WorldWideScience

Sample records for parvoviridae

  1. Chipmunk parvovirus is distinct from members in the genus Erythrovirus of the family Parvoviridae.

    Directory of Open Access Journals (Sweden)

    Zhaojun Chen

    2010-12-01

    Full Text Available The transcription profile of chipmunk parvovirus (ChpPV, a tentative member of the genus Erythrovirus in the subfamily Parvovirinae of the family Parvoviridae, was characterized by transfecting a nearly full-length genome. We found that it is unique from the profiles of human parvovirus B19 and simian parvovirus, the members in the genus Erythrovirus so far characterized, in that the small RNA transcripts were not processed for encoding small non-structural proteins. However, like the large non-structural protein NS1 of the human parvovirus B19, the ChpPV NS1 is a potent inducer of apoptosis. Further phylogenetic analysis of ChpPV with other parvoviruses in the subfamily Parvovirinae indicates that ChpPV is distinct from the members in genus Erythrovirus. Thus, we conclude that ChpPV may represent a new genus in the family Parvoviridae.

  2. Host specificity and phylogenetic relationships of chicken and turkey parvoviruses

    Science.gov (United States)

    Previous reports indicate that the newly discovered chicken parvoviruses (ChPV) and turkey parvoviruses (TuPV) are very similar to each other, yet they represent different species within a new genus of Parvoviridae. Currently, strain classification is based on the phylogenetic analysis of a 561 bas...

  3. Molecular and structural characterization of fluorescent human parvovirus B19 virus-like particles

    NARCIS (Netherlands)

    Gilbert, L.; Toivola, J.; White, D.; Ihalainen, T.; Smith, W.; Lindholm, L.; Vuento, M.; Oker-Blom, C.

    2005-01-01

    Although sharing a T = 1 icosahedral symmetry with other members of the Parvoviridae family, it has been suggested that the fivefold channel of the human parvovirus B19 VP2 capsids is closed at its outside end. To investigate the possibility of placing a relatively large protein moiety at this site

  4. A TaqMan-based real-time PCR assay for porcine parvovirus 4 detection and quantification in reproductive tissues of sows

    Science.gov (United States)

    Porcine parvovirus 4 (PPV4) is a DNA virus, and a member of the Parvoviridae family within the Bocavirus genera. It was recently detected in swine, but its epidemiology and pathology remain unclear. A TaqMan-based real-time polymerase chain reaction (qPCR) assay targeting a conserved region of the O...

  5. JPRS Report, Science & Technology, China

    Science.gov (United States)

    1992-10-09

    electron microscopy. Data indicate that the RHDV may like the parvovirus of the family Parvoviridae. JPRS-CST-92-018 9 October 1992 CHEMICAL...cm Field attenuation constant o-0.178/m Accelerator length 35.128 m Accelerator tube vacuum 5 x 10ś Torr (w/o beam); 5 x 10-6 Torr (with beam

  6. Parvovirus B19 in the Context of Hematopoietic Stem Cell Transplantation: Evaluating Cell Donors and Recipients

    OpenAIRE

    Gama, Bianca E.; Emmel, Vanessa E.; Oliveira-Silva, Michelle; Gutiyama, Luciana M.; Arcuri, Leonardo; Colares, Marta; de Cássia Tavares, Rita; Bouzas, Luis F.; Abdelhay, Eliana; Hassan, Rocio

    2017-01-01

    Background. Parvovirus B19 (B19V) is a common human pathogen, member of the family Parvoviridae. Typically, B19V has been found to infect erythroid progenitors and cause hematological disorders, such as anemia and aplastic crisis. However, the persistence of genomic deoxyribonucleic acid (DNA) has been demonstrated in tonsils, liver, skin, brain, synovial, and testicular tissues as well as bone marrow, for both symptomatic and asymptomatic subjects. Although the molecular and cellular mechani...

  7. Breves considerações sobre a evolução, impacto e profilaxia do parvovírus canino

    OpenAIRE

    Costa, M.; Nóbrega, C.; Mega, A.; Esteves, F.; Cruz, R.; Santos, C.; Vala, Helena; Santos, M.; Mesquita, J. R.

    2011-01-01

    A família Parvoviridae está dividida em duas subfamílias. A subfamília Parvovirinae, que inclui os vírus que afectam vertebrados e a subfamília Densovirinae, que contém os vírus que afectam insectos (MacLachlan & Dubovi, 2011). Dentro da subfamília Parvovirinae foram definidos cinco géneros: Erytrovírus, Dependovírus, Parvovírus, Amdovírus e Bocavírus.

  8. Parvovirus-derived endogenous viral elements in two South American rodent genomes.

    Science.gov (United States)

    Arriagada, Gloria; Gifford, Robert J

    2014-10-01

    We describe endogenous viral elements (EVEs) derived from parvoviruses (family Parvoviridae) in the genomes of the long-tailed chinchilla (Chinchilla lanigera) and the degu (Octodon degus). The novel EVEs include dependovirus-related elements and representatives of a clearly distinct parvovirus lineage that also has endogenous representatives in marsupial genomes. In the degu, one dependovirus-derived EVE was found to carry an intact reading frame and was differentially expressed in vivo, with increased expression in the liver. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. High Variety of Known and New RNA and DNA Viruses of Diverse Origins in Untreated Sewage

    Science.gov (United States)

    Ng, Terry Fei Fan; Marine, Rachel; Wang, Chunlin; Simmonds, Peter; Kapusinszky, Beatrix; Bodhidatta, Ladaporn; Oderinde, Bamidele Soji; Wommack, K. Eric

    2012-01-01

    Deep sequencing of untreated sewage provides an opportunity to monitor enteric infections in large populations and for high-throughput viral discovery. A metagenomics analysis of purified viral particles in untreated sewage from the United States (San Francisco, CA), Nigeria (Maiduguri), Thailand (Bangkok), and Nepal (Kathmandu) revealed sequences related to 29 eukaryotic viral families infecting vertebrates, invertebrates, and plants (BLASTx E score, 90% protein identities) in numerous viral families infecting humans (Adenoviridae, Astroviridae, Caliciviridae, Hepeviridae, Parvoviridae, Picornaviridae, Picobirnaviridae, and Reoviridae), plants (Alphaflexiviridae, Betaflexiviridae, Partitiviridae, Sobemovirus, Secoviridae, Tombusviridae, Tymoviridae, Virgaviridae), and insects (Dicistroviridae, Nodaviridae, and Parvoviridae). The full and partial genomes of a novel kobuvirus, salivirus, and sapovirus are described. A novel astrovirus (casa astrovirus) basal to those infecting mammals and birds, potentially representing a third astrovirus genus, was partially characterized. Potential new genera and families of viruses distantly related to members of the single-stranded RNA picorna-like virus superfamily were genetically characterized and named Picalivirus, Secalivirus, Hepelivirus, Nedicistrovirus, Cadicistrovirus, and Niflavirus. Phylogenetic analysis placed these highly divergent genomes near the root of the picorna-like virus superfamily, with possible vertebrate, plant, or arthropod hosts inferred from nucleotide composition analysis. Circular DNA genomes distantly related to the plant-infecting Geminiviridae family were named Baminivirus, Nimivirus, and Niminivirus. These results highlight the utility of analyzing sewage to monitor shedding of viral pathogens and the high viral diversity found in this common pollutant and provide genetic information to facilitate future studies of these newly characterized viruses. PMID:22933275

  10. Amdoparvoviruses in small mammals: expanding our understanding of parvovirus diversity, distribution, and pathology

    Directory of Open Access Journals (Sweden)

    Marta eCanuti

    2015-10-01

    Full Text Available Many new viruses have been discovered recently, thanks in part to the advent of next-generation sequencing technologies. Among the Parvoviridae, three novel members of the genus Amdoparvovirus have been described in the last four years, expanding this genus that had contained a single species since its discovery, Aleutian mink disease virus. The increasing number of molecular and epidemiological studies on these viruses around the world also highlights the growing interest in this genus. Some aspects of amdoparvoviruses have been well characterized, however many other aspects still need to be elucidated and the most recent reviews on this topic are outdated. We provide here an up-to-date overview of what is known and what still needs to be investigated about these scientifically and clinically relevant animal viruses.

  11. Preservative Monitoring of a Greek Woman with Hydrops Fetalis due to Parvovirus B19 Infection

    Directory of Open Access Journals (Sweden)

    Zacharias Fasoulakis

    2017-01-01

    Full Text Available Primate erythroparvovirus 1 (parvovirus B19 is a member of the Erythrovirus genus of the Parvoviridae family and it is one of the few members of the family known to be pathogenic in human. B19 infection is common and widespread with the virus being associated with numerous rheumatologic and haematologic manifestations. More specifically, maternal infection with parvovirus B19 during pregnancy can cause severe anemia which may lead to nonimmune hydrops or fetal demise, as a result of fetal erythroid progenitor cells infection with shortened half-life of erythrocytes. We present a rare case reported in the Greek population, of subclinical transient reticulocytopenia due to B19 parvovirus infection, in an asymptomatic pregnant woman, without medical history of hemoglobinopathy, and with the presence of hydrops fetalis during the third trimester of her pregnancy.

