WorldWideScience

Sample records for particulate exposure mortality

  1. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts

    DEFF Research Database (Denmark)

    Wang, Meng; Beelen, Rob; Stafoggia, Massimo

    2014-01-01

    Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only.......Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only....

  2. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Pope III, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. [Brigham Young University, Provo, UT (United States)

    2003-03-06

    A study was conducted to the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality. Vital status and cause of death data were collected by the American Cancer Society as part of the Cancer Prevention II study, an ongoing prospective mortality study, which enrolled approximately 1.2 million adults in 1982. Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). The risk factor data for approximately 500 000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998. Fine particulate and sulfur oxide-related pollution were found to be associated with all-cause, lung cancer, and cardiopulmonary mortality. Each 10-{mu}g/m{sup 3} elevation in fine particulate air pollution was associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Measures of coarse particle fraction and total suspended particles were not consistently associated with mortality. It was concluded that long-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality. 31 refs., 5 figs., 2 tabs.

  3. Long-term particulate matter exposure and mortality: a review of European epidemiological studies

    Directory of Open Access Journals (Sweden)

    Boffetta Paolo

    2009-12-01

    Full Text Available Abstract Background Several studies considered the relation between long-term exposure to particulate matter (PM and total mortality, as well as mortality from cardiovascular and respiratory diseases. Our aim was to provide a comprehensive review of European epidemiological studies on the issue. Methods We searched the Medline database for epidemiological studies on air pollution and health outcomes published between January 2002 and December 2007. We also examined the reference lists of individual papers and reviews. Two independent reviewers classified the studies according to type of air pollutant, duration of exposure and health outcome considered. Among European investigations that examined long-term PM exposure we found 4 cohort studies (considering total and cardiopulmonary mortality, 1 case-control study (considering mortality from myocardial infarction, and 4 ecologic studies (2 studies considering total and cardiopulmonary mortality and 2 studies focused on cardiovascular mortality. Results Measurement indicators of PM exposure used in European studies, including PM10, PM2.5, total suspended particulate and black smoke, were heterogeneous. This notwithstanding, in all analytic studies total mortality was directly associated with long-term exposure to PM. The excesses in mortality were mainly due to cardiovascular and respiratory causes. Three out of 4 ecologic studies found significant direct associations between PM indexes and mortality. Conclusion European studies on long-term exposure to PM indicate a direct association with mortality, particularly from cardiovascular and respiratory diseases.

  4. The relationships between short-term exposure to particulate matter and mortality in Korea: impact of particulate matter exposure metrics for sub-daily exposures

    International Nuclear Information System (INIS)

    Son, Ji-Young; Bell, Michelle L

    2013-01-01

    Most studies of short-term particulate matter (PM) exposure use 24 h averages. However, other pollutants have stronger effects in shorter timeframes, which has influenced policy (e.g., ozone 8 h maximum). The selection of appropriate exposure timeframes is important for effective regulation. The US EPA identified health effects for sub-daily PM exposures as a critical research need. Unlike most areas, Seoul, Korea has hourly measurements of PM 10 , although not PM 2.5 . We investigated PM 10 and mortality (total, cardiovascular, respiratory) in Seoul (1999–2009) considering sub-daily exposures: 24 h, daytime (7 am–8 pm), morning (7–10 am), nighttime (8 pm–7 am), and 1 h daily maximum. We applied Poisson generalized linear modeling adjusting for temporal trends and meteorology. All PM 10 metrics were significantly associated with total mortality. Compared to other exposure timeframes, morning exposure had the most certain effect on total mortality (based on statistical significance). Increases of 10 μg m −3 in 24 h, daytime, morning, nighttime, and 1 h maximum PM 10 were associated with 0.15% (95% confidence interval 0.02–0.28%), 0.14% (0.01–0.27%), 0.10% (0.03–0.18%), 0.12% (0.03–0.22%), and 0.10% (0.00–0.21%) increases in total mortality, respectively. PM 10 was significantly associated with cardiovascular mortality for 24 h, morning, and nighttime exposures. We did not identify significant associations with respiratory mortality. The results support use of a 24 h averaging time as an appropriate metric for health studies and regulation, particularly for PM 10 and mortality. (letter)

  5. Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities.

    Science.gov (United States)

    Madaniyazi, Lina; Guo, Yuming; Chen, Renjie; Kan, Haidong; Tong, Shilu

    2016-01-01

    Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM10) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM10-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM10-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM10 concentration and green space per capita could best explain the heterogeneity in PM10-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities

    International Nuclear Information System (INIS)

    Madaniyazi, Lina; Guo, Yuming; Chen, Renjie; Kan, Haidong; Tong, Shilu

    2016-01-01

    Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM_1_0) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM_1_0-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM_1_0-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM_1_0 concentration and green space per capita could best explain the heterogeneity in PM_1_0-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well. - Highlights: • The heterogeneity was examined in PM_1_0-mortality associations among Chinese cities. • Temperature, PM_1_0 and green space could best explain the heterogeneity. • PM_1_0-mortality associations were predicted for 73 Chinese cities. - This study provides a practical way to assess exposure-response associations and evaluate the burden of mortality in areas with insufficient data.

  7. Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study

    NARCIS (Netherlands)

    Badaloni, Chiara; Cesaroni, Giulia; Cerza, Francesco; Davoli, Marina; Brunekreef, Bert; Forastiere, Francesco

    2017-01-01

    BACKGROUND: The effect of long-term exposure to metal components in particulate matter on mortality are still controversial. OBJECTIVES: To study the association between long-term exposure to PM10, PM2.5, PM2.5 absorbance, particulate matter components (copper, iron, zinc, sulfur, silicon,

  8. Ambient Particulate Matter Air Pollution Exposure and Mortality in the NIH-AARP Diet and Health Cohort.

    Science.gov (United States)

    Thurston, George D; Ahn, Jiyoung; Cromar, Kevin R; Shao, Yongzhao; Reynolds, Harmony R; Jerrett, Michael; Lim, Chris C; Shanley, Ryan; Park, Yikyung; Hayes, Richard B

    2016-04-01

    Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000-2009 follow-up period when matching census tract-level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5-mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels. Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M

  9. Acute exposure to fine and coarse particulate matter and infant mortality in Tokyo, Japan (2002-2013).

    Science.gov (United States)

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-05-01

    Few studies have evaluated the effect of short-term exposure to particulate matter (PM) less than 2.5μm in diameter (PM2.5) or to coarse particles on infant mortality. We evaluated the association between short-term exposure to PM and infant mortality in Japan and assessed whether adverse health effects were observable at PM concentrations below Japanese air quality guidelines. We used a time-stratified, case-crossover design. The participants included 2086 infants who died in the 23 urbanized wards of the Tokyo Metropolitan Government between January 2002 and December 2013. We obtained measures of PM2.5 and suspended particulate matter (SPM; PMPM7-2.5 by subtracting PM2.5 from SPM. We then used conditional logistic regression to analyze the data. Same-day PM2.5 was associated with increased risks of infant and postneonatal mortality, especially for mortality related to respiratory causes. For a 10μg/m(3) increase in PM2.5, the odds ratios were 1.06 (95% confidence interval: 1.01-1.12) for infant mortality and 1.10 (1.02-1.19) for postneonatal mortality. PM7-2.5 was also associated with an increased risk of postneonatal mortality, independent of PM2.5. Even when PM2.5 and SPM concentrations were below Japanese air quality guidelines, we observed adverse health effects. This study provides further evidence that acute exposure to PM2.5 and coarse particles (PM7-2.5) is associated with an increased risk of infant mortality. Further, rigorous evaluation of air quality guidelines for daily average PM2.5 and larger particles is needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Pregnancy and Lifetime Exposure to Fine Particulate Matter and Infant Mortality in Massachusetts, 2001-2007.

    Science.gov (United States)

    Son, Ji-Young; Lee, Hyung Joo; Koutrakis, Petros; Bell, Michelle L

    2017-12-01

    Many studies have found associations between particulate matter having an aerodynamic diameter of ≤2.5 μm (PM2.5) and adult mortality. Comparatively few studies evaluated particles and infant mortality, although infants and children are particularly vulnerable to pollution. Moreover, existing studies mostly focused on short-term exposure to larger particles. We investigated PM2.5 exposure during pregnancy and lifetime and postneonatal infant mortality. The study included 465,682 births with 385 deaths in Massachusetts (2001-2007). Exposures were estimated from PM2.5-prediction models based on satellite imagery. We applied extended Cox proportional hazards modeling with time-dependent covariates to total, respiratory, and sudden infant death syndrome mortality. Exposure was calculated from birth to death (or end of eligibility for outcome, at age 1 year) and pregnancy (gestation and each trimester). Models adjusted for sex, birth weight, gestational length, season of birth, temperature, relative humidity, and maternal characteristics. Hazard ratios for total, respiratory, and sudden infant death syndrome mortality per-interquartile-range increase (1.3 μg/m3) in lifetime PM2.5 exposure were 2.66 (95% confidence interval (CI): 2.11, 3.36), 3.14 (95% CI: 2.39, 4.13), and 2.50 (95% CI: 1.56, 4.00), respectively. We did not observe a statistically significant relationship between gestational exposure and mortality. Our findings provide supportive evidence that lifetime exposure to PM2.5 increases risk of infant mortality. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Associations of acute exposure to fine and coarse particulate matter and mortality among older people in Tokyo, Japan.

    Science.gov (United States)

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-01-15

    Recent studies have reported adverse health effects of short-term exposure to coarse particles independent of particulate matter less than 2.5 μm in diameter (PM2.5), but evidence in Asian countries is limited. We therefore evaluated associations between short-term exposure to particulate matter (PM) and mortality among older people in Tokyo, Japan. We used a time-stratified, case-crossover design. Study participants included 664,509 older people (≥65 years old) in the 23 urbanized wards of the Tokyo Metropolitan Government, who died between January 2002 and December 2013. We obtained PM2.5 and suspended particulate matter (SPM; PMPM7-2.5 by subtracting PM2.5 from SPM to account for coarse particles. We then used conditional logistic regression to estimate odds ratios (ORs) and 95 confidence intervals (CIs). Same-day PM2.5 and PM7-2.5 were independently associated with all-cause and cause-specific mortality related to cardiovascular and respiratory diseases; for example, both pollutants were positively associated with increased risk of all-cause mortality even after simultaneous adjustment for each pollutant: OR of 1.006 (95% CI: 1.003, 1.009) for PM2.5 and 1.016 (95% CI: 1.011, 1.022) for PM7-2.5. Even below concentrations stipulated by the Japanese air quality guidelines for PM2.5 and SPM (PM7), we observed adverse health effects. This study provides further evidence that acute exposure to PM2.5 and coarse particles is associated with increased risk of mortality among older people. Rigorous evaluation of air quality guidelines for daily average PM2.5 and larger particles should be continued. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Particulate air pollution and mortality in a cohort of Chinese men.

    Science.gov (United States)

    Zhou, Maigeng; Liu, Yunning; Wang, Lijun; Kuang, Xingya; Xu, Xiaohui; Kan, Haidong

    2014-03-01

    Few prior cohort studies exist in developing countries examining the association of ambient particulate matter (PM) with mortality. We examined the association of particulate air pollution with mortality in a prospective cohort study of 71,431 middle-aged Chinese men. Baseline data were obtained during 1990-1991. The follow-up evaluation was completed in January, 2006. Annual average PM exposure between 1990 and 2005, including TSP and PM10, were estimated by linking fixed-site monitoring data with residential communities. We found significant associations between PM10 and mortality from cardiopulmonary diseases; each 10 μg/m(3) PM10 was associated with a 1.6% (95%CI: 0.7%, 2.6%), 1.8% (95%CI: 0.8%, 2.9%) and 1.7% (95%CI: 0.3%, 3.2%) increased risk of total, cardiovascular and respiratory mortality, respectively. For TSP, we observed significant associations only for cardiovascular morality. These data contribute to the scientific literature on long-term effects of particulate air pollution for high exposure settings typical in developing countries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Long-Term Exposure to Fine Particulate Matter: Association with Nonaccidental and Cardiovascular Mortality in the Agricultural Health Study Cohort

    OpenAIRE

    Weichenthal, Scott; Villeneuve, Paul J.; Burnett, Richard T.; van Donkelaar, Aaron; Martin, Randall V.; Jones, Rena R.; DellaValle, Curt T.; Sandler, Dale P.; Ward, Mary H.; Hoppin, Jane A.

    2014-01-01

    Background: Few studies have examined the relationship between long-term exposure to ambient fine particulate matter (PM2.5) and nonaccidental mortality in rural populations. Objective: We examined the relationship between PM2.5 and nonaccidental and cardiovascular mortality in the U.S. Agricultural Health Study cohort. Methods: The cohort (n = 83,378) included farmers, their spouses, and commercial pesticide applicators residing primarily in Iowa and North Carolina. Deaths occurring between ...

  14. Particulate air pollution and mortality in a cohort of Chinese men

    International Nuclear Information System (INIS)

    Zhou, Maigeng; Liu, Yunning; Wang, Lijun; Kuang, Xingya; Xu, Xiaohui; Kan, Haidong

    2014-01-01

    Few prior cohort studies exist in developing countries examining the association of ambient particulate matter (PM) with mortality. We examined the association of particulate air pollution with mortality in a prospective cohort study of 71,431 middle-aged Chinese men. Baseline data were obtained during 1990–1991. The follow-up evaluation was completed in January, 2006. Annual average PM exposure between 1990 and 2005, including TSP and PM 10 , were estimated by linking fixed-site monitoring data with residential communities. We found significant associations between PM 10 and mortality from cardiopulmonary diseases; each 10 μg/m 3 PM 10 was associated with a 1.6% (95%CI: 0.7%, 2.6%), 1.8% (95%CI: 0.8%, 2.9%) and 1.7% (95%CI: 0.3%, 3.2%) increased risk of total, cardiovascular and respiratory mortality, respectively. For TSP, we observed significant associations only for cardiovascular morality. These data contribute to the scientific literature on long-term effects of particulate air pollution for high exposure settings typical in developing countries. -- Highlights: • There have been few air pollution cohort studies in developing countries. • PM 10 was associated with increased cardiorespiratory mortality in 71,431 Chinese men. • PM was not significantly associated with lung cancer mortality. -- PM 10 was associated with increased cardiorespiratory mortality in a cohort of 71,431 Chinese men

  15. Interactions between particulate air pollution and temperature in air pollution mortality time series studies

    International Nuclear Information System (INIS)

    Roberts, Steven

    2004-01-01

    In many community time series studies on the effect of particulate air pollution on mortality, particulate air pollution is modeled additively. In this study, we investigated the interaction between daily particulate air pollution and daily mean temperature in Cook County, Illinois and Allegheny County, Pennsylvania, using data for the period 1987-1994. This was done through the use of joint particulate air pollution-temperature response surfaces and by stratifying the effect of particulate air pollution on mortality by temperature. Evidence that the effect of particulate air pollution on mortality may depend on temperature is found. However, the results were sensitive to the number of degrees of freedom used in the confounder adjustments, the particulate air pollution exposure measure, and how the effects of temperature on mortality are modeled. The results were less sensitive to the estimation method used--generalized linear models and natural cubic splines or generalized additive models and smoothing splines. The results of this study suggest that in community particulate air pollution mortality time series studies the possibility of an interaction between daily particulate air pollution and daily mean temperature should be considered

  16. Integrated indoor and outdoor exposure assessment framework for fine particulate matter pollution

    DEFF Research Database (Denmark)

    McKone, Thomas E; Hodas, Natasha; Apte, Joshua S.

    2016-01-01

    The 2010 Global Burden of Disease report demonstrates that fine particulate matter (PM2.5) pollution is the major environmental contributor to mortality. Exposures outdoors (ambient) and indoors (household) contribute almost qually to this burden. Unfortunately, the health impacts from exposure t...

  17. Fine particulate air pollution and all-cause mortality within the Harvard Six-Cities Study: variations in risk by period of exposure.

