestern Gulf of Mexico. It also represents a useful tool in public health as it may help identify infectious diseases associated with exposure to marine water and ingestion of fish or shellfish, and thus may be useful in predicting and preventing waterborne disease outbreaks. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. COMPARATIVE EVALUATION OF CULTURE MEDIA FOR PATHOGEN ISOLATION OF PURULENT BACTERIAL MENINGITIS

    Directory of Open Access Journals (Sweden)

    Ya. V. Podkopaev

    2016-01-01

    Full Text Available The State Research Center for Applied Microbiology and Biotechnology has designed two nutrient media — chocolate agar and PBM-agar to isolate pathogens of purulent bacterial meningitis (PBM. In our previous research using collected microbial strains the media were shown to be highly susceptible and to provide the growth of Neisseria meningiti-dis, Streptococcus pneumoniae and Haemophilus influenzae strains, when inoculated with microbial suspensions containing single cells. When isolating Haemophilus influenzae, meningococci, and pneumococci the use of selective additives in both media assures selective isolation of required microorganisms, inhibiting contaminants. The objective of this research was to assess the media in bacteriological tests of clinical samples collected from the upper and lower respiratory tract in humans. The bacteriological plating of throat smear specimens (n = 90 from children and adults at the age of 0 to 66 with disorder of the upper respiratory tract on chocolate agar, PBM-agar and on a control medium in the absence of selective additives resulted in the equal amount of microbial cultures isolated. Of 154 isolated cultures 2, 23 and 9 were attributed to Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae, respectively. The plating of throat smears (n = 10 from healthy people at the age of 30 to 55 on the analyzable and control media in the presence of additives allowed us to selectively isolate Haemophilus influenzae and Streptococcus pneumoniae cultures without a quantitative loss, with contaminants inhibited. By their growth characteristics chocolate agar and PBM-agar were highly competitive with reference media being used in clinical practice for isolating main causative agents of purulent bacterial meningitis.

  20. Collagen-binding proteins of Streptococcus mutans and related streptococci.

    Science.gov (United States)

    Avilés-Reyes, A; Miller, J H; Lemos, J A; Abranches, J

    2017-04-01

    The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms used by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.