  12. El Bocavirus humano: un nuevo virus respiratorio Human bocavirus: a new respiratory virus

    Directory of Open Access Journals (Sweden)

    Carlos Aguirre Muñoz

    2006-01-01

    Full Text Available Las infecciones respiratorias agudas son una causa muy importante de morbilidad y mortalidad, especialmente en los niños y en los países en desarrollo. Con los métodos de laboratorio actuales, aproximadamente una tercera parte de estas infecciones se queda sin diagnóstico etiológico. Se acepta que los virus juegan un papel cardinal y que más de 200 virus, pertenecientes a seis familias virales están implicados en la génesis de este problema. La familia Parvoviridae se conoce desde mediados del siglo XX. El Parvovirus humano B19, identificado en 1980 y causante de enfermedades febriles y exantemáticas, fue considerado por muchos años como el único miembro de esta familia capaz de afectar a la especie humana. Sin embargo, un grupo de investigadores suecos comandado por Tobías Allander informó en agosto de 2005 el hallazgo de un nuevo Parvovirus, denominado provisionalmente Bocavirus humano, relacionado con infección respiratoria aguda en niños. En este artículo se resumen las características de este nuevo agente, se resalta la importancia de su hallazgo y de la técnica de investigación empleada. Respiratory tract infections are a leading cause of morbidity and mortality, mainly in children and also in developing countries. The aethiology of approximately 30% of these infections remains obscure, using current laboratory methods. It has been accepted that viruses play an important role and more than 200 viruses, belonging to 6 viral families are implied in the pathogenesis of this problem. Parvoviridae family has been known since the middle of the XX century. Human Parvovirus B19 was identified in 1980; it causes rashes and febrile diseases and it was considered for many years as the only member of this family able to affect humans. However, Dr. Tobias Allander and colleagues, at Karolinska Institut, have discovered a previously unknown parvovirus, called Human Bocavirus, that has been found to affect children, causing lower

  13. Human Parvoviruses

    Science.gov (United States)

    Söderlund-Venermo, Maria; Young, Neal S.

    2016-01-01

    SUMMARY Parvovirus B19 (B19V) and human bocavirus 1 (HBoV1), members of the large Parvoviridae family, are human pathogens responsible for a variety of diseases. For B19V in particular, host features determine disease manifestations. These viruses are prevalent worldwide and are culturable in vitro, and serological and molecular assays are available but require careful interpretation of results. Additional human parvoviruses, including HBoV2 to -4, human parvovirus 4 (PARV4), and human bufavirus (BuV) are also reviewed. The full spectrum of parvovirus disease in humans has yet to be established. Candidate recombinant B19V vaccines have been developed but may not be commercially feasible. We review relevant features of the molecular and cellular biology of these viruses, and the human immune response that they elicit, which have allowed a deep understanding of pathophysiology. PMID:27806994

  14. Acute diarrhea in West African children: diverse enteric viruses and a novel parvovirus genus.

    Science.gov (United States)

    Phan, Tung G; Vo, Nguyen P; Bonkoungou, Isidore J O; Kapoor, Amit; Barro, Nicolas; O'Ryan, Miguel; Kapusinszky, Beatrix; Wang, Chunling; Delwart, Eric

    2012-10-01

    Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences.

  15. Transfection of embryonated Muscovy duck eggs with a recombinant plasmid is suitable for rescue of infectious Muscovy duck parvovirus.

    Science.gov (United States)

    Wang, Jianye; Huang, Yu; Ling, Jueyi; Wang, Zhixiang; Zhu, Guoqiang

    2017-12-01

    For members of the family Parvoviridae, rescue of infectious virus from recombinant plasmid is usually done in cultured cells. In this study, the whole genome of the pathogenic Muscovy duck parvovirus (MDPV) strain YY was cloned into the pBluescript II (SK) vector, generating recombinant plasmid pYY. With the aid of a transfection reagent, pYY plasmid was inoculated into 11-day-old embryonated Muscovy duck eggs via the chorioallantoic membrane route, resulting in the successful rescue of infectious virus and death of the embryos. The rescued virus exhibited pathogenicity in Muscovy ducklings similar to that of its parental strain, as evaluated based on the mortality rate. The results demonstrate that plasmid transfection in embryonated Muscovy duck eggs is a convenient and efficacious method for rescue of infectious MDPV in comparison to transfection of primary cells, which is somewhat time-consuming and laborious.

  16. Adeno-associated virus type 2 enhances goose parvovirus replication in embryonated goose eggs

    International Nuclear Information System (INIS)

    Malkinson, Mertyn; Winocour, Ernest

    2005-01-01

    The autonomous goose parvovirus (GPV) and the human helper-dependent adeno-associated virus type 2 (AAV2) share a high degree of homology. To determine if this evolutionary relationship has a biological impact, we studied viral replication in human 293 cells and in embryonated goose eggs coinfected with both viruses. Similar experiments were performed with the minute virus of mice (MVM), an autonomous murine parvovirus with less homology to AAV2. In human 293 cells, both GPV and MVM augmented AAV2 replication. In contrast, AAV2 markedly enhanced GPV replication in embryonated goose eggs under conditions where a similar effect was not observed with MVM. AAV2 did not replicate in embryonated goose eggs and AAV2 inactivated by UV-irradiation also enhanced GPV replication. To our knowledge, this is the first report that a human helper-dependent member of the Parvoviridae can provide helper activity for an autonomous parvovirus in a natural host

  17. Chicken parvovirus-induced runting-stunting syndrome in young broilers.

    Science.gov (United States)

    Zsak, Laszlo; Cha, Ra Mi; Day, J Michael

    2013-03-01

    Previously we identified a novel parvovirus from enteric contents of chickens that were affected by enteric diseases. Comparative sequence analysis showed that the chicken parvovirus (ChPV) represented a new member in the Parvoviridae family. Here, we describe some of the pathogenic characteristics of ChPV in young broilers. Following experimental infection, 2-day-old broiler chickens showed characteristic signs of enteric disease. Runting-stunting syndrome (RSS) was observed in four of five experimental groups with significant growth retardation between 7 and 28 days postinoculation (DPI). Viral growth in small intestine and shedding was detected at early times postinoculation, which was followed by viremia and generalization of infection. ChPV could be detected in most of the major tissues for 3 to 4 wk postinoculation. Immunohistochemistry staining revealed parvovirus-positive cells in the duodenum of inoculated birds at 7 and 14 DPI. Our data indicate that ChPV alone induces RSS in broilers and is important determinant in the complex etiology of enteric diseases of poultry.

  18. Discovery of a novel Parvovirinae virus, porcine parvovirus 7, by metagenomic sequencing of porcine rectal swabs.

    Science.gov (United States)

    Palinski, Rachel M; Mitra, Namita; Hause, Ben M

    2016-08-01

    Parvoviruses are a diverse group of viruses containing some of the smallest known species that are capable of infecting a wide range of animals. Metagenomic sequencing of pooled rectal swabs from adult pigs identified a 4103-bp contig consisting of two major open reading frames encoding proteins of 672 and 469 amino acids (aa) in length. BLASTP analysis of the 672-aa protein found 42.4 % identity to fruit bat (Eidolon helvum) parvovirus 2 (EhPV2) and 37.9 % to turkey parvovirus (TuPV) TP1-2012/HUN NS1 proteins. The 469-aa protein had no significant similarity to known proteins. Genetic and phylogenetic analyses suggest that PPV7, EhPV2, and TuPV represent a novel genus in the family Parvoviridae. Quantitative PCR screening of 182 porcine diagnostic samples found a total of 16 positives (8.6 %). Together, these data suggest that PPV7 is a highly divergent novel parvovirus prevalent within the US swine.

  19. Aleutian Disease: An Emerging Disease in Free-Ranging Striped Skunks (Mephitis mephitis) From California.

    Science.gov (United States)

    LaDouceur, E E B; Anderson, M; Ritchie, B W; Ciembor, P; Rimoldi, G; Piazza, M; Pesti, D; Clifford, D L; Giannitti, F

    2015-11-01

    Aleutian disease virus (ADV, Amdovirus, Parvoviridae) primarily infects farmed mustelids (mink and ferrets) but also other fur-bearing animals and humans. Three Aleutian disease (AD) cases have been described in captive striped skunks; however, little is known about the relevance of AD in free-ranging carnivores. This work describes the pathological findings and temporospatial distribution in 7 cases of AD in free-ranging striped skunks. All cases showed neurologic disease and were found in a 46-month period (2010-2013) within a localized geographical region in California. Lesions included multisystemic plasmacytic and lymphocytic inflammation (ie, interstitial nephritis, myocarditis, hepatitis, meningoencephalitis, pneumonia, and splenitis), glomerulonephritis, arteritis with or without fibrinoid necrosis in several organs (ie, kidney, heart, brain, and spleen), splenomegaly, ascites/hydrothorax, and/or encephalomalacia with cerebral microangiopathy. ADV infection was confirmed in all cases by specific polymerase chain reaction and/or in situ hybridization. The results suggest that AD is an emerging disease in free-ranging striped skunks in California. © The Author(s) 2014.