    Science.gov (United States)

    Villeneuve, Paul J; Goldberg, Mark S; Krewski, Daniel; Burnett, Richard T; Chen, Yue

    2002-11-01

    We used Poisson regression methods to examine the relation between temporal changes in the levels of fine particulate air pollution (PM(2.5)) and the risk of mortality among participants of the Harvard Six Cities longitudinal study. Our analyses were based on 1430 deaths that occurred between 1974 and 1991 in a cohort that accumulated 105,714 person-years of follow-up. For each city, indices of PM(2.5) were derived using daily samples. Individual level data were collected on several risk factors including: smoking, education, body mass index (BMI), and occupational exposure to dusts. Time-dependent indices of PM(2.5) were created across 13 calendar periods (/= 1990) to explore whether recent or chronic exposures were more important predictors of mortality. The relative risk (RR) of mortality calculated using Poisson regression based on average city-specific exposures that remained constant during follow-up was 1.31 [95% confidence interval (CI) = 1.12-1.52] per 18.6 microg/m(3) of PM(2.5). This result was similar to the risk calculated using the Cox model (RR = 1.26, 95% CI = 1.08-1.46). The RR of mortality was attenuated when the Poisson regression model included a time-dependent estimate of exposure (RR = 1.19, 95% CI = 1.04-1.36). There was little variation in RR across time-dependent indices of PM(2.5). The attenuated risk of mortality that was observed with a time-dependent index of PM(2.5) is due to the combined influence of city-specific variations in mortality rates and decreasing levels of air pollution that occurred during follow-up. The RR of mortality associated with PM(2.5) did not depend on when exposure occurred in relation to death, possibly because of little variation between the time-dependent city-specific exposure indices.

  18. ACUTE EXPOSURE TO PARTICULATE MATTER IN A RAT MODEL OF HEART FAILURE

    Science.gov (United States)

    Human exposure to ambient particulate matter (PM) has been linked to cardiovascular morbidity and mortality. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). To better characterize the cardiovascular effects of PM, we...

  19. Spatiotemporal analysis of particulate air pollution and ischemic heart disease mortality in Beijing, China.

    Science.gov (United States)

    Xu, Meimei; Guo, Yuming; Zhang, Yajuan; Westerdahl, Dane; Mo, Yunzheng; Liang, Fengchao; Pan, Xiaochuan

    2014-12-12

    Few studies have used spatially resolved ambient particulate matter with an aerodynamic diameter of <10 μm (PM10) to examine the impact of PM10 on ischemic heart disease (IHD) mortality in China. The aim of our study is to evaluate the short-term effects of PM10 concentrations on IHD mortality by means of spatiotemporal analysis approach. We collected daily data on air pollution, weather conditions and IHD mortality in Beijing, China during 2008 and 2009. Ordinary kriging (OK) was used to interpolate daily PM10 concentrations at the centroid of 287 township-level areas based on 27 monitoring sites covering the whole city. A generalized additive mixed model was used to estimate quantitatively the impact of spatially resolved PM10 on the IHD mortality. The co-effects of the seasons, gender and age were studied in a stratified analysis. Generalized additive model was used to evaluate the effects of averaged PM10 concentration as well. The averaged spatially resolved PM10 concentration at 287 township-level areas was 120.3 ± 78.1 μg/m3. Ambient PM10 concentration was associated with IHD mortality in spatiotemporal analysis and the strongest effects were identified for the 2-day average. A 10 μg/m3 increase in PM10 was associated with an increase of 0.33% (95% confidence intervals: 0.13%, 0.52%) in daily IHD mortality. The effect estimates using spatially resolved PM10 were larger than that using averaged PM10. The seasonal stratification analysis showed that PM10 had the statistically stronger effects on IHD mortality in summer than that in the other seasons. Males and older people demonstrated the larger response to PM10 exposure. Our results suggest that short-term exposure to particulate air pollution is associated with increased IHD mortality. Spatial variation should be considered for assessing the impacts of particulate air pollution on mortality.

  20. Prolonged continuous exposure to high fine particulate matter associated with cardiovascular and respiratory disease mortality in Beijing, China

    Science.gov (United States)

    Wang, Jinfeng; Yin, Qian; Tong, Shilu; Ren, Zhoupeng; Hu, Maogui; Zhang, Hongrui

    2017-11-01

    Although many studies examined the effects of fine particulate matter (PM2.5) on the deaths of cardiovascular disease (CVD) and respiratory disease (RD), few research has paid attention to the effects of prolonged continuous exposure to high PM2.5 pollution. This study estimated the excess risks (ER) of CVD and RD mortalities associated with prolonged continuous exposure to high PM2.5 pollution for the whole population and specific subsociodemographic groups in Beijing, which is the capital city of China with over 20 million residents and having severe PM2.5 pollution problems. Our results suggested that when high PM2.5 pollution occurred continuously, at various thresholds and durations, the adverse effects on CVD and RD mortalities varied significantly. The CVD mortality risks in association with prolonged continuous high PM2.5 pollution exposure were more serious for single individuals (including unmarried, divorced, and widowed), illiterate and outdoor workers than for other specific subsociodemographic groups. When the daily PM2.5 concentration higher than 105 μg/m3 consecutively occurs, at the ninth day, the ERs of CVD death for single individuals, illiterate and outdoor workers groups reached to 45% (95% CI: 22, 71), 51% (95% CI: 28, 79) and 53% (95% CI: 29, 82) respectively. On the other hand, prolonged continuous high PM2.5 pollution level appeared to contribute a higher proportion of RD deaths among illiterate and outdoor workers, but less significant for the other specific subsociodemographic groups. When the duration with daily PM2.5 pollution higher than 115 μg/m3 reached to six days, the ERs for outdoor workers and illiterate attributed to prolonged continuous PM2.5 pollution exposure increased 36% (95% CI: 5, 76) and 49% (95% CI: 16, 91) respectively.

  1. [Prolonged exposure to atmospheric air pollution and mortality from respiratory causes].

    Science.gov (United States)

    Eilstein, D

    2009-12-01

    Different designs can be used to analyze the relationships between respiratory mortality and long term exposure to atmospheric pollution: epidemiological studies (cohort, prevalence study) demonstrate the reality of the relationship and toxicological studies explain it. Cohort studies have the advantage of being able to take into account many confounding factors and thus avoid biases (which is not the case with prevalence studies), but require significant human and financial resources. They were first adopted in the US, but are now more often applied in Europe. The results are relatively consistent, as they all show a statistically significant association between an increase in particulate pollution and cardiopulmonary mortality. Mortality from lung cancer is also associated with long term exposition to particles and sometimes to ozone or nitrogen oxides. Cerebrovascular diseases and sudden death of young children have also been associated with particulate pollution. The relationships are more powerful for long term than short term exposure but are also linear and without threshold. In order to explain these effects (today the causality of the relationship is certain) there are many possible factors, particularly regarding particulate exposures: an increase in cardiovascular risk biomarkers (fibrinogen, white blood cells, and platelets), atherosclerosis, chronic inflammation of lung tissues increased by acute exposure, etc. More and more studies address the interaction between gene and environment and even epigenetic phenomena which could be responsible of these effects. Public Health impact could be quantified. The European E&H surveillance program Apheis, for example, estimated that if PM2.5 levels remained below 15 microg/m(3), a 30 year old person could see his life expectancy increased by 1 month to 2 years, depending on the studied city. Finally, mortality is not the only relevant indicator for health effects of air pollution. ISAAC studies address asthma

  2. Estimating mortality derived from indoor exposure to particles of outdoor origin.

    Directory of Open Access Journals (Sweden)

    Wenjing Ji

    Full Text Available Following an extensive review of the literature, we further analyze the published data to examine the health effects of indoor exposure to particulate matter (PM of outdoor origin. We obtained data on all-cause, cardiovascular, and respiratory mortality per 10 μg/m3 increase in outdoor PM10 or PM2.5; the infiltration factors for buildings; and estimated time spent outdoors by individuals in the United States, Europe, China, and globally. These data were combined log-linear exposure-response model to estimate the all-cause, cardiovascular, and respiratory mortality of exposure to indoor PM pollution of outdoor origin. Indoor PM pollution of outdoor origin is a cause of considerable mortality, accounting for 81% to 89% of the total increase in mortality associated with exposure to outdoor PM pollution for the studied regions. The findings suggest that enhancing the capacity of buildings to protect occupants against exposure to outdoor PM pollution has significant potential to improve public health outcomes.

  3. Particulate air pollution and daily mortality in Detroit.

    Science.gov (United States)

    Schwartz, J

    1991-12-01

    Particulate air pollution has been associated with increased mortality during episodes of high pollution concentrations. The relationship at lower concentrations has been more controversial, as has the relative role of particles and sulfur dioxide. Replication has been difficult because suspended particle concentrations are usually measured only every sixth day in the U.S. This study used concurrent measurements of total suspended particulates (TSP) and airport visibility from every sixth day sampling for 10 years to fit a predictive model for TSP. Predicted daily TSP concentrations were then correlated with daily mortality counts in Poisson regression models controlling for season, weather, time trends, overdispersion, and serial correlation. A significant correlation (P less than 0.0001) was found between predicted TSP and daily mortality. This correlation was independent of sulfur dioxide, but not vice versa. The magnitude of the effect was very similar to results recently reported from Steubenville, Ohio (using actual TSP measurements), with each 100 micrograms/m3 increase in TSP resulting in a 6% increase in mortality. Graphical analysis indicated a dose-response relationship with no evidence of a threshold down to concentrations below half of the National Ambient Air Quality Standards for particulate matter.

  4. Health impact caused by exposure to particulate matter in the air of Tehran in the past decade

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2017-03-01

    Full Text Available Background: Air pollution, especially the phenomenon of dust and particulate matter can cause mortality of many civilians, and causes various diseases including cardiovascular and respiratory diseases. One of the major pollutants in the air is particulate matter that concentration has increased over recent years. So, present study with aim of Quantification Health Endpoints Attributed to particulate matter in Tehran, Capital of Iran during the past decade (2005-2014 by AirQ software, version 2.2.3 (WHO European Centre for Environment and Health was performed. Methods: This study is a descriptive-analytic investigation. The process of performance this study lasted 12 months. Subject of this the study and research was in Environmental Health Engineering Department of Iran University of Medical Sciences. Exact data of every hour pollutants were taken from Department of environmental (DOE Islamic Republic Iran and Air Quality Control Company of Tehran. Then validated according to the World Health Organization (WHO guidelines and Statistical parameters for quantifying health effects were calculated in excel software. Finally, assessment of cases total mortality, cardiovascular mortality, respiratory mortality and cardiovascular disease and respiratory disease, with AirQ software was performed. Results: The results of this study showed that the number of total mortality, cardiovascular mortality and respiratory mortality caused by exposure to Particulate matter smaller than 10 microns (PM10 in the past decade is 11776, 12121 and 33066 cases respectively. Also the total number of hospital admission due to cardiovascular disease and respiratory disease in the past decade is 20990 and 54352 cases in 2005-2014 years. Conclusion: According to the results of this study, during the last decade the level of air pollution and Concentration of pollutants in Tehran Increased. Effects and health consequences due to exposure to Particulate matter smaller than 10

  5. PARTICULATE MATTER EXPOSURE IN CARS IS ASSOCIATED WITH CARDIOVASCULAR EFFECTS IN HEALTHY YOUNG MEN

    Science.gov (United States)

    Exposure to fine airborne particulate matter (PM(2.5)) is associated with cardiovascular events and mortality in older and cardiac patients. Potential physiologic effects of in-vehicle, roadside, and ambient PM(2.5) were investigated in young, healthy, nonsmoking, male North Caro...

  6. Ozone co-exposure modifies cardiac function responses to fine and ultrafine particulate matter in mice

    Science.gov (United States)

    There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mortality. Although the data supporting these findings are increasingly more convincing, the immediate impact of PM inhala...

  7. Influence of exposure differences on city-to-city heterogeneity in PM2.5-mortality associations in US cities

    Science.gov (United States)

    Multi-city population-based epidemiological studies have observed heterogeneity between city-specific fine particulate matter (PM2.5)-mortality effect estimates. These studies typically use ambient monitoring data as a surrogate for exposure leading to potential exposure misclass...

  8. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials

    DEFF Research Database (Denmark)

    Møller, Peter; Christophersen, Daniel Vest; Raun Jacobsen, Nicklas

    2016-01-01

    Exposure to particulate matter (PM) from traffic vehicles is hazardous to the vascular system, leading to clinical manifestations and mortality due to ischemic heart disease. By analogy, nanomaterials may also be associated with the same outcomes. Here, the effects of exposure to PM from ambient......O2, carbon black and carbon nanotubes, have similar hazards to the vascular system as combustion-derived PM....

  9. Mortality, hospital days and expenditures attributable to ambient air pollution from particulate matter in Israel.

    Science.gov (United States)

    Ginsberg, Gary M; Kaliner, Ehud; Grotto, Itamar

    2016-01-01

    Worldwide, ambient air pollution accounts for around 3.7 million deaths annually. Measuring the burden of disease is important not just for advocacy but also is a first step towards carrying out a full cost-utility analysis in order to prioritise technological interventions that are available to reduce air pollution (and subsequent morbidity and mortality) from industrial, power generating and vehicular sources. We calculated the average national exposure to particulate matter particles less than 2.5 μm (PM2.5) in diameter by weighting readings from 52 (non-roadside) monitoring stations by the population of the catchment area around the station. The PM2.5 exposure level was then multiplied by the gender and cause specific (Acute Lower Respiratory Infections, Asthma, Circulatory Diseases, Coronary Heart Failure, Chronic Obstructive Pulmonary Disease, Diabetes, Ischemic Heart Disease, Lung Cancer, Low Birth Weight, Respiratory Diseases and Stroke) relative risks and the national age, cause and gender specific mortality (and hospital utilisation which included neuro-degenerative disorders) rates to arrive at the estimated mortality and hospital days attributable to ambient PM2.5 pollution in Israel in 2015. We utilised a WHO spread-sheet model, which was expanded to include relative risks (based on more recent meta-analyses) of sub-sets of other diagnoses in two additional models. Mortality estimates from the three models were 1609, 1908 and 2253 respectively in addition to 184,000, 348,000 and 542,000 days hospitalisation in general hospitals. Total costs from PM2.5 pollution (including premature burial costs) amounted to $544 million, $1030 million and $1749 million respectively (or 0.18 %, 0.35 % and 0.59 % of GNP). Subject to the caveat that our estimates were based on a limited number of non-randomly sited stations exposure data. The mortality, morbidity and monetary burden of disease attributable to air pollution from particulate matter in Israel is of

  10. An update on mortality in Denmark caused by fine particulate matter air pollution

    DEFF Research Database (Denmark)

    Bønløkke, Jakob Hjort; Andersen, Mikael Skou; Brandt, Jørgen

    Introduction In terms of effects on mortality fine particulate matter (PM2.5) is considered the most important component of air polllution. Several international studies have investigated the effect size. It is estimated that overall mortality increases 6% per 10µg/m3 increase in annual PM2.......5 and that PM2.5 affects global mortality signficantly (Hoek, 2013). The first attempt to describe the size of the effects of PM2.5 in Denmark were published in 2002 (Raaschou-Nielsen, 2002). At that time only PM10 data were available and only with a great deal of uncertainty. Since then the knowledge of PM2...... to what extent the changes in estimates of mortality from PM2.5 exposure over the years is due to changes in population and in pollution and to what extent they are due to improved models. Methods Several methods of calculation were compared for the year 2012. First the method used in 2002 in which...

  11. Emissions from residential energy use dominate exposure to ambient fine particulate matter in India

    Science.gov (United States)

    Conibear, L.; Butt, E. W.; Knote, C. J.; Arnold, S.; Spracklen, D. V.

    2017-12-01

    Exposure to ambient particulate matter of less than 2.5 µm in diameter (PM2.5) is a leading cause of disease burden in India. Information on the source contributions to the burden of disease attributable to ambient PM2.5 exposure is critical to support the national and sub-national control of air pollution. Previous studies analysing the contributions of different emission sectors to disease burden in India have been limited by coarse model resolutions and a lack of extensive PM2.5 observations before 2016. We use a regional numerical weather prediction model online-coupled with chemistry, evaluated against extensive surface observations, to make the first high resolution study of the contributions of seven emission sectors to the disease burden associated with ambient PM2.5 exposure in India. We find that residential energy use is the dominant contributing emission sector. Removing air pollution emissions from residential energy use would reduce population-weighted annual mean ambient PM2.5 concentrations by 52%, reducing the number of premature mortalities caused by exposure to ambient PM2.5 by 26%, equivalent to 268,000 (95% uncertainty interval (95UI): 167,000-360,000) lives every year. The smaller fractional reduction in mortality burden is due to the non-linear exposure-response relationship at the high PM2.5 concentrations observed across India and consequently large reductions in emissions are required to reduce the health burden from ambient PM2.5 exposure in India. Keywords: ambient air quality, India, residential energy use, health impact, particulate matter, WRF-Chem

  12. Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults.

