WorldWideScience

Sample records for particulate organic matter

  1. Lability of Secondary Organic Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Giles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM, no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.

  2. Temporal and spatial variations in particulate matter, particulate organic carbon and attenuation coefficient in Cochin Backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, K.S.

    Nine stations over a stretch of 21 km of Periyar river estuary were sampled during January to December 1981. Particulate matter varied from 3-253 mg.1 super(1) at the surface and 24.8-257mg.1 super(1) at the bottom. Particulate organic carbon ranged...

  3. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters

    International Nuclear Information System (INIS)

    Guo Xueyan; Luo Lei; Ma Yibing; Zhang Shuzhen

    2010-01-01

    Particulate organic matter (POM) is a key organic matter fraction which can influence soil fertility. Its interactions with hydrophobic organic pollutants (HOCs) have not been characterized and the mechanisms of retention of HOCs by POM remain unclear. In the present study, sorption behaviors of polycyclic aromatic hydrocarbons (PAHs) naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by POMs separated from different soils were examined and the POMs were characterized by elemental analysis, solid state 13 C NMR, and Fourier transform infrared spectroscopy (FT-IR). The results indicated that POMs were mainly composed of aliphatic components with high polarity. The different original POMs showed similar chemical composition and configuration. Sorption behaviors of PAHs indicated that there was no significant difference in sorption capacity among the POMs. Sorption of NAP and PHE by POMs displayed a nonlinear isotherm, while sorption of PYR yielded a linear isotherm. No significant hysteresis and ionic strength effect were observed for PAH desorption from the POMs.

  4. Organic speciation of size-segregated atmospheric particulate matter

    Science.gov (United States)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  5. Coarse Particulate Organic Matter: Storage, Transport, and Retention

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, Scott [Oakland University, Rochester, MI; Lamberti, Gary A. [University of Notre Dame, IN; Entrekin, Sally A. [University of Central Arkansas; Griffiths, Natalie A. [ORNL

    2017-08-01

    Coarse particulate organic matter, or CPOM, is a basal energy and nutrient resource in many stream ecosystems and is provided by inputs from the riparian zone, incoming tributaries, and to a lesser extent from in-stream production. The ability of a stream to retain CPOM or slow its transport is critical to its consumption and assimilation by stream biota. In this chapter, we describe basic exercises to measure (1) the amount of CPOM in the streambed and (2) the retention of CPOM from standardized particle releases. We further describe advanced exercises that (1) experimentally enhance the retentiveness of a stream reach and (2) measure organic carbon transport and turnover (i.e., spiraling) in the channel.

  6. Coarse Particulate Organic Matter: Storage, Transport, and Retention

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, Scott [Oakland University, Rochester, MI; Lamberti, Gary A. [University of Notre Dame, IN; Entrekin, Sally A. [University of Central Arkansas; Griffiths, Natalie A. [ORNL

    2017-06-01

    Coarse particulate organic matter, or CPOM, is a basal energy and nutrient resource in many stream ecosystems and is provided by inputs from the riparian zone, incoming tributaries, and to a lesser extent from in-stream production. The ability of a stream to retain CPOM or slow its transport is critical to its consumption and assimilation by stream biota. In this chapter, we describe basic exercises to measure (1) the amount of CPOM in the streambed and (2) the retention of CPOM from standardized particle releases. We further describe advanced exercises that (1) experimentally enhance the retentiveness of a stream reach and (2) measure organic carbon transport and turnover (i.e., spiraling) in the channel.

  7. SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    Science.gov (United States)

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...

  8. Can particulate organic matter reveal emerging changes in soil organic carbon?

    DEFF Research Database (Denmark)

    Simonsson, Magnus; Kirchmann, Holger; Magid, Jakob

    2014-01-01

    different cropping systems, N fertilizer applications, and organic amendments, we found that C and N in the fine to medium sand fraction (0.063-0.600 mm, "Fraction B") showed considerably larger relative errors according to ANOVA (RMSE was 11-20% of the mean), slightly lower values of the F statistic......This study assessed whether particulate organic matter (POM) in sand fractions, isolated by wet sieving after treatment with Na hexametaphosphate, can be a sensitive indicator of incipient changes in the content and composition of soil organic matter. In five long-term field experiments including......, and slightly less contrast between treatments than total organic C and N (RMSE 3-9% of the mean). Imprecision in laboratory procedures only explained part of the increase in RMSE for C and N in Fraction B compared with total C and N; within-field spatial variability most likely had a greater influence...

  9. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater tratment - A review

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Kommedal, Roald; Harremoës, Poul

    2002-01-01

    Carbon cycling and the availability of organic carbon for nutrient removal processes are in most wastewater treatment systems restricted by the rate of hydrolysis of slowly biodegradable (particulate) organic matter. To date, the mechanisms of hydrolysis are not well understood for complex...

  10. Evidence of molybdenum association with particulate organic matter under sulfidic conditions

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Chappaz, A.; Hoek, Joost

    2017-01-01

    , consisting of mainly Mo(IV)-sulfide compounds with molecular structures similar to Mo enzymes and to those found in natural euxinic sediments. Therefore, we propose that Mo removal in natural sulfidic waters can proceed via a non-Fe-assisted pathway that requires particulate organic matter (dead or living......The geochemical behavior of molybdenum (Mo) in the oceans is closely linked to the presence of sulfide species in anoxic environments, where Fe availability may play a key role in the Mo scavenging. Here, we show that Mo(VI) is reduced in the presence of particulate organic matter (represented...

  11. Fine particulate matter (PM) and organic speciation of fireplace emissions

    International Nuclear Information System (INIS)

    Purvis, C.R.; McCrillis, R.C.; Kariher, P.H.

    2000-01-01

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an ongoing project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10 microm (PM10) consist primarily of a mixture of organic compounds that have condensed into droplets; therefore, the size distribution and total mass are influenced by temperature of the sample during its collection. During the series 1 tests (15 tests), the dilution tunnel used to cool and dilute the stack gases gave an average mixed gas temperature of 47.3 C and an average dilution ration of 4.3. Averages for the PM2.5 (particles <2.5 microm) and PM10 fractions were 74 and 84%, respectively. For the series 2 tests, the dilution tunnel was modified, reducing the average mixed gas temperatures to 33.8 C and increasing the average dilution ratio to 11.0 in tests completed to date. PM2.5 and PM10 fractions were 83 and 91%, respectively. Since typical winter-time mixed gas temperatures would usually be less than 10 C, these size fraction results probably represent the lower bound; the PM10 and PM2.5 size fraction results might be higher at typical winter temperatures. The particles collected on the first stage were light gray and appeared to include inorganic ash. Particles collected on the remainder of the stages were black and appeared to be condensed organics because there was noticeable lateral bleeding of the collected materials into the filter substrate. Total particulate emission rates ranged from 10.3 to 58.4 g/h; corresponding emission factors ranged from 3.3 to 14.9 g/kg of dry wood burned. A wide range of Environmental Protection Agency (EPA) Method 8270 semivolatile organic compounds were found in the emissions; of the 17 target compounds quantified, major constituents are phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, and naphthalene

  12. Chemical characterization of organic particulate matter from on-road traffic in Sao Paulo, Brazil

    NARCIS (Netherlands)

    Oyama, Beatriz Sayuri; Andrade, Maria de Fatima; Herckes, Pierre; Dusek, Ulrike; Rockmann, Thomas; Holzinger, Rupert

    2016-01-01

    This study reports emission of organic particulate matter by light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) in the city of Sao Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25% ethanol (called gasohol, E25), hydrated ethanol (E100), and diesel (with 5%

  13. Chemical characterization of organic particulate matter from on-road traffic in Sao Paulo, Brazil

    NARCIS (Netherlands)

    Oyama, Beatriz Sayuri; Andrade, Maria de Fatima; Herckes, Pierre; Dusek, Ulrike; Rockmann, Thomas; Holzinger, Rupert

    2016-01-01

    This study reports emission of organic particulate matter by light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) in the city of São Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25 % ethanol (called gasohol, E25), hydrated ethanol (E100), and diesel (with 5 %

  14. Particulate organic matter predicts bacterial productivity in a river dominated estuary

    Science.gov (United States)

    Crump, B. C.

    2015-12-01

    Estuaries act as coastal filters for organic and inorganic fluvial materials in which microbial, biogeochemical, and ecological processes combine to transform organic matter and nutrients prior to export to the coastal ocean. The function of this estuarine 'bioreactor' is linked to the residence times of those materials and to rates of microbial heterotrophic activity. Our ability to forecast the impact of global change on estuarine bioreactor function requires an understanding of the basic controls on microbial community activity and diversity. In the Columbia River estuary, the microbial community undergoes a dramatic seasonal shift in species composition during which a spring bacterioplankton community, dominated by Flavobacteriaceae and Oceanospirillales, is replaced by a summer community, dominated by Rhodobacteraceae and several common marine taxa. This annual shift occurs in July, following the spring freshet, when river flow and river chlorophyll concentration decrease and when estuarine water residence time increases. Analysis of a large dataset from 17 research cruises (1990-2014) showed that the composition of particulate organic matter in the estuary changes after the freshet with decreasing organic carbon and nitrogen content, and increasing contribution of marine and autochthonous estuarine organic matter (based on PO13C and pigment ratios). Bacterial production rates (measured as leucine or thymidine incorporation rates) in the estuary respond to this change, and correlate strongly with labile particulate nitrogen concentration and temperature during individual sampling campaigns, and with the concentration of chlorophyll in the Columbia River across all seasons. Regression models suggest that the concentration of labile particulate nitrogen and the rate of bacterial production can be predicted from sensor measurements of turbidity, salinity, and temperature in the estuary and chlorophyll in the river. These results suggest that the quality of

  15. FINE PARTICULATE MATTER (PM) AND ORGANIC SPECIATION OF FIREPLACE EMISSIONS

    Science.gov (United States)

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an on-going project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10?m (PM10) con...

  16. Relating hygroscopicity and composition of organic aerosol particulate matter

    CERN Document Server

    Duplissy, J; Prevot, A S H; Barmpadimos, I; Jimenez, J L; Gysel, M; Worsnop, D R; Aiken, A C; Tritscher, T; Canagaratna, M R; Collins, D R; Alfarra, M R; Metzger, A; Tomlinson, J; DeCarlo, P F; Weingartner, E; Baltensperger, U

    2011-01-01

    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f(44)). m/z 44 is due mostly to the ion fragment CO(2)(+) for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfrau-joch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation b...

  17. Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion

    International Nuclear Information System (INIS)

    Mastral, A.M.; Callen, M.S.; Garcia, T.

    1999-01-01

    The polycyclic aromatic hydrocarbons (PAH) and the organic matter (OM) content associated with particulate matter (PM) emissions from atmospheric fluidized bed coal combustion have been studied. The two main aims of the work have been (a) to study OM and PAH emissions as a function of the coal fluidized bed combustion (FBC) variables in solid phase and (b) to check if there is any correlation between OM and PAH contained in the PM. The combustion was carried out in a laboratory scale plant at different combustion conditions: temperature, percentage of oxygen excess, and total air flow. PAH associated on the particulate matter have been analyzed by fluorescence spectroscopy in the synchronous mode (FS) after PM extraction by sonication with dimethylformamide (DMF). It can be concluded that there is not a direct relationship between the OM content and the PAH supported in the PM emitted. In addition, neither PM or OM show dependence between themselves

  18. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2015-01-01

    Roč. 10, č. 6 (2015), e0128884 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/12/0781; GA ČR(CZ) GA15-09721S Institutional support: RVO:60077344 Keywords : dissolved organic carbon * particulate organic carbon * photodegradation * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.057, year: 2015

  19. Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach

    NARCIS (Netherlands)

    Le Guitton, M.; Soetaert, K.; Sinninghe Damsté, J.S.; Middelburg, J.J.

    2015-01-01

    Vertical and lateral transports are of importance in continental shelf systems such as the North Sea andplay a major role in the processing of organic matter. We investigated the biogeochemical consequencesof these transports on particulate organic matter at the molecular level in the southern North

  20. Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach

    NARCIS (Netherlands)

    le Guitton, M.; Soetaert, K.; Sinninghe Damsté, J.S.; Middelburg, J.J.

    2015-01-01

    Vertical and lateral transports are of importance in continental shelf systems such as the North Sea and play a major role in the processing of organic matter. We investigated the biogeochemical consequences of these transports on particulate organic matter at the molecular level in the southern

  1. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds.

    Science.gov (United States)

    Ng, Chee-Loon; Kai, Fuu-Ming; Tee, Ming-Hui; Tan, Nicholas; Hemond, Harold F

    2018-01-18

    Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  2. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Chee-Loon Ng

    2018-01-01

    Full Text Available Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5 and volatile organic compounds (VOCs. For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  3. Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter.

    Science.gov (United States)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Bateman, Adam P; Zhang, Yue; Gong, Zhaoheng; Bertram, Allan K; Martin, Scot T

    2018-02-28

    Initially transparent organic particulate matter (PM) can become shades of light-absorbing brown via atmospheric particle-phase chemical reactions. The production of nitrogen-containing compounds is one important pathway for browning. Semisolid or solid physical states of organic PM might, however, have sufficiently slow diffusion of reactant molecules to inhibit browning reactions. Herein, organic PM of secondary organic material (SOM) derived from toluene, a common SOM precursor in anthropogenically affected environments, was exposed to ammonia at different values of relative humidity (RH). The production of light-absorbing organonitrogen imines from ammonia exposure, detected by mass spectrometry and ultraviolet-visible spectrophotometry, was kinetically inhibited for RH atmospheric brown carbon production and associated influences on energy balance.

  4. Organic and inorganic speciation of particulate matter formed during different combustion phases in an improved cookstove.

    Science.gov (United States)

    Leavey, Anna; Patel, Sameer; Martinez, Raul; Mitroo, Dhruv; Fortenberry, Claire; Walker, Michael; Williams, Brent; Biswas, Pratim

    2017-10-01

    Residential solid fuel combustion in cookstoves has established health impacts including bladder and lung cancers, cataracts, low birth weight, and pneumonia. The chemical composition of particulate matter (PM) from 4 commonly-used solid fuels (coal, dung, ambient/dry applewood, and oakwood pellets), emitted from a gasifier cookstove, as well as propane, were examined. Temporal changes between the different cookstove burn-phases were also explored. Normalized concentrations of non-refractory PM 1 , total organics, chloride, ammonium, nitrate, sulfate, and 41 particle-phase polycyclic aromatic hydrocarbons (PAHs) were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a Thermal desorption Aerosol Gas chromatograph (TAG), respectively. Coal demonstrated the highest fraction of organic matter in its particulate emission composition (98%), followed by dung (94%). Coal and dung also demonstrated the highest numbers and concentrations of PAHs. While dry applewood emitted ten times lower organic matter compared to ambient applewood, a higher fraction of these organics was composed of PAHs, especially the more toxic ones such as benzo(a)pyrene (9.63ng/L versus 0.04ng/L), and benzo(b)fluoranthene (31.32ng/L versus 0.19ng/L). Data from the AMS demonstrated no clear trends for any of the combustion fuels over the different combustion phases unlike the previously reported trends observed for the physical characteristics. Of the solid fuels, pellets demonstrated the lowest emissions. Emissions from propane were below the quantification limit of the instruments. This work highlights the benefits of incorporating additional metrics into the cookstove evaluation process, thus enriching the existing PM data inventory. Copyright © 2017. Published by Elsevier Inc.

  5. PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments.

    Science.gov (United States)

    Ozaki, Noriatsu; Takeuchi, Shin-ya; Kojima, Keisuke; Kindaichi, Tomonori; Komatsu, Toshiko; Fukushima, Takehiko

    2012-01-01

    The concentration of polycyclic aromatic hydrocarbons (PAHs) and the toxicity to marine bacteria (Vibrio fischeri) were measured for the organic solvent extracts of sea sediments collected from an urban watershed area (Hiroshima Bay) of Japan and compared with the concentrations and toxicity of atmospheric particulate matter (PM). In atmospheric PM, the PAHs concentration was highest in fine particulate matter (FPM) collected during cold seasons. The concentrations of sea sediments were 0.01-0.001 times those of atmospheric PM. 1/EC50 was 1-10 L g(-1) PM for atmospheric PM and 0.1-1 L g(-1) dry solids for sea sediments. These results imply that toxic substances from atmospheric PM are diluted several tens or hundreds of times in sea sediments. The ratio of the 1/EC50 to PAHs concentration ((1/EC50)/16PAHs) was stable for all sea sediments (0.1-1 L μg(-1) 16PAHs) and was the same order of magnitude as that of FPM and coarse particulate matter (CPM). The ratio of sediments collected from the west was more similar to that of CPM while that from the east was more similar to FPM, possibly because of hydraulic differences among water bodies. The PAHs concentration pattern analyses (principal component analysis and isomer ratio analysis) were conducted and the results showed that the PAHs pattern in sea sediments was quite different to that of FPM and CPM. Comparison with previously conducted PAHs analyses suggested that biomass burning residues comprised a major portion of these other sources.

  6. Autoxidation as a major player in the fate of terrestrial particulate organic matter in seawater

    Science.gov (United States)

    Galeron, Marie-Aimée.; Radakovitch, Olivier; Charrière, Bruno; Vaultier, Frédéric; Rontani, Jean-François

    2017-05-01

    The Rhône River plays a major role in the Mediterranean Sea, being both its main freshwater source and its major particulate matter provider. This survey of the fate of terrestrial particulate organic matter (POM) was conducted along the salinity gradient of the Rhône River plume, between 2012 and 2014. It revealed that autoxidation acts rapidly and intensely upon the POM's arrival at sea, with α-amyrin and β-amyrin autoxidation rates going from 12.9 ± 2.9% to 45.0 ± 6.4% and 10.7 ± 4.0% to 50.3 ± 4.4%, respectively, between fresh water (salinity 0) and seawater (salinity 38). These compounds, being unambiguous markers of the terrestrial origin of POM, allow us to unequivocally characterize the POM as terrestrial. While it was originally believed that a desorption of redox-active trace metal ions was the favoring factor that kick-started this intense autoxidation, this study evidences no trace metal desorption in the Rhône River mixing zone and hence no correlation between high autoxidation rates and the presence of trace metal ions. Autoxidation rates however were very well correlated with salinity levels within the river plume, with r2 reaching 0.801, 0.962, and 0.943 for sitosterol, α-amyrin, and β-amyrin, respectively, in November 2014.

  7. Particulate organic matter composition in a semi-enclosed Periantarctic system: the Straits of Magellan

    Directory of Open Access Journals (Sweden)

    M. Fabiano

    1999-12-01

    Full Text Available The elemental and biochemical composition of particulate organic matter (POM was investigated in the Straits of Magellan during February-March 1991. Twenty-two stations were selected in order to identify different areas of the Magellan ecosystem from a trophic point of view. The Strait of Magellan can be divided into three subsystems characterized by different hydrological and geomorphological conditions. Seston concentrations were mostly constrained by physical events, particularly the influence of oceanic and land run-off water inputs and the strong vertical mixing and resuspension events. POM composition displayed quali-quantitative differences between the three areas. In the first subsystem, influenced by Pacific waters, the low seston and POM concentrations and the high POC/Chl-a ratio values indicated the general predominance of the detrital and heterotrophic fractions. In the second subsystem, characterized by superficial stratification, higher seston and organic matter concentrations and lower values of POC/Chl-a ratio were found, indicating that this subsystem was influenced by an active autotrophic component. Shallow waters with intense tidal regime and strong vertical mixing characterized the third subsystem, connected to the Atlantic Ocean, which displayed an increasing importance of the inorganic fraction (values of the POC/TSM ratio lower than in the other systems. Moreover, the third subsystem showed higher values of the RNA/DNA ratio, possibly indicating that resuspension events may enhance the metabolic state of the organic particles mainly dominated by heterotrophic components.

  8. [Sample preparation methods for chromatographic analysis of organic components in atmospheric particulate matter].

    Science.gov (United States)

    Hao, Liang; Wu, Dapeng; Guan, Yafeng

    2014-09-01

    The determination of organic composition in atmospheric particulate matter (PM) is of great importance in understanding how PM affects human health, environment, climate, and ecosystem. Organic components are also the scientific basis for emission source tracking, PM regulation and risk management. Therefore, the molecular characterization of the organic fraction of PM has become one of the priority research issues in the field of environmental analysis. Due to the extreme complexity of PM samples, chromatographic methods have been the chief selection. The common procedure for the analysis of organic components in PM includes several steps: sample collection on the fiber filters, sample preparation (transform the sample into a form suitable for chromatographic analysis), analysis by chromatographic methods. Among these steps, the sample preparation methods will largely determine the throughput and the data quality. Solvent extraction methods followed by sample pretreatment (e. g. pre-separation, derivatization, pre-concentration) have long been used for PM sample analysis, and thermal desorption methods have also mainly focused on the non-polar organic component analysis in PM. In this paper, the sample preparation methods prior to chromatographic analysis of organic components in PM are reviewed comprehensively, and the corresponding merits and limitations of each method are also briefly discussed.

  9. Seasonal changes in particulate and dissolved organic matter composition and quality in the Lena River Delta

    Science.gov (United States)

    Mollenhauer, G.; Winterfeld, M.; Hefter, J.; Bodenstab, L.; Morgenstern, A.; Eulenburg, A.; Heim, B.; Koch, B.; Schefuss, E.; Moerth, C. M.; Rethemeyer, J.

    2016-12-01

    Arctic rivers are known to export large quantities of carbon by discharge of dissolved and particulate organic carbon (DOC, POC), and in a warming and progressively moister Arctic, these exports may increase resulting in a reduction of arctic continental carbon stocks. These rivers have highly variable discharge rates with a pronounced maximum during the spring freshet associated with highest concentrations of DOC and POC. Most studies investigating the isotopic composition and quality of carbon exported by Arctic rivers rely on samples taken in summer during base flow, which is due to the logistical challenges associated with sampling in the remote Arctic permafrost regions. Here we present a record of δ13C and Δ14C of DOC and POC collected between late May during the freshet and late August 2014 in the Lena River Delta. POC Δ14C shows an initial trend towards older values in the spring samples, which is reversed in summer, associated with a shift towards more depleted δ13C values. We interpret this aging trend as reflecting progressive thawing throughout the ice-free season, resulting in mobilization of progressively older carbon from deeper thawed layers. The summer reversal indicates admixture of aquatic organic matter. DOC Δ14C, in contrast, remains at relatively modern levels with rather constant δ13C values throughout the sampling period. We furthermore analysed the biomarker composition of Lena Delta particulate OM collected in spring and summer. From spring to summer, we observe trends in abundance of individual leaf-wax derived biomarkers indicating higher abundance of algal biomass in the summer particles. Trends in soil microbial biomarkers and compound-specific δD of leaf-wax lipids suggest a shift in sources towards higher contributions from the southern catchment in summer. DOC composition investigated with FT-ICR-MS changes from spring with higher abundances of compounds with high H/C and low O/C ratios to late summer, when fewer compounds

  10. Peatland use and transport of particulate organic matter in boreal headwater catchments

    Science.gov (United States)

    Marttila, Hannu; Karjalainen, Satu-Maaria; Nieminen, Mika; Kløve, Bjørn

    2014-05-01

    Peatland use can cause increased transport of particulate organic matter (POM) causing deteriorated water quality and especially siltation of stream beds. Even though topic has gained major attention among stakeholders it has received only minor efforts to solve the main sources and properties of transported particles. The development of effective management practices and evaluation of purification efficiency demands understanding of the sources of particulate matter in peat dominated catchments with various land uses and hydrological conditions. The objectives of this study were: (1) to determinate physical properties of POM in headwater brooks affected by different peatland uses, and; (2) to identity the sources of transported material by using sediment fingerprinting methods. For this purpose, two headwater catchments under peat extraction and peatland forestry land uses with 8 sampling points were monitored for 2 years using time integrated suspended sediment samplers. Data was completed by gap samples from 50 other headwater locations with different upstream land uses: pristine, peatland forestry and peat extraction. For the sources analysis, disturbed topsoil, stream bed sediment, banks of ditches and brooks, algae and various vegetation types were identified as the potential sediment sources. Stable isotopes (δ13C, δ15N) and C/N ratio were analyzed to discriminate between the possible sources. Results are further scaled against different land uses, landscape elements and seasonal hydrological conditions in headwaters. This paper presents the preliminary results from a two year study aiming to show various patterns in transport of POM in boreal headwater catchments. Due to strong land-water relationship in headwaters, further information on the properties of particles is needed to assess the downstream impacts of land use.

  11. Temporal variations in C-13 and C-14 concentrations in particulate organic matter from the southern North Sea

    NARCIS (Netherlands)

    Megens, L.; Plicht, J. van der; Leeuw, J.W. de

    As a new approach for the characterization and determination of the origin of particulate organic matter (POM) in coastal waters, we measured the 14C activity and 13C/12C isotope ratios and applied molecular analysis by means of AMS, IRMS and pyrolysis-GCMS for both bulk samples and isolated

  12. Distribution and sources of particulate organic matter in the Indian monsoonal estuaries during monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Krishna, M.S.; Prasad, V.R.; Kumar, B.S.K.; Naidu, S.A.; Rao, G.D.; Viswanadham, R.; Sridevi, T.; Kumar, P.P.; Reddy, N.P.C.

    The distribution and sources of particulate organic carbon (POC) and nitrogen (PN) in 27 Indian estuaries were examined during the monsoon using the content and isotopic composition of carbon and nitrogen. Higher phytoplankton biomass was noticed...

  13. Global Particulate Matter Source Apportionment

    Science.gov (United States)

    Lamancusa, C.; Wagstrom, K.

    2017-12-01

    As our global society develops and grows it is necessary to better understand the impacts and nuances of atmospheric chemistry, in particular those associated with atmospheric particulate matter. We have developed a source apportionment scheme for the GEOS-Chem global atmospheric chemical transport model. While these approaches have existed for several years in regional chemical transport models, the Global Particulate Matter Source Apportionment Technology (GPSAT) represents the first incorporation into a global chemical transport model. GPSAT runs in parallel to a standard GEOS-Chem run. GPSAT uses the fact that all molecules of a given species have the same probability of undergoing any given process as a core principle. This allows GPSAT to track many different species using only the flux information provided by GEOS-Chem's many processes. GPSAT accounts for the change in source specific concentrations as a result of aqueous and gas-phase chemistry, horizontal and vertical transport, condensation and evaporation on particulate matter, emissions, and wet and dry deposition. By using fluxes, GPSAT minimizes computational cost by circumventing the computationally costly chemistry and transport solvers. GPSAT will allow researchers to address many pertinent research questions about global particulate matter including the global impact of emissions from different source regions and the climate impacts from different source types and regions. For this first application of GPSAT, we investigate the contribution of the twenty largest urban areas worldwide to global particulate matter concentrations. The species investigated include: ammonium, nitrates, sulfates, and the secondary organic aerosols formed by the oxidation of benzene, isoprene, and terpenes. While GPSAT is not yet publically available, we will incorporate it into a future standard release of GEOS-Chem so that all GEOS-Chem users will have access to this new tool.

  14. Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe

    Directory of Open Access Journals (Sweden)

    M. Sillanpää

    2005-01-01

    Full Text Available A series of 7-week sampling campaigns were conducted in urban background sites of six European cities as follows: Duisburg (autumn, Prague (winter, Amsterdam (winter, Helsinki (spring, Barcelona (spring and Athens (summer. The campaigns were scheduled to include seasons of local public health concern due to high particulate concentrations or findings in previously conducted epidemiological studies. Aerosol samples were collected in parallel with two identical virtual impactors that divide air particles into fine (PM2.5 and coarse (PM2.5-10 size ranges. From the collected filter samples, elemental (EC and organic (OC carbon contents were analysed with a thermal-optical carbon analyser (TOA; total Ca, Ti, Fe, Si, Al and K by energy dispersive X-ray fluorescence (ED-XRF; As, Cu, Ni, V, and Zn by inductively coupled plasma mass spectrometry (ICP/MS; Ca2+, succinate, malonate and oxalate by ion chromatography (IC; and the sum of levoglucosan+galactosan+mannosan (∑MA by liquid chromatography mass spectrometry (LC/MS. The campaign means of PM2.5 and PM2.5-10 were 8.3-29.6 µg m-3 and 5.4-28.7 µg m-3, respectively. The contribution of particulate organic matter (POM to PM2.5 ranged from 21% in Barcelona to 54% in Prague, while that to PM2.5-10 ranged from 10% in Barcelona to 27% in Prague. The contribution of EC was higher to PM2.5 (5-9% than to PM2.5-10 (1-6% in all the six campaigns. Carbonate (C(CO3, that interferes with the TOA analysis, was detected in PM2.5-10 of Athens and Barcelona but not elsewhere. It was subtracted from the OC by a simple integration method that was validated. The CaCO3 accounted for 55% and 11% of PM2.5-10 in Athens and Barcelona, respectively. It was anticipated that combustion emissions from vehicle engines affected the POM content in PM2.5 of all the six sampling campaigns, but a comparison of mass concentration ratios of the selected inorganic and organic tracers of common sources of organic material to POM suggested

  15. Trimethylsilyl derivatives of organic compounds in source samples and in atmospheric fine particulate matter.

    Science.gov (United States)

    Nolte, Christopher G; Schauer, James J; Cass, Glen R; Simoneit, Bernd R T

    2002-10-15

    Source sample extracts of vegetative detritus, motor vehicle exhaust, tire dust paved road dust, and cigarette smoke have been silylated and analyzed by GC-MS to identify polar organic compounds that may serve as tracers for those specific emission sources of atmospheric fine particulate matter. Candidate molecular tracers were also identified in atmospheric fine particle samples collected in the San Joaquin Valley of California. A series of normal primary alkanols, dominated by even carbon-numbered homologues from C26 to C32, the secondary alcohol 10-nonacosanol, and some phytosterols are prominent polar compounds in the vegetative detritus source sample. No new polar organic compounds are found in the motor vehicle exhaust samples. Several hydrogenated resin acids are present in the tire dust sample, which might serve as useful tracers for those sources in areas that are heavily impacted by motor vehicle traffic. Finally, the alcohol and sterol emission profiles developed for all the source samples examined in this project are scaled according to the ambient fine particle mass concentrations attributed to those sources by a chemical mass balance receptor model that was previously applied to the San Joaquin Valley to compute the predicted atmospheric concentrations of individual alcohols and sterols. The resulting underprediction of alkanol concentrations at the urban sites suggests that alkanols may be more sensitive tracers for natural background from vegetative emissions (i.e., waxes) than the high molecular weight alkanes, which have been the best previously available tracers for that source.

  16. Particulate organic matter in shelf waters of Prinsesse Asrid Kyst, Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Bhosle, N.B.

    In the coastal and estuarine waters of Goa, particulate organic carbon (POC) varied from 0.52 to 2.51 mg l-1 and from 0.28 to 5.24 mg l-1 and particulate phosphorus (PP) varied from 0.71 to 5.18 mu g l-1 and from 0.78 to 20.34 mu g l-1, respectively...

  17. Photochemical Reactions of Particulate Organic Matter: Deciphering the Role of Direct and Indirect Processes

    Science.gov (United States)

    Carrasquillo, A. J.; Gelfond, C. E.; Kocar, B. D.

    2016-12-01

    Photochemical reactions of natural organic matter (NOM) represent potentially important pathways for biologically recalcitrant material to be chemically altered in aquatic systems. Irradiation can alter the physical state of organic matter by facilitating the cycling between the particulate (POM) and dissolved (DOM) pools, however, a molecular level understanding of this chemically dynamic system is currently lacking. Photochemical reactions of a target molecule proceed by the direct absorption of a photon, or through reaction with a second photolytically generated species (i.e. the hydroxyl radical, singlet oxygen, excited triplet state NOM, hydrogen peroxide, etc.). Here, we isolate the major direct and indirect photochemical reactions of a lignocellulose-rich POM material (Phragmites australis) to determine their relative importance in changing the the chemical structure of the parent POM, and in the production of DOM. We measured POM molecular structure using a combination of NMR and FTIR for bulk analyses and scanning transmission x-ray microscopy (STXM) for spatially resolved chemistry, while the chemical composition of photo-produced DOM was measured using ultra-high resolution mass spectrometry. Results are discussed in the context of the differences in chemical composition of both NOM pools resulting from the isolated photochemical pathways. All treatments result in an increase in DOM with reaction time, indicating that the larger POM matrix is likely fragmenting into smaller more soluble species. Spectroscopic measurements, on the other hand, point to functionalization reactions which increase the abundance of alcohol, acid, and carbonyl moieties in both carbon pools. This unique dataset provides new insight into how photochemical reactions alter the chemical composition of NOM while highlighting the relative importance of indirect pathways.

  18. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    Directory of Open Access Journals (Sweden)

    Rongyan Bu

    Full Text Available Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N mineralization. The quantity and quality of particulate organic matter (POM and potentially mineralizable-N (PMN contents were measured in soils from 16 paired rice-rapeseed (RR/cotton-rapeseed (CR rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile, intermediate (25th and 75th percentiles, and high (90th percentile levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C and N (POM-N contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively than CR rotations (45.6% and 19.5%, respectively. Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  19. Origin and composition of particulate organic matter in a macrotidal turbid estuary: The Gironde Estuary, France

    Science.gov (United States)

    Savoye, Nicolas; David, Valérie; Morisseau, François; Etcheber, Henri; Abril, Gwenaël; Billy, Isabelle; Charlier, Karine; Oggian, Georges; Derriennic, Hervé; Sautour, Benoît

    2012-08-01

    At the interface between continent and ocean, estuaries receive particles, and especially particulate organic matter (POM) originating from these two reservoirs, but also produce POM, through autochthonous primary production. The origin and composition of surface POM in the Gironde Estuary (SW France) and the environmental forcing of its variability was investigated using the data set produced by the French Coastal Monitoring Network SOMLIT (Service d'Observation en Milieu LITtoral; monthly like sampling during years 2007-2009). This estuary is considered as a model of macrotidal turbid estuaries. Using elemental and isotopic composition of the POM, we estimated that, at the inner estuary space scale and inter-annual time scale, surface particulate organic carbon (POC) was composed of terrestrial POM originated from the turbidity maximum (96.4%; refractory POC) and flood events (1.6%; labile and refractory POC), and of riverine (0.1%), estuarine (0.8%) and marine (1.1%) phytoplankton, i.e. that POC was 98% and 2% of terrestrial and phytoplankton origin, respectively. However, there was a clear spatial gradient: the phytoplankton contribution increases from ca. 1% in the upper and middle estuary to 8.5% in the lower estuary, where light condition is more favourable to plankton growth. The low contribution of phytoplankton to the POC is a characteristic of the Gironde estuary and contrast with other large temperate estuaries. Statistical analysis indicates that salinity, river flow and SPM concentration, and thus associated hydro-dynamic and sedimentary processes, were the only environmental forcings to the composition of surface POC in this system, at intra- and inter-annual time scale. In contrast, temperature and nutrient concentrations, and thus associated processes, do not force this composition of POC. By combining POC fluxes entering the inner estuary (literature data), POC loss as dissolved organic carbon and CO2 and as sediment trapping within the inner

  20. ANALYSIS OF PARTICULATE ORGANIC MATTER IN HOLOCENE SEDIMENTS OF COASTAL PLAIN FROM PERO BEACH, CABO FRIO, RIO DE JANEIRO, BRAZIL

    Directory of Open Access Journals (Sweden)

    Taísa Camila Silveira de Souza

    2016-06-01

    Full Text Available The study of palynofacies along a core drilled on the coastal plain of Cabo Frio, State of Rio de Janeiro, was carried out in order to contribute to the knowledge of the paleoenvironmental evolution of the Pero Beach region. The ages obtained from 14C datings allowed to verify that the studied core records the past 6761 ± 130 yrs cal BP. Thirty samples were prepared by standard methodology for palynofacies. About three hundred particles of the particulate organic material was classified and recorded for each sample. Statistical methods were employed for the associations of particulate organic matter (R-mode cluster analysis and levels (samples; Q-mode cluster analysis analyzed along the core. Furthermore, the ratio Phytoclast - Total Organic Carbon (Phy-TOC was used to verify the proximity of the source area. The three major groups of particulate organic matter found along the studied core are Phytoclasts, Amorphous Organic Matter (AOM and Palynomorphs. The samples showed in general, a predominance of phytoclasts (73.2%, followed by AOM (18.6% and Palynomorphs (8.2%. Supported by statistical analysis, it was possible to deduce that the study area evolved since the middle Holocene from a marine environment to a paleolagoon.

  1. Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Angelidaki, Irini; Ahring, Birgitte Kiær

    2000-01-01

    of a macerator make it attractive to use this pretreatment method for a more complete degradation of particulate organic matter. investigation of the size distribution of the fibers showed that a change in biogas potential was not correlated to a smaller size of the fibers. Results from the macerators indicate......% by pretreatment of the whole feed in the macerator before the reactor was observed. implementation concepts with a treatment of the fibers alone after separation from the manure showed to be not efficient due to a low recovery of organic matter in the fibers by the separation unit. The low operational costs...

  2. Characteristics of organic compounds in aerosol particulate matter from Dhahran city, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed I. Rushdi

    2017-05-01

    Full Text Available Organic chemical pollutants in atmospheric particulate matter (PM have a potential toxicity hazard resulting in human responses that vary from no discernible effect to premature death. The formation and sources of PM also affect air quality of metropolitan areas as well as climate change. The new developments and industrial activities in the Middle East, especially Saudi Arabia, are expected to contribute to the natural, regional, and anthropogenic input sources of organic matter (OM. Here we report the occurrence, concentrations and sources of organic tracers, including n-alkanes, polycyclic aromatic hydrocarbons (PAHs, plasticizers, and petroleum biomarkers, in ambient atmospheric PM from the city of Dhahran, Saudi Arabia. The major compounds were unresolved complex mixtures (UCM of branched and cyclic hydrocarbons (489 ± 296 ng m−3, plasticizers (131 ± 119 ng m−3 for phenyl phosphates, 87 ± 42 ng m−3 for phthalates, n-alkanes (73 ± 53 ng m−3, hopane biomarkers (11 ± 8 ng m−3, n-alkanones (6.7 ± 6.3 ng m−3, PAHs (2.0 ± 2.1 ng m−3, n-alkanols (1.2 ± 1.2 ng m−3, sterane biomarkers (0.4 ± 0.3 ng m−3, and sterols (0.5 ± 0.4 ng m−3. Obviously, UCM and plasticizers were the major components (56 ± 9% and 26 ± 10% of the total extracts, respectively in the PM of Dhahran, which might have adverse public health effects. The major sources of this OM are emissions from industrial factories north of the city, plastics and biomass burning, and petroleum product combustion (traffic/refining.

  3. Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz

    Directory of Open Access Journals (Sweden)

    L. Poulain

    2011-12-01

    Full Text Available Ammonium nitrate and several organic compounds such as dicarboxylic acids (e.g. succinic acid, glutaric acid, some Polycyclic Aromatic Hydrocarbon (PAHs or some n-alkanes are semi-volatile. The transition of these compounds between the gas and particulate phase may significantly change the aerosol particles radiative properties, the heterogeneous chemical properties, and, naturally, the total particulate mass concentration. To better assess these time-dependent effects, three intensive field experiments were conducted in 2008–2009 at the Central European EMEP research station Melpitz (Germany using an Aerodyne Aerosol Mass Spectrometer (AMS. Data from all seasons highlight organic matter as being the most important particulate fraction of PM1 in summer (59% while in winter, the nitrate fraction was more prevalent (34.4%. The diurnal variation of nitrate always showed the lowest concentration during the day while its concentration increased during the night. This night increase of nitrate concentration was higher in winter (ΔNO3 = 3.6 μg m−3 than in summer (ΔNO3 = 0.7 μg m−3. The variation in particulate nitrate was inherently linked to the gas-to-particle-phase equilibrium of ammonium nitrate and the dynamics of the atmosphere during day. The results of this study suggest that during summer nights, the condensation of HNO3 and NH3 on pre-existing particles represents the most prevalent source of nitrate, whereas during winter, nighttime chemistry is the predominant source of nitrate. During the summer 2008's campaign, a clear diurnal evolution in the oxidation state of the organic matter became evident (Organic Mass to Organic Carbon ratio (OM/OC ranging from 1.65 during night to 1.80 during day and carbon oxidation state (OSc from −0.66 to −0.4, which could be correlated to hydroxyl radical (OH and ozone

  4. Molecular distribution and degradation status of combined aldoses in sinking particulate organic matter

    Science.gov (United States)

    Panagiotopoulos, C.; Sempéré, R.

    2003-04-01

    Polar Front and Sub-Antarctic Zones indicated that ribose seems to be a labile sugar, rapidly degraded especially in Polar Front Zone whereas it was below the detection limit in Sub-Antarctic zone where a high bacterial activity was recorded in surface waters. Our results also showed that the relative abundance of deoxysugars (fucose + rhamnose) increased overtime in Sub-Antarctic Zone (deoxyinitial = 18%, deoxyfinal = 23%) and Polar Front Zone (deoxyinitial = 6%, deoxyfinal = 21%) indicating that these sugars are preserved during organic matter decomposition.

  5. Thermal stability of inorganic and organic compounds in atmospheric particulate matter

    Science.gov (United States)

    Perrino, Cinzia; Marconi, Elisabetta; Tofful, Luca; Farao, Carmela; Materazzi, Stefano; Canepari, Silvia

    2012-07-01

    The thermal behaviour of atmospheric particulate matter (PM) has been investigated by using different analytical approaches to explore the added value offered by these technique in environmental studies. The thermogravimetric analysis (TGA), carried out on both certified material and real PM samples, has shown that several mass losses can be detected starting from 80 °C up to above 500 °C, when pyrolysis occur. Thermo-optical analysis of PM and ion chromatographic analysis of the residual have shown that the mass losses in the temperature range 80-180 °C are not justified by the release of either organic or inorganic compounds; it can be thus attributed to the release of weakly and strongly bound water. Release of water has also been evidenced in the temperature range 225-275 °C. The release of ammonium chloride and nitrate has been detected only above 80 °C. This indicates that the release of nitric acid, hydrochloric acid and ammonia, which is observed downstream of the filters during the sampling of atmospheric PM at ambient temperature, cannot be reproduced off-line, after the end of the sampling. We successfully explored one of the possible explanations, that is the desorption of HNO3, HCl and NH3 adsorbed on collected particles. NH4NO3 and NH4Cl, which can be thermally released by the filter, exhibit a different thermal behaviour from NaNO3 and NaCl, which are thermally stable up to 370 °C. This different behaviour can be used to discriminate between natural and secondary sources of atmospheric inorganic salts, as the interconversion that is observed when heating mixtures of pure salts resulted to be not relevant when heating real PM samples.

  6. The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking

    Science.gov (United States)

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    The emissions from food cooking could be a significant contributor to atmospheric particulate organic matter (POM) and its chemical composition would vary with different cooking styles. In this study, the chemical composition of POM emitted from Western-style fast food cooking was investigated. A total of six PM 2.5 samples was collected from a commercial restaurant and determined by gas chromatography-mass spectrometry (GC-MS). It is found that the total amount of quantified compounds of per mg POM in Western-style fast food cooking is much higher than that in Chinese cooking. The predominant homologue is fatty acids, accounting for 78% of total quantified POM, with the predominant one being palmitic acid. Dicarboxylic acids display the second highest concentration in the quantified homologues with hexanedioic acid being predominant, followed by nonanedioic acid. Cmax of n-alkanes occurs at C25, but they still appear relative higher concentrations at C29 and C31. In addition, both levoglucosan and cholesterol are quantified. The relationship of concentrations of unsaturated fatty acids (C16 and C18) with a double bond at C9 position and C9 acids indicates the reduction of the unsaturated fatty acids in the emissions could form the C9 acids. Moreover, the nonlinear fit indicates that other C9 species or other compounds are also produced, except for the C9 acids. The potential candidates of tracers for the emissions from Western-fast food cooking could be: tetradecanoic acid, hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, nonanal, lactones, levoglucosan, hexanedioic acid and nonanedioic acid.

  7. Complexity analysis in particulate matter measurements

    Directory of Open Access Journals (Sweden)

    Luciano Telesca

    2011-09-01

    Full Text Available We investigated the complex temporal fluctuations of particulate matter data recorded in London area by using the Fisher-Shannon (FS information plane. In the FS plane the PM10 and PM2.5 data are aggregated in two different clusters, characterized by different degrees of order and organization. This results could be related to different sources of the particulate matter.

  8. Measurement of emissions of fine particulate organic matter from Chinese cooking

    Science.gov (United States)

    He, Ling-Yan; Hu, Min; Huang, Xiao-Feng; Yu, Ben-De; Zhang, Yuan-Hang; Liu, De-Quan

    Cooking emissions may contribute significantly to atmospheric organic particles in urban environment in China, and thus need to be examined first for its chemical compositions and characteristics. The particulate organic emissions of the two cooking styles of Chinese cuisine, that is, Hunan Cooking and Cantonese Cooking, were characterized in Shenzhen. More than half of the PM 2.5 mass is due to organic compounds, and over 90 species of organic compounds were identified and quantified, accounting for 26.1% of bulk organic particle mass and 20.7% of PM 2.5. Fatty acids, diacids and steroids were the major organic compounds emitted from both styles of cooking. Of the quantified organic mass, over 90% was fatty acids. The mass of organic species, and the molecular distribution of n-alkanes and PAHs indicated the dissimilarities between the two different cooking styles, but generally the major parts of the organic particulate emissions of the two restaurants were similar, showing less difference than between Chinese and American cooking.

  9. Nutrient variations and isotopic evidences of particulate organic matter provenance in fringing reefs, South China

    International Nuclear Information System (INIS)

    Cao, Di; Cao, Wenzhi; Liang, Ying; Huang, Zheng

    2016-01-01

    Nutrient over-enrichment is considered to be one of the causes of coral decline. Increase in traditional fishing in the Xuwen National Coral Reefs Reserve tract (XW) and tourism around the Sanya National Coral Reefs Reserve tract (SY) are causing this coral decline. This study reviews the current state of knowledge of the nutrient status of coastal fringing reefs in South China and evaluates the primary sources of nutrients using stable isotope method. Surveys of seawater nutrients showed that the seawater remained clean in both the XW and SY coastal coral reef areas. Based on the isotopic differences between anthropogenic sewage and naturally occurring aquatic nutrients, the isotopic values of particulate organic matter (POM) and the C/N ratios were successfully used to identify the presence of anthropogenic nutrients in aquatic environments. The δ"1"3C, δ"1"5N and C/N compositions of POM from XW and SY (− 21.18 ± 2.11‰, 10.30 ± 5.54‰, and 5.35 ± 0.69 and − 20.80 ± 1.34‰, 7.06 ± 3.95‰, and 5.77 ± 2.15, respectively) showed statistically significant variations with the season. The δ"1"3C and δ"1"5N values of POM suggest marine and terrestrial-derived nutrient sources. Organic carbon is a mixture of marine phytoplankton, marine benthic algae and terrestrial-derived plants. The δ"1"5N values suggest terrestrial-derived sewage and upwelling-dominated nitrogen sources. In the presence of natural upwelling and coastal currents, coastal coral reef areas are more vulnerable to the increasing anthropogenic nutrient inputs. Anthropogenic activities might lead to large increases in the nutrient concentrations and could trigger the shift from coral- to macroalgae-dominated ecosystems, which would ultimately result in the degradation of the coastal coral reef ecosystem. These results provide some understanding of the declining coral reef ecosystem and the importance of conservation areas and coastal coral reef resource management. - Highlights: • The

  10. Nutrient variations and isotopic evidences of particulate organic matter provenance in fringing reefs, South China

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Di; Cao, Wenzhi, E-mail: wzcao@xmu.edu.cn; Liang, Ying; Huang, Zheng

    2016-10-01

    Nutrient over-enrichment is considered to be one of the causes of coral decline. Increase in traditional fishing in the Xuwen National Coral Reefs Reserve tract (XW) and tourism around the Sanya National Coral Reefs Reserve tract (SY) are causing this coral decline. This study reviews the current state of knowledge of the nutrient status of coastal fringing reefs in South China and evaluates the primary sources of nutrients using stable isotope method. Surveys of seawater nutrients showed that the seawater remained clean in both the XW and SY coastal coral reef areas. Based on the isotopic differences between anthropogenic sewage and naturally occurring aquatic nutrients, the isotopic values of particulate organic matter (POM) and the C/N ratios were successfully used to identify the presence of anthropogenic nutrients in aquatic environments. The δ{sup 13}C, δ{sup 15}N and C/N compositions of POM from XW and SY (− 21.18 ± 2.11‰, 10.30 ± 5.54‰, and 5.35 ± 0.69 and − 20.80 ± 1.34‰, 7.06 ± 3.95‰, and 5.77 ± 2.15, respectively) showed statistically significant variations with the season. The δ{sup 13}C and δ{sup 15}N values of POM suggest marine and terrestrial-derived nutrient sources. Organic carbon is a mixture of marine phytoplankton, marine benthic algae and terrestrial-derived plants. The δ{sup 15}N values suggest terrestrial-derived sewage and upwelling-dominated nitrogen sources. In the presence of natural upwelling and coastal currents, coastal coral reef areas are more vulnerable to the increasing anthropogenic nutrient inputs. Anthropogenic activities might lead to large increases in the nutrient concentrations and could trigger the shift from coral- to macroalgae-dominated ecosystems, which would ultimately result in the degradation of the coastal coral reef ecosystem. These results provide some understanding of the declining coral reef ecosystem and the importance of conservation areas and coastal coral reef resource management

  11. Visualization of soil particulate organic matter by means of X-ray CT?

    Science.gov (United States)

    Sleutel, Steven; Van Loo, Denis; Maenhout, Peter; Van Hoorebeke, Luc; Cnudde, Veerle; De Neve, Stefaan

    2014-05-01

    composition of the soil mineral matrix. Furthermore, techniques such as multiple-energy scanning and K-edge imaging, even in the future perhaps in combination with spectral resolving detectors or spectroscopic techniques can could further enhance the potential benefit from this study of X-ray CT staining agents. The high Z elements of the staining agents have unique and characteristic traits that can be detected or quantified with the abovementioned techniques and methods. We conclude that, given resolution limits and inherent presence of partial volume effects staining, X-ray CT-based localization of discrete SOM particles will be limited to a lower limit of 20-50 µm. Still, the improved 3D visualization of OM and soil pore space opens up possibilities for tailored lab experiments with measures of microbial activity, which could generate new insights in carbon cycling at small scales. In addition, we report on a lab incubation experiment in which CO2 respiration from soil cores was monitored (headspace GC analysis) and an X-ray CT approach yielded soil pore size distributions. We incubated a sandy loam soil (with application of ground grass or sawdust) in 18 small aluminium rings (Ø 1 cm, h 1 cm). Bulk density was adjusted to 1.1 or 1.3 Mg m-3 (compaction) and 6 rings were filled at a coarser Coarse Sand:Fine Sand:Silt+Clay ratio. While compaction induced a strong reduction in the cumulative C mineralization for both grass and sawdust substrates, artificial change to a coarser soil texture only reduced net C mineralization from the added sawdust. There thus appears to be a strong interaction effect between soil pore structure and substrate type on substrate decomposition. Correlation coefficients between the C mineralization rates and volumes of 7 pore size classes (from the X-ray CT data) also showed an increasing positive correlation with increasing pore size. Since any particulate organic matter initially present in the soil was removed prior to the experiment (sieving

  12. Seasonal and spatial distribution of particulate organic matter in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, L.; Bhosle, N.B.; Matondkar, S.G.P.; Bhushan, R.

    spatial differences were observed for the offshore stations in SPIM (Table 1). 3.4. POC and % POC In the Bay of Bengal, the surface POC concentrations ranged from 4.3 to 11.1 µMC, 3.1 to 10.9 µMC, and 4.3 to 9.0 µMC in the SWM, FIM, and SPIM.... This is NIO contribution no. 4435. 10 References Bale, A., Morris, A., 1998. Organic carbon in suspended particulate material in the North Sea: effect of mixing resuspended and background particles. Cont. Shelf Res. 18, 1333 –1345. Bates, N. R., Dennis, A...

  13. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India: Implications for biogeochemical processes

    Digital Repository Service at National Institute of Oceanography (India)

    Bardhan, P.; Naqvi, S.W.A.; Karapurkar, S.G.; Shenoy, D.M.; Kurian, S.; Naik, H.

    , 767–779, 2017 www.biogeosciences.net/14/767/2017/ doi:10.5194/bg-14-767-2017 © Author(s) 2017. CC Attribution 3.0 License. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India: implications... basis. Samples for nitrate isotopic measurements were col- lected from 2011. The facility for nitrate isotope analysis was Biogeosciences, 14, 767–779, 2017 www.biogeosciences.net/14/767/2017/ P. Bardhan et al.: Isotopic composition of nitrate and POM...

  14. Chemical composition of phytoplankton and Particulate Organic Matter in the Ría de Vigo (NW Spain

    Directory of Open Access Journals (Sweden)

    A. F. Ríos

    1998-09-01

    Full Text Available Elemental (C, H, O, N, Si, P and biochemical composition (proteins, carbohydrates, lipids, phosphorus compounds, chlorophyll and opal in particulate organic matter, diatoms, other autotrophs, heterotrophs and detritus from natural plankton were established simultaneously by measuring relatively few components. Using standard techniques in marine chemistry on board ship, it is possible to infer a great deal about the composition and condition of the plankton. In addition, the organic matter content in terms of cell volume was determined for each group of plankton. Variation of chemical composition with depth was also considered. The ratio carbohydrates/lipids (Cbh/Lip was used as an indicator of the chemical quality of the plankton.