  20. ViCTree: An automated framework for taxonomic classification from protein sequences.

    Science.gov (United States)

    Modha, Sejal; Thanki, Anil; Cotmore, Susan F; Davison, Andrew J; Hughes, Joseph

    2018-02-20

    The increasing rate of submission of genetic sequences into public databases is providing a growing resource for classifying the organisms that these sequences represent. To aid viral classification, we have developed ViCTree, which automatically integrates the relevant sets of sequences in NCBI GenBank and transforms them into an interactive maximum likelihood phylogenetic tree that can be updated automatically. ViCTree incorporates ViCTreeView, which is a JavaScript-based visualisation tool that enables the tree to be explored interactively in the context of pairwise distance data. To demonstrate utility, ViCTree was applied to subfamily Densovirinae of family Parvoviridae. This led to the identification of six new species of insect virus. ViCTree is open-source and can be run on any Linux- or Unix-based computer or cluster. A tutorial, the documentation and the source code are available under a GPL3 license, and can be accessed at http://bioinformatics.cvr.ac.uk/victree_web/. sejal.modha@glasgow.ac.uk.

  1. Detection of Human Bocavirus DNA by Multiplex PCR Analysis: Postmortem Case Report

    Directory of Open Access Journals (Sweden)

    Nihan Ziyade

    2015-06-01

    Full Text Available Background: Human bocavirus (HBoV is a virus belonging to the Parvoviridae family, which has been newly discovered to be associated with respiratory tract infections in children. There are many reports worldwide on the endemicity of this virus. Since it is relatively new, it is not routinely detected in clinical laboratory investigations. Case Report: We demonstrated that HBoV infection caused the death of a 5-month-old girl with a history of high fever and wheezing. Human bocavirus (HBoV 1/2/3/4 was found in a nasopharyngeal swab, paraffin-embedded lung tissue and stool samples by multiplex PCR methods using postmortem microbiological analysis. Conclusion: This case suggests that lower respiratory tract infections due to HBoV may cause severe and life-threatening diseases. Postmortem microbiology is useful in both clinical and forensic autopsies, and allows a suspected infection to be confirmed. To our knowledge, this report is the first document of a HBoV postmortem case in Turkey.

  2. Faecal virome of cats in an animal shelter

    Science.gov (United States)

    Zhang, Wen; Li, Linlin; Deng, Xutao; Kapusinszky, Beatrix; Pesavento, Patricia A.

    2014-01-01

    We describe the metagenomics-derived feline enteric virome in the faeces of 25 cats from a single shelter in California. More than 90 % of the recognizable viral reads were related to mammalian viruses and the rest to bacterial viruses. Eight viral families were detected: Astroviridae, Coronaviridae, Parvoviridae, Circoviridae, Herpesviridae, Anelloviridae, Caliciviridae and Picobirnaviridae. Six previously known viruses were also identified: feline coronavirus type 1, felid herpes 1, feline calicivirus, feline norovirus, feline panleukopenia virus and picobirnavirus. Novel species of astroviruses and bocaviruses, and the first genome of a cyclovirus in a feline were characterized. The RNA-dependent RNA polymerase region from four highly divergent partial viral genomes in the order Picornavirales were sequenced. The detection of such a diverse collection of viruses shed within a single shelter suggested that such animals experience robust viral exposures. This study increases our understanding of the viral diversity in cats, facilitating future evaluation of their pathogenic and zoonotic potentials. PMID:25078300

  3. The viruses of wild pigeon droppings.

    Directory of Open Access Journals (Sweden)

    Tung Gia Phan

    Full Text Available Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads, as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. All eleven segments of a novel rotavirus subgroup related to a chicken rotavirus in group G were sequenced and phylogenetically analyzed. This study provides an initial assessment of the enteric virome in the droppings of pigeons, a feral urban species with frequent human contact.

  4. Humoral immune response to AAV

    Directory of Open Access Journals (Sweden)

    Roberto eCalcedo

    2013-10-01

    Full Text Available Adeno-associated virus (AAV is a member of the family parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.

  5. Human parvovirus B19: a mechanistic overview of infection and DNA replication

    Science.gov (United States)

    Luo, Yong; Qiu, Jianming

    2015-01-01

    Human parvovirus B19 (B19V) is a human pathogen that belongs to genus Erythroparvovirus of the Parvoviridae family, which is composed of a group of small DNA viruses with a linear single-stranded DNA genome. B19V mainly infects human erythroid progenitor cells and causes mild to severe hematological disorders in patients. However, recent clinical studies indicate that B19V also infects nonerythroid lineage cells, such as myocardial endothelial cells, and may be associated with other disease outcomes. Several cell culture systems, including permissive and semipermissive erythroid lineage cells, nonpermissive human embryonic kidney 293 cells and recently reported myocardial endothelial cells, have been used to study the mechanisms underlying B19V infection and B19V DNA replication. This review aims to summarize recent advances in B19V studies with a focus on the mechanisms of B19V tropism specific to different cell types and the cellular pathways involved in B19V DNA replication including cellular signaling transduction and cell cycle arrest. PMID:26097496

  6. Novel Parvoviruses from Wild and Domestic Animals in Brazil Provide New Insights into Parvovirus Distribution and Diversity

    Directory of Open Access Journals (Sweden)

    William Marciel de Souza

    2018-03-01

    Full Text Available Parvoviruses (family Parvoviridae are small, single-stranded DNA viruses. Many parvoviral pathogens of medical, veterinary and ecological importance have been identified. In this study, we used high-throughput sequencing (HTS to investigate the diversity of parvoviruses infecting wild and domestic animals in Brazil. We identified 21 parvovirus sequences (including twelve nearly complete genomes and nine partial genomes in samples derived from rodents, bats, opossums, birds and cattle in Pernambuco, São Paulo, Paraná and Rio Grande do Sul states. These sequences were investigated using phylogenetic and distance-based approaches and were thereby classified into eight parvovirus species (six of which have not been described previously, representing six distinct genera in the subfamily Parvovirinae. Our findings extend the known biogeographic range of previously characterized parvovirus species and the known host range of three parvovirus genera (Dependovirus, Aveparvovirus and Tetraparvovirus. Moreover, our investigation provides a window into the ecological dynamics of parvovirus infections in vertebrates, revealing that many parvovirus genera contain well-defined sub-lineages that circulate widely throughout the world within particular taxonomic groups of hosts.

  7. A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.

    Science.gov (United States)

    Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M

    2014-01-01

    Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The minute virus of mice exploits different endocytic pathways for cellular uptake

    International Nuclear Information System (INIS)

    Garcin, Pierre O.; Panté, Nelly

    2015-01-01

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy and flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake

  9. The minute virus of mice exploits different endocytic pathways for cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    2015-08-15

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy and flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake.

  10. A novel bocavirus in canine liver

    Directory of Open Access Journals (Sweden)

    Li Linlin

    2013-02-01

    Full Text Available Abstract Background Bocaviruses are classified as a genus within the Parvoviridae family of single-stranded DNA viruses and are pathogenic in some mammalian species. Two species have been previously reported in dogs, minute virus of canines (MVC, associated with neonatal diseases and fertility disorders; and Canine bocavirus (CBoV, associated with respiratory disease. Findings In this study using deep sequencing of enriched viral particles from the liver of a dog with severe hemorrhagic gastroenteritis, necrotizing vasculitis, granulomatous lymphadenitis and anuric renal failure, we identified and characterized a novel bocavirus we named Canine bocavirus 3 (CnBoV3. The three major ORFs of CnBoV3 (NS1, NP1 and VP1 shared less than 60% aa identity with those of other bocaviruses qualifying it as a novel species based on ICTV criteria. Inverse PCR showed the presence of concatemerized or circular forms of the genome in liver. Conclusions We genetically characterized a bocavirus in a dog liver that is highly distinct from prior canine bocaviruses found in respiratory and fecal samples. Its role in this animal’s complex disease remains to be determined.

  11. Detection of Parvovirus B19 Infection in Thalasemic Patients in Isfahan Province, Iran.

    Science.gov (United States)

    Nikoozad, Razieh; Mahzounieh, Mohammad Reza; Ghorani, Mohammad Reza

    2015-11-01

    Parvovirus B19, a member of the Erythrovirus genus of Parvoviridae family, causes various clinical illnesses including infectious erythema, arthropathy, hydrops fetalis or congenital anemia, and transient aplastic crises. The B19 virus can be transmitted through respiratory secretions, blood products, and blood transfusion. The aim of this study was to detect the B19 virus in thalassemia patients in Isfahan, Iran. The prevalence of parvovirus B19 infection was compared between thalassemia major patients and healthy subjects. Plasma samples were collected from 30 thalassemia patients from Isfahan, Iran. Thirty patients without any blood complications were considered as the control group. After DNA extraction from the plasma samples, polymerase chain reaction was performed for parvovirus B19 detection. The parvovirus B19-specific nucleotide sequence was detected in 6 patients (20%). None of the samples obtained from the 30 control subjects tested positive for B19. In this study B19-Parvovirus infection were detected in patients with hematologic disorders in comparison with control subjects. Screening of patients with a high risk of parvovirus B19 infection can considerably reduce the incidence and prevalence of B19 infection.