    Science.gov (United States)

    Pun, Vivian C; Kazemiparkouhi, Fatemeh; Manjourides, Justin; Suh, Helen H

    2017-10-15

    The impact of chronic exposure to fine particulate matter (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5)) on respiratory disease and lung cancer mortality is poorly understood. In a cohort of 18.9 million Medicare beneficiaries (4.2 million deaths) living across the conterminous United States between 2000 and 2008, we examined the association between chronic PM2.5 exposure and cause-specific mortality. We evaluated confounding through adjustment for neighborhood behavioral covariates and decomposition of PM2.5 into 2 spatiotemporal scales. We found significantly positive associations of 12-month moving average PM2.5 exposures (per 10-μg/m3 increase) with respiratory, chronic obstructive pulmonary disease, and pneumonia mortality, with risk ratios ranging from 1.10 to 1.24. We also found significant PM2.5-associated elevated risks for cardiovascular and lung cancer mortality. Risk ratios generally increased with longer moving averages; for example, an elevation in 60-month moving average PM2.5 exposures was linked to 1.33 times the lung cancer mortality risk (95% confidence interval: 1.24, 1.40), as compared with 1.13 (95% confidence interval: 1.11, 1.15) for 12-month moving average exposures. Observed associations were robust in multivariable models, although evidence of unmeasured confounding remained. In this large cohort of US elderly, we provide important new evidence that long-term PM2.5 exposure is significantly related to increased mortality from respiratory disease, lung cancer, and cardiovascular disease. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Mortality among population with exposure to industrial air pollution containing nickel and other toxic metals.

    Science.gov (United States)

    Pasanen, Kari; Pukkala, Eero; Turunen, Anu W; Patama, Toni; Jussila, Ilkka; Makkonen, Sari; Salonen, Raimo O; Verkasalo, Pia K

    2012-05-01

    To assess disease mortality among people with exposure to metal-rich particulate air pollution. We conducted a cohort study on mortality from 1981 to 2005 among 33,573 people living near a nickel/copper smelter in Harjavalta, Finland. Nickel concentration in soil humus was selected as an indicator for long-term exposure. Relative risks--adjusted for age, socioeconomic status, and calendar period--were calculated for three exposure zones. The relative risks for diseases of the circulatory system by increasing exposure were 0.93 (95% confidence interval = 0.79 to 1.09), 1.20 (1.04 to 1.39), and 1.18 (1.00 to 1.39) among men and 1.01 (0.88 to 1.17), 1.20 (1.04 to 1.38), and 1.14 (0.97 to 1.33) among women. Exclusion of smelter workers from the cohort did not materially change the results. Long-term environmental exposure to metal-rich air pollution was associated with increased mortality from circulatory diseases.

  14. Ozone, Fine Particulate Matter, and Chronic Lower Respiratory Disease Mortality in the United States.

    Science.gov (United States)

    Hao, Yongping; Balluz, Lina; Strosnider, Heather; Wen, Xiao Jun; Li, Chaoyang; Qualters, Judith R

    2015-08-01

    Short-term effects of air pollution exposure on respiratory disease mortality are well established. However, few studies have examined the effects of long-term exposure, and among those that have, results are inconsistent. To evaluate long-term association between ambient ozone, fine particulate matter (PM2.5, particles with an aerodynamic diameter of 2.5 μm or less), and chronic lower respiratory disease (CLRD) mortality in the contiguous United States. We fit Bayesian hierarchical spatial Poisson models, adjusting for five county-level covariates (percentage of adults aged ≥65 years, poverty, lifetime smoking, obesity, and temperature), with random effects at state and county levels to account for spatial heterogeneity and spatial dependence. We derived county-level average daily concentration levels for ambient ozone and PM2.5 for 2001-2008 from the U.S. Environmental Protection Agency's down-scaled estimates and obtained 2007-2008 CLRD deaths from the National Center for Health Statistics. Exposure to ambient ozone was associated with an increased rate of CLRD deaths, with a rate ratio of 1.05 (95% credible interval, 1.01-1.09) per 5-ppb increase in ozone; the association between ambient PM2.5 and CLRD mortality was positive but statistically insignificant (rate ratio, 1.07; 95% credible interval, 0.99-1.14). This study links air pollution exposure data with CLRD mortality for all 3,109 contiguous U.S. counties. Ambient ozone may be associated with an increased rate of death from CLRD in the contiguous United States. Although we adjusted for selected county-level covariates and unobserved influences through Bayesian hierarchical spatial modeling, the possibility of ecologic bias remains.

  15. Domestic smoke exposure is associated with alveolar macrophage particulate load.

    Science.gov (United States)

    Fullerton, Duncan G; Jere, Khuzwayo; Jambo, Kondwani; Kulkarni, Neeta S; Zijlstra, Eduard E; Grigg, Jonathan; French, Neil; Molyneux, Malcolm E; Gordon, Stephen B

    2009-03-01

    Indoor air pollution is associated with impaired respiratory health. The pre-dominant indoor air pollutant to which two billion of the world's population is exposed is biomass fuel smoke. We tested the hypothesis that reported smoke exposure in men and women is associated with increased alveolar macrophage uptake of biomass smoke particulates. Healthy volunteers attending for research bronchoscopy in Malawi completed a questionnaire assessment of smoke exposure. Particulate matter visible in alveolar macrophages (AM) was quantified using digital image analysis. The geometric mean of the percentage area of the cytoplasm occupied by particulates in 50 cover-slip adherent AM was calculated and termed particulate load. In 57 subjects (40 men and 17 women) there was a significant difference between the particulate load in groups divided according to pre-dominant lighting form used at home (ANOVA P = 0.0009) and type of cooking fuel (P = 0.0078). Particulate load observed in macrophages is associated with the reported type of biomass fuel exposure. Macrophage function in relation to respiratory health should now be investigated in biomass smoke exposed subjects.

  16. Is long-term exposure to traffic pollution associated with mortality? A small-area study in London.

    Science.gov (United States)

    Halonen, Jaana I; Blangiardo, Marta; Toledano, Mireille B; Fecht, Daniela; Gulliver, John; Ghosh, Rebecca; Anderson, H Ross; Beevers, Sean D; Dajnak, David; Kelly, Frank J; Wilkinson, Paul; Tonne, Cathryn

    2016-01-01

    Long-term exposure to primary traffic pollutants may be harmful for health but few studies have investigated effects on mortality. We examined associations for six primary traffic pollutants with all-cause and cause-specific mortality in 2003-2010 at small-area level using linear and piecewise linear Poisson regression models. In linear models most pollutants showed negative or null association with all-cause, cardiovascular or respiratory mortality. In the piecewise models we observed positive associations in the lowest exposure range (e.g. relative risk (RR) for all-cause mortality 1.07 (95% credible interval (CI) = 1.00-1.15) per 0.15 μg/m(3) increase in exhaust related primary particulate matter ≤2.5 μm (PM2.5)) whereas associations in the highest exposure range were negative (corresponding RR 0.93, 95% CI: 0.91-0.96). Overall, there was only weak evidence of positive associations with mortality. That we found the strongest positive associations in the lowest exposure group may reflect residual confounding by unmeasured confounders that varies by exposure group. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses

    Science.gov (United States)

    BackgroundStudies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM...

  18. Long-term air pollution exposure and cardio- respiratory mortality: a review

    Science.gov (United States)

    2013-01-01

    Current day concentrations of ambient air pollution have been associated with a range of adverse health effects, particularly mortality and morbidity due to cardiovascular and respiratory diseases. In this review, we summarize the evidence from epidemiological studies on long-term exposure to fine and coarse particles, nitrogen dioxide (NO2) and elemental carbon on mortality from all-causes, cardiovascular disease and respiratory disease. We also summarize the findings on potentially susceptible subgroups across studies. We identified studies through a search in the databases Medline and Scopus and previous reviews until January 2013 and performed a meta-analysis if more than five studies were available for the same exposure metric. There is a significant number of new studies on long-term air pollution exposure, covering a wider geographic area, including Asia. These recent studies support associations found in previous cohort studies on PM2.5. The pooled effect estimate expressed as excess risk per 10 μg/m3 increase in PM2.5 exposure was 6% (95% CI 4, 8%) for all-cause and 11% (95% CI 5, 16%) for cardiovascular mortality. Long-term exposure to PM2.5 was more associated with mortality from cardiovascular disease (particularly ischemic heart disease) than from non-malignant respiratory diseases (pooled estimate 3% (95% CI −6, 13%)). Significant heterogeneity in PM2.5 effect estimates was found across studies, likely related to differences in particle composition, infiltration of particles indoors, population characteristics and methodological differences in exposure assessment and confounder control. All-cause mortality was significantly associated with elemental carbon (pooled estimate per 1 μg/m3 6% (95% CI 5, 7%)) and NO2 (pooled estimate per 10 μg/m3 5% (95% CI 3, 8%)), both markers of combustion sources. There was little evidence for an association between long term coarse particulate matter exposure and mortality, possibly due to the small number of

  19. Particulate air pollution and increased mortality: Biological plausibility for causal relationship

    International Nuclear Information System (INIS)

    Henderson, R.F.

    1995-01-01

    Recently, a number of epidemiological studies have concluded that ambient particulate exposure is associated with increased mortality and morbidity at PM concentrations well below those previously thought to affect human health. These studies have been conducted in several different geographical locations and have involved a range of populations. While the consistency of the findings and the presence of an apparent concentration response relationship provide a strong argument for causality, epidemiological studies can only conclude this based upon inference from statistical associations. The biological plausibility of a causal relationship between low concentrations of PM and daily mortality and morbidity rates is neither intuitively obvious nor expected based on past experimental studies on the toxicity of inhaled particles. Chronic toxicity from inhaled, poorly soluble particles has been observed based on the slow accumulation of large lung burdens of particles, not on small daily fluctuations in PM levels. Acute toxicity from inhaled particles is associated mainly with acidic particles and is observed at much higher concentrations than those observed in the epidemiology studies reporting an association between PM concentrations and morbidity/mortality. To approach the difficult problem of determining if the association between PM concentrations and daily morbidity and mortality is biologically plausible and causal, one must consider (1) the chemical and physical characteristics of the particles in the inhaled atmospheres, (2) the characteristics of the morbidity/mortality observed and the people who are affected, and (3) potential mechanisms that might link the two

  20. Is long-term exposure to traffic pollution associated with mortality? A small-area study in London

    International Nuclear Information System (INIS)

    Halonen, Jaana I.; Blangiardo, Marta; Toledano, Mireille B.; Fecht, Daniela; Gulliver, John; Ghosh, Rebecca; Anderson, H. Ross; Beevers, Sean D.; Dajnak, David; Kelly, Frank J.; Wilkinson, Paul; Tonne, Cathryn

    2016-01-01

    Long-term exposure to primary traffic pollutants may be harmful for health but few studies have investigated effects on mortality. We examined associations for six primary traffic pollutants with all-cause and cause-specific mortality in 2003–2010 at small-area level using linear and piecewise linear Poisson regression models. In linear models most pollutants showed negative or null association with all-cause, cardiovascular or respiratory mortality. In the piecewise models we observed positive associations in the lowest exposure range (e.g. relative risk (RR) for all-cause mortality 1.07 (95% credible interval (CI) = 1.00–1.15) per 0.15 μg/m"3 increase in exhaust related primary particulate matter ≤2.5 μm (PM_2_._5)) whereas associations in the highest exposure range were negative (corresponding RR 0.93, 95% CI: 0.91–0.96). Overall, there was only weak evidence of positive associations with mortality. That we found the strongest positive associations in the lowest exposure group may reflect residual confounding by unmeasured confounders that varies by exposure group. - Highlights: • Evidence of association between primary traffic pollutants and mortality is scarce. • We examined this in a large city using most recent small-area statistical methods. • Overall, there was only weak evidence of positive associations with mortality. - Overall, there was only weak evidence of positive associations between long-term exposure to primary traffic pollutants and mortality for all, cardiovascular or respiratory causes.

  1. Effect of particulate matter less than 10μm (PM10 on mortality in Bogota, Colombia: a time-series analysis, 1998-2006

    Directory of Open Access Journals (Sweden)

    Luis Camilo Blanco-Becerra

    2014-07-01

    Full Text Available Objective. To analyze the association between daily mortality from different causes and acute exposure to particulate matter less than 10 microns in aerodynamic diameter (PM10, in Bogota, Colombia. Materials and methods. A time-series ecological study was conducted from 1998 to 2006. The association between mortality (due to different causes and exposure was analyzed using single and distributed lag models and adjusting for potential confounders. Results. For all ages, the cumulative effect of acute mortality from all causes and respiratory causes increased 0.71% (95%CI 0.46-0.96 and 1.43% (95%CI 0.85-2.00, respectively, per 10μg/m3 increment in daily average PM10 with a lag of three days before death. Cumulative effect of mortality from cardiovascular causes was -0.03% (95%CI -0.49-0.44% with the same lag. Conclusions. The results suggest an association between an increase in PM10 concentrations and acute mortality from all causes and respiratory causes.

  2. Long-term exposure to ambient air pollution and mortality in a Chinese tuberculosis cohort.

    Science.gov (United States)

    Peng, Zhuoxin; Liu, Cong; Xu, Biao; Kan, Haidong; Wang, Weibing

    2017-02-15

    Evidence for the relationship between exposure to ambient air pollution and the mortality of tuberculosis (TB) patients is limited. We analyzed the association between long-term exposure to particulate matter mortality in a Chinese TB patients cohort from 2003 to 2013. Data from the Global Burden of Disease 2013 estimate were used to assess yearly average concentrations of PM 2.5 and ozone at the household addresses of participants. Cox regression was used to calculate adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for cause-specific mortality, controlling for demographic and other TB-related factors. There were 4444 eligible subjects, including 891 deaths, over a median follow-up of 2464days. Per an interquartile range increase (2.06μg/m 3 ), multivariable analysis indicated that exposure to PM 2.5 was significantly associated with overall mortality (aHR=1.30, 95% CI: 1.19, 1.42), mortality from TB (aHR=1.46, 95% CI: 1.15, 1.85), respiratory cancers (aHR=1.72, 95% CI: 1.36, 2.19), other respiratory diseases (aHR=1.19, 95% CI: 1.02, 1.38), and other cancers (aHR=1.76, 95% CI: 1.33, 2.32). Long-term exposure to PM 2.5 increases the risk of death from TB and other diseases among TB patients. It suggests that the control of ambient air pollution may help decreasing the mortality caused by TB. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fine Particulate Air Pollution and Daily Mortality. A Nationwide Analysis in 272 Chinese Cities.

    Science.gov (United States)

    Chen, Renjie; Yin, Peng; Meng, Xia; Liu, Cong; Wang, Lijun; Xu, Xiaohui; Ross, Jennifer A; Tse, Lap A; Zhao, Zhuohui; Kan, Haidong; Zhou, Maigeng

    2017-07-01

    Evidence concerning the acute health effects of air pollution caused by fine particulate matter (PM 2.5 ) in developing countries is quite limited. To evaluate short-term associations between PM 2.5 and daily cause-specific mortality in China. A nationwide time-series analysis was performed in 272 representative Chinese cities from 2013 to 2015. Two-stage Bayesian hierarchical models were applied to estimate regional- and national-average associations between PM 2.5 concentrations and daily cause-specific mortality. City-specific effects of PM 2.5 were estimated using the overdispersed generalized additive models after adjusting for time trends, day of the week, and weather conditions. Exposure-response relationship curves and potential effect modifiers were also evaluated. The average of annual mean PM 2.5 concentration in each city was 56 μg/m 3 (minimum, 18 μg/m 3 ; maximum, 127 μg/m 3 ). Each 10-μg/m 3 increase in 2-day moving average of PM 2.5 concentrations was significantly associated with increments in mortality of 0.22% from total nonaccidental causes, 0.27% from cardiovascular diseases, 0.39% from hypertension, 0.30% from coronary heart diseases, 0.23% from stroke, 0.29% from respiratory diseases, and 0.38% from chronic obstructive pulmonary disease. There was a leveling off in the exposure-response curves at high concentrations in most, but not all, regions. The associations were stronger in cities with lower PM 2.5 levels or higher temperatures, and in subpopulations with elder age or less education. This nationwide investigation provided robust evidence of the associations between short-term exposure to PM 2.5 and increased mortality from various cardiopulmonary diseases in China. The magnitude of associations was lower than those reported in Europe and North America.

  4. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    International Nuclear Information System (INIS)

    Schneider, Brent C.; Constant, Stephanie L.; Patierno, Steven R.; Jurjus, Rosalyn A.; Ceryak, Susan M.

    2012-01-01

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  5. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Brent C. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); Constant, Stephanie L. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Patierno, Steven R. [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); GW Cancer Institute, The George Washington University, Washington, DC 20037 (United States); Jurjus, Rosalyn A. [Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037 (United States); Ceryak, Susan M., E-mail: phmsmc@gwumc.edu [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States)

    2012-02-15

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  6. Socioeconomic and urban-rural differentials in exposure to air pollution and mortality burden in England.