  15. Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient

    Science.gov (United States)

    Todd A. Ontl; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka

    2015-01-01

    Bioenergy crops have the potential to enhance soil carbon (C) pools from increased aggregation and the physical protection of organic matter; however, our understanding of the variation in these processes over heterogeneous landscapes is limited. In particular, little is known about the relative importance of soil properties and root characteristics for the physical...

  16. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway

    International Nuclear Information System (INIS)

    Sysalová, Jiřina; Sýkorová, Ivana; Havelcová, Martina; Száková, Jiřina; Trejtnarová, Hana; Kotlík, Bohumil

    2012-01-01

    Urban particulate matter was collected in the most exposed area of Prague, near a busy highway, in order to provide petrographic and chemical characterization useful for health impact assessment in that locality or other applications. Samples were collected from filters of the air conditioning system in two years, 2009 and 2010, and sieved into four grain-size fractions: 0.507–0.119 mm, 0.119–0.063 mm, 3 extracted solutions. A composition of inorganic and carbonaceous particles of natural and anthropogenic origin and their morphology were studied by optical and electron microscopy. Organic solvent extracts of the samples were analyzed using gas chromatography to compare the organic compound distribution in fractions. Only slight differences between 2009 and 2010 years are visible. The relatively high extractable part of most investigated elements confirms mobility and potential availability to organisms. The changes can be recognized in the petrographic and organic composition in samples from both years, which were likely the result of various inputs of source materials. Specific organic marker compounds indicate contribution from fossil fuels, plant materials and bacteria. -- Highlights: ► Uncommon urban particulate matter collected near the highway in years 2009 and 2010 was deeply characterized. ► Harmful organic compounds and toxic analytes were tested in grain-size fractions and completed with electron microscopy studies. ► Very similar concentration levels were found in elemental composition in samples from two years. ► Petrographic and organic compositions were different in both samples. ► Relatively high mobility of selected analytes was found in 2M HNO 3 extracted solutions.

  17. Origin, composition and quality of suspended particulate organic matter in relation to freshwater inflow in a South Texas estuary

    Science.gov (United States)

    Lebreton, Benoit; Beseres Pollack, Jennifer; Blomberg, Brittany; Palmer, Terence A.; Adams, Leslie; Guillou, Gaël; Montagna, Paul A.

    2016-03-01

    South Texas has a semi-arid climate with a large interannual variability of freshwater inflows. This study sought to define how changes in freshwater inflow affect the composition, quantity and quality of suspended particulate organic matter (SPOM) in a South Texas estuary: the Mission-Aransas estuary. The study was implemented 1.5 months after a large rain event in September 2010 and continued for 10 months of drought conditions. The composition of SPOM originating from rivers, the Gulf of Mexico and the estuary were determined using stable isotopes (δ13C, δ15N and δ34S). The quantity and quality of SPOM were assessed using organic carbon content, chlorophyll a concentrations and C/chl a ratios. Our results demonstrated that autochthonous phytoplankton was the dominant component of SPOM in the Mission-Aransas estuary during droughts. Benthic organic matter from local primary producers (i.e., seagrass, salt marsh plants, benthic microalgae) did not influence SPOM composition, either as fresh material or as detritus. A comparison with a positive estuary (i.e., Sabine-Neches estuary, TX) indicates that decreases in freshwater inflow may lead to decreases of terrestrial organic matter inputs and to increase the ratio of autochtonous phytoplanktonic material in SPOM.

  18. From Solute, Fluidic and Particulate Precursors to Complex Organizations of Matter.

    Science.gov (United States)

    Rao, Ashit; Cölfen, Helmut

    2018-03-24

    The organization of matter from its constitutive units recruits intermediate states with distinctive degrees of self-association and molecular order. Existing as clusters, droplets, gels as well as amorphous and crystalline nanoparticles, these precursor forms have fundamental contributions towards the composition and structure of inorganic and organic architectures. In this personal account, we show that the transitions from atoms, molecules or ionic species to superstructures of higher order are intertwined with the interfaces and interactions of precursor and intermediate states. Structural organizations distributed across different length scales are explained by the multistep nature of nucleation and crystallization, which can be guided towards functional hybrid materials by the strategic application of additives, templates and reaction environments. Thus, the non-classical pathways for material formation and growth offer conceptual frameworks for elucidating, inducing and directing fascinating material organizations of biogenic and synthetic origins. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Toxic potential of organic constituents of submicron particulate matter (PM1) in an urban road site (Barcelona).

    Science.gov (United States)

    Mesquita, Sofia R; van Drooge, Barend L; Dall'Osto, Manuel; Grimalt, Joan O; Barata, Carlos; Vieira, Natividade; Guimarães, Laura; Piña, Benjamin

    2017-06-01

    Atmospheric particulate matter (PM) is a recognized risk factor contributing to a number of diseases in human populations and wildlife globally. Organic matter is a major component of PM, but its contribution to overall toxicity of PM has not been thoroughly evaluated yet. In the present work, the biological activity of organic extracts from PM1 (particles with less than 1 μm of aerodynamic diameter) collected from an urban road site in the centre of Barcelona (NE Spain) was evaluated using a yeast-based assay (AhR-RYA) and different gene expression markers in zebrafish embryos. Dioxin-like activity of the extracts correlated to primary emissions from local traffic exhausts, reflecting weekday/weekend alternance. Expression levels of cyp1a and of gene markers for key cellular processes and development (ier2, fos) also correlated to vehicle emissions, whereas expression of gene markers related to antioxidant defence and endocrine effects (gstal, hao1, ttr) was strongly reduced in samples with strong contribution from regional air masses with aged secondary organic species or with strong influence of biomass burning emissions. Our data suggest that the toxic potential of PM1 organic chemical constituents strongly depends on the emission sources and on the process of ageing from primary to secondary organic aerosols.

  20. Analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Iwatsuki, Masaaki

    2002-01-01

    An airborne particulate matter (APM) consists of many kinds of solid and liquid particles in air. APM analysis methods and the application examples are explained on the basis of paper published after 1998. Books and general remarks, sampling and the measurement of concentration and particle distribution, elemental analysis methods and the present state of analysis of species are introduced. Tapered Element Oscillating Microbalance (TEOM) method can collect continuously the integrating mass, but indicates lower concentration. Cu, Ni, Zn, Co, Fe(2), Mn, Cd, Fe(3) and Pb, the water-soluble elements, are determined by ion-chromatography after ultrasonic extraction of the aqueous solution. The detection limit of them is from 10 to 15 ppb (30 ppb Cd and 60 ppb Pb). The elemental carbon (EC) and organic carbon (OC) are separated by the thermal mass measurement-differential scanning calorimeter by means of keeping at 430degC for 60 min. 11 research organizations compared the results of TC (Total Carbon) and EC by NIOSH method 5040 and the thermal method and obtained agreement of TC. ICP-MS has been developed in order to determine correctly and quickly the trace elements. The determination methods for distinction of chemical forms in the environment were developed. GC/MS, LC/MS and related technologies for determination of organic substances are advanced. Online real-time analysis of APN, an ideal method, is examined. (S.Y.)

  1. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged Between a Salt Marsh and Its Adjacent Estuary

    Science.gov (United States)

    Osburn, C. L.; Mikan, M.; Etheridge, J. R.; Burchell, M. R.; Birgand, F.

    2015-12-01

    Salt marshes are transitional ecosystems between terrestrial and marine environments. Along with mangroves and other vegetated coastal habitats, salt marshes rank among the most productive ecosystems on Earth, with critical global importance for the planet's carbon cycle. Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October of 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components modeled, we used multiple linear regression to identify tracers for recalcitrant DOM; labile soil-derived source DOM; detrital POM; and planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Using the DOM and POM quality results obtained via fluorescence measurements and scaling up to global salt marsh area, we estimated that the potential release of CO2 from the respiration of salt marsh DOC and POC transported to estuaries could be 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  2. Particulate Matter: a closer look

    NARCIS (Netherlands)

    Buijsman E; Beck JP; Bree L van; Cassee FR; Koelemeijer RBA; Matthijsen J; Thomas R; Wieringa K; LED; MGO

    2005-01-01

    The summary in booklet form 'Fijn stof nader bekeken' (Particulate Matter: a closer look) , published in Dutch by the Netherlands Environmental Assessment Agency (MNP) and the Environment and Safety Division of the National Institute for Public Health and the Environment (RIVM), has been designed to

  3. Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003

    Science.gov (United States)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.

    2013-02-01

    PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.

  4. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  5. Diagenetic fractionation of carbon isotopes in particulate and dissolved organic matter in sediments from Skan Bay, Alaska

    International Nuclear Information System (INIS)

    Alperin, M.J.; Reeburgh, W.S.

    1991-01-01

    Isotope fractionation during organic matter diagenesis was investigated by measuring detailed depth distributions of stable carbon isotope ratios in sediment particulate organic carbon (POC) and dissolved organic carbon (DOC) reservoirs. The δ 13 C value of the POC shifted systematically from -19 per-thousand at the surface to -21 per-thousand at 10 cm. Significant trends were also apparent in the δ 13 C-DOC profile. Proceeding down-core, DOC became isotopically heavier between 0 and 5 cm and isotopically lighter at greater depths. Two mechanisms could account for the observed down-core shift in δ 13 C-POC: (a) temporal changes in the isotope ratios of deposited organic matter and (b) isotope fractionation associated with diagenesis. The δ 15 C-DOC depth distribution is sensitive to which mechanism controls the isotopic composition of the POC reservoir. A diagenetic model that couples POC and DOC reservoirs was used to discriminate between temporal changes and diagenetic alteration of the POC isotopic composition. The model indicated that observed trends in δ 13 C-POC and δ 13 C-DOC depth distributions are consistent with isotopic fractionation of POC during diagenesis

  6. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway.

    Science.gov (United States)

    Sysalová, Jiřina; Sýkorová, Ivana; Havelcová, Martina; Száková, Jiřina; Trejtnarová, Hana; Kotlík, Bohumil

    2012-10-15

    Urban particulate matter was collected in the most exposed area of Prague, near a busy highway, in order to provide petrographic and chemical characterization useful for health impact assessment in that locality or other applications. Samples were collected from filters of the air conditioning system in two years, 2009 and 2010, and sieved into four grain-size fractions: 0.507-0.119 mm, 0.119-0.063 mm, origin and their morphology were studied by optical and electron microscopy. Organic solvent extracts of the samples were analyzed using gas chromatography to compare the organic compound distribution in fractions. Only slight differences between 2009 and 2010 years are visible. The relatively high extractable part of most investigated elements confirms mobility and potential availability to organisms. The changes can be recognized in the petrographic and organic composition in samples from both years, which were likely the result of various inputs of source materials. Specific organic marker compounds indicate contribution from fossil fuels, plant materials and bacteria. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan

    International Nuclear Information System (INIS)

    Liu, K.-K.; Kao, S.-J.; Wen, L.-S.; Chen, K.-L.

    2007-01-01

    The Danshuei Estuary is distinctive for the relatively short residence time (1-2 d) of its estuarine water and the very high concentration of ammonia, which is the dominant species of dissolved inorganic nitrogen in the estuary, except near the river mouth. These characteristics make the dynamics of nitrogen cycling distinctively different from previously studied estuaries and result in unusual isotopic compositions of particulate nitrogen (PN). The δ 15 N PN values ranging from - 16.4 per mille to 3.8 per mille lie in the lower end of nitrogen isotopic compositions (- 16.4 to + 18.7 per mille ) of suspended particulate matter observed in estuaries, while the δ 13 C values of particulate organic carbon (POC) and the C/N (organic carbon to nitrogen) ratios showed rather normal ranges from - 25.5 per mille to - 19.0 per mille and from 6.0 to 11.3, respectively. There were three major types of particulate organic matter (POM) in the estuary: natural terrigenous materials consisting mainly of soils and bedrock-derived sediments, anthropogenic wastes and autochthonous materials from the aquatic system. During the typhoon induced flood period in August 2000, the flux-weighted mean of δ 13 C POC values was - 24.4 per mille , that of δ 15 N PN values was + 2.3 per mille and that of C/N ratio was 9.3. During non-typhoon periods, the concentration-weighted mean was - 23.6 per mille for δ 13 C POC , - 2.6 per mille for δ 15 N PN and 8.0 for C/N ratio. From the distribution of δ 15 N PN values of highly polluted estuarine waters, we identified the waste-dominated samples and calculated their mean properties: δ 13 C POC value of - 23.6 ± 0.7 per mille , δ 15 N PN value of - 3.0 ± 0.1 per mille and C/N ratio of 8.0 ± 1.4. Using a three end-member mixing model based on δ 15 N PN values and C/N ratios, we calculated contributions of the three major allochthonous sources of POC, namely, wastes, soils and bedrock-derived sediments, to the estuary. Their contributions

  8. Nighttime residential wood burning evidenced from an indirect method for estimating real-time concentration of particulate organic matter (POM)

    International Nuclear Information System (INIS)

    Sciare, J.; Sarda-Esteve, R.; Favez, O.; Cachier, H.; Aymoz, G.; Laj, P.

    2008-01-01

    Real-time analyzers of selected chemical components (sulfate, nitrate, Black Carbon) and integrative aerosol parameters (particulate matter and light scattering coefficient) were implemented for a 2-week campaign (November-December 2005) in a suburban area of Clermont-Ferrand (France) in order to document fast changes in the chemical composition of submicron aerosols. Measurements of particulate organic matter (POM) were not available in the field but were indirectly estimated from time-resolved (3-min) reconstruction of the light scattering coefficient. This methodology offered the opportunity to investigate almost real-time and artifact-free POM concentrations even at low concentrations (typically below 0.1 mu g m(-3)). The overall uncertainties associated with this POM calculation were of the order of 20%, which are comparable to those commonly referred in literature for POM calculation or measurements. A chemical mass balance (CMB) of PM1 was performed using the derived POM concentrations and showed a very good correlation (slope = 0.93; r(2) = 0.91, N = 663) with real-time PM1 measurements obtained from R and P TEOM-FDMS, demonstrating the consistency of our approach. Important diurnal variations were observed in POM concentrations, with a dominant contribution of POM from fossil fuel origin during daytime and a dominant contribution of POM from residential wood burning at night. POM was calculated to contribute as much as 70% of PM1 during our study, pointing out the major role of carbonaceous aerosols at this period of the year at our residential area. (authors)

  9. Origin and fate of particulate and dissolved organic matter in a naturally iron-fertilized region of the Southern Ocean

    Science.gov (United States)

    Tremblay, L.; Caparros, J.; Leblanc, K.; Obernosterer, I.

    2015-01-01

    Natural iron fertilization of high-nutrient low-chlorophyll (HNLC) waters induces annually occurring spring phytoplankton blooms off the Kerguelen Islands (Southern Ocean). To examine the origin and fate of particulate and dissolved organic matter (POM and DOM), D- and L-amino acids (AA) were quantified at bloom and HNLC stations. Total hydrolyzable AA accounted for 21-25% of surface particulate organic carbon (%POCAA) at the bloom sites, but for 10% at the HNLC site. A marked decrease in %POCAA with depth was observed at the most productive stations leading to values between 3 and 5% below 300 m depth. AA contributed to only 0.9-4.4% of dissolved organic carbon (%DOCAA) at all stations. The only consistent vertical trend was observed at the most productive station (A3-2) where %DOCAA decreased from ~ 2% in the surface waters to 0.9% near 300 m. These AA yields revealed that POM and DOM were more rapidly altered or mineralized at the bloom sites compared to the HNLC site. Alteration state was also assessed by trends in C / N ratio, %D-AA and degradation index. Different molecular markers indicated that POM mostly originated from diatoms and bacteria. The estimated average proportion of POM from intact phytoplankton cells in surface waters was 45% at the bloom station A3-2, but 14% at the HNLC site. Estimates based on D-AA yields indicated that ~ 15% of POM and ~ 30% of DOM was of bacterial origin (cells and cell fragments) at all stations. Surprisingly, the DOM in HNLC waters appeared less altered than the DOM from the bloom, had slightly higher dissolved AA concentrations, and showed no sign of alteration within the water column. Unfavorable conditions for bacterial degradation in HNLC regions can explain these findings. In contrast, large inputs of labile organic molecules and iron likely stimulate the degradation of organic matter (priming effect) and the production of more recalcitrant DOM (microbial carbon pump) during iron-fertilized blooms.

  10. Enhanced Input of Terrestrial Particulate Organic Matter Reduces the Resilience of the Clear-Water State of Shallow Lakes: A Model Study

    NARCIS (Netherlands)

    Lischke, B.; Hilt, S.; Janse, J.H.; Kuiper, J.J.; Mehner, T.; Mooij, W.M.; Gaedke, U.

    2014-01-01

    The amount of terrestrial particulate organic matter (t-POM) entering lakes is predicted to increase as a result of climate change. This may especially alter the structure and functioning of ecosystems in small, shallow lakes which can rapidly shift from a clear-water, macrophyte-dominated into a

  11. Chemical characterization of organic particulate matter from on-road traffic in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    B. S. Oyama

    2016-11-01

    Full Text Available This study reports emission of organic particulate matter by light-duty vehicles (LDVs and heavy-duty vehicles (HDVs in the city of São Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25 % ethanol (called gasohol, E25, hydrated ethanol (E100, and diesel (with 5 % biodiesel. The experiments were performed at two tunnels: Jânio Quadros (TJQ, where 99 % of the vehicles are LDVs, and RodoAnel Mário Covas (TRA, where up to 30 % of the fleet are HDVs. Fine particulate matter (PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively. The samples were analyzed by thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS and by thermal–optical transmittance (TOT. Emission factors (EFs for organic aerosol (OA and organic carbon (OC were calculated for the HDV and the LDV fleet. We found that HDVs emitted more PM2.5 than LDVs, with OC EFs of 108 and 523 mg kg−1 burned fuel for LDVs and HDVs, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDVs and LDVs exhibited distinct features. Unique organic tracers for gasoline, biodiesel, and tire wear have been tentatively identified. nitrogen-containing compounds contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning or fast secondary production. Additionally, 70 and 65 % of the emitted mass (i.e. the OA originates from oxygenated compounds from LDVs and HDVs, respectively. This may be a consequence of the high oxygen content of the fuel. On the other hand, additional oxygenation may occur during fuel combustion. The high fractions of nitrogen- and oxygen-containing compounds show that chemical processing close to the engine / tailpipe region is an important factor influencing primary OA emission. The thermal-desorption analysis showed that HDVs emitted compounds with higher volatility, and with

  12. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway

    Czech Academy of Sciences Publication Activity Database

    Sysalová, J.; Sýkorová, Ivana; Havelcová, Martina; Száková, J.; Trejtnarová, Hana; Kotlík, B.

    2012-01-01

    Roč. 437, October (2012), s. 127-136 ISSN 0048-9697 R&D Projects: GA ČR GA205/09/1162 Institutional support: RVO:67985891 Keywords : urban particulate matter * grain- size partitioning * grain- size partitioning Subject RIV: DI - Air Pollution ; Quality Impact factor: 3.258, year: 2012

  13. Particulate organic matter in the coastal and estuarine waters of Goa and its relationship with phytoplankton production

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Qasim, S.Z.

    In the coastal and estuarine waters of Goa, particulate organic carbon (POC) varied from 0.52 to 2.51 mg l-1 and from 0.28 to 5.24 mg l-1 and particulate phosphorus (PP) varied from 0.71 to 5.18 mu g l-1 and from 0.78 to 20.34 mu g l-1, respectively...

  14. New approach to measure soil particulate organic matter in intact samples using X-ray computed micro-tomography

    Science.gov (United States)

    Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja

    2014-05-01

    Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size

  15. Study of the removal difference in indoor particulate matter and volatile organic compounds through the application of plants

    Directory of Open Access Journals (Sweden)

    Seung-Han Hong

    2017-02-01

    Full Text Available This study was conducted to evaluate the ability of plants to purify indoor air by observing the effective reduction rate among pollutant types of particulate matter (PM and volatile organic compounds (VOCs. PM and four types of VOCs were measured in a new building that is less than three years old and under three different conditions: before applying the plant, after applying the plant, and a room without a plant. The removal rate of each pollutant type due to the plant was also compared and analyzed. In the case of indoor PM, the removal effect was negligible because of outdoor influence. However, 9% of benzene, 75% of ethylbenzene, 72% of xylene, 75% of styrene, 50% of formaldehyde, 36% of acetaldehyde, 35% of acrolein with acetone, and 85% of toluene were reduced. The purification of indoor air by natural ventilation is meaningless because the ambient PM concentration has recently been high. However, contamination by gaseous materials such as VOCs can effectively be removed through the application of plants.

  16. Source apportionment of airborne particulate matter using organic compounds as tracers

    Science.gov (United States)

    Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.

  17. Short term variations in particulate matter in Mahi river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Rokade, M.A.; Zingde, M.D.

    The particulate matter (PM) collected from Mahi River Estuary was analysed for organic carbon (POC), nitrogen (PON), and chlorophyll a (Chl a). The concentration of PM, POC, PON and Chl a showed short term variations. Average surface concentration...

  18. Organic and elemental carbon bound to particulate matter in the air of printing office and beauty salon

    Science.gov (United States)

    Rogula-Kopiec, Patrycja; Pastuszka, Józef S.; Rogula-Kozłowska, Wioletta; Mucha, Walter

    2017-11-01

    The aim of this study was to determine the role of internal sources of emissions on the concentrations of total suspended particulate matter (TSP) and its sub-fraction, so-called respirable PM (PM4; fraction of particles with particle size ≤ 4 µm) and to estimate to which extent those emissions participate in the formation of PM-bound elemental (EC) and organic (OC) carbon in two facilities - one beauty salon and one printing office located in Bytom (Upper Silesia, Poland). The average concentration of PM in the printing office and beauty salon during the 10-day measurement period was 10 and 4 (PM4) and 8 and 3 (TSP) times greater than the average concentration of PM fractions recorded in the same period in the atmospheric air; it was on average: 204 µg/m3 (PM4) and 319 µg/m3 (TSP) and 93 µg/m3 (PM4) and 136 µg/m3 (TSP), respectively. OC concentrations determined in the printing office were 38 µg/m3 (PM4) and 56 µg/m3 (TSP), and those referring to EC: 1.8 µg/m3 (PM4) and 3.5 µg/m3 (TSP). In the beauty salon the average concentration of OC for PM4 and TSP were 58 and 75 µg/m3, respectively and in case of EC - 3.1 and 4.7 µg/m3, respectively. The concentrations of OC and EC within the those facilities were approximately 1.7 (TSP-bound EC, beauty salon) to 4.7 (TSP-bound OC, printing office) times higher than the average atmospheric concentrations of those compounds measured in both PM fractions at the same time. In both facilities the main source of TSP-and PM4-bound OC in the indoor air were the chemicals - solvents, varnishes, paints, etc.

  19. New method to determine the total carbonyl functional group content in extractable particulate organic matter by tandem mass spectrometry.

    Science.gov (United States)

    Dron, J; Zheng, W; Marchand, N; Wortham, H

    2008-08-01

    A functional group analysis method was developed to determine the quantitative content of carbonyl functional groups in atmospheric particulate organic matter (POM) using constant neutral loss scanning-tandem mass spectrometry (CNLS-MS/MS). The neutral loss method consists in monitoring the loss of a neutral fragment produced by the fragmentation of a precursor ion in a collision cell. The only ions detected are the daughter ions resulting from the loss of the neutral fragment under study. Then, scanning the loss of a neutral fragment characteristic of a functional group enables the selective detection of the compounds bearing the chemical function under study within a complex mixture. The selective detection of carbonyl functional groups was achieved after derivatization with pentafluorophenylhydrazine (PFPH) by monitoring the neutral loss of C(6)F(5)N (181 amu), which was characteristic of a large panel of derivatized carbonyl compounds. The method was tested on 25 reference mixtures of different composition, all containing 24 carbonyl compounds at randomly determined concentrations. The repeatability and calibration tests were satisfying as they resulted in a relative standard deviation below 5% and a linear range between 0.01 and 0.65 mM with a calculated detection limit of 0.0035 mM. Also, the relative deviation induced by changing the composition of the mixture while keeping the total concentration of carbonyl functional groups constant was less than 20%. These reliability experiments demonstrate the high robustness of the developed procedure for accurate carbonyl functional group measurement, which was applied to atmospheric POM samples. Copyright (c) 2008 John Wiley & Sons, Ltd.

  20. Concentrations of volatile organic compounds, carbon monoxide, carbon dioxide and particulate matter in buses on highways in Taiwan

    Science.gov (United States)

    Hsu, Der-Jen; Huang, Hsiao-Lin

    2009-12-01

    Although airborne pollutants in urban buses have been studied in many cities globally, long-distance buses running mainly on highways have not been addressed in this regard. This study investigates the levels of volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO 2) and particulate matter (PM) in the long-distance buses in Taiwan. Analytical results indicate that pollutants levels in long-distance buses are generally lower than those in urban buses. This finding is attributable to the driving speed and patterns of long-distance buses, as well as the meteorological and geographical features of the highway surroundings. The levels of benzene, toluene, ethylbenzene and xylene (BTEX) found in bus cabins exceed the proposed indoor VOC guidelines for aromatic compounds, and are likely attributable to the interior trim in the cabins. The overall average CO level is 2.3 ppm, with higher average level on local streets (2.9 ppm) than on highways (2.2 ppm). The average CO 2 level is 1493 ppm, which is higher than the guideline for non-industrial occupied settings. The average PM level in this study is lower than those in urban buses and IAQ guidelines set by Taiwan EPA. However, the average PM 10 and PM 2.5 is higher than the level set by WHO. Besides the probable causes mentioned above, fewer passenger movements and less particle re-suspension from bus floor might also cause the lower PM levels. Measurements of particle size distribution reveal that more than 75% of particles are in submicron and smaller sizes. These particles may come from the infiltration from the outdoor air. This study concludes that air exchange rates in long-distance buses should be increased in order to reduce CO 2 levels. Future research on long-distance buses should focus on the emission of VOCs from brand new buses, and the sources of submicron particles in bus cabins.

  1. Assessment of volatile organic compounds and particulate matter in a dental clinic and health risks to clinic personnel.

    Science.gov (United States)

    Hong, Yu-Jue; Huang, Yen-Ching; Lee, I-Long; Chiang, Che-Ming; Lin, Chitsan; Jeng, Hueiwang Anna

    2015-01-01

    This study was conducted to assess (1) levels of volatile organic compounds (VOCs) and particulate matter (PM) in a dental clinic in southern Taiwan and (2) dental care personnel's health risks associated with due to chronic exposure to VOCs. An automatic, continuous sampling system and a multi-gas monitor were employed to quantify the air pollutants, along with environmental comfort factors, including temperature, CO2, and relative humidity at six sampling sites in the clinic over eight days. Specific VOC compounds were identified and their concentrations were quantified. Both non-carcinogenic and carcinogenic VOC compounds were assessed based on the US Environmental Protection Agency's Principles of Health Risk Assessment in terms of whether those indoor air pollutants increased health risks for the full-time dental care professionals at the clinic. Increased levels of VOCs were recorded during business hours and exceeded limits recommended by the Taiwan Environmental Protection Agency. A total of 68 VOC compounds were identified in the study area. Methylene methacrylate (2.8 ppm) and acetone (0.176 ppm) were the only two non-carcinogenic compounds that posed increased risks for human health, yielding hazard indexes of 16.4 and 4.1, respectively. None of the carcinogenic compounds increased cancer risk. All detected PM10 levels ranged from 20 to 150 μg/m(3), which met the Taiwan EPA and international limits. The average PM10 level during business hours was significantly higher than that during non-business hours (P = 0.04). Improved ventilation capacity in the air conditioning system was recommended to reduce VOCs and PM levels.

  2. Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia

    Directory of Open Access Journals (Sweden)

    S. S. de Sá

    2017-06-01

    Full Text Available The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM over tropical forests. Isoprene epoxydiols (IEPOX produced in the gas phase by the oxidation of isoprene under HO2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 h downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Mass spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (IEPOX-SOA factor was associated with PM production by the IEPOX pathway. The IEPOX-SOA factor loadings correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C5-alkene triols and 2-methyltetrols (R = 0. 96 and 0.78, respectively. The factor loading, as well as the ratio f of the loading to organic PM mass concentration, decreased under polluted compared to background conditions. For an increase in NOy concentration from 0.5 to 2 ppb, the factor loading and f decreased by two to three fold. Overall, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of factor loading into subsets based on NOy concentration, the sulfate concentration explained up to 75 % of the variability. Considering both factors, the data sets show that the suppressing effects of increased NO concentrations dominated over the enhancing effects of higher sulfate concentrations. The pollution from Manaus elevated NOy concentrations more significantly than sulfate concentrations relative to background conditions. In this light, increased emissions of nitrogen oxides, as

  3. Quantity and biochemical composition of particulate organic matter in a highly trawled area (Thermaikos Gulf, Eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Antonio Pusceddu

    2015-11-01

    Full Text Available Bottom trawling represents nowadays one of the most severe anthropogenic disturbances at sea, and determines large impacts on benthic communities and processes. Bottom trawling determines also local sediment resuspension and the effects of the injection of large amounts of surface sediments into the water column have been repeatedly investigated. Few studies have assessed the consequences of sediment resuspension caused by bottom trawling on the quantity, biochemical composition and bioavailability of suspended organic particles and how these eventually rival those exerted by natural storms. To provide insights on this poorly addressed issue, we investigated concentrations and biochemical composition of total and enzymatically digestible pools of particulate organic matter (POM in the Thermaikos Gulf (Mediterranean Sea under calm sea conditions, during intensive trawling activities, and after a severe storm. We show here that sediment resuspension caused by trawling can cause large effects on POM quantity, biochemical composition and bioavailability. Both during trawling and after the storm, the relative importance of the carbohydrate pools increased (in the upper water column and the total lipid concentrations decreased (in the intermediate and bottom layers when compared to values measured during calm conditions. These results would suggest that bottom trawling could inject in the upper water column POM pools more refractory in nature (e.g., carbohydrates than those present in calm or after-storm conditions. By contrast, we show also that the bioavailable fraction of biopolymeric C increased significantly during trawling in the upper water column of the shallowest stations and in the bottom water column layer of the deepest ones. These results provide evidence that bottom trawling can influence the overall trophic status of coastal waters, exerting effects similar or stronger than those caused by natural storms, though of variable amplitude

  4. Submicron particulate organic matter in the urban atmosphere: a new method for real-time measurement, molecular-level characterization and source apportionment

    Science.gov (United States)

    Müller, Markus; Eichler, Philipp; D'Anna, Barbara; Tan, Wen; Wisthaler, Armin

    2017-04-01

    We used a novel chemical analytical method for measuring submicron particulate organic matter in the atmosphere of three European cities (Innsbruck, Lyon, Valencia). Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) was used in combination with the "chemical analysis of aerosol online" (CHARON) inlet for detecting particulate organic compounds on-line (i.e. without filter pre-collection), in real-time (1-min time resolution), at ng m-3 concentrations, with molecular-level resolution (i.e. obtaining molecular weight and elemental composition information). The CHARON-PTR-ToF-MS system monitored molecular tracers associated with different particle sources including levoglucosan from biomass combustion, PAHs from vehicular traffic, nicotine from cigarette smoking, and monoterpene oxidation products secondarily formed from biogenic emissions. The tracer information was used for interpreting positive matrix factorization (PMF) data which allowed us to apportion the sources of submicron particulate organic matter in the different urban environments. This work was funded through the PIMMS ITN, which was supported by the European Commission's 7th Framework Programme under grant agreement number 287382.

  5. Analysis of Phytosterols and N-Alkanols in Atmospheric Organic Particulate Matter Collected in Vancouver During the Pacific 2001 Air Quality Study

    Science.gov (United States)

    Leithead, A.; Li, S.

    2002-12-01

    As part of Pacific 2001, HiVol samples were collected from 5 sites in the Vancouver area. The samples were extracted by accelerated solvent extraction (ACE), concentrated with nitrogen blow down, and separated into fractions by silica gel chromatography. For this portion of the study, an aliquot of one of the polar fraction was derivatized with BSTFA and analyzed by GC-FID and GC-MS. The results for n-alkanols and phytosterols will be reported and discussed. Previous studies have shown that the biogenic components of particulate matter are major constituents of the total organic material in atmospheric samples. Phytosterols are present in wood smoke, epicuticular waxes of many plants and microbial sources. In addition, cholesterol has been proposed as a potential tracer for emissions from cooking. The most abundant phytosterols are cholesterol, campesterol, stigmasterol and beta-sitosterol. It has been hypothesized that the phytosterol signature may be useful in identifying particulate matter from different source areas. The phytosterol signature for these samples will be reported and compared. The n-alkanol CPI and Cmax will also be reported. N-alkanols in atmospheric samples generally show a strong even to odd predominance indicating that their main source in particulate matter is biogenic. The n-alkanol signature for each sampling site will be compared.

  6. Tetra- and hexavalent uranium forms bidentate-mononuclear complexes with particulate organic matter in a naturally uranium-enriched peatland

    DEFF Research Database (Denmark)

    Mikutta, Christian; Langner, Peggy; Bargar, John R.

    2016-01-01

    Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work...... of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ∼3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. Our data indicates that U(IV/VI) complexation by natural organic matter prevents...... the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI)....

  7. Solid-state 13C NMR experiments reveal effects of aggregate size on the chemical composition of particulate organic matter in grazed steppe soils

    Science.gov (United States)

    Steffens, M.; Kölbl, A.; Kögel-Knabner, I.

    2009-04-01

    Grazing is one of the most important factors that may reduce soil organic matter (SOM) stocks and subsequently deteriorate aggregate stability in grassland topsoils. Land use management and grazing reduction are assumed to increase the input of OM, improve the soil aggregation and change species composition of vegetation (changes depth of OM input). Many studies have evaluated the impact of grazing cessation on SOM quantity. But until today little is known about the impact of grazing cessation on the chemical quality of SOM in density fractions, aggregate size classes and different horizons. The central aim of this study was to analyse the quality of SOM fractions in differently sized aggregates and horizons as affected by increased inputs of organic matter due to grazing exclusion. We applied a combined aggregate size, density and particle size fractionation procedure to sandy steppe topsoils with different organic matter inputs due to different grazing intensities (continuously grazed = Cg, winter grazing = Wg, ungrazed since 1999 = Ug99, ungrazed since 1979 = Ug79). Three different particulate organic matter (POM; free POM, in aggregate occluded POM and small in aggregate occluded POM) and seven mineral-associated organic matter fractions were separated for each of three aggregate size classes (coarse = 2000-6300 m, medium = 630-2000 m and fine =

  8. Volatile organic compounds and particulate matter in child care facilities in the District of Columbia: Results from a pilot study.

    Science.gov (United States)

    Quirós-Alcalá, L; Wilson, S; Witherspoon, N; Murray, R; Perodin, J; Trousdale, K; Raspanti, G; Sapkota, A

    2016-04-01

    Many young children in the U.S. spend a significant portion of their day in child care facilities where they may be exposed to contaminants linked to adverse health effects. Exposure data on volatile organic compounds (VOCs) and particulate matter (PM) in these settings is scarce. To guide the design of a larger exposure assessment study in urban child care facilities, we conducted a pilot study in which we characterized indoor concentrations of select VOCs and PM. We recruited 14 child care facilities in the District of Columbia (Washington, DC) and measured indoor concentrations of seven VOCs (n=35 total samples; 2-5 samples per facility): benzene, carbon tetrachloride, chloroform, ethylbenzene, o-xylene, p-xylene, and toluene in all facilities; and collected real-time PM measurements in seven facilities. We calculated descriptive statistics for contaminant concentrations and computed intraclass correlation coefficients (ICC) to evaluate the variability of VOC levels indoors. We also administered a survey to collect general health information on the children attending these facilities, and information on general housekeeping practices and proximity of facilities to potential sources of target contaminants. We detected six of the seven VOCs in the majority of child care facilities with detection frequencies ranging from 71% to 100%. Chloroform and toluene were detected in all samples. Median (range) concentrations for toluene, chloroform, benzene, o-xylene, ethylbenzene, and carbon tetrachloride were: 5.6µg/m(3) (0.6-16.5µg/m(3)), 2.8µg/m(3) (0.4-53.0µg/m(3)), 1.4µg/m(3) (below the limit of detection or air fresheners and/or scented candles were used in half of the facilities, and at least one child in each facility had physician-diagnosed asthma (median asthma prevalence rate=10.2%). We found quantifiable levels of VOCs and PM in the child care facilities sampled. Given that exposures to environmental contaminants during critical developmental stages may

  9. Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Christian Wurzbacher

    2016-02-01

    Full Text Available Most streams receive substantial inputs of allochthonous organic material in the form of leaves and twigs (CPOM, coarse particulate organic matter. Mechanical and biological processing converts this into fine particulate organic matter (FPOM. Other sources of particles include flocculated dissolved matter and soil particles. Fungi are known to play a role in the CPOM conversion process, but the taxonomic affiliations of these fungi remain poorly studied. The present study seeks to shed light on the composition of fungal communities on FPOM and CPOM as assessed in a natural stream in Nova Scotia, Canada. Maple leaves were exposed in a stream for four weeks and their fungal community evaluated through pyrosequencing. Over the same period, four FPOM size fractions were collected by filtration and assessed. Particles had much lower ergosterol contents than leaves, suggesting major differences in the extent of fungal colonization. Pyrosequencing documented a total of 821 fungal operational taxonomic units (OTU, of which 726 were exclusive to particles and 47 to leaf samples. Most fungal phyla were represented, including yeast lineages (e.g., Taphrinaceae and Saccharomycotina, Basidiomycota, Chytridiomycota and Cryptomycota, but several classes of Pezizomycontina (Ascomycota dominated. Cluster dendrograms clearly separated fungal communities from leaves and from particles. Characterizing fungal communities may shed some light on the processing pathways of fine particles in streams and broadens our view of the phylogenetic composition of fungi in freshwater ecosystems.

  10. Particulate Matter (Environmental Health Student Portal)

    Science.gov (United States)

    ... that includes curriculum standards, assessments, and lesson rubrics. Sources of Particulate Matter (U.S. Environmental Protection Agency) - Information and activity on interpreting ... U.S. National Library of Medicine National Institutes of Health U.S. Department ...

  11. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  12. Diesel Particulate Matter Polygons, California, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  13. Allegheny County Particulate Matter 2.5

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The U.S. Environmental Protection Agency provides information on the particulate matter concentration for Allegheny County that have a diameter greater or equal to...

  14. Diesel Particulate Matter Polygons, Hawaii, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  15. Diesel Particulate Matter Polygons, Arizona, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  16. Diesel Particulate Matter Polygons, Nevada, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  17. Carbon isotopic ratio of suspended organic matter of the Gironde estuary. Application to particulate Zn and Pb distribution

    International Nuclear Information System (INIS)

    Fontugne, Michel; Jouanneau, J.M.

    1981-01-01

    In the Gironde estuary, the isotopic ratio of particulate organic carbon (P.O.C.), and the ratio metal/P.O.C. indicate the occurrence of two zones. Up-river, the concentration decreases due to the consumption of the organo-metallic phase and by mixing in the ''mud plug'' with terrestrial particles impoverished in metal and P.O.C. Down-stream, the mixing of metal rich terrestrial P.O.C. with poorer marine particles determines the metal concentrations [fr

  18. Radiotracers in the study of marine food chains. The use of compartmental analysis and analog modelling in measuring utilization rates of particulate organic matter by benthic invertebrates

    International Nuclear Information System (INIS)

    Gremare, A.; Amouroux, J.M.; Charles, F.

    1991-01-01

    The present study assesses the problem of recycling when using radiotracers to quantify ingestion and assimilation rates of particulate organic matter by benthic invertebrates. The rapid production of dissolved organic matter and its subsequent utilization by benthic invertebrates constitutes a major bias in this kind of study. However recycling processes may also concern POM through the production and reingestion of faeces. The present paper shows that compartmental analysis of the diffusion kinetics of the radiotracer between the different compartments of the system studied and the analog modelling of the exchanges of radioactivity between compartments may be used in order to determine ingestion and assimilation rates. This method is illustrated by the study of a system composed of the bacteria Lactobacillus sp. and the filter-feeding bivalve Venerupis decussata. The advantages and drawbacks of this approach relative to other existing methods are briefly discussed. (Author)

  19. Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter

    Czech Academy of Sciences Publication Activity Database

    Angst, Gerrit; Mueller, K.E.; Kögel-Knabner, I.; Freeman, K.H.; Mueller, C.W.

    2017-01-01

    Roč. 132, č. 3 (2017), s. 307-324 ISSN 0168-2563 Institutional support: RVO:60077344 Keywords : incubation * physical fractionation * GC/MS * C-13 NMR * CuO * soil organic matter Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 3.428, year: 2016

  20. Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level.

    Science.gov (United States)

    Grabowsky, Jana; Streibel, Thorsten; Sklorz, Martin; Chow, Judith C; Watson, John G; Mamakos, Athanasios; Zimmermann, Ralf

    2011-12-01

    The carbonaceous fraction of airborne particulate matter (PM) is of increasing interest due to the adverse health effects they are linked to. Its analytical ascertainment on a molecular level is still challenging. Hence, analysis of carbonaceous fractions is often carried out by determining bulk parameters such as the overall content of organic compounds (OC) and elemental carbon (EC) as well as the total carbon content, TC (sum of OC and EC), however, no information about the individual substances or substance classes, of which the single fractions consist can be obtained. In this work, a carbon analyzer and a photo-ionization time-of-flight mass spectrometer (PI-TOF-MS) were hyphenated to investigate individual compounds especially from the OC fractions. The carbon analyzer enables the stepwise heating of particle samples and provides the bulk parameters. With the PI-TOF-MS, it is possible to detect the organic compounds released during the single-temperature steps due to soft ionization and fast detection of the molecular ions. The hyphenation was designed, built up, characterized by standard substances, and applied to several kinds of samples, such as ambient aerosol, gasoline, and diesel emission as well as wood combustion emission samples. The ambient filter sample showed a strong impact of wood combustion markers. This was revealed by comparison to the product pattern of the similar analysis of pure cellulose and lignin and the wood combustion PM. At higher temperatures (450 °C), a shift to smaller molecules occurred due to the thermal decomposition of larger structures of oligomeric or polymeric nature comparable to lignocelluloses and similar oxygenated humic-like substances. Finally, particulate matter from gasoline and diesel containing 10% biodiesel vehicle exhaust has been analyzed. Gasoline-derived PM exhibited large polycyclic aromatic hydrocarbons, whereas diesel PM showed a much higher total organic content. The detected pattern revealed a strong

  1. Direct sampling of sub-µm atmospheric particulate organic matter in sub-ng m-3 mass concentrations by proton-transfer-reaction mass spectrometry

    Science.gov (United States)

    Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.

    2017-12-01

    A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).

  2. Characterisation of the organic composition of size segregated atmospheric particulate matter at traffic exposed and background sites in Madrid

    Science.gov (United States)

    Mirante, F.; Perez, R.; Alves, C.; Revuelta, M.; Pio, C.; Artiñano, B.; Nunes, T.

    2010-05-01

    The growing awareness of the impact of atmospheric particulate matter (PM) on climate, and the incompletely recognised but serious effects of anthropogenic aerosols on air quality and human health, have led to diverse studies involving almost exclusively the coarse or the fine PM fractions. However, these environmental effects, the PM formation processes and the source assignment depend greatly on the particle size distribution. The innovative character of this study consists in obtaining time series with a size-segregated detailed chemical composition of PM for differently polluted sites. In this perspective, a summer sampling campaign was carried out from 1 of June to 1 of July 2009. One of the sampling sites was located at a representative urban monitoring station (Escuelas Aguirre) belonging to the municipal network, located at a heavy traffic street intersection in downtown Madrid. Other sampling point was positioned within the CIEMAT area, located in the NW corner of the city, which can be considered an urban background or suburban site. Particulate matter was sampled with high volume cascade impactors at 4 size stages: 10-2.5, 2.5-0.95, 0.95-0.45 and sources (e.g. vehicular). Carbon preference indices (CPI) close to the unity and the presence of PAHs point out vehicle exhaust as the main emission source of the aliphatic and polycyclic aromatic fractions, especially for the roadside aerosols. Concentration ratios between PAHs were also used to assign emission sources. The abundance and the sources of these carcinogenic pollutants are discussed and compared taking into account the local/regional characteristics. Water-soluble ions in PM were also analysed by ionic chromatography. A portion of the same filters was subjected to metal speciation by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Instrumental Neutron Activation Analysis (INAA). Receptor-oriented modelling for source apportionment was applied to the size-segregated PM chemical composition

  3. Nature and sources of suspended particulate organic matter in a tropical estuary during the monsoon and pre-monsoon: Insights from stable isotopes (delta 13C POC, delta 15 N TPN) and carbohydrate signature compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Khodse, V.B.; Bhosle, N.B.

    zooplankton, and then known aliquots (0.25 to 1.5 L) were filtered through pre-combusted (450 °C, 4h) 47 mm GF/F filter papers (0.7 µm, Whatman) for the measurements of suspended particulate matter (SPM), particulate organic carbon (POC), δ13CPOC, δ15NTPN... analysis. 2.3. Determination of bulk parameters and stable isotopes GF/F (0.7 µm, 47 mm) filter containing particulate matter was washed with UV-Milli-Q- water to remove salt and the filter was dried at 40 °C for 24 h. Filter was cooled and weighed...

  4. Effects of Particulate Organic Matter Complexation and Photo-Irradiation on the Fate and Toxicity of Mercury(II) in Aqueous Systems

    Science.gov (United States)

    Gelfond, C. E.; Kocar, B. D.; Carrasquillo, A. J.

    2015-12-01

    This project investigates how interactions between mercury (Hg) and particulate organic matter (POM) affect the fate, transport, and toxicity of Hg in the environment. Previous studies have evaluated the coordination of dissolved organic matter (DOM) with Hg, but the coordination of POM with Hg has not been thoroughly addressed. Owing to a high density of reactive functional groups, POM will sorb appreciable quantities of Hg, resulting in a large pool of Hg susceptible to organic matter dependent transformations. Particulate organic carbon is also susceptible photolysis, hence chemical changes induced by irradiation by natural sunlight is also important. Further, photo-reduction of Hg(II) to elemental mercury in the presence of DOM has been observed, yet studies examining this process with Hg(II) complexed to POM are less exhaustive. Here, we illustrate that POM derived from fresh plant detritus is a powerful sorbent of Hg(II), and sorbent properties are altered during POM photolysis. Further, we examine redox transformations of Hg(II), and examine functional groups that contribute to mercury association with POM. Batch sorption isotherms of Hg to dark and irradiated POM from ground Phragmites australis ("common reed") were performed and data was collected using ICP-MS. Coordination of Hg to POM was lower in the irradiated samples, resulting from the decrease in Hg-associated (reduced) sulfur bearing functional groups as measured using X-ray adsorption near-edge spectroscopy (XANES) and extended x-ray adsorption fine structure (EXAFS). Further analysis of the dark and irradiated POM was performed using FT-IR microscopy and STXM to determine changes in distribution and alteration of functional groups responsible for Hg sorption to POM.

  5. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew [Austin, TX

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  6. Barium in Twilight Zone suspended matter as a potential proxy for particulate organic carbon remineralization: Results for the North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Dehairs, F.; Jacquet, S.; Savoye, N.; Van Mooy, B.A.S.; Buesseler, K.; Bishop, J.K.B.; Lamborg, C.H.; Elskens, M.; Baeyens, W.; Boyd, P.W.; Casciotti, K.L.; Monnin, C.

    2008-04-10

    This study focuses on the fate of exported organic carbon in the twilight zone at two contrasting environments in the North Pacific: the oligotrophic ALOHA site (22 degrees 45 minutes N 158 degrees W; Hawaii; studied during June-July 2004) and the mesotrophic Subarctic Pacific K2 site (47 degrees N, 161 degrees W; studied during July-August 2005). Earlier work has shown that non-lithogenic, excess particulate Ba (Ba{sub xs}) in the mesopelagic water column is a potential proxy of organic carbon remineralization. In general Ba{sub xs} contents were significantly larger at K2 than at ALOHA. At ALOHA the Ba{sub xs} profiles from repeated sampling (5 casts) showed remarkable consistency over a period of three weeks, suggesting that the system was close to being at steady state. In contrast, more variability was observed at K2 (6 casts sampled) reflecting the more dynamic physical and biological conditions prevailing in this environment. While for both sites Ba{sub xs} concentrations increased with depth, at K2 a clear maximum was present between the base of the mixed layer at around 50m and 500m, reflecting production and release of Ba{sub xs}. Larger mesopelagic Ba{sub xs} contents and larger bacterial production in the twilight zone at the K2 site indicate that more material was exported from the upper mixed layer for bacterial degradation deeper, compared to the ALOHA site. Furthermore, application of a published transfer function (Dehairs et al., 1997) relating oxygen consumption to the observed Ba{sub xs} data indicated that the latter were in good agreement with bacterial respiration, calculated from bacterial production. These results corroborate earlier findings highlighting the potential of Ba{sub xs} as a proxy for organic carbon remineralization. The range of POC remineralization rates calculated from twilight zone excess particulate Ba contents did also compare well with the depth dependent POC flux decrease as recorded by neutrally buoyant sediment traps

  7. Thorium-particulate matter interaction. Thorium complexing capacity of oceanic particulate matter: Theory

    International Nuclear Information System (INIS)

    Hirose, Katsumi; Tanque, Eiichiro

    1994-01-01

    The interaction between thorium and oceanic particulate matter was examined experimentally by using chemical equilibrium techniques. Thorium reacts quantitatively with the organic binding site of Particulate Matter (PM) in 0.1 mol/L HCl solution by complexation, which is equilibrated within 34 h. According to mass balance analysis, thorium forms a 1:1 complex with the organic binding site in PM, whose conditional stability constant is 10 6.6 L/mol. The Th adsorption ability is present even in 6.9 mol/L HCl solution although the amount of Th adsorption decreases with increasing acidity in the solution. Interferences to Th adsorption by Fe(III) suggests that other metals cannot react with PM in more than 0.1 mol/L HCl solutions when concentrations of other metals are the same level of Th. The competitive reaction between Th and Fe(III) occurs in higher Fe concentrations, which means that the organic binding site is nonspecific for Th. A vertical profile of Th complexing capacity of PM in the western North Pacific is characterized; that is, the Th complexing capacity shows a surface maximum and decreases rapidly with depth

  8. Identification and semi-quantification of biogenic organic nitrates in ambient particulate matters by UHPLC/ESI-MS

    Science.gov (United States)

    Li, Rui; Wang, Xinfeng; Gu, Rongrong; Lu, Chunying; Zhu, Fanping; Xue, Likun; Xie, Huijun; Du, Lin; Chen, Jianmin; Wang, Wenxing

    2018-03-01

    Particulate biogenic organic nitrates (PBONs) are important components of secondary organic aerosols and play an important role in the tropospheric atmosphere chemistry. However, the concentrations and the chemistry of PBONs remain poorly understood due to the lack of accurate measurement techniques on specific organic nitrates. In this study, ultra high performance liquid chromatography/electrospray mass spectrometry was applied in detection of individual PBONs in ambient atmosphere. Total five kinds of PBONs were identified in PM2.5 samples collected in urban Ji'nan in spring according to characteristic fragments of NO2, NO3, HNO3, CO2, and H2O, including monoterpene hydroxyl nitrate (MW = 215, MHN215), pinene keto nitrate (MW = 229, PKN229), limonene di-keto nitrate (MW = 247, LDKN247), oleic acid keto nitrate (MW = 359, OAKN359), and oleic acid hydroxyl nitrate (MW = 361, OAHN361). Among them, three kinds of PBONs originated from biogenic volatile organic compounds of pinene and limonene and two kinds of PBONs came from chemical conversion of oleic acid. The concentrations of these PBONs were roughly quantified with surrogate standards of (1R,2R,5R)-(+)-2-hydroxy-3-pinanone and ricinoleic acid. The average concentrations of MHN215, PKN229, LDKN247, OAKN359, and OAHN361 were 111.6 ± 23.0, 93.1 ± 49.6, 55.3 ± 7.4, 23.4 ± 14.5, 36.8 ± 18.3 ng m-3, respectively. The total concentration of these PBONs was 325.4 ± 116.7 ng m-3, contributing to 1.64 ± 0.34‰ of PM2.5.

  9. Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin

    Science.gov (United States)

    Mannino, A.; Hooker, S. B.; Hyde, K.; Novak, M. G.; Pan, X.; Friedrichs, M.; Cahill, B.; Wilkin, J.

    2011-01-01

    Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf.

  10. Land-use impacts on fatty acid profiles of suspended particulate organic matter along a larger tropical river

    DEFF Research Database (Denmark)

    Boëchat, Iola; Krüger, Angela; Chavez, R.C.

    2014-01-01

    (SPOM-FAs) as indicators of land-use change in tropical catchments, and at identifying major human impacts on the biochemical composition of SPOM, which represents an important basal energy and organic matter resource for aquatic consumers. River water SPOM and total FA concentrations ranged between 2......Land-use change, such as agricultural expansion and urbanization, can affect riverine biological diversity and ecosystem functioning. Identifying the major stressors associated with catchment land-use change is a prerequisite for devising successful river conservation and restoration strategies...