  12. The perils of pathogen discovery: origin of a novel parvovirus-like hybrid genome traced to nucleic acid extraction spin columns.

    Science.gov (United States)

    Naccache, Samia N; Greninger, Alexander L; Lee, Deanna; Coffey, Lark L; Phan, Tung; Rein-Weston, Annie; Aronsohn, Andrew; Hackett, John; Delwart, Eric L; Chiu, Charles Y

    2013-11-01

    Next-generation sequencing was used for discovery and de novo assembly of a novel, highly divergent DNA virus at the interface between the Parvoviridae and Circoviridae. The virus, provisionally named parvovirus-like hybrid virus (PHV), is nearly identical by sequence to another DNA virus, NIH-CQV, previously detected in Chinese patients with seronegative (non-A-E) hepatitis. Although we initially detected PHV in a wide range of clinical samples, with all strains sharing ∼99% nucleotide and amino acid identity with each other and with NIH-CQV, the exact origin of the virus was eventually traced to contaminated silica-binding spin columns used for nucleic acid extraction. Definitive confirmation of the origin of PHV, and presumably NIH-CQV, was obtained by in-depth analyses of water eluted through contaminated spin columns. Analysis of environmental metagenome libraries detected PHV sequences in coastal marine waters of North America, suggesting that a potential association between PHV and diatoms (algae) that generate the silica matrix used in the spin columns may have resulted in inadvertent viral contamination during manufacture. The confirmation of PHV/NIH-CQV as laboratory reagent contaminants and not bona fide infectious agents of humans underscores the rigorous approach needed to establish the validity of new viral genomes discovered by next-generation sequencing.

  13. Discovery of parvovirus-related sequences in an unexpected broad range of animals.

    Science.gov (United States)

    François, S; Filloux, D; Roumagnac, P; Bigot, D; Gayral, P; Martin, D P; Froissart, R; Ogliastro, M

    2016-09-07

    Our knowledge of the genetic diversity and host ranges of viruses is fragmentary. This is particularly true for the Parvoviridae family. Genetic diversity studies of single stranded DNA viruses within this family have been largely focused on arthropod- and vertebrate-infecting species that cause diseases of humans and our domesticated animals: a focus that has biased our perception of parvovirus diversity. While metagenomics approaches could help rectify this bias, so too could transcriptomics studies. Large amounts of transcriptomic data are available for a diverse array of animal species and whenever this data has inadvertently been gathered from virus-infected individuals, it could contain detectable viral transcripts. We therefore performed a systematic search for parvovirus-related sequences (PRSs) within publicly available transcript, genome and protein databases and eleven new transcriptome datasets. This revealed 463 PRSs in the transcript databases of 118 animals. At least 41 of these PRSs are likely integrated within animal genomes in that they were also found within genomic sequence databases. Besides illuminating the ubiquity of parvoviruses, the number of parvoviral sequences discovered within public databases revealed numerous previously unknown parvovirus-host combinations; particularly in invertebrates. Our findings suggest that the host-ranges of extant parvoviruses might span the entire animal kingdom.

  14. Parvovirus B19: recent insights and implications for pathogenesis, diagnosis and therapy

    Directory of Open Access Journals (Sweden)

    Giorgio Gallinella

    2017-10-01

    Full Text Available Parvovirus B19 is a human pathogenic virus, a ssDNA member of the family Parvoviridae, characterized by a selective tropism for erythroid progenitor cells (EPCs in the bone marrow and an ample pathogenetic potential. The selective tropism for EPCs can be explained both in terms of receptor-mediated tropism and of an intracellular permissive environment conditioned by the cell differentiation and proliferation stage. Infection of EPCs is productive, induces apoptosis and leads to a temporary arrest of erythropoiesis, which can usually be manifest in cases of underlying erythropoietic disorders or immune system deficiencies. Endothelial cells constitute an additional diffuse target, whose infection is mediated by ADE phenomenon, but is normally nonproductive and mainly leading to inflammatory processes. The relevance of parvovirus as a cardiotropic virus is recently emerging, while its capability of intrauterine transmission and consequences on the fetus is known and should not be overlooked. To the purpose of diagnosis, a combination of molecular and immunological methods offers the best discrimination of active infectious processes, and an application of these methods especially in cases of atypical presentations should be encouraged. Ongoing research is directed towards the development of a vaccine and the discovery of antiviral drugs that may be useful in the prevention and treatment of parvovirus B19 infections.

  15. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    International Nuclear Information System (INIS)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie; Cotmore, Susan F.; Tattersall, Peter; Zhao, Haiyan; Tang, Liang

    2015-01-01

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication

  16. First identification of porcine parvovirus 7 in China.

    Science.gov (United States)

    Xing, Xiulin; Zhou, Han; Tong, Ling; Chen, Yao; Sun, Yankuo; Wang, Heng; Zhang, Guihong

    2018-01-01

    Porcine parvovirus (PPV) are small, non-enveloped and single-stranded DNA viruses, taxonomically classifiable within the family Parvoviridae. Seven PPV genotypes (PPV1 to PPV7) have been identified to date. PPV7, the most recently discovered PPV genotype, was first reported in US pigs in 2016. To explore PPV7 status in Chinese pig populations a total of 64 serum samples collected from two commercial farms in Guangdong province in 2014 were analyzed. PPV7 DNA was detected in 32.8% (21/64) of tested samples. On the porcine circovirus type 2 (PCV2) positive farm, the prevalence rate of PPV7 was 65.5% (19/29) which was significantly higher than that on the PCV2 negative farm (2/35, 5.7%), indicating a possible association between PCV2 and PPV7 infections. The sequences of three PPV7 strains were determined. Phylogenetic analysis revealed that the identified PPV7 strains circulating in China shared 98.7%-99.7% nucleotide homology with the US strain. Further sequence comparison analysis indicated that GD-2014-2 and GD-2014-3 possess a consecutive 9-nt deletion in the VP gene. This is the first report of the existence of PPV7 in China and this finding will strengthen understanding of the epidemiology of porcine parvovirus in Chinese pigs.

  17. Atomic Resolution Structures of Human Bufaviruses Determined by Cryo-Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Maria Ilyas

    2018-01-01

    Full Text Available Bufavirus strain 1 (BuV1, a member of the Protoparvovirus genus of the Parvoviridae, was first isolated from fecal samples of children with acute diarrhea in Burkina Faso. Since this initial discovery, BuVs have been isolated in several countries, including Finland, the Netherlands, and Bhutan, in pediatric patients exhibiting similar symptoms. Towards their characterization, the structures of virus-like particles of BuV1, BuV2, and BuV3, the current known genotypes, have been determined by cryo-electron microscopy and image reconstruction to 2.84, 3.79, and 3.25 Å, respectively. The BuVs, 65–73% identical in amino acid sequence, conserve the major viral protein, VP2, structure and general capsid surface features of parvoviruses. These include a core β-barrel (βB-βI, α-helix A, and large surface loops inserted between these elements in VP2. The capsid contains depressions at the icosahedral 2-fold and around the 5-fold axes, and has three separated protrusions surrounding the 3-fold axes. Structure comparison among the BuVs and to available parvovirus structures revealed capsid surface variations and capsid 3-fold protrusions that depart from the single pinwheel arrangement of the animal protoparvoviruses. These structures provide a platform to begin the molecular characterization of these potentially pathogenic viruses.

  18. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    Energy Technology Data Exchange (ETDEWEB)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Cotmore, Susan F. [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Tattersall, Peter [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Departments of Genetics, Yale University Medical School, New Haven, CT 06510 (United States); Zhao, Haiyan, E-mail: zhaohy@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Tang, Liang, E-mail: tangl@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States)

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  19. Detection and a possible link between parvovirus B19 and thyroid cancer.

    Science.gov (United States)

    Etemadi, Ashkan; Mostafaei, Shayan; Yari, Kheirollah; Ghasemi, Amir; Minaei Chenar, Hamzeh; Moghoofei, Mohsen

    2017-06-01

    Human parvovirus B19 (B19) is a small, non-enveloped virus and belongs to Parvoviridae family. B19 persists in many tissues such as thyroid tissue and even thyroid cancer. The main aim of this study was to determine the presence of B19, its association with increased inflammation in thyroid tissue, and thus its possible role in thyroid cancer progression. Studies have shown that virus replication in non-permissive tissue leads to overexpression of non-structural protein and results in upregulation of proinflammatory cytokines such as interleukin 6 and tumor necrosis factor alpha. A total of 36 paraffin-embedded thyroid specimens and serum were collected from patients and 12 samples were used as control. Various methods were employed, including polymerase chain reaction, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. The results have shown the presence of B19 DNA in 31 of 36 samples (86.11%). Almost in all samples, the levels of non-structural protein 1, nuclear factor kappa B, tumor necrosis factor alpha, and interleukin 6 were simultaneously high. The presence of parvovirus B19 has a significant positive correlation with nuclear factor kappa B, tumor necrosis factor alpha, and interleukin 6 levels. This study suggests that B19 infection may play an important role in tumorigenesis and thyroid cancer development via the inflammatory mechanisms.