    Science.gov (United States)

    Milojevic, Ai; Niedzwiedz, Claire L; Pearce, Jamie; Milner, James; MacKenzie, Ian A; Doherty, Ruth M; Wilkinson, Paul

    2017-10-06

    Socioeconomically disadvantaged populations often have higher exposures to particulate air pollution, which can be expected to contribute to differentials in life expectancy. We examined socioeconomic differentials in exposure and air pollution-related mortality relating to larger scale (5 km resolution) variations in background concentrations of selected pollutants across England. Ozone and particulate matter (sub-divided into PM 10 , PM 2.5 , PM 2.5-10 , primary, nitrate and sulphate PM 2.5 ) were simulated at 5 km horizontal resolution using an atmospheric chemistry transport model (EMEP4UK). Annual mean concentrations of these pollutants were assigned to all 1,202,578 residential postcodes in England, which were classified by urban-rural status and socioeconomic deprivation based on the income and employment domains of the 2010 English Index of Multiple Deprivation for the Lower-level Super Output Area of residence. We used life table methods to estimate PM 2.5 -attributable life years (LYs) lost in both relative and absolute terms. Concentrations of the most particulate fractions, but not of nitrate PM 2.5 or ozone, were modestly higher in areas of greater socioeconomic deprivation. Relationships between pollution level and socioeconomic deprivation were non-linear and varied by urban-rural status. The pattern of PM 2.5 concentrations made only a small contribution to the steep socioeconomic gradient in LYs lost due to PM 2.5 per 10 3 population, which primarily was driven by the steep socioeconomic gradient in underlying mortality rates. In rural areas, the absolute burden of air pollution-related LYs lost was lowest in the most deprived deciles. Air pollution shows modest socioeconomic patterning at 5 km resolution in England, but absolute attributable mortality burdens are strongly related to area-level deprivation because of underlying mortality rates. Measures that cause a general reduction in background concentrations of air pollution may modestly

  7. Overall human mortality and morbidity due to exposure to air pollution.

    Science.gov (United States)

    Samek, Lucyna

    2016-01-01

    Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10) and diameter ≤ 2.5 mm (PM2.5) as well as nitrogen dioxide (NO2) have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005-2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ) software was successfully applied. The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS) in Kraków, was used in this study. Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  8. Overall human mortality and morbidity due to exposure to air pollution

    Directory of Open Access Journals (Sweden)

    Lucyna Samek

    2016-06-01

    Full Text Available Objectives: Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10 and diameter ≤ 2.5 mm (PM2.5 as well as nitrogen dioxide (NO2 have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005–2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ software was successfully applied. Material and Methods: The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS in Kraków, was used in this study. Results: Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. Conclusions: The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems.

  9. Smog episodes, fine particulate pollution and mortality in China.

    Science.gov (United States)

    Zhou, Maigeng; He, Guojun; Fan, Maoyong; Wang, Zhaoxi; Liu, Yang; Ma, Jing; Ma, Zongwei; Liu, Jiangmei; Liu, Yunning; Wang, Linhong; Liu, Yuanli

    2015-01-01

    Starting from early January 2013, northern China was hit by multiple prolonged and severe smog events which were characterized by extremely high-level concentrations of ambient fine particulate matter (PM2.5) with hourly peaks of PM2.5 over 800 µg/m(3). However, the consequences of this severe air pollution are largely unknown. This study investigates the acute effect of the smog episodes and PM2.5 on mortality for both urban and rural areas in northern China. We collected PM2.5, mortality, and meteorological data for 5 urban city districts and 2 rural counties in Beijing, Tianjin and Hebei Province of China from January 1, 2013 through December 31, 2013. We employed the generalized additive models to estimate the associations between smog episodes or PM2.5 and daily mortality for each district/county. Without any meteorological control, the smog episodes are positively and statistically significantly associated with mortality in 5 out of 7 districts/counties. However, the findings are sensitive to the meteorological factors. After controlling for temperature, humidity, dew point and wind, the statistical significance disappears in all urban districts. In contrast, the smog episodes are consistently and statistically significantly associated with higher total mortality and mortality from cardiovascular/respiratory diseases in the two rural counties. In Ji County, a smog episode is associated with 6.94% (95% Confidence Interval, -0.20 to 14.58) increase in overall mortality, and in Ci County it is associated with a 19.26% (95% CI, 6.66-33.34) increase in overall mortality. The smog episodes kill people primarily through its impact on cardiovascular and respiratory diseases. On average, a smog episode is associated with 11.66% (95% CI, 3.12-20.90) increase in cardiovascular and respiratory mortality in Ji County, and it is associated with a 22.23% (95% CI, 8.11-38.20) increase in cardiovascular and respiratory mortality in Ci County. A 10 μg/m(3) increase in PM2

  10. Population-Level Exposure to Particulate Air Pollution during Active Travel: Planning for Low-Exposure, Health-Promoting Cities.

    Science.gov (United States)

    Hankey, Steve; Lindsey, Greg; Marshall, Julian D

    2017-04-01

    Providing infrastructure and land uses to encourage active travel (i.e., bicycling and walking) are promising strategies for designing health-promoting cities. Population-level exposure to air pollution during active travel is understudied. Our goals were a ) to investigate population-level patterns in exposure during active travel, based on spatial estimates of bicycle traffic, pedestrian traffic, and particulate concentrations; and b ) to assess how those exposure patterns are associated with the built environment. We employed facility-demand models (active travel) and land use regression models (particulate concentrations) to estimate block-level ( n = 13,604) exposure during rush-hour (1600-1800 hours) in Minneapolis, Minnesota. We used the model-derived estimates to identify land use patterns and characteristics of the street network that are health promoting. We also assessed how exposure is correlated with indicators of health disparities (e.g., household income, proportion of nonwhite residents). Our work uses population-level rates of active travel (i.e., traffic flows) rather than the probability of walking or biking (i.e., "walkability" or "bikeability") to assess exposure. Active travel often occurs on high-traffic streets or near activity centers where particulate concentrations are highest (i.e., 20-42% of active travel occurs on blocks with high population-level exposure). Only 2-3% of blocks (3-8% of total active travel) are "sweet spots" (i.e., high active travel, low particulate concentrations); sweet spots are located a ) near but slightly removed from the city-center or b ) on off-street trails. We identified 1,721 blocks (~ 20% of local roads) where shifting active travel from high-traffic roads to adjacent low-traffic roads would reduce exposure by ~ 15%. Active travel is correlated with population density, land use mix, open space, and retail area; particulate concentrations were mostly unchanged with land use. Public health officials and

  11. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Sean H Ling

    2009-06-01

    Full Text Available Sean H Ling, Stephan F van EedenJames Hogg iCAPTURE Centre for Pulmonary and Cardiovascular Research and Heart and Lung Institute, University of British Columbia, Vancouver, British Columbia, CanadaAbstract: Due to the rapid urbanization of the world population, a better understanding of the detrimental effects of exposure to urban air pollution on chronic lung disease is necessary. Strong epidemiological evidence suggests that exposure to particulate matter (PM air pollution causes exacerbations of pre-existing lung conditions, such as, chronic obstructive pulmonary disease (COPD resulting in increased morbidity and mortality. However, little is known whether a chronic, low-grade exposure to ambient PM can cause the development and progression of COPD. The deposition of PM in the respiratory tract depends predominantly on the size of the particles, with larger particles deposited in the upper and larger airways and smaller particles penetrating deep into the alveolar spaces. Ineffective clearance of this PM from the airways could cause particle retention in lung tissues, resulting in a chronic, low-grade inflammatory response that may be pathogenetically important in both the exacerbation, as well as, the progression of lung disease. This review focuses on the adverse effects of exposure to ambient PM air pollution on the exacerbation, progression, and development of COPD.Keywords: chronic obstructive pulmonary disease, particulate matter, air pollution, alveolar macrophage

  12. Long- and short-term exposure to PM2.5 and mortality: using novel exposure models.

    Science.gov (United States)

    Kloog, Itai; Ridgway, Bill; Koutrakis, Petros; Coull, Brent A; Schwartz, Joel D

    2013-07-01

    Many studies have reported associations between ambient particulate matter (PM) and adverse health effects, focused on either short-term (acute) or long-term (chronic) PM exposures. For chronic effects, the studied cohorts have rarely been representative of the population. We present a novel exposure model combining satellite aerosol optical depth and land-use data to investigate both the long- and short-term effects of PM2.5 exposures on population mortality in Massachusetts, United States, for the years 2000-2008. All deaths were geocoded. We performed two separate analyses: a time-series analysis (for short-term exposure) where counts in each geographic grid cell were regressed against cell-specific short-term PM2.5 exposure, temperature, socioeconomic data, lung cancer rates (as a surrogate for smoking), and a spline of time (to control for season and trends). In addition, for long-term exposure, we performed a relative incidence analysis using two long-term exposure metrics: regional 10 × 10 km PM2.5 predictions and local deviations from the cell average based on land use within 50 m of the residence. We tested whether these predicted the proportion of deaths from PM-related causes (cardiovascular and respiratory diseases). For short-term exposure, we found that for every 10-µg/m increase in PM 2.5 exposure there was a 2.8% increase in PM-related mortality (95% confidence interval [CI] = 2.0-3.5). For the long-term exposure at the grid cell level, we found an odds ratio (OR) for every 10-µg/m increase in long-term PM2.5 exposure of 1.6 (CI = 1.5-1.8) for particle-related diseases. Local PM2.5 had an OR of 1.4 (CI = 1.3-1.5), which was independent of and additive to the grid cell effect. We have developed a novel PM2.5 exposure model based on remote sensing data to assess both short- and long-term human exposures. Our approach allows us to gain spatial resolution in acute effects and an assessment of long-term effects in the entire population rather than a

  13. Spatiotemporal patterns of particulate matter (PM and associations between PM and mortality in Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Fengying Zhang

    2016-03-01

    Full Text Available Abstract Background Most studies on air pollution exposure and its associations with human health in China have focused on the heavily polluted industrial areas and/or mega-cities, and studies on cities with comparatively low air pollutant concentrations are still rare. Only a few studies have attempted to analyse particulate matter (PM for the vibrant economic centre Shenzhen in the Pearl River Delta. So far no systematic investigation of PM spatiotemporal patterns in Shenzhen has been undertaken and the understanding of pollution exposure in urban agglomerations with comparatively low pollution is still limited. Methods We analyze daily and hourly particulate matter concentrations and all-cause mortality during 2013 in Shenzhen, China. Temporal patterns of PM (PM2.5 and PM10 with aerodynamic diameters of 2.5 (10 μm or less (or less (including particles with a diameter that equals to 2.5 (10 μm are studied, along with the ratio of PM2.5 to PM10. Spatial distributions of PM10 and PM2.5 are addressed and associations of PM10 or PM2.5 and all-cause mortality are analyzed. Results Annual average PM10 and PM2.5 concentrations were 61.3 and 39.6 μg/m3 in 2013. PM2.5 failed to meet the Class 2 annual limit of the National Ambient Air Quality Standard. PM2.5 was the primary air pollutant, with 8.8 % of days having heavy PM2.5 pollution. The daily PM2.5/PM10 ratios were high. Hourly PM2.5 concentrations in the tourist area were lower than downtown throughout the day. PM10 and PM2.5 concentrations were higher in western parts of Shenzhen than in eastern parts. Excess risks in the number of all-cause mortality with a 10 μg/m3 increase of PM were 0.61 % (95 % confidence interval [CI]: 0.50–0.72 for PM10, and 0.69 % (95 % CI: 0.55–0.83 for PM2.5, respectively. The greatest ERs of PM10 and PM2.5 were in 2-day cumulative measures for the all-cause mortality, 2-day lag for females and the young (0–65 years, and L02 for males and the elder (>65

  14. Exposure to particulate matter in India: A synthesis of findings and future directions.

    Science.gov (United States)

    Pant, Pallavi; Guttikunda, Sarath K; Peltier, Richard E

    2016-05-01

    Air pollution poses a critical threat to human health with ambient and household air pollution identified as key health risks in India. While there are many studies investigating concentration, composition, and health effects of air pollution, investigators are only beginning to focus on estimating or measuring personal exposure. Further, the relevance of exposures studies from the developed countries in developing countries is uncertain. This review summarizes existing research on exposure to particulate matter (PM) in India, identifies gaps and offers recommendations for future research. There are a limited number of studies focused on exposure to PM and/or associated health effects in India, but it is evident that levels of exposure are much higher than those reported in developed countries. Most studies have focused on coarse aerosols, with a few studies on fine aerosols. Additionally, most studies have focused on a handful of cities, and there are many unknowns in terms of ambient levels of PM as well as personal exposure. Given the high mortality burden associated with air pollution exposure in India, a deeper understanding of ambient pollutant levels as well as source strengths is crucial, both in urban and rural areas. Further, the attention needs to expand beyond the handful large cities that have been studied in detail. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Determinants of exposure to fine particulate matter (PM 2.5) for waiting passengers at bus stops

    Science.gov (United States)

    Hess, Daniel Baldwin; Ray, Paul David; Stinson, Anne E.; Park, JiYoung

    2010-12-01

    This research evaluates commuter exposure to particulate matter during pre-journey commute segments for passengers waiting at bus stops by investigating 840 min of simultaneous exposure levels, both inside and outside seven bus shelters in Buffalo, New York. A multivariate regression model is used to estimate the relation between exposure to particulate matter (PM 2.5 measured in μg m -3) and three vectors of determinants: time and location, physical setting and placement, and environmental factors. Four determinants have a statistically significant effect on particulate matter: time of day, passengers' waiting location, land use near the bus shelter, and the presence of cigarette smoking at the bus shelter. Model results suggest that exposure to PM 2.5 inside a bus shelter is 2.63 μg m -3 (or 18 percent) higher than exposure outside a bus shelter, perhaps due in part to the presence of cigarette smoking. Morning exposure levels are 6.51 μg m -3 (or 52 percent) higher than afternoon levels. Placement of bus stops can affect exposure to particulate matter for those waiting inside and outside of shelters: air samples at bus shelters located in building canyons have higher particulate matter than bus shelters located near open space.

  16. Exposure assessment of particulates originating from diesel and CNG fuelled engines

    Energy Technology Data Exchange (ETDEWEB)

    Oravisjaervi, K.; Pietikaeinen, M.; Keiski, R. L. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: kati.oravisjarvi@oulu.fi; Voutilainen, A. (Univ. of Kuopio, Dept. of Physics (Finland)); Haataja, M. (Oulu Univ. of Applied Sciences (Finland); Univ. of Oulu, Dept. of Mechanical Engineering (Finland)); Ruuskanen, J. (Univ. of Kuopio, Dept. of Environmental Sciences (Finland)); Rautio, A. (Univ. of Oulu, Thule Inst. (Finland))

    2009-07-01

    Particulates emitted from combustion engines have been a great concern in past years due to their adverse health effects, such as pulmonary and cardiovascular diseases, morbidity and mortality. The source of particulates can be stationary and transient, such as gas and oil fuelled engines, turbines and boilers. Particulate matter (PM) dispersed into ambient air can be classified in many ways: the mechanism of the formation, the size and the composition. Fine particles (PM2.5) are particles with an aerodynamic diameter less than 2.5 mum and particles, greater than 2.5 mum in diameter are generally referred to as coarse particles (PM10). PM2.5 is also called the respirable fraction, because they can penetrate to the unciliated regions of the lung. Fine particles consist of so called ultrafine particles (an aerodynamic diameter less than 0.1 mum). The sizes of particulates emitted from combustion processes range between 10 nm and 100 mum, and are usually a mixture of unburned and partially burned hydrocarbons. Diesel exhaust particles have a mass median diameter of 0.05-1.0 mum. They are a complex mixture of elemental carbon, a variety of hydrocarbons, sulphur compounds, and other species. They consist of a numerous spherical primary particles, which are agglomerated into aggregates. Particles from natural gas engine emissions range from 0.01-0.7 mum. Increase in PM10 pollution has been found to be associated with a range of adverse health effects, such as increased use of medication for asthma, attacks of asthma in patients with pre-existing asthma, attacks of chronic obstructive pulmonary disease (COPD), deaths from respiratory causes, admission to hospital for cardiovascular causes, deaths from heart attacks and deaths from strokes. While it is unknown, which particulate matter component is the most hazardous for humans, a number of factors suggest that ultrafine particles may be more toxic than larger particles. Ultrafine particles have a large surface area per

  17. Spatiotemporal analysis for the effect of ambient particulate matter on cause-specific respiratory mortality in Beijing, China.