  11. Tetra- and hexavalent uranium forms bidentate-mononuclear complexes with particulate organic matter in a naturally uranium-enriched peatland

    International Nuclear Information System (INIS)

    Mikutta, Christian; Langner, Peggy; Bargar, John R.; Kretzschmar, Ruben

    2016-01-01

    Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work was to investigate the spatial distribution and molecular binding mechanisms of U in soils of an alpine minerotrophic peatland (pH 4.7–6.6, E_h = –127 to 463 mV) using microfocused X-ray fluorescence spectrometry and bulk and microfocused U L_3-edge X-ray absorption spectroscopy. The soils contained 2.3–47.4 wt % organic C, 4.1–58.6 g/kg Fe, and up to 335 mg/kg geogenic U. Uranium was found to be heterogeneously distributed at the micrometer scale and enriched as both U(IV) and U(VI) on fibrous and woody plant debris (48 ± 10% U(IV), x̄ ± σ, n = 22). Bulk U X-ray absorption near edge structure (XANES) spectroscopy revealed that in all samples U(IV) comprised 35–68% of total U (x̄ = 50%, n = 15). Shell-fit analyses of bulk U L_3-edge extended X-ray absorption fine structure (EXAFS) spectra showed that U was coordinated to 1.3 ± 0.2 C atoms at a distance of 2.91 ± 0.01 Å (x̄ ± σ), which implies the formation of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ~3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. As a result, our data indicates that U(IV/VI) complexation by natural organic matter prevents the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI).

  12. Tetra- and Hexavalent Uranium Forms Bidentate-Mononuclear Complexes with Particulate Organic Matter in a Naturally Uranium-Enriched Peatland.

    Science.gov (United States)

    Mikutta, Christian; Langner, Peggy; Bargar, John R; Kretzschmar, Ruben

    2016-10-04

    Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work was to investigate the spatial distribution and molecular binding mechanisms of U in soils of an alpine minerotrophic peatland (pH 4.7-6.6, E h = -127 to 463 mV) using microfocused X-ray fluorescence spectrometry and bulk and microfocused U L 3 -edge X-ray absorption spectroscopy. The soils contained 2.3-47.4 wt % organic C, 4.1-58.6 g/kg Fe, and up to 335 mg/kg geogenic U. Uranium was found to be heterogeneously distributed at the micrometer scale and enriched as both U(IV) and U(VI) on fibrous and woody plant debris (48 ± 10% U(IV), x̅ ± σ, n = 22). Bulk U X-ray absorption near edge structure (XANES) spectroscopy revealed that in all samples U(IV) comprised 35-68% of total U (x̅ = 50%, n = 15). Shell-fit analyses of bulk U L 3 -edge extended X-ray absorption fine structure (EXAFS) spectra showed that U was coordinated to 1.3 ± 0.2 C atoms at a distance of 2.91 ± 0.01 Å (x̅ ± σ), which implies the formation of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ∼3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. Our data indicates that U(IV/VI) complexation by natural organic matter prevents the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI).

  13. Particulate Matter Emission Factors for Biomass Combustion

    Directory of Open Access Journals (Sweden)

    Simone Simões Amaral

    2016-10-01

    Full Text Available Emission factor is a relative measure and can be used to estimate emissions from multiple sources of air pollution. For this reason, data from literature on particulate matter emission factors from different types of biomass were evaluated in this paper. Initially, the main sources of particles were described, as well as relevant concepts associated with particle measurements. In addition, articles about particle emissions were classified and described in relation to the sampling environment (open or closed and type of burned biomass (agricultural, garden, forest, and dung. Based on this analysis, a set of emission factors was presented and discussed. Important observations were made about the main emission sources of particulate matter. Combustion of compacted biomass resulted in lower particulate emission factors. PM2.5 emissions were predominant in the burning of forest biomass. Emission factors were more elevated in laboratory burning, followed by burns in the field, residences and combustors.

  14. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  15. Anthropogenic impacts on the optical characteristics and biodegradability of dissolved and particulate organic matter in the Han River watershed, South Korea

    Science.gov (United States)

    Shirina Begum, Most; Jin, Hyojin; Yoon, Tae Kyung; Park, Ji-Hyung

    2016-04-01

    To understand how anthropogenic perturbations such as dams and pollution modify the chemical characteristics and biological transformations of riverine organic matter during transit through urbanized watersheds, we compared the optical characteristics and biodegradability of dissolved organic matter (DOM) and particulate organic matter (POM) along different reaches and urban tributary streams of the Han River watershed during short-term incubations. Laboratory incubations were conducted for 5-7 days at 20-25 oC with filtered or unfiltered water samples collected from up-, mid-, and downstream reaches with different levels of anthropogenic perturbations and three urban streams along the downstream reach that receive effluents from waste water treatment facilities in the metropolitan Seoul. Optical parameters such as ultraviolet absorbance at 254 nm, absorption coefficients at 254 nm and 350 nm, fluorescence index, humic-like fluorescence, microbial humic-like fluorescence, and protein-like fluorescence, and spectral slope at 350-400 nm were significantly correlated with increasing concentration of biodegradable dissolved organic carbon (BDOC) in filtered and unfiltered sample along the Han River up-, mid-, down-, and urban streams. The concentrations of BDOC in the urban streams were 6-12 times higher than in the filtered and unfiltered main-stem river samples, with significantly higher values in presence of POM in the unfiltered samples than in the filtered samples. In a separate 5-day incubation experiment with the unfiltered water sample from a downstream location of the Han River and its urban tributary water in isolation or mixed , the rate of concurrent biodegradation of both DOM and POM, as measured by the cumulative rate of CO2 production, was higher in the mixture than the average rate of the separately incubated samples, indicating the priming effect of mixed organic materials on the biodegradation of allochthonous organic materials from the other site

  16. Evaluation of diesel particulate matter sampling techniques

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2011-09-01

    Full Text Available The study evaluated diesel particulate matter (DPM) sampling methods used in the South African mining industry. The three-piece cassette respirable, open face and stopper sampling methods were compared with the SKC DPM cassette method to find a...

  17. Vertical Distributions of Macromolecular Composition of Particulate Organic Matter in the Water Column of the Amundsen Sea Polynya During the Summer in 2014

    Science.gov (United States)

    Kim, Bo Kyung; Lee, SangHoon; Ha, Sun-Yong; Jung, Jinyoung; Kim, Tae Wan; Yang, Eun Jin; Jo, Naeun; Lim, Yu Jeong; Park, Jisoo; Lee, Sang Heon

    2018-02-01

    Macromolecular compositions (carbohydrates, proteins, and lipids) of particulate organic matter (POM) are crucial as a basic marine food quality. To date, however, one investigation has been carried out in the Amundsen Sea. Water samples for macromolecular compositions were obtained at selected seven stations in the Amundsen Sea Polynya (AP) during the austral summer in 2014 to investigate vertical characteristics of POM. We found that a high proportion of carbohydrates (45.9 ± 11.4%) in photic layer which are significantly different from the previous result (27.9 ± 6.9%) in the AP, 2012. The plausible reason could be the carbohydrate content strongly associated with biomass of the dominant species (Phaeocystis antarctica). The calorific content of food material (FM) in the photic layer obtained in this study is similar with that of the Ross Sea as one of the highest primary productivity regions in the Southern Ocean. Total concentrations, calorific values, and calorific contents of FM were higher in the photic layer than the aphotic layer, which implies that a significant fraction of organic matter underwent degradation. A decreasing proteins/carbohydrates (PRT/CHO) ratio with depth could be caused by preferential nitrogen loss during sinking period. Since the biochemical compositions of POM mostly fixed in photic layers could play an important role in transporting organic carbon into the deep sea, further detail studies on the variations in biochemical compositions and main controlling factors are needed to understand sinking mechanisms of POM.

  18. Urban tree effects on fine particulate matter and human health

    Science.gov (United States)

    David J. Nowak

    2014-01-01

    Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...

  19. Seasonal variation in particulate organic matter and its cnstituent fractions under the ice covered sea near the shelf, Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.

    discrete depths. Chl @ia@@ concentration at all the 3 depths varied from 0.026 to 0.253 mu g l@u-1@@ showing minimum values during August-September. POC values varied from 280 to 1058 mu g l@u-1@@ while its constituent fractions such as particulate...

  20. Metal/nonmetal diesel particulate matter rule

    Energy Technology Data Exchange (ETDEWEB)

    Tomko, D.M. [United States Dept. of Labor, Mine Safety and Health Administration, Pittsburgh, PA (United States). Safety and Health Technology Center; Stackpole, R.P. [United States Dept. of Labor, Mine Safety and Health Administration, Triadelphia, WV (United States). Approval and Certification Center; Findlay, C.D. [United States Dept. of Labor, Mine Safety and Health Administration, Arlington, VA (United States). Metal/Nonmetal Safety and Health; Pomroy, W.H. [United States Dept. of Labor, Mine Safety and Health Administration, Duluth, MN (United States). Metal/Nonmetal North Central District

    2010-07-01

    The American Mine Safety and Health Administration (MSHA) issued a health standard in January 2001 designed to reduce exposure to diesel particulate matter (DPM) in underground metal and nonmetal mines. The rule established an interim concentration limit for DPM of 400 {mu}g/m{sup 3} of total carbon, to be followed in 2004 by a final limit of 160 {mu}g/m{sup 3} of total carbon. The 2001 rule was challenged in federal court by various mining trade associations and mining companies. The rule was subsequently amended. This paper highlighted the major provisions of the 2006 final rule and summarized MSHAs current compliance sampling procedures. The concentration limit was changed to a permissible exposure limit and the sampling surrogate was changed from total carbon to elemental carbon. The MSHA published a new rule in 2006 which based the final limit on a miner's personal exposure rather than a concentration limit. The final limit was phased in using 3 steps over 2 years. This paper also discussed engineering controls and a recent MSHA report on organic carbon, elemental carbon and total carbon emissions from a diesel engine fueled with various blends of standard diesel and biodiesel. In May 2008, about two-thirds of all underground metal/nonmetal mines achieved and maintained compliance with the rule. 20 refs.

  1. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  2. Repeated applications of compost and manure mainly affect the size and chemical nature of particulate organic matter in a loamy soil after 8 years

    Science.gov (United States)

    Peltre, Clement; Dignac, Marie-France; Doublet, Jeremy; Plante, Alain; Houot, Sabine

    2013-04-01

    Land application of exogenous organic matter (EOM) of residual origin can help to maintain or increase soil organic carbon (SOC) stocks. However, it remains necessary to quantify and predict the soil C accumulation and to determine under which form the C accumulates. Changes to the chemical composition of soil organic matter (SOM) after repeated applications of composts and farmyard manure were investigated in a field experiment (Qualiagro experiment, Ile-de-France) after 8 years of applications of green waste and sludge compost (GWS), municipal solid waste compost (MSW), biowaste compost (BIOW) or farmyard manure (FYM). The soil was fractionated into particulate organic matter >50 µm (POM), a heavy fraction >50 µm and a 0-50 µm fraction demineralized with hydrofluoric acid (HF). Repeated EOM applications significantly increased total SOC stocks, the C amount in the POM fraction and to a less extent in the 0-50 µm fraction compared to the reference treatment. Compost applications accumulated C preferentially under the form of coarse organic matter of size >50 µm, whereas the FYM accumulated similar C proportions of size >50 µm and 0-50 µm, which was attributed to the presence in the FYM of a fraction of labile C stimulating microbial activity and producing humified by-products together with a fraction of stabilized C directly alimenting the humified fraction of SOC. Pyrolysis-GC/MS and DRIFT spectroscopy revealed enrichment in lignin in the POM fractions of amended soils with GWS, BIOW and FYM. In the soil receiving MSW compost, the pyrolysate of the POM fraction revealed the presence of plastics originating from the MSW compost. A lower C mineralization during laboratory incubation was found for the POM fractions of amended soils compared with the POM from reference soil. This feature was related to a lower ratio of (furfural+acetic acid) / pyrole pyrolysis products in POM of amended vs. reference plots, indicating a higher degree of recalcitrance.. The POM

  3. Long-term particulate matter modeling for health effect studies in California - Part 2: Concentrations and sources of ultrafine organic aerosols

    Science.gov (United States)

    Hu, Jianlin; Jathar, Shantanu; Zhang, Hongliang; Ying, Qi; Chen, Shu-Hua; Cappa, Christopher D.; Kleeman, Michael J.

    2017-04-01

    Organic aerosol (OA) is a major constituent of ultrafine particulate matter (PM0. 1). Recent epidemiological studies have identified associations between PM0. 1 OA and premature mortality and low birth weight. In this study, the source-oriented UCD/CIT model was used to simulate the concentrations and sources of primary organic aerosols (POA) and secondary organic aerosols (SOA) in PM0. 1 in California for a 9-year (2000-2008) modeling period with 4 km horizontal resolution to provide more insights about PM0. 1 OA for health effect studies. As a related quality control, predicted monthly average concentrations of fine particulate matter (PM2. 5) total organic carbon at six major urban sites had mean fractional bias of -0.31 to 0.19 and mean fractional errors of 0.4 to 0.59. The predicted ratio of PM2. 5 SOA / OA was lower than estimates derived from chemical mass balance (CMB) calculations by a factor of 2-3, which suggests the potential effects of processes such as POA volatility, additional SOA formation mechanism, and missing sources. OA in PM0. 1, the focus size fraction of this study, is dominated by POA. Wood smoke is found to be the single biggest source of PM0. 1 OA in winter in California, while meat cooking, mobile emissions (gasoline and diesel engines), and other anthropogenic sources (mainly solvent usage and waste disposal) are the most important sources in summer. Biogenic emissions are predicted to be the largest PM0. 1 SOA source, followed by mobile sources and other anthropogenic sources, but these rankings are sensitive to the SOA model used in the calculation. Air pollution control programs aiming to reduce the PM0. 1 OA concentrations should consider controlling solvent usage, waste disposal, and mobile emissions in California, but these findings should be revisited after the latest science is incorporated into the SOA exposure calculations. The spatial distributions of SOA associated with different sources are not sensitive to the choice of

  4. POM Pulses: Characterizing the Physical and Chemical Properties of Particulate Organic Matter (POM) Mobilized by Large Storm Events and its Influence on Receiving Fluvial Systems

    Science.gov (United States)

    Johnson, E. R.; Rowland, R. D.; Protokowicz, J.; Inamdar, S. P.; Kan, J.; Vargas, R.

    2016-12-01

    Extreme storm events have tremendous erosive energy which is capable of mobilizing vast amounts of material from watershed sources into fluvial systems. This complex mixture of sediment and particulate organic matter (POM) is a nutrient source, and has the potential to impact downstream water quality. The impact of POM on receiving aquatic systems can vary not only by the total amount exported but also by the various sources involved and the particle sizes of POM. This study examines the composition of POM in potential sources and within-event POM by: (1) determining the amount and quality of dissolved organic matter (DOM) that can be leached from coarse, medium and fine particle classes; (2) assessing the C and N content and isotopic character of within-event POM; and (3) coupling physical and chemical properties to evaluate storm event POM influence on stream water. Storm event POM samples and source sediments were collected from a forested headwater catchment (second order stream) in the Piedmont region of Maryland. Samples were sieved into three particle classes - coarse (2mm-1mm), medium (1mm-250µm) and fine (solid state event and source material. Future work will include examination of microbial communities associated with POM particle size classes. Physical size class separation of within-event POM exhibited differences in C:N ratios, δ15N composition, and extracted DOM lability. Smaller size classes exhibited lower C:N ratios, more enriched δ15N and more recalcitrant properties in leached DOM. Source material had varying C:N ratios and contributions to leached DOM. These results indicate that both source and size class strongly influence the POM contribution to fluvial systems during large storm events.

  5. Impacts of the Changjiang diluted water on sinking processes of particulate organic matters in the East China Sea

    Science.gov (United States)

    Sukigara, Chiho; Mino, Yoshihisa; Tripathy, Sarat Chandra; Ishizaka, Joji; Matsuno, Takeshi

    2017-12-01

    Intensive surveys with repeated CTD and microstructure turbulent observations, water and sediments sampling as well as onboard incubation and sediment trap experiments were conducted to reveal the nitrogen budget in the center of the East China Sea (ECS) during July 2010 and 2011. Low salinity water (Changjiang Diluted Water, CDW) covered the study area in 2010, but not in 2011. Higher chlorophyll a (chl. a) concentration, primary productivity, and downward particle flux in the upper layer were observed in 2010 than those in 2011. Existence of the CDW resulted in a steep pycnocline and an associated subsurface chl. a maximum (SCM) layer directly beneath the CDW. From chemical analyses of particulate carbon and nitrogen contents and isotope ratios, it became apparent that the particles sunk out the euphotic zone in 2010 was primarily originated in the CDW layer and secondly in the SCM layer. Whereas, in 2011, sinking particles were originated in the surface layer but a part of them were decomposed in the bottom of pycnocline. Our findings indicate that the CDW would supply particles into the deep layer and contribute to the downward transport of materials and the efficiency of biological pump in the ECS.

  6. Activation analysis of air particulate matter

    International Nuclear Information System (INIS)

    Alian, A.; Sansoni, B.

    1988-11-01

    This review on activation analysis of air particulate matter is an extended and updated version of a review given by the same authors in 1985. The main part is aimed at the analytical scheme and refers to rules and techniques for sampling, sample and standard preparation, irradiation and counting procedures, as well as data processing, - evaluation, and - presentation. Additional chapters deal with relative and monostandard methods, the use of activation analysis for atmosphere samples in various localities, and level of toxic and other elements in the atmosphere. The review contains 190 references. (RB)

  7. Semivolatile Organic Compounds (SOCs) in Fine Particulate Matter (PM2.5) during Clear, Fog, and Haze Episodes in Winter in Beijing, China.

    Science.gov (United States)

    Wang, Ting; Tian, Mi; Ding, Nan; Yan, Xiao; Chen, She-Jun; Mo, Yang-Zhi; Yang, Wei-Qiang; Bi, Xin-Hui; Wang, Xin-Ming; Mai, Bi-Xian

    2018-05-01

    Few efforts have been made to elucidate the influence of weather conditions on the fate of semivolatile organic compounds (SOCs). Here, daily fine particulate matter (PM 2.5 ) during clear, haze, and fog episodes collected in the winter in Beijing, China was analyzed for polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFRs), and organophosphate flame retardants (OPFRs). The total concentrations of PAHs, OPFRs, and BFRs had medians of 45.1 ng/m 3 and 1347 and 46.7 pg/m 3 , respectively. The temporal pattern for PAH concentrations was largely dependent on coal combustion for residential heating. OPFR compositions that change during colder period were related to enhanced indoor emissions due to heating. The mean concentrations of SOCs during haze and fog days were 2-10 times higher than those during clear days. We found that BFRs with lower octanol and air partition coefficients tended to increase during haze and fog episodes, be removed from PM 2.5 during clear episodes, or both. For PAHs and OPFRs, pollutants that are more recalcitrant to degradation were prone to accumulate during haze and fog days. The potential source contribution function (PSCF) model indicated that southern and eastern cities were major source regions of SOCs at this site.

  8. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    Science.gov (United States)

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production

  9. Particulate matter and neutron activation analysis

    International Nuclear Information System (INIS)

    Otoshi, Tsunehiko

    2003-01-01

    In these years, economy of East Asian region is rapidly growing, and countries in this region are facing serious environmental problems. Neutron activation analysis is known as one of high-sensitive analytical method for multi elements. And it is a useful tool for environmental research, particularly for the study on atmospheric particulate matter that consists of various constituents. Elemental concentration represents status of air, such as emission of heavy metals from industries and municipal incinerators, transportation of soil derived elements more than thousands of kilometers, and so on. These monitoring data obtained by neutron activation analysis can be a cue to evaluate environment problems. Japanese government launched National Air Surveillance Network (NASN) employing neutron activation analysis in 1974, and the data has been accumulated at about twenty sampling sites. As a result of mitigation measure of air pollution sources, concentrations of elements that have anthropogenic sources decreased particularly at the beginning of the monitoring period. However, even now, concentrations of these anthropogenic elements reflect the characteristics of each sampling site, e.g. industrial/urban, rural, and remote. Soil derived elements have a seasonal variation because of the contribution of continental dust transported by strong westerly winds prevailing in winter and spring season. The health effects associated with trace elements in particulate matter have not been well characterized. However, there is increasing evidence that particulate air pollution, especially fine portion of particles in many different cities is associated with acute mortality. Neutron activation analysis is also expected to provide useful information to this new study field related to human exposures and health risk. (author)

  10. Biomarker and carbon isotope constraints (δ13C, Δ14C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    International Nuclear Information System (INIS)

    Winterfeld, Maria

    2014-08-01

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ 13 C and Δ 14 C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are

  11. Soil organic matter studies

    International Nuclear Information System (INIS)

    1977-01-01

    A total of 77 papers were presented and discussed during this symposium, 37 are included in this Volume II. The topics covered in this volume include: biochemical transformation of organic matter in soils; bitumens in soil organic matter; characterization of humic acids; carbon dating of organic matter in soils; use of modern techniques in soil organic matter research; use of municipal sludge with special reference to heavy metals constituents, soil nitrogen, and physical and chemical properties of soils; relationship of soil organic matter and plant metabolism; interaction between agrochemicals and organic matter; and peat. Separate entries have been prepared for those 20 papers which discuss the use of nuclear techniques in these studies

  12. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances.

    Science.gov (United States)

    Czech, Hendryk; Miersch, Toni; Orasche, Jürgen; Abbaszade, Gülcin; Sippula, Olli; Tissari, Jarkko; Michalke, Bernhard; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Jokiniemi, Jorma; Zimmermann, Ralf

    2018-01-15

    Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Chemical and biological characterization of urban particulate matter

    International Nuclear Information System (INIS)

    Agurell, E.; Alsberg, T.; Assefaz-Redda, Y.

    1990-11-01

    Airborne particulate matter has been collected on glass fiber filter by high volume sampling in the Goeteborg urban area. The samples were, after extraction with respect to organic components, tested for biological effect in the Salmonella mutagenicity assay, affinity to the cytosol TCDD receptor and toxicity towards a mammalian cell system and analysed chemically for selected polycyclic aromatic compounds. A series of samples collected simultaneously at a street level location and a rooftop site showed that most parameters associated with the organic compounds adsorbed to airborne particulate matter has similar concentrations at the two levels. The differences observed for the mutagenic effect in different strains and conditions showed that the rooftop samples had a different composition compared to the street samples indicating that atmospheric transformations have occurred. Chemical fractionation of representative samples showed that the distribution of mutagenic activity among different fractions is dissimilar to the distribution obtained in the fractionation of both gasoline and diesel engine exhaust particles. Partial least squares regression analysis showed qualitatively that diesel exhaust is a major source of airborne particulate mutagenic activity and source apportionment with chemical mass balance and multilinear regression corroborated this quantitatively. The multilinear regression analysis gave the result that the airborne activity in Salmonella TA90-S9 originated to 54±4% from diesel exhaust and to 26±3% from gasoline exhaust. The contribution is more equal for the activity measured with TA98+S9. The usefulness of short-term bioassays as an addition to chemical analysis of airborne particulate matter depends on whether only polycylic aromatic hydrocarbons (PAH) are major carcinogens, as has been suggested in the literature, or whether also other polycyclic aromatic compound (PAC) are of importance. (au)

  14. Assessment of Zn bioavailability: XAFS study on speciation of zinc-particulate organic matter associations in polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Harfouche, M; Borca, C; Grolimund, D [Swiss Light Source, Institut Paul Scherrer, Villigen (Switzerland); Labanowski, J [UMR CNRS 6008, Laboratoire de Chimie et Microbiologie de l' Eau, Universite de Poitiers (France); Farges, F [USM 201 and CNRS UMR 7202, Museum National d' Histoire Naturelle, Paris (France); Hullebusch, E van [Laboratoire Geomateriaux et Environnement, Universite de Paris-Est (France); Oort, F van, E-mail: messaoud.harfouche@psi.c, E-mail: vanoort@versailles.inra.f [UR INRA 251, Physico-chimie et Ecotoxicologie des Sols d Agrosystemes Contamines, Versailles (France)

    2009-11-15

    We present a study about the behavior of Zn in agricultural soils polluted 100-50 years ago by metallurgical fallout and used nowadays for corn production. Such type of soil concerns an area of several km{sup 2} around former metallurgical complex in Northern France. Despite the moderated metal amounts of these soils, the metals deposited over the agricultural area still indirectly expose nowadays populations through the food chain. In contrast to the most contaminated industrial site, these more distant agricultural areas have been less studied. The study was focused on Zn, a relative mobile metal element, since its predominant occurrence in the surface horizon of sandy textured soils, fifty years after cessation of metallurgical activity suggests its immobilization due to specific soil mechanisms. To evaluate how Zn is associated to POM, Zn K-edge XAFS spectra were collected at 293 K at the SLS on beamlines superXAS and microXAS, using Si(111) monochromators and solid state Ge detectors. Energetic resolution is ca. 2 eV at 9 KeV. Lateral resolution varied from ca. 1 mm{sup 2} to 15 micron{sup 2}. Spectra were normalized with the XAFS 3.0 software. We studied different POM size fractions isolated from soils. The largest POM particles correspond to recent leaves or roots fragments. The finest POM particles correspond to decomposition by-products. The results revealed a multiple and heterogeneous speciation of Zn with POM. We observed that little interactions from next-nearest neighbors around Zn. We concluded that most of the Zn tends to be located in the POM matrix as a Zn-organic speciation. We also collected macroscopic EXAFS data on selected intact POM particles probed at the micron scale. The results show that the remaining Zn-distribution related to inorganic (hot-spots), possibly franklinite-type, is minor compared to the Zn-organic speciation. Such observations will help to better understand the mechanisms that regulate the bioavailability and

  15. Ambient particulate matter as a risk factor for suicide.

    Science.gov (United States)

    Kim, Changsoo; Jung, Sang Hyuk; Kang, Dae Ryong; Kim, Hyeon Chang; Moon, Ki Tae; Hur, Nam Wook; Shin, Dong Chun; Suh, Il

    2010-09-01

    The authors assessed the relationship between exposure to ambient particulate matter and suicide in urban settings during a 1-year period. The association between particulate matter and suicide was determined using a time-stratified case-crossover approach in which subjects served as their own controls. All suicide cases (4,341) in 2004 that occurred in seven cities in the Republic of Korea were included. Hourly mean concentrations of particulate matter suicide risk associated with an interquartile range increase in particulate matter was determined by conditional logistic regression analysis after adjusting for national holidays and meteorological factors. Subgroup analysis was performed after stratification by underlying disease (cardiovascular disease, diabetes mellitus, chronic obstructive pulmonary disease, cancer, and psychiatric illness). The largest associations were a 9.0% increase (95% CI=2.4-16.1) and a 10.1% (95% CI=2.0-19.0) increase in suicide risk related to an interquartile range increase in particulate matter suicide) and particulate matter suicide), respectively. Among individuals with cardiovascular disease, a significant association between particulate matter suicide) and suicide was observed (18.9%; 95% CI=3.2-37.0). Conclusions: A transient increase in particulate matter was associated with increased suicide risk, especially for individuals with preexisting cardiovascular disease.

  16. Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47°N, 20°W

    Science.gov (United States)

    Pfannkuche, O.

    The benthic response to the sedimentation of particulate organic matter (POM) was investigated during 1985-1990 at 47°N, 20°W (BIOTRANS station). The first noticeable annual sedimentation of phytodetritus, as indicated by chlorophyll a concentrations in the sediment, occurred as early as late April-early May. Maximum amounts were found in June-July. Two different sedimentation pulses to the sea bed are described that demonstrate interannual variation: the occurrence of salp faecal pellets early in the year 1988 and the massive fall out of a plankton bloom in summer 1986, which deposited approximately 15 mmol C m -2. The benthic reaction to POM pulses was quite diverse. The mega-, macro- and meiobenthos showed no change in biomass, whereas bacterial biomass doubled between March and July. This corresponds to a seasonal maximum of total adenylate biomass. The relative abundance of Foraminifera among the meiobenthos increased during the summer. Benthic activity (ATP, ratio ATP/ETSA), as well as in situ sediment community oxygen consumption rates (SCOC), showed distinct seasonal maxima in July-August of 0.75 mmol C m -2 day -1. Based on SCOC and the carbon demand for growth, a benthic carbon consumption of 0.94 mmol C m -2 day -1 was estimated. This represents about 1.1% of spring bloom primary production and 9.6% of the export flux beneath the 150 m layer, measured during the North Atlantic Bloom Experiment. Bacteria and protozoans colonizing the epibenthic phytodetrital layer were responsible for 60-80% of the seasonal increase in SCOC. The strong reaction of the smaller benthic size groups (bacteria, protozoans) to POM pulses stresses their particular importance for sediment-water interface flux rates.

  17. Mass spectroscopic analysis of atmospheric particulate matter

    International Nuclear Information System (INIS)

    Wippel, R.

    1997-02-01

    Particulate matter (PM) in the atmosphere vary greatly in origin, in their physical and chemical properties and their effects on climate, atmospheric chemistry and health. Aerosol particles with an aerodynamic diameter less than two μm can enter the respiratory tract of humans when inhaled. Bulk analysis of ambient dust particles was performed using an inductively coupled plasma mass spectrometer (ICP-MS). The size-fractionated collected samples were analyzed after a leaching procedure that simulates the solution reactions occurring in the lungs. A disadvantage of bulk analysis is that it gives no information about the distribution of a certain element within the particles under investigation. A Laser-Microprobe-Mass-Analyzer (LAMMA-500) was used to obtain this information. At sampling sites in Austria and in Zimbabwe, Africa, single particles were sampled using a self-made impactor. One of the final aims in environmental analysis is to successfully apply receptor models that relate the chemical and physical properties of a receptor site to a source. The knowledge of the sources of atmospheric particulate matter is essential for environmental policy makers as well as for epidemiological studies. Artificial neural networks (ANN) have a remarkable ability to handle LAMMA-data. Three ANNs were used as a pattern recognition tool for LAMMA mass spectral data: a back-propagation net, a Kohonen network,and a counter-propagation net. Standard source profiles from the United States Environmental Protection Agency were used as training and test data of the different nets. The elemental patterns of the sum of 100 mass spectra of fine dust particles were presented to the trained nets and satisfactory recognition (> 80 %) was obtained. (author)

  18. The investigation of atmospheric particulate matter pollution in Suzhou

    International Nuclear Information System (INIS)

    Chen Yi'ou; Zhang Yuliang; Wang Ya; Wang Pei; Tian Hailin

    2012-01-01

    Objective: To investigate the pollution status, vertical distribution and concentration variation within 24 hours of total suspended particles (TSPs), particulate matter ≤10 μm (PM10), particulate matter ≤5 (PM5) and particulate matter ≤2.5 μm (PM2.5) in major functional areas of Suzhou and the protective effect of different type masks on particulate matter. Methods: (1) The concentration of atmospheric TSPs, PM10, PM5 and PM2.5 in seven functional areas in Suzhou was monitored for three consecutive days. (2) A residential building of 25 stories was chosen and the concentration of TSPs, PM10, PM5, PM2.5 was detected at the 1st, 5th, 10th, 15th, 20 th and the 25th floor respectively. (3) The concentrations of the four particulate matter were detected every two-hours for three consecutive days to investigate how concentration of particulate matter varies within 24 hours. (4) The concentration of the four kinds of particulate matter was analyzed with the sampling head of monitor wrapped with disposable non-woven medical mask, fashion-type mask, gauze mask or activated carbon anti-dust mask respectively, and the protective effect of the four masks on particulate matter was compared. Results: (1) The concentration of PM2.5 was higher than the national health limit in all seven functional areas in Suzhou. (2) No significant difference in vertical distribution of particulate matter was found among different floors in residential buildings (P>0.05). (3) Two small peaks of particulate matter appeared in the morning and evening respectively while the top appeared at dawn (P< 0.05). (4) Disposable non-woven medical mask showed the best protective effect on particulate matter among the four tested masks. Conclusion: PM2.5 is the main particulate matter in Suzhou area. In addition the 4 kinds of particulate matter: TSP, PM10, PM5 and PM2.5 are of higher concentration in the early morning. No significant difference was detected from an altitude of less than 75 meters

  19. Source apportionment studies on particulate matter in Beijing/China

    Science.gov (United States)

    Suppan, P.; Shen, R.; Shao, L.; Schrader, S.; Schäfer, K.; Norra, S.; Vogel, B.; Cen, K.; Wang, Y.

    2013-05-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: a) Examples of long term measurements of PM2.5 filter sampling in 2010/2011 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. b) The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2011, April 30th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and

  20. Organic matter in central California radiation fogs.

    Science.gov (United States)

    Herckes, Pierre; Lee, Taehyoung; Trenary, Laurie; Kang, Gongunn; Chang, Hui; Collett, Jeffrey L

    2002-11-15

    Organic matter was studied in radiation fogs in the San Joaquin Valley of California during the California Regional Particulate Air Quality Study (CRPAQS). Total organic carbon (TOC) concentrations ranged from 2 to 40 ppm of C. While most organic carbon was found in solution as dissolved organic carbon (DOC), 23% on average was not dissolved inside the fog drops. We observe a clear variation of organic matter concentration with droplet size. TOC concentrations in small fog drops (fogwater, consistent with the enrichment of the organic matter in smaller fog drops with lower terminal settling velocities.

  1. Toward Distinguishing Woodsmoke and Diesel Exhaust in Ambient Particulate Matter

    International Nuclear Information System (INIS)

    Braun, A.; Huggins, F.; Kubatova, A.; Wirick, S.; Maricq, M.; Mun, B.; McDonald, J.; Kelly, K.; Shah, N.; Huffman, G.

    2008-01-01

    Particulate matter (PM) from biomass burning and diesel exhaust has distinct X-ray spectroscopic, carbon specific signatures, which can be employed for source apportionment. Characterization of the functional groups of a wide selection of PM samples (woodsmoke, diesel soot, urban air PM) was carried out using the soft X-ray spectroscopy capabilities at the synchrotron radiation sources in Berkeley (ALS) and Brookhaven (NSLS). The spectra reveal that diesel exhaust particulate (DEP) matter is made up from a semigraphitic solid core and soluble organic matter, predominantly with carboxylic functional groups. Woodsmoke PM has no or a less prevalent, graphitic signature, instead it contains carbon-hydroxyl groups. Using these features to apportion the carbonaceous PM in ambient samples we estimate that the relative contribution of DEP to ambient PM in an urban area such as Lexington, KY and St. Louis, MO is 7% and 13.5%, respectively. These values are comparable to dispersion modeling data from nonurban and urban areas in California, and with elemental carbon measurements in urban locations such as Boston, MA, Rochester, NY, and Washington, DC.

  2. Genotoxic effects and oxidative stress induced by organic extracts of particulate matter(PM 10)collected from a subway tunnel in Seoul, Korea.

    Science.gov (United States)

    Jung, Mi Hyun; Kim, Ha Ryong; Park, Yong Joo; Park, Duck Shin; Chung, Kyu Hyuck; Oh, Seung Min

    2012-12-12

    Particulate matter (PM) has become an important health risk factor in our society. PM can easily deposit in the bronchi and lungs, causing diverse diseases such as respiratory infections, lung cancers and cardiovascular diseases. In recent days, more and more toxicological studies have been dealing with air particles in distinctive areas including industrial areas, transportation sites, or indoors. Studies on subway PM in particular, have been recognizing PM as an important health risk factor because many people use subways as a major mode of public transportation (4 million people a day in Korea). The main aim of the present study was to evaluate the genotoxic effects of organic extract (OE) of subway PM10 and potential attribution of PAHs to these effects. Particles were collected in the subway tunnel at Kil-eum station(Line 4) for one month and then extracted with Dichloromethane (DCM). Chinese Hamster Ovary cells(CHO-K1) and human normal bronchial cells (BEAS-2B) were exposed to OE, and MN and Comet assays were conducted to analyze the genotoxicity. The results showed that OE increased DNA or chromosome damages in both cell lines. In the modified Comet assay and MN assay with free radical scavengers, we confirmed that the genotoxic effect of OE was partially due to the oxidative damage on DNA. DCFHD Aassay also indicated that OE induced ROS generation in BEAS-2B cells. PAHs [benzo(a)anthracene,benzo(k)fluoranthrene, etc.], the most well-known carcinogens in polluted air, were detected in Kil-eum PM10. In conclusion, our findings confirmed that OE of subway PM10 has genotoxic effects on normal human lung cells, and oxidative stress could be one of the major mechanisms of these genotoxic effects.In addition, some genotoxic and carcinogenic PAHs were detected in OE by GC/MS/MS, even though PAHs level was not enough to increase CYP1A1 gene. Therefore, we suggest that additive or synergistic effects by unidentified chemicals as well as PAHs contained in OE of subway

  3. Carbon storage in soil: how different land uses affect particulate organic matter composition. A molecular approach using nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Panettieri, Marco; Courtier-Murias, Denis; Rumpel, Cornelia; Dignac, Marie-France; Doumert, Bertrand; Chabbi, Abad

    2017-04-01

    The future soil carbon stocks in a climate change scenario is being closely monitored. However, the huge edaphoclimatic variability impedes to disclose the mechanisms which underlie the cycle of accumulation/mineralization of soil organic matter (SOM). Soil environment could be described as a complex three phases matrix in which gases, liquids, and solids are not uniformly mixed, and in which microbes, fungi, vegetal residues, and roots are continuously interacting with the soil matrix and with each other. Molecular analyses on soil samples are crucial to estimate how stable those pools are and to predict which practices may accumulate larger C stocks. However, the study of land use impact through molecular characterization of a complex mixture like SOM is a challenge that requires a multidisciplinary approach. The present study applied a combination of soil physical fractionation (separation by density of the particulate organic matter (POM) within water stable aggregate fractions) followed by nuclear magnetic resonance (NMR) spectroscopy as a way to overcome spatial variability and to quantify the changes in the composition of SOM induced by land-use changes. The objective of the study was to assess, at a molecular level, the impact of different land managements, i.e. the introduction of temporary (ley) grassland into cropping cycles, on the chemical composition of SOM. Soil samples were collected at the long-term experimental observatory in Lusignan (http://www.soere-acbb.com/), in which control plots under permanent grassland, permanent cropland, and bare fallow are part of the experiment. To improve the signal-to-noise ratio (especially in the aromatic-C region), samples were analyzed using a ramped cross polarization-single pulse/magic angle spinning (CPSP/MAS) experiment. Peak integrals of different spectral regions (indicating different compound classes) were compared between treatments and two different molecular mixing models, calibrated against standard

  4. Airborne particulate matter and spacecraft internal environments

    Science.gov (United States)

    Liu, Benjamin Y. H.; Rubow, Kenneth L.; Mcmurry, Peter H.; Kotz, Thomas J.; Russo, Dane

    1991-01-01

    Instrumentation, consisting of a Shuttle Particle Sampler (SPS) and a Shuttle Particle Monitor (SPM), has been developed to characterize the airborne particulate matter in the Space Shuttle cabin during orbital flight. The SPS size selectively collects particles in four size fractions (0-2.5, 2.5-10, 10-100, and greater than 100 microns) which are analyzed postflight for mass concentration and size distribution, elemental composition, and morphology. The SPM provides a continuous record of particle concentration through photometric light scattering. Measurements were performed onboard Columbia, OV-102, during the flight of STS-32 in January 1990. No significant changes were observed in the particle mass concentration, size distribution, or chemical composition in samples collected during flight-day 2 and flight-day 7. The total mass concentration was 56 microg/cu cm with approximately half of the particles larger than 100 microns. Elemental analysis showed that roughly 70 percent of the particles larger than 2.5 microns were carbonaceous with small amounts of other elements present. The SPM showed no temporal or spatial variation in particle mass concentration during the mission.

  5. On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters

    Directory of Open Access Journals (Sweden)

    Vicente Bermúdez

    2017-03-01

    Full Text Available Wall-flow particulate filters are a required exhaust aftertreatment system to abate particulate matter emissions and meet current and incoming regulations applying worldwide to new generations of diesel and gasoline internal combustion engines. Despite the high filtration efficiency covering the whole range of emitted particle sizes, the porous substrate constitutes a flow restriction especially relevant as particulate matter, both soot and ash, is collected. The dependence of the resulting pressure drop, and hence the fuel consumption penalty, on the particulate matter distribution along the inlet channels is discussed in this paper taking as reference experimental data obtained in water injection tests before the particulate filter. This technique is demonstrated to reduce the particulate filter pressure drop without negative effects on filtration performance. In order to justify these experimental data, the characteristics of the particulate layer are diagnosed applying modeling techniques. Different soot mass distributions along the inlet channels are analyzed combined with porosity change to assess the new properties after water injection. Their influence on the subsequent soot loading process and regeneration is assessed. The results evidence the main mechanisms of the water injection at the filter inlet to reduce pressure drop and boost the interest for control strategies able to force the re-entrainment of most of the particulate matter towards the inlet channels’ end.

  6. Diesel Particulate Matter Polygons, US EPA Region 9, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  7. Canada-United States Transboundary Particulate Matter Science Assessment 2013

    Science.gov (United States)

    This 2013 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.

  8. Canada-United States Transboundary Particulate Matter Science Assessment

    Science.gov (United States)

    This 2004 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.

  9. Transportation conformity particulate matter hot-spot air quality modeling.

    Science.gov (United States)

    2013-07-01

    In light of the new development in particulate matter (PM) hot-spot regulations and Illinois Department : of Transportation (IDOT)s National Environmental Policy Act (NEPA) documentation requirements, : this project is intended to (1) perform and ...

  10. Measurement and analysis of ambient atmospheric particulate matter in urban and remote environments

    Science.gov (United States)

    Hagler, Gayle S. W.

    Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 mum) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth's radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution-the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.

  11. Air Quality Criteria for Particulate Matter.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…

  12. Atmospheric particulate matter within the Sudbury footprint

    Energy Technology Data Exchange (ETDEWEB)

    Koski, P. [Laurentian Univ., Sudbury, ON (Canada); Spiers, G.A. [Laurentian Univ., Sudbury, ON (Canada). Centre for Environmental Monitoring

    2007-07-01

    In order to assess health and risks to ecosystems, measuring exposure to coarse, fine and ultrafine dust and their association with metals in the air is necessary. This paper presented the results of a study that investigated the concentration, particle size distribution and spatial dispersion of metals in total and fractioned airborne dust. The study involved collection of airborne dust samples at five different sites over a one year period in the Sudbury area, including one control site located downwind of the south-westerly most industrial emission source. The paper discussed the goals and objectives of the project which included analysis of total concentration of particulate matter (PM) within various size fractions; analysis of concentration of selected metals such as arsenic, zinc, copper, nickel, cobalt, iron, manganese, chromium and lead as well as the species of sulphur within those size fractions; delineation between particle chemistry of both short and long range transport origin; determining the effects of the different seasons on PM concentrations, and establish any seasonal/temperature trends that may occur. The paper also discussed the methodology for the study with reference to sampling sites, sampling equipment, sampling schedule, mass determination, and chemical analysis. X-ray Fluorescence (XRF) was used to determine the total metals concentration in airborne dust. The results of the study were also presented. It was concluded that PM analysis within the Sudbury footprint indicated that the finer fractions primarily contained the highest weight and metal concentration. In addition, sulphate seemed to be the only species of sulphur present in the different size fractions at each site. 22 refs., 4 tabs., 5 figs.

  13. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter ...

    Science.gov (United States)

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10% and 30% moisture content on a wet basis) in a forced-draft fan stove, and (iv) wood in a natural-draft rocket cookstove. LPG combustion had the highest thermal efficiency (~57%) and the lowest PAH emissions per unit fuel energy, resulting in the lowest PAH emissions per useful energy delivered (MJd). The average benzo[a]pyrene (B[a]P) emission factor for LPG was 0.842 µg/MJd; the emission rate was 0.043 µg/min. The highest PAH emissions were from wood burning in the natural-draft stove (209-700 µg B[a]P/MJd). PAH emissions from kerosene were significantly lower than those from the wood burning in the natural-draft cookstove, but higher than those from LPG. It is expected that in rural regions where LPG and kerosene are unavailable or unaffordable, the forced-draft fan stove may be an alternative because its emission factor (5.17-8.07 µg B[a]P/MJd) and emission rate (0.52-0.57 µg/min) are similar to kerosene (5.36 µg B[a]P/MJd and 0.45 µg/min). Compared with wood combustion emissions, LPG stoves emit less total PAH emissions and less fractions of high molecular weight PAHs. Relatively large variations in PAH emissions from LPG call for additional future tests to identify the major

  14. Atmospheric particulate matter within the Sudbury footprint

    International Nuclear Information System (INIS)

    Koski, P.; Spiers, G.A.

    2007-01-01

    In order to assess health and risks to ecosystems, measuring exposure to coarse, fine and ultrafine dust and their association with metals in the air is necessary. This paper presented the results of a study that investigated the concentration, particle size distribution and spatial dispersion of metals in total and fractioned airborne dust. The study involved collection of airborne dust samples at five different sites over a one year period in the Sudbury area, including one control site located downwind of the south-westerly most industrial emission source. The paper discussed the goals and objectives of the project which included analysis of total concentration of particulate matter (PM) within various size fractions; analysis of concentration of selected metals such as arsenic, zinc, copper, nickel, cobalt, iron, manganese, chromium and lead as well as the species of sulphur within those size fractions; delineation between particle chemistry of both short and long range transport origin; determining the effects of the different seasons on PM concentrations, and establish any seasonal/temperature trends that may occur. The paper also discussed the methodology for the study with reference to sampling sites, sampling equipment, sampling schedule, mass determination, and chemical analysis. X-ray Fluorescence (XRF) was used to determine the total metals concentration in airborne dust. The results of the study were also presented. It was concluded that PM analysis within the Sudbury footprint indicated that the finer fractions primarily contained the highest weight and metal concentration. In addition, sulphate seemed to be the only species of sulphur present in the different size fractions at each site. 22 refs., 4 tabs., 5 figs

  15. Particulate matter analysis at elementary schools in Curitiba, Brazil.

    Science.gov (United States)

    Avigo, Devanir; Godoi, Ana F L; Janissek, Paulo R; Makarovska, Yaroslava; Krata, Agnieszka; Potgieter-Vermaak, Sanja; Alfoldy, Balint; Van Grieken, René; Godoi, Ricardo H M

    2008-06-01

    The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels.

  16. Particulate matter mass concentrations produced from pavement surface abrasion

    Directory of Open Access Journals (Sweden)

    Fullova Dasa

    2017-01-01

    Full Text Available According to the latest findings particulate matter belong to the most significant pollutants in Europe together with ground-level ozone O3 and nitrogen dioxide NO2. Road traffic is one of the main sources of particulate matter. Traffic volume has unpleasant impact on longevity of the pavements and also on the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The paper deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The paper offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  17. Characterisation of particulate matter on airborne pollen grains

    International Nuclear Information System (INIS)

    Ribeiro, Helena; Guimarães, Fernanda; Duque, Laura; Noronha, Fernando; Abreu, Ilda

    2015-01-01

    A characterization of the physical–chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles’ equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical–chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity. - Highlights: • Airborne pollen sorbs other PM found in suspension. • 84% of the particles sorbed belonged to the fine aerosol fraction. • Adsorbed PM presented daily physical–chemical variations. • Particles sorbed dominated by Si-rich, Organic-rich, SO-rich, Fe-rich and Cl-rich. - Airborne pollen is able to transport finer particulate matter, which presents daily physical–chemical variations.

  18. Influence of particulate matter on microfouling biomass in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Nandakumar, K.; Wagh, A.B.

    ~ E :; :; 00 " " 200 '\\00 6001&. I&. Olslonc. from rne St>cre tn. miles! Leg , 0----4L~2 L~3 Leo .; Log $ Fig.3 Suspended matter (A), and particulate organic carbon (B) of surface seawater. and microfouling biomass as dry weight (C) and organic carbon...

  19. Qualitative and quantitative determination of water in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    S. Canepari

    2013-02-01

    Full Text Available This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM. The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C.

    The analytical performance of the method was verified by using standard materials containing 5.55% and 1% by weight of water. The recovery was greater than 95%; the detection limit was about 20 μg. The method was then applied to NIST Reference Materials (NIST1649a, urban particulate matter and to real PM10 samples collected in different geographical areas. In all cases the repeatability was satisfactory (10–15%.

    When analyzing the Reference Material, the separation of four different types of water was obtained. In real PM10 samples the amount of water and its thermal profile differed as a function of the chemical composition of the dust. Mass percentages of 3–4% of water were obtained in most samples, but values up to about 15% were reached in areas where the chemical composition of PM is dominated by secondary inorganic ions and organic matter. High percentages of water were also observed in areas where PM is characterized by the presence of desert dust.

    A possible identification of the quality of water released from the samples was tried by applying the method to some hygroscopic compounds that are likely contained in PM (pure SiO2, Al2O3, ammonium salts, carbohydrates and dicarboxylic acids and by comparing the results with those obtained from field samples.

  20. Soil organic matter

    International Nuclear Information System (INIS)

    1976-01-01

    The nature, content and behaviour of the organic matter, or humus, in soil are factors of fundamental importance for soil productivity and the development of optimum conditions for growth of crops under diverse temperate, tropical and arid climatic conditions. In the recent symposium on soil organic matter studies - as in the two preceding ones in 1963 and 1969 - due consideration was given to studies involving the use of radioactive and stable isotopes. However, the latest symposium was a departure from previous efforts in that non-isotopic approaches to research on soil organic matter were included. A number of papers dealt with the behaviour and functions of organic matter and suggested improved management practices, the use of which would contribute to increasing agricultural production. Other papers discussed the turnover of plant residues, the release of plant nutrients through the biodegradation of organic compounds, the nitrogen economy and the dynamics of transformation of organic forms of nitrogen. In addition, consideration was given to studies on the biochemical transformation of organic matter, characterization of humic acids, carbon-14 dating and the development of modern techniques and their impact on soil organic matter research

  1. Airborne particulate matter from livestock production systems: A review of an air pollution problem

    International Nuclear Information System (INIS)

    Cambra-Lopez, Maria; Aarnink, Andre J.A.; Zhao Yang; Calvet, Salvador; Torres, Antonio G.

    2010-01-01

    Livestock housing is an important source of emissions of particulate matter (PM). High concentrations of PM can threaten the environment, as well as the health and welfare of humans and animals. Particulate matter in livestock houses is mainly coarse, primary in origin, and organic; it can adsorb and contain gases, odorous compounds, and micro-organisms, which can enhance its biological effect. Levels of PM in livestock houses are high, influenced by kind of housing and feeding, animal type, and environmental factors. Improved knowledge on particle morphology, primarily size, composition, levels, and the factors influencing these can be useful to identify and quantify sources of PM more accurately, to evaluate their effects, and to propose adequate abatement strategies in livestock houses. This paper reviews the state-of-the-art of PM in and from livestock production systems. Future research to characterize and control PM in livestock houses is discussed. - Control of particulate matter emissions, a major challenge to modern livestock production.

  2. Chemical Composition of Fine Particulate Matter and Life Expectancy

    Science.gov (United States)

    Dominici, Francesca; Wang, Yun; Correia, Andrew W.; Ezzati, Majid; Pope, C. Arden; Dockery, Douglas W.

    2016-01-01

    Background In a previous study, we provided evidence that a decline in fine particulate matter (PM2.5) air pollution during the period between 2000 and 2007 was associated with increased life expectancy in 545 counties in the United States. In this article, we investigated which chemical constituents of PM2.5 were the main drivers of the observed association. Methods We estimated associations between temporal changes in seven major components of PM2.5 (ammonium, sulfate, nitrate, elemental carbon matter, organic carbon matter, sodium, and silicon) and temporal changes in life expectancy in 95 counties between 2002 and 2007. We included US counties that had adequate chemical components of PM2.5 mass data across all seasons. We fitted single pollutant and multiple pollutant linear models, controlling for available socioeconomic, demographic, and smoking variables and stratifying by urban and nonurban counties. Results In multiple pollutant models, we found that: (1) a reduction in sulfate was associated with an increase in life expectancy; and (2) reductions in ammonium and sodium ion were associated with increases in life expectancy in nonurban counties only. Conclusions Our findings suggest that recent reductions in long-term exposure to sulfate, ammonium, and sodium ion between 2002 and 2007 are associated with improved public health. PMID:25906366

  3. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    Directory of Open Access Journals (Sweden)

    Fullová Daša

    2016-12-01

    Full Text Available The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  4. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  5. Comparison of ASE and SFE with Soxhlet, Sonication, and Methanolic Saponification Extractions for the Determination of Organic Micropollutants in Marine Particulate Matter.

    Science.gov (United States)

    Heemken, O P; Theobald, N; Wenclawiak, B W

    1997-06-01

    The methods of accelerated solvent extraction (ASE) and supercritical fluid extraction (SFE) of polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons, and chlorinated hydrocarbons from marine samples were investigated. The results of extractions of a certified sediment and four samples of suspended particulate matter (SPM) were compared to classical Soxhlet (SOX), ultrasonication (USE), and methanolic saponification extraction (MSE) methods. The recovery data, including precision and systematic deviations of each method, were evaluated statistically. It was found that recoveries and precision of ASE and SFE compared well with the other methods investigated. Using SFE, the average recoveries of PAHs in three different samples ranged from 96 to 105%, for ASE the recoveries were in the range of 97-108% compared to the reference methods. Compared to the certified values of sediment HS-6, the average recoveries of SFE and ASE were 87 and 88%, most compounds being within the limits of confidence. Also, for alkanes the average recoveries by SFE and ASE were equal to the results obtained by SOX, USE, and MSE. In the case of SFE, the recoveries were in the range 93-115%, and ASE achieved recoveries of 94-107% as compared to the other methods. For ASE and SFE, the influence of water on the extraction efficiency was examined. While the natural water content of the SPM sample (56 wt %) led to insufficient recoveries in ASE and SFE, quantitative extractions were achieved in SFE after addition of anhydrous sodium sulfate to the sample. Finally, ASE was applied to SPM-loaded filter candles whereby a mixture of n-hexane/acetone as extraction solvent allowed the simultaneous determination of PAHs, alkanes, and chlorinated hydrocarbons.