  20. SMC1-Mediated Intra-S-Phase Arrest Facilitates Bocavirus DNA Replication

    Science.gov (United States)

    Luo, Yong; Deng, Xuefeng; Cheng, Fang; Li, Yi

    2013-01-01

    Activation of a host DNA damage response (DDR) is essential for DNA replication of minute virus of canines (MVC), a member of the genus Bocavirus of the Parvoviridae family; however, the mechanism by which DDR contributes to viral DNA replication is unknown. In the current study, we demonstrate that MVC infection triggers the intra-S-phase arrest to slow down host cellular DNA replication and to recruit cellular DNA replication factors for viral DNA replication. The intra-S-phase arrest is regulated by ATM (ataxia telangiectasia-mutated kinase) signaling in a p53-independent manner. Moreover, we demonstrate that SMC1 (structural maintenance of chromosomes 1) is the key regulator of the intra-S-phase arrest induced during infection. Either knockdown of SMC1 or complementation with a dominant negative SMC1 mutant blocks both the intra-S-phase arrest and viral DNA replication. Finally, we show that the intra-S-phase arrest induced during MVC infection was caused neither by damaged host cellular DNA nor by viral proteins but by replicating viral genomes physically associated with the DNA damage sensor, the Mre11-Rad50-Nbs1 (MRN) complex. In conclusion, the feedback loop between MVC DNA replication and the intra-S-phase arrest is mediated by ATM-SMC1 signaling and plays a critical role in MVC DNA replication. Thus, our findings unravel the mechanism underlying DDR signaling-facilitated MVC DNA replication and demonstrate a novel strategy of DNA virus-host interaction. PMID:23365434

  1. Novel parvoviruses in reptiles and genome sequence of a lizard parvovirus shed light on Dependoparvovirus genus evolution.

    Science.gov (United States)

    Pénzes, Judit J; Pham, Hanh T; Benkö, Mária; Tijssen, Peter

    2015-09-01

    Here, we report the detection and partial genome characterization of two novel reptilian parvoviruses derived from a short-tailed pygmy chameleon (Rampholeon brevicaudatus) and a corn snake (Pantherophis guttatus) along with the complete genome analysis of the first lizard parvovirus, obtained from four bearded dragons (Pogona vitticeps). Both homology searches and phylogenetic tree reconstructions demonstrated that all are members of the genus Dependoparvovirus. Even though most dependoparvoviruses replicate efficiently only in co-infections with large DNA viruses, no such agents could be detected in one of the bearded dragon samples, hence the possibility of autonomous replication was explored. The alternative ORF encoding the full assembly activating protein (AAP), typical for the genus, could be obtained from reptilian parvoviruses for the first time, with a structure that appears to be more ancient than that of avian and mammalian parvoviruses. All three viruses were found to harbour short introns as previously observed for snake adeno-associated virus, shorter than that of any non-reptilian dependoparvovirus. According to the phylogenetic calculations based on full non-structural protein (Rep) and AAP sequences, the monophyletic cluster of reptilian parvoviruses seems to be the most basal out of all lineages of genus Dependoparvovirus. The suspected ability for autonomous replication, results of phylogenetic tree reconstruction, intron lengths and the structure of the AAP suggested that a single Squamata origin instead of the earlier assumed diapsid (common avian-reptilian) origin is more likely for the genus Dependoparvovirus of the family Parvoviridae.

  2. Metagenomic Survey of Viral Diversity Obtained from Feces of Subantarctic and South American Fur Seals.

    Directory of Open Access Journals (Sweden)

    Mariana Kluge

    Full Text Available The Brazilian South coast seasonally hosts numerous marine species, observed particularly during winter months. Some animals, including fur seals, are found dead or debilitated along the shore and may harbor potential pathogens within their microbiota. In the present study, a metagenomic approach was performed to evaluate the viral diversity in feces of fur seals found deceased along the coast of the state of Rio Grande do Sul. The fecal virome of two fur seal species was characterized: the South American fur seal (Arctocephalus australis and the Subantarctic fur seal (Arctocephalus tropicalis. Fecal samples from 10 specimens (A. australis, n = 5; A. tropicalis, n = 5 were collected and viral particles were purified, extracted and amplified with a random PCR. The products were sequenced through Ion Torrent and Illumina platforms and assembled reads were submitted to BLASTx searches. Both viromes were dominated by bacteriophages and included a number of potentially novel virus genomes. Sequences of picobirnaviruses, picornaviruses and a hepevirus-like were identified in A. australis. A rotavirus related to group C, a novel member of the Sakobuvirus and a sapovirus very similar to California sea lion sapovirus 1 were found in A. tropicalis. Additionally, sequences of members of the Anelloviridae and Parvoviridae families were detected in both fur seal species. This is the first metagenomic study to screen the fecal virome of fur seals, contributing to a better understanding of the complexity of the viral community present in the intestinal microbiota of these animals.

  3. Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

    Science.gov (United States)

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y F; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie; Martin, Darren Patrick

    2014-02-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

  4. Study of the Metatranscriptome of Eight Social and Solitary Wild Bee Species Reveals Novel Viruses and Bee Parasites.

    Science.gov (United States)

    Schoonvaere, Karel; Smagghe, Guy; Francis, Frédéric; de Graaf, Dirk C

    2018-01-01

    Bees are associated with a remarkable diversity of microorganisms, including unicellular parasites, bacteria, fungi, and viruses. The application of next-generation sequencing approaches enables the identification of this rich species composition as well as the discovery of previously unknown associations. Using high-throughput polyadenylated ribonucleic acid (RNA) sequencing, we investigated the metatranscriptome of eight wild bee species ( Andrena cineraria, Andrena fulva, Andrena haemorrhoa, Bombus terrestris, Bombus cryptarum, Bombus pascuorum, Osmia bicornis , and Osmia cornuta ) sampled from four different localities in Belgium. Across the RNA sequencing libraries, 88-99% of the taxonomically informative reads were of the host transcriptome. Four viruses with homology to insect pathogens were found including two RNA viruses (belonging to the families Iflaviridae and Tymoviridae that harbor already viruses of honey bees), a double stranded DNA virus (family Nudiviridae ) and a single stranded DNA virus (family Parvoviridae ). In addition, we found genomic sequences of 11 unclassified arthropod viruses (related to negeviruses, sobemoviruses, totiviruses, rhabdoviruses, and mononegaviruses), seven plant pathogenic viruses, and one fungal virus. Interestingly, nege-like viruses appear to be widespread, host-specific, and capable of attaining high copy numbers inside bees. Next to viruses, three novel parasite associations were discovered in wild bees, including Crithidia pragensis and a tubulinosematid and a neogregarine parasite. Yeasts of the genus Metschnikowia were identified in solitary bees. This study gives a glimpse of the microorganisms and viruses associated with social and solitary wild bees and demonstrates that their diversity exceeds by far the subset of species first discovered in honey bees.

  5. Study of the Metatranscriptome of Eight Social and Solitary Wild Bee Species Reveals Novel Viruses and Bee Parasites

    Directory of Open Access Journals (Sweden)

    Karel Schoonvaere

    2018-02-01

    Full Text Available Bees are associated with a remarkable diversity of microorganisms, including unicellular parasites, bacteria, fungi, and viruses. The application of next-generation sequencing approaches enables the identification of this rich species composition as well as the discovery of previously unknown associations. Using high-throughput polyadenylated ribonucleic acid (RNA sequencing, we investigated the metatranscriptome of eight wild bee species (Andrena cineraria, Andrena fulva, Andrena haemorrhoa, Bombus terrestris, Bombus cryptarum, Bombus pascuorum, Osmia bicornis, and Osmia cornuta sampled from four different localities in Belgium. Across the RNA sequencing libraries, 88–99% of the taxonomically informative reads were of the host transcriptome. Four viruses with homology to insect pathogens were found including two RNA viruses (belonging to the families Iflaviridae and Tymoviridae that harbor already viruses of honey bees, a double stranded DNA virus (family Nudiviridae and a single stranded DNA virus (family Parvoviridae. In addition, we found genomic sequences of 11 unclassified arthropod viruses (related to negeviruses, sobemoviruses, totiviruses, rhabdoviruses, and mononegaviruses, seven plant pathogenic viruses, and one fungal virus. Interestingly, nege-like viruses appear to be widespread, host-specific, and capable of attaining high copy numbers inside bees. Next to viruses, three novel parasite associations were discovered in wild bees, including Crithidia pragensis and a tubulinosematid and a neogregarine parasite. Yeasts of the genus Metschnikowia were identified in solitary bees. This study gives a glimpse of the microorganisms and viruses associated with social and solitary wild bees and demonstrates that their diversity exceeds by far the subset of species first discovered in honey bees.