    Science.gov (United States)

    Wang, Xuying; Guo, Yuming; Li, Guoxing; Zhang, Yajuan; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan; Chen, Liangfu

    2016-06-01

    This study explored the association between particulate matter with an aerodynamic diameter of less than 10 μm (PM10) and the cause-specific respiratory mortality. We used the ordinary kriging method to estimate the spatial characteristics of ambient PM10 at 1-km × 1-km resolution across Beijing during 2008-2009 and subsequently fit the exposure-response relationship between the estimated PM10 and the mortality due to total respiratory disease, chronic lower respiratory disease, chronic obstructive pulmonary disease (COPD), and pneumonia at the street or township area levels using the generalized additive mixed model (GAMM). We also examined the effects of age, gender, and season in the stratified analysis. The effects of ambient PM10 on the cause-specific respiratory mortality were the strongest at lag0-5 except for pneumonia, and an inter-quantile range increase in PM10 was associated with an 8.04 % (95 % CI 4.00, 12.63) increase in mortality for total respiratory disease, a 6.63 % (95 % CI 1.65, 11.86) increase for chronic lower respiratory disease, and a 5.68 % (95 % CI 0.54, 11.09) increase for COPD, respectively. Higher risks due to the PM10 exposure were observed for females and elderly individuals. Seasonal stratification analysis showed that the effects of PM10 on mortality due to pneumonia were stronger during spring and autumn. While for COPD, the effect of PM10 in winter was statistically significant (15.54 %, 95 % CI 5.64, 26.35) and the greatest among the seasons. The GAMM model evaluated stronger associations between concentration of PM10. There were significant associations between PM10 and mortality due to respiratory disease at the street or township area levels. The GAMM model using high-resolution PM10 could better capture the association between PM10 and respiratory mortality. Gender, age, and season also acted as effect modifiers for the relationship between PM10 and respiratory mortality.

  18. Exposure to Particulate Hexavalent Chromium Exacerbates Allergic Asthma Pathology

    Science.gov (United States)

    Schneider, Brent C.; Constant, Stephanie L.; Patierno, Steven R.; Jurjus, Rosalyn A.; Ceryak, Susan M.

    2011-01-01

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. PMID:22178736

  19. [Temperature modifies the acute effect of particulate air pollution on mortality in Jiang'an district of Wuhan].

    Science.gov (United States)

    Zhu, Y H; Wu, R; Zhong, P R; Zhu, C H; Ma, L

    2016-06-01

    To analyze the temperature modification effect on acute mortality due to particulate air pollution. Daily non-accidental mortality, cardiovascular mortality, and respiratory mortality data were obtained from Jiang'an District Center for Disease Control and Prevention. Daily meteorological data on mean temperature and relative humidity were collected from China Meteorological Data Sharing Service System. The daily concentration of particulate matter was collected from Wuhan Environmental Monitoring center. By using the stratified time-series models, we analyzed effects of particulate air pollution on mortality under different temperature zone from 2002 to 2010, meanwhile comparing the difference of age, gender and educational level, in Wuhan city of China. High temperature (daily average temperature > 33.4 ℃) obviously enhanced the effect of PM10 on mortality. With 10 μg/m(3) increase in PM10 concentrations, non-accidental, cardiovascular, and respiratory mortality increased 2.95% (95%CI: 1.68%-4.24%), 3.58% (95%CI: 1.72%-5.49%), and 5.07% (95%CI: 2.03%-9.51%) respectively. However, low temperature (daily average temperature respiratory mortality with 3.31% (95% CI: 0.07%-6.64%) increase. At high temperature, PM10 had significantly stronger effect on non-accidental mortality of female aged over 65 and people with high educational level groups. With an increase of 10 μg/m(3), daily non-accidental mortality increased 4.27% (95% CI:2.45%-6.12%), 3.38% (95% CI:1.93%-4.86%) and 3.47% (95% CI:1.79%-5.18%), respectively. Whereas people with low educational level were more susceptible to low temperature. A 10 μg/m(3) increase in PM10 was associated with 2.11% (95% CI: 0.20%-4.04%) for non-accidental mortality. Temperature factor can modify the association between the PM10 level and cause-specific mortality. Moreover, the differences were apparent after considering the age, gender and education groups.

  20. Aviation-attributable ozone as a driver for changes in mortality related to air quality and skin cancer

    Science.gov (United States)

    Eastham, Sebastian D.; Barrett, Steven R. H.

    2016-11-01

    Aviation is a significant source of tropospheric ozone, which is a critical UV blocking agent, an indirect precursor to the formation of particulate matter, and a respiratory health hazard. To date, investigations of human health impacts related to aviation emissions have focused on particulate matter, and no global estimate yet exists of the combined health impact of aviation due to ozone, particulate matter and UV exposure changes. We use a coupled tropospheric-stratospheric chemical-transport model with a global aviation emissions inventory to estimate the total impact of aviation on all three risk factors. We find that surface ozone due to aviation emissions is maximized during hemispheric winter due to the greater wintertime chemical lifetime of ozone, but that a smaller enhancement of 0.5 ppbv occurs during summertime. This summertime increase results in an estimated 6,800 premature mortalities per year due to ozone exposure, over three times greater than previous estimates. During the winter maximum, interaction with high background NOx concentrations results in enhanced production of nitrate aerosol and increased annual average exposure to particulate matter. This ozone perturbation is shown to be the driving mechanism behind an additional 9,200 premature mortalities due to exposure to particulate matter. However, the increase in tropospheric ozone is also found to result in 400 fewer mortalities due to melanoma skin cancer in 2006. This is the first estimate of global melanoma mortality due to aviation, and the first estimate of skin cancer mortality impacts due to aviation using a global chemical transport model.

  1. Personal exposure to total suspended particulates of adolescents living in Vanderbijlpark, South Africa

    CSIR Research Space (South Africa)

    Terblanche, APS

    1995-06-01

    Full Text Available Personal monitoring of exposure to air pollution is becoming increasingly important in health studies as a method of characterizing total exposure. We monitored the exposure of 31 teenagers to total suspended particulates (TSP) over a 12-hour period...

  2. Correlation between natural radiation exposure and cancer mortality, (4)

    International Nuclear Information System (INIS)

    Noguchi, Kunikazu; Shimizu, Masami; Sairenji, Eiko; Anzai, Ikuro.

    1987-01-01

    In the previous studies, using Pearson's product moment correlation coefficient, we found that in most cases of cancers, statistically significant positive correlations were observed between natural background radiation exposure rate and crude cancer mortality rate over the period 1950 - 1978. Furthermore, we found that the statistical significance of correlation between natural background radiation exposure rate and the age-adjusted cancer mortality rate in the same period mostly disappeared. We studied the cause of this apparent correlation and found that the prefecture with a higher natural background radiation exposure rate had a greater component ratio of older people. In Japan, a number of prefectures with a higher natural background exposure rate are located in relatively thinly populated districts which have been experiencing an outflow of the younger generation to more highly industrialized and urbanized areas. Therefore, statistically significant positive correlations were observed for almost all cancers between natural background radiation exposure rate and crude cancer mortality rate. In the present investigation, we statistically tested the frequency distributions of natural background radiation exposure rate and age-adjusted cancer mortality rate, and calculated Spearman's rank correlation coefficient between natural background radiation exposure rate and the age-adjusted cancer mortality rate. The frequency distribution of the natural background radiation exposure rate and that of the age-adjusted mortality rate appeared normal in most cases of cancer, and the statistical significance of correlation between natural background exposure rate and the age-adjusted cancer mortality rate did not differ much on the whole, even though we used Spearman's rank correlation coefficient between them. (author)

  3. Correlation between natural radiation exposure and cancer mortality, (4)

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Kunikazu; Shimizu, Masami; Sairenji, Eiko; Anzai, Ikuro

    1987-03-01

    In the previous studies, using Pearson's product moment correlation coefficient, we found that in most cases of cancers, statistically significant positive correlations were observed between natural background radiation exposure rate and crude cancer mortality rate over the period 1950 - 1978. Furthermore, we found that the statistical significance of correlation between natural background radiation exposure rate and the age-adjusted cancer mortality rate in the same period mostly disappeared. We studied the cause of this apparent correlation and found that the prefecture with a higher natural background radiation exposure rate had a greater component ratio of older people. In Japan, a number of prefectures with a higher natural background exposure rate are located in relatively thinly populated districts which have been experiencing an outflow of the younger generation to more highly industrialized and urbanized areas. Therefore, statistically significant positive correlations were observed for almost all cancers between natural background radiation exposure rate and crude cancer mortality rate. In the present investigation, we statistically tested the frequency distributions of natural background radiation exposure rate and age-adjusted cancer mortality rate, and calculated Spearman's rank correlation coefficient between natural background radiation exposure rate and the age-adjusted cancer mortality rate. The frequency distribution of the natural background radiation exposure rate and that of the age-adjusted mortality rate appeared normal in most cases of cancer, and the statistical significance of correlation between natural background exposure rate and the age-adjusted cancer mortality rate did not differ much on the whole, even though we used Spearman's rank correlation coefficient between them.

  4. Chronic Exposure to Particulate Nickel Induces Neoplastic Transformation in Human Lung Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amie L. Holmes

    2013-11-01

    Full Text Available Nickel is a well-known human lung carcinogen with the particulate form being the most potent; however, the carcinogenic mechanism remains largely unknown. Few studies have investigated the genotoxicity and carcinogenicity of nickel in its target cell, human bronchial epithelial cells. Thus, the goal of this study was to investigate the effects of particulate nickel in human lung epithelial cells. We found that nickel subsulfide induced concentration- and time-dependent increases in both cytotoxicity and genotoxicity in human lung epithelial cells (BEP2D. Chronic exposure to nickel subsulfide readily induced cellular transformation, inducing 2.55, 2.9 and 2.35 foci per dish after exposure to 1, 2.5 and 5 μg/cm2 nickel subsulfide, respectively. Sixty-one, 100 and 70 percent of the foci isolated from 1, 2.5, and 5 μg/cm2 nickel subsulfide treatments formed colonies in soft agar and the degree of soft agar colony growth increased in a concentration-dependent manner. Thus, chronic exposure to particulate nickel induces genotoxicity and cellular transformation in human lung epithelial cells.

  5. Controlling exposure to DPM : diesel particulate filters vs. biodiesel

    International Nuclear Information System (INIS)

    Bugarski, A.D.; Shi, X.C.

    2009-01-01

    In order to comply with Mine Safety and Health Administration regulations, mining companies are required to reduce miners exposures to diesel particulate matter (DPM) to 160 μg/m 3 of total carbon. Diesel particulate filter (DPF) systems, disposable filter elements (DFEs), and diesel oxidation catalysts (DOCs) are among the most effective strategies and technologies for curtailing DPM at its source. Substituting diesel fuel with biodiesel blends is also considered to be a plausible solution by many underground mine operators. Studies were conducted at the National Institute for Occupational Safety and Health Diesel Laboratory at Lake Lynn Experimental Mine to evaluate various control technologies and strategies available to the underground mining industry to reduce exposure to DPM. The physical, chemical and toxicological properties of diesel aerosols (DPM) emitted by engines in an underground mine were also evaluated. The DPF and DFE systems were found to be highly effective in reducing total particulate and elemental carbon mass concentrations, total aerosol surface concentrations and, in most cases, concentrations of diesel aerosols in occupational settings such as underground mines. Soy methyl ester (SME) biodiesel fuels had the potential to reduce the mine air concentrations of total DPM, although the rate of reduction varied depending on engine operating conditions. The disadvantage of using biodiesel fuels was an increase in the fraction of particle-bound volatile organics and concentration of aerosols for light-load engine operating conditions.

  6. Advances in the simulation of personal protective equipment for the mitigation of exposure to radioactive particulates

    International Nuclear Information System (INIS)

    Roeterink, M.J.; Kelly, D.G.; Dickson, E.F.G; Corcoran, E.C.

    2014-01-01

    Airborne radioactive particulates represent a significant potential hazard to first responders in nuclear related incidents. Personal protective equipment (PPE), in particular radio-opaque fabrics, can be used to reduce wearer exposure to the emitted radiation, but do not offer complete protection. The objective of this project is to create a realistic dosimetric model of the human arm, protected by a sleeve, which can eventually be developed into a tool to assess the full-body dose imparted to the wearer in the event of radiological particulate exposure. A two-fold approach will be employed whereby: (1) a particulate transport model will be used to determine the regional radioactive particulate concentrations; and (2) these concentration data will then be incorporated into a dosimetric model that will use the Monte Carlo N-Particle (MCNP) transport code to determine the dose imparted to the tissue. Benchmarking experiments will be carried out to validate the results generated by the computer models. Such experimentation will be conducted for both the particulate transport and dosimetric models. Model advancement aims to consider whole body dose and will be invaluable in the development of future radiation exposure policies and procedures. (author)

  7. Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China.

    Directory of Open Access Journals (Sweden)

    Pengfei Zhang

    Full Text Available BACKGROUND: The relationship between ambient air pollution exposure and mortality of cardiovascular and cerebrovascular diseases in human is controversial, and there is little information about how exposures to ambient air pollution contribution to the mortality of cardiovascular and cerebrovascular diseases among Chinese. The aim of the present study was to examine whether exposure to ambient-air pollution increases the risk for cardiovascular and cerebrovascular disease. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a retrospective cohort study among humans to examine the association between compound-air pollutants [particulate matter <10 µm in aerodynamic diameter (PM(10, sulfur dioxide (SO(2 and nitrogen dioxide (NO(2] and mortality in Shenyang, China, using 12 years of data (1998-2009. Also, stratified analysis by sex, age, education, and income was conducted for cardiovascular and cerebrovascular mortality. The results showed that an increase of 10 µg/m(3 in a year average concentration of PM(10 corresponds to 55% increase in the risk of a death cardiovascular disease (hazard ratio [HR], 1.55; 95% confidence interval [CI], 1.51 to 1.60 and 49% increase in cerebrovascular disease (HR, 1.49; 95% CI, 1.45 to 1.53, respectively. The corresponding figures of adjusted HR (95%CI for a 10 µg/m(3 increase in NO(2 was 2.46 (2.31 to 2.63 for cardiovascular mortality and 2.44 (2.27 to 2.62 for cerebrovascular mortality, respectively. The effects of air pollution were more evident in female that in male, and nonsmokers and residents with BMI<18.5 were more vulnerable to outdoor air pollution. CONCLUSION/SIGNIFICANCE: Long-term exposure to ambient air pollution is associated with the death of cardiovascular and cerebrovascular diseases among Chinese populations.

  8. Long term exposure to air pollution and mortality in an elderly cohort in Hong Kong.

    Science.gov (United States)

    Yang, Yang; Tang, Robert; Qiu, Hong; Lai, Poh-Chin; Wong, Paulina; Thach, Thuan-Quoc; Allen, Ryan; Brauer, Michael; Tian, Linwei; Barratt, Benjamin

    2018-08-01

    Several studies have reported associations between long term exposure to air pollutants and cause-specific mortality. However, since the concentrations of air pollutants in Asia are much higher compared to those reported in North American and European cohort studies, cohort studies on long term effects of air pollutants in Asia are needed for disease burden assessment and to inform policy. To assess the effects of long-term exposure to particulate matter with aerodynamic diameter mortality in an elderly cohort in Hong Kong. In a cohort of 66,820 participants who were older than or equal to 65 years old in Hong Kong from 1998 to 2011, air pollutant concentrations were estimated by land use regression and assigned to the residential addresses of all participants at baseline and for each year during a 11 year follow up period. Hazard ratios (HRs) of cause-specific mortality (including all natural cause, cardiovascular and respiratory mortality) associated with air pollutants were estimated with Cox models, including a number of personal and area-level socioeconomic, demographic, and lifestyle factors. The median concentration of PM 2.5 during the baseline period was 42.2 μg/m 3 with an IQR of 5.5 μg/m 3 , 12.1 (9.6) μg/m 3 for BC and 104 (25.6) μg/m 3 for NO 2 . For PM 2.5 , adjusted HR per IQR increase and per 10 μg/m 3 for natural cause mortality was 1.03 (95%CI: 1.01, 1.06) and 1.06 (95%CI: 1.02, 1.11) respectively. The corresponding HR were 1.06 (95%CI: 1.02, 1.10) and 1.01 (95%CI: 0.96, 1.06) for cardiovascular disease and respiratory disease mortality, respectively. For BC, the HR of an interquartile range increase for all natural cause mortality was 1.03 (95%CI: 1.00, 1.05). The corresponding HR was 1.07 (95%CI: 1.03, 1.11) and 0.99 (95%CI: 0.94, 1.04) for cardiovascular disease and respiratory disease mortality. For NO 2 , almost all HRs were approximately 1.0, except for IHD (ischemic heart disease) mortality. Long-term exposure to ambient PM

  9. SOLAR ULTRAVIOLET EXPOSURE AND MORTALITY FROM SKIN TUMORS

    Science.gov (United States)

    Berwick, Marianne; Pestak, Claire; Thomas, Nancy

    2015-01-01

    Solar UV radiation (UVR) exposure is clearly associated with increased mortality from nonmelanoma skin cancer—usually squamous cell carcinoma. However, the association with cutaneous melanoma is unclear from the evidence in ecologic studies and several analytic studies have conflicting results regarding the effect of high levels of intermittent UV exposure prior to diagnosis on mortality. Understanding this conundrum is critical to present coherent public health messages and to improve the mortality rates from melanoma. PMID:25207375

  10. Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities.