  6. Monitoring Particulate Matter with Commodity Hardware

    Science.gov (United States)

    Holstius, David

    Health effects attributed to outdoor fine particulate matter (PM 2.5) rank it among the risk factors with the highest health burdens in the world, annually accounting for over 3.2 million premature deaths and over 76 million lost disability-adjusted life years. Existing PM2.5 monitoring infrastructure cannot, however, be used to resolve variations in ambient PM2.5 concentrations with adequate spatial and temporal density, or with adequate coverage of human time-activity patterns, such that the needs of modern exposure science and control can be met. Small, inexpensive, and portable devices, relying on newly available off-the-shelf sensors, may facilitate the creation of PM2.5 datasets with improved resolution and coverage, especially if many such devices can be deployed concurrently with low system cost. Datasets generated with such technology could be used to overcome many important problems associated with exposure misclassification in air pollution epidemiology. Chapter 2 presents an epidemiological study of PM2.5 that used data from ambient monitoring stations in the Los Angeles basin to observe a decrease of 6.1 g (95% CI: 3.5, 8.7) in population mean birthweight following in utero exposure to the Southern California wildfires of 2003, but was otherwise limited by the sparsity of the empirical basis for exposure assessment. Chapter 3 demonstrates technical potential for remedying PM2.5 monitoring deficiencies, beginning with the generation of low-cost yet useful estimates of hourly and daily PM2.5 concentrations at a regulatory monitoring site. The context (an urban neighborhood proximate to a major goods-movement corridor) and the method (an off-the-shelf sensor costing approximately USD $10, combined with other low-cost, open-source, readily available hardware) were selected to have special significance among researchers and practitioners affiliated with contemporary communities of practice in public health and citizen science. As operationalized by

  7. Identification and Characterization of Particulate Matter Concentrations at Construction Jobsites

    Directory of Open Access Journals (Sweden)

    Ingrid P. S. Araújo

    2014-11-01

    Full Text Available The identification and characterization of particulate matter (PM concentrations from construction site activities pose major challenges due to the diverse characteristics related to different aspects, such as concentration, particle size and particle composition. Moreover, the characterization of particulate matter is influenced by meteorological conditions, including temperature, humidity, rainfall and wind speed. This paper is part of a broader investigation that aims to develop a methodology for assessing the environmental impacts caused by the PM emissions that arise from construction activities. The objective of this paper is to identify and characterize the PM emissions on a construction site with different aerodynamic diameters (PM2.5, PM10, total suspended particulates (TSP, based on an exploratory study. Initially, a protocol was developed to standardize the construction site selection criteria, laboratory procedures, field sample collection and laboratory analysis. This protocol was applied on a multifamily residential building construction site during three different construction phases (earthworks, superstructure and finishings aimed at measuring and monitoring PM concentrations arising from construction activities. The particulate matter was characterized in different particle sizes. Results showed that the higher TSP emissions arising from construction activities provoked environmental impacts. Some limitations to the results were identified, especially with regards the need for a detailed investigation about the influence of different construction phases on PM emissions. The findings provided significant knowledge about various situations, serving as a basis for improving the existing methodology for particulate material collection on construction sites and the development of future studies on the specific construction site phases.

  8. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  9. Effect of Feeding Schedule on Fractionated Particulate Matter Distribution in Rooster House

    Science.gov (United States)

    The persistence and long life expectancy of ammonia, odors and toxic pollutants from poultry houses may be due to the ability of suspended particulate matters (SPM) to serve as carriers for odorous compounds such as ammonium ions and volatile organic compounds. SPM is generated from the feed, anima...

  10. Ambient Air Pollution and Increases in Blood Pressure: Role for biological constituents of particulate matter

    Science.gov (United States)

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies con...

  11. Carbonaceous material in fine particulate matter (PM10) of urban areas

    International Nuclear Information System (INIS)

    Brocco, Domenico; Leonardi, Vittorio; Maso; Marco; Prignani, Patrizia

    2006-01-01

    Total carbon (TC), elemental carbon (EC) and organic carbon (OC) in the fine particulate matter (PM10) were measured in the urban areas of Rome and Marino (Castelli Romani) by means a thermal method with a non-dispersive infrared detector (NDIR). The results showed that carbonaceous material constitutes 30-40% of the total aerosols in Rome and about 20% in Marino [it

  12. PARTICULATE MATTER AND HUMAN HEALTH: USING HUMAN STUDIES TO UNDERSTAND SUSCEPTIBILITY

    Science.gov (United States)

    The potential for experiencing adverse health effects from air pollution particulate matter (PM) exposure is an important public health issue. The World Health Organization has estimated that PM contributes to the deaths of 500,000 people world-wide each year. Epidemiologic stu...

  13. Trends and the effect of management on macronutrients in fractionated particulate matter in rooster house

    Science.gov (United States)

    The persistence and long life expectancy of ammonia, odors and toxic pollutants from poultry houses may be due to the ability of suspended particulate matters (SPM) to serve as carriers for odorous compounds such as ammonium ions and volatile organic compounds. SPM is generated from the feed, anima...

  14. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Directory of Open Access Journals (Sweden)

    Richard Toro Araya

    2014-01-01

    Full Text Available Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007, concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August and warm (September to February seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41% than in the warm season (44 ± 18%. On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3 and the United States Environmental Protection Agency standard (15 µg/m3 for fine particulate matter.

  15. Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.

  16. Hydrolysis and degradation of filtrated organic particulates in a biofilm reactor under anoxic and aerobic conditions

    DEFF Research Database (Denmark)

    Janning, K.F.; Mesterton, K.; Harremoës, P.

    1997-01-01

    Two experiments were performed in order to investigate the anoxic and the aerobic degradation of filtrated organic matter in a biofilter. In submerged lab: scale reactors with Biocarbone media as filter material, accumulated particulate organic matter from pre-settled wastewater served as the only...

  17. Evaluation of airborne particulate matter pollution in Kenitra City, Morocco

    Directory of Open Access Journals (Sweden)

    Abdelfettah Benchrif

    2013-04-01

    Full Text Available Two size fractions of atmospheric particulate matter < 2.5 µm and 2.5-10 µm were collected in Kenitra City from February 2007 to February 2008. The sampling was done using a Gent Stacked sampler on nuclepore polycarbonate filters and the collected filters were analyzed using Total Reflection X-Ray Fluorescence (TXRF and Atomic Absorption Spectroscopy (AAS. The particulate matter trends show higher concentrations during the summer as compared to other seasons. The highest concentrations were obtained for Ca in coarse particles and Fe for fine particles. However, the lowest concentrations were observed for Cd in both particulate sizes. The principal component analysis (PCA based on multivariate study enabled the identification of soil, road dust and traffic emissions as common sources for coarse and fine particles.

  18. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    Science.gov (United States)

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  19. Particulate matter characterization of Cauca River water in Colombia

    NARCIS (Netherlands)

    Gutierrez Marin, Juan Pablo; van Halem, D.; Rietveld, L.C.

    2016-01-01

    The particulate matter composition in the Upper Cauca River section was studied, considering the importance of this river for the water supply of Cali, Colombia, and the implications that the turbidity of this water source has had for the city's water treatment. Additionally, the upstream Palo River

  20. Deposition of Suspended Fine Particulate Matter in a Library

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Mašková, Ludmila; Zíková, Naděžda; Ondráčková, Lucie; Ondráček, Jakub

    2013-01-01

    Roč. 1, 3 April (2013) ISSN 2050-7445 R&D Projects: GA MK DF11P01OVV020 Keywords : fine particulate matter * deposition * brownian diffusion Subject RIV: CF - Physical ; Theoretical Chemistry http://www.heritagesciencejournal.com/content/1/1/7

  1. Nature of suspended particulate matter and concentrations of heavy ...

    African Journals Online (AJOL)

    The concentrations of metals in bottom sediment in the Tanzanian waters of Lake Victoria and the nature of suspended particulate matter (SPM) were analysed. The objective of the study was to compare levels of metals in sediment from different locations and to establish their sources. Metal concentrations were higher in ...

  2. Trace metals concentration assessment in urban particulate matter ...

    African Journals Online (AJOL)

    This study was conducted to investigate the distribution and correlation of selected trace elements (Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in Yenagoa, Bayelsa State and its environs. Air particulate matter was collected gravimetrically at five stations (using a high volume portable SKC air check MTXSidekickair sampler ...

  3. Respiratory dose analysis for components of ambient particulate matter#

    Science.gov (United States)

    Particulate matter (PM) in the atmosphere is a complex mixture of particles with different sizes and chemical compositions. Although PM is known to cause health hazard, specific attributes of PM that may cause health effects are somewhat ambiguous. The dose of each specific compo...

  4. Particulate matter urban air pollution from traffic car

    Science.gov (United States)

    Filip, G. M.; Brezoczki, V. M.

    2017-05-01

    The particulate matters (PM) are very important compounds of urban air pollution. There are a lot of air pollution sources who can generate PM and one of the most important of them it is urban traffic car. Air particulate matters have a major influence on human health so everywhere are looking for PM reducing solutions. It is knows that one of the solution for reduce the PM content from car traffic on ambient urban air is the fluidity of urban traffic car by introduction the roundabout intersections. This paper want to present some particulate matter determinations for PM10 and PM2.5 conducted on the two types of urban intersection respectively traffic light and roundabout intersections in Baia Mare town in the approximate the same work conditions. The determinations were carried out using a portable particulate matter monitor Haz - Dust model EPAM - 5000, who can provide a real time data for PM10, PM 2.5.Determinations put out that there are differences between the two locations regarding the PM content on ambient air. On roundabout intersection the PM content is less than traffic light intersection for both PM10 and PM 2.5 with more than 30%.

  5. An assessment of common atmospheric particulate matter sampling ...

    African Journals Online (AJOL)

    The method detection limit was also low (0.2 to 1 μg/L) for most metals, and 50% and less standard deviation to mean ratios were obtained for Ni and Pb. Key words: Toxic metals, inductively coupled plasma mass spectroscopy, scanning electron microscopy coupled with energy dispersive spectrometry, particulate matter, ...

  6. Subchronic effects of inhaled ambient particulate matter on glucose homeostasis and target organ damage in a type 1 diabetic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yuan-Horng [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Charles, Chou C.-K. [Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan (China); Wang, Jyh-Seng [Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Tung, Chun-Liang [Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Li, Ya-Ru; Lo, Kai [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2014-12-01

    Epidemiological studies have reported associations between particulate matter (PM) and cardiovascular effects, and diabetes mellitus (DM) patients might be susceptible to these effects. The chief chronic injuries resulting from DM are small vascular injuries (micro-vascular complications) or large blood vessel injuries (macro-vascular complications). However, toxicological data regarding the effects of PM on DM-related cardiovascular complications is limited. Our objective was to investigate whether subchronic PM exposure alters glucose homeostasis and causes cardiovascular complications in a type 1 DM rat model. We constructed a real world PM{sub 2.5} exposure system, the Taipei Air Pollution Exposure System for Health Effects (TAPES), to continuously deliver non-concentrated PM for subchronic exposure. A type 1 DM rat model was induced using streptozotocin. Between December 22, 2009 and April 9, 2010, DM rats were exposed to PM or to filtered air (FA) using TAPES in Taipei, Taiwan, 24 h/day, 7 days/week, for a total of 16 weeks. The average concentrations (mean [SD]) of PM{sub 2.5} in the exposure and control chambers of the TAPES were 13.30 [8.65] and 0.13 [0.05] μg/m{sup 3}, respectively. Glycated hemoglobin A1c (HbA1c) was significantly elevated after exposure to PM compared with exposure to FA (mean [SD], 7.7% [3.1%] vs. 4.7% [1.0%], P < 0.05). Interleukin 6 and fibrinogen levels were significantly increased after PM exposure. PM caused focal myocarditis, aortic medial thickness, advanced glomerulosclerosis, and accentuation of tubular damage of the kidney (tubular damage index: 1.76 [0.77] vs. 1.15 [0.36], P < 0.001). PM exposure might induce the macro- and micro-vascular complications in DM through chronic hyperglycemia and systemic inflammation. - Highlights: • The study demonstrated cardiovascular and renal effects of PM in a rat model of DM. • TAPES is a continuous, real world, long-term PM exposure system. • HbA1c, a marker of glycemic

  7. Subchronic effects of inhaled ambient particulate matter on glucose homeostasis and target organ damage in a type 1 diabetic rat model

    International Nuclear Information System (INIS)

    Yan, Yuan-Horng; Charles, Chou C.-K.; Wang, Jyh-Seng; Tung, Chun-Liang; Li, Ya-Ru; Lo, Kai; Cheng, Tsun-Jen

    2014-01-01

    Epidemiological studies have reported associations between particulate matter (PM) and cardiovascular effects, and diabetes mellitus (DM) patients might be susceptible to these effects. The chief chronic injuries resulting from DM are small vascular injuries (micro-vascular complications) or large blood vessel injuries (macro-vascular complications). However, toxicological data regarding the effects of PM on DM-related cardiovascular complications is limited. Our objective was to investigate whether subchronic PM exposure alters glucose homeostasis and causes cardiovascular complications in a type 1 DM rat model. We constructed a real world PM 2.5 exposure system, the Taipei Air Pollution Exposure System for Health Effects (TAPES), to continuously deliver non-concentrated PM for subchronic exposure. A type 1 DM rat model was induced using streptozotocin. Between December 22, 2009 and April 9, 2010, DM rats were exposed to PM or to filtered air (FA) using TAPES in Taipei, Taiwan, 24 h/day, 7 days/week, for a total of 16 weeks. The average concentrations (mean [SD]) of PM 2.5 in the exposure and control chambers of the TAPES were 13.30 [8.65] and 0.13 [0.05] μg/m 3 , respectively. Glycated hemoglobin A1c (HbA1c) was significantly elevated after exposure to PM compared with exposure to FA (mean [SD], 7.7% [3.1%] vs. 4.7% [1.0%], P < 0.05). Interleukin 6 and fibrinogen levels were significantly increased after PM exposure. PM caused focal myocarditis, aortic medial thickness, advanced glomerulosclerosis, and accentuation of tubular damage of the kidney (tubular damage index: 1.76 [0.77] vs. 1.15 [0.36], P < 0.001). PM exposure might induce the macro- and micro-vascular complications in DM through chronic hyperglycemia and systemic inflammation. - Highlights: • The study demonstrated cardiovascular and renal effects of PM in a rat model of DM. • TAPES is a continuous, real world, long-term PM exposure system. • HbA1c, a marker of glycemic homeostasis, was

  8. Is old organic matter simple organic matter?

    Science.gov (United States)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  9. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan

    Science.gov (United States)

    Mkoma, S. L.; Kawamura, K.; Fu, P. Q.

    2013-10-01

    Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania, East Africa, in 2011 during wet and dry seasons and were analysed for carbonaceous components, levoglucosan, mannosan and water-soluble inorganic ions. The contributions of biomass/biofuel burning to the organic carbon (OC) and particulate matter (PM) mass were estimated to be 46-52% and 87-13%, respectively. The mean mass concentrations of PM2.5 and PM10 were 28 ± 6 μg m-3 and 47 ± 8 μg m-3 in wet season, and 39 ± 10 μg m-3 and 61 ± 19 μg m-3 in dry season, respectively. Total carbon (TC) accounted for 16-19% of the PM2.5 mass and 13-15% of the PM10 mass. On average, 86 to 89% of TC in PM2.5 and 87 to 90% of TC in PM10 was OC, of which 67-72% and 63% was found to be water-soluble organic carbon (WSOC) in PM2.5 and PM10, respectively. We found that concentrations of levoglucosan and mannosan (specific organic tracers of pyrolysis of cellulose) well correlated with non-sea-salt potassium (nss-K+) (r2 = 0.56-0.75), OC (r2 = 0.75-0.96) and WSOC (r2 = 0.52-0.78). The K+ / OC ratios varied from 0.06 to 0.36 in PM2.5 and from 0.03 to 0.36 in PM10 with slightly higher ratios in dry season. Mean percent ratios of levoglucosan and mannosan to OC were found to be 3-4% for PM2.5 and PM10 in both seasons. We found lower levoglucosan / K+ ratios and higher K+ / EC (elemental carbon) ratios in the biomass-burning aerosols from Tanzania than those reported from other regions. This feature is consistent with the high levels of potassium reported in the soils of Morogoro, Tanzania, suggesting an importance of direct emission of potassium by soil resuspension although K+ is present mostly in fine particles. It is also likely that biomass burning of vegetation of Tanzania emits high levels of potassium that may be enriched in plant tissues. The present study demonstrates that emissions from mixed biomass- and biofuel-burning activities largely influence the air quality in Tanzania.

  10. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan

    Directory of Open Access Journals (Sweden)

    S. L. Mkoma

    2013-10-01

    Full Text Available Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania, East Africa, in 2011 during wet and dry seasons and were analysed for carbonaceous components, levoglucosan, mannosan and water-soluble inorganic ions. The contributions of biomass/biofuel burning to the organic carbon (OC and particulate matter (PM mass were estimated to be 46–52% and 87–13%, respectively. The mean mass concentrations of PM2.5 and PM10 were 28 ± 6 μg m−3 and 47 ± 8 μg m−3 in wet season, and 39 ± 10 μg m−3 and 61 ± 19 μg m−3 in dry season, respectively. Total carbon (TC accounted for 16–19% of the PM2.5 mass and 13–15% of the PM10 mass. On average, 86 to 89% of TC in PM2.5 and 87 to 90% of TC in PM10 was OC, of which 67–72% and 63% was found to be water-soluble organic carbon (WSOC in PM2.5 and PM10, respectively. We found that concentrations of levoglucosan and mannosan (specific organic tracers of pyrolysis of cellulose well correlated with non-sea-salt potassium (nss-K+ (r2 = 0.56–0.75, OC (r2 = 0.75–0.96 and WSOC (r2 = 0.52–0.78. The K+ / OC ratios varied from 0.06 to 0.36 in PM2.5 and from 0.03 to 0.36 in PM10 with slightly higher ratios in dry season. Mean percent ratios of levoglucosan and mannosan to OC were found to be 3–4% for PM2.5 and PM10 in both seasons. We found lower levoglucosan / K+ ratios and higher K+ / EC (elemental carbon ratios in the biomass-burning aerosols from Tanzania than those reported from other regions. This feature is consistent with the high levels of potassium reported in the soils of Morogoro, Tanzania, suggesting an importance of direct emission of potassium by soil resuspension although K+ is present mostly in fine particles. It is also likely that biomass burning of vegetation of Tanzania emits high levels of potassium that may be enriched in plant tissues. The present study demonstrates that emissions from mixed biomass- and biofuel-burning activities largely

  11. Organic particulate matter formation at varying relative humidity using surrogate secondary and primary organic compounds with activity corrections in the condensed phase obtained using a method based on the Wilson equation

    Science.gov (United States)

    Chang, E. I.; Pankow, J. F.

    2010-06-01

    Secondary organic aerosol (SOA) formation in the atmosphere is currently often modeled using a multiple lumped "two-product" (N·2p) approach. The N·2p approach neglects: 1) variation of activity coefficient (ζi) values and mean molecular weight solid #000; color: #000;">MW in the particulate matter (PM) phase; 2) water uptake into the PM; and 3) the possibility of phase separation in the PM. This study considers these effects by adopting an (N·2p)ζpsolid #000; color: #000;">MW,ζ approach (θ is a phase index). Specific chemical structures are assigned to 25 lumped SOA compounds and to 15 representative primary organic aerosol (POA) compounds to allow calculation of ζi and solid #000; color: #000;">MW values. The SOA structure assignments are based on chamber-derived 2p gas/particle partition coefficient values coupled with known effects of structure on vapor pressure pL,io (atm). To facilitate adoption of the (N·2p)ζpsolid #000; color: #000;">MW,θ approach in large-scale models, this study also develops CP-Wilson.1 (Chang-Pankow-Wilson.1), a group-contribution ζi-prediction method that is more computationally economical than the UNIFAC model of Fredenslund et al. (1975). Group parameter values required by CP-Wilson.1 are obtained by fitting ζi values to predictions from UNIFAC. The (N·2p)ζpsolid #000; color: #000;">MW,θ approach is applied (using CP-Wilson.1) to several real α-pinene/O3 chamber cases for high reacted hydrocarbon levels (ΔHC≈400 to 1000 μg m-3) when relative humidity (RH) ≍50%. Good agreement between the chamber and predicted results is obtained using both the (N·2p)ζpsolid #000; color: #000;">MW,θ and N·2p approaches, indicating relatively small water effects under these conditions. However, for a hypothetical α-pinene/O3 case at ΔHC=30 μg m-3 and RH=50%, the (N·2p)ζpsolid #000; color: #000;">MW,θ approach predicts that water uptake will lead to an organic PM level that is more double that predicted by the N·2p

  12. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  13. Aged riverine particulate organic carbon in four UK catchments

    International Nuclear Information System (INIS)

    Adams, Jessica L.; Tipping, Edward; Bryant, Charlotte L.; Helliwell, Rachel C.; Toberman, Hannah; Quinton, John

    2015-01-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO 14 C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO 14 C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14 C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO 14 C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high- 14 C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO 14 C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO 14 C in rivers draining catchments with low erosion rates. - Highlights:

  14. Aged riverine particulate organic carbon in four UK catchments

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jessica L., E-mail: jesams@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Tipping, Edward, E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Bryant, Charlotte L., E-mail: charlotte.bryant@glasgow.ac.uk [NERC Radiocarbon Facility, East Kilbride G75 0QF, Scotland (United Kingdom); Helliwell, Rachel C., E-mail: rachel.helliwell@hutton.ac.uk [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH Scotland (United Kingdom); Toberman, Hannah, E-mail: hannahtoberman@hotmail.com [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Quinton, John, E-mail: j.quinton@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-12-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO{sup 14}C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO{sup 14}C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 {sup 14}C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO{sup 14}C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-{sup 14}C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO{sup 14}C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO{sup 14}C in rivers draining catchments with low erosion rates

  15. A new technology for the reduction of particulate matter from diesel engines in ships

    NARCIS (Netherlands)

    Van Rens, G.L.M.A.

    2008-01-01

    In this thesis the focus is on the particulate matter reduction of ships, as ships contribute significantly to the particulate matter concentration in ambient air. Because the fuel of sea ships contains a lot of ash, the emitted particulate matter will also contain a lot of ash. In car and truck

  16. Gene-particulate matter-health interactions

    International Nuclear Information System (INIS)

    Kleeberger, Steven R.; Ohtsuka, Yoshinori

    2005-01-01

    Inter-individual variation in human responses to air pollutants suggests that some subpopulations are at increased risk to the detrimental effects of pollutant exposure. Extrinsic factors such as previous exposure and nutritional status may influence individual susceptibility. Intrinsic (host) factors that determine susceptibility include age, gender, and pre-existing disease (e.g., asthma), and it is becoming clear that genetic background also contributes to individual susceptibility. Environmental exposures to particulates and genetic factors associated with disease risk likely interact in a complex fashion that varies from one population and one individual to another. The relationships between genetic background and disease risk and severity are often evaluated through traditional family-based linkage studies and positional cloning techniques. However, case-control studies based on association of disease or disease subphenotypes with candidate genes have advantages over family pedigree studies for complex disease phenotypes. This is based in part on continued development of quantitative analysis and the discovery and availability of simple sequence repeats and single nucleotide polymorphisms. Linkage analyses with genetically standardized animal models also provide a useful tool to identify genetic determinants of responses to environmental pollutants. These approaches have identified significant susceptibility quantitative trait loci on mouse chromosomes 1, 6, 11, and 17. Physical mapping and comparative mapping between human and mouse genomes will yield candidate susceptibility genes that may be tested by association studies in human subjects. Human studies and mouse modeling will provide important insight to understanding genetic factors that contribute to differential susceptibility to air pollutants

  17. Seasonal distribution of organic matter in mangrove environment of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.

    Water and sediments were studied for the distribution of suspended matter, organic carbon and nitrogen Suspended matter ranged from 3-373 mg.l-1 while particulate organic carbon (POC) from 0.03-9.94 mg.l-1 POC value showed significant correlation...

  18. Samplings of urban particulate matter for mutagenicity assays

    International Nuclear Information System (INIS)

    De Zaiacono, T.

    1996-07-01

    In the frame of a specific program relating to the evaluation of mutagenic activity of urban particulate matter, an experimental arrangement has been developed to sample aerosuspended particles from the external environment carried indoor by means of a fan. Instrumentation was placed directly in the air flow to minimize particle losses, and consisted of total filter, collecting particles without any size separation; cascade impactor, fractioning urban particulate to obtain separate samples for analyses; an optical device, for real time monitoring of aerosol concentration, temperature and relative humidity sensors. Some of the samples obtained were analysed to investigate: particle morphology, aerosol granulometric distributions, effect of relative humidity on collected particulate, amount of ponderal mass compared with real time optical determinations. The results obtained are reported here, together with some considerations about carbonaceous particles, in urban areas mainly originated from diesel exhausts, their degree of agglomeration and role to vehiculate substances into the human respiratory

  19. Radio Frequency Sensing of Particulate Matter Accumulation on a Gasoline Particulate Filter

    Energy Technology Data Exchange (ETDEWEB)

    Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Sappok, Alex [Filter Sensing Technologies; Ragaller, Paul [Filter Sensing Technologies; Bromberg, L. [Massachusetts Institute of Technology (MIT)

    2016-10-30

    Filter Sensing Technology’s radio frequency (RF) sensor for particulate filter on-board diagnostics (OBD) was studied on a lean gasoline engine at the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory (ORNL). The response of the RF sensor to particulate matter (PM) or “soot” accumulation on the gasoline particulate filter (GPF) installed in the engine exhaust was evaluated. In addition, end plugs of the GPF were purposely removed, and subsequent changes to the RF sensor measured soot loading on the GPF were characterized. Results from the study showed that the RF sensor can accurately measure soot accumulation on a GPF; furthermore, the predicted decreased soot accumulation due to plug removal was detected by the RF sensor. Overall, the studies were short and preliminary in nature; however, clearly, the RF sensor demonstrated the capability of measuring GPF soot loading at a level suitable for use in lean gasoline engine emission control OBD and control.

  20. Deuterium in organic matter

    International Nuclear Information System (INIS)

    Straaten, C.M. van der.

    1981-01-01

    In order to obtain an insight in the processes governing the macroclimate on earth, a knowledge is required of the behaviour of climates in the past. It is well known that D/H ratio of rain varies with temperature determined by latitude as well as by season. Because land plants use this water during the assimilation process, it is expected that the D/H variations are propagated in the organic plant matter. The D/H palaeoclimatic method has therefore been applied to peat to distinguish between the chemical constituents and trace the stable hydrogen fraction in the organic matter. The relation between the hydrogen isotopic composition of precipitation and climatic factors such as the temperature have also been studied. (Auth.)

  1. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  2. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  3. High diversity of fungi in air particulate matter.

    Science.gov (United States)

    Fröhlich-Nowoisky, Janine; Pickersgill, Daniel A; Després, Viviane R; Pöschl, Ulrich

    2009-08-04

    Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 microm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.

  4. Validation of NAA Method for Urban Particulate Matter

    International Nuclear Information System (INIS)

    Woro Yatu Niken Syahfitri; Muhayatun; Diah Dwiana Lestiani; Natalia Adventini

    2009-01-01

    Nuclear analytical techniques have been applied in many countries for determination of environmental pollutant. Method of NAA (neutron activation analysis) representing one of nuclear analytical technique of that has low detection limits, high specificity, high precision, and accuracy for large majority of naturally occurring elements, and ability of non-destructive and simultaneous determination of multi-elemental, and can handle small sample size (< 1 mg). To ensure quality and reliability of the method, validation are needed to be done. A standard reference material, SRM NIST 1648 Urban Particulate Matter, has been used to validate NAA method. Accuracy and precision test were used as validation parameters. Particulate matter were validated for 18 elements: Ti, I, V, Br, Mn, Na, K, Cl, Cu, Al, As, Fe, Co, Zn, Ag, La, Cr, and Sm,. The result showed that the percent relative standard deviation of the measured elemental concentrations are found to be within ranged from 2 to 14,8% for most of the elements analyzed whereas Hor rat value in range 0,3-1,3. Accuracy test results showed that relative bias ranged from -11,1 to 3,6%. Based on validation results, it can be stated that NAA method is reliable for characterization particulate matter and other similar matrix samples to support air quality monitoring. (author)

  5. Exposure to the elemental carbon, organic carbon, nitrate and sulfate fractions of fine particulate matter and risk of preterm birth in New Jersey, Ohio, and Pennsylvania (2000-2005).

    Science.gov (United States)

    BACKGROUND: Particulate matter ≤2.5 µm in aerodynamic diameter (PM2.5) has been consistently associated with preterm birth (PTB) to varying degrees, but roles of PM2.5 species have been less studied.OBJECTIVE:We estimated risk differences (RD) of PTB (reported per 106 pregnancies...

  6. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: The role of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Andrysik, Zdenek; Vondracek, Jan; Marvanova, Sona; Ciganek, Miroslav; Neca, Jiri; Pencikova, Katerina; Mahadevan, Brinda; Topinka, Jan; Baird, William M.; Kozubik, Alois; Machala, Miroslav

    2011-01-01

    Highlights: → SRM1649a extract and its fractions are potent activators of AhR in a model of epithelial cells. → AhR-dependent effects include both induction of CYP1 enzymes and disruption of cell proliferation control. → Polycyclic aromatic hydrocarbons present in the neutral SRM1649a fraction are major contributors to the AhR-mediated toxic effects. → Activation of AhR and related nongenotoxic effects occur at significantly lower doses than the formation of DNA adducts and activation of DNA damage response. → More attention should be paid to the AhR-dependent nongenotoxic events elicited by urban particulate matter constituents. - Abstract: Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction

  7. Characteristics of particulate matter emissions from toy cars with electric motors.

    Science.gov (United States)

    Wang, Xiaofei; Williams, Brent J; Biswas, Pratim

    2015-04-01

    Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.

  8. Organic particulate matter formation at varying relative humidity using surrogate secondary and primary organic compounds with activity corrections in the condensed phase obtained using a method based on the Wilson equation

    Directory of Open Access Journals (Sweden)

    E. I. Chang

    2010-06-01

    Full Text Available Secondary organic aerosol (SOA formation in the atmosphere is currently often modeled using a multiple lumped "two-product" (N·2p approach. The N·2p approach neglects: 1 variation of activity coefficient (ζi values and mean molecular weight MW in the particulate matter (PM phase; 2 water uptake into the PM; and 3 the possibility of phase separation in the PM. This study considers these effects by adopting an (N·2pζpMW,ζ approach (θ is a phase index. Specific chemical structures are assigned to 25 lumped SOA compounds and to 15 representative primary organic aerosol (POA compounds to allow calculation of ζi and MW values. The SOA structure assignments are based on chamber-derived 2p gas/particle partition coefficient values coupled with known effects of structure on vapor pressure pL,io (atm. To facilitate adoption of the (N·2pζpMW,θ approach in large-scale models, this study also develops CP-Wilson.1 (Chang-Pankow-Wilson.1, a group-contribution ζi-prediction method that is more computationally economical than the UNIFAC model of Fredenslund et al. (1975. Group parameter values required by CP-Wilson.1 are obtained by fitting ζi values to predictions from UNIFAC. The (N·2pζpMW,θ approach is applied (using CP-Wilson.1 to several real α-pinene/O3 chamber cases for high reacted hydrocarbon levels (ΔHC≈400 to 1000 μg m−3 when relative humidity (RH ≈50%. Good agreement between the chamber and predicted results is

  9. Controlling particulate matter under the Clean Air Act: a menu of options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This document was prepared by STAPPA and ALAPCO to help US state and local air pollution control officials understand the effects of particulate matter (PM) on human health and air quality, the relative contribution of various sources to particulate emissions, and the effectiveness and costs of various approaches - including innovative ones - to minimizing these emissions. The document covers particulate matter with a nominal diameter of 10 microns ({mu}m) or less (PM{sub 10}), including `fine` PM of 2.5 microns or less in diameter (PM{sub 2.5}). Sections cover: the effects of particulate matter on human health; regulatory issues; characterization of particulate matter; emission control strategies for mobile sources (diesel engines, small nonroad engines, alternative fuels etc.), particulates from stationary sources (electric utilities, industry and commercial fuel combustion; mineral products industry, metallurgical industry etc.); particulates from area sources; and market-based strategies for controlling particulate matter. 2 apps.

  10. Transformation of soil organic matter in a Japanese larch forest. Radiocarbon and stable carbon isotope compositions versus soil depth

    International Nuclear Information System (INIS)

    Liu Wei; Moriizumi, Jun; Yamazawa, Hiromi; Iida, Takao

    2008-01-01

    Soil organic matter at a depth of 0-55 cm, collected from a Japanese larch forest area, was separated into particulate organic matter (size >53 μm), particulate organic matter (size 14 C and δ 13 C values were determined. The Δ 14 C values of particulate matters decreased greatly from 128 per mille to -278 per mille, indicating a relative increase of resistant organic components in particulate matters. That of humic acid matter decreased from 183 per mille to -139 per mille. For these of organic matter fractions at the same depth, the Δ 14 C values of particulate matter (size >53μm) are smallest and those of humic acid matter are the largest. That indicates that a high contribution of young organic matter to the humic acid matter exists and transformation tendency of particulate matter may be from coarse to small in the particulate size. Positive Δ 14 C values appeared at a depth of 10 cm, 25 cm, and 35 cm for the particulate organic matter (size >53μm), particulate organic matter (size 14 C values of the humic acid matter also infects that the bomb carbon has reached the depth of 35 cm. Additionally, the Δ 14 C values of these three kinds of organic matters ranged from 50 per mille to 183 per mille at a depth of 0-7 cm, which were not smaller than that of litter in the forest area, indicating high proportion of modern, plants-derived soil organic matter in this depth ranges. The δ 13 C values increased from -28 per mille to -23 per mille with the increase depth of 0-55 cm. The δ 13 C values of humic acid matter are approximately less than that of particulate matters at the same depth, which may be explained as a high contribution of young organic matter to the humic acid matter. (author)

  11. Amino sugars in suspended particulate matter from the Bay of ...

    Indian Academy of Sciences (India)

    Amino sugars (AS) are important constituents of organic matter. However ... about the molecular level characterization, distri- bution and ... tion about the dynamics, nutritive value, nature and degradation state of AS containing organic matter. 2. Material ..... carbohydrates and amino acids; Marine Chemistry 96. 155–184.

  12. Application of in situ observations, high frequency radars, and ocean color, to study suspended matter, particulate carbon, and dissolved organic carbon fluxes in coastal waters of the Barents Sea - the NORDFLUX project

    Science.gov (United States)

    Stramska, Malgorzata; Yngve Børsheim, Knut; Białogrodzka, Jagoda; Cieszyńska, Agata; Ficek, Dariusz; Wereszka, Marzena

    2016-04-01

    There is still a limited knowledge about suspended and dissolved matter fluxes transported from coastal regions into the open sea regions in the Arctic. The land/sea interface is environmentally important and sensitive to climate change. Important biogeochemical material entering the oceans (including carbon) passes through this interface, but too little is known about the efficiency of this transport. Our goal in the NORDFLUX program is to improve quantitative understanding of the environmental feedbacks involved in these processes through an interdisciplinary study with innovative in situ observations. Completed work includes two in situ experiments in the Norwegian fiord (Porsangerfjorden) in the summers of 2014 and 2015. Experiments used research boat for collection of water samples and in situ bio-optical data, an autonomous glider, mooring with T S sensors, and a high frequency radar system. We have used these data to derive spatial maps of water temperature, salinity, surface currents, chlorophyll fluorescence, dissolved organic matter (DOM) fluorescence, and inherent optical properties (IOPs) of the water. The interpretation of these data in terms of suspended matter concentration and composition is possible by in situ 'calibrations' using water samples from discrete hydrographic stations. Total suspended matter (TSM), particulate carbon (POC and PIC), and dissolved organic carbon (DOC) concentrations together with measured water currents will allow us to estimate reservoirs and fluxes. Concentrations and fluxes will be related to physical conditions and meteorological data. An important aspect of this project is the work on regional ocean color algorithms. Global ocean color (OC) algorithms currently used by NASA do not perform sufficiently well in coastal Case 2 waters. Our data sets will allow us to derive such local algorithms. We will then use these algorithms for interpretation of OC data in terms of TSM concentrations and composition and DOC. After

  13. Airborne particulate matter in school classrooms of northern Italy.

    Science.gov (United States)

    Rovelli, Sabrina; Cattaneo, Andrea; Nuzzi, Camilla P; Spinazzè, Andrea; Piazza, Silvia; Carrer, Paolo; Cavallo, Domenico M

    2014-01-27

    Indoor size-fractioned particulate matter (PM) was measured in seven schools in Milan, to characterize their concentration levels in classrooms, compare the measured concentrations with the recommended guideline values, and provide a preliminary assessment of the efficacy of the intervention measures, based on the guidelines developed by the Italian Ministry of Healthand applied to mitigate exposure to undesirable air pollutants. Indoor sampling was performed from Monday morning to Friday afternoon in three classrooms of each school and was repeated in winter 2011-2012 and 2012-2013. Simultaneously, PM2.5 samples were also collected outdoors. Two different photometers were used to collect the PM continuous data, which were corrected a posteriori using simultaneous gravimetric PM2.5 measurements. Furthermore, the concentrations of carbon dioxide (CO2) were monitored and used to determine the Air Exchange Rates in the classrooms. The results revealed poor IAQ in the school environment. In several cases, the PM2.5 and PM10 24 h concentrations exceeded the 24 h guideline values established by the World Health Organization (WHO). In addition, the indoor CO2 levels often surpassed the CO2 ASHRAE Standard. Our findings confirmed that important indoor sources (human movements, personal clouds, cleaning activities) emitted coarse particles, markedly increasing the measured PM during school hours. In general, the mean PM2.5 indoor concentrations were lower than the average outdoor PM2.5 levels, with I/O ratios generally levels did not seem to significantly influence the indoor fine PM concentrations. Conversely, the frequent opening of doors and windows appeared to significantly contribute to the reduction of the average indoor CO2 levels.

  14. Airborne Particulate Matter in School Classrooms of Northern Italy

    Directory of Open Access Journals (Sweden)

    Sabrina Rovelli

    2014-01-01

    Full Text Available Indoor size-fractioned particulate matter (PM was measured in seven schools in Milan, to characterize their concentration levels in classrooms, compare the measured concentrations with the recommended guideline values, and provide a preliminary assessment of the efficacy of the intervention measures, based on the guidelines developed by the Italian Ministry of Healthand applied to mitigate exposure to undesirable air pollutants. Indoor sampling was performed from Monday morning to Friday afternoon in three classrooms of each school and was repeated in winter 2011–2012 and 2012–2013. Simultaneously, PM2.5 samples were also collected outdoors. Two different photometers were used to collect the PM continuous data, which were corrected a posteriori using simultaneous gravimetric PM2.5 measurements. Furthermore, the concentrations of carbon dioxide (CO2 were monitored and used to determine the Air Exchange Rates in the classrooms. The results revealed poor IAQ in the school environment. In several cases, the PM2.5 and PM10 24 h concentrations exceeded the 24 h guideline values established by the World Health Organization (WHO. In addition, the indoor CO2 levels often surpassed the CO2 ASHRAE Standard. Our findings confirmed that important indoor sources (human movements, personal clouds, cleaning activities emitted coarse particles, markedly increasing the measured PM during school hours. In general, the mean PM2.5 indoor concentrations were lower than the average outdoor PM2.5 levels, with I/O ratios generally <1. Fine PM was less affected by indoor sources, exerting a major impact on the PM1–2.5 fraction. Over half of the indoor fine particles were estimated to originate from outdoors. To a first approximation, the intervention proposed to reduce indoor particle levels did not seem to significantly influence the indoor fine PM concentrations. Conversely, the frequent opening of doors and windows appeared to significantly contribute to the

  15. EDITORIAL: Global impacts of particulate matter air pollution

    Science.gov (United States)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  16. The role of aquatic fungi in transformations of organic matter mediated by nutrients

    Science.gov (United States)

    Cynthia J. Tant; Amy D. Rosemond; Andrew S. Mehring; Kevin A. Kuehn; John M. Davis

    2015-01-01

    1. We assessed the key role of aquatic fungi in modifying coarse particulate organic matter (CPOM) by affecting its breakdown rate, nutrient concentration and conversion to fine particulate organic matter (FPOM). Overall, we hypothesised that fungal-mediated conditioning and breakdown of CPOM would be accelerated when nutrient concentrations are increased and tested...

  17. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    Piniero, T.; Cerqueira Alves, L.; Reis, M.

    1998-01-01

    The aim of this project is to search for respiratory system particular aggressors to which workers are submitted in their labouring activity. The work plan under the current IAEA contract comprise a prospective study to identify particulate matter deposited in the human respiratory ducts and lung tissue and workers respiratory health status survey at a steel plant, Siderurgia Nacional (SN). So far, the selection of areas of interest at SN, workers exposed, airborne particulate monitoring sites according to the periodicity of labouring cycles, and the beginning of workers medical survey have been achieved and/or initiated. The SN selected area, where steel is processed and steel casting is achieved, involve approximately 80 workers, most of them working at that location for more than 15 years. Blood elemental content data determined by PIXE and INAA and a preliminary health status evaluation from 32 of the 80 workers included in this survey are presented and discussed. (author)

  18. Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions

    Science.gov (United States)

    Levia, Delphis F.; Michalzik, Beate; Bischoff, Sebastian; NäThe, Kerstin; Legates, David R.; Gruselle, Marie-Cecile; Richter, Susanne

    2013-04-01

    Particulate matter (PM) plays an important role in biogeosciences, affecting biosphere-atmosphere interactions and ecosystem health. This is the first known study to quantify and model PM diameter distributions of bulk precipitation, throughfall, stemflow, and organic layer (Oa) solution. Solutions were collected from a European beech (Fagus sylvatica L.) forest during leafed and leafless periods. Following scanning electron microscopy and image analysis, PM distributions were quantified and then modeled with the Box-Cox transformation. Based on an analysis of 43,278 individual particulates, median PM diameter of all solutions was around 3.0 µm. All PM diameter frequency distributions were skewed significantly to the right. Optimal power transformations of PM diameter distributions were between -1.00 and -1.56. The utility of this model reconstruction would be that large samples having a similar probability density function can be developed for similar forests. Further work on the shape and chemical composition of particulates is warranted.

  19. Relationship between Particulate matter less than 10 microns exposures and health effects on humans in Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Sahar Geravandi

    2015-06-01

    Full Text Available Background & Aims of the Study: Particulate matters less than 10 microns can absorb into your lungs and reacting with the moisture and enter the circulatory system directly through the airways. The aim of this study is to assess Behavior PM 10 data in different seasons and Determination effects on human health in Ahvaz city during 2013. Materials & Methods: Data Particulate matters less than 10 microns were taken from Ahvaz Department of Environment and Meteorological Organization. Sampling was performed for 24 hours in 4 stations. Method of sampling and analysis were performed according to EPA guideline. Processing data include the instruction set correction of averaging, coding and filtering. Finally, health-effects of Particulate matters less than 10 exposures were calculated with impact of meteorological parameters and converted as input file to the Air Q model. Results: PM 10 concentration in winter season was maximum amount in the year 2013. According to the research findings, highest and the lowest Particulate matters less than 10 microns concentrations during 2013 had the Bureau of Meteorology “Havashenasi” and Head office of ADoE “Mohitzist”. Sum of total numbers of cardiovascular death and hospitals admission to respiratory diseases attributed to Particulate matters less than 10 microns were 923 and 2342 cases in 2013. Conclusions: Particulate matter emissions are highly regulated in most industrialized countries. Due to environmental concerns, most industries and dust storm phenomena are required to decrease in source produce particle mater and kind of dust collection system to control particulate emissions. Pollution prevention and control measures that reduce Particulate matters less than 10 microns can very useful for expected to reduce people’s exposures to Sulfur dioxide.

  20. High-Latitude Wintertime Urban Pollution: Particulate Matter Composition and Temporal Trends in Fairbanks, Alaska

    Science.gov (United States)

    Simpson, W. R.; Nattinger, K.; Hooper, M.

    2017-12-01

    High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.

  1. Study of Hydrothermal Particulate Matter from a Shallow Venting System, offshore Nayarit, Mexico

    Science.gov (United States)

    Ortega-Osorio, A.; Prol-Ledesma, R. M.; Reyes, A. G.; Rubio-Ramos, M. A.; Torres-Vera, M. A.

    2001-12-01

    A shallow (30 ft) hydrothermal site named ``Cora'' (after the indigenous people thereby) was surveyed and sampled throughout direct observation with SCUBA diving during November 25 to December 4, 2000. A total of 10 dives were conducted in order to obtain representative samples from an 85oC fluid source of approximately 10 cm in diameter. Inherent difficulties to the sampling, such as poor visibility and strong bottom currents were overcome and samples of hydrothermal fluid, gas, rocks, and particulate matter were collected directly from the vent. Water samples and hydrothermal fluid were taken with a homemade 1 l cylindrical bottles of two lines by flushing in from the bottom for about ten minutes until total displacement of the seawater; similar procedure was carried out for gas samples. Particulate matter was collected with 0.4mm polycarbonate membrane filters and preserved in a desiccators at a fridge temperature until analysis onshore. Preliminary description of the rock samples suggest that pyritization is the main mineralisation process. Filters containing hydrothermal particulate matter were surveyed under the scanning electron microscope in order to identify the nature (inorganic and organic), as well as the chemistry of the particles. SEM examination revealed the presence of particles of different kind that suggests high degree of mixing and re-suspension: Planctonic organisms and organic matter appeared to be abundant; 25 micron particles of different carbonate faces and inorganic particles of silicates were also recognized. Distinctive euhedral colloidal grains were identified as the resulting process of precipitation from the solution. Microanalysis of iron and sulfur content of 10 micron particles indicate a very likely sulphide mineral face (greigite); 8 micron cinnabar particles are consistent with the mineralization conditions, observed as well in the inner walls of the vent. Analyses of dissolved and particulate trace metals are still ongoing at

  2. Regions of pollution with particulate matter in Poland

    Directory of Open Access Journals (Sweden)

    Rawicki Kacper

    2018-01-01

    Full Text Available The study presents the temporal and spatial variability of particulate matter concentration in Poland in the calendar winter season (December-February. The basis for the study were the hourly and daily values of particulate matter PM10 concentration from the period 2005/06 – 2014/15, obtained from 33 air pollution monitoring stations. In Poland, the obligation to monitor the concentration of the finer fraction of particles smaller than 2.5µm in aerodynamic diameter was introduced only in 2010. Consequently, data on PM2.5 concentration refer to a shorter period, i.e. 2009/10 – 2014/15, and were obtained from 23 stations. Using the cluster analysis (k-means method, three regions of comparable variability of particulate matter concentration were delineated. The largest region, i.e. Region I, comprises the northern and eastern central area of Poland, and its southern boundary is along the line Gorzów Wlkp-Bydgoszcz-Konin-Łódź-Kielce-Lublin. Markedly smaller Region II is located to the south of Region I. By far the smallest area was designated to Region III which covers the south west area of Poland. The delineated regions show a marked variability in terms of mean concentration of both PM fractions in winter (PM10: region I - 33 µg·m-3, region II - 55 µg·m-3, region III - 83 µg·m-3; PM2,5: region I - 35 µg·m-3, region II - 50 µg·m-3, region III - 60 µg·m-3 and, in the case of PM10, the frequency of excessive daily limit value.

  3. Spatial and temporal variability in urban fine particulate matter concentrations

    International Nuclear Information System (INIS)

    Levy, Jonathan I.; Hanna, Steven R.

    2011-01-01

    Identification of hot spots for urban fine particulate matter (PM 2.5 ) concentrations is complicated by the significant contributions from regional atmospheric transport and the dependence of spatial and temporal variability on averaging time. We focus on PM 2.5 patterns in New York City, which includes significant local sources, street canyons, and upwind contributions to concentrations. A literature synthesis demonstrates that long-term (e.g., one-year) average PM 2.5 concentrations at a small number of widely-distributed monitoring sites would not show substantial variability, whereas short-term (e.g., 1-h) average measurements with high spatial density would show significant variability. Statistical analyses of ambient monitoring data as a function of wind speed and direction reinforce the significance of regional transport but show evidence of local contributions. We conclude that current monitor siting may not adequately capture PM 2.5 variability in an urban area, especially in a mega-city, reinforcing the necessity of dispersion modeling and methods for analyzing high-resolution monitoring observations. - Highlights: →Fine particulate matter (PM 2.5 ) hot spots are hard to identify in urban areas. → Literature conclusions about PM 2.5 hot spots depend on study design and methods. → Hot spots are more likely for short-term concentrations at high spatial density. → Statistical methods illustrate local source impacts beyond regional transport. → Dispersion models and high-resolution monitors are both needed to find hot spots. - Fine particulate matter can vary spatially within large urban areas, in spite of the significant contribution from regional atmospheric transport.

  4. Regions of pollution with particulate matter in Poland

    Science.gov (United States)

    Rawicki, Kacper; Czarnecka, Małgorzata; Nidzgorska-Lencewicz, Jadwiga

    2018-01-01

    The study presents the temporal and spatial variability of particulate matter concentration in Poland in the calendar winter season (December-February). The basis for the study were the hourly and daily values of particulate matter PM10 concentration from the period 2005/06 - 2014/15, obtained from 33 air pollution monitoring stations. In Poland, the obligation to monitor the concentration of the finer fraction of particles smaller than 2.5µm in aerodynamic diameter was introduced only in 2010. Consequently, data on PM2.5 concentration refer to a shorter period, i.e. 2009/10 - 2014/15, and were obtained from 23 stations. Using the cluster analysis (k-means method), three regions of comparable variability of particulate matter concentration were delineated. The largest region, i.e. Region I, comprises the northern and eastern central area of Poland, and its southern boundary is along the line Gorzów Wlkp-Bydgoszcz-Konin-Łódź-Kielce-Lublin. Markedly smaller Region II is located to the south of Region I. By far the smallest area was designated to Region III which covers the south west area of Poland. The delineated regions show a marked variability in terms of mean concentration of both PM fractions in winter (PM10: region I - 33 µg·m-3, region II - 55 µg·m-3, region III - 83 µg·m-3; PM2,5: region I - 35 µg·m-3, region II - 50 µg·m-3, region III - 60 µg·m-3) and, in the case of PM10, the frequency of excessive daily limit value.

  5. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  6. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  7. A study to reduce DPM(Diesel Particulate Matter) emission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This research commenced in 1994 for the purpose of providing safety and environmental measures of underground mines where the mobile diesel equipment are operating. In this last research year, research on filtering of DPM(diesel particulate matter) has been carried out. Through the research, it was known that water scrubber is only one practical way to reduce DPM emission as of now. There are several kinds of the sophisticated DPM filters, but it is not practical yet to be used in underground equipment due to the many adverse effects of the devices such as tremendous increase of SOx, NOx and back pressure etc. (author). 1 tab., 3 figs.

  8. PIXE analysis of atmospheric particulate matter in glas fibre filters

    International Nuclear Information System (INIS)

    Tabacniks, M.H.; Orsini, C.Q.; Maenhaut, W.

    1993-01-01

    A 3-step extraction procedure was developed to allow particle-induced X-ray emission (PIXE) analysis of particulate matter in normal glass fibre filter samples. The detection limits, expressed in ng/m 3 of air, for the filter extracts were 5 to 30 times lower than those achieved by PIXE analysis or ordinary Nuclepore polycarbonate filter samples. The concentration results were compared with those obtained from routine atomic absorption spectrometry measurements and with the PIXE data from Nuclepore stacked filter unit samples taken in parallel. (orig.)

  9. Surface water, particulate matter, and sediments of inland waters

    International Nuclear Information System (INIS)

    Mundschenk, H.

    1985-01-01

    The Bundesanstalt fuer Gewaesserkunde (BfG) since 1958 runs a system for monitoring the surface water and sediments of Federal German waterways in its capacity as a directing water monitoring centre. The data recorded over the years show that the radioactivity released by the various emission sources leads to radionuclide concentrations in water, particulate matter, or sediments that generally are below the detection limits defined in the relevant legal provisions governing monitoring and surveillance of nuclear facilities effluents. Representative examples of measuring methods and results (as for e.g. for H-3) are given. (DG) [de

  10. The filtering effect of buildings on airborne particulate matter

    International Nuclear Information System (INIS)

    Christensen, G.C.; Mustonen, R.

    1987-06-01

    Within the radioecological programme of the Nordic Liaison Committee for Atomic Energy (NKA), the possible consequences of a major reactor accident are one of its main research branches. This study of the filtering effect of buildings on airborne particulate matter has been one part of this branch. The absorbed dose to a person from a passing radioactive cloud will be lower if he has been indoors and not ourdoors during the cloud passage. The aim of this study has been to find filtering factors for typical Finnish and Norwegian houses to use in model work

  11. Characterization of coarse particulate matter in school gyms.

    Science.gov (United States)

    Braniš, Martin; Šafránek, Jiří

    2011-05-01

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM(10-2.5) and PM(2.5-1.0)) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM(10-2.5) 4.1-7.4 μg m(-3) and PM(2.5-1.0) 2.0-3.3 μg m(-3)) than indoors (average PM(10-2.5) 13.6-26.7 μg m(-3) and PM(2.5-1.0) 3.7-7.4 μg m(-3)). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM(10-2.5) and 1.4-4.8 for the PM(2.5-1.0) values. Under extreme conditions, the I/O ratios reached 180 (PM(10-2.5)) and 19.1 (PM(2.5-1.0)). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high

  12. Estimating particulate matter health impact related to the combustion of different fossil fuels

    OpenAIRE

    Kuenen , Jeroen; Gschwind , Benoît; Drebszok , Kamila M.; Stetter , Daniel; Kranenburg , Richard; Hendriks , Carlijn; Lefèvre , Mireille; Blanc , Isabelle; Wyrwa , Artur; Schaap , Martijn

    2013-01-01

    International audience; Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin...