  6. Human parvovirus B19: a review.

    Science.gov (United States)

    Rogo, L D; Mokhtari-Azad, T; Kabir, M H; Rezaei, F

    2014-01-01

    Parvovirus B19 (B19V) is a small non-enveloped single-stranded DNA (ssDNA) virus of the family Parvoviridae, the subfamily Parvovirinae, the genus Erythrovirus and Human parvovirus B19 type species. It is a common community-acquired respiratory pathogen without ethnic, socioeconomic, gender, age or geographic boundaries. Moreover, the epidemiological and ecological relationships between human parvovirus B19, man and environment have aroused increasing interest in this virus. B19V infection is associated with a wide spectrum of clinical manifestations, some of which were well established and some are still controversial, however, it is also underestimated from a clinical perspective. B19V targets the erythroid progenitors in the bone marrow by binding to the glycosphingolipid globoside (Gb4), leading to large receptor-induced structural changes triggering cell death either by lysis or by apoptosis mediated by the nonstructural (NS)1 protein. The pattern of genetic evolution, its peculiar properties and functional profile, the characteristics of its narrow tropism and restricted replication, its complex relationship with the host and its ample pathogenetic potential are all topics that are far from a comprehensive understanding. The lack of efficient adaptation to in vitro cellular cultures and the absence of animal models have limited classical virological studies and made studies on B19V dependent on molecular biology. The present review looks at the nature of this virus with the view to provide more information about its biology, which may be useful to the present and future researchers. human parvovirus B19; respiratory pathogen; biology; genome; fifth disease; transient aplastic crisis; anemia.

  7. Prevalence and molecular epidemiology of Canine parvovirus 2 in diarrheic dogs in Colombia, South America: A possible new CPV-2a is emerging?

    Science.gov (United States)

    Duque-García, Yeison; Echeverri-Zuluaga, Manuela; Trejos-Suarez, Juanita; Ruiz-Saenz, Julian

    2017-03-01

    Since its identification in 1978, Canine parvovirus type 2 (CPV-2) has been considered a pathogen of great importance in the canine population because it causes severe enteritis with high mortality rates in pups. CPV-2 is a virus belonging to the family Parvoviridae. Currently, there are three described antigenic variants (CPV-2a, CPV-2b, and CPV-2c). CPV-2c is an emerging virus that is seen as a global health hazard. The objective of this work was to confirm the presence of CPV-2 in dogs with acute gastroenteritis compatible with parvovirus and to molecularly characterize the antigenic variants circulating in two regions of Colombia. An analytical cross-sectional study was conducted with fecal samples collected from 71 dogs showing signs of acute diarrhea. The samples were processed and polymerase chain reaction (PCR), restriction fragment length polymorphism analysis (RFLP), sequencing and phylogenetic analysis was performed to detect and characterize CPV. A total of 70.42% of the individuals were confirmed positive for CPV-2. Statistically differences were found in the presentation of CPV-2 between the evaluated regions. Phylogenetic analyses confirmed the presence of the antigenic variants CPV-2a/2b. Moreover, we found the presence of two conserved substitutions Asn428Asp and Ala514Ser in the VP2 protein suggesting the presence of a possible new CPV-2a variant circulating in Colombia. This study demonstrates the importance of the CPV 2a/2b in the region and highlights the importance of performing molecular studies for the early detection of new antigenic variants of CPV-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses

    Science.gov (United States)

    Li, Linlin; Joseph, G. Victoria; Wang, Chunlin; Jones, Morris; Fellers, Gary M.; Kunz, Thomas H.; Delwart, Eric

    2010-01-01

    Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans.

  9. Genetic, biochemical, and structural characterization of a new densovirus isolated from a chronically infected Aedes albopictus C6/36 cell line

    International Nuclear Information System (INIS)

    Chen Senxiong; Cheng Lingpeng; Zhang Qinfen; Lin Wei; Lu Xinying; Brannan, Jennifer; Zhou, Z.H.; Zhang Jingqiang

    2004-01-01

    We report the isolation, sequencing, biochemical, and structural characterization of a previously undescribed virus in a chronically infected Aedes albopictus C6/36 cell line. This virus is identified as a new densovirus under the Densovirinae subfamily of the Parvoviridae based on its biological and morphologic properties as well as sequence homologies, and is tentatively designated A. albopictus C6/36 cell densovirus (C6/36 DNV). Analysis of the 4094 nt of the C6/36 DNV genome revealed that the plus strand had three large open reading frames (ORFs): a left ORF, a right ORF, and a mid-ORF (within the left ORF), whose potential coding capacities are 91.0, 40.8, and 41.2 kDa, respectively. The left ORF likely encodes the nonstructural protein NS-1, which contains NTP-binding and helicase domains. The right ORF likely encodes structural proteins, VP1 and VP2. Our analyses revealed that C6/36 DNV has a similar genomic organization and shares very high homology in nucleotide sequence and amino acid sequences with Aedes aegypti densovirus (AaeDNV) and A. albopictus densovirus (AalDNV), members of the genus Brevidensovirus of the Densovirinae. Similar to other densoviruses, C6/36 DNV has a different genomic organization and no recognizable sequence homology with viruses in the Parvovirinae. The three-dimensional (3D) reconstruction of the C6/36 DNV at 15.6-A resolution by electron cryomicroscopy (cryoEM) revealed distinctive outer surface features not previously seen in other parvoviruses, indicating structural divergence of densoviruses, in addition to its genomic differences, while the inner surface of the C6/36 DNV capsid exhibits features that are conserved among parvoviruses

  10. Molecular and structural characterization of fluorescent human parvovirus B19 virus-like particles

    International Nuclear Information System (INIS)

    Gilbert, Leona; Toivola, Jouni; White, Daniel; Ihalainen, Teemu; Smith, Wesley; Lindholm, Laura; Vuento, Matti; Oker-Blom, Christian

    2005-01-01

    Although sharing a T = 1 icosahedral symmetry with other members of the Parvoviridae family, it has been suggested that the fivefold channel of the human parvovirus B19 VP2 capsids is closed at its outside end. To investigate the possibility of placing a relatively large protein moiety at this site of B19, fluorescent virus-like particles (fVLPs) of B19 were developed. The enhanced green fluorescent protein (EGFP) was inserted at the N-terminus of the structural protein VP2 and assembly of fVLPs from this fusion protein was obtained. Electron microscopy revealed that these fluorescent protein complexes were very similar in size when compared to wild-type B19 virus. Further, fluorescence correlation spectroscopy showed that an average of nine EGFP domains were associated with these virus-like structures. Atomic force microscopy and immunoprecipitation studies showed that EGFP was displayed on the surface of these fVLPs. Confocal imaging indicated that these chimeric complexes were targeted to late endosomes when expressed in insect cells. The fVLPs were able to efficiently enter cancer cells and traffic to the nucleus via the microtubulus network. Finally, immunoglobulins present in human parvovirus B19 acute and past-immunity serum samples were able to detect antigenic epitopes present in these fVLPs. In summary, we have developed fluorescent virus-like nanoparticles displaying a large heterologous entity that should be of help to elucidate the mechanisms of infection and pathogenesis of human parvovirus B19. In addition, these B19 nanoparticles serve as a model in the development of targetable vehicles designed for delivery of biomolecules

  11. Parvovirus B19 in the Context of Hematopoietic Stem Cell Transplantation: Evaluating Cell Donors and Recipients

    Science.gov (United States)

    Gama, Bianca E.; Emmel, Vanessa E.; Oliveira-Silva, Michelle; Gutiyama, Luciana M.; Arcuri, Leonardo; Colares, Marta; de Cássia Tavares, Rita; Bouzas, Luis F.; Abdelhay, Eliana; Hassan, Rocio

    2017-01-01

    Background Parvovirus B19 (B19V) is a common human pathogen, member of the family Parvoviridae. Typically, B19V has been found to infect erythroid progenitors and cause hematological disorders, such as anemia and aplastic crisis. However, the persistence of genomic deoxyribonucleic acid (DNA) has been demonstrated in tonsils, liver, skin, brain, synovial, and testicular tissues as well as bone marrow, for both symptomatic and asymptomatic subjects. Although the molecular and cellular mechanisms of persistence remain undefined, it raises questions about potential virus transmissibility and its effects in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Methods With this aim, we retrospectively screened allogeneic stem cell donors from 173 patients admitted for allo-HSCT from January 2008 to May 2013 using a seminested polymerase chain reaction approach. Results We found 8 positive donor samples, yielding a 4.6% of parvovirus prevalence (95% confidence interval, 2.36-8.85). Pre- and post-HSCT samples (n = 51) from the 8 recipients of the positive donors were also investigated, and 1 case exhibited B19V DNA in the post-HSCT follow-up (D + 60). Direct DNA sequencing was performed to determine the genotype of isolates and classification, performed by phylogenetic reconstruction, showed a predominance of genotype 1a, whereas the rare genotype 3b was detected in 2 additional patients. By molecular cloning, different B19V 1a substrains polymorphisms were evidenced in the single case in which donor and its recipient were B19V+. Conclusions Our results suggest that HSCT allografts are not a main source for B19V transmission, pointing to potential events of reinfection or endogenous viral reactivation. PMID:29184906

  12. Parvovirus B19 in the Context of Hematopoietic Stem Cell Transplantation: Evaluating Cell Donors and Recipients.

    Science.gov (United States)

    Gama, Bianca E; Emmel, Vanessa E; Oliveira-Silva, Michelle; Gutiyama, Luciana M; Arcuri, Leonardo; Colares, Marta; de Cássia Tavares, Rita; Bouzas, Luis F; Abdelhay, Eliana; Hassan, Rocio