    Science.gov (United States)

    Sarigiannis, Dimosthenis Α; Karakitsios, Spyros P; Kermenidou, Marianthi V

    2015-08-15

    The study deals with the assessment of health impact and the respective economic cost attributed to particulate matter (PM) emitted into the atmosphere from biomass burning for space heating, focusing on the differences between the warm and cold seasons in 2011-2012 and 2012-2013 in Thessaloniki (Greece). Health impact was assessed based on estimated exposure levels and the use of established WHO concentration-response functions (CRFs) for all-cause mortality, infant mortality, new chronic bronchitis cases, respiratory and cardiac hospital admissions. Monetary cost was based on the valuation of the willingness-to-pay/accept (WTP/WTA), to avoid or compensate for the loss of welfare associated with illness. Results showed that long term mortality during the 2012-2013 winter increased by 200 excess deaths in a city of almost 900,000 inhabitants or 3540 years of life lost, corresponding to an economic cost of almost 200-250m€. New chronic bronchitis cases dominate morbidity estimates (490 additional new cases corresponding to a monetary cost of 30m€). Estimated health and monetary impacts are more severe during the cold season, despite its smaller duration (4 months). Considering that the increased ambient air concentrations (and the integral of outdoor/indoor exposure) are explained by shifting from oil to biomass for domestic heating purposes, several alternative scenarios were evaluated. Policy scenario analysis revealed that significant public health and monetary benefits (up to 2b€ in avoided mortality and 130m€ in avoided illness) might be obtained by limiting the biomass share in the domestic heat energy mix. Fiscal policy affecting fuels/technologies used for domestic heating needs to be reconsidered urgently, since the net tax loss from avoided oil taxation due to reduced consumption was further compounded by the public health cost of increased mid-term morbidity and mortality. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Short-term exposure to ambient fine particulate matter (PM2,5 and PM10) and the risk of heart rhythm abnormalities and stroke.

    Science.gov (United States)

    Kowalska, Małgorzata; Kocot, Krzysztof

    2016-09-28

    Results of epidemiological studies suggest a significant impact of ambient particulate matter air pollution (PM10 and PM2,5) on the health of the population. Increased level of these pollutants is connected with increased rate of daily mortality and hospitalizations due to cardiovascular diseases. Among analyzed health effects, heart arrhythmias and stroke are mentioned most frequently. The aim of the study was to present the current knowledge of potential influence of the exposure to fine particulate matter on the presence of arrhythmias and strokes. Subject literature review suggests, that there is a link between short-term exposure to fine dust and the occurrence of arrhythmias. Results of previous studies indicates that this exposure may lead to significant electrophysiological changes in heart, resulting in higher susceptibility to cardiac rhythm abnormalities. In case of stroke, a stronger correlation between number of hospitalizations and death cases and exposure to fine dust was seen for ischaemic stroke than for haemorhhagic stroke. In addition, a significantly more harmful impact of the exposure to ultra particles (particles of aerodynamic diameter below 2,5 μm) has been confirmed. Among important mechanisms responsible for observed health impact of particulate matter there are: induction and intensification of inflammation, increased oxidative stress, increased autonomic nervous system activity, vasoconstriction, rheological changes and endothelial dysfunction. Among people of higher susceptibility to fine dust negative health impact are: elderly (over 65 years old), obese people, patients with respiratory and cardiovascular diseases, patients with diabetes and those with coagulation disorders. For further improvement of general health status, actions aimed at reducing the risk associated with fine dust and at the same time at continuing studies to clarify the biological mechanisms explaining the influence of fine dust on human health are necessary.

  12. Short-term exposure to ambient fine particulate matter (PM2,5 and PM10 and the risk of heart rhythm abnormalities and stroke

    Directory of Open Access Journals (Sweden)

    Małgorzata Kowalska

    2016-09-01

    Full Text Available Results of epidemiological studies suggest a significant impact of ambient particulate matter air pollution (PM10 and PM2,5 on the health of the population. Increased level of these pollutants is connected with increased rate of daily mortality and hospitalizations due to cardiovascular diseases. Among analyzed health effects, heart arrhythmias and stroke are mentioned most frequently. The aim of the study was to present the current knowledge of potential influence of the exposure to fine particulate matter on the presence of arrhythmias and strokes. Subject literature review suggests, that there is a link between short-term exposure to fine dust and the occurrence of arrhythmias. Results of previous studies indicates that this exposure may lead to significant electrophysiological changes in heart, resulting in higher susceptibility to cardiac rhythm abnormalities. In case of stroke, a stronger correlation between number of hospitalizations and death cases and exposure to fine dust was seen for ischaemic stroke than for haemorhhagic stroke. In addition, a significantly more harmful impact of the exposure to ultra particles (particles of aerodynamic diameter below 2,5 μm has been confirmed. Among important mechanisms responsible for observed health impact of particulate matter there are: induction and intensification of inflammation, increased oxidative stress, increased autonomic nervous system activity, vasoconstriction, rheological changes and endothelial dysfunction. Among people of higher susceptibility to fine dust negative health impact are: elderly (over 65 years old, obese people, patients with respiratory and cardiovascular diseases, patients with diabetes and those with coagulation disorders. For further improvement of general health status, actions aimed at reducing the risk associated with fine dust and at the same time at continuing studies to clarify the biological mechanisms explaining the influence of fine dust on human health

  13. Association of long-term exposure to community noise and traffic-related air pollution with coronary heart disease mortality.

    Science.gov (United States)

    Gan, Wen Qi; Davies, Hugh W; Koehoorn, Mieke; Brauer, Michael

    2012-05-01

    In metropolitan areas, road traffic is a major contributor to ambient air pollution and the dominant source of community noise. The authors investigated the independent and joint influences of community noise and traffic-related air pollution on risk of coronary heart disease (CHD) mortality in a population-based cohort study with a 5-year exposure period (January 1994-December 1998) and a 4-year follow-up period (January 1999-December 2002). Individuals who were 45-85 years of age and resided in metropolitan Vancouver, Canada, during the exposure period and did not have known CHD at baseline were included (n = 445,868). Individual exposures to community noise and traffic-related air pollutants, including black carbon, particulate matter less than or equal to 2.5 μm in aerodynamic diameter, nitrogen dioxide, and nitric oxide, were estimated at each person's residence using a noise prediction model and land-use regression models, respectively. CHD deaths were identified from the provincial death registration database. After adjustment for potential confounders, including traffic-related air pollutants or noise, elevations in noise and black carbon equal to the interquartile ranges were associated with 6% (95% confidence interval: 1, 11) and 4% (95% confidence interval: 1, 8) increases, respectively, in CHD mortality. Subjects in the highest noise decile had a 22% (95% confidence interval: 4, 43) increase in CHD mortality compared with persons in the lowest decile. These findings suggest that there are independent effects of traffic-related noise and air pollution on CHD mortality.

  14. Journey-time exposure to particulate air pollution

    Science.gov (United States)

    Gulliver, John; Briggs, David J.

    Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM 10, PM 2.5, and PM 1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m -3 for coarse (TSP-PM 10), intermediate (PM 10-PM 2.5), fine (PM 2.5-PM 1), and very fine particles (PM 1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles ( r=0.10, p=0.58), moderate for the intermediate particles ( r=0.49, pcar exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.

  15. Occupational Exposure to Diesel Particulate Matter in Municipal Household Waste Workers.

    Science.gov (United States)

    Lee, Kyong-Hui; Jung, Hye-Jung; Park, Dong-Uk; Ryu, Seung-Hun; Kim, Boowook; Ha, Kwon-Chul; Kim, Seungwon; Yi, Gwangyong; Yoon, Chungsik

    2015-01-01

    The purposes of this study were to determine the following: 1) the exposure levels of municipal household waste (MHW) workers to diesel particulate matter (DPM) using elemental carbon (EC), organic carbon (OC), total carbon (TC), black carbon (BC), and fine particulate matter (PM 2.5) as indicators; 2) the correlations among the indicators; 3) the optimal indicator for DPM; and 4) factors that influence personal exposure to DPM. A total of 72 workers in five MHW collection companies were assessed over a period of 7 days from June to September 2014. Respirable EC/OC samples were quantified using the thermal optical transmittance method. BC and PM 2.5 were measured using real-time monitors, an aethalometer and a laser photometer. All results were statistically analyzed for occupational and environmental variables to identify the exposure determinants of DPM. The geometric mean of EC, OC, TC, BC and PM 2.5 concentrations were 4.8, 39.6, 44.8, 9.1 and 62.0 μg/m3, respectively. EC concentrations were significantly correlated with the concentrations of OC, TC and BC, but not with those of PM 2.5. The exposures of the MHW collectors to EC, OC, and TC were higher than those of the drivers (pemission standard had higher exposures to EC, OC, TC and PM 2.5 than those working on Euro 4 trucks (pemission standard, and average driving speed were the most influential factors in determining worker exposure. We assessed MHW workers' exposure to DPM using parallel sampling of five possible indicators. Of these five indicators, EC was shown to be the most useful indicator of DPM exposure for MHW workers, and the job task, European emission standard, and average driving speed were the main determinants of EC exposure.

  16. Cardiovascular Mortality Caused by Exposure to Radon

    International Nuclear Information System (INIS)

    Johnson, J. R.; Duport, P.

    2004-01-01

    Cardiovascular diseases (CVD) are reported as the cause of morbidity and mortality in humans exposed to (high) therapeutic doses of radiation, A-bomb explosions, accidental (Chernobyl liquidators) and occupational level of radiation while CVD risk does not appear to be elevated in other populations exposed to radiation CVD mortality also appears to be elevated, proportionally with radon progeny exposure in Newfoundland fluorspar miners. In addition, radiation exposure does not seem to increase and may indeed decrease CVD mortality or morbidity in mammals exposed to radiation in the laboratory. We have calculated the doses to blood and coronary artery wall from radon and progeny, and have concluded radon exposure may indeed increase the incidence of cardiovascular diseases and that a thorough investigation of that risk is justified, even at environmental and occupational levels. These contradictory observations suggest that radiation may be considered as one of many risk factors for cardiovascular diseases. As such, it may be necessary to reduce not only other risk factors as far as possible, but also to minimize exposures to radiation to further reduce the burden of cardiovascular diseases in the population. (Author) 27 refs

  17. Estimation of health effects (morbidity and mortality attributed to PM10 and PM2.5 exposure using an Air Quality model in Bukan city, from 2015-2016 exposure using air quality model

    Directory of Open Access Journals (Sweden)

    Bahram Kamarehie

    2017-08-01

    Full Text Available Background: Air Quality software is a useful tool for assessing the health risks associated with air pollutants. Quantifying the effects of exposure to air pollutants in terms of public health has become a critical component of policy discussion. The present study purposed to quantify the health effects of particulate matters on mortality and morbidity in a Bukan city hospital from 2015-2016. Methods: Information regarding coordinates, exposed population, number of stations used in profiling, mean and maximum concentrations (annual, winter, and summer, annual 98th percentile, baseline incidence (BI per 100 000 per year, and relative risk was needed for use with the software. Results: The average particulate matter concentration was higher in summer than in winter. The concentrations of PM10 in summer and winter were 84.37 and 74.86 μg m-3, respectively. The Air Quality model predicted that total mortality rates related to PM10 and PM2.5 were 33.3 and 49.8 deaths, respectively. As a result, 3.79% of the total mortality was due to PM10. In Bukan city, 2.004% of total deaths were due to cardiovascular mortality. The Air Quality model predicted that the deaths of 92.2 people were related to hospital admissions for respiratory disease. Conclusion: The continual evaluation of air quality data is necessary for investigating the effect of pollutants on human health.

  18. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells.

    Science.gov (United States)

    Browning, Cynthia L; Qin, Qin; Kelly, Deborah F; Prakash, Rohit; Vanoli, Fabio; Jasin, Maria; Wise, John Pierce

    2016-09-01

    Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle

    International Nuclear Information System (INIS)

    Bevan, M.A.J.; Proctor, C.J.; Baker-Rogers, J.; Warren, N.D.

    1991-01-01

    A portable air sampling system has been used to assess exposures to various substances while commuting by bicycle in an urban area. The major source of pollutants in this situation is motor vehicle exhaust emissions. Carbon monoxide, measured by electrochemical detection, was found at peak concentrations in excess of 62 ppm, with mean values over 16 individual 35-mm journeys being 10.5 ppm. Respirable suspended particulates, averaged over each journey period, were found at higher concentrations (mean 130 μg m -3 ) than would be expected in indoor situations. Mean exposure to benzene (at 56 μg m -3 ) and other aromatic volatile organic compounds was also relatively high. The influence of wind conditions on exposure was found to be significant. Commuting exposures to carbon monoxide, respirable suspended particulates, and aromatic VOCs were found to be higher than exposures in a busy high street and on common parkland

  20. Long-term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: a 12-year population-based retrospective cohort study.

    Science.gov (United States)

    Dong, Guang-Hui; Zhang, Pengfei; Sun, Baijun; Zhang, Liwen; Chen, Xi; Ma, Nannan; Yu, Fei; Guo, Huimin; Huang, Hui; Lee, Yungling Leo; Tang, Naijun; Chen, Jie

    2012-01-01

    In China, both the levels and patterns of outdoor air pollution have altered dramatically with the rapid economic development and urbanization over the past two decades. However, few studies have investigated the association of outdoor air pollution with respiratory mortality, especially in the high pollution range. We conducted a retrospective cohort study of 9,941 residents aged ≥35 years old in Shenyang, China, to examine the association between outdoor air pollutants [particulate matter mortality using 12 years of data. We applied extended Cox proportional hazards modeling with time-dependent covariates to respiratory mortality. Analyses were also stratified by age, sex, educational level, smoking status, personal income, occupational exposure and body mass index (BMI) to examine the association of air pollution with mortality. We found significant associations between PM(10) and NO(2) levels and respiratory disease mortality. Our analysis found a relative risk of 1.67 [95% confidence interval (CI) 1.60-1.74] and 2.97 (95% CI 2.69-3.27) for respiratory mortality per 10 µg/m(3) increase in PM(10) and NO(2), respectively. The effects of air pollution were more apparent in women than in men. Age, sex, educational level, smoking status, personal income, occupational exposure, BMI and exercise frequency influenced the relationship between outdoor PM(10) and NO(2) and mortality. For SO(2), only smoking, little regular exercise and BMI above 18.5 influenced the relationship with mortality. These data contribute to the scientific literature on the long-term effects of air pollution for the high-exposure settings typical in developing countries. Copyright © 2011 S. Karger AG, Basel.

  1. CONTROLLED EXPOSURES OF HUMAN VOLUNTEERS TO DIESEL ENGINE EXHAUST: BIOMARKERS OF EXPOSURE AND HEALTH OUTCOMES

    Science.gov (United States)

    Combustion of diesel fuel contributes to ambient air pollutant fine particulate matter (PM) and gases. Fine PM exposure has been associated with increased mortality due to adverse cardiac events, and morbidity, such as increased hospitalization for asthma symptoms and lung infect...