  13. Source apportionment of organic compounds in Berlin using positive matrix factorization - assessing the impact of biogenic aerosol and biomass burning on urban particulate matter.

    Science.gov (United States)

    Wagener, Sandra; Langner, Marcel; Hansen, Ute; Moriske, Heinz-Jörn; Endlicher, Wilfried R

    2012-10-01

    Source apportionment of 13 organic compounds, elemental carbon and organic carbon of ambient PM(10) and PM(1) was performed with positive matrix factorization (PMF). Samples were collected at three sites characterized by different vegetation influences in Berlin, Germany in 2010. The aim was to determine organic, mainly biogenic sources and their impact on urban aerosol collected in a densely populated region. A 6-factor solution provided the best data fit for both PM-fractions, allowing the sources isoprene- and α-pinene-derived secondary organic aerosol (SOA), bio primary, primarily attributable to fungal spores, bio/urban primary including plant fragments in PM(10) and cooking and traffic emissions in PM(1), biomass burning and combustion fossil to be identified. With mean concentrations up to 2.6 μg Cm(-3), biomass burning dominated the organic fraction in cooler months. Concentrations for α-pinene-derived SOA exceeded isoprene-derived concentrations. Estimated secondary organic carbon contributions to total organic carbon (OC) were between 7% and 42% in PM(10) and between 11% and 60% in PM(1), which is slightly lower than observed for US- or Asian cities. Primary biogenic emissions reached up to 33% of OC in the PM(10)-fraction in the late summer and autumn months. Temperature-dependence was found for both SOA-factors, correlations with ozone and mix depth only for the α-pinene-derived SOA-factor. Latter indicated input of α-pinene from the borders, highlighting differences in the origin of the precursors of both factors. Most factors were regionally distributed. High regional distribution was found to be associated with stronger influence of ambient parameters and higher concentrations at the background station. A significant contribution of biogenic emissions and biomass burning to urban organic aerosol could be stated. This indicates a considerable impact on PM concentrations also in cities in a densely populated area, and should draw the attention

  14. Biomarker and carbon isotope constraints (δ{sup 13}C, Δ{sup 14}C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    Energy Technology Data Exchange (ETDEWEB)

    Winterfeld, Maria

    2014-08-15

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ{sup 13}C and Δ{sup 14}C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are

  15. Composition and Sources of Particulate Matter Measured near Houston, TX: Anthropogenic-Biogenic Interactions

    Directory of Open Access Journals (Sweden)

    Jeffrey K. Bean

    2016-05-01

    Full Text Available Particulate matter was measured in Conroe, Texas (~60 km north of downtown Houston, Texas during the September 2013 DISCOVER-AQ campaign to determine the sources of particulate matter in the region. The measurement site is influenced by high biogenic emission rates as well as transport of anthropogenic pollutants from the Houston metropolitan area and is therefore an ideal location to study anthropogenic-biogenic interactions. Data from an Aerosol Chemical Speciation Monitor (ACSM suggest that on average 64 percent of non-refractory PM1 was organic material, including a high fraction (27%–41% of organic nitrates. There was little diurnal variation in the concentrations of ammonium sulfate; however, concentrations of organic and organic nitrate aerosol were consistently higher at night than during the day. Potential explanations for the higher organic aerosol loadings at night include changing boundary layer height, increased partitioning to the particle phase at lower temperatures, and differences between daytime and nighttime chemical processes such as nitrate radical chemistry. Positive matrix factorization was applied to the organic aerosol mass spectra measured by the ACSM and three factors were resolved—two factors representing oxygenated organic aerosol and one factor representing hydrocarbon-like organic aerosol. The factors suggest that the measured aerosol was well mixed and highly processed, consistent with the distance from the site to major aerosol sources, as well as the high photochemical activity.

  16. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  17. Urban particulate matter pollution: a tale of five cities.

    Science.gov (United States)

    Pandis, Spyros N; Skyllakou, Ksakousti; Florou, Kalliopi; Kostenidou, Evangelia; Kaltsonoudis, Christos; Hasa, Erion; Presto, Albert A

    2016-07-18

    Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment.

  18. Particulate Matter Concentrations in East Oakland's High Street Corridor

    Science.gov (United States)

    Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.

    2012-12-01

    Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.

  19. Ferruginous compounds in the airborne particulate matter of the metropolitan area of Belo Horizonte, Minas Gerais, Brazil.

    Science.gov (United States)

    Tavares, Fernanda Vasconcelos Fonseca; Ardisson, José Domingos; Rodrigues, Paulo César Horta; Fabris, José Domingos; Fernandez-Outon, Luis Eugenio; Feliciano, Vanusa Maria Delage

    2017-08-01

    Samples of soil, iron ore, and airborne particulate matter (size airborne particulate matter in the metropolitan area of Belo Horizonte, Minas Gerais, Brazil, are either from natural origin, as, for instance, re-suspension of particles from soil, or due to anthropogenic activities, meaning that it would be originated from the many iron ore minings surrounding the metropolitan area. Numerical simulations were used to model the atmospheric dispersion of the airborne particulate matter emitted by iron mining located at the Iron Quadrangle geodomain, Minas Gerais. Results from these numerical simulations supported identifying the sites with the highest concentrations of airborne particulate matter in the metropolitan area. Samples of these suspended materials were collected at the selected sites by using high-volume air samplers. The physicochemical features of the solid materials were assessed by X-ray fluorescence, X-ray diffraction, magnetometry, and 57 Fe Mössbauer spectroscopy. The soil materials were found to be rich in quartz, aluminum, organic matter, and low contents of iron, mainly as low crystalline iron oxides. The samples of the iron ores, on the other hand, contain high concentration of iron, dominantly as relatively pure and crystalline hematite (α-Fe 2 O 3 ). The samples of the airborne particulate matter are rich in iron, mainly as hematite, but contained also quartz, aluminum, and calcium. Mössbauer spectroscopy was used to evaluate the hyperfine structure of 57 Fe of the hematite both from the iron ore and the soil samples. The structural characteristics of the hematite of these particulate materials were further explored. The direct influence of the iron ore mining on the composition of the airborne particulate matter was clearly evidenced based on the trace ability of hematite to its source of emission. Even the atmospheric air on regions relatively far away from the mining activities is also significantly influenced.

  20. Lignin phenols and BIT index distributions in the Amur River and the Sea of Okhotsk: Implications for the source and transport of particulate terrestrial organic matter to the ocean

    NARCIS (Netherlands)

    Seki, O.; Mikami, Y.; Nagao, S.; Bendle, J.A.; Nakatsuka, T.; Kim, V.I.; Shesterkin, V.P.; Makinov, A.N.; Fukushima, M.; Moossen, H.M.; Schouten, S.

    2014-01-01

    Delta and coastal regions play a key role in the global carbon cycle as the main repository of inputs of terrestrial organic matter, delivered by rivers to marine sediments. The Amur River system is one of the largest in Asia and supplies organic matter to the Sea of Okhotsk and the North Pacific

  1. Assessing the Influence of Seasonal and Spatial Variations on the Estimation of Secondary Organic Carbon in Urban Particulate Matter by Applying the EC-Tracer Method

    Directory of Open Access Journals (Sweden)

    Sandra Wagener

    2014-04-01

    Full Text Available The elemental carbon (EC-tracer method was applied to PM10 and PM1 data of three sampling sites in the City of Berlin from February to October 2010. The sites were characterized by differing exposure to traffic and vegetation. The aim was to determine the secondary organic carbon (SOC concentration and to describe the parameters influencing the application of the EC-tracer method. The evaluation was based on comparisons with results obtained from positive matrix factorization (PMF applied to the same samples. To obtain site- and seasonal representative primary OC/EC-ratios ([OC/EC]p, the EC-tracer method was performed separately for each station, and additionally discrete for samples with high and low contribution of biomass burning. Estimated SOC-concentrations for all stations were between 11% and 33% of total OC. SOC-concentrations obtained with PMF exceeded EC-tracer results more than 100% at the park in the period with low biomass burning emissions in PM10. The deviations were besides others attributed to the high ratio of biogenic to combustion emissions and to direct exposure to vegetation. The occurrences of biomass burning emissions in contrast lead to increased SOC-concentrations compared to PMF in PM10. The obtained results distinguish that the EC-tracer-method provides well comparable results with PMF if sites are strongly influenced by one characteristic primary combustion source, but was found to be adversely influenced by direct and relatively high biogenic emissions.

  2. Source contributions and regional transport of primary particulate matter in China

    International Nuclear Information System (INIS)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-01-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50–80%), POC (60%–90%), and PPM (30–70%). For summer/fall, industrial contributes 30–50% for EC/POC and 40–60% for PPM. Transportation is more important for EC (20–30%) than POC/PPM ( 90% in Beijing. - Highlights: • A source-oriented CMAQ was established for primary particulate matter (PPM). • Source and region contributions to EC, POC and PPM in China were quantified. • Residential is major in spring/winter and industrial dominates in summer/fall. • Open burning is more important for southern while dust is in contrast. • Both local and Heibei emissions contribute to PPM in Beijing. - Source and region contributions to primary particulate matter in China were quantified for four months during 2012-2013. Residential and industrial are the major contributors.

  3. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis

    DEFF Research Database (Denmark)

    Møller, Peter; Mikkelsen, Lone; Vesterdal, Lise Kristine

    2011-01-01

    and inflammatory pathways. We have assessed the effect of exposure to particulate matter on progression of atherosclerosis and vasomotor function in humans, animals, and ex vivo experimental systems. The type of particles that have been tested in these systems encompass TiO(2), carbon black, fullerene C(60...... of particulate matter....

  4. Biomonitoring of toxic compounds of airborne particulate matter in urban and industriel areas

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ro-Poulsen, Helge

    2010-01-01

    The toxicity and ecotoxicity of airborne particulate matter is determined by its physical features, but also by its chemical composition. The standardised exposure of accumulative bioindicator plants is suggested as an efficient and reliable tool to assess and monitor effects of particulate matter...

  5. GENETIC INFLUENCES ON IN VTIRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE

    Science.gov (United States)

    GENETIC INFLUENCES ON IN VITRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE. JA Dye, JH Richards, DA Andrews, UP Kodavanti. US EPA, RTP, NC, USA.Particulate matter (PM) air pollution is capable of damaging the airway epitheli...

  6. The Particulate Nature of Matter in Science Education and in Science.

    Science.gov (United States)

    Vos, Wobbe de; Verdonk, Adri H.

    1996-01-01

    Discusses ideas about the particulate nature of matter and assesses the extent to which these represent a compromise between scientific and educational considerations. Analyzes relations between the particulate nature of matter in science and science education in an attempt to understand children's inclination to attribute all kinds of macroscopic…

  7. Fine particulate matter in acute exacerbation of COPD

    Directory of Open Access Journals (Sweden)

    Lei eNi

    2015-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress, immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden.

  8. Characterization of coarse particulate matter in school gyms

    Energy Technology Data Exchange (ETDEWEB)

    Branis, Martin, E-mail: branis@natur.cuni.cz [Charles University in Prague, Faculty of Science, Institute for Environmental Studies, Prague (Czech Republic); Safranek, Jiri [Charles University in Prague, Faculty of Physical Education, Department of Outdoor Sports, Prague (Czech Republic)

    2011-05-15

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM{sub 10-2.5} and PM{sub 2.5-1.0}) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM{sub 10-2.5} 4.1-7.4 {mu}g m{sup -3} and PM{sub 2.5-1.0} 2.0-3.3 {mu}g m{sup -3}) than indoors (average PM{sub 10-2.5} 13.6-26.7 {mu}g m{sup -3} and PM{sub 2.5-1.0} 3.7-7.4 {mu}g m{sup -3}). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM{sub 10-2.5} and 1.4-4.8 for the PM{sub 2.5-1.0} values. Under extreme conditions, the I/O ratios reached 180 (PM{sub 10-2.5}) and 19.1 (PM{sub 2.5-1.0}). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school

  9. Inhibition of intercellular communication by airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Heussen, G.A.H. (Landbouwhogeschool Wageningen (Netherlands). Dept. of Toxicology)

    1991-04-01

    To investigate the inhibition of gap junction mediated intercellular communication (IC) by extracts of airborne particulate matter (APM), V79 cells were incubated with extracts of APM and subsequently microinjected with the fluorescent dye Lucifer Yellow, after which the number of fluorescent (= communicating) cells was determined. To compare inhibitory effects on IC with mutagenicity, APM was also tested in the Salmonella microsome assay. Six different extracts were tested, two outdoor extracts representing a heavily polluted and a relatively clean sample, and four indoor extracts, taken either in livingrooms with or without wood combustion in an open fire place, or in a room with or without cigarette smoking. Non-cytotoxic doses of outdoor and indoor APM inhibited IC in V79 cells in dose- and time-dependent manner. Mutagenicity data and IC data were correlated. These results suggest that APM has tumor promoter activity in addition to mutagenic activity. (orig.).

  10. High exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  11. Characterization of coarse particulate matter in school gyms

    International Nuclear Information System (INIS)

    Branis, Martin; Safranek, Jiri

    2011-01-01

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM 10-2.5 and PM 2.5-1.0 ) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM 10-2.5 4.1-7.4 μg m -3 and PM 2.5-1.0 2.0-3.3 μg m -3 ) than indoors (average PM 10-2.5 13.6-26.7 μg m -3 and PM 2.5-1.0 3.7-7.4 μg m -3 ). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM 10-2.5 and 1.4-4.8 for the PM 2.5-1.0 values. Under extreme conditions, the I/O ratios reached 180 (PM 10-2.5 ) and 19.1 (PM 2.5-1.0 ). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of

  12. Suspended particulate matter in dwellings - the impact of tobacco smoking

    Energy Technology Data Exchange (ETDEWEB)

    Revsbech, P.; Korsgaard, J.; Lundqvist, G.R.

    1987-01-01

    The indoor concentration of suspended particulate matter (SPM) was measured in 44 retrofitted and tight dwellings, which had electric cooking and were central heated and where the basic ventilation rate in median amounted 0.23 air changes per hour as measured with a tracer dilution method. The indoor concentration of SPM was in medium 230 ..mu..g/m/sup 3/ with a strong correlation to the tobacco consumption (r/sub s/ = 0.716), but with no correlation to the frequency of airing or the basic ventilation rate. Tobacco smoking seems to be the main indoor source of SPM in contemporary dwellings. The importance of these findings is underlined by epidemiologic studies on passive smoking and health. Air quality standards for the ambient air are based on certain risk groups such as infants, children, persons with chronic obstructive lung disorders, and indoor air standards should be based on the same concepts of health protection.

  13. Particulate matter emissions of different brands of mentholated cigarettes.

    Science.gov (United States)

    Gerharz, Julia; Bendels, Michael H K; Braun, Markus; Klingelhöfer, Doris; Groneberg, David A; Mueller, Ruth

    2018-01-09

    Inhaling particulate matter (PM) in environmental tobacco smoke (ETS) endangers the health of nonsmokers. Menthol, an additive in cigarettes, attenuates respiratory irritation of tobacco smoke. It reduces perceptibility of smoke and therefore passive smokers may inhale ETS unnoticed. To investigate a possible effect of menthol on PM concentrations (PM 10 , PM 2.5 , and PM 1 ), ETS of four mentholated cigarette brands (Elixyr Menthol, Winston Menthol, Reyno Classic, and Pall Mall Menthol Blast) with varying menthol content was analyzed. ETS was generated in a standardized way using an automatic environmental tobacco smoke emitter (AETSE), followed by laser aerosol spectrometry. This analysis shows that the tested cigarette brands, despite having different menthol concentrations, do not show differences with regard to PM emissions, with the exception of Reyno Classic, which shows an increased emission, although the menthol level ranged in the midfield. More than 90% of the emitted particles had a size smaller than or equal to 1 µm. Regardless of the menthol level, the count median diameter (CMD) and the mass median diameter (MMD) were found to be 0.3 µm and 0.5 µm, respectively. These results point out that there is no effect of menthol on PM emission and that other additives might influence the increased PM emission of Reyno Classic. Particulate matter (PM) in ETS endangers the health of nonsmokers and smokers. This study considers the effect of menthol, an additive in cigarettes, on PM emissions. Does menthol increase the amount of PM? Due to the exposure to secondhand smoke nearly 900,000 people die each year worldwide. The aim of the study is to measure the particle concentration (L -1 ), mass concentration (µg m -3 ), and dust mass fractions shown as PM 10 , PM 2.5 , and PM 1 of five different cigarette brands, including four with different menthol concentrations and one menthol-free reference cigarette, in a well-established standardized system.

  14. Status of Suspended Particulate Matters Pollution at Traditional Markets in Makassar City

    Science.gov (United States)

    Suryani, Sri; Fahrunnisa

    2018-03-01

    Research on the status of suspended particulate matters pollution in four traditional markets located in Makassar city has been done. The purpose of this research is to know the air quality in the traditional market areas, especially caused by suspended particulate matters. The background of this research is because traders who trade in traditional markets generally peddle their goods along dusty roads and suspended particulate matters in dust can be inhaled when the vehicle passes. These suspended particulate matters pollutant can cause lung diseases. The results showed that the level of suspended particulate matters pollution fluctuates every year depending on the local wind speed, humidity, and temperature. Research results also showed the values were over the standard value according to the governor of South Sulawesi regulation.

  15. Source apportionment of carbonaceous particulate matter during haze days in Shanghai based on the radiocarbon

    International Nuclear Information System (INIS)

    Nannan Wei; Jialiang Feng; Detao Xiao

    2017-01-01

    To estimate the sources of carbonaceous particulate matter, "1"4C and biomass-burning marker (levoglucosan) were measured in the form of organic carbon (OC) and elemental carbon (EC) in PM_2_._5 that was collected in five different functional districts of Shanghai during winter 2013. Spatial variations of the contemporary proportion among different districts were evident. The results of levoglucosan in Xujiahui (XH) and Chongming (CM) agreed well with those of "1"4C. The results indicate that environmental protection policies should vary for functional districts within the same city to account for their different sources of emissions. (author)

  16. Large scale air monitoring: Biological indicators versus air particulate matter

    International Nuclear Information System (INIS)

    Rossbach, M.; Jayasekera, R.; Kniewald, G.

    2000-01-01

    Biological indicator organisms are widely used for monitoring and banking purposes since many years. Although the complexity of the interactions between bioorganisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Direct measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and uniform matrix characteristics of air particulates as a prerequisite for global monitoring of air pollution will be discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300 to 500 g each) from a number of hotels during a period of three to four months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per three months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichen such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Fig and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cr, Zn, and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). (author)

  17. Observations on particulate organic nitrates and unidentified components of NOy

    DEFF Research Database (Denmark)

    Nielsen, T.; Egeløv, A.H.; Granby, K.

    1995-01-01

    A method to determine the total content of particulate organic nitrates (PON) has been developed and ambient air measurements of PON, NO, NO2, HNO3, peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), gas NOy and particulate inorganic nitrate have been performed in the spring and early...... summer al an agricultural site in Denmark and compared with measurements of ozone, H2O2, SO2, formic acid, acetic acid and methane sulphonic acid. The gas NOy detector determines the sum NO + NO2 + HNO2 + HNO3 + PAN + PPN + gas phase organic nitrates + 2 x N2O5 + NO3. The content of residual gas NOy...... = gas NOy + particulate inorganic nitrate). Residual gas NOy was much higher than the particulate fraction of organic nitrates (PON). PON was only 0.25 +/- 0.11% of concentrations of photochemical oxidants in connection with high-pressure systems suggesting atmospheric processes being the major source...

  18. The destruction of organic matter

    CERN Document Server

    Gorsuch, T T

    1970-01-01

    International Series of Monographs in Analytical Chemistry, Volume 39: The Destruction of Organic Matter focuses on the identification of trace elements in organic compounds. The monograph first offers information on the processes involved in the determination of trace elements in organic matters, as well as the methods not involving complete destruction of these elements. The text surveys the sources of errors in the processes responsible in pinpointing elements in organic compounds. These processes include sampling, disruption of the samples, manipulation, and measurements. The book

  19. Correlation between Soil Organic Matter, Total Organic Matter and ...

    African Journals Online (AJOL)

    A total of four sites distributed in different soils of Kelantan State, Malaysia was identified for the study. Soils were collected by depth interval of 0-10cm, 10-20cm and 20-30cm. The correlation of soil organic matter (SOM) content, total organic carbon (TOC) content, water content and soils texture for industrial area at ...

  20. Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation.

    Science.gov (United States)

    Champion, Wyatt M; Connors, Lea; Montoya, Lupita D

    2017-09-01

    Most homes in the Navajo Nation use wood as their primary heating fuel, often in combination with locally mined coal. Previous studies observed health effects linked to this solid-fuel use in several Navajo communities. Emission factors (EFs) for common fuels used by the Navajo have not been reported using a relevant stove type. In this study, two softwoods (ponderosa pine and Utah juniper) and two high-volatile bituminous coals (Black Mesa and Fruitland) were tested with an in-use residential conventional wood stove (homestove) using a modified American Society for Testing and Materials/U.S. Environmental Protection Agency (ASTM/EPA) protocol. Filter sampling quantified PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and organic (OC) and elemental (EC) carbon in the emissions. Real-time monitoring quantified carbon monoxide (CO), carbon dioxide (CO 2 ), and total suspended particles (TSP). EFs for these air pollutants were developed and normalized to both fuel mass and energy consumed. In general, coal had significantly higher mass EFs than wood for all pollutants studied. In particular, coal emitted, on average, 10 times more PM 2.5 than wood on a mass basis, and 2.4 times more on an energy basis. The EFs developed here were based on fuel types, stove design, and operating protocols relevant to the Navajo Nation, but they could be useful to other Native Nations with similar practices, such as the nearby Hopi Nation. Indoor wood and coal combustion is an important contributor to public health burdens in the Navajo Nation. Currently, there exist no emission factors representative of Navajo homestoves, fuels, and practices. This study developed emission factors for PM 2.5 , OC, EC, CO, and CO 2 using a representative Navajo homestove. These emission factors may be utilized in regional-, national-, and global-scale health and environmental models. Additionally, the protocols developed and results presented here may inform on-going stove design of

  1. Suspended particulate matter flocculation in a natural tidal wetland located in the San Francisco Estuary

    Science.gov (United States)

    Saraceno, J.; Bergamaschi, B. A.; Wright, S. A.; Boss, E.; Downing, B. D.; Fleck, J.; Ganju, N. K.

    2011-12-01

    Suspended mineral and algal particles together comprise suspended particulate matter (SPM). The SPM size distribution influences the quantity and color of light penetration and the adsorption and transport of contaminants such as pesticides and metals. It is widely known that interaction with wetlands alters the size distribution and quality of particles through local primary production, differential settling and particle aggregation, however, our understanding of how tidal wetland processes affect SPM quantity and size spectra has been hampered by the difficulty of directly observing these parameters at tidal time scales. To evaluate how SPM concentration and size varied over tidal time scales and to better understand the relationship between organic matter and sediment characteristics, simultaneous measurements of dissolved organic matter, SPM concentration and organic content as well as in situ surrogates of particle concentration (turbidity, particulate attenuation, volume concentration) and particle size (laser diffraction) were carried out with measurements of current velocity (acoustic Doppler velocity meter) in the main channel of Brown's Island located in the western San Joaquin/Sacramento River Delta, CA. The study period coincided with high estuary sediment levels following a significant precipitation runoff event. In the Brown Island wetland, particle concentration and size dynamics were tied to variations in water level and velocity. Turbidity and attenuation covaried with the volume concentration of particles smaller than 33 um, which on average represented greater than 50% of particle population by volume. On average, these SPM concentration surrogates were three times higher in flood water than in ebb water; consistent with a loss of fine particles on the island. Following the highest flood tide, the decrease in fine particles was coincident with an increase in the concentration of particles larger than 130 um; a finding consistent with particle

  2. Global chemical composition of ambient fine particulate matter for exposure assessment.

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  3. Feed and organic matter

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang

    2011-01-01

    impact on the receiving water body by reducing dissolved oxygen concentrations and increasing sedimentation. Within aquaculture systems, a high organic load may affect fish health and performance directly (e.g., gill disease) as well as indirectly (proliferation of pathogenic bacteria and parasites......, reduction of dissolved oxygen concentrations, etc.). In recirculating aquaculture systems (RAS), a high organic load caused by limited water exchange may affect biofilter performance by favouring heterotrophic bacteria at the expense of autotrophic, nitrifying bacteria. Organic waste in RAS primarily...... originates from undigested feed, but also metabolic losses, mucus, dead tissue, feed waste and intake water may contribute. The nutrient composition of the feed affects the quantity and composition of the organic (undigested) waste, and including for example plant protein ingredients may affect...

  4. Multispectral remote-sensing algorithms for particulate organic carbon (POC): The Gulf of Mexico

    OpenAIRE

    Son, Young Baek; Gardner, Wilford D.; Mishonov, Alexey V.; Richardson, Mary Jo

    2009-01-01

    To greatly increase the spatial and temporal resolution for studying carbon dynamics in the marine environment, we have developed remote-sensing algorithms for particulate organic carbon (POC) by matching in situ POC measurements in the Gulf of Mexico with matching SeaWiFS remote-sensing reflectance. Data on total particulate matter (PM) as well as POC collected during nine cruises in spring, summer and early winter from 1997-2000 as part of the Northeastern Gulf of Mexico (NEGOM) study were ...

  5. The particulate matter dispersion studies from a local palm oil mill

    International Nuclear Information System (INIS)

    Abdullah, L.C.; Wong, L. L.; Amnorzahira, A.; Sa'ari, M.; Abdul Rashid, M. S.; Salmiaton Ali

    2006-01-01

    The appearance of industrial emissions and the degradation of scenic vistas are two characteristics of air pollution that humans object. Reduction in visibility suggests worsening pollution levels. The emissions from mobile source and stationary source are the major source of air pollutions contribution in Malaysia. Suspended particulate matter (SPM). The consequence of increasing the particulate concentrations, the particulate matter dissolves with vapour and grows into droplets when the humidity exceeds approximately 70% and causing opaque situation know as haze. This work focuses on the dispersion particulate matter from palm oil mill. The data obtained serves the purpose of modeling the transport of particulate matter for obtaining permits and prevention of significant deterioration (PSD) to the environment. Gaussian Plume Model from a point source, subject to various atmospheric conditions is used to calculate particulate matter concentration then display the distribution of plume dispersion using geographic information system (GIS). The calculated particulate matter concentration is evaluated using Transilient Matrice function. Atmospheric Stability, mixing height, wind direction, wind speed, natural and artificial features play an important role in dispersion process. High concentration area exhibits immediately under prevailing wind direction. (Author)

  6. Resuspension of particulate matter from grass and soil

    International Nuclear Information System (INIS)

    Garland, J.A.

    1979-05-01

    Measurements of resuspension of particulate matter from grassland and bare soil in Britain at controlled wind speeds are described in this report. The measurements were performed in an outdoor wind tunnel. Resuspension factors for a sub-micron powder deposited from the air on to 10m 2 of grass and soil and for a suspension of silt, sprayed on to a similar grass area, were similar. The resuspension factor declined as the reciprocal of time of wind exposure and increased as the square or cube of wind speed. An appreciable fraction of the resuspended tracer was in the respirable size range. A large fraction of the total material suspended from a small contaminated area deposited again within three metres. The strong dependence of deposition rates on particle size and the rapid deposition close to the source questions the extrapolation of small scale resuspension measurements to practical situations, suggesting that analysis of the concentrations of widely distributed tracers may usefully supplement resuspension measurements. Atmospheric concentrations of trace elements and the distribution of weapons fallout were used to deduce an upper limit for the resuspension factor for a fifteen year old deposit of 7 x 10 -11 m -1 . The fraction of deposited fallout resuspended during such a period cannot much exceed 10 per cent. (author)

  7. Trends of particulate matter in four cities in India

    Science.gov (United States)

    Gupta, Indrani; Kumar, Rakesh

    Particulate matter (PM) in all the four Metropolitan cities in India are higher than the prescribed standards of Central Pollution Control Board, India as well as WHO guidelines. Over last 10 years various changes in fuel quality, vehicle technologies, industrial fuel mix and domestic fuel mix have taken place resulting in changes in air quality in these cities. A set of time series analysis methods viz. t-test adjusted for seasonality, Seasonal Kendall test and Intervention analysis have been applied to identify and estimate the trend in PM 10 and total suspended particles (TSP) levels monitored for about 10 years at three monitoring sites at each of the four cities in India. These tests have indicated that overall PM 10 levels in all four metro cities have been decreasing or stationary. The distinct trends for the monthly averages of PM 10 concentrations at Parel, Kalbadevi in Mumbai and Thiruvattiyar in Chennai for the period 1993-2003 were declining by 10%, 6% and 5% per annum, respectively. This is ascribed to a shift in the magnitude and spatial distribution of emissions in the city. However, the monthly averages of TSP do not have a clear trend over the period 1991-2003.

  8. Improvements in PIXE analysis of hourly particulate matter samples

    Energy Technology Data Exchange (ETDEWEB)

    Calzolai, G., E-mail: calzolai@fi.infn.it [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Lucarelli, F. [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Chiari, M.; Nava, S. [National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Giannoni, M. [National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Carraresi, L. [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Prati, P. [Department of Physics, University of Genoa and INFN Division of Genoa, Via Dodecaneso 33, 16146 Genoa (Italy); Vecchi, R. [Department of Physics, Università degli Studi di Milano and INFN Division of Milan, Via Celoria 16, 20133 Milan (Italy)

    2015-11-15

    Most air quality studies on particulate matter (PM) are based on 24-h averaged data; however, many PM emissions as well as their atmospheric dilution processes change within a few hours. Samplings of PM with 1-h resolution can be performed by the streaker sampler (PIXE International Corporation), which is designed to separate the fine (aerodynamic diameter less than 2.5 μm) and the coarse (aerodynamic diameter between 2.5 and 10 μm) fractions of PM. These samples are efficiently analyzed by Particle Induced X-ray Emission (PIXE) at the LABEC laboratory of INFN in Florence (Italy), equipped with a 3 MV Tandetron accelerator, thanks to an optimized external-beam set-up, a convenient choice of the beam energy and suitable collecting substrates. A detailed description of the adopted set-up and results from a methodological study on the detection limits for the selection of the optimal beam energy are shown; the outcomes of the research on alternative collecting substrates, which produce a lower background during the measurements, and with lower contaminations, are also discussed.

  9. [Health evaluation of fine particulate matter in indoor air].

    Science.gov (United States)

    2008-11-01

    When evaluating the health effects of indoor air fine particulate matter, the indoor dynamics as well as the physical, chemical and biological properties of fine particles have to be considered. The indoor air fraction PM2.5 largely stems from outdoor air. Accordingly, the German Working Group on Indoor Guideline Values of the Federal Environmental Agency and the States' Health Authorities also recommends WHO's (2006) 24-hour mean guideline value of 25 microg PM2,5 per cubic meter for indoor air evaluation. In contrast to PM2.5, coarse particles (PM10) in schools, kindergartens and dwellings show much higher indoor air concentrations. Additional sources indoors have to be assumed. Because of the different composition of indoor air compared to outdoor air and due to the lack of dose-response relationships of coarse particles in indoor air, the health effects of indoor air PM10 can not be evaluated yet. Sufficient and consistent ventilation is an indispensable basis to reduce PM concentrations in indoor spaces. Furthermore, known sources of PM indoors should be detected consequently and subsequently minimized.

  10. Source strengths for indoor human activities that resuspend particulate matter.

    Science.gov (United States)

    Ferro, Andrea R; Kopperud, Royal J; Hildemann, Lynn M

    2004-03-15

    A mathematical model was applied to continuous indoor and outdoor particulate matter (PM) measurements to estimate source strengths for a variety of prescribed human activities that resuspend house dust in the home. Activities included folding blankets, folding clothes, dry dusting, making a bed, dancing on a rug, dancing on a wood floor, vacuuming, and walking around and sitting on upholstered furniture. Although most of the resuspended particle mass from these activities was larger than 5 microm in diameter, the resuspension of PM2.5 and PM5 was substantial, with source strengths ranging from 0.03 to 0.5 mg min(-1) for PM2.5 and from 0.1 to 1.4 mg min(-1) for PM5. Source strengths for PM > 5 microm could not be quantified due to instrument limitations. The source strengths were found to be a function of the number of persons performing the activity, the vigor of the activity, the type of activity, and the type of flooring.

  11. Particulate matter and heart disease: Evidence from epidemiological studies

    International Nuclear Information System (INIS)

    Peters, Annette

    2005-01-01

    The association between particulate matter and heart disease was noted in the mid-nineties of last century when the epidemiological evidence for an association between air pollution and hospital admissions due to cardiovascular disease accumulated and first hypotheses regarding the pathomechanism were formulated. Nowadays, epidemiological studies have demonstrated coherent associations between daily changes in concentrations of ambient particles and cardiovascular disease mortality, hospital admission, disease exacerbation in patients with cardiovascular disease and early physiological responses in healthy individuals consistent with a risk factor profile deterioration. In addition, evidence was found that annual average PM 2.5 exposures are associated with increased risks for mortality caused by ischemic heart disease and dysrhythmia. Thereby, evidence is suggesting not only a short-term exacerbation of cardiovascular disease by ambient particle concentrations but also a potential role of particles in defining patients' vulnerability to acute coronary events. While this concept is consistent with the current understanding of the factors defining patients' vulnerability, the mechanisms and the time-scales on which the particle-induced vulnerability might operate are unknown

  12. Characterizing temporal changes of agricultural particulate matter number concentrations

    Science.gov (United States)

    Docekal, G. P.; Mahmood, R.; Larkin, G. P.; Silva, P. J.

    2017-12-01

    It is widely accepted among literature that particulate matter (PM) are of detriment to human health and the environment as a whole. These effects can vary depending on the particle size. This study examines PM size distributions and number concentrations at a poultry house. Despite much literature on PM concentrations at agricultural facilities, few studies have looked at the size distribution of particles at such facilities from the nucleation up through the coarse mode. Two optical particle counters (OPCs) were placed, one inside of a chicken house, and one on the outside of an exhaust fan to determine particle size distributions. In addition, a scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) sampled poultry house particles to give sizing information from a full size range of 10 nm - 20 mm. The data collected show several different types of events where observed size distributions changed. While some of these are due to expected dust generation events producing coarse mode particles, others suggest particle nucleation and accumulation events at the smaller size ranges that also occurred. The data suggest that agricultural facilities have an impact one the presence of PM in the environment beyond just generation of coarse mode dust. Data for different types of size distribution changes observed will be discussed.

  13. Bivariate generalized Pareto distribution for extreme atmospheric particulate matter

    Science.gov (United States)

    Amin, Nor Azrita Mohd; Adam, Mohd Bakri; Ibrahim, Noor Akma; Aris, Ahmad Zaharin

    2015-02-01

    The high particulate matter (PM10) level is the prominent issue causing various impacts to human health and seriously affecting the economics. The asymptotic theory of extreme value is apply for analyzing the relation of extreme PM10 data from two nearby air quality monitoring stations. The series of daily maxima PM10 for Johor Bahru and Pasir Gudang stations are consider for year 2001 to 2010 databases. The 85% and 95% marginal quantile apply to determine the threshold values and hence construct the series of exceedances over the chosen threshold. The logistic, asymmetric logistic, negative logistic and asymmetric negative logistic models areconsidered as the dependence function to the joint distribution of a bivariate observation. Maximum likelihood estimation is employed for parameter estimations. The best fitted model is chosen based on the Akaike Information Criterion and the quantile plots. It is found that the asymmetric logistic model gives the best fitted model for bivariate extreme PM10 data and shows the weak dependence between two stations.

  14. Protein oxidation and degradation caused by particulate matter

    Science.gov (United States)

    Lai, Ching-Huang; Lee, Chun-Nin; Bai, Kuan-Jen; Yang, You-Lan; Chuang, Kai-Jen; Wu, Sheng-Ming; Chuang, Hsiao-Chi

    2016-09-01

    Particulate matter (PM) modulates the expression of autophagy; however, the role of selective autophagy by PM remains unclear. The objective of this study was to determine the underlying mechanisms in protein oxidation and degradation caused by PM. Human epithelial A549 cells were exposed to diesel exhaust particles (DEPs), urban dust (UD), and carbon black (CB; control particles). Cell survival and proliferation were significantly reduced by DEPs and UD in A549 cells. First, benzo(a)pyrene diolepoxide (BPDE) protein adduct was caused by DEPs at 150 μg/ml. Methionine oxidation (MetO) of human albumin proteins was induced by DEPs, UD, and CB; however, the protein repair mechanism that converts MetO back to methionine by methionine sulfoxide reductases A (MSRA) and B3 (MSRB3) was activated by DEPs and inhibited by UD, suggesting that oxidized protein was accumulating in cells. As to the degradation of oxidized proteins, proteasome and autophagy activation was induced by CB with ubiquitin accumulation, whereas proteasome and autophagy activation was induced by DEPs without ubiquitin accumulation. The results suggest that CB-induced protein degradation may be via an ubiquitin-dependent autophagy pathway, whereas DEP-induced protein degradation may be via an ubiquitin-independent autophagy pathway. A distinct proteotoxic effect may depend on the physicochemistry of PM.

  15. Airborne particulate matter collection and analysis by XRF

    International Nuclear Information System (INIS)

    Santos, Flora L.; Esguerra, Luz V.; Pabroa, Preciosa B.; Almoneda, Rosalina

    2004-01-01

    The Philippine Nuclear Research Institute (PNRI) continues to pursue its air pollution research in support of the implementation of the 1999 Clean Air Act. The primary tool for analysis is X-Ray Fluorescence spectrometry (XRF) since the PPP-I is still on extended shut down. Following the workplan approved during the 1991 Workshop on Utilization of Research Reactors, the PNRI collected airborne particulate matter using the Gent sampler. The sampling site selected for the program was Poveda Learning Center, located beside a major highway, the Epifanio delos Santos Avenue (EDSA) where the principal source of pollution is vehicular emissions. Samples collected up to August were analyzed by XRF using three sets of analytical parameters to allow optimized analysis of a wider range of elements including Na and Pb. Although the PNRI has no operating reactor, it has personnel who have trained in NAA but are unable to apply the technique. As mentioned in the 2001 Workshop, the PNRI is considering several options to resume reactor-related activities. Thus, it is necessary to ensure continuing availability of expertise in NAA in the PNRI. It looks forward to collaborating with other Institutes through the FNCA program for the analysis of samples by NAA and using reactor parameters from collaborating Institute, to obtain experience in the use of Ko. This would also allow validation of XRF data obtained for these samples. In return it can analyze samples for collaborating institutions to generate data on Pb and S, which are important for pollutant source apportionment. (author)

  16. Effects of ambient particulate matter on aerobic exercise performance

    Directory of Open Access Journals (Sweden)

    Dale R. Wagner

    2018-04-01

    Full Text Available Background/Objective: Wintertime thermal inversions in narrow mountain valleys create a ceiling effect, increasing concentration of small particulate matter (PM2.5. Despite potential health risks, many people continue to exercise outdoors in thermal inversions. This study measured the effects of ambient PM2.5 exposure associated with a typical thermal inversion on exercise performance, pulmonary function, and biological markers of inflammation. Methods: Healthy, active adults (5 males, 11 females performed two cycle ergometer time trials outdoors in a counterbalanced design: 1 low ambient PM2.5 concentrations ( .05 for PM2.5 concentration and the measured variables. Conclusion: An acute bout of vigorous exercise during an AQI of “yellow” did not diminish exercise performance in healthy adults, nor did it have a negative effect on pulmonary function or biological health markers. These variables might not be sensitive to small changes from acute, mild PM2.5 exposure. Keywords: Air pollution, Cycle ergometry, Pulmonary function, Time trial, Vigorous exercise

  17. Spatial Temporal Modelling of Particulate Matter for Health Effects Studies

    Science.gov (United States)

    Hamm, N. A. S.

    2016-10-01

    Epidemiological studies of the health effects of air pollution require estimation of individual exposure. It is not possible to obtain measurements at all relevant locations so it is necessary to predict at these space-time locations, either on the basis of dispersion from emission sources or by interpolating observations. This study used data obtained from a low-cost sensor network of 32 air quality monitoring stations in the Dutch city of Eindhoven, which make up the ILM (innovative air (quality) measurement system). These stations currently provide PM10 and PM2.5 (particulate matter less than 10 and 2.5 m in diameter), aggregated to hourly means. The data provide an unprecedented level of spatial and temporal detail for a city of this size. Despite these benefits the time series of measurements is characterized by missing values and noisy values. In this paper a space-time analysis is presented that is based on a dynamic model for the temporal component and a Gaussian process geostatistical for the spatial component. Spatial-temporal variability was dominated by the temporal component, although the spatial variability was also substantial. The model delivered accurate predictions for both isolated missing values and 24-hour periods of missing values (RMSE = 1.4 μg m-3 and 1.8 μg m-3 respectively). Outliers could be detected by comparison to the 95% prediction interval. The model shows promise for predicting missing values, outlier detection and for mapping to support health impact studies.

  18. PARTICULATE MATTER IN ATMOSPHERIC AIR IN URBAN AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2017-05-01

    Full Text Available The study aimed to determine the mass concentration of PM10 in the air in urban area. The specific objective of the research was to analyze and assess the impact of transport road emissions on the level of concentration of particulate matter in the atmosphere in the Lublin agglomeration. The measuring points were located in places at different distances from the communications emission sources and, at the same time, possibly varying degrees of air pollution dust. Measuring the concentration of dust at the measuring points was performed using an indirect method using a laser photometer. In the research point which was not under direct influence of a heavy traffic road dust levels lower by 10.5% to 65.4% than in the vicinity of the transport route were reported. Small particle air pollution at all the points covered by the study increased significantly during the heating season. Based on the comparison of the obtained values of PM10 concentrations with legal standards, it was found that the air pollution exceeded the limits in all measurement points only during a series of measurements in the months of November-December. The recorded increase in air pollution during the heating season should be associated with an increased dust emissions in this period from the "low" emitters - local house boilers and detached houses.

  19. Airborne Particulate Matter Induces Nonallergic Eosinophilic Sinonasal Inflammation in Mice.

    Science.gov (United States)

    Ramanathan, Murugappan; London, Nyall R; Tharakan, Anuj; Surya, Nitya; Sussan, Thomas E; Rao, Xiaoquan; Lin, Sandra Y; Toskala, Elina; Rajagopalan, Sanjay; Biswal, Shyam

    2017-07-01

    Exposure to airborne particulate matter (PM) has been linked to aggravation of respiratory symptoms, increased risk of cardiovascular disease, and all-cause mortality. Although the health effects of PM on the lower pulmonary airway have been extensively studied, little is known regarding the impact of chronic PM exposure on the upper sinonasal airway. We sought to test the impact of chronic airborne PM exposure on the upper respiratory system in vivo. Mice were subjected, by inhalation, to concentrated fine (2.5 μm) PM 6 h/d, 5 d/wk, for 16 weeks. Mean airborne fine PM concentration was 60.92 μm/m 3 , a concentration of fine PM lower than that reported in some major global cities. Mice were then killed and analyzed for evidence of inflammation and barrier breakdown compared with control mice. Evidence of the destructive effects of chronic airborne PM on sinonasal health in vivo, including proinflammatory cytokine release, and macrophage and neutrophil inflammatory cell accumulation was observed. A significant increase in epithelial barrier dysfunction was observed, as assessed by serum albumin accumulation in nasal airway lavage fluid, as well as decreased expression of adhesion molecules, including claudin-1 and epithelial cadherin. A significant increase in eosinophilic inflammation, including increased IL-13, eotaxin-1, and eosinophil accumulation, was also observed. Collectively, although largely observational, these studies demonstrate the destructive effects of chronic airborne PM exposure on the sinonasal airway barrier disruption and nonallergic eosinophilic inflammation in mice.

  20. Particulate matter in rural and urban nursery schools in Portugal

    International Nuclear Information System (INIS)

    Nunes, R.A.O.; Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V.

    2015-01-01

    Studies have been showing strong associations between exposures to indoor particulate matter (PM) and health effects on children. Urban and rural nursery schools have different known environmental and social differences which make their study relevant. Thus, this study aimed to evaluate indoor PM concentrations on different microenvironments of three rural nursery schools and one urban nursery school, being the only study comparing urban and rural nursery schools considering the PM 1 , PM 2.5 and PM 10 fractions (measured continuously and in terms of mass). Outdoor PM 2.5 and PM 10 were also obtained and I/O ratios have been determined. Indoor PM mean concentrations were higher in the urban nursery than in rural ones, which might have been related to traffic emissions. However, I/O ratios allowed concluding that the recorded concentrations depended more significantly of indoor sources. WHO guidelines and Portuguese legislation exceedances for PM 2.5 and PM 10 were observed mainly in the urban nursery school. - Highlights: • This is the only study comparing urban and rural nurseries considering PM fractions. • A low number of children in classrooms is enough to increase PM concentrations. • Children in urban nurseries are exposed to higher PM concentrations than in rural. • Children were mainly exposed to the finer fractions, which are worse to health. - PM levels were higher in the urban nursery than in the rural ones, which might have been related to traffic emissions. Still concentrations depended more significantly of indoor sources

  1. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  2. Cytotoxicity and genotoxicity properties of particulate matter fraction 2.5 μm

    Science.gov (United States)

    Bełcik, Maciej K.; Trusz-Zdybek, Agnieszka; Zaczyńska, Ewa; Czarny, Anna; Piekarska, Katarzyna

    2017-11-01

    In the ambient is more than 2,000 chemical substances, some of them are absorbed on the surface of the particulate matter and may causes many health problems. Air pollution is responsible for more than 3.2 million premature deaths which classifies it as a second place environmental risk factor. Especially dangerous for health are polycyclic aromatic hydrocarbons and their nitro- and amino derivatives which shows mutagenic and carcinogenic properties. Air pollutions were also classified by International Agency for Research on Cancer to group which carcinogenic properties on human were proved by available knowledge. Air pollutions, including particulate matter are one of the biggest problem in Polish cities. World Health Organization in report published in May 2016 set many of Polish cities on the top of the list most polluted in European Union. The article presents results of mutagenicity, genotoxicity and cytotoxicity researches conducted on a particulate matter fraction 2.5 μm collected during all year long in Wroclaw agglomeration. The material were collected on filters using high-flow air aspirator and extracted using dichloromethane. Additionally it was fractionated into 2 parts containing: all pollutants and only polycyclic aromatic hydrocarbons. Dry residue of this fractions were dissolving in DMSO and tested using biological methods. Biological methods include mutagenicity properties which are investigated by Salmonella assay (Ames assay). Other biological method was comet assay and 4 parameter cytotoxicity test PAN-I assay. Results of the conducted experiments shows differences in mutagenic, genotoxic and cytotoxic properties between seasons of collection and between volume of dust pollutions fractions. The worst properties shows particles collected in autumn and winter season and this containing only polycyclic aromatics hydrocarbons. Results showed also some correlations in results obtained during different methods and properties.

  3. Particulate Matter Resuspension in Mississippi Bight Evaluated with CONCORDE's Synthesis Model

    Science.gov (United States)

    O'Brien, S. J.; Quas, L. M.; Miles, T. N.; Pan, C.; Cambazoglu, M. K.; Soto Ramos, I. M.; Greer, A. T.; Church, I.; Wiggert, J. D.

    2017-12-01

    The CONsortium for oil spill exposure pathways in COastal River-Dominated Ecosystems (CONCORDE) was established to investigate the complex fine-scale biological, chemical and physical interactions in a marine system controlled by pulsed-river plume dynamics. During CONCORDE's spring 2016 field campaign, the In Situ Ichthyoplankton Imaging System (ISIIS) on the R/V Point Sur and the Scanfish on the R/V Pelican comprehensively characterized the physical and biological structure in the region. Increased suspended particulate matter was observed by the ISIIS, with concentrations at depth sufficient to completely occlude the in situ images of planktonic organisms. Data was also collected on the continental shelf during the spring cruise by the RU31 glider in the proximity of the Mississippi River Delta, east of the ISIIS / Scanfish transects. Backscatter and salinity observed by the Scanfish and glider showed elevated suspended particulate matter and increased salinity, suggesting a linkage to shoreward advection from the continental shelf of oceanic waters that are sufficiently energetic to drive sediment resuspension. As part of the CONCORDE research effort, a four-dimensional biogeochemical/lower trophic level synthesis model for Mississippi Sound and Bight has been developed, based on the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. This study utilizes CONCORDE's synthesis model to investigate the physical forcing mechanisms affecting the increased suspended particulate matter concentration observed in the Mississippi Bight during spring 2016, and advection pathways between estuarine and shelf waters in the northern Gulf of Mexico. The results show that episodic, advection-driven resuspension is a critical aspect controlling suspended sediment distributions in Mississippi Bight, which has implications for observed spatio-temporal patterns of planktonic species.

  4. Particulate matter regulation for two-stroke two wheelers: necessity or haphazard legislation?

    NARCIS (Netherlands)

    Rijkeboer, R.C.; Bremmers, D.A.C.M.; Samaras, Z.; Ntziachristos, L.

    2005-01-01

    Although interest in particulate emissions has increased considerably during recent years, the subject of particulate matter (PM) emissions from small two-stroke engines used in road vehicles is still largely unexplored. This paper presents the results of an investigation, which examined the typical

  5. Influence of Channel Geomorphology on Retention of Dissolved and Particulate Matter in a Cascade Mountain Stream

    Science.gov (United States)

    Gary A. Lamberti; Stan V. Gregory; Linda R. Ashkenas; Randall C. Wildman; Alan G. Steinman

    1989-01-01

    Retention of particulate and dissolved nutrients in streams is a major determinant of food avail-ability to stream biota. Retention of particulate matter (leaves) and dissolved nutrients (nitrogen) was studied experimentally during summer 1987 in four 300-500 m reaches of Lookout Creek, a fifth-order stream in the Cascade Mountains of Oregon. Constrained (narrow valley...

  6. Nature’s Particulate Matter with and without Charge and Travelling

    NARCIS (Netherlands)

    Ursem, W.N.J.

    2016-01-01

    Natures and anthropogenic particulates can travel long distances on wind flows, but negative electrical charge due to friction can increase dispersion. Models for calculations of distance travelling of biological particulate matter with and without charge are never been calculated in a theoretical

  7. Characterization of urban particulate matter by diffusive gradients in thin film technique

    Czech Academy of Sciences Publication Activity Database

    Dufka, Michaela; Dočekal, Bohumil

    (2018), s. 1-8, č. článku 9698710. ISSN 2090-8865 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : thin film technique * urban particulate matter * particulate air pollution Subject RIV: CB - Analytical Chemistry , Separation OBOR OECD: Analytical chemistry Impact factor: 1.801, year: 2016

  8. Characterization of urban particulate matter by diffusive gradients in thin film technique

    Czech Academy of Sciences Publication Activity Database

    Dufka, Michaela; Dočekal, Bohumil

    (2018), s. 1-8, č. článku 9698710. ISSN 2090-8865 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : thin film technique * urban particulate matter * particulate air pollution Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 1.801, year: 2016

  9. Disturbance of Soil Organic Matter and Nitrogen Dynamics: Implications for Soil and Water Quality

    Science.gov (United States)

    2004-06-30

    Elliott, E.T., 1992. Particulate soil organic- matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777–783. Dale, V.H...C.A., Elliott, E.T., 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal...1645-1650. Van Straalen, N.M. 1997. How to measure no effect. 2. Threshold effects in ecotoxicology . Environmetrics 8: 249-253. Verburg, P.S.J

  10. Screening of various diesel particulate matter samples from various commodity mines

    CSIR Research Space (South Africa)

    Mahlangu, Vusi J

    2016-09-01

    Full Text Available This paper presents qualitative analysis results of diesel particulate matter (DPM) from various mining commodities in South Africa. The objective of this work was to determine the concentrations of elements in DPM samples. For this screening...

  11. Estimating particulate matter health impact related to the combustion of different fossil fuels

    International Nuclear Information System (INIS)

    Kuenen, Jeroen; Kranenburg, Richard; Hendriks, Carlijn; Schaap, Martijn; Gschwind, Benoit; Lefevre, Mireille; Blanc, Isabelle; Drebszok, Kamila; Wyrwa, Artur; Stetter, Daniel

    2013-01-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin of the modelled particulate matter distributions thoughout a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated for 2007-2009. These maps were combined with a health impact calculation to estimate Lost of Life Expectancy for each fuel categories. An user friendly web client was generated to access the results and use the web mapping service in an easy manner. (orig.)

  12. Short term variation in particulate matter in the shelf waters of the Princess Astrid Coast, Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Bhosle, N.B.

    Particulate matter collected at a single station in the shelf waters of Princess Astrid coast (70 degrees S, 11 degrees E) Antarctica, during the austral summer (Jan.-Feb. 1986) was analysed for phytoplankton biomass (Chl @ia@@), living carbon (ATP...