    2017-11-01

    Parvovirus B19 (B19V) is a common human pathogen, member of the family Parvoviridae. Typically, B19V has been found to infect erythroid progenitors and cause hematological disorders, such as anemia and aplastic crisis. However, the persistence of genomic deoxyribonucleic acid (DNA) has been demonstrated in tonsils, liver, skin, brain, synovial, and testicular tissues as well as bone marrow, for both symptomatic and asymptomatic subjects. Although the molecular and cellular mechanisms of persistence remain undefined, it raises questions about potential virus transmissibility and its effects in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. With this aim, we retrospectively screened allogeneic stem cell donors from 173 patients admitted for allo-HSCT from January 2008 to May 2013 using a seminested polymerase chain reaction approach. We found 8 positive donor samples, yielding a 4.6% of parvovirus prevalence (95% confidence interval, 2.36-8.85). Pre- and post-HSCT samples (n = 51) from the 8 recipients of the positive donors were also investigated, and 1 case exhibited B19V DNA in the post-HSCT follow-up (D + 60). Direct DNA sequencing was performed to determine the genotype of isolates and classification, performed by phylogenetic reconstruction, showed a predominance of genotype 1a, whereas the rare genotype 3b was detected in 2 additional patients. By molecular cloning, different B19V 1a substrains polymorphisms were evidenced in the single case in which donor and its recipient were B19V+. Our results suggest that HSCT allografts are not a main source for B19V transmission, pointing to potential events of reinfection or endogenous viral reactivation.

  13. Rapid molecular evolution of human bocavirus revealed by Bayesian coalescent inference.

    Science.gov (United States)

    Zehender, Gianguglielmo; De Maddalena, Chiara; Canuti, Marta; Zappa, Alessandra; Amendola, Antonella; Lai, Alessia; Galli, Massimo; Tanzi, Elisabetta

    2010-03-01

    Human bocavirus (HBoV) is a linear single-stranded DNA virus belonging to the Parvoviridae family that has recently been isolated from the upper respiratory tract of children with acute respiratory infection. All of the strains observed so far segregate into two genotypes (1 and 2) with a low level of polymorphism. Given the recent description of the infection and the lack of epidemiological and molecular data, we estimated the virus's rates of molecular evolution and population dynamics. A dataset of forty-nine dated VP2 sequences, including also eight new isolates obtained from pharyngeal swabs of Italian patients with acute respiratory tract infections, was submitted to phylogenetic analysis. The model parameters, evolutionary rates and population dynamics were co-estimated using a Bayesian Markov Chain Monte Carlo approach, and site-specific positive and negative selection was also investigated. Recombination was investigated by seven different methods and one suspected recombinant strain was excluded from further analysis. The estimated mean evolutionary rate of HBoV was 8.6x10(-4)subs/site/year, and that of the 1st+2nd codon positions was more than 15 times less than that of the 3rd codon position. Viral population dynamics analysis revealed that the two known genotypes diverged recently (mean tMRCA: 24 years), and that the epidemic due to HBoV genotype 2 grew exponentially at a rate of 1.01year(-1). Selection analysis of the partial VP2 showed that 8.5% of sites were under significant negative pressure and the absence of positive selection. Our results show that, like other parvoviruses, HBoV is characterised by a rapid evolution. The low level of polymorphism is probably due to a relatively recent divergence between the circulating genotypes and strong purifying selection acting on viral antigens.

  14. A viral metagenomic approach on a non-metagenomic experiment: Mining next generation sequencing datasets from pig DNA identified several porcine parvoviruses for a retrospective evaluation of viral infections.

    Directory of Open Access Journals (Sweden)

    Samuele Bovo

    Full Text Available Shot-gun next generation sequencing (NGS on whole DNA extracted from specimens collected from mammals often produces reads that are not mapped (i.e. unmapped reads on the host reference genome and that are usually discarded as by-products of the experiments. In this study, we mined Ion Torrent reads obtained by sequencing DNA isolated from archived blood samples collected from 100 performance tested Italian Large White pigs. Two reduced representation libraries were prepared from two DNA pools constructed each from 50 equimolar DNA samples. Bioinformatic analyses were carried out to mine unmapped reads on the reference pig genome that were obtained from the two NGS datasets. In silico analyses included read mapping and sequence assembly approaches for a viral metagenomic analysis using the NCBI Viral Genome Resource. Our approach identified sequences matching several viruses of the Parvoviridae family: porcine parvovirus 2 (PPV2, PPV4, PPV5 and PPV6 and porcine bocavirus 1-H18 isolate (PBoV1-H18. The presence of these viruses was confirmed by PCR and Sanger sequencing of individual DNA samples. PPV2, PPV4, PPV5, PPV6 and PBoV1-H18 were all identified in samples collected in 1998-2007, 1998-2000, 1997-2000, 1998-2004 and 2003, respectively. For most of these viruses (PPV4, PPV5, PPV6 and PBoV1-H18 previous studies reported their first occurrence much later (from 5 to more than 10 years than our identification period and in different geographic areas. Our study provided a retrospective evaluation of apparently asymptomatic parvovirus infected pigs providing information that could be important to define occurrence and prevalence of different parvoviruses in South Europe. This study demonstrated the potential of mining NGS datasets non-originally derived by metagenomics experiments for viral metagenomics analyses in a livestock species.

  15. Diverse Array of New Viral Sequences Identified in Worldwide Populations of the Asian Citrus Psyllid (Diaphorina citri) Using Viral Metagenomics.

    Science.gov (United States)

    Nouri, Shahideh; Salem, Nidá; Nigg, Jared C; Falk, Bryce W

    2015-12-16

    The Asian citrus psyllid, Diaphorina citri, is the natural vector of the causal agent of Huanglongbing (HLB), or citrus greening disease. Together; HLB and D. citri represent a major threat to world citrus production. As there is no cure for HLB, insect vector management is considered one strategy to help control the disease, and D. citri viruses might be useful. In this study, we used a metagenomic approach to analyze viral sequences associated with the global population of D. citri. By sequencing small RNAs and the transcriptome coupled with bioinformatics analysis, we showed that the virus-like sequences of D. citri are diverse. We identified novel viral sequences belonging to the picornavirus superfamily, the Reoviridae, Parvoviridae, and Bunyaviridae families, and an unclassified positive-sense single-stranded RNA virus. Moreover, a Wolbachia prophage-related sequence was identified. This is the first comprehensive survey to assess the viral community from worldwide populations of an agricultural insect pest. Our results provide valuable information on new putative viruses, some of which may have the potential to be used as biocontrol agents. Insects have the most species of all animals, and are hosts to, and vectors of, a great variety of known and unknown viruses. Some of these most likely have the potential to be important fundamental and/or practical resources. In this study, we used high-throughput next-generation sequencing (NGS) technology and bioinformatics analysis to identify putative viruses associated with Diaphorina citri, the Asian citrus psyllid. D. citri is the vector of the bacterium causing Huanglongbing (HLB), currently the most serious threat to citrus worldwide. Here, we report several novel viral sequences associated with D. citri. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Prevalence and genotypic characterization of Human Parvovirus B19 in children with measles- and rubella-like illness in Iran.

    Science.gov (United States)

    Rezaei, Farhad; Sarshari, Behrang; Ghavami, Nastaran; Meysami, Parisa; Shadab, Azadeh; Salimi, Hamid; Mokhtari-Azad, Talat

    2016-06-01

    Human Parvovirus B19 (B19V) is a prototype of the Erythroparvovirus genus in Parvoviridae family. B19V infections are often associated with fever and rash, and can be mistakenly reported as measles or rubella. Differential diagnosis of B19V illness is necessary for case management and also for public health control activities, particularly in outbreak situations in which measles or rubella is suspected. To investigate the causative role of B19V infection in children with measles- and rubella-like illness, a total of 583 sera from children with exanthema were tested for presence of B19V by determining anti-B19V IgG and IgM antibodies by ELISA as well as B19V DNA detection by nested PCR. DNA positive samples were assessed further for determination of viral load and sequence analysis by Real-Time PCR and Sanger sequencing method, respectively. Out of 583 patients, 112 (19.21%) patients were positive for B19V-IgM antibody, 110 (18.87%) were positive for B19V-IgG antibody, and 63 (10.81%) were positive for B19V viral DNA. The frequency of B19V-IgG antibodies were increased with age; that is children under 6 year old showed 7.11% seroprevalence for B19V-IgG as compared to 18.39% and 28.91% for age groups 6 to >11 and 11-14 years old, respectively. Phylogenetic analysis of the NS1-VPu1 overlapping region revealed that all sequenced B19V-DNA belonged to genotype 1. The results of this study may aid the surveillance programs aiming at eradicating measles/rubella virus in Iran, as infections with B19V can be mistakenly reported as measles or rubella if laboratory testing is not conducted. © 2015 Wiley Periodicals, Inc.