  2. Exposure to Fine Particulate Matter Leads to Rapid Heart Rate Variability Changes

    Directory of Open Access Journals (Sweden)

    Michael Riediker

    2018-01-01

    Full Text Available Introduction: Heart Rate Variability (HRV reflects the adaptability of the heart to internal and external stimuli. Reduced HRV is a predictor of post-infarction mortality. We previously found in road maintenance workers HRV-increases several hours after exposure to fine particulate matter (PM2.5. This seemed to conflict with studies where PM-exposure acutely reduced HRV. We therefore assessed whether time from exposure to HRV-assessment could explain the differences observed.Methods: On five non-consecutive days, workers carried nephelometers providing 1-min-interval PM2.5-exposure. Five-min HRV-intervals of SDNN (Standard Deviation of Normal to Normal beat intervals and pNN50 (Percentage of the interval differences exceeding 50 ms were extracted from 24-h electrocardiograms (ECGs. Following 60 min PM2.5-exposure, changes in HRV-parameters were assessed during 120-min visually and by regression analysis with control for time at work, at home, and during the night using autoregressive integrating moving average (ARIMA models to account for autocorrelation of the time-series. Additional controls included changing the time windows and including body mass index (BMI and age in the models.Result: Pattern analysis of 12,669 data points showed high modulation of mean, standard deviation (SD, and time trend of HRV (SDNN and pNN50 at low, and much reduced modulation at high PM2.5-exposures. The time trend following exposure was highly symmetrical, resembling a funnel plot. Regression analysis showed significant associations of decreasing SDNN and pNN50 (average, SD, and absolute value of time trend with increasing PM2.5-exposure, which remained significant when controlling for activity phases. Changing time windows did not change the pattern of response. Including BMI and age did not change the results.Conclusions: The reduced modulation of HRV following PM2.5-exposure is striking. It suggests strong interference with homeostatic controls. Such an

  3. Association between exposure to particulate matter and hospital admissions for respiratory disease in children

    Science.gov (United States)

    Cesar, Ana Cristina Gobbo; Nascimento, Luiz Fernando C; de Carvalho, João Andrade

    2013-01-01

    The aim of this study was to estimate the association between exposure to particulate matter less than 2.5 microns in diameter and hospitalization for respiratory disease. It was an ecological time series study with daily indicators of hospitalization for respiratory diseases in children up to 10 years old, living in Piracicaba, SP, Southeastern Brazil, between August 1, 2011 and July 31, 2012. A generalized additive Poisson regression model was used. The relative risks were RR = 1.008; 95%CI 1.001;1.016 for lag 1 and RR = 1.009; 95%CI 1.001;1.017 for lag 3. The increment of 10 μg/m3in particulate matter less than 2.5 microns in diameter implies increase in relative risk of between 7.9 and 8.6 percentage points. In conclusion, exposure to particulate matter less than 2.5 microns in diameter was associated with hospitalization for respiratory disease in children. PMID:24626559

  4. Cancer mortality in Chinese chrysotile asbestos miners: exposure-response relationships.

    Directory of Open Access Journals (Sweden)

    Xiaorong Wang

    Full Text Available OBJECTIVE: This study was conducted to assess the relationship of mortality from lung cancer and other selected causes to asbestos exposure levels. METHODS: A cohort of 1539 male workers from a chrysotile mine in China was followed for 26 years. Data on vital status, occupation and smoking were collected from the mine records and individual contacts. Causes and dates of death were further verified from the local death registry. Individual cumulative fibre exposures (f-yr/ml were estimated based on converted dust measurements and working years at specific workshops. Standardized mortality ratios (SMRs for lung cancer, gastrointestinal (GI cancer, all cancers and nonmalignant respiratory diseases (NMRD stratified by employment years, estimated cumulative fibre exposures, and smoking, were calculated. Poisson models were fitted to determine exposure-response relationships between estimated fibre exposures and cause-specific mortality, adjusting for age and smoking. RESULTS: SMRs for lung cancer increased with employment years at entry to the study, by 3.5-fold in ≥ 10 years and 5.3-fold in ≥ 20 years compared with <10 years. A similar trend was seen for NMRD. Smokers had greater mortality from all causes than nonsmokers, but the latter also had slightly increased SMR for lung cancer. No excess lung cancer mortality was observed in cumulative exposures of <20 f-yrs/ml. However, significantly increased mortality was observed in smokers at the levels of ≥ 20 f-yrs/ml and above, and in nonsmokers at ≥ 100 f-yrs/ml and above. A similarly clear gradient was also displayed for NMRD. The exposure-response relationships with lung cancer and NMRD persisted in multivariate analysis. Moreover, a clear gradient was shown in GI cancer mortality when age and smoking were adjusted for. CONCLUSION: There were clear exposure-response relationships in this cohort, which imply a causal link between chrysotile asbestos exposure and lung cancer and nonmalignant

  5. [Reduction of exposure to particulate matter in classrooms by improved cleaning: extent of exposure and results of a pilot study in Bavaria].

    Science.gov (United States)

    Twardella, D; Fromme, H; Dietrich, S; Dietrich, W C

    2009-02-01

    The aims of the research project were (I) to describe the exposure to particulate matter in Bavarian schools and identify predictors of increased exposure and (II) to evaluate whether exposure can be reduced by improving the ventilation and/or cleaning routine. Air quality was measured in 46 schools, two classrooms each, in the City of Munich and Dachau county. Each classroom was measured on one school day in both winter 2004/2005 and summer 2005. The continuously generated data on particulate matter during the teaching hours were summarised to daily medians and the possible association of the median concentration with classroom characteristics was tested using non-parametric methods. In winter, the median PM (2.5) concentration was 18.8 microg/m (3), in summer 12.7 microg/m (3). The median PM (10) concentration was 91.5 microg/m (3) in winter and 64.9 microg/m (3) in summer. Determinants of a high particulate matter concentration were the winter period, an increased number of pupils or decreased room size, a high CO(2) concentration, and a low class level. Following this survey, a pilot study on the effects of improved cleaning and ventilation routines was conducted in autumn 2005. Three conditions were tested in two classrooms of one school: (a) standard, (b) improved airing (3 min during short and 20 min during long breaks), and (c) improved airing and improved cleaning (thorough cleaning once and vacuuming before wet wiping). Each condition was implemented for 2 weeks and particulate matter concentrations measured concurrently. In both rooms a reduction of both PM (2.5) and PM (10) concentration was found following improved airing and a further reduction occurred when improved cleaning was introduced in addition. However, in a linear regression accounting for other factors (room, physical activity of the pupils, outdoor concentration of particulate matter) the effect of improved airing was no longer significant, while the effect of improved cleaning remained at

  6. Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study

    NARCIS (Netherlands)

    Hoek, G.; Brunekreef, B.; Goldbohm, S.; Fischer, P.; Brandt, P.A. van den

    2002-01-01

    Background: Long-term exposure to particulate matter air pollution has been associated with increased cardiopulmonary mortality in the USA. We aimed to assess the relation between traffic-related air pollution and mortality in participants of the Netherlands Cohort study on Diet and Cancer (NLCS),

  7. Occupational Exposure to Diesel Particulate Matter in Municipal Household Waste Workers.

    Directory of Open Access Journals (Sweden)

    Kyong-Hui Lee

    Full Text Available The purposes of this study were to determine the following: 1 the exposure levels of municipal household waste (MHW workers to diesel particulate matter (DPM using elemental carbon (EC, organic carbon (OC, total carbon (TC, black carbon (BC, and fine particulate matter (PM 2.5 as indicators; 2 the correlations among the indicators; 3 the optimal indicator for DPM; and 4 factors that influence personal exposure to DPM.A total of 72 workers in five MHW collection companies were assessed over a period of 7 days from June to September 2014. Respirable EC/OC samples were quantified using the thermal optical transmittance method. BC and PM 2.5 were measured using real-time monitors, an aethalometer and a laser photometer. All results were statistically analyzed for occupational and environmental variables to identify the exposure determinants of DPM.The geometric mean of EC, OC, TC, BC and PM 2.5 concentrations were 4.8, 39.6, 44.8, 9.1 and 62.0 μg/m3, respectively. EC concentrations were significantly correlated with the concentrations of OC, TC and BC, but not with those of PM 2.5. The exposures of the MHW collectors to EC, OC, and TC were higher than those of the drivers (p<0.05. Workers of trucks meeting Euro 3 emission standard had higher exposures to EC, OC, TC and PM 2.5 than those working on Euro 4 trucks (p<0.05. Multiple regression analysis revealed that the job task, European engine emission standard, and average driving speed were the most influential factors in determining worker exposure.We assessed MHW workers' exposure to DPM using parallel sampling of five possible indicators. Of these five indicators, EC was shown to be the most useful indicator of DPM exposure for MHW workers, and the job task, European emission standard, and average driving speed were the main determinants of EC exposure.

  8. Chronic particulate exposure, mortality and cardiovascular outcomes in the nurses health study

    Science.gov (United States)

    Adverse health effects of exposures to acute air pollution have been well studied. Fewer studies have examined effects of chronic exposure. Previous studies used exposure estimates for narrow time periods and were limited by the geographic distribution of pollution monitors. This...

  9. Cognitive decline, mortality, and organophosphorus exposure in aging Mexican Americans.

    Science.gov (United States)

    Paul, Kimberly C; Ling, Chenxiao; Lee, Anne; To, Tu My; Cockburn, Myles; Haan, Mary; Ritz, Beate

    2018-01-01

    Cognitive impairment is a major health concern among older Mexican Americans, associated with significant morbidity and mortality, and may be influenced by environmental exposures. To investigate whether agricultural based ambient organophosphorus (OP) exposure influences 1) the rate of cognitive decline and mortality and 2) whether these associations are mediated through metabolic or inflammatory biomarkers. In a subset of older Mexican Americans from the Sacramento Area Latino Study on Aging (n = 430), who completed modified mini-mental state exams (3MSE) up to 7 times (1998-2007), we examined the relationship between estimated ambient OP exposures and cognitive decline (linear repeated measures model) and time to dementia or being cognitively impaired but not demented (CIND) and time to mortality (cox proportional hazards model). We then explored metabolic and inflammatory biomarkers as potential mediators of these relationships (additive hazards mediation). OP exposures at residential addresses were estimated with a geographic information system (GIS) based exposure assessment tool. Participants with high OP exposure in the five years prior to baseline experienced faster cognitive decline (β = 0.038, p = 0.02) and higher mortality over follow-up (HR = 1.91, 95% CI = 1.12, 3.26). The direct effect of OP exposure was estimated at 241 (95% CI = 27-455) additional deaths per 100,000 person-years, and the proportion mediated through the metabolic hormone adiponectin was estimated to be 4% 1.5-19.2). No other biomarkers were associated with OP exposure. Our study provides support for the involvement of OP pesticides in cognitive decline and mortality among older Mexican Americans, possibly through biologic pathways involving adiponectin. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Characterizing Aggregated Exposure to Primary Particulate Matter: Recommended Intake Fractions for Indoor and Outdoor Sources

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier; Apte, Joshua Schulz

    2017-01-01

    Exposure to fine particulate matter (PM_(2.5)) from indoor and outdoor sources is a leading environmental contributor to global disease burden. In response, we established under the auspices of the UNEP/SETAC Life Cycle Initiative a coupled indoor-outdoor emission-to-exposure framework to provide...

  11. Exposure to air pollutants and mortality in hypertensive patients according to demography: a 10 year case-crossover study.

    Science.gov (United States)

    Wong, Martin C S; Tam, Wilson W S; Wang, Harry H X; Lao, X Q; Zhang, Daisy Dexing; Chan, Sky W M; Kwan, Mandy W M; Fan, Carmen K M; Cheung, Clement S K; Tong, Ellen L H; Cheung, N T; Tse, L A; Yu, Ignatius T S

    2014-09-01

    This study evaluated whether short term exposures to NO2, O3, particulate matter <10 mm in diameter (PM10) were associated with higher risk of mortality. A total of 223,287 hypertensive patients attended public health-care services and newly prescribed at least 1 antihypertensive agent were followed-up for up to 5 years. A time-stratified, bi-directional case-crossover design was adopted. For all-cause mortality, significant positive associations were observed for NO2 and PM10 at lag 0-3 days per 10 μg/m(3) increase in concentration (excess risks 1.187%-2.501%). Significant positive associations were found for O3 at lag 1 and 2 days and the excess risks were 1.654% and 1.207%, respectively. We found similarly positive associations between these pollutants and respiratory disease mortality. These results were significant among those aged ≥65 years and in cold seasons only. Older hypertensive patients are susceptible to all-cause and respiratory disease-specific deaths from these air pollutants in cold weather. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Cadmium and lung cancer mortality accounting for simultaneous arsenic exposure.

    Science.gov (United States)

    Park, Robert M; Stayner, Leslie T; Petersen, Martin R; Finley-Couch, Melissa; Hornung, Richard; Rice, Carol

    2012-05-01

    Prior investigations identified an association between airborne cadmium and lung cancer but questions remain regarding confounding by arsenic, a well-established lung carcinogen. A cadmium smelter population exhibiting excess lung cancer was re-analysed using a retrospective exposure assessment for arsenic (As), updated mortality (1940-2002), a revised cadmium (Cd) exposure matrix and improved work history information. Cumulative exposure metrics for both cadmium and arsenic were strongly associated making estimation of their independent effects difficult. Standardised mortality ratios (SMRs) were modelled with Poisson regression with the contribution of arsenic to lung cancer risk constrained by exposure-response estimates previously reported. The results demonstrate (1) a statistically significant effect of Cd independent of As (SMR=3.2 for 10 mg-year/m(3) Cd, p=0.012), (2) a substantial healthy worker effect for lung cancer (for unexposed workers, SMR=0.69) and (3) a large deficit in lung cancer mortality among Hispanic workers (SMR=0.27, p=0.009), known to have low lung cancer rates. A supralinear dose-rate effect was observed (contribution to risk with increasing exposure intensity has declining positive slope). Lung cancer mortality was somewhat better predicted using a cadmium burden metric with a half-life of about 20-25 years. These findings support an independent effect for cadmium in risk of lung cancer mortality. 1/1000 excess lifetime risk of lung cancer death is predicted from an airborne exposure of about 2.4 μg/m(3) Cd.

  13. Correlation between natural radiation exposure and cancer mortality, (2)

    International Nuclear Information System (INIS)

    Noguchi, Kunikazu; Shimizu, Masami; Onishi, Masaaki; Sairenji, Eiko

    1986-01-01

    In the previous study, a statistically significant positive correlation between natural background radiation exposure rates and crude (non-age-adjusted) cancer mortality rates was observed in 46 Japanese prefectures over the period from 1968 until 1978. In the present investigation, however, the significance of this correlation mostly disappeared through age adjustment with only the two exceptions of female stomach and uterine cancers. Age adjusted male esophagus cancer mortality rate still showed a significant negative correlation. Female esophagus and pancreas cancers became negatively correlated with exposure rate through age adjustment. It was suggested that natural radiation levels are positively correlated with prefectural population component ratios older than 40, 50 and 65 years, which was considered to be one of the causes of apparent correlation between exposure rates and crude cancer mortality rates. (author)

  14. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Chambliss, S E; Zeinali, M; Minjares, R; Silva, R; West, J J

    2014-01-01

    Exposure to ambient fine particular matter (PM 2.5 ) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM 2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM 2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM 2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m −3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM 2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  15. Adverse effect of diesel engine produced particulate matter on various stone types and concrete: a laboratory exposure experiment

    Science.gov (United States)

    Farkas, Orsolya; Szabados, György; Antal, Ákos; Török, Ákos

    2015-04-01

    The effect of particulate matter on construction materials have been studied under laboratory conditions. For testing the adverse effects of diesel soot and particulate matter on stone and concrete a small scale laboratory exposure chamber was constructed. Blocks of 9 different stone types and concrete was placed in the chamber and an exhaust pipe of diesel engine was diverted into the system. Tested stones included: porous limestone, cemented non-porous limestone, travertine, marble, rhyolite tuff, andesite and granite. The engine was operated for 10 hours and the produced particulate matter was diverted directly to the surface of the material specimens of 3 cm in diameter each. Working parameters of the engine were controlled; the composition of the exhaust gas, smoke value and temperature were continuously measured during the test. Test specimens were documented and analysed prior to exposure and after the exposure test. Parameters such colorimetric values, weight, surface properties, mineralogical compositions of the test specimens were recorded. The working temperature was in the order of 300°C-320°C. The gas concentration was in ppm as follows: 157 CO; 5.98 CO2, 34.3 THC; 463 NOx; 408 NO; 12.88 O2. Our tests have demonstrated that significant amount of particulate matter was deposited on construction materials even at a short period of time; however the exposure was very intense. It also indicates that that the interaction of particulate matter and aerosol compounds with construction materials in urban areas causes rapid decay and has an adverse effect not only on human health but also on built structures.

  16. IMPACT OF THE DURATION OF BACTERIAL EXPOSURE ON ZEBRA MUSSEL MORTALITY

    International Nuclear Information System (INIS)

    Molloy, Daniel P.

    2002-01-01

    These tests indicated that: (1) duration of exposure to bacterial strain CL0145A of Pseudomonas fluorescens is a key variable in obtaining zebra mussel mortality; (2) that given a choice of exposure periods up to 96 hr, the longer the exposure period, the higher the mean mortality that will be achieved; (3) that the first few hours that the mussels are exposed to the bacteria are the most important in achieving kill; (4) that the mortality achieved by exposure periods ≥72 hr may be somewhat amplified by the degraded water quality conditions which can develop in recirculating water systems over such extended time periods

  17. IMPACT OF THE DURATION OF BACTERIAL EXPOSURE ON ZEBRA MUSSEL MORTALITY

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2002-01-21

    These tests indicated that: (1) duration of exposure to bacterial strain CL0145A of Pseudomonas fluorescens is a key variable in obtaining zebra mussel mortality; (2) that given a choice of exposure periods up to 96 hr, the longer the exposure period, the higher the mean mortality that will be achieved; (3) that the first few hours that the mussels are exposed to the bacteria are the most important in achieving kill; (4) that the mortality achieved by exposure periods {>=}72 hr may be somewhat amplified by the degraded water quality conditions which can develop in recirculating water systems over such extended time periods.