  13. A possible link between particulate matter air pollution and type 2 diabetes

    NARCIS (Netherlands)

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  14. ACUTE EXPOSURE TO PARTICULATE MATTER IN A RAT MODEL OF HEART FAILURE

    Science.gov (United States)

    Human exposure to ambient particulate matter (PM) has been linked to cardiovascular morbidity and mortality. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). To better characterize the cardiovascular effects of PM, we...

  15. Ozone co-exposure modifies cardiac function responses to fine and ultrafine particulate matter in mice

    Science.gov (United States)

    There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mortality. Although the data supporting these findings are increasingly more convincing, the immediate impact of PM inhala...

  16. Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine

    Science.gov (United States)

    Gangwar, Jitendra N.; Gupta, Tarun; Agarwal, Avinash K.

    2012-01-01

    There is a global concern about adverse health effects of particulate matter (PM) originating from diesel engine exhaust. In the current study, parametric investigations were carried out using a CRDI (Common Rail Direct Injection) diesel engine operated at different loads at two different engine speeds (1800 and 2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. A partial flow dilution tunnel was employed to collect and measure the mass of the primary particulates from diesel and biodiesel blend collected on a 47 mm quartz substrate. The collected PM (particulate matter) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). For both diesel and biodiesel, BSOF results showed decreasing levels with increasing engine load. B20 showed higher BSOF as compared to those measured with diesel. The concentration of different trace metals analyzed also showed decreasing trends with increasing engine loads. In addition, real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) were carried out on the primary engine exhaust coming out of the partial flow dilution tunnel. Analysis of OC/EC data suggested that the ratio of OC to EC decreases with corresponding increase in engine load for both fuels. A peak in PAH concentration was observed at 60% engine load at 1800 rpm and 20% engine load at 2400 rpm engine speeds almost identical for both kinds of fuels. Comparison of chemical components of PM emitted from this CRDI engine provides new insight in terms of PM toxicity for B20 vis-a-vis diesel.

  17. Implication of POC/234Th ratios in oceanic particulate matter. An approach to particle aggregation

    International Nuclear Information System (INIS)

    Hirose, Katumi

    2003-01-01

    234 Th has been widely applied as a tracer of particulate organic carbon (POC) fluxes in the upper ocean. Fundamental to this approach is the determination of 234 Th fluxes from water column measurements of the 234 Th- 238 U disequilibria, and the conversion of 234 Th flux to POC export, using the measured POC/ 234 Th ratio on particles. As such, POC/ 234 Th ratios are one of the most critical factors in quantifying the carbon export flux in ocean interior when using this approach. However, the POC/ 234 Th ratios show significant temporal and spatial variations, but cannot be predicted at this time. therefore, it is important to elucidate factors controlling the variations of the POC/ 234 Th ratios. To achieve this purpose, we should understand the chemical interactions between POC and 234 Th. In the open ocean, POC/ 234 Th ratios have been determined together with other oceanographic parameters. We examined here the relationship between POC/ 234 Th and primary production. The POC/ 234 Th ratios were linearly related to logarithmic values of primary production. Taken into account the complexation between surface ligand on particulate organic matter (POM) and 234 Th, a complexation model suggests that the size of particles adsorbing 234 Th is related to primary production; in the equatorial Pacific, the size of particles adsorbing 234 Th apparently decreases with increasing primary production, whereas opposite phenomenon occurs in the North Atlantic. Since the POC/ 234 Th ratios were determined in filtered particulate matter, this finding suggests that aggregation of small particles would be dominant in the equatorial Pacific, which can be explained by a chemical aggregation model. (author)

  18. INAA for the characterization of airborne particulate matter from the industrial area of Islamabad city

    International Nuclear Information System (INIS)

    Wasim, M.; Rahman, A.; Waheed, S.; Daud, M.; Ahmad, S.

    2003-01-01

    Air particulate matter (PM) was collected in two size fractions using stacked filter units (SFUs) provided by the International Atomic Energy Agency (IAEA) from the industrial area of Islamabad. Nucleopore polycarbonate filters were used for collecting from Oct 98 to Jun 99 the particulate matter in coarse and fine size fractions. The samples were characterized by the instrumental neutron activation analysis (INAA). About 33 elements were quantified using different irradiation and counting protocols. (author)

  19. Oxidative Potential of ambient particulate matter in Athens, Greece.

    Science.gov (United States)

    Paraskevopoulou, Despina; Bougiatioti, Aikaterini; Fang, Ting; Liakakou, Eleni; Weber, Rodney; Nenes, Athanasios; Mihalopoulos, Nikolaos

    2017-04-01

    Exposure of populations to airborne particulate matter (PM) is a leading cause of premature death worldwide. Oxidative stress resulting from exposure of chemical species present in PM is a mechanism thought to cause adverse health effects. Apart from radicals present in aerosol, species that can catalytically deplete the antioxidant buffering capacity of cells, called Oxidative Potential (OP), are thought to be particularly toxic. The variability of OP over location, particle age, source and environmental conditions is virtually unknown for most populated regions of the world. Motivated by this, we have built and deployed one of the first operational measurements of OP in Europe at the National Observatory of Athens site in downtown Athens, Greece. OP for fine and coarse mode is measured using a semi-automated dithiothreitol (DTT) assay developed at the Georgia Institute of Technology; the assay measures the oxidation rate of DTT by water-soluble aerosol constituents, and simulates the rate at which the same compounds would deplete antioxidants in-vivo. The DTT oxidation rate per unit volume of air (water-soluble "DTT activity") and aerosol size class (fine, coarse) are used as a measure of aerosol toxicity. We present continuous (24hr average) OP measurements in downtown Athens from July 2016 to January 2017, conducted through quartz fiber filter analysis. The dataset covers a broad range of aerosol sources (pollution from Europe, regional and local biomass burning, dust, marine aerosol, biogenic aerosol) and meteorological conditions. The daily water-soluble DTT activity ranges between 0.02-0.81 nmolmin-1 m-3 (averaging at 0.24 nmolmin-1 m-3) for fine aerosol and between 0.01-0.52 nmolmin-1 m-3 (averaging at 0.08 nmolmin-1 m-3) for coarse particulate matter, indicating that water-soluble fine mode aerosol components possess a significant fraction of the OP. The seasonal variability demonstrates a higher DTT activity during the coldest period of the year for both

  20. Fitting the Probability Distribution Functions to Model Particulate Matter Concentrations

    International Nuclear Information System (INIS)

    El-Shanshoury, Gh.I.

    2017-01-01

    The main objective of this study is to identify the best probability distribution and the plotting position formula for modeling the concentrations of Total Suspended Particles (TSP) as well as the Particulate Matter with an aerodynamic diameter<10 μm (PM 10 ). The best distribution provides the estimated probabilities that exceed the threshold limit given by the Egyptian Air Quality Limit value (EAQLV) as well the number of exceedance days is estimated. The standard limits of the EAQLV for TSP and PM 10 concentrations are 24-h average of 230 μg/m 3 and 70 μg/m 3 , respectively. Five frequency distribution functions with seven formula of plotting positions (empirical cumulative distribution functions) are compared to fit the average of daily TSP and PM 10 concentrations in year 2014 for Ain Sokhna city. The Quantile-Quantile plot (Q-Q plot) is used as a method for assessing how closely a data set fits a particular distribution. A proper probability distribution that represents the TSP and PM 10 has been chosen based on the statistical performance indicator values. The results show that Hosking and Wallis plotting position combined with Frechet distribution gave the highest fit for TSP and PM 10 concentrations. Burr distribution with the same plotting position follows Frechet distribution. The exceedance probability and days over the EAQLV are predicted using Frechet distribution. In 2014, the exceedance probability and days for TSP concentrations are 0.052 and 19 days, respectively. Furthermore, the PM 10 concentration is found to exceed the threshold limit by 174 days

  1. Setting ambient air quality standards for particulate matter

    International Nuclear Information System (INIS)

    McClellan, Roger O.

    2002-01-01

    Ambient air particulate matter (PM), unspecified as to chemical composition, is of concern because of its health effects. Air quality standards for PM have been established in many countries. The earliest standards were based on threshold models and use of a margin of safety. Initially, standards were based on the mass of total suspended material. In the 1980s a shift to a size-specific standard, PM 10 , began. PM 10 is the fraction of PM captured with 50% efficiency at 10 μm and greater efficiency at smaller sizes. In the late 1990s, standards were proposed for PM 2.5 , which is captured with 50% efficiency at 2.5 μm. The standards for PM are based almost exclusively on human epidemiological data, with laboratory animal and in vitro data used in a supporting role. During the 1990s, new statistical tools began to be used and demonstrated an association between increased PM and an increase in cardiorespiratory morbidity and mortality. The analyses are complicated by the effects of other pollutants such as ozone. Effects have been observed down to 10-20 μg of PM 10 per cubic meter, levels equal to or below background in many parts of the world. In many studies there has been no evidence of a threshold. In the absence of a threshold, a critical issue becomes how to determine how low is low enough? This paper reviews the current literature on PM health effects and suggests research avenues that may yield data which, combined with public policy considerations, may be able to address the issue of 'how low is low enough?'

  2. Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter.

    Science.gov (United States)

    Guo, Junyu; Zhai, Zihan; Wang, Lei; Wang, Ziyuan; Wu, Jing; Zhang, Boya; Zhang, Jianbo

    2017-06-01

    Trifluoroacetic acid (TFA) in the atmosphere is produced by degradation of hydrochlorofluorocarbons and hydrofluorocarbons. In recent years, TFA has attracted global attention because of increased environmental concentrations, biological toxicity and accumulation in aqueous environments. This study focused on the mechanisms underlying the adsorption of TFA by particulate matter to identify the appropriate descriptive model for this process and thus improve estimation of TFA adsorption in future environmental monitoring. Onsite gas and particle phase sampling in Beijing, China, and subsequent measurement of TFA concentrations indicated that the TFA concentration in the gas phase (1396 ± 225 pg m -3 ) was much higher than that in the particle phase (62 ± 8 pg m -3 ) and that monthly concentrations varied seasonally with temperature. Based on the field results and analysis, an adsorption experiment of TFA on soot was then conducted at three different temperatures (293, 303, and 313 K) to provide parameters for kinetic and thermodynamic modelling. The proportion of atmospheric TFA concentration in the gas phase increased with temperature, indicating that temperature affected the phase distribution of TFA. The subsequent kinetic and thermodynamic modelling showed that the adsorption of TFA by soot could be described well by the Bangham kinetic model. The adsorption was controlled by diffusion, and the key mechanism was physical adsorption. The adsorption behavior can be well described by the Langmuir isotherm model. The calculated thermodynamic parameters ΔG° (-2.34, -1.25, and -0.15 kJ mol -1  at 293, 303, and 313 K, respectively), ΔH° (-34.34 kJ mol -1 ), and ΔS° (-109.22 J mol -1  K -1 ) for TFA adsorption by soot were negative, indicating that adsorption was a spontaneous, exothermic process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ambient particulate matter air pollution and cardiopulmonary diseases.

    Science.gov (United States)

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Impacts of Particulate Matter on Gulf of Mexico Tropical Cyclones

    Science.gov (United States)

    Cao, W.; Rohli, R. V.

    2017-12-01

    The purpose of this project is to analyze the relationship between tropical cyclones of the Gulf of Mexico-Atlantic basin and fine particulate matter (PM2.5). The daily mean PM2.5 concentration values were collected from United States Environmental Protection Agency (EPA). Tropical cyclone data were collected from Tropical Prediction Center Best Track Reanalysis in Unisys Weather®. The GRIdded Binary (GRIB-formatted) data were downloaded from the Data Support Section of the Computational and Information Systems Laboratory at the National Center for Atmospheric Research (NCAR). Through ArcGIS®, the tropical cyclone tracks were compared with the interpolated daily mean PM2.5 concentration value. Results suggest that the tracks tend to avoid areas with higher PM2.5 concentrations, and the intensity was weakened significantly after passing the PM2.5-rich area. Through simulation using the Weather Research and Forecasting (WRF) model, the pressure and vertical structure of Hurricane Lili were weakened after passing the most PM2.5-rich area in Louisiana. Also, little evidence is found for the possibility of precipitation generated by the approaching tropical cyclone to cleanse the atmosphere of PM2.5 before storm passage. These results have important implications for tropical cyclone prediction as storms approach polluted areas or other places where PM2.5 particles are abundant, not only including urban environments but also in coastal areas where proscribed burns take place during tropical cyclone season, such as during sugarcane harvesting in southern Louisiana.

  5. Exposure to airborne particulate matter in the subway system.

    Science.gov (United States)

    Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier

    2015-04-01

    The Barcelona subway system comprises eight subway lines, at different depths, with different tunnel dimensions, station designs and train frequencies. An extensive measurement campaign was performed in this subway system in order to characterise the airborne particulate matter (PM) measuring its concentration and investigating its variability, both inside trains and on platforms, in two different seasonal periods (warmer and colder), to better understand the main factors controlling it, and therefore the way to improve air quality. The majority of PM in the underground stations is generated within the subway system, due to abrasion and wear of rail tracks, wheels and braking pads caused during the motion of the trains. Substantial variation in average PM concentrations between underground stations was observed, which might be associated to different ventilation and air conditioning systems, characteristics/design of each station and variations in the train frequency. Average PM2.5 concentrations on the platforms in the subway operating hours ranged from 20 to 51 and from 41 to 91 μg m(-3) in the warmer and colder period, respectively, mainly related to the seasonal changes in the subway ventilation systems. The new subway lines with platform screen doors showed PM2.5 concentrations lower than those in the conventional system, which is probably attributable not only to the more advanced ventilation setup, but also to the lower train frequency and the design of the stations. PM concentrations inside the trains were generally lower than those on the platforms, which is attributable to the air conditioning systems operating inside the trains, which are equipped with air filters. This study allows the analysis and quantification of the impact of different ventilation settings on air quality, which provides an improvement on the knowledge for the general understanding and good management of air quality in the subway system. Copyright © 2014 The Authors. Published by

  6. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    Pinheiro, T.; Freitas, M.C.; Alves, L.C.; Reis, M.; Bugalho de Almeida, A.; Moniz, D.; Monteiro, P.; Alvarez, E.

    2000-01-01

    Biological and environmental monitoring was carried out at a steel processing sector of a steel plant in Portugal. Approximately 70 workers were surveyed for their respiratory function and blood elemental contents as indicators for a long-term exposure. The characterisation of chemical elements in air at the workplace was also evaluated taking in account the separation of particles by their aerodynamic diameter. Two fractions were collected, a coarse fraction for particles below 10 μm and above 2 μm, and a fine fraction for particles below 2 μm. PIXE and INAA analytical techniques were used for the determination of blood and aerosol elemental concentrations. Up to 12 elements (Na, Cl, K, Ca, Fe, Cu, Zn, As, Se, Sb, Hg, and Pb) were determined in blood and so far, up to 18 elements for aerosols (e.g., Na, Al Si, S, Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, As, Se, Cd, Sb, Hg, and Pb). The concentrations of the essential elements in blood (e.g., Fe, Zn and Se) were found to be altered relative to a reference Portuguese group constituted by non-exposed persons. Relative to the blood average elemental contents for As, Sb, Hg and Pb, the levels determined were below maximum permissible concentrations or reference values, except for Pb. Nevertheless, concentrations above maximum limit values were determined for some of the surveyed subjects. There are evidences that the levels of Se, Cu, and Sb in blood are influenced by exposure. Also, living habits (smoking and other activities) and pulmonary affections may modulate As, Pb and Zn concentrations in blood. For all the chemical elements identified in the particulate matter of the working atmosphere the limit values indicated in the Portuguese regulation were not exceeded, except for Fe. (author)

  7. Diesel-Enriched Particulate Matter Functionally Activates Human Dendritic Cells

    Science.gov (United States)

    Porter, Michael; Karp, Matthew; Killedar, Smruti; Bauer, Stephen M.; Guo, Jia; Williams, D'Ann; Breysse, Patrick; Georas, Steve N.; Williams, Marc A.

    2007-01-01

    Epidemiologic studies have associated exposure to airborne particulate matter (PM) with exacerbations of asthma. It is unknown how different sources of PM affect innate immunity. We sought to determine how car- and diesel exhaust–derived PM affects dendritic cell (DC) activation. DC development was modeled using CD34+ hematopoietic progenitors. Airborne PM was collected from exhaust plenums of Fort McHenry Tunnel providing car-enriched particles (CEP) and diesel-enriched particles (DEP). DC were stimulated for 48 hours with CEP, DEP, CD40-ligand, or lipopolysaccharide. DC activation was assessed by flow cytometry, enzyme-linked immunosorbent assay, and standard culture techniques. DEP increased uptake of fluorescein isothiocyanate–dextran (a model antigen) by DC. Diesel particles enhanced cell-surface expression of co-stimulatory molecules (e.g., CD40 [P < 0.01] and MHC class II [P < 0.01]). By contrast, CEP poorly affected antigen uptake and expression of cell surface molecules, and did not greatly affect cytokine secretion by DC. However, DEP increased production of TNF, IL-6, and IFN-γ (P < 0.01), IL-12 (P < 0.05), and vascular endothelial growth factor (P < 0.001). In co-stimulation assays of PM-exposed DC and alloreactive CD4+ T cells, both CEP and DEP directed a Th2-like pattern of cytokine production (e.g., enhanced IL-13 and IL-18 and suppressed IFN-γ production). CD4+ T cells were not functionally activated on exposure to either DEP or CEP. Car- and diesel-enriched particles exert a differential effect on DC activation. Our data support the hypothesis that DEP (and to a lesser extent CEP) regulate important functional aspects of human DC, supporting an adjuvant role for this material. PMID:17630318

  8. Sources and Processes Affecting Particulate Matter Pollution over North China

    Science.gov (United States)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  9. Radionuclide - Soil Organic Matter Interactions

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1985-01-01

    Interactions between soil organic matter, i.e. humic and fulvic acids, and radionuclides of primary interest to shallow land burial of low activity solid waste have been reviewed and to some extent studied experimentally. The radionuclides considered in the present study comprise cesium, strontium...

  10. Formation of Particulate Matter from the Oxidation of Evaporated Wastewater from Hydraulic Fracturing Activity

    Science.gov (United States)

    Hildebrandt Ruiz, L.; Bean, J. K.; Bilotto, A.

    2017-12-01

    The use of hydraulic fracturing for production of petroleum and natural gas has increased dramatically in the last decade, but the environmental impacts of this technology remain unclear. Experiments were conducted to quantify airborne emissions from twelve samples of hydraulic fracturing flowback wastewater collected in the Permian Basin, as well as the photochemical processing of these emissions leading to the formation of particulate matter. The concentration of total volatile carbon (TVC, hydrocarbons evaporating at room temperature) averaged 29 milligrams of carbon per liter (mgC/L) and the TVC evaporation rate averaged 1357 mgC/L-m2-min. After photochemical oxidation under high NOx conditions the amount of organic particulate matter formed per milliliter of wastewater evaporated averaged 24 micrograms (µg); the amount of ammonium nitrate formed averaged 262 µg. In the state of Texas, the potential formation of PM from evaporated flowback wastewater is similar to the estimated PM emissions from diesel engines used in oil rigs, emphasizing the need to quantify wastewater evaporation and atmospheric processing of these emissions.

  11. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India

    Directory of Open Access Journals (Sweden)

    Ramachandran Prasannavenkatesh

    2015-01-01

    Full Text Available Research outcomes from the epidemiological studies have found that the course (PM10 and the fine particulate matter (PM2.5 are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  12. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India.

    Science.gov (United States)

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Kumar, Divya Subash; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013-January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  13. Health impact caused by exposure to particulate matter in the air of Tehran in the past decade

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2017-03-01

    Full Text Available Background: Air pollution, especially the phenomenon of dust and particulate matter can cause mortality of many civilians, and causes various diseases including cardiovascular and respiratory diseases. One of the major pollutants in the air is particulate matter that concentration has increased over recent years. So, present study with aim of Quantification Health Endpoints Attributed to particulate matter in Tehran, Capital of Iran during the past decade (2005-2014 by AirQ software, version 2.2.3 (WHO European Centre for Environment and Health was performed. Methods: This study is a descriptive-analytic investigation. The process of performance this study lasted 12 months. Subject of this the study and research was in Environmental Health Engineering Department of Iran University of Medical Sciences. Exact data of every hour pollutants were taken from Department of environmental (DOE Islamic Republic Iran and Air Quality Control Company of Tehran. Then validated according to the World Health Organization (WHO guidelines and Statistical parameters for quantifying health effects were calculated in excel software. Finally, assessment of cases total mortality, cardiovascular mortality, respiratory mortality and cardiovascular disease and respiratory disease, with AirQ software was performed. Results: The results of this study showed that the number of total mortality, cardiovascular mortality and respiratory mortality caused by exposure to Particulate matter smaller than 10 microns (PM10 in the past decade is 11776, 12121 and 33066 cases respectively. Also the total number of hospital admission due to cardiovascular disease and respiratory disease in the past decade is 20990 and 54352 cases in 2005-2014 years. Conclusion: According to the results of this study, during the last decade the level of air pollution and Concentration of pollutants in Tehran Increased. Effects and health consequences due to exposure to Particulate matter smaller than 10

  14. Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter.

    Science.gov (United States)

    Negri, Ilaria; Mavris, Christian; Di Prisco, Gennaro; Caprio, Emilio; Pellecchia, Marco

    2015-01-01

    Honey bees (Apis mellifera L.) are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy) that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX). The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs). The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  15. Interim Particulate Matter Test Method for the Determination of Particulate Matter from Gas Turbine Engines, SERDP Project WP-1538 Final Report

    Science.gov (United States)

    Under Project No. WP-1538 of the Strategic Environmental Research and Development Program, the U. S. Air Force's Arnold Engineering Development Center (AEDC) is developing an interim test method for non-volatile particulate matter (PM) specifically for the Joint Strike Fighter (J...

  16. Spatial and temporal variation of sources contributing to quasi-ultrafine particulate matter PM0.36 in Augsburg, Germany.

    Science.gov (United States)

    Li, Fengxia; Schnelle-Kreis, Jürgen; Cyrys, Josef; Wolf, Kathrin; Karg, Erwin; Gu, Jianwei; Orasche, Jürgen; Abbaszade, Gülcin; Peters, Annette; Zimmermann, Ralf

    2018-08-01

    to study the sources contributing to quasi-ultrafine particle (UFP) organic carbon and the spatial temporal variability of the sources. 24h quasi-UFP (particulate matter quasi-UFP vary among sites and source types and show source-specific characteristics. Therefore, caution should be taken when using one monitor site measurement to assess human exposure in health effect studies of quasi-UFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    OpenAIRE

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-01-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as d...

  18. Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000

    Science.gov (United States)

    Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.

    2005-01-01

    During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.

  19. Bioavailability and export of dissolved organic matter from a tropical river during base- and stormflow conditions

    Science.gov (United States)

    Tracy N. Wiegner; Randee L. Tubal; Richard A. MacKenzie

    2009-01-01

    Concentrations, bioavailability, and export of dissolved organic matter (DOM), particulate organic matter (POM), and nutrients from the Wailuku River, Hawai'i, U.S.A., were examined under base- and stormflow conditions. During storms, DOM and POM concentrations increased approximately by factors of 2 and 11, respectively, whereas NO3...

  20. Differential recycling of coral and algal dissolved organic matter via the sponge loop

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; van Oevelen, D.; Struck, U.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.

    Corals and macroalgae release large quantities of dissolved organic matter (DOM), one of the largest sources of organic matter produced on coral reefs. By rapidly taking up DOM and transforming it into particulate detritus, coral reef sponges are proposed to play a key role in transferring the

  1. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions.

    Science.gov (United States)

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  2. Sources and fate of organic matter in suspended and bottom sediments of the Mandovi and Zuari estuaries, Western India

    Digital Repository Service at National Institute of Oceanography (India)

    Shynu, R; Rao, V.P.; Sarma, V.V.S.S.; Kessarkar, P.M.; ManiMurali, R

    in western India during wet and dry seasons, to characterize the sources of organic matter (OM) in these systems. Unlike major rivers, SPM concentrations increase seaward with a general trend of decreasing particulate organic carbon (POC) in these rivers...

  3. Size, Composition, and Sources of Health Relevant Particulate Matter in the San Joaquin Valley

    Science.gov (United States)

    Ham, Walter Allan

    Particulate Matter (PM) is an environment contaminant that has been associated with adverse health effects in epidemiological and toxicological studies. Atmospheric PM is made up of a diverse array of chemical species that are emitted from multiple sources across a range of aerodynamic diameters spanning several orders of magnitude. The focus of the present work was the characterization of ambient PM with aerodynamic diameters below 1.8 mum (PM1.8) in 6 size sub-fractions including PM0.1. Chemical species measured included organic carbon, elemental carbon, water soluble ions, trace metals, and organic molecular markers in urban and rural environments in the San Joaquin Valley. These measurements were used to determine differences in relative diurnal size distributions during a severe winter stagnation event, seasonal changes in PM size and composition, and the source origin of carbonaceous PM. This size-resolved information was used to calculate lung deposition patterns of health relevant PM species to evaluate seasonal differences in PM dose. By accurately calculating PM dose, researchers are able to more directly link ambient PM characterization data with biological endpoints. All of these results are used to support ongoing toxicological health effects studies. These types of analyses are important as this type of information may assist regulators with developing control strategies to reduce health effects caused by particulate air pollution.

  4. Enhancement in secondary particulate matter production due to mountain trapping

    Science.gov (United States)

    Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.

    2014-10-01

    As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be

  5. Particulate Matter Concentration Levels in South Central Richmond, California (Invited)

    Science.gov (United States)

    Bonner, B.; Byias, C.; Cuff, K. E.; Diaz, J.; Love, K.; Marks-Block, T.; McLane, F.; Mollique, Z.; Montes, E.; Ross, R.; Washington, B.

    2009-12-01

    South Central Richmond, California is the home of one of the nation’s most innovative green workforce training centers, Richmond BUILD - Green Jobs Training facility. A near constant stream of young people engaged in training activities, instructors, invited guests, and journalists of various ages can be seen moving in and out of the facility nearly every day of the week throughout a given year. Additionally, the comings and goings of young children and adults associated with a mid-sized elementary school just north of the facility contributes to the general area’s substantial human traffic. Unfortunately, however, a major highway, Interstate 580, a major thoroughfare, 23rd Street and a railway line operated by Burlington Northern Santa Fe, Union Pacific, and the Richmond Pacific Railroad frame the triangular area within which these two sites are situated. In addition, a major petrochemical complex and several shipping facilities are located less than three kilometers away north and west of this area. As part of a general assessment of air quality in this heavily human traveled area, we conducted a study of particulate matter (PM) concentrations over a five-month period beginning in August of 2009. Measurements were made at a variety of locations, and results were used to map the spatial distribution of PM of various sizes. Regions of high concentration levels were identified, and these particular areas then were monitored over time. Preliminary results of our study indicate that regions with high concentrations are consistent across the range of particle sizes measured, which suggests a common source for PM found in the study area. As these regions are located close to a major thoroughfare and railway line, we believe that diesel-burning vehicles are major contributors to the PM levels found in the study area. Time series results suggest a fairly strong correlation between higher than average PM concentrations and abnormally high wind gusts. On days when wind

  6. Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: a synthesis of findings from EPA's Particulate Matter Supersites Program and related studies.

    Science.gov (United States)

    Solomon, Paul A; Sioutas, Constantinos

    2008-02-01

    The U.S. Environmental Protection Agency (EPA) established the Particulate Matter (PM) Supersites Program to provide key stakeholders (government and private sector) with significantly improved information needed to develop effective and efficient strategies for reducing PM on urban and regional scales. All Supersites projects developed and evaluated methods and instruments, and significant advances have been made and applied within these programs to yield new insights to our understanding of PM accumulation in air as well as improved source-receptor relationships. The tested methods include a variety of continuous and semicontinuous instruments typically with a time resolution of an hour or less. These methods often overcome many of the limitations associated with measuring atmospheric PM mass concentrations by daily filter-based methods (e.g., potential positive or negative sampling artifacts). Semicontinuous coarse and ultrafine mass measurement methods also were developed and evaluated. Other semicontinuous monitors tested measured the major components of PM such as nitrate, sulfate, ammonium, organic and elemental carbon, trace elements, and water content of the aerosol as well as methods for other physical properties of PM, such as number concentration, size distribution, and particle density. Particle mass spectrometers, although unlikely to be used in national routine monitoring networks in the foreseeable future because of their complex technical requirements and cost, are mentioned here because of the wealth of new information they provide on the size-resolved chemical composition of atmospheric particles on a near continuous basis. Particle mass spectrometers likely represent the greatest advancement in PM measurement technology during the last decade. The improvements in time resolution achieved by the reported semicontinuous methods have proven to be especially useful in characterizing ambient PM, and are becoming essential in allowing scientists to

  7. Organic matter in the universe

    CERN Document Server

    Kwok, Sun

    2012-01-01

    Authored by an experienced writer and a well-known researcher of stellar evolution, interstellar matter and spectroscopy, this unique treatise on the formation and observation of organic compounds in space includes a spectroscopy refresher, as well as links to geological findings and finishes with the outlook for future astronomical facilities and solar system exploration missions. A whole section on laboratory simulations includes the Miller-Urey experiment and the ultraviolet photolysis of ices.

  8. Analysis of atmospheric particulate matter; application of optical and selected geochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mastalerz, M.; Glikson, M.; Simpson, R.W. [Indiana University, Bloomington, IN (United States). Indiana Geological Survey

    1998-09-01

    An increase in particulate matter in the atmosphere has been shown to be linked to increased mortality but this relationship is poorly understood. Light microscopy, electron microscopy, electron microprobe, and micro-FTIR techniques have been applied to study atmospheric particulates in Brisbane, Australia as a part of a study on asthma. The particulate matter samples were collected daily from April to August 1992, and the sampling covered the autumn period which is typically a time of high asthma incidence in Brisbane. Volumetrically, most atmospheric particulate matter is less than 2{mu}m in size. The microscopic analysis reveals that this material is composed mainly of combusted and incompletely burned hydrocarbons from motor vehicle exhaust emissions, quiescent spores of Mucorales, soil bacteria, and inorganic matter in the form of quartz and other silicates. Elemental and functional group analyses confirm microscope identification, documenting carbon-rich, aromatic exhaust material, more aliphatic pollen and spore material and inorganic matter. Fungal spores dominate bioaerosol and are very abundant from the end of April through May to mid-June. The cytoplasmic content of pollens or fungaonly regarded as allergenic. Particulates from the exhaust emissions and crustal material in a sub-micrometer size range may act as carriers or dispersive mechanisms for cytoplasmic material from fungal spores and pollens, perhaps causing periods of the highest exhaust emission to be the most allergenic. 25 refs., 4 figs., 1 tab.

  9. Catalytic combustion of particulate matter Catalysts of alkaline nitrates supported on hydrous zirconium

    International Nuclear Information System (INIS)

    Galdeano, N.F.; Carrascull, A.L.; Ponzi, M.I.; Lick, I.D.; Ponzi, E.N.

    2004-01-01

    In order to explore a method to remove particulate matter, catalysts of different alkaline nitrates (Li, K and Cs) supported on hydrous zirconium were prepared by the method of incipient humidity and tested as catalysts for particulate matter combustion. The catalytic activity was determined by using the temperature programmed oxidation technique (TPO), utilizing two equipments, a thermogravimetric reactor and other of fixed bed. In the first case the particulate matter/catalyst mixture was milled carefully in a mortar (tight contact) while in the second case more realistic operative conditions were used, particulate matter/catalyst mixture was made with a spatula (loose contact). All prepared catalysts showed good activity for the particulate matter combustion. The cesium catalyst was the one that presented higher activity, decreasing the combustion temperature between 200 and 250 deg. C with respect to the combustion without catalyst. The catalyst with lithium nitrate became active at higher temperature than its melting point and the same occurred with the potassium catalyst. This did not occur for the catalyst containing cesium nitrate that melts at 407 deg. C and became active from 350 deg. C

  10. A Review of Particulate Matter and Health: Focus on Developing Countries.

    OpenAIRE

    L. Panyacosit

    2000-01-01

    The burden of ill human health attributable to particulate air pollution is a critical problem of growing concern. In developing countries it is not uncommon to experience today the same particulate matter levels that characterized the devastating "London fog episodes" of the 1950s which resulted in over 4000 cases of premature mortality and countless cases of exacerbated morbidity related health endpoints. This literature review gives an overview of the situation in developing countries...

  11. Removal of residual particulate matter from filter media

    Science.gov (United States)

    Almlie, Jay C; Miller, Stanley J

    2014-11-11

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  12. Amino sugars in suspended particulate matter from the Bay

    Indian Academy of Sciences (India)

    particulate nitrogen (PN)and AS concentrations and composition.The AS varied between 0.4 and 17.5 nmol/l.Concentrations were high in the surface waters and generally decreased with increasing depth.AS concentration decreased from the south to ...

  13. Spatial Distribution of Suspended Particulate Matter in Mtwapa ...

    African Journals Online (AJOL)

    ... in the three sites; it accounts for a mean of 61% ±20 in Ramisi, 97% ±0.7 in Shirazi and 65% ±29 in Mtwapa. These high detritus levels are expected because of the allochthonous supply of particulate material by the river in Ramisi and the contribution from mangroves, which fringe the banks of the estuary and the creeks.

  14. Particulate Matter and Noise Impact Studies of Waste Rock Dump ...

    African Journals Online (AJOL)

    Adansi Gold Company Limited identified an economically viable gold deposit at Nkran in the Amansie West District of Ghana. Mining of this deposit requires the disposal of waste rock materials at a proposed waste rock dump near Nkran and Koninase communities. Since particulates and noise emissions from the ...

  15. Removal of residual particulate matter from filter media

    Energy Technology Data Exchange (ETDEWEB)

    Almlie, Jay C.; Miller, Stanley J.

    2018-01-09

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  16. Ionization for reducing particulate matter emissions from poultry houses

    NARCIS (Netherlands)

    Cambra-López, M.; Winkel, A.; Harn, van J.; Ogink, N.W.M.; Aarnink, A.J.A.

    2009-01-01

    We evaluated the effect of ionization in reducing particulate and gaseous emissions in broiler houses and its effect on particle size distribution. Furthermore, we evaluated the performance of the tested ionization system and its influence on bird performance. The experiment was done during two

  17. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  18. Characterization and radionuclides sorption of suspended particulate matters in freshwater according to their settling kinetics

    International Nuclear Information System (INIS)

    Brach-Papa, C.; Boyer, P.; Amielh, M.; Anselmet, F.

    2004-01-01

    In freshwater, the transfers of radionuclides depend both on exchanges between liquid and solid phases and on mass transfers between suspended matter and bottom sediment. Whereas the former ones depend on chemical processes (such as sorption/desorption, complexation, the latter ones are regulated by hydrological and sedimentary considerations (dispersion, erosion, deposit closely related to the interactions between flow, suspended matter and bed sediment. Some of our previous studies highlight the need to consider the matter heterogeneity and its specific sediment dynamics to correctly report the inhomogeneity of fluxes in time and in space. These considerations lead us to develop experimental methods to distinguish the different matter classes, present in natural water, mainly according to their erosion threshold and settling kinetics. In this context, this paper presents the experimental protocol TALISMEN to characterize a natural bulk suspension according the identification of its main settling kinetics groups. In a first step, this identification is achieved by the use of a settling tank, that allows the monitoring of the suspended solid concentration at various depths, combined to a vertical mono-dimensional settling model applying a multi-class approach. In a second step, the particle groups are isolated and their physico-chemical properties are determined ( i.e mineral composition, specific surface area, particulate organic carbon, in order to fully characterized them. In a last one, the sorption property of each group toward radionuclides is determined by the measurements of its distribution coefficients (Kd). The results confirm the interest to consider these heterogeneities for the modelling of the radionuclides transfer in freshwater. From one group to other, these heterogeneities appear at two levels: 1) their sediment dynamics and 2) their radionuclides sorption properties. These conclusions can be equally applying to others xenobiotics as heavy metals

  19. The effects of biodiesels on semivolatile and nonvolatile particulate matter emissions from a light-duty diesel engine.

    Science.gov (United States)

    Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée

    2017-11-01

    Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Particulate organic nitrates: Sampling and night/day variation

    DEFF Research Database (Denmark)

    Nielsen, T.; Platz, J.; Granby, K.

    1998-01-01

    Atmospheric day and night concentrations of particulate organic nitrates (PON) and several other air pollutants were measured in the summer 1995 over an open-land area in Denmark. The sampling of PON was evaluated comparing 24 h samples with two sets of 12 h samples. These results indicate...... that the observed low contribution of PON to NO, is real and not the result of an extensive loss during the sampling. Empirical relationships between the vapour pressure and chemical formula of organic compounds were established in order to evaluate the gas/particle distribution of organic nitrates. A positive...

  1. Organic matters: investigating the sources, transport, and fate of organic matter in Fanno Creek, Oregon

    Science.gov (United States)

    Sobieszczyk, Steven; Keith, Mackenzie K.; Goldman, Jami H.; Rounds, Stewart A.

    2015-01-01

    The term organic matter refers to the remnants of all living material. This can include fallen leaves, yard waste, animal waste, downed timber, or the remains of any other plant and animal life. Organic matter is abundant both on land and in water. Investigating organic matter is necessary for understanding the fate and transport of carbon (a major constituent of organic matter).

  2. Hospital Admission for Respiratory and Cardiovascular Diseases Due to Particulate Matter in Ilam, Iran

    Directory of Open Access Journals (Sweden)

    Daryanoosh

    2016-09-01

    Full Text Available Background Particulate matter with an aerodynamic diameter lower than 10 µm (PM10 has the most undesired adverse effects on human health. Several studies reported a strong correlation between PM levels and hospital admissions owing to chronic and acute respiratory and cardiovascular diseases. Objectives The current study aimed to estimate the effect of PM10 as a primary pollutant on respiratory and cardiovascular hospitalizations in Ilam, Iran, in 2013. Methods PM10 data was taken from the Ilam environmental protection agency. The annual morbidity including hospital admission for respiratory and cardiovascular diseases due to PM10 exposure were estimated using relative risk (RR and baseline incidence (BI based on world health organization (WHO databases for AirQ2.2.3 model. Results The results showed that the maximum level of PM10 was obtained in summer with a concentration of 491 μg/m3. The cumulative number of excess cases admitted to the hospital for respiratory and cardiovascular diseases were 216 and 84, respectively. Approximately 3.95% of the cases hospitalized due to PM10 occurred during days with concentration levels lower than 20 μg/m3. The highest rate of person-days related to PM10 that led to heath effect among Ahvaz inhabitants was in concentration levels of 40 - 49 µg/m3. Conclusions To reduce the impacts of particulate matter on health status of people in Ilam, necessary training by health systems should be conducted for people, especially those with chronic lung and heart diseases, the elderly and children to reduce their activities on the dusty days.

  3. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    Science.gov (United States)

    Nie, Dongyang; Chen, Mindong; Ge, Xinlei; Zhang, Kai; Ge, Pengxiang

    2018-01-01

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits. PMID:29584626

  4. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    Directory of Open Access Journals (Sweden)

    Dongyang Nie

    2018-03-01

    Full Text Available Particulate matter (PM air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5 over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER model was applied to assess premature mortality, years of life lost (YLL attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF, stroke was the major cause of death, followed by ischemic heart disease (IHD, lung cancer (LC and chronic obstructive pulmonary disease (COPD. The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO Air Quality Guidelines (AQG of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  5. Occupational Exposure to Diesel Particulate Matter in Municipal Household Waste Workers.

    Science.gov (United States)

    Lee, Kyong-Hui; Jung, Hye-Jung; Park, Dong-Uk; Ryu, Seung-Hun; Kim, Boowook; Ha, Kwon-Chul; Kim, Seungwon; Yi, Gwangyong; Yoon, Chungsik

    2015-01-01

    The purposes of this study were to determine the following: 1) the exposure levels of municipal household waste (MHW) workers to diesel particulate matter (DPM) using elemental carbon (EC), organic carbon (OC), total carbon (TC), black carbon (BC), and fine particulate matter (PM 2.5) as indicators; 2) the correlations among the indicators; 3) the optimal indicator for DPM; and 4) factors that influence personal exposure to DPM. A total of 72 workers in five MHW collection companies were assessed over a period of 7 days from June to September 2014. Respirable EC/OC samples were quantified using the thermal optical transmittance method. BC and PM 2.5 were measured using real-time monitors, an aethalometer and a laser photometer. All results were statistically analyzed for occupational and environmental variables to identify the exposure determinants of DPM. The geometric mean of EC, OC, TC, BC and PM 2.5 concentrations were 4.8, 39.6, 44.8, 9.1 and 62.0 μg/m3, respectively. EC concentrations were significantly correlated with the concentrations of OC, TC and BC, but not with those of PM 2.5. The exposures of the MHW collectors to EC, OC, and TC were higher than those of the drivers (pemission standard had higher exposures to EC, OC, TC and PM 2.5 than those working on Euro 4 trucks (pemission standard, and average driving speed were the most influential factors in determining worker exposure. We assessed MHW workers' exposure to DPM using parallel sampling of five possible indicators. Of these five indicators, EC was shown to be the most useful indicator of DPM exposure for MHW workers, and the job task, European emission standard, and average driving speed were the main determinants of EC exposure.

  6. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing.

    Science.gov (United States)

    Nie, Dongyang; Chen, Mindong; Wu, Yun; Ge, Xinlei; Hu, Jianlin; Zhang, Kai; Ge, Pengxiang

    2018-03-27

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM 2.5 ) over Nanjing were analyzed using hourly and daily averaged PM 2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM 2.5 , and mortality benefits due to PM 2.5 reductions. The concentrations of PM 2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM 2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM 2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM 2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m³, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  7. Notes on the Particulate Matter Standards in the European Union and the Netherlands

    Directory of Open Access Journals (Sweden)

    Hugo Priemus

    2009-03-01

    Full Text Available The distribution of Particulate Matter in the atmosphere, resulting from emissions produced by cars, trucks, ships, industrial estates and agricultural complexes, is a topical public health problem that has increased in recent decades due to environmental factors in advanced economies in particular. This contribution relates the health impact caused by concentrations of Particulate Matter (PM in ambient air to the PM standards, the size of the particles and spatial planning. Diverging impacts of PM standards in legal regulation are discussed. The authors present a review of the development of legal PM standards in the European Union, with a specific reference to The Netherlands.

  8. Determination of trace elements by INAA in urban air particulate matter and transplanted lichens

    International Nuclear Information System (INIS)

    Bergamaschi, L.; Rizzio, E.; Profumo, A.; Gallorini, M.

    2005-01-01

    Lichens as biomonitors and neutron activation analysis as analytical technique have been employed to evaluate the trace element atmospheric pollution in the metropolitan area of the city of Pavia (Northern Italy). Transplanted lichens (Parmelia sulcata and Usnea gr. hirta) and air particulate matter have been monthly collected and analyzed during the winter 2001-2002. INAA and ET-AAS have been used for the determination of 28 elements in air particulate matter and 25 elements in lichens. Trace metals concentrations as well as the corresponding enrichment factors were evaluated and compared. (author)

  9. [Distribution and origin of polycyclic aromatic hydrocarbons in suspended particulate matters from the Yangtze estuarine and nearby coastal areas].

    Science.gov (United States)

    Ou, Dong-ni; Liu, Min; Xu, Shi-yuan; Cheng, Shu-bo; Hou, Li-jun; Gao, Lei

    2008-09-01

    Parent PAHs have been quantified in suspended particulate matters from the Yangtze Estuarine and Coastal Areas. The results show that the concentrations of total PAHs ranged from 2278.79-14293.98 ng/g, and were characterized by greatest content near sewage discharge point with trend to decrease by increasing distance. As for PAHs composition, 4-6 rings PAHs were dominant while 2-3 rings PAHs were relative low. Cluster analysis found that except urban sewage discharge, the hydrodynamic force was influencing PAHs distribution patterns. Moreover, the content of suspended particulate matters, organic carbon and soot carbon of suspended particulate matters also play the important roles in PAHs distribution from the Yangtze estuarine and nearby coastal areas. Principal component analysis and PAH ratios demonstrated that uncompleted combustion of fossil fuels was the main source of PAHs in coastal areas, as well as a few anthropogenic releases of oil and oil products. Ecological risk assessment indicated that most of PAH compounds exceeded the effects range ER-L values and ISQV-L values, which might certain potential damage to the Yangtze Estuary ecosystem.

  10. Risk of human health by particulate matter as a source of air pollution--comparison with tobacco smoking.

    Science.gov (United States)

    Enomoto, Makoto; Tierney, William J; Nozaki, Kohsuke

    2008-08-01

    Increased air pollution, containing carcinogenic particulate matter smaller than 2.5 microm (PM(2.5)), has gained particular attention in recent years as a causative factor in the increased incidence of respiratory diseases, including lung cancer. Extensive carcinogenicity studies conducted recently under Good Laboratory Practice conditions by National Toxicology Program in the USA, Ramazzini Foundation in Italy or Contract Research Organizations on numerous chemical compounds have demonstrated the importance of considering dose levels, times and duration of exposure in the safety evaluation of carcinogenic as well as classical toxic agents. Data on exposure levels to chemical carcinogens that produce tumor development have contributed to the evaluation of human carcinogens from extrapolation of animal data. A popular held misconception is that the risk from smoking is the result of inhaling assorted particulate matter and by products from burning tobacco rather than the very low ng levels of carcinogens present in smoke. Consider the fact that a piece of toasted bread contains ng levels of the carcinogen urethane (ethyl carbamate). Yet, no one has considered toast to be a human carcinogen. Future human carcinogenic risk assessment should emphasize consideration of inhalation exposure to higher levels of benzo (a) pyrene and other possible carcinogens and particulate matter present in polluted air derived from automobile exhaust, pitch and coal tar on paved roads and asbestos, in addition to other environmental contaminant exposure via the food and drinking water.

  11. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China

    Science.gov (United States)

    Hagler, G. S. W.; Bergin, M. H.; Salmon, L. G.; Yu, J. Z.; Wan, E. C. H.; Zheng, M.; Zeng, L. M.; Kiang, C. S.; Zhang, Y. H.; Lau, A. K. H.; Schauer, J. J.

    Fine particulate matter (PM 2.5) was measured for 4 months during 2002-2003 at seven sites located in the rapidly developing Pearl River Delta region of China, an area encompassing the major cities of Hong Kong, Shenzhen and Guangzhou. The 4-month average fine particulate matter concentration ranged from 37 to 71 μg m -3 in Guangdong province and from 29 to 34 μg m -3 in Hong Kong. Main constituents of fine particulate mass were organic compounds (24-35% by mass) and sulfate (21-32%). With sampling sites strategically located to monitor the regional air shed patterns and urban areas, specific source-related fine particulate species (sulfate, organic mass, elemental carbon, potassium and lead) and daily surface winds were analyzed to estimate influential source locations. The impact of transport was investigated by categorizing 13 (of 20 total) sampling days by prevailing wind direction (southerly, northerly or low wind-speed mixed flow). The vicinity of Guangzhou is determined to be a major source area influencing regional concentrations of PM 2.5, with levels observed to increase by 18-34 μg m -3 (accounting for 46-56% of resulting particulate levels) at sites immediately downwind of Guangzhou. The area near Guangzhou is also observed to heavily impact downwind concentrations of lead. Potassium levels, related to biomass burning, appear to be controlled by sources in the northern part of the Pearl River Delta, near rural Conghua and urban Guangzhou. Guangzhou appears to contribute 5-6 μg m -3 of sulfate to downwind locations. Guangzhou also stands out as a significant regional source of organic mass (OM), adding 8.5-14.5 μg m -3 to downwind concentrations. Elemental carbon is observed to be strongly influenced by local sources, with highest levels found in urban regions. In addition, it appears that sources outside of the Pearl River Delta contribute a significant fraction of overall fine particulate matter in Hong Kong and Guangdong province. This is evident

  12. Chemical characterization of urban air particulate matter of Kuala Lumpur 2002-2004

    International Nuclear Information System (INIS)

    Wee Boon Siong; Ab. Khalik Bin Haji Wood

    2006-01-01

    Urban air particulate samples of Kuala Lumpur ambient air have been collected characterize according to fine and coarse airborne particulates. The air filters containing particulate matter were collected using GENT stack filter unit fitted with appropriate polycarbonate filters. The sampling location site (Lat: 03deg 10'30''; Long: 101deg 43'24.2'') is approximately 1 km from the Kuala Lumpur city center. All the sampling conducted from January 2002 until October 2004 was included in the analysis and results were reported. The mass loading for finest air particulate matter (PM 2.5) in Kuala Lumpur are 199±55 μg (2002), 171±53 μg (2003), and 171±61 μg (2004), respectively. The mass loading for coarse air particulate matter (PM 10) in Kuala Lumpur were 125±29 μg (2002), 134±48 μg (2003), and 137 ± 57 μg (2004), respectively. The elemental concentration of the air filters were determined using INAA technique utilizing both short and long irradiation facilities at MINT's TRIGA MKII reactor. Upon irradiation the air filters were counted at suitable counting time using HPGe gamma-ray detectors. The elements reported for this monitoring are Al, As, Br, Co, Cr, K, Lu, Mn, Na, Sb, Sc, Ti, V, and Zn. Certified reference materials were also included in the sample analysis function as quality control materials. (author)

  13. Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study

    NARCIS (Netherlands)

    Badaloni, Chiara; Cesaroni, Giulia; Cerza, Francesco; Davoli, Marina; Brunekreef, Bert; Forastiere, Francesco

    2017-01-01

    BACKGROUND: The effect of long-term exposure to metal components in particulate matter on mortality are still controversial. OBJECTIVES: To study the association between long-term exposure to PM10, PM2.5, PM2.5 absorbance, particulate matter components (copper, iron, zinc, sulfur, silicon,

  14. A Study of the Development in Fourth, Fifth and Sixth Grade Children of an Understanding of a Particulate Model of Matter.

    Science.gov (United States)

    Ward, Roger Woodmansee

    The study was designed to determine if chronological age is the main factor in a child's ability to develop a particulate concept of matter. Four demonstrations were organized which consisted of a graded series of particle mixing, gas diffusion, dissolving and smoke investigations. The individualized interviews with children were tape recorded. On…

  15. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  16. Behavior of secondary particles in particulate matter collected at eastern Kanagawa

    International Nuclear Information System (INIS)

    Nishida, Tomohiro; Kikawada, Yoshikazu; Oi, Takao; Honda, Teruyuki

    2008-01-01

    The suspended particulate matters collected in 100 periods from 2002/10/28 to 2004/10/29 were separated into the water soluble and insoluble components and their main components were analyzed. The characteristics of atmosphere in the east part of Kagawa prefecture and of the secondary particulates were presumed. Therefore, it was considered that in the samples other than Mn the origins of water soluble and insoluble components are different each other from their behavior. The water-soluble part may be mostly ammonium salt (secondary particulate) from the measurement of NH 4 + . Furthermore, it became clear that the evolution of secondary particulate varies largely with season. Then, the variation with season was presumed by the main component analysis using the statistical software, SPSS adding to the correlation coefficient. This method has proved to be effective. (M.H.)

  17. Characterization of Fine Particulate Matter in Sharjah, United Arab Emirates Using Complementary Experimental Techniques

    Directory of Open Access Journals (Sweden)

    Nasser M. Hamdan

    2018-04-01

    Full Text Available Airborne particulate matter (PM pollutants were sampled from an urban background site in Sharjah, United Arab Emirates. The fine fraction (PM2.5 (particulates with aerodynamic diameters of less than 2.5 μm was collected on 47-mm Teflon filters and analyzed using a combined set of non-destructive techniques in order to provide better understanding of the sources of pollutants and their interaction during transport in the atmosphere. These techniques included gravimetric analysis, equivalent black carbon (EBC, X-ray fluorescence, scanning electron microscopy, and X-ray diffraction. Generally, the PM2.5 concentrations are within the limits set by the World Health Organization (WHO and the United States (US Environmental Protection Agency. The EBC content is in the range of 10–12% of the total PM concentration (2–4 µg m−3, while S (as ammonium sulfate, Ca (as calcite, gypsum, and calcium carbonate, Si (as quartz, Fe, and Al were the major sources of PM pollution. EBC, ammonium sulfate, Zn, V, and Mn originate from anthropogenic sources such as fossil fuel burning, traffic, and industrial emissions. Natural elements such as Ca, Fe, Al, Si, and Ti are due to natural sources such as crustal materials (enhanced during dust episodes and sea salts. The average contribution of natural sources in the total PM2.5 mass concentration over the sampling period is about 40%, and the contribution of the secondary inorganic compounds is about 27% (mainly ammonium sulfate in our case. The remaining 22% is assumed to be secondary organic compounds.

  18. Exoenzyme activities as indicators of dissolved organic matter composition in the hyporheic zone of a floodplain river

    Science.gov (United States)

    Sandra M. Clinton; Rick T. Edwards; Stuart E.G. Findlay

    2010-01-01

    We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were...