  17. Human parvovirus PARV4 DNA in tissues from adult individuals: a comparison with human parvovirus B19 (B19V

    Directory of Open Access Journals (Sweden)

    Rotellini Matteo

    2010-10-01

    Full Text Available Abstract Background PARV4 is a new member of the Parvoviridae family not closely related to any of the known human parvoviruses. Viremia seems to be a hallmark of PARV4 infection and viral DNA persistence has been demonstrated in a few tissues. Till now, PARV4 has not been associated with any disease and its prevalence in human population has not been clearly established. This study was aimed to assess the tissue distribution and the ability to persist of PARV4 in comparison to parvovirus B19 (B19V. Results PARV4 and B19V DNA detection was carried out in various tissues of individuals without suspect of acute viral infection, by a real time PCR and a nested PCR, targeting the ORF2 and the ORF1 respectively. Low amount of PARV4 DNA was found frequently (>40% in heart and liver of adults individuals, less frequently in lungs and kidneys (23,5 and 18% respectively and was rare in bone marrow, skin and synovium samples (5,5%, 4% and 5%, respectively. By comparison, B19V DNA sequences were present in the same tissues with a higher frequency (significantly higher in myocardium, skin and bone marrow except than in liver where the frequency was the same of PARV4 DNA and in plasma samples where B19V frequency was significantly lower than that of PARV4 Conclusions The particular tropism of PARV4 for liver and heart, here emerged, suggests to focus further studies on these tissues as possible target for viral replication and on the possible role of PARV4 infection in liver and heart diseases. Neither bone marrow nor kidney seem to be a common target of viral replication.

  18. Testing UK blood donors for exposure to human parvovirus 4 using a time-resolved fluorescence immunoassay to screen sera and Western blot to confirm reactive samples.

    Science.gov (United States)

    Maple, Peter A C; Beard, Stuart; Parry, Ruth P; Brown, Kevin E

    2013-10-01

    Human parvovirus 4 (ParV4), a newly described member of the family Parvoviridae, like B19V, has been found in pooled plasma preparations. The extent, and significance, of ParV4 exposure in UK blood donors remain to be determined and reliable detection of ParV4 immunoglobulin (Ig)G, using validated methods, is needed. With ParV4 virus-like particles a ParV4 IgG time-resolved fluorescence immunoassay (TRFIA) was developed. There is no gold standard or reference assay for measuring ParV4 IgG and the utility of the TRFIA was first examined using a panel of sera from people who inject drugs (PWIDS)--a high-prevalence population for ParV4 infection. Western blotting was used to confirm the specificity of TRFIA-reactive sera. Two cohorts of UK blood donor sera comprising 452 sera collected in 1999 and 156 sera collected in 2009 were tested for ParV4 IgG. Additional testing for B19V IgG, hepatitis C virus antibodies (anti-HCV), and ParV4 DNA was also undertaken. The rate of ParV4 IgG seroprevalence in PWIDS was 20.7% and ParV4 IgG was positively associated with the presence of anti-HCV with 68.4% ParV4 IgG-positive sera testing anti-HCV-positive versus 17.1% ParV4 IgG-negative sera. Overall seropositivity for ParV4 IgG, in 608 UK blood donors was 4.76%. The ParV4 IgG seropositivity for sera collected in 1999 was 5.08%, compared to 3.84% for sera collected in 2009. No ParV4 IgG-positive blood donor sera had detectable ParV4 DNA. ParV4 IgG has been found in UK blood donors and this finding needs further investigation. © 2013 American Association of Blood Banks.

  19. A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa.

    Science.gov (United States)

    Geldenhuys, Marike; Mortlock, Marinda; Weyer, Jacqueline; Bezuidt, Oliver; Seamark, Ernest C J; Kearney, Teresa; Gleasner, Cheryl; Erkkila, Tracy H; Cui, Helen; Markotter, Wanda

    2018-01-01

    Species within the Neoromicia bat genus are abundant and widely distributed in Africa. It is common for these insectivorous bats to roost in anthropogenic structures in urban regions. Additionally, Neoromicia capensis have previously been identified as potential hosts for Middle East respiratory syndrome (MERS)-related coronaviruses. This study aimed to ascertain the gastrointestinal virome of these bats, as viruses excreted in fecal material or which may be replicating in rectal or intestinal tissues have the greatest opportunities of coming into contact with other hosts. Samples were collected in five regions of South Africa over eight years. Initial virome composition was determined by viral metagenomic sequencing by pooling samples and enriching for viral particles. Libraries were sequenced on the Illumina MiSeq and NextSeq500 platforms, producing a combined 37 million reads. Bioinformatics analysis of the high throughput sequencing data detected the full genome of a novel species of the Circoviridae family, and also identified sequence data from the Adenoviridae, Coronaviridae, Herpesviridae, Parvoviridae, Papillomaviridae, Phenuiviridae, and Picornaviridae families. Metagenomic sequencing data was insufficient to determine the viral diversity of certain families due to the fragmented coverage of genomes and lack of suitable sequencing depth, as some viruses were detected from the analysis of reads-data only. Follow up conventional PCR assays targeting conserved gene regions for the Adenoviridae, Coronaviridae, and Herpesviridae families were used to confirm metagenomic data and generate additional sequences to determine genetic diversity. The complete coding genome of a MERS-related coronavirus was recovered with additional amplicon sequencing on the MiSeq platform. The new genome shared 97.2% overall nucleotide identity to a previous Neoromicia-associated MERS-related virus, also from South Africa. Conventional PCR analysis detected diverse adenovirus and

  20. Viruses in reptiles

    Directory of Open Access Journals (Sweden)

    Ariel Ellen

    2011-09-01

    Full Text Available Abstract The etiology of reptilian viral diseases can be attributed to a wide range of viruses occurring across different genera and families. Thirty to forty years ago, studies of viruses in reptiles focused mainly on the zoonotic potential of arboviruses in reptiles and much effort went into surveys and challenge trials of a range of reptiles with eastern and western equine encephalitis as well as Japanese encephalitis viruses. In the past decade, outbreaks of infection with West Nile virus in human populations and in farmed alligators in the USA has seen the research emphasis placed on the issue of reptiles, particularly crocodiles and alligators, being susceptible to, and reservoirs for, this serious zoonotic disease. Although there are many recognised reptilian viruses, the evidence for those being primary pathogens is relatively limited. Transmission studies establishing pathogenicity and cofactors are likewise scarce, possibly due to the relatively low commercial importance of reptiles, difficulties with the availability of animals and permits for statistically sound experiments, difficulties with housing of reptiles in an experimental setting or the inability to propagate some viruses in cell culture to sufficient titres for transmission studies. Viruses as causes of direct loss of threatened species, such as the chelonid fibropapilloma associated herpesvirus and ranaviruses in farmed and wild tortoises and turtles, have re-focused attention back to the characterisation of the viruses as well as diagnosis and pathogenesis in the host itself. 1. Introduction 2. Methods for working with reptilian viruses 3. Reptilian viruses described by virus families 3.1. Herpesviridae 3.2. Iridoviridae 3.2.1 Ranavirus 3.2.2 Erythrocytic virus 3.2.3 Iridovirus 3.3. Poxviridae 3.4. Adenoviridae 3.5. Papillomaviridae 3.6. Parvoviridae 3.7. Reoviridae 3.8. Retroviridae and inclusion body disease of Boid snakes 3.9. Arboviruses 3.9.1. Flaviviridae 3

  1. [Multicenter investigation of bufavirus in the etiology of viral central nervous system infections of adults and children].

    Science.gov (United States)

    Altay Koçak, Aylin; Öcal, Murat; Polat, Meltem; Kanık Yüksek, Saliha; Aktaş Tapısız, Anıl; Tezer, Hasan; Özkul, Aykut; Ergünay, Koray; Bozdayı, Gülendam; Ahmed, Kamruddin

    2017-04-01

    Bufavirus (BuV) is a newly-identified parvovirus in the family of Parvoviridae. Metagenomic analysis of fecal samples from children in Burkina Faso with acute diarrhea showed a highly divergent parvovirus, which was named bufavirus (BuV). The global distribution, epidemiology and genetic characteristics of BuVs infections are obscure. It was first discovered as an agent causing gastroenteritis but the association of BuV infections with various clinical presentations mostly remain to be explored. The aims of this study were to investigate probable impact of BuV in central nervous system infections in a region where it was previously reported to cause human infections and to detect enteroviruses (EV) which are reported as a cause of central nervous system infections in our country. The study was undertaken in three institutions in Ankara province, Central Anatolia, Turkey. Patients, clinically diagnosed with febrile disease and/or central nervous system infections of presumed viral etiology, were enrolled in the study with informed consent. Cerebrospinal fluid specimens were collected from 93 children attended to Gazi University Hospital and Dışkapı Yıldırım Beyazıt Hospital from October 2011-April 2015 and 33 adult patients, attended to Hacettepe University Hospital from June 2012 to March 2013. Clinical history and follow-up, physical examination and standard laboratory findings of the patients were recorded. Nucleic acid extraction was performed via commercially available spin-column assays and complementery DNA (cDNA) synthesis was performed by using commercially available cDNA synthesis kit with randomised hexamer primers. BuV detection was carried out by in house nested-polymerase chain reaction (PCR) utilized with previously-described primers. EV detection was carried out by in house PCR with pan-enterovirus primers. Seventy-four percent (93/126) and 26% (33/126) of the patients were children (0-18) and adults (19-86), respectively. In all patients