  19. Nutritional composition of suspended particulate matter in a tropical mangrove creek during a tidal cycle (Can Gio, Vietnam)

    Science.gov (United States)

    David, Frank; Marchand, Cyril; Taillardat, Pierre; Thành-Nho, Nguyễn; Meziane, Tarik

    2018-01-01

    Mangrove forests are highly productive ecosystems and mangrove-derived organic matter has generally been assumed to play a basal role in sustaining coastal food webs. However, the mechanisms of mangrove-derived organic matter utilisation by consumers are not fully understood. In this study, we were interested in hourly changes in the nutritional quality of suspended particulate matter (SPM) entering and departing a mangrove creek during a tidal cycle. We determined the fatty acid composition and δ13C stable isotope signature of SPM during a 26 h tidal cycle in a creek of the Can Gio Mangrove Biosphere Reserve (Southern Vietnam). Regarding fatty acids, the nutritional quality of SPM was low during most of the tidal cycle. However, it greatly increased during the first part of the strongest flood tide, occurring during daytime. The pulse of highly nutritive organic matter brought to the ecosystem was mostly composed of algal cells growing in specific shallow zones of the mangrove, that use nutrients and CO2 exported during the preceding ebb tide and originating from the mineralisation of mangrove-derived organic matter, as evidenced by their δ13C signatures. This study confirms that mangrove-derived carbon plays a basal role in sustaining trophic webs of mangrove tidal creeks, but that its nutritive value is greatly enhanced when a first step of mineralisation is achieved and CO2 is photosynthesised by algal cells.

  20. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  1. 40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.

    Science.gov (United States)

    2010-07-01

    ... amount of fugitive particulate matter that may be emitted from certain air pollution sources operating... minimize the accumulation of dusty materials that have the potential to become airborne, and the prompt... materials likely to become airborne. (viii) The prompt removal from paved streets of earth or other material...

  2. Characterization of airborne particulate matter in Santiago, Chile. Part 6: elemental determination by neutron activation analysis

    International Nuclear Information System (INIS)

    Cassorla, V.; Rojas, X.; Andonie, O.; Gras, N.

    1995-01-01

    Instrumental neutron activation analysis was used for the chemical characterization of airborne particulate matter from some locations in the city of Santiago, Chile. The following elements were determined: Al, As, Br, Ca, Cl, Co, Cu, Cr, Fe, Mn, Na, Sb, Sc, V y Zn. The accuracy of the experimental procedure was evaluated using a standard reference material. (author). 3 refs, 3 figs, 4 tabs

  3. Observations of a narrow zone of high suspended particulate matter (SPM) concentrations along the Dutch coast

    NARCIS (Netherlands)

    van der Hout, C.M.; Gerkema, T.; Nauw, J.J.; Ridderinkhof, H.

    2015-01-01

    The objective of the study described in this paper is to localize the transport path of suspended particulate matter (SPM) in the Dutch coastal zone in the southern North Sea. It is known that a large mass of SPM is transported northward from the Strait of Dover, which is however mostly hidden from

  4. Species of fine particulate matter and the risk of preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB), but the roles of PM species have been less studied. We estimated risk of birth in 4 preterm categories (risks reported as PTBs per 106 pregnancies; PTB categories = gestational age of 20-27; 28-31; 32-...

  5. Contrasts in oxidative potential and other particulate matter characteristics collected near major streets and background locations

    NARCIS (Netherlands)

    Boogaard, H.; Janssen, N.A.H.; Fischer, P.H.; Kos, G.P.A.; Weijers, E.P.; Cassee, F.R.; van der Zee, S.C.; Hartog, J. de; Brunekreef, B.; Hoek, G.

    2012-01-01

    BACKGROUND: Measuring the oxidative potential of airborne particulate matter (PM) may provide a more health-based exposure measure by integrating various biologically relevant properties of PM into a single predictor of biological activity. OBJECTIVES: We aimed to assess the contrast in oxidative

  6. Contrasts in oxidative potential and other particulate matter characteristics collected near major streets and background locations.

    NARCIS (Netherlands)

    Boogaard, H.; Janssen, N.A.; Fischer, P.H.; Kos, G.P.; Weijers, E.P.; Cassee, F.R.; Zee, S.C. van der; Hartog, J.J. de; Brunekreef, B.; Hoek, G.

    2012-01-01

    BACKGROUND: Measuring the oxidative potential of airborne particulate matter (PM) may provide a more health-based exposure measure by integrating various biologically relevant properties of PM into a single predictor of biological activity. OBJECTIVES: We aimed to assess the contrast in oxidative

  7. 77 FR 31262 - Approval and Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter...

    Science.gov (United States)

    2012-05-25

    ... otherwise protected. The www.regulations.gov Web site is an ``anonymous access'' system, which means EPA... Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year emissions inventory, portion of the State...

  8. Global Guidance On LCIA Indicators: Impacts Of Particulate Matter And Of Land Use

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Fantke, Peter; McKone, Thomas E.

    2017-01-01

    Improving life cycle impact assessment models is crucial. The flagship project of the UNEP-SETAC Life Cycle Initiative provides global guidance and consensus on environmental LCIA indicators for climate change, particulate matter impacts, land use impact on biodiversity, water scarcity and water ...

  9. Associations between particulate matter composition and childhood blood pressure - The PIAMA study

    NARCIS (Netherlands)

    Bilenko, Natalya; Brunekreef, Bert; Beelen, Rob; Eeftens, Marloes; de Hoogh, Kees; Hoek, Gerard; Koppelman, Gerard H.; Wang, Meng; van Rossem, Lenie; Gehring, Ulrike

    2015-01-01

    Background: Childhood blood pressure is an important predictor of hypertension and cardiovascular disease in adulthood. Evidence for an association between ambient particulate matter (PM) exposure and blood pressure is increasing, but little is known about the relevance of different PM constituents.

  10. Diesel particulate matter exposure in South African platinum mines: an overview

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2014-08-01

    Full Text Available Personal diesel particulate matter (DPM) sampling was conducted on nearly 300 mine workers in the diesel and non-diesel sections of three platinum mines in South Africa. Respiratory health questionnaires were administered to all of these workers...

  11. Elemental composition of particulate matter and the association with lung function

    NARCIS (Netherlands)

    Eeftens, Marloes; Hoek, Gerard; Gruzieva, Olena; Mölter, Anna; Agius, Raymond; Beelen, Rob; Brunekreef, Bert; Custovic, Adnan; Cyrys, Josef; Fuertes, Elaine; Heinrich, Joachim; Hoffmann, Barbara; de Hoogh, Kees; Jedynska, Aleksandra; Keuken, Menno; Klümper, Claudia; Kooter, Ingeborg; Krämer, Ursula; Korek, Michal; Koppelman, Gerard H; Kuhlbusch, Thomas A J; Simpson, Angela; Smit, Henriëtte A; Tsai, Ming-Yi; Wang, Meng; Wolf, Kathrin; Pershagen, Göran; Gehring, Ulrike

    BACKGROUND: Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. METHODS: We conducted a multicenter study in 5

  12. Elemental composition of particulate matter and the association with lung function

    NARCIS (Netherlands)

    Eeftens, M.; Hoek, G.; Gruzieva, O.; Mölter, A.; Agius, R.; Beelen, R.; Brunekreef, B.; Custovic, A.; Cyrys, J.; Fuertes, E.; Heinrich, J.; Hoffmann, B.; De Hoogh, K.; Jedynska, A.; Keuken, M.; Klümper, C.; Kooter, I.; Krämer, U.; Korek, M.; Koppelman, G.H.; Kuhlbusch, T.A.J.; Simpson, A.; Smit, H.A.; Tsai, M.Y.; Wang, M.; Wolf, K.; Pershagen, G.; Gehring, U.

    2014-01-01

    BACKGROUND: Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. METHODS: We conducted a multicenter study in 5

  13. Air Quality Standards for Particulate Matter (PM) at high altitude cities

    International Nuclear Information System (INIS)

    Bravo Alvarez, H.; Sosa Echeverria, R.; Sanchez Alvarez, P.; Krupa, S.

    2013-01-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. - Highlights: ► AQS for particulate matter concentrations adjusted by pressure and temperature. ► Particulate matter concentrations can be underestimated in high altitude Cities. ► Particulate matter concentrations must be compared under the same conditions. - In order to compare high altitude atmospheric PM concentrations with AQS, one must consider T and P of the sampling site.

  14. Characterizing Aggregated Exposure to Primary Particulate Matter: Recommended Intake Fractions for Indoor and Outdoor Sources

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier; Apte, Joshua Schulz

    2017-01-01

    Exposure to fine particulate matter (PM_(2.5)) from indoor and outdoor sources is a leading environmental contributor to global disease burden. In response, we established under the auspices of the UNEP/SETAC Life Cycle Initiative a coupled indoor-outdoor emission-to-exposure framework to provide...

  15. Integrated indoor and outdoor exposure assessment framework for fine particulate matter pollution

    DEFF Research Database (Denmark)

    McKone, Thomas E; Hodas, Natasha; Apte, Joshua S.

    2016-01-01

    The 2010 Global Burden of Disease report demonstrates that fine particulate matter (PM2.5) pollution is the major environmental contributor to mortality. Exposures outdoors (ambient) and indoors (household) contribute almost qually to this burden. Unfortunately, the health impacts from exposure t...

  16. Elemental constituents of particulate matter and newborn’s size in eight European cohorts

    NARCIS (Netherlands)

    Pedersen, M.; Gehring, U.; Beelen, R.; Wang, M.; Giorgis-Allemand, L.; Andersen, A.M.N.; Basagaña, X.; Bernard, C.; Cirach, M.; Forastiere, F.; Hoogh, K. de; Gražuleviĉvienė, R.; Gruzieva, O.; Hoek, G.; Jedynska, A.; Klümper, C.; Kooter, I.M.; Krämer, U.; Kukkonen, J.; Porta, D.; Postma, D.S.; Raaschou-Nielsen, O.; Rossem, L. van; Sunyer, J.; Sørensen, M.; Tsai, M.Y.; Vrijkotte, T.G.M.; Wilhelm, M.; Nieuwenhuijsen, M.J.; Pershagen, G.; Brunekreef, B.; Kogevinas, M.; Slama, R.

    2016-01-01

    Background: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn’s size have been little examined. Objective: We aimed to investigate the associations of exposure to elemental

  17. Indoor/outdoor Particulate Matter Number and Mass Concentration in Modern Offices

    Czech Academy of Sciences Publication Activity Database

    Chatoutsidou, S.E.; Ondráček, Jakub; Tesař, Ondřej; Tørseth, K.; Ždímal, Vladimír; Lazaridis, M.

    2015-01-01

    Roč. 92, OCT 2015 (2015), s. 462-474 ISSN 0360-1323 EU Projects: European Commission(XE) 315760 Institutional support: RVO:67985858 Keywords : modern offices * particulate matter * mechanical ventilation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.394, year: 2015

  18. Microscopic and submicron components of atmospheric particulate matter during high asthma periods in Brisbane, Queensland, Australia

    Science.gov (United States)

    Glikson, M.; Rutherford, S.; Simpson, R. W.; Mitchell, C. A.; Yago, A.

    The study identifies the various components contributing to atmospheric particulate matter in Brisbane, Queensland, Australia, during the period from the end of April and the months of July-August in 1992, covering the autumn period which is typically the period of high asthma incidence in Brisbane. Most particulate matter is Mucorales, and soil bacteria. The contribution from pollen and fungal spores has been evaluated and quantified. Fungal spores counts dominate the bioaerosol counts in the 2-10 μm range and are very high in Brisbane from the end of April through May to mid-June. However even at peak periods the total bioaerosol count only contributes of the order of 5-10% of the total particulate mass. The results show that Pm 10 (particulate matter less than 10 μm in diameter) and nephelometer readings do not indicate peak periods of allergenic bioaerosol readings (in fact there is a negative correlation) due to the low contribution of the bioaerosol count to the total and the different influences of wind speed. However the electron microscopy results show that this does not mean there are no synergies between aerosols from anthropogenic sources and bioaerosols. The cytoplasmic content of spores and pollen was often found to be adhered to motor vehicle emission material and crustal matter. The latter may therefore act as carriers for dispersed cytoplasmic allergenic material released from pollen and fungal spores.

  19. IDENTIFICATION OF POSSIBLE SOURCES OF PARTICULATE MATTER IN THE PERSONAL CLOUD USING SEM/EDX

    Science.gov (United States)

    The United States Environmental Protection Agency (U.S. EPA) conducted the Baltimore Particulate Matter (PM) Epidemiology-Exposure Study of the Elderly during the summer of 1998. The study design included PM2.5 samples obtained from elderly (65+ years of age) retirement facility ...

  20. PIXE analysis of airborne particulate matter from Xalostoc, Mexico: winter to summer comparison

    International Nuclear Information System (INIS)

    Flores M, J.; Aldape, F.; Diaz, R.V.; Hernandez-Mendez, B.; Garcia G, R.

    1999-01-01

    A study of elemental contents in airborne particulate matter from the industrial city of Xalostoc, Estado de Mexico, was performed using PIXE. The place has a great variety of industries, it is a heavily populated, and it is a part of Mexico City's conurbation, thus contributing significantly to its atmospheric pollution. At present, there is few information available about elemental contents in airborne particulate matter from that region. In this study, two sets of samples of airborne particulate matter were collected daily during periods of four weeks in summer 1996 and winter 1997; two samples a day, 12 h each, night-time and day-time. Results revealed important information about elemental contents in airborne particulate matter from that area, especially in the respirable fraction PM 2.5 . Comparison of night and day figures showed the presence of some elements such as Cu, Zn, and Pb, attributed, as it was expected, to uninterrupted industrial processes. Appearance of some other elements was more consistent only in either day-time or night-time due to diurnal or nocturnal industrial activities, or produced by human activities such as fuel combustion of automotive vehicles. Comparison of winter to summer results showed some other important features such as higher concentrations of pollutants in winter, because of the dry and cold weather, while summer samples exhibited lower concentrations mainly due to the presence of rain showers

  1. Trace elements present in airborne particulate matter-Stressors of plant metabolism

    Czech Academy of Sciences Publication Activity Database

    Pavlík, Milan; Pavlíková, D.; Zemanová, V.; Hnilička, F.; Urbanová, V.; Száková, J.

    2012-01-01

    Roč. 79, May 2012 (2012), s. 101-107 ISSN 0147-6513 Grant - others:GA ČR(CZ) GA521/09/1150 Program:GA Institutional research plan: CEZ:AV0Z50380511 Keywords : Airborne particulate matter * Amino acids * Gas-exchange parameters Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.203, year: 2012

  2. PARTICULATE MATTER EXPOSURE IN CARS IS ASSOCIATED WITH CARDIOVASCULAR EFFECTS IN HEALTHY YOUNG MEN

    Science.gov (United States)

    Exposure to fine airborne particulate matter (PM(2.5)) is associated with cardiovascular events and mortality in older and cardiac patients. Potential physiologic effects of in-vehicle, roadside, and ambient PM(2.5) were investigated in young, healthy, nonsmoking, male North Caro...

  3. RELATIONSHIP BETWEEN HVAC SYSTEM OPERATION, AIR EXCHANGE RATE, AND INDOOR-OUTDOOR PARTICULATE MATTER RATIOS

    Science.gov (United States)

    Measurements of duty cycle , the fraction of time the heating and cooling (HVAC) system was operating, were made in each participant's home during the spring season of the RTP Particulate Matter Panel Study. A miniature temperature sensor/data logger combination placed on the ...

  4. Floc size and aspects of flocculation processes of suspended particulate matter in the North Sea area

    NARCIS (Netherlands)

    Chen, S.

    1995-01-01

    Investigations on the size of suspended particulate matter in the North Sea and two adjacent estuaries were carried out using an in situ technique: image analysis of photographs from an underwater camera system. The results obtained from such an in situ method gave a new knowledge on the size

  5. Effects of Source-Apportioned Coarse Particulate Matter (PM) on Allergic Responses in Mice

    Science.gov (United States)

    The Cleveland Multiple Air Pollutant Study (CMAPS) is one of the first comprehensive studies conducted to evaluate particulate matter (PM) over local and regional scales. Cleveland and the nearby Ohio River Valley impart significant regional sources of air pollution including coa...

  6. Comparative cardiopulmonary effects of particulate matter- and ozone-enhanced smog atmospheres in mice

    Science.gov (United States)

    This study was conducted to compare the cardiac effects of particulate matter (PM)-enhanced and ozone(O3)-enhanced smog atmospheres in mice. We hypothesized that O3-enhanced smog would cause greater cardiac dysfunction than PM-enhanced smog due to the higher concentrations of irr...

  7. Particulate matter emission from livestock houses: measurement methods, emission levels and abatement systems

    NARCIS (Netherlands)

    Winkel, Albert

    2016-01-01

    Animal houses are extremely dusty environments. Airborne particulate matter (PM) poses a health threat not only to the farmer and the animals, but, as a result of emissions from ventilation systems, also to residents living in livestock farming areas. In relation to this problem, the objectives

  8. Zebrafish Locomotor Responses Predict Irritant Potential of Smoke Particulate Matter from Five Biomass Fuels

    Science.gov (United States)

    Over the past few decades, the drying and warming trends of global climate change have increased wildland fire (WF) season length, as well as geographic area impacted. Consequently, exposures to WF fine particulate matter (PM2.5; aerodynamic diameter <2.5 µm) are likely ...

  9. From concentration to dose: factors influencing airborne particulate matter deposition in humans and rats

    NARCIS (Netherlands)

    Winter-sorkina R de; Cassee FR; LBV; LBO

    2003-01-01

    Particulate matter (PM) consisting of solid particles and droplets is present in the ambient air. Particles with an aerodynamic diameter less than 10 micro m can be inhaled by humans. Knowledge of the tissue-specific internal dose of PM is a critical link between individual external exposure and

  10. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Hildemann, L.M.; Simoneit, B.R.T.

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  11. Particulate matter pollution over a Mediterranean urban area.

    Science.gov (United States)

    Pateraki, St; Assimakopoulos, V D; Maggos, Th; Fameli, K M; Kotroni, V; Vasilakos, Ch

    2013-10-01

    The main purpose of this study is to investigate the aerosols' (PM10, PM2.5, and PM1) spatial and temporal distribution in different types of environment in a Mediterranean urban region, the Greater Athens Area based on data from a sampling campaign that took place during the cold and warm period of 2008. The influence of the atmospheric circulation patterns, the possible local transport mechanisms, as well as the differentiation of the PM behaviour from that of the inorganic pollutants (NOx, O3), are analysed and discussed. Furthermore, the Comprehensive Air Quality Model with extensions (CAMx) was applied for selected sampling dates and its results were evaluated against measurements in order to interpret qualitatively the configured picture of the air pollution above the GAA. Analysis of the measurement data show that local sources such as traffic and industry dominate over the prevailing PM loads, especially at the 'hot spot' areas. Moreover, the synoptic circulation patterns associated with calm conditions and southerly flows lead to high particulate pollution levels that also affect the urban background stations. Saharan dust outbreaks appeared to increase the particles' diameter as well as the number of E.U. limit value exceedances within the stations of our network. Without any dependence on the characteristics of the investigated atmosphere, PM1 always constituted the greatest part of the PM2.5 mass while PM10, especially during the Saharan dust episodes, was mainly constituted by the coarse fraction. The numerical modelling approach of the geographical distribution of PM10, PM2.5, NOx and O3 justified the design of the sampling campaign, indicating the need for the systematic and parallel monitoring and modelling of the pollutants' dispersion in order to understand the particulate pollution problem in the GAA and to aid to the formulation of pollution control strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Comparison and trend study on acidity and acidic buffering capacity of particulate matter in China

    Science.gov (United States)

    Ren, Lihong; Wang, Wei; Wang, Qingyue; Yang, XiaoYang; Tang, Dagang

    2011-12-01

    The acidity of about 2000 particulate matter samples from aircraft and ground-based monitoring is analyzed by the method similar to soil acidity determination. The ground-based samples were collected at about 50 urban or background sites in northern and southern China. Moreover, the acidic buffering capacity of those samples is also analyzed by the method of micro acid-base titration. Results indicate that the acidity level is lower in most northern areas than those in the south, and the acidic buffering capacity showed inverse tendency, correspondingly. This is the most important reason why the pollution of acidic-precipitation is much more serious in Southern China than that in Northern China. The acidity increases and the acidic buffering capacity drops with the decreasing of the particle sizes, indicating that fine particle is the main influencing factor of the acidification. The ionic results show that Ca salt is the main alkaline substance in particulate matter, whereas the acidification of particulate matter is due to the SO 2 and NO x emitted from the fossil fuel burning. And among of them, coal burning is the main contributor of SO 2, however the contribution of NO x that emitted from fuel burning of motor vehicles has increased in recent years. By comparison of the experimental results during the past 20 years, it can be concluded that the acid precipitation of particulate matter has not been well controlled, and it even shows an increasing tendency in China lately. The acid precipitation of particulate matter has begun to frequently attack in part of the northern areas. Multiple regression analysis indicates that coefficient value of the ions is the lowest at the urban sites and the highest at the regional sites, whereas the aircraft measurement results are intermediate between those two kinds of sites.

  13. [Distribution and source of particulate organic carbon and particulate nitrogen in the Yangtze River Estuary in summer 2012].

    Science.gov (United States)

    Xing, Jian-Wei; Xian, Wei-Wei; Sheng, Xiu-Zhen

    2014-07-01

    Based on the data from the cruise carried out in August 2012 in the Yangtze River Estuary and its adjacent waters, spatial distributions of particulate organic carbon (POC), particulate nitrogen (PN) and their relationships with environmental factors were studied, and the source of POC and the contribution of phytoplankton to POC were analyzed combined with n (C)/n (N) ratio and chlorophyll a (Chl a) in the Yangtze River Estuary in summer 2012. The results showed that the concentrations of POC in the Yangtze River Estuary ranged from 0.68 mg x L(-1) to 34.80 mg x L(-1) in summer and the average content was 3.74 mg x L(-1), and PN contents varied between 0.03 mg x L(-1) and 9.13 mg x L(-1) with an average value of 0.57 mg x L(-1). Both of them presented that the concentrations in bottom layers were higher than those in the surface. POC and PN as well as total suspended matter (TSM) showed a extremel similar horizontal distribution trend that the highest values appeared in the near of the mouth and southwest of the survey waters, and decreased rapidly as toward the open seas, both of them showed higher contents in coastal zones and lower in outer sea. There was a fairly good positive linear relationship between POC and PN, which indicated that they had the same source. POC and PN expressed significantly positive correlations with TSM and chemical oxygen demand (COD), but showed relatively weak correlations with salinit and chlorophyll a, which demonstrated that terrestrial inputs had a strong influence on the distribution of POC and PN, and phytoplankton production was not the major source of organic matters in the Yangtze River Estuary. Both the n (C)/n (N) ratio and POC/Chl a analysis showed that the main source of POC was terrestrial inputs, and organic debris was the main existence form of POC. Quantitative analysis showed the biomass of phytoplankton only made an average of 2.54% contribution to POC in the Yangtze Rive Estuary in summer and non-living POC

  14. 40 CFR 266.105 - Standards to control particulate matter.

    Science.gov (United States)

    2010-07-01

    ... matter. 266.105 Section 266.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... prescribed in 40 CFR part 60, appendix A, methods 1 through 5, and appendix IX of this part. (b) An owner or operator meeting the requirements of § 266.109(b) for the low risk waste exemption is exempt from the...

  15. Assessment of diesel particulate matter exposure in the workplace: freight terminals†

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Smith, Thomas J.; Garshick, Eric; Laden, Francine; Marr, Linsey C.; Molina, Luisa T.

    2008-01-01

    A large study has been undertaken to assess the exposure to diesel exhaust within diesel trucking terminals. A critical component of this assessment is an analysis of the variation in carbonaceous particulate matter (PM) across trucking terminal locations; consistency in the primary sources can be effectively tracked by analyzing trends in elemental carbon (EC) and organic molecular marker concentrations. Ambient samples were collected at yard, dock and repair shop work stations in 7 terminals in the USA and 1 in Mexico. Concentrations of EC ranged from 0.2 to 12 μg m−3 among the terminals, which corresponds to the range seen in the concentration of summed hopanes (0.5 to 20.5 ng m−3). However, when chemical mass balance (CMB) source apportionment results were presented as percent contribution to organic carbon (OC) concentrations, the contribution of mobile sources to OC are similar among the terminals in different cities. The average mobile source percent contribution to OC was 75.3 ± 17.1% for truck repair shops, 65.4 ± 20.4% for the docks and 38.4 ± 9.5% for the terminal yard samples. A relatively consistent mobile source impact was present at all the terminals only when considering percentage of total OC concentrations, not in terms of absolute concentrations. PMID:18392272

  16. Limitations in Using Chemical Oxidative Potential to Understand Oxidative Stress from Particulate Matter

    Science.gov (United States)

    Chan, A. W. H.; Wang, S.; Wang, X.; Kohl, L.; Chow, C. W.

    2017-12-01

    Particulate matter (PM) in the atmosphere is known to cause adverse cardiorespiratory health effects. It has been suggested that the ability of PM to generate oxidative stress leads to a proinflammatory response. In this work, we study the biological relevance of using a chemical oxidative potential (OP) assay to evaluate proinflammatory response in airway epithelial cells. Here we study the OPs of laboratory secondary organic aerosol (SOA) and metal mixtures, ambient PM from India, ash from the 2016 Alberta wildfires, and diesel exhaust particles. We use SOA derived from naphthalene and from monoterpenes as model systems for SOA. We measure OP using the dithiothreitol (DTT) assay, and cytosolic reactive oxygen species (ROS) production in BEAS-2B cell culture was measured using CellROX assay. We found that both SOA and copper show high OPs individually, but the OP of the combined SOA/copper mixture, which is more atmospherically relevant, was lower than either of the individual OPs. The reduced activity is attributed to chelation between metals and organic compounds using proton nuclear magnetic resonance. There is reasonable association between DTT activity and cellular ROS production within each particle type, but weak association across different particle types, suggesting that particle composition plays an important role in distinguishing between antioxidant consumption and ROS production. Our results highlight that while oxidative potential is a useful metric of PM's ability to generate oxidative stress, the chemical composition and cellular environment should be considered in understanding health impacts of PM.

  17. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars.

    Science.gov (United States)

    Platt, S M; El Haddad, I; Pieber, S M; Zardini, A A; Suarez-Bertoa, R; Clairotte, M; Daellenbach, K R; Huang, R-J; Slowik, J G; Hellebust, S; Temime-Roussel, B; Marchand, N; de Gouw, J; Jimenez, J L; Hayes, P L; Robinson, A L; Baltensperger, U; Astorga, C; Prévôt, A S H

    2017-07-13

    Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7 °C, contrasting with nitrogen oxides (NO X ). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.

  18. EPA Supersites Program-related emissions-based particulate matter modeling: initial applications and advances.

    Science.gov (United States)

    Russell, Armistead G

    2008-02-01

    One objective of the U.S. Environmental Protection Agency's (EPA's) Supersite Program was to provide data that could be used to more thoroughly evaluate and improve air quality models, and then have those models used to address both scientific and policy-related issues dealing with air quality management. In this direction, modeling studies have used Supersites-related data and are reviewed here. Fine temporal resolution data have been used both to test model components (e.g., the inorganic thermodynamic routines) and air quality modeling systems (in particular, Community Multiscale Air Quality [CMAQ] and Comprehensive Air Quality Model with extensions [CAMx] applications). Such evaluations suggest that the inorganic thermodynamic approaches being used are accurate, as well as the description of sulfate production, although there are significant uncertainties in production of nitric acid, biogenic and ammonia emissions, secondary organic aerosol formation, and the ability to follow the formation and evolution of ultrafine particles. Model applications have investigated how PM levels will respond to various emissions controls, suggesting that nitrate will replace some of the reductions in sulfate particulate matter (PM), although the replacement is small in the summer. Although not part of the Supersite program, modeling being conducted by EPA, regional planning organizations, and states for policy purposes has benefited from the detailed data collected, and the PM models have advanced by their more widespread use.

  19. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions

    Science.gov (United States)

    Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna

    Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).

  20. Quantification of trace elements and speciation of iron in atmospheric particulate matter

    Science.gov (United States)

    Upadhyay, Nabin

    Trace metal species play important roles in atmospheric redox processes and in the generation of oxidants in cloud systems. The chemical impact of these elements on atmospheric and cloud chemistry is dependent on their occurrence, solubility and speciation. First, analytical protocols have been developed to determine trace elements in particulate matter samples collected for carbonaceous analysis. The validated novel protocols were applied to the determination of trace elements in particulate samples collected in the remote marine atmosphere and urban areas in Arizona to study air pollution issues. The second part of this work investigates on solubility and speciation in environmental samples. A detailed study on the impact of the nature and strength of buffer solutions on solubility and speciation of iron lead to a robust protocol, allowing for comparative measurements in matrices representative of cloud water conditions. Application of this protocol to samples from different environments showed low iron solubility (less than 1%) in dust-impacted events and higher solubility (5%) in anthropogenically impacted urban samples. In most cases, Fe(II) was the dominant oxidation state in the soluble fraction of iron. The analytical protocol was then applied to investigate iron processing by fogs. Field observations showed that only a small fraction (1%) of iron was scavenged by fog droplets for which each of the soluble and insoluble fraction were similar. A coarse time resolution limited detailed insights into redox cycling within fog system. Overall results suggested that the major iron species in the droplets was Fe(1I) (80% of soluble iron). Finally, the occurrence and sources of emerging organic pollutants in the urban atmosphere were investigated. Synthetic musk species are ubiquitous in the urban environment (less than 5 ng m-3) and investigations at wastewater treatment plants showed that wastewater aeration basins emit a substantial amount of these species to

  1. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    Science.gov (United States)

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  2. Agriculture Organic Matter and Chicken Manure

    Directory of Open Access Journals (Sweden)

    Süleyman Taban

    2013-11-01

    Full Text Available Undo ubtedly organic matter content of soils is one of theim portant factor for high quality and abundant crop production. In addition to improve the physical properties ofsoil, organic matter contributest ocrop production viabeing energy source formicro-organisms in soiland contained plantnutrients. Fiftypercent of theagri cultures oil contains 1-2 % organicmatter in Turkey.In addition to being a sourceof organic matter, organic poultry manurefertilizer isricherthan other organic fertilizerse specially nitrogen content. It is possible to eliminate poultry manure based salt stress and disease factors with composting process in proper conditions.

  3. Elemental quantification of airborne particulate matter in Bandung and Lembang area

    International Nuclear Information System (INIS)

    Sutisna; Achmad Hidayat; Dadang Supriatna

    2004-01-01

    ELEMENTAL QUANTIFICATION OF AIRBORNE PARTICULATE MATTER IN BANDUNG AND LEMBANG REGION: The contaminated airborne particulates by toxic gases and elements have a potential affect to the human health. Some toxic elements related to air pollution have carcinogenic affect. The quantification of those elements is important to monitor a level of pollutant contained in the airborne particulate. The aim of this work is to analyze the air particulate sample using instrumental neutron activation analysis and other related technique. Two sampling points of Bandung and Lembang that represent and urban and rural area respectively have been chosen to collect the air particulate sample. The samplings were carried out using Gent Stacked Filter Unit Sampler for 24 hours, and two cellulose filters of 8 μm and 0.45 μm pore size were used. Trace elements in the sample collected were determined using NAA based on a comparative method. Elemental distribution on PM 2.5 and PM 10 fraction of airborne particulate was analyzed, the enrichment factor was calculated using Al as reference elements, and the black carbons contents were determined using FEL Smoke Stain Reflectometer analyzed. The results are presented and discussed. (author)

  4. Mass spectral chemical fingerprints reveal the molecular dependence of exhaust particulate matters on engine speeds.

    Science.gov (United States)

    Li, Yi; Zhang, Hua; Zhao, Zongshan; Tian, Yong; Liu, Kun; Jie, Feifan; Zhu, Liang; Chen, Huanwen

    2018-05-01

    Particulate matters (PMs) emitted by automobile exhaust contribute to a significant fraction of the global PMs. Extractive atmospheric pressure chemical ionization mass spectrometry (EAPCI-MS) was developed to explore the molecular dependence of PMs collected from exhaust gases produced at different vehicle engine speeds. The mass spectral fingerprints of the organic compounds embedded in differentially sized PMs (e.g., 0.22-0.45, 0.45-1.00, 1.00-2.00, 2.00-3.00, 3.00-5.00, and 5.00-10.00μm) generated at different engine speeds (e.g., 1000, 1500, 2000, 2500, and 3000r/min) were chemically profiled in the mass range of mass to charge ratio (m/z) 50-800. Organic compounds, including alcohols, aldehydes, and esters, were detected in all the PMs tested, with varied concentration levels for each individual PM sample. At relatively low engine speeds (≤1500r/min), the total amount of organic species embedded in PMs of 0.22-1.00μm was greater than in PMs of other sizes, while more organic species were found in PMs of 5.00-10.00μm at high engine speeds (≥3000r/min), indicating that the organic compounds distributed in different sizes of PMs strongly correlated with the engine speed. The experimental data showed that the EAPCI-MS technique enables molecular characterization of PMs in exhaust, revealing the chemical dependence of PMs on the engine speeds (i.e., the combustion conditions) of automobiles. Copyright © 2017. Published by Elsevier B.V.

  5. Radiocarbon dating of fluvial organic matter reveals land-use impacts in boreal peatlands

    DEFF Research Database (Denmark)

    Hulatt, Chris J.; Kaartokallio, Hermanni; Oinonen, Markku

    2014-01-01

    This study measured the effects of land use on organic matter released to surface waters in a boreal peat catchment using radiocarbon dating of particulate and dissolved organic carbon (POC and DOC), DOC concentration, stable carbon and nitrogen isotope composition, and optical measurements. Undi...

  6. Understanding Particulate Matter Dynamics in the San Joaquin Valley during DISCOVER-AQ, 2013

    Science.gov (United States)

    Prabhakar, G.; Zhang, X.; Kim, H.; Parworth, C.; Pusede, S. E.; Wooldridge, P. J.; Cohen, R. C.; Zhang, Q.; Cappa, C. D.

    2015-12-01

    Air quality in the California San Joaquin Valley (SJV) during winter continues to be the worst in the state, failing EPA's 24-hour standard for particulate matter. Despite our improved understanding of the sources of particulate matter (PM) in the valley, air-quality models are unable to predict PM concentrations accurately. We aim to characterize periods of high particulate matter concentrations in the San Joaquin Valley based on ground and airborne measurements of aerosols and gaseous pollutants, during the DISCOVER-AQ campaign, 2013. A highly instrumented aircraft flew across the SJV making three transects in a repeatable pattern, with vertical spirals over select locations. The aircraft measurements were complemented by ground measurements at these locations, with extensive chemically-speciated measurements at a ground "supersite" at Fresno. Hence, the campaign provided a comprehensive three-dimensional view of the particulate and gaseous pollutants around the valley. The vertical profiles over the different sites indicate significant variability in the concentrations and vertical distribution of PM around the valley, which are most likely driven by differences in the combined effects of emissions, chemistry and boundary layer dynamics at each site. The observations suggest that nighttime PM is dominated by surface emissions of PM from residential fuel combustion, while early morning PM is strongly influenced by mixing of low-level, above-surface, nitrate-rich layers formed from dark chemistry overnight to the surface.

  7. Investigation of the suspended particulate matter in the Asian region for seven years

    International Nuclear Information System (INIS)

    Harasawa, Susumu

    1999-01-01

    Activities of the workshops for the investigation of environmental materials by NAA (Neutron Activation Analysis) methods during 1992 to 1997 held in Jakarta are briefly reported. Detail of selection of the theme (investigation of the suspended particulate matter in the Asian region by NAA), the results of the inter-comparison for the analysis using NIES No. 8 reference standard samples (vehicle exhaust particulate) are presented. In conclusion, systematically accumulated data on the environmental substances and their time variations measured and analyzed by INAA (Instrumental Neutron Activation Analysis) method give useful information on pollution problems and air movement in the Asia region. (S. Ohno)

  8. Investigation of the suspended particulate matter in the Asian region for seven years

    Energy Technology Data Exchange (ETDEWEB)

    Harasawa, Susumu [Institute for Atomic Energy, Rikkyo Univ., Yokosuka, Kanagawa (Japan)

    1999-10-01

    Activities of the workshops for the investigation of environmental materials by NAA (Neutron Activation Analysis) methods during 1992 to 1997 held in Jakarta are briefly reported. Detail of selection of the theme (investigation of the suspended particulate matter in the Asian region by NAA), the results of the inter-comparison for the analysis using NIES No. 8 reference standard samples (vehicle exhaust particulate) are presented. In conclusion, systematically accumulated data on the environmental substances and their time variations measured and analyzed by INAA (Instrumental Neutron Activation Analysis) method give useful information on pollution problems and air movement in the Asia region. (S. Ohno)

  9. Particulate matter in the rural settlement during winter time

    Science.gov (United States)

    Olszowski, Tomasz

    2017-10-01

    The objective of this study was to analyzed the variability of the ambient particulates mass concentration in an area occupied by rural development. The analysis applied daily and hourly PM2.5 and PM10 levels. Data were derived on the basis of measurement results with the application of stationary gravimetric samplers and optical dust meter. The obtained data were compared with the results from the urban air quality monitoring network in Opole. Principal Component Analysis was used for data analysis. Research hypotheses were checked using U Mann-Whitney. It was indicated that during the smog episodes, the ratio of the inhalable dust fraction in the rural aerosol is greater than for the case of the urban aerosol. It was established that the principal meteorological factors affecting the local air quality. Air temperature, atmospheric pressure, movement of air masses and occurrence of precipitation are the most important. It was demonstrated that the during the temperature inversion phenomenon, the values of the hourly and daily mass concentration of PM2.5 and PM10 are very improper. The decrease of the PM's concentration to a safe level is principally relative to the occurrence of wind and precipitation.

  10. Role of heavy metals in structuring the microbial community associated with particulate matter in a tropical estuary

    International Nuclear Information System (INIS)

    Sheeba, V.A.; Abdulaziz, Anas; Gireeshkumar, T.R.; Ram, Anirudh; Rakesh, P.S.; Jasmin, C.; Parameswaran, P.S.

    2017-01-01

    Particulate matter (PM), which are chemically and biochemically complicated particles, accommodate a plethora of microorganisms. In the present study, we report the influence of heavy metal pollution on the abundance and community structure of archaea and bacteria associated with PM samples collected from polluted and non-polluted regions of Cochin Estuary (CE), Southwest coast of India. We observed an accumulation of heavy metals in PM collected from CE, and their concentrations were in the order Fe > Zn > Mn > Cr > Pb > Cu > Cd > Co > Ni. Zinc was a major pollutant in the water (4.36–130.50 μgL −1 ) and in the particulate matter (765.5–8451.28 μgg −1 ). Heavy metals, Cd, Co, and Pb were recorded in the particulate matter, although they were below detectable limits in the water column. Statistical analysis showed a positive influence of particulate organic carbon, nitrogen, PM-Pb, PM-Zn and PM-Fe on the abundance of PM-archaea and PM-bacteria. The abundance of archaea and bacteria were ten times less in PM compared with planktonic ones. The abundance of PM-archaea ranged between 4.27 and 9.50 × 10 7 and 2.73 to 3.85 × 10 7 cellsL −1 respectively for the wet and dry season, while that of PM-bacteria was between 1.14 and 6.72 × 10 8 cellsL −1 for both seasons. Community structure of PM-bacteria varied between polluted and non-polluted stations, while their abundance does not show a drastic difference. This could be attributed to the selective enrichment of bacteria by heavy metals in PM. Such enrichment may only promote the growth of metal resistant archaea and bacteria, which may not participate in the processing of PM. In such cases, the PM may remain without remineralization in the system arresting the food web dynamics and biogeochemical cycles. - Highlights: • Heavy metal pollution proliferated substantially in Cochin estuary. • Heavy metal pollutants are accumulated in the particulate matter. • Pollution affected

  11. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    Science.gov (United States)

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  12. Organic matter and soil moisture content and double cropping with organic matter sourceplants

    OpenAIRE

    John Bako Baon; Aris Wibawa

    2005-01-01

    Double cropping of coffee with organic matter source plants is thought to increase organic matter content of soil. This study examined the effect of double cropping of coffee and organic matter source plants on soil organic matter content and yield of coffee plants. Arabica coffee trees in Andungsari Experimental Station (Bondowoso district), 1400 m asl. and climate type C; and Robusta coffee trees in Sumberasin Experimental Station (Malang district), 550 m asl. and climate type C, were used ...

  13. Cycling downwards - dissolved organic matter in soils

    NARCIS (Netherlands)

    Kaiser, K.; Kalbitz, K.

    2012-01-01

    Dissolved organic matter has been recognized as mobile, thus crucial to translocation of metals, pollutants but also of nutrients in soil. We present a conceptual model of the vertical movement of dissolved organic matter with soil water, which deviates from the view of a chromatographic stripping

  14. Podzolisation and soil organic matter dynamics

    NARCIS (Netherlands)

    Buurman, P.; Jongmans, A.G.

    2005-01-01

    Present models of podzolisation emphasize the mobilization and precipitation of dissolved organic matter. together with Al(-silicates) and Fe. Such models cannot explain the dominance of pellet-like organic matter in most boreal podzols and in well-drained podzols outside the boreal zone, and the

  15. When Organization Fails: Why Authority Matters

    DEFF Research Database (Denmark)

    Blaschke, Steffen

    2015-01-01

    Review of: James R. Taylor and Elizabeth J. Van Every / When Organization Fails: Why Authority Matters. (New York: Routledge, 2014. 220 pp. ISBN: 978 0415741668)......Review of: James R. Taylor and Elizabeth J. Van Every / When Organization Fails: Why Authority Matters. (New York: Routledge, 2014. 220 pp. ISBN: 978 0415741668)...

  16. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    Directory of Open Access Journals (Sweden)

    A KALANTARI

    2001-06-01

    Full Text Available Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales from solid samples as airborne particulates matter on the paper filter samples. Five stages in the sequential extraction procedure developed by Tessier, et al, was first used for extraction and determination of the concentration and percentages of heavy metals which could be released in each stage. In the 1st stage, exchangable metals were released. The sample was extracted with 10 ml of ammonium acetat, pH=7 for 1h. Then the sample was centrifuged at 2000 rpm. The solution of extraction, was analysed for Zn, Pb, Cd, Cu, Fe, Ni and Cr. In the 2nd stage, heavy metals bound to carbonates which were sensitive to pH were extracted. The residue from stage 1, with 10 ml of sodium acetate 1 M the pH was adjusted to 5 with acetic acid. Then the sample was centrifuged as stage 1. In the third stage heavy metals bound to iron and manganese oxides were extracted. The residue from stage 2 was reacted with 10 ml hydroxyl amine hydrochloride at 25% v/v. In the 4th stage metals bound to sulfides and organic compounds were extracted. The residue from stage 3 with 5 ml nitric acid and 5 ml hydrogen peroxide 30% and heated at 85° C. Finally in the 5th stage residual heavy metals were extracted. the residue from fraction 4 with 10 ml nitric acid and 3 ml hydroflouric acid were extracted. The concentrations of Pb and Cd in some fractions of sequential extraction were too low, so, we carried out preconcentration method for these two elements. Results and Discussion: The results

  17. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Science.gov (United States)

    Mahmud, A.; Hixson, M.; Kleeman, M. J.

    2012-08-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines

  18. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2012-08-01

    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme pollution events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate

  19. Occupational Exposure to Diesel Particulate Matter in Municipal Household Waste Workers.

    Directory of Open Access Journals (Sweden)

    Kyong-Hui Lee

    Full Text Available The purposes of this study were to determine the following: 1 the exposure levels of municipal household waste (MHW workers to diesel particulate matter (DPM using elemental carbon (EC, organic carbon (OC, total carbon (TC, black carbon (BC, and fine particulate matter (PM 2.5 as indicators; 2 the correlations among the indicators; 3 the optimal indicator for DPM; and 4 factors that influence personal exposure to DPM.A total of 72 workers in five MHW collection companies were assessed over a period of 7 days from June to September 2014. Respirable EC/OC samples were quantified using the thermal optical transmittance method. BC and PM 2.5 were measured using real-time monitors, an aethalometer and a laser photometer. All results were statistically analyzed for occupational and environmental variables to identify the exposure determinants of DPM.The geometric mean of EC, OC, TC, BC and PM 2.5 concentrations were 4.8, 39.6, 44.8, 9.1 and 62.0 μg/m3, respectively. EC concentrations were significantly correlated with the concentrations of OC, TC and BC, but not with those of PM 2.5. The exposures of the MHW collectors to EC, OC, and TC were higher than those of the drivers (p<0.05. Workers of trucks meeting Euro 3 emission standard had higher exposures to EC, OC, TC and PM 2.5 than those working on Euro 4 trucks (p<0.05. Multiple regression analysis revealed that the job task, European engine emission standard, and average driving speed were the most influential factors in determining worker exposure.We assessed MHW workers' exposure to DPM using parallel sampling of five possible indicators. Of these five indicators, EC was shown to be the most useful indicator of DPM exposure for MHW workers, and the job task, European emission standard, and average driving speed were the main determinants of EC exposure.

  20. Source contributions and regional transport of primary particulate matter in China.

    Science.gov (United States)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-12-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50-80%), POC (60%-90%), and PPM (30-70%). For summer/fall, industrial contributes 30-50% for EC/POC and 40-60% for PPM. Transportation is more important for EC (20-30%) than POC/PPM (Guangzhou and Chongqing. Dust contributes to 1/3-1/2 in spring/fall of Beijing, Xi'an and Chongqing. Based on sector-region combination, local residential/transportation and residential/industrial from Heibei are major contributors to spring PPM in Beijing. In summer/fall, local industrial is the largest. In winter, residential/industrial from local and Hebei account for >90% in Beijing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Fossil and nonfossil carbon in fine particulate matter: A study of five European cities

    Science.gov (United States)

    Glasius, Marianne; La Cour, Agnete; Lohse, Christian

    2011-06-01

    Fossil carbon in particulate matter comes from anthropogenic use and combustion of fossil fuels, while nonfossil carbon may originate from both biogenic (e.g., pollen, plant debris, fungal spores, and biogenic secondary organic aerosol (SOA)) and anthropogenic sources (e.g., cooking and residential wood combustion). We investigated the relative contributions of fossil and nonfossil sources to fine carbonaceous aerosols in five European cities by radiocarbon analysis of aerosol samples collected at four types of sites in 2002-2004. The average fraction of nonfossil carbon was 43 ± 11%, with the lowest fraction, 36 ± 7%, at urban curbside sites and the highest fraction, 54 ± 11%, at rural background sites, farthest away from the impact of man-made emissions. Generally, fossil carbon concentrations at urban curbside sites are elevated in comparison to background sites, which is expected because of their proximity to vehicular emissions. Contrary to what might be expected, the concentration of nonfossil carbon is also higher at curbside than at background sites. This may be attributable to differences between site categories in levels of primary biological aerosols, brake and tire wear in resuspended road dust, biofuels, emissions from cooking and residential wood combustion, or processes such as anthropogenic enhancement of biogenic SOA and increased partitioning of semivolatile compounds into the aerosol phase at urban sites. The exact causes should be investigated by future detailed source analyses.

  2. Water-soluble elements in atmospheric particulate matter over tropical and equatorial Atlantic

    International Nuclear Information System (INIS)

    Buat-Menard, Patrick; Morelli, Jacques; Chesselet, Roger

    1974-01-01

    Samples of water-soluble atmospheric particulate matter collected from R/V ''Jean Charcot'' (May to October 1971) and R/V ''James Gilliss'' (October 1972) over Tropical and Equatorial Atlantic were analyzed for Na, Mg, K and Ca by atomic absorption and for Cl and S as SO 4 by colorimetry. Data shows a strong geographical dependence of K and Ca enrichment relative to their elemental ratio to Na in sea-water. Ca enrichment is related to presence of identified soluble calcium minerals in continental dust originating from African deserts (Sahara-Kalahari). This dust does not influence amounts of K in the water-soluble phase. When observed, strong K enrichment appears tightly associated with high concentrations of surface-active organic material in the microlayer derived from high biological activity (Gulf of Guinea). Observed in same samples, SO 4 enrichment could also be controlled by the same source. This SO 4 enrichment balances the observed Cl loss in aerosols accordingly with gaseous HCl formation processes in marine atmosphere [fr

  3. JV Task 94 - Air Quality V: Mercury, Trace Elements, SO3, and Particulate Matter Conference

    Energy Technology Data Exchange (ETDEWEB)

    Thomas A. Erickson

    2007-01-31

    This final report summarizes the planning, preparation, facilitation and production, and summary of the conference entitled 'Air Quality V: Mercury, Trace Elements, SO{sub 3}, and Particulate Matter,' held September 18-21, 2005, in Arlington, Virginia. The goal of the conference was to build on the discussions of the first four Air Quality Conferences, providing further opportunity for leading representatives of industry, government, research institutions, academia, and environmental organizations to discuss the key interrelationships between policy and science shaping near-term regulations and controls and to assist in moving forward on emerging issues that will lead to acceptable programs and policies to protect human health, the environment, and economic growth. The conference was extremely timely, as it was the last large conference prior to publication of the U.S. Environmental Protection Agency's final regulations for mercury control from coal-fired utilities, and provided a forum to realistically assess the status of mercury controls in relation to the new regulations.

  4. Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.

    Science.gov (United States)

    Vilcassim, M J Ruzmyn; Thurston, George D; Peltier, Richard E; Gordon, Terry

    2014-12-16

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m(3), with 1 min average peaks >100 μg/m(3), while real time PM2.5 levels ranged from 35 to 200 μg/m(3). Mean EC levels ranged from 9 to 12.5 μg/m(3). At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m(3), respectively. This study shows that both BC soot and PM levels in NYC's subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted.

  5. Properties and cellular effects of particulate matter from direct emissions and ambient sources.

    Science.gov (United States)

    Jin, Wenjie; Su, Shu; Wang, Bin; Zhu, Xi; Chen, Yilin; Shen, Guofeng; Liu, Junfeng; Cheng, Hefa; Wang, Xilong; Wu, Shuiping; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2016-10-14

    The pollution of particulate matter (PM) is of great concern in China and many other developing countries. It is generally recognized that the toxicity of PM is source and property dependent. However, the relationship between PM properties and toxicity is still not well understood. In this study, PM samples from direct emissions of wood, straw, coal, diesel combustion, cigarette smoking and ambient air were collected and characterized for their physicochemical properties. Their expression of intracellular reactive oxygen species (ROS) and levels of inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-α)) was measured using a RAW264.7 cell model. Our results demonstrated that the properties of the samples from different origins exhibited remarkable differences. Significant increases in ROS were observed when the cells were exposed to PMs from biomass origins, including wood, straw and cigarettes, while increases in TNF-α were found for all the samples, particularly those from ambient air. The most important factor associated with ROS generation was the presence of water-soluble organic carbon, which was extremely abundant in the samples that directly resulted from biomass combustion. Metals, endotoxins and PM size were the most important properties associated with increases in TNF-α expression levels. The association of the origins of PM particles and physicochemical properties with cytotoxic properties is illustrated using a cluster analysis.

  6. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects.

    Science.gov (United States)

    Mukherjee, Arideep; Agrawal, Madhoolika

    Fine particulate matter (PM) in the ambient air is implicated in a variety of human health issues throughout the globe. Regulation of fine PM in the atmosphere requires information on the dimension of the problem with respect to variations in concentrations and sources. To understand the current status of fine particles in the atmosphere and their potential harmful health effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 2000 to evaluate the global scenario of the PM 2.5 (particles levels and exceedances of national and international standards were several times higher in Asian countries, while levels in Europe and USA were mostly well below the respective standards. Vehicular traffic has a significant influence on PM 2.5 levels in urban areas; followed by combustion activities (biomass, industrial, and waste burning) and road dust. In urban atmosphere, fine particles are mostly associated with different health effects with old aged people, pregnant women, and more so children being the most susceptible ones. Fine PM chemical constituents severely effect health due to their carcinogenic or mutagenic nature. Most of the research indicated an exceedance of fine PM level of the standards with a diverse array of health effects based on PM 2.5 chemical constituents. Emission reduction policies with epidemiological studies are needed to understand the benefits of sustainable control measures for fine PM mitigation.

  7. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter

    Directory of Open Access Journals (Sweden)

    Hussein Traboulsi

    2017-01-01

    Full Text Available Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood, fossil fuels (e.g., cars and trucks, incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene, metals, sulphur and nitrogen oxides, ozone and particulate matter (PM. PM0.1 (ultrafine particles (UFP, those particles with a diameter less than 100 nm (includes nanoparticles (NP are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB and nuclear factor (erythroid-derived 2-like 2 (Nrf2. Epigenetic mechanisms including non-coding RNA (ncRNA may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease.

  8. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors.

    Science.gov (United States)

    Zhai, Yunbo; Li, Xue; Wang, Tengfei; Wang, Bei; Li, Caiting; Zeng, Guangming

    2018-04-01

    Airborne microorganisms (AM), vital components of particulate matters (PM), are widespread in the atmosphere. Since some AM have pathogenicity, they can lead to a wide range of diseases in human and other organisms, meanwhile, some AM act as cloud condensation nuclei and ice nuclei which let them can affect the climate. The inherent characteristics of AM play critical roles in many aspects which, in turn, can decide microbial traits. The uncertain factors bring various influences on AM, which make it difficult to elaborate effect trends as whole. Because of the potential roles of AM in environment and potent effects of factors on AM, detailed knowledge of them is of primary significance. This review highlights the issues of composition and characteristics of AM with size-distribution, species diversity, variation and so on, and summarizes the main factors which affect airborne microbial features. This general information is a knowledge base for further thorough researches of AM and relevant aspects. Besides, current knowledge gaps and new perspectives are offered to roundly understand the impacts and application of AM in nature and human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Development of a Low-Cost Particulate Matter Monitor

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard M.; Apte, Michael G.; Gundel, Lara A.; Black, Justin

    2008-08-01

    We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, and determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic

  10. Particulate organic constituents of surface waters of east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sreepada, R.A.; Bhat, K.L.; Parulekar, A.H.

    protein (PP) and particulate lipid (PL) fractions. High values of chlorophyll a (chl-a) characterized the coastal waters. In coastal waters, POC was dominatEd. by PCHO containing detrital matter, whereas actively growing phytoplankton significantly...

  11. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    Science.gov (United States)

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.

  12. Seasonal Variability of Airborne Particulate Matter and Bacterial Concentrations in Colorado Homes

    Directory of Open Access Journals (Sweden)

    Nicholas Clements

    2018-04-01

    Full Text Available Aerosol measurements were collected at fifteen homes over the course of one year in Colorado (USA to understand the temporal variability of indoor air particulate matter and bacterial concentrations and their relationship with home characteristics, inhabitant activities, and outdoor air particulate matter (PM. Indoor and outdoor PM2.5 concentrations averaged (±st. dev. 8.1 ± 8.1 μg/m3 and 6.8 ± 4.5 μg/m3, respectively. Indoor PM2.5 was statistically significantly higher during summer compared to spring and winter; outdoor PM2.5 was significantly higher for summer compared to spring and fall. The PM2.5 I/O ratio was 1.6 ± 2.4 averaged across all homes and seasons and was not statistically significantly different across the seasons. Average indoor PM10 was 15.4 ± 18.3 μg/m3 and was significantly higher during summer compared to all other seasons. Total suspended particulate bacterial biomass, as determined by qPCR, revealed very little seasonal differences across and within the homes. The qPCR I/O ratio was statistically different across seasons, with the highest I/O ratio in the spring and lowest in the summer. Using one-minute indoor PM10 data and activity logs, it was observed that elevated particulate concentrations commonly occurred when inhabitants were cooking and during periods with elevated outdoor concentrations.

  13. Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation.

    Science.gov (United States)

    Feld-Cook, Elisabeth E; Bovenkamp-Langlois, Lisa; Lomnicki, Slawo M

    2017-09-19

    Environmentally Persistent Free Radicals (EPFRs) are newly discovered, long-lived surface bound radicals that form on particulate matter and combustion borne particulates, such as fly ash. Human exposure to such particulates lead to translocation into the lungs and heart resulting in cardio-vascular and respiratory disease through the production of reactive oxygen species. Analysis of some waste incinerator fly ashes revealed a significant difference between their EPFR contents. Although EPFR formation occurs on the metal domains, these differences were correlated with the altering concentration of calcium and sulfur. To analyze these phenomena, surrogate fly ashes were synthesized to mimic the presence of their major mineral components, including metal oxides, calcium, and sulfur. The results of this study led to the conclusion that the presence of sulfates limits formation of EPFRs due to inhibition or poisoning of the transition metal active sites necessary for their formation. These findings provide a pathway toward understanding differences in EPFR presence on particulate matter and uncover the possibility of remediating EPFRs from incineration and hazardous waste sites.

  14. Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants

    Science.gov (United States)

    Sengupta, Ishita

    Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.

  15. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    Science.gov (United States)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  16. d13C and d15N dynamics of particulate organic matter in freshwater and brackish waters of the Scheldt estuary

    DEFF Research Database (Denmark)

    De Brabandere, Loreto; Dehairs, F.; Van Damme, S.

    2002-01-01

    the growth season reflects the 15N enrichment of the ambient NH4 + pool induced by nitrification and NH4+ uptake. Zooplankton in the mesohaline section of the river was consistently enriched in 15N relative to suspended matter but followed its seasonal trend. During summer and autumn the isotopic offset...... matter in the oligohaline and mesohaline section increased compared to the 1970s, probably because today nitrification, which enriches the NH4+ pool in 15N, starts earlier in the season. For summer, the discrepancy between present-day suspended matter d15N values and those observed in the 1970s was even...

  17. Complexation of lead by organic matter in Luanda Bay, Angola.

    Science.gov (United States)

    Leitão, Anabela; Santos, Ana Maria; Boaventura, Rui A R

    2015-10-01

    Speciation is defined as the distribution of an element among different chemical species. Although the relation between speciation and bioavailability is complex, the metal present as free hydrated ion, or as weak complexes able to dissociate, is usually more bioavailable than the metal incorporated in strong complexes or adsorbed on colloidal or particulate matter. Among the analytical techniques currently available, anodic stripping voltammetry (ASV) has been one of the most used in the identification and quantification of several heavy metal species in aquatic systems. This work concerns the speciation study of lead, in original (natural, non-filtered) and filtered water samples and in suspensions of particulate matter and sediments from Luanda Bay (Angola). Complexes of lead with organics were identified and quantified by differential pulse anodic stripping voltammetry technique. Each sample was progressively titrated with a Pb(II) standard solution until complete saturation of the organic ligands. After each addition of Pb(II), the intensity, potential and peak width of the voltammetric signal were measured. The results obtained in this work show that more than 95 % of the lead in the aquatic environment is bound in inert organic complexes, considering all samples from different sampling sites. In sediment samples, the lead is totally (100 %) complexed with ligands adsorbed on the particles surface. Two kinds of dominant lead complexes, very strong (logK >11) and strong to moderately strong (8< logK <11), were found, revealing the lead affinity for the stronger ligands.

  18. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy)

    Science.gov (United States)

    Caricchia, Anna Maria; Chiavarini, Salvatore; Pezza, Massimo

    An investigation on PAH in the atmospheric particulate matter of the city of Naples has been carried out. Urban atmospheric particulate matter was sampled in three sampling sites (West, East and central areas of the city), whose characteristics were representative of the prevailing conditions. In each site, 24 h samplings for 7 consecutive days were performed during three sampling campaigns, in 1996-1997. The results were comparable with those reported in literature for similar investigations. Total PAH were in the range 2-130 ng m -3, with a seasonal variation (autumn/winter vs. summer) in the range 1.5-4.5. The relative contribution of diesel engines vs. gasoline fuelled engines was evidenced.

  19. Characterization of airborne particulate matter in the metropolitan region of Belo Horizonte

    International Nuclear Information System (INIS)

    Tavares, Fernanda V.F.; Ardisson, Jose Domingos; Rodrigues, Paulo Cesar H.; Brito, Walter de; Macedo, Waldemar Augusto A.; Jacomino, Vanusa Maria F.

    2013-01-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and 57 Fe-Moessbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. 57 Fe-Moessbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area. (author)

  20. Dynamics of coarse particulate matter in the turbidity maximum zone of the Gironde Estuary

    Science.gov (United States)

    Fuentes-Cid, Ana; Etcheber, Henri; Schmidt, Sabine; Abril, Gwenaël; De-Oliveira, Eric; Lepage, Mario; Sottolichio, Aldo

    2014-01-01

    There is a lack of studies devoted to coarse particulate matter (CPM) in estuaries, although this fraction can disturb activities that filter large volumes of water, such as industrial or fishery activities. In the macrotidal and highly-turbid Gironde Estuary, a monthly sampling of CPM was performed in 2011 and 2013 at two stations in the Turbidity Maximum Zone (TMZ) to understand its seasonal, tidal and hydrological dynamics. Regardless of the season and station, low quantities of CPM (few g m-3) were observed in comparison with suspended particulate matter (several 103 g m-3). The highest concentrations were consistently recorded in bottom waters and at the upstream station. Whereas there is no clear link between the CPM present in the column water and spring or neap tides, an increase in the CPM size has been identified at the two stations after a flood event, fact potentially critical regarding filtering functioning of estuarine activities.

  1. Seasonal Variability of Concentration and Air Quality of Ambient Particulate Matter in Sosnowiec City

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2015-12-01

    Full Text Available Introduction: Exposing the population to more than standard concentration of particulate matter (PM is a crucial factor shaping the public health on urbanized areas both in Europe and Poland. In most cases, exceeded air quality standards relate to the winter period, in which there has been the greatest amount. Many studies have indicated, that exposure to PM can cause adverse health effects. Human exposure especially to fine particles (with an aerodynamic diameter less than 2.5 µm, causes risk of cardiovascular and respiratory diseases, due to daily mortality and hospital admissions. Various types of epidemiological studies have indicated, that ambient air pollution is responsible for increasing risk of lung cancer. For this reason, in 2013 The International Agency for Research on Cancer (IARC classified outdoor air pollution and particulate matter as carcinogenic to humans (Group 1.

  2. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level

    Science.gov (United States)

    Karagulian, Federico; Belis, Claudio A.; Dora, Carlos Francisco C.; Prüss-Ustün, Annette M.; Bonjour, Sophie; Adair-Rohani, Heather; Amann, Markus

    2015-11-01

    For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also developed and available at the website of the World Health Organization. Systematic Scopus and Google searches were performed to retrieve city studies of source apportionment for particulate matter. Six source categories were defined. Country and regional averages of source apportionment were estimated based on city population weighting. A total of 419 source apportionment records from studies conducted in cities of 51 countries were used to calculate regional averages of sources of ambient particulate matter. Based on the available information, globally 25% of urban ambient air pollution from PM2.5 is contributed by traffic, 15% by industrial activities, 20% by domestic fuel burning, 22% from unspecified sources of human origin, and 18% from natural dust and salt. The available source apportionment records exhibit, however, important heterogeneities in assessed source categories and incompleteness in certain countries/regions. Traffic is one important contributor to ambient PM in cities. To reduce air pollution in cities and the substantial disease burden it causes, solutions to sustainably reduce ambient PM from traffic, industrial activities and biomass burning should urgently be sought. However, further efforts are required to improve data availability and evaluation, and possibly to combine with other types of information in view of increasing usefulness for policy making.

  3. Air immunogenicity in quito: activation of immune responses by particulate matter

    OpenAIRE

    Cevallos Bonilla, Victoria Maritza

    2016-01-01

    Urban development experienced around the world in recent years has resulted in the degradation of air quality caused by air pollutants, which are emitted mainly as a product of burning fossil fuels for transportation, in the generation of electricity, and in industrial processes. Exposure to air particulate matter (PM) affects human health, and has been linked to respiratory, cardiovascular and neurological diseases. The mechanisms underlying inflammation in these diverse diseases and to what...

  4. Fine Particulate Matter Air Pollution and Cognitive Function Among Older US Adults

    OpenAIRE

    Ailshire, Jennifer A.; Crimmins, Eileen M.

    2014-01-01

    Existing research on the adverse health effects of exposure to pollution has devoted relatively little attention to the potential impact of ambient air pollution on cognitive function in older adults. We examined the cross-sectional association between residential concentrations of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) and cognitive function in older adults. Using hierarchical linear modeling, we analyzed data from the 2004 Health and Retirement Study, a large...

  5. Trace elements in suspended particulate matter and liquid fraction of the Arno River waters

    International Nuclear Information System (INIS)

    Capannesi, G.; Cecchi, A.; Mando, P.A.

    1984-01-01

    The concentrations of 46 elements along the course of the Arno River (Tuscany, Italy) have been determined by means of Instrumental Neutron Activation Analysis. Both suspended particulate matter and liquid fraction have been investigated. No chemical treatment has been performed on the samples, either before or after irradiation. Anticoincidence techniques have been employed in the γ spectroscopy. Results are briefly discussed also from a methodological point of view. 4 references, 16 figures, 2 tables

  6. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-11-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl−1, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry.

    The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m−3 and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m−3.

    In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m−3 range in rural areas to more than 200 pg m−3 in some samples from a suburban location.

  7. Evaluation of Pollution of Soils and Particulate Matter Around Metal Recycling Factories in Southwestern Nigeria

    OpenAIRE

    Akinade S. Olatunji; Tesleem O. Kolawole; Moroof Oloruntola; Christina Günter

    2018-01-01

    Background. Metal recycling factories (MRFs) have developed rapidly in Nigeria as recycling policies have been increasingly embraced. These MRFs are point sources for introducing potentially toxic elements (PTEs) into environmental media. Objectives. The aim of this study was to determine the constituents (elemental and mineralogy) of the wastes (slag and particulate matter, (PM)) and soils around the MRFs and to determine the level of pollution within the area. Methods. Sixty samples (...

  8. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    OpenAIRE

    A. Mahmud; M. Hixson; M. J. Kleeman

    2012-01-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for ...

  9. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    OpenAIRE

    A. Mahmud; M. Hixson; M. J. Kleeman

    2012-01-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days ...

  10. Sensitive emission spectrometric method for the analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Sugimae, A.

    1975-01-01

    A rapid and sensitive emission spectrometric method for the routine analysis of airborne particulate matter collected on the glass fiber filter is reported. The method is a powder--dc arc technique involving no chemical pre-enrichment procedures. The elements--Ag, BA: Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, La, Mn, Ni, Pb, Sn, V, Y, Yb, and Zn--were determined. (U.S.)

  11. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress

    International Nuclear Information System (INIS)

    Crobeddu, Bélinda; Aragao-Santiago, Leticia; Bui, Linh-Chi; Boland, Sonja; Baeza Squiban, Armelle

    2017-01-01

    Particulate air pollution being recognized to be responsible for short and long term health effects, regulations for particulate matter with an aerodynamic diameter less than 2.5 (PM 2.5 ) are more and more restrictive. PM 2.5 regulation is based on mass without taking into account PM 2.5 composition that drives toxicity. Measurement of the oxidative potential (OP) of PM could be an additional PM indicator that would encompass the PM components involved in oxidative stress, the main mechanism of PM toxicity. We compared different methods to evaluate the intrinsic oxidative potential of PM 2.5 sampled in Paris and their ability to reflect the oxidative and inflammatory response in bronchial epithelial cells used as relevant target organ cells. The dithiothreitol depletion assay, the antioxidant (ascorbic acid and glutathione) depletion assay (OP AO ), the plasmid scission assay and the dichlorofluorescein (DCFH) oxidation assay used to characterize the OP of PM 2.5 (10–100 μg/mL) provided positive results of different magnitude with all the PM 2.5 samples used with significant correlation with different metals such as Cu and Zn as well as total polyaromatic hydrocarbons and the soluble organic fraction. The OP AO assay showed the best correlation with the production of intracellular reactive oxygen species by NCI-H292 cell line assessed by DCFH oxidation and with the expression of anti-oxidant genes (superoxide dismutase 2, heme-oxygenase-1) as well as the proinflammatory response (Interleukin 6) when exposed from 1 to 10 μg/cm 2 . The OP AO assay appears as the most prone to predict the biological effect driven by PM 2.5 and related to oxidative stress. - Highlights: • 5 Acellular assays were used to compare the intrinsic oxidative potential (OP) of PM. • The amount of ROS generation in bronchial cells is particle dependent. • Particles induce the expression of anti-oxidant and proinflammatory genes. • Biological effects correlates with OP assay

  12. Characterization of particulate matter deposited on urban tree foliage: A landscape analysis approach

    Science.gov (United States)

    Lin, Lin; Yan, Jingli; Ma, Keming; Zhou, Weiqi; Chen, Guojian; Tang, Rongli; Zhang, Yuxin

    2017-12-01

    Plants can mitigate ambient particulate matter by cleaning the air, which is crucial to urban environments. A novel approach was presented to quantitatively characterize particulate matter deposited on urban tree foliage. This approach could accurately quantify the number, size, shape, and spatial distribution of particles with different diameters on leaves. Spatial distribution is represented by proximity, which measures the closeness of particles. We sampled three common broadleaf species and obtained images through field emission scanning electron microscopy. We conducted the object-based method to extract particles from images. We then used Fragstats to analyze the landscape characteristics of these particles in term of selected metrics. Results reveal that Salix matsudana is more efficient than Ailanthus altissima and Fraxinus chinensis in terms of the number and area of particles per unit area and the proportion of fine particulate matter. The shape complexity of the particles increases with their size. Among the three species, S. matsudana and A. altissima particles respectively yield the highest and lowest proximity. PM1 in A. altissima and PM10 in F. chinensis and S. matsudana show the highest proximity, which may influence subsequent particle retention. S. matsudana should be generally considered to collect additional small particles. Different species and particle sizes exhibit various proximities, which should be further examined to elucidate the underlying mechanism.

  13. Association between exposure to particulate matter and hospital admissions for respiratory disease in children

    Science.gov (United States)

    Cesar, Ana Cristina Gobbo; Nascimento, Luiz Fernando C; de Carvalho, João Andrade

    2013-01-01

    The aim of this study was to estimate the association between exposure to particulate matter less than 2.5 microns in diameter and hospitalization for respiratory disease. It was an ecological time series study with daily indicators of hospitalization for respiratory diseases in children up to 10 years old, living in Piracicaba, SP, Southeastern Brazil, between August 1, 2011 and July 31, 2012. A generalized additive Poisson regression model was used. The relative risks were RR = 1.008; 95%CI 1.001;1.016 for lag 1 and RR = 1.009; 95%CI 1.001;1.017 for lag 3. The increment of 10 μg/m3in particulate matter less than 2.5 microns in diameter implies increase in relative risk of between 7.9 and 8.6 percentage points. In conclusion, exposure to particulate matter less than 2.5 microns in diameter was associated with hospitalization for respiratory disease in children. PMID:24626559

  14. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  15. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis

    International Nuclear Information System (INIS)

    Santibáñez-Andrade, Miguel; Quezada-Maldonado, Ericka Marel; Osornio-Vargas, Álvaro; Sánchez-Pérez, Yesennia; García-Cuellar, Claudia M.

    2017-01-01

    In this review, we summarize and discuss the evidence regarding the interaction between air pollution, especially particulate matter (PM), and genomic instability. PM has been widely studied in the context of several diseases, and its role in lung carcinogenesis gained relevance due to an increase in cancer cases for which smoking does not seem to represent the main risk factor. According to epidemiological and toxicological evidence, PM acts as a carcinogenic factor in humans, inducing high rates of genomic alterations. Here, we discuss not only how PM is capable of inducing genomic instability during the carcinogenic process but also how our genetic background influences the response to the sources of damage. - Highlights: • Air pollution represents a worldwide problem with impact on human health. • Particulate matter (PM) has a recognized carcinogenic potential in humans. • Lung cancer susceptibility depends on gene-environment interactions. • Epidemiological and experimental evidence links PM exposure to genomic instability. • PM and genomic instability are co-dependent factors during cancer continuum. - We summarize the association between particulate matter (a component of air pollution) and genomic instability as well as discuss how new strategies to study the impact of air pollution on genomic instability and lung-cancer development could improve our understanding of the lung-cancer genome.

  16. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China.

    Science.gov (United States)

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-09-22

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM₁ (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  17. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    Directory of Open Access Journals (Sweden)

    Qiulin Xiong

    2015-09-01

    Full Text Available Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  18. Satellite observation of particulate organic carbon dynamics in ...

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical processes that influence POC sources and sinks. Using field observations and satellite ocean color products, we developed a nw multiple regression algorithm to estimate POC on the Louisiana Continental Shelf (LCS) from satellite observations. The algorithm had reliable performance with mean relative error (MRE) of ?40% and root mean square error (RMSE) of ?50% for MODIS and SeaWiFS images for POC ranging between ?80 and ?1200 mg m23, and showed similar performance for a large estuary (Mobile Bay). Substantial spatiotemporal variability in the satellite-derived POC was observed on the LCS, with high POC found on the inner shelf (satellite data with carefully developed algorithms can greatly increase

  19. NAAQS Designated Area Polygons - Fine Particulate Matter (24-Hr, PM-2.5), Region 9, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Designated Areas for Particulate Matter < 2.5 microns, according to the 24-Hour National Ambient Air Quality Standards (NAAQS). Nonattainment areas are geographic...

  20. Differential electrocardiogram efffects in normal and hypertensive rats after inhalation exposure to transition metal rich particulate matter

    Science.gov (United States)

    Inhalation of particulate matter (PM) associated with air pollution causes adverse effects on cardiac function including heightened associations with ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. Some of these effects have been attributable to transitio...

  1. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves

    Science.gov (United States)

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...

  2. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  3. Characterization and speciation of fine particulate matter inside the public transport buses running on bio-diesel.

    Science.gov (United States)

    2009-09-01

    Air pollution with respect to particulate matter was investigated in Toledo, Ohio, USA, a : city of approximately 300,000, in 2009. Two study buses were selected to reflect typical : exposure conditions of passengers while traveling in the bus. Monit...

  4. An Automated Heart Rate Detection Platform in Wild-Type Zebrafish for Cardiotoxicity Screening of Fine Particulate Matter Air Pollution

    Science.gov (United States)

    Exposure to air pollution-derived particulate matter (PM) causes adverse cardiovascular health outcomes, with increasing evidence implicating soluble components of PM; however, the enormous number of unique PM samples from different air sheds far exceeds the capacity of conventio...

  5. River inputs and organic matter fluxes in the northern Bay of Bengal: Fatty acids

    Digital Repository Service at National Institute of Oceanography (India)

    Reemtsma, T.; Ittekkot, V.; Bartsch, M.; Nair, R.R

    ) 55-71 55 Elsevier Science Publishers B.V., Amsterdam \\[RA\\] River inputs and organic matter fluxes in the northern Bay of Bengal: fatty acids T. Reemtsma a, V. Ittekkot a, M. Bartsch a and R.R. Nair b alnstitut fiir Biogeochemie und Meereschemie..., R.R., 1993. River inputs and organic matter fluxes in the northern Bay of Bengal: fatty acids. Chem. Geol., 103: 55-71. Total particulate matter flux and organic carbon and fatty acid fluxes associated with settling particles collected during...

  6. Contribution of fungal spores to particulate matter in a tropical rainforest

    International Nuclear Information System (INIS)

    Zhang Ting; Chan Chuenyu; Zhang Yinan; Zhang Zhisheng; Lin Mang; Sang Xuefang; Engling, Guenter; Li, Y D; Li, Yok-Sheung

    2010-01-01

    The polyols arabitol and mannitol, recently proposed as source tracers for fungal spores, were used in this study to estimate fungal contributions to atmospheric aerosol. Airborne particulate matter (PM 2.5 and PM 10 ) was collected at Jianfengling Mountain, a tropical rainforest on Hainan Island situated off the south China coast, during spring and analyzed for arabitol and mannitol by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The average concentrations of arabitol and mannitol exhibited high values with averages of 7.0 and 16.0 ng m -3 respectively in PM 2.5 and 44.0 and 71.0 ng m -3 in PM 10 . The two tracers correlated well with each other, especially in the coarse mode aerosol (PM 2.5-10 ), indicating they were mainly associated with coarse aerosol particles and had common sources. Arabitol and mannitol in PM 10 showed significant positive correlations with relative humidity, as well as positive correlations with average temperature, suggesting a wet emissions mechanism of biogenic aerosol in the form of fungal spores. We made estimations of the contribution of fungal spores to ambient PM mass and to organic carbon, based on the observed ambient concentrations of these two tracers. The relative contributions of fungal spores to the PM 10 mass were estimated to range from 1.6 to 18.2%, with a rather high mean value of 7.9%, and the contribution of fungal spores to organic carbon in PM 10 ranged from 4.64 to 26.1%, with a mean value of 12.1%, implying that biological processes are important sources of atmospheric aerosol.

  7. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter

    International Nuclear Information System (INIS)

    Wei, Hongying; Feng, Yan; Liang, Fan; Cheng, Wei; Wu, Xiaomeng; Zhou, Ren; Wang, Yan

    2017-01-01

    Highlights: • Oxidative stress-mediated neurocytotoxicity and DNA hydroxymethylation abnormalities involved in neuronal pathology of PM 2.5 . • PM 2.5 particles and toxic compounds adsorbed on the particle caused different types of neurocytotoxicity. • DNA hydroxymethylation abnormalities participated in PM 2.5 -induced impairments in neurite outgrowth and synapse formation. - Abstract: Epidemiological studies have implicated fine particulate matter (PM 2.5 ) as a risk factor for neurodegenerative diseases and neurodevelopmental disorders. However, the underlying molecular mechanisms and the influences of different components remain largely elusive. Here, we extended our previous work to investigate the role of oxidative stress and DNA hydroxymethylation in neuronal pathology of PM 2.5 . We found PM 2.5 and its extracts (water-soluble extracts, organic extracts and carbon core component) differentially caused cell cycle arrest, cell apoptosis and the cell proliferation inhibition in neuronal cells. These effects were mechanistically related to each other and oxidative stress, suggesting PM 2.5 and toxic compounds adsorbed on the particles may cause different types of brain damages. In addition, PM 2.5 and its organic extracts increased global DNA hydroxymethylation and gene-specific DNA hydroxymethylation of neuronal genes, and subsequently interfered with their mRNA expression. The impairments in neuronal progression characterized with decreased length of neurite and reduced mRNA expression of neuronal markers and synaptic markers. The blocking effects of antioxidants demonstrated the involvement of oxidative stress-mediated hydroxymethylation abnormalities in PM 2.5 -induced defects in neurite outgrowth and synapse formation. Our results first revealed the role of oxidative stress-mediated abnormal DNA hydroxymethylation in neuronal impairments of PM 2.5 , and thoroughly evaluated the neurocytotoxicity of different components.

  8. Policy research programme on particulate matter. Main results and policy consequences; Beleidsgericht onderzoeksprogramma fijn stof. Resultaten op hoofdlijnen en beleidsconsequenties

    Energy Technology Data Exchange (ETDEWEB)

    Matthijsen, J.; Koelemeijer, R.B.A.

    2010-06-15

    The Policy-Oriented Research on Particulate Matter (BOP) programme aimed at increasing knowledge on particulate matter so that future policy can be supported adequately. The main research objectives of BOP were to improve knowledge of the PM10 and PM2,5 concentrations, composition and sources of particulate matter; Increasing the understanding of the behavior of particulate matter in the urban area; Determining the trends in concentrations of particulate matter and its components; and Clarify the impact of policies in the past and the future of PM10 and PM2,5 concentrations. The first part of this study presents the main findings of the study, discussing the (chemical) composition of particulate matter, concentration trends, expected developments, health impacts, policy implications, and how to proceed with the particulate matter dossier. In the second part of the study the underlying analysis are elaborated. [Dutch] Het Beleidsgericht Onderzoeksprogramma Particulate Matter (BOP) had als doel om de kennis over fijn stof te vergroten, zodat beleidsvorming in de toekomst adequater ondersteund kan worden. De belangrijkste onderzoeksdoelstellingen van BOP waren: Verbeteren van de kennis over de PM10- en PM2,5-concentraties, de samenstelling en de bronnen van fijn stof; Vergroten van het inzicht in het gedrag van fijn stof in het stedelijke gebied; Bepalen van de trends in fijnstofconcentraties en de bestanddelen ervan; Verduidelijken van de invloed van beleidsmaatregelen in het verleden en de toekomst op de PM10- en PM2,5-concentraties. Het eerste deel van deze studie, de Bevindingen, presenteert de belangrijkste uitkomsten van het onderzoek. Hierbij komen achtereenvolgens aan de orde: de (chemische) samenstelling van fijn stof, trends in concentraties, verwachte ontwikkelingen, gezondheidseffecten, beleidsconsequenties en hoe nu verder te gaan met het dossier fijn stof. In het tweede deel van de studie, de Verdieping, staat de verantwoording en worden de

  9. Characterization of airborne particulate matter in Santiago, Chile. Part 1: design, sampling and analysis for an experimental campaign

    International Nuclear Information System (INIS)

    Toro E, P.

    1995-01-01

    This work describes the siting and sampling procedures of collecting airborne particulate matter in Santiago, Chile, determining its chemical composition and daily behaviour. The airborne particulate matter was collected onto polycarbonate membranes, one of fine pore and other of coarse pore, using Pm 10 samplers. The material was analyzed using neutron activation analysis., proton induced X ray emission, X ray fluorescence, voltametry, atomic absorption spectrometry, ion chromatography and isotope dilution. (author). 1 tab

  10. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-volatile Particulate Matter (PM... Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  11. A Novel Type of Oil—generating Organic Matter —Crystal—enclosed Organic Matter

    Institute of Scientific and Technical Information of China (English)

    周中毅; 裴存民; 等

    1992-01-01

    The comparative study of organic matter in carbonate rocks and argillaceous rocks from the same horizon indicates that the organic thermal maturities of carbonate rocks are much lower than those of argillaceous rocks .Ana extensive analysis of extracted and inclused organic matter from the same sample shows that inclused organic matter is different from extracted organic matter,and the thermal maturity of the former is usually lower than that of the latter in terms of biomarker structural parameters.It seems that carbonate mineras could preserve organic matter and retard organic maturation.The inclused organic matter,abundant in most carbonate rocks,will be released from minerals and transformed into oil and gas during the high-thermal maturity stage.

  12. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  13. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    International Nuclear Information System (INIS)

    Haynes, Erin N.; Chen, Aimin; Ryan, Patrick; Succop, Paul; Wright, John; Dietrich, Kim N.

    2011-01-01

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter (≤2.5 μm) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban–rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003–2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3–4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter ≤2.5 and ≤10 μm emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  14. Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration.

    Science.gov (United States)

    Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří

    2017-12-01

    The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sampling and analytical methodologies for instrumental neutron activation analysis of airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-01

    The IAEA supports a number of projects having to do with the analysis of airborne particulate matter by nuclear techniques. Most of this work involves the use of activation analysis in its various forms, particularly instrumental neutron activation analysis (INAA). This technique has been widely used in many different countries for the analysis of airborne particulate matter, and there are already many publications in scientific journals, books and reports describing such work. The present document represents an attempt to summarize the most important features of INAA as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of INAA to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability, although they are presented here in a way that takes account of the particular requirements arising from the use of INAA as the analytical technique. The analytical part of the document, however, is presented in a form that is applicable only to INAA. (Subsequent publications in this series are expected to deal specifically with other nuclear related techniques such as energy dispersive X ray fluorescence (ED-XRF) and particle induced X ray emission (PIXE) analysis). Although the methods and procedures described here have been found through experience to yield acceptable results, they should not be considered mandatory. Any other procedure used should, however, be chosen to be capable of yielding results at least of equal quality to those described.

  16. Sampling and analytical methodologies for instrumental neutron activation analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    1992-01-01

    The IAEA supports a number of projects having to do with the analysis of airborne particulate matter by nuclear techniques. Most of this work involves the use of activation analysis in its various forms, particularly instrumental neutron activation analysis (INAA). This technique has been widely used in many different countries for the analysis of airborne particulate matter, and there are already many publications in scientific journals, books and reports describing such work. The present document represents an attempt to summarize the most important features of INAA as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of INAA to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability, although they are presented here in a way that takes account of the particular requirements arising from the use of INAA as the analytical technique. The analytical part of the document, however, is presented in a form that is applicable only to INAA. (Subsequent publications in this series are expected to deal specifically with other nuclear related techniques such as energy dispersive X ray fluorescence (ED-XRF) and particle induced X ray emission (PIXE) analysis). Although the methods and procedures described here have been found through experience to yield acceptable results, they should not be considered mandatory. Any other procedure used should, however, be chosen to be capable of yielding results at least of equal quality to those described

  17. Tracing estuarine organic matter sources into the southern North Sea using C and N isotopic signatures

    DEFF Research Database (Denmark)

    Bristow, Laura A.; Jickells, Timothy D.; Weston, Keith

    2013-01-01

    Sources and distribution of particulate organic matter in surface waters of the Humber and Thames estuaries and in the East Anglian plume in the southern North Sea were investigated in winter 2006/2007. Carbon (C) and nitrogen (N) stable isotopes provided evidence for the presence of three partic...

  18. Spatial and temporal distribution of metals in suspended particulate matter of the Kali estuary, India

    Science.gov (United States)

    Suja, S.; Kessarkar, Pratima M.; Fernandes, Lina L.; Kurian, Siby; Tomer, Arti

    2017-09-01

    Major (Al, Fe, Mn, Ti, Mg) and trace (Cu, Zn, Pb, Cr, Ni, Co, Zr, Rb, Sr, Ba, Li, Be, Sc, V, Ga, Nb, Mo, Sn, Sb, Cs, Hf, Ta, Bi, Th, U) elements and particulate organic carbon (POC) concentrations in surface suspended particulate matter (SPM) of the Kali estuary, (central west coast of India) were studied during the pre-monsoon, monsoon and post monsoon seasons to infer estuarine processes, source of SPM and Geoaccumulation Index (Igeo) assigned pollutionIgeo levels. Distribution of SPM indicates the presence of the estuarine turbidity maximum (ETM) during all three seasons near the river mouth and a second ETM during the post monsoon time in the upstream associated with salinities gradient. The SPM during the monsoon is finer grained (avg. 53 μm), characterized by uniformly low normalized elemental concentration, whereas the post and pre monsoon are characterized by high normalized elemental concentration with coarser grain size (avg. 202 μm and 173 μm respectively) with highest ratios in the upstream estuary. The elemental composition and principal component analysis for the upstream estuary SPM support more contribution from the upstream catchment area rocks during the monsoon season; there is additional contribution from the downstream catchment area during the pre and post monsoon period due to the tidal effect. The Kali estuarine SPM has higher Al, Fe, Mn, Ti, Mg, Ni, Co, Ba, Li and V with respect to Average World River SPM (WRSPM). Igeo values for the SPM indicate Kali Estuary to be severely enriched with Mn and moderately enriched with Cu, Zn, Ni, Co, U and Mo in the upstream estuary during pre and post monsoon seasons. Seasonal changes in salinity gradient (reduced freshwater flow due to closing of the dam gates), reduced velocity at meandering region of the estuary and POC of 1.6-2.3% resulted in co-precipitation of trace elements that were further fortified by flocculation and coagulation throughout the water column resulting in metal trapping in the

  19. Characterization of atmospheric trace gases and particulate matter in Hangzhou, China

    Science.gov (United States)

    Zhang, Gen; Xu, Honghui; Qi, Bing; Du, Rongguang; Gui, Ke; Wang, Hongli; Jiang, Wanting; Liang, Linlin; Xu, Wanyun

    2018-02-01

    The Yangtze River Delta (YRD) is one of the most densely populated regions in China with severe air quality issues that have not been fully understood. Thus, in this study, based on 1-year (2013) continuous measurement at a National Reference Climatological Station (NRCS, 30.22° N, 120.17° E; 41.7 m a.s.l.) in the center of Hangzhou in the YRD, we investigated the seasonal characteristics, interspecies relationships, and the local emissions and the regional potential source contributions of trace gases (including O3, NOx, NOy, SO2, and CO) and particulate matter (PM2.5 and PM10). Results revealed that severe two-tier air pollution (photochemical and haze pollution) occurred in this region, with frequent exceedances in O3 (38 days) and PM2.5 (62 days). O3 and PM2.5 both exhibited distinct seasonal variations with reversed patterns: O3 reaching a maximum in warm seasons (May and July) but PM2.5 reaching a maximum in cold seasons (November to January). The overall results from interspecies correlation indicated a strong local photochemistry favoring the O3 production under a volatile organic compound (VOC)-limited regime, whereas it moved towards an optimum O3 production zone during warm seasons, accompanied by the formation of secondary fine particulates under high O3. The emission maps of PM2.5, CO, NOx, and SO2 demonstrated that local emissions were significant for these species on a seasonal scale. The contributions from the regional transport among inland cities (Zhejiang, Jiangsu, Anhui, and Jiangxi Province) on a seasonal scale were further confirmed to be crucial to air pollution at the NRCS site by using backward trajectory simulations. Air masses transported from the offshore areas of the Yellow Sea, East Sea, and South Sea were also found to be highly relevant to the elevated O3 at the NRCS site through the analysis of potential source contribution function (PSCF). Case studies of photochemical pollution (O3) and haze (PM2.5) episodes both suggested the

  20. Exposure and risk analysis to particulate matter, metals, and polycyclic aromatic hydrocarbon at different workplaces in Argentina.

    Science.gov (United States)

    Colman Lerner, Jorge Esteban; Elordi, Maria Lucila; Orte, Marcos Agustin; Giuliani, Daniela; de Los Angeles Gutierrez, Maria; Sanchez, EricaYanina; Sambeth, Jorge Enrique; Porta, Atilio Andres

    2018-03-01

    In order to estimate air quality at work environments from small and medium-sized enterprises (SMEs), we determined both the concentration of particulate matter (PM 10 and PM 2.5 ) and the presence of polycyclic aromatic hydrocarbons (PAHs), as the heavy metals in the composition of the particulate matter. Three SMEs located in the city of La Plata, Argentina, were selected: an electromechanical repair and car painting center (ERCP), a sewing work room (SWR), and a chemical analysis laboratory (CAL). The results evidenced high levels of PM exceeding the limits allowed by the USEPA and the presence of benzo(k)fluoranthene in all the analyzed sites and benzo(a)pyrene in the most contaminated site (ERCP). Regarding metals, the presence of Cd, Ni, Cu, Pb, and Mn, mainly in the fraction of PM 2.5 , in the same workplace was found. As far as risk assessment at all the workplaces surveyed is concerned, risk values for contracting cancer throughout life for exposed workers (LCR) did not comply with the parameters either of USEPA or of WHO (World Health Organization).

  1. A comprehensive study of the characterization of particulate matter emissions from a Delmarva broiler poultry operation

    Science.gov (United States)

    Carter, Shannon E.

    Particulate matter (PM) emissions from agricultural practices, including those from animal feeding operations (AFO's) have become an increasingly important topic, and has generated considerable interest from local and state agencies, as well as, the local community over the past decade. Because of growth in population, and an increase in commercial and residential development within close proximity to these operations, which house a large number of animals in confinement, and because of a better understanding of the effects of exposure to airborne contaminants on health, this has lead to an increase in concerns and a demand for more research to be conducted on PM from AFO's. Particulate matter generated within, and emitted from, AFO's can carry with it various components including metals and microorganisms that can negatively affect health. This research was conducted in order to verify if PM from a broiler poultry operation on Delmarva has the potential to become a health concern. The first step was to determine concentrations of two size segregated fractions of PM from indoor and outdoor sampling sites over four seasonal periods, early summer (ES), late summer (LS), Fall (F), and Winter (W). Both PM10 and PM2.5 were collected because of their classification from the Environmental Protection Agency as having the ability to cause significant health effects with short-term exposure. Next, temporal and spatial characteristics were investigated to determine their effects on PM concentrations over the four seasonal periods. Following this, the chemical composition and morphology of PM10 and PM2.5 generated from the broiler poultry operation was investigated. Finally, further detailed information was obtained on arsenic speciation and oxidation state in PM to investigate toxicity. Arsenic use in the poultry industry has been occurring for a number of decades, and is most frequently administered in the organic form. However, studies have shown that these organo

  2. CHARACTERISTIC OF AIRBORNE PARTICULATE MATTER SAMPLES COLLECTED FROM TWO SEMI INDUSTRIAL SITES IN BANDUNG, INDONESIA

    Directory of Open Access Journals (Sweden)

    Diah Dwiana Lestiani

    2013-12-01

    Full Text Available Air particulate matter concentrations, black carbon as well as elemental concentrations in two semi industrial sites were investigated as a preliminary study for evaluation of air quality in these areas. Sampling of airborne particulate matter was conducted in July 2009 using a Gent stacked filter unit sampler and a total of 18 pairs of samples were collected. Black carbon was determined by reflectance measurement and elemental analysis was performed using particle induced X-ray emission (PIXE. Elements Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn and As were detected. Twenty four hour PM2.5 concentration at semi industrial sites Kiaracondong and Holis ranged from 4.0 to 22.2 µg m-3, while the PM10 concentration ranged from 24.5 to 77.1 µg m-3. High concentration of crustal elements, sulphur and zinc were identified in fine and coarse fractions for both sites. The fine fraction data from both sites were analyzed using a multivariate principal component analysis and for Kiaracondong site, identified factors are attributed to sea-salt with soil dust, vehicular emissions and biomass burning, non ferrous smelter, and iron/steel work industry, while for Holis site identified factors are attributed to soil dust, industrial emissions, vehicular emissions with biomass burning, and sea-salt. Although particulate samples were collected from semi industrial sites, vehicular emissions constituted with S, Zn and BC were identified in both sites.

  3. Sampling and analytical methodologies for energy dispersive X-ray fluorescence analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    1993-01-01

    The present document represents an attempt to summarize the most important features of the different forms of ED-XFR as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of ED-XRF to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability. Emphasis is also placed on the sources of errors affecting the sampling of airborne particulate matter. The analytical part of the document describes the different forms of ED-XRF and their potential applications. Spectrum evaluation, a key step in X-ray spectrometry, is covered in depth, including discussion on several calibration and peak fitting techniques and computer programs especially designed for this purpose. 148 refs, 25 figs, 13 tabs

  4. [Comparison of atmospheric particulate matter and aerosol optical depth in Beijing City].

    Science.gov (United States)

    Lin, Hai-Feng; Xin, Jin-Yuan; Zhang, Wen-Yu; Wang, Yue-Si; Liu, Zi-Rui; Chen, Chuan-Lei

    2013-03-01

    The pollution of particulate matter was serious in Beijing City from the synchronous observation of particulate matter mass concentration and aerosol optical characteristics in 2009. The annual mean concentrations of PM2.5 and PM10 were (65 +/- 14) microg x m(-3) and (117 +/- 31) microg x m(-3), respectively, which exceeded the national ambient air quality annual standards to be implemented in 2016. There were 35% and 26% days of 2009 that the daily standards were exceeded. There was a significant correlation between fine particulate (PM2.5) and inhalable particle (PM10), with a correlation coefficient (R) of approximately 0.90 (P 500 nm) and Angstrom exponent were (0.55 +/- 0.1) and (1.12 +/- 0.08), respectively. There were significant correlations between PM2.5, PM10 and AOD in the four seasons and the whole year, and the correlation coefficients were greater than or equal to 0.50. Furthermore, the correlation functions and coefficients had seasonal variations. The correlations were more significant in summer and autumn than in spring and winter. The annual correlation could cover up the seasonal systematic differences. The correlations between AOD revised by Mixed Layer Height and PM2.5 PM10 revised by Relative Humidity became stronger, and the exponential correlations were superior to the linear correlations.

  5. Changes to the structure of blood clots formed in the presence of fine particulate matter

    International Nuclear Information System (INIS)

    Metassan, Sofian; Routledge, Michael N; Ariens, Robert A S; Scott, D Julian

    2009-01-01

    Both long-term and short-term exposure (one to two hours) to particulate matter are associated with morbidity and mortality caused by cardiovascular diseases. The underlying mechanisms leading to cardiovascular events are unclear, however, changes to blood coagulability upon exposure to ultrafine particulate matter (UFPM, the smallest of which can enter the circulation) is a plausible mechanism. Objectives: This study aims to investigate the direct effects of particulate matter on fibrin polymerization, lateral aggregation and the formation of fibrin network structure. Methods: Standard Urban Particulate Matter (PM) was suspended in Tris buffer centrifuged and filtered with <200nm filter to obtain ultrafine PM or their water-soluble components. Purified normal fibrinogen was made to clot by adding thrombin and calcium chloride in the presence of varying concentrations of PM. Permeation properties (Darcy constant [Ks]) and turbidity of clots were measured to investigate the effects on flow-rate, pore size, and fibrin polymerization. In addition, confocal microscopy was performed to study detailed clot structure. Results: Total PM increased the Ks of clots in a dose dependant manner (Ks = 4.4, 6.9 and 13.2 x 10-9 cm2 for 0, 50 and 100 |ag/ml total PM concentrations, respectively). Filtered PM also produced a significant increase in Ks at PM concentration of 17 |ag/ml. Final turbidity measurements at 20min were obtained for varying concentrations of PM. Maximum optical density (OD) for 1 mg/ml fibrinogen at 0, 50, 100 and 200 |ag/ml total PM concentrations were 0.39, 0.42, 0.45 and 0.46, respectively. The maximum OD for 0, 17, 34 and 68 |ag/ml filtered PM concentrations were 0.39, 0.42 0.47 and 0.51, respectively, suggesting an increase in fibre diameter with increasing particulate concentration. The lag phase was significantly shorter and the rate of polymerisation was significantly faster in the presence of 68 |ag/ml filtered PM. Confocal microscopy results showed

  6. Evaluation of traffic exhaust contributions to ambient carbonaceous submicron particulate matter in an urban roadside environment in Hong Kong

    Science.gov (United States)

    Lee, Berto Paul; Kwok Keung Louie, Peter; Luk, Connie; Keung Chan, Chak

    2017-12-01

    Road traffic has significant impacts on air quality particularly in densely urbanized and populated areas where vehicle emissions are a major local source of ambient particulate matter. Engine type (i.e., fuel use) significantly impacts the chemical characteristics of tailpipe emission, and thus the distribution of engine types in traffic impacts measured ambient concentrations. This study provides an estimation of the contribution of vehicles powered by different fuels (gasoline, diesel, LPG) to carbonaceous submicron aerosol mass (PM1) based on ambient aerosol mass spectrometer (AMS) and elemental carbon (EC) measurements and vehicle count data in an urban inner city environment in Hong Kong with the aim to gauge the importance of different engine types to particulate matter burdens in a typical urban street canyon. On an average per-vehicle basis, gasoline vehicles emitted 75 and 93 % more organics than diesel and LPG vehicles, respectively, while EC emissions from diesel vehicles were 45 % higher than those from gasoline vehicles. LPG vehicles showed no appreciable contributions to EC and thus overall represented a small contributor to traffic-related primary ambient PM1 despite their high abundance (˜ 30 %) in the traffic mix. Total carbonaceous particle mass contributions to ambient PM1 from diesel engines were only marginally higher (˜ 4 %) than those from gasoline engines, which is likely an effect of recently introduced control strategies targeted at commercial vehicles and buses. Overall, gasoline vehicles contributed 1.2 µg m-3 of EC and 1.1 µ m-3 of organics, LPG vehicles 0.6 µg m-3 of organics and diesel vehicles 2.0 µg m-3 of EC and 0.7 µg m-3 of organics to ambient carbonaceous PM1.

  7. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cruz, Albert Leo N. dela, E-mail: adelac2@tigers.lsu.edu [Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A& M College, Baton Rouge, LA 70803 (United States); Lomnicki, Slawo M., E-mail: slomni1@lsu.edu [Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A& M College, Baton Rouge, LA 70803 (United States); Backes, Wayne L., E-mail: wbacke@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2015-12-01

    Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductase and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2–CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • Particulate matter (PM) competitively inhibited CYP1A2 activity. • EPFRs were much more potent CYP1A2 inhibitors than other types of PM. • PM interacts differently with different forms of P450. • PM

  8. Research on chromium and arsenic speciation in atmospheric particulate matter: short review

    Science.gov (United States)

    Nocoń, Katarzyna; Rogula-Kozłowska, Wioletta; Widziewicz, Kamila

    2018-01-01

    Atmospheric particulate matter (PM) plays an important role in the distribution of elements in the environment. The PM-bound elements penetrates into the other elements of the environment, in two basic forms - those dissolved in the atmospheric precipitation and those permanently bound to PM particles. Those forms differs greatly in their mobility, thus posing a potential threat to living organisms. They can also be an immediate threat, while being inhaled. Chromium (Cr) and arsenic (As) belong to the group of elements whose certain chemical states exhibit toxic properties, that is Cr(VI) and As(III). Thus, recognition of the actual threat posed by Cr and As in the environment, including those present in PM, is possible only through the in depth speciation analysis. Research on the Cr and As speciation in PM, more than the analogous studies of their presence in other compartments of the environment, have been undertaken quite rarely. Hence the knowledge on the speciation of PM-bound As and Cr is still limited. The state of knowledge in the field of PM-bound Cr and As is presented in the paper. The issues related to the characterization and occurrence of Cr and As species in PM, the share of Cr and As species mass in different PM size fractions, and in PM of different origin is also summarized. The analytical techniques used in the speciation analysis of PM-bound Cr and As are also discussed. In the existing literature there is no data on the physical characteristics of Cr and As (bound to a different PM size fractions), and thus it still lack of data needed for a comprehensive assessment of the actual environmental and health threat posed by airborne Cr and As.

  9. Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications.

    Science.gov (United States)

    Galvão, Elson Silva; Santos, Jane Meri; Lima, Ana Teresa; Reis, Neyval Costa; Orlando, Marcos Tadeu D'Azeredo; Stuetz, Richard Michael

    2018-05-01

    Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide

    Directory of Open Access Journals (Sweden)

    J.-P. Jalkanen

    2012-03-01

    Full Text Available A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS, which enable the positioning of ship emissions with a high spatial resolution (typically a few tens of metres. The model also takes into account the detailed technical data of each individual vessel. The previously developed model was applicable for evaluating the emissions of NOx, SOx and CO2. This paper addresses a substantial extension of the modelling system, to allow also for the mass-based emissions of particulate matter (PM and carbon monoxide (CO. The presented Ship Traffic Emissions Assessment Model (STEAM2 allows for the influences of accurate travel routes and ship speed, engine load, fuel sulphur content, multiengine setups, abatement methods and waves. We address in particular the modeling of the influence on the emissions of both engine load and the sulphur content of the fuel. The presented methodology can be used to evaluate the total PM emissions, and those of organic carbon, elemental carbon, ash and hydrated sulphate. We have evaluated the performance of the extended model against available experimental data on engine power, fuel consumption and the composition-resolved emissions of PM. We have also compared the annually averaged emission values with those of the corresponding EMEP inventory, As example results, the geographical distributions of the emissions of PM and CO are presented for the marine regions of the Baltic Sea surrounding the Danish Straits.

  11. Particulate matter levels in a South American megacity: the metropolitan area of Lima-Callao, Peru.

    Science.gov (United States)

    Silva, Jose; Rojas, Jhojan; Norabuena, Magdalena; Molina, Carolina; Toro, Richard A; Leiva-Guzmán, Manuel A

    2017-11-13

    The temporal and spatial trends in the variability of PM 10 and PM 2.5 from 2010 to 2015 in the metropolitan area of Lima-Callao, Peru, are studied and interpreted in this work. The mean annual concentrations of PM 10 and PM 2.5 have ranges (averages) of 133-45 μg m -3 (84 μg m -3 ) and 35-16 μg m -3 (26 μg m -3 ) for the monitoring sites under study. In general, the highest annual concentrations are observed in the eastern part of the city, which is a result of the pattern of persistent local winds entering from the coast in a south-southwest direction. Seasonal fluctuations in the particulate matter (PM) concentrations are observed; these can be explained by subsidence thermal inversion. There is also a daytime pattern that corresponds to the peak traffic of a total of 9 million trips a day. The PM 2.5 value is approximately 40% of the PM 10 value. This proportion can be explained by PM 10 re-suspension due to weather conditions. The long-term trends based on the Theil-Sen estimator reveal decreasing PM 10 concentrations on the order of -4.3 and -5.3% year -1 at two stations. For the other stations, no significant trend is observed. The metropolitan area of Lima-Callao is ranked 12th and 16th in terms of PM 10 and PM 2.5 , respectively, out of 39 megacities. The annual World Health Organization thresholds and national air quality standards are exceeded. A large fraction of the Lima population is exposed to PM concentrations that exceed protection thresholds. Hence, the development of pollution control and reduction measures is paramount.

  12. A mouse dry eye model induced by topical administration of the air pollutant particulate matter 10.

    Science.gov (United States)

    Li, Juan; Tan, Gang; Ding, Xiaoyan; Wang, Yahong; Wu, Anhua; Yang, Qichen; Ye, Lei; Shao, Yi

    2017-12-01

    To introduce a novel dry eye mouse model induced by topical administration of the air pollutant particulate matter 10 (PM 10 ). A total of 60 male BALB/c mice were used in this study and divided into two groups: group A (PBS eye drops, n=30) and group B (PM 10 eye drop group, n=30). Each treatment was dosed four times a day, every time 50ul with the concentration of 5mg/ml PM10, for 14 consecutive days in the right eye. The clinical manifestations of dry eye were measured before therapy and 4, 7 and 14days post-treatment respectively, which included the tear volume, tear break-up (BUT) time, corneal fluorescein staining, rose bengal staining, Lissamine Green staining and inflammatory index. Eye samples were collected on D14 and examined by histologic light microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), corneal cytokeration 10 (K10) immunnostaining, and tumor necrosis factor-α (TNF-α), NF-κB-p65 and NF-κB Western Blot analysis. At 0d, 7d and 14d, there were no statistical changes in tear volume, BUT after treatment (P>0.05) with PBS in group A. In group B, all items showed statistical differences at each time point (Plevels of K10 and reduced number of goblet cells in the conjunctival fornix in group B. PM 10 significantly increased the levels of TNF-α, NF-κB-p65 and NF-κB in the cornea. PM 10 can damage the tear film function and cause the destruction of the structural organization of ocular surface in mice. Topical administration of PM 10 in mice induces ocular surface changes that are similar to those of dry eye in humans, representing a novel model of DES. Copyright © 2017. Published by Elsevier Masson SAS.

  13. Trends in atmospheric particulate matter in Dhaka, Bangladesh, and the vicinity.

    Science.gov (United States)

    Rana, Md Masud; Sulaiman, Norela; Sivertsen, Bjarne; Khan, Md Firoz; Nasreen, Sabera

    2016-09-01

    Dhaka and its neighboring areas suffer from severe air pollution, especially during dry season (November-April). We investigated temporal and directional variations in particulate matter (PM) concentrations in Dhaka, Gazipur, and Narayanganj from October 2012 to March 2015 to understand different aspects of PM concentrations and possible sources of high pollution in this region. Ninety-six-hour backward trajectories for the whole dry season were also computed to investigate incursion of long-range pollution into this area. We found yearly PM10 concentrations in this area about three times and yearly PM2.5 concentrations about six times greater than the national standards of Bangladesh. Dhaka and its vicinity experienced several air pollution episodes in dry season when PM2.5 concentrations were 8-13 times greater than the World Health Organization (