  18. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    Science.gov (United States)

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  19. Transcriptome-wide analyses indicate mitochondrial responses to particulate air pollution exposure

    DEFF Research Database (Denmark)

    Winckelmans, Ellen; Nawrot, Tim S.; Tsamou, Maria

    2017-01-01

    validation cohort (n = 169, 55.6% women). Results: Overrepresentation analyses revealed significant pathways (p-value transport chain (ETC) for medium-term exposure in women. For men, medium-term PM10....... Conclusions: In this exploratory study, we identified mitochondrial genes and pathways associated with particulate air pollution indicating upregulation of energy producing pathways as a potential mechanism to compensate for PM-induced mitochondrial damage....

  20. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    Science.gov (United States)

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  1. A meta-analysis of exposure to particulate matter and adverse birth outcomes

    Directory of Open Access Journals (Sweden)

    Dirga Kumar Lamichhane

    2015-11-01

    Full Text Available Objectives The objective of this study was to conduct a systematic review to provide summarized evidence on the association between maternal exposure to particulate air pollution and birth weight (BW and preterm birth (PTB after taking into consideration the potential confounding effect of maternal smoking. Methods We systematically searched all published cohort and case-control studies examining BW and PTB association with particulate matter (PM, less than or equal to 2.5μm and 10.0 μm in diameter, PM2.5 and PM10, respectively from PubMed and Web of Science, from January 1980 to April 2015. We extracted coefficients for continuous BW and odds ratio (OR for PTB from each individual study, and meta-analysis was used to combine the coefficient and OR of individual studies. The methodological quality of individual study was assessed using a standard protocol proposed by Downs and Black. Forty-four studies met the inclusion criteria. Results In random effects meta-analyses, BW as a continuous outcome was negativelyassociated with 10 μg/m3 increase in PM10 (-10.31 g; 95% confidence interval [CI], -13.57 to -3.13 g; I-squared=0%, p=0.947 and PM2.5 (-22.17 g; 95% CI, -37.93 to -6.41 g; I-squared=92.3%, p <0.001 exposure during entire pregnancy, adjusted for maternal smoking. A significantly increased risk of PTB per 10 μg/m3 increase in PM10 (OR, 1.23; 95% CI, 1.04 to 1.41; I-squared=0%, p =0.977 and PM2.5 (OR, 1.14; 95% CI, 1.06 to 1.22; I-squared=92.5%, p <0.001 exposure during entire pregnancy was observed. Effect size of change in BW per 10 μg/m3 increase in PM tended to report stronger associations after adjustment for maternal smoking. Conclusions While this systematic review supports an adverse impact of maternal exposure to particulate air pollution on birth outcomes, variation in effects by exposure period and sources of heterogeneity between studies should be further explored.

  2. Metro Commuter Exposures to Particulate Air Pollution and PM2.5-Associated Elements in Three Canadian Cities: The Urban Transportation Exposure Study.

    Science.gov (United States)

    Van Ryswyk, Keith; Anastasopolos, Angelos T; Evans, Greg; Sun, Liu; Sabaliauskas, Kelly; Kulka, Ryan; Wallace, Lance; Weichenthal, Scott

    2017-05-16

    System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM 2.5 (PM = particulate matter), PM 10 , ultrafine particles, black carbon, and the elemental composition of PM 2.5 . Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM 2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM 2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM 2.5 and 21.2%, 11.3% and 11.5% of daily PM 2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM 2.5 and its elemental components to a metro commuter's daily exposure.

  3. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  4. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    International Nuclear Information System (INIS)

    Haynes, Erin N.; Chen, Aimin; Ryan, Patrick; Succop, Paul; Wright, John; Dietrich, Kim N.

    2011-01-01

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter (≤2.5 μm) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban–rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003–2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3–4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter ≤2.5 and ≤10 μm emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  5. Occupational exposures and Parkinson's disease mortality in a prospective Dutch cohort.

    Science.gov (United States)

    Brouwer, Maartje; Koeman, Tom; van den Brandt, Piet A; Kromhout, Hans; Schouten, Leo J; Peters, Susan; Huss, Anke; Vermeulen, Roel

    2015-06-01

    We investigated the association between six occupational exposures (ie, pesticides, solvents, metals, diesel motor emissions (DME), extremely low frequency magnetic fields (ELF-MF) and electric shocks) and Parkinson's disease (PD) mortality in a large population-based prospective cohort study. The Netherlands Cohort Study on diet and cancer enrolled 58,279 men and 62,573 women aged 55-69 years in 1986. Participants were followed up for cause-specific mortality over 17.3 years, until December 2003, resulting in 402 male and 207 female PD deaths. Following a case-cohort design, a subcohort of 5,000 participants was randomly sampled from the complete cohort. Information on occupational history and potential confounders was collected at baseline. Job-exposure matrices were applied to assign occupational exposures. Associations with PD mortality were evaluated using Cox regression. Among men, elevated HRs were observed for exposure to pesticides (eg, ever high exposed, HR 1.27, 95% CI 0.86 to 1.88) and ever high exposed to ELF-MF (HR 1.54, 95% CI 1.00 to 2.36). No association with exposure duration or trend in cumulative exposure was observed for any of the occupational exposures. Results among women were unstable due to small numbers of high-exposed women. Associations with PD mortality were observed for occupational exposure to pesticides and ELF-MF. However, the weight given to these findings is limited by the absence of a monotonic trend with either duration or cumulative exposure. No associations were found between PD mortality and occupational exposure to solvents, metals, DME or electric shocks. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Characterization of particulate and gas exposures of sensitive subpopulations living in Baltimore and Boston.

    Science.gov (United States)

    Koutrakis, Petros; Suh, Helen H; Sarnat, Jeremy A; Brown, Kathleen Ward; Coull, Brent A; Schwartz, Joel

    2005-12-01

    Personal exposures to particulate and gaseous pollutants and corresponding ambient concentrations were measured for 56 subjects living in Baltimore, Maryland, and 43 subjects living in Boston, Massachusetts. The 3 Baltimore cohorts consisted of 20 healthy older adults (seniors), 21 children, and 15 individuals with physician-diagnosed chronic obstructive pulmonary disease (COPD*). The 2 Boston cohorts were 20 healthy seniors and 23 children. All children were 9 to 13 years of age; seniors were 65 years of age or older; and the COPD participants had moderate to severe physician-diagnosed COPD. Personal exposures to particulate matter with aerodynamic diameters less than 2.5 microm (PM2.5), sulfate (SO(4)2-), elemental carbon (EC), ozone (03), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured simultaneously for 24 hours/day. All subjects were monitored for 8 to 12 consecutive days. The primary objectives of this study were (1) to characterize the personal particulate and gaseous exposures for individuals sensitive to PM health effects and (2) to assess the appropriateness of exposure assessment strategies for use in PM epidemiologic studies. Personal exposures to multiple pollutants and ambient concentrations were measured for subjects from each cohort from each location. Pollutant data were analyzed using correlation and mixed-model regression analyses. In Baltimore, personal PM2.5 exposures tended to be comparable to (and frequently lower than) corresponding ambient concentrations; in Boston, the personal exposures were frequently higher. Overall, personal exposures to the gaseous pollutants, especially O3 and SO2, were considerably lower than corresponding ambient concentrations because of the lack of indoor sources for these gases and their high removal rate on indoor surfaces. Further, the impact of ambient particles on personal exposure (the infiltration factor) and differences in infiltration factor by city, season, and cohort were investigated

  7. Relationship between Particulate matter less than 10 microns exposures and health effects on humans in Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Sahar Geravandi

    2015-06-01

    Full Text Available Background & Aims of the Study: Particulate matters less than 10 microns can absorb into your lungs and reacting with the moisture and enter the circulatory system directly through the airways. The aim of this study is to assess Behavior PM 10 data in different seasons and Determination effects on human health in Ahvaz city during 2013. Materials & Methods: Data Particulate matters less than 10 microns were taken from Ahvaz Department of Environment and Meteorological Organization. Sampling was performed for 24 hours in 4 stations. Method of sampling and analysis were performed according to EPA guideline. Processing data include the instruction set correction of averaging, coding and filtering. Finally, health-effects of Particulate matters less than 10 exposures were calculated with impact of meteorological parameters and converted as input file to the Air Q model. Results: PM 10 concentration in winter season was maximum amount in the year 2013. According to the research findings, highest and the lowest Particulate matters less than 10 microns concentrations during 2013 had the Bureau of Meteorology “Havashenasi” and Head office of ADoE “Mohitzist”. Sum of total numbers of cardiovascular death and hospitals admission to respiratory diseases attributed to Particulate matters less than 10 microns were 923 and 2342 cases in 2013. Conclusions: Particulate matter emissions are highly regulated in most industrialized countries. Due to environmental concerns, most industries and dust storm phenomena are required to decrease in source produce particle mater and kind of dust collection system to control particulate emissions. Pollution prevention and control measures that reduce Particulate matters less than 10 microns can very useful for expected to reduce people’s exposures to Sulfur dioxide.

  8. Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia, pulmonary inflammation in heart failure-prone rats

    Science.gov (United States)

    Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiologic events precipitating these outcomes remain poorly understood but may involve inflamm...

  9. Effects of NO2 exposure on daily mortality in São Paulo, Brazil

    NARCIS (Netherlands)

    Costa, Amine Farias; Hoek, Gerard; Brunekreef, Bert; Ponce de Leon, Antonio Carlos Monteiro

    2017-01-01

    BACKGROUND: Recent reports have suggested that air pollution mixtures represented by nitrogen dioxide (NO2) may have effects on human health, which are independent from those of particulate matter mass. We evaluate the association between NO2 and daily mortality among elderly using one- and

  10. Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study.

    Science.gov (United States)

    Chen, Renjie; Zhang, Yuhao; Yang, Chunxue; Zhao, Zhuohui; Xu, Xiaohui; Kan, Haidong

    2013-04-01

    There have been no multicity studies on the acute effects of air pollution on stroke mortality in China. This study was undertaken to examine the associations between daily stroke mortality and outdoor air pollution (particulate matter air pollution with daily stroke mortality. Air pollution was associated with daily stroke mortality in 8 Chinese cities. In the combined analysis, an increase of 10 μg/m(3) of 2-day moving average concentrations of particulate matter air pollution and risk of stroke mortality. To our knowledge, this is the first multicity study in China, or even in other developing countries, to report the acute effect of air pollution on stroke mortality. Our results contribute to very limited data on the effect of air pollution on stroke for high-exposure settings typical in developing countries.

  11. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India

    Directory of Open Access Journals (Sweden)

    Ramachandran Prasannavenkatesh

    2015-01-01

    Full Text Available Research outcomes from the epidemiological studies have found that the course (PM10 and the fine particulate matter (PM2.5 are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  12. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India.

    Science.gov (United States)

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Kumar, Divya Subash; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013-January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  13. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities.

    Science.gov (United States)

    Liu, Sa; Noth, Elizabeth; Eisen, Ellen; Cullen, Mark R; Hammond, Katharine

    2018-05-31

    Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3 , respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (Pfacilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.

  14. Mortality associated with particulate concentration and Asian dust storms in Metropolitan Taipei

    Science.gov (United States)

    Wang, Yu-Chun; Lin, Yu-Kai

    2015-09-01

    This study evaluates mortality risks from all causes, circulatory diseases, and respiratory diseases associated with particulate matter (PM10 and PM2.5) concentrations and Asian dust storms (ADS) from 2000 to 2008 in Metropolitan Taipei. This study uses a distributed lag non-linear model with Poisson distribution to estimate the cumulative 5-day (lags 0-4) relative risks (RRs) and confidence intervals (CIs) of cause-specific mortality associated with daily PM10 and PM2.5 concentrations, as well as ADS, for total (all ages) and elderly (≥65 years) populations based on study periods (ADS frequently inflicted period: 2000-2004; and less inflicted period: 2005-2008). Risks associated with ADS characteristics, including inflicted season (winter and spring), strength (the ratio of stations with Pollutant Standard Index >100 is increase in PM10 from 10 μg/m3 to 50 μg/m3 was associated with increased all-cause mortality risk with cumulative 5-day RR of 1.10 (95% CI: 1.04, 1.17) for the total population and 1.10 (95% CI: 1.02, 1.18) for elders. Mortality from circulatory diseases for the elderly was related to increased PM2.5 from 5 μg/m3 to 30 μg/m3, with cumulative 5-day RR of 1.21 (95% CI: 1.02, 1.44) from 2005 to 2008. Compared with normal days, the mortality from all causes and circulatory diseases for the elderly population was associated with winter ADS with RRs of 1.05 (95% CI: 1.01, 1.08) and 1.08 (95% CI: 1.01, 1.15), respectively. Moreover, all-cause mortality was associated with shorter and less area-affected ADS with an RR of 1.04 for total and elderly populations from 2000 to 2004. Population health risk differed not only with PM concentration but also with ADS characteristics.

  15. Occupational exposure and mortality in the German uranium miner cohort

    International Nuclear Information System (INIS)

    Schnelzer, M.; Dufey, F.; Grosche, B.; Sogl, M.; Tschense, A.; Walsh, L.; Kreuzer, M.

    2014-01-01

    The German uranium miners cohort study comprises 58,982 men employed in the GDR by the Wismut company for at least six months between 1946 and 1989. Particularly in the early years, miners were exposed to high levels of radon, silica and other harmful substances. The aim of the cohort study is to investigate the health effects of occupational exposures. The cohort was established in 1998 with mortality follow-ups every five years, i.e. vital status and cause of death are ascertained. Annual exposures to radon progeny, external gamma-radiation, long-lived radionuclides, fine dust, silica and arsenic dust were individually assessed by means of a comprehensive job-exposure matrix. For data analyses Poisson regression models were used. By end of 2008, 25,438 (43 %) cohort members were deceased with known cause of death in 94 %. In total 7,780 cancer mortalities were observed, including 3,500 from lung cancer. Lung cancer mortality is twice as high as in the general population largely due to occupational radon progeny and silica exposure. Also 975 silicosis deaths were observed and there is some evidence for a relationship between radon progeny exposure and cancers of the extra-thoracic airways. Circulatory diseases and non-malignant diseases of the airways were also investigated, but no relationship to occupational exposure was found. Up to now health effects of uranium mining in the Wismut cohort primarily manifest themselves as increases in lung cancer and silicosis mortality due to high radon progeny and silica exposure. With increasing duration of follow-up, further findings regarding more rare causes of death and levels of exposure relevant today are expected.

  16. Ambient particulate matter induces IL-8 expression through an alternative NF-kB mechanism in human airway epithelial cells

    Science.gov (United States)

    BACKGROUND: Exposure to ambient air particulate matter (PM) has been shown to increase rates of cardio-pulmonary morbidity and mortality, but the underlying mechanisms are still not well understood. OBJECTIVE: To examine signaling events involved in the expression of the inflamma...

  17. Characterizing health impacts from indoor and outdoor exposure to fine particulates

    DEFF Research Database (Denmark)

    Vigon, Bruce; Fantke, Peter; McKone, Thomas E

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  18. Approximation of personal exposure to fine particulate matters (PM2.5) during cooking using solid biomass fuels in the kitchens of rural West Bengal, India.

    Science.gov (United States)

    Nayek, Sukanta; Padhy, Pratap Kumar

    2018-03-27

    More than 85% of the rural Indian households use traditional solid biofuels (SBFs) for daily cooking. Burning of the easily available unprocessed solid fuels in inefficient earthen cooking stoves produce large quantities of particulate matters. Smaller particulates, especially with aerodynamic diameter of 2.5 μm or less (PM 2.5 ), largely generated during cooking, are considered to be health damaging in nature. In the present study, kitchen level exposure of women cooks to fine particulate matters during lunch preparation was assessed considering kitchen openness as surrogate to the ventilation condition. Two-way ANCOVA analysis considering meal quantity as a covariate revealed no significant interaction between the openness and the seasons explaining the variability of the personal exposure to the fine particulate matters in rural kitchen during cooking. Multiple linear regression analysis revealed the openness as the only significant predictor for personal exposure to the fine particulate matters. In the present study, the annual average fine particulate matter exposure concentration was found to be 974 μg m -3 .

  19. Spatiotemporal Changes in Fine Particulate Matter Pollution and the Associated Mortality Burden in China between 2015 and 2016

    Directory of Open Access Journals (Sweden)

    Luwei Feng

    2017-10-01

    Full Text Available In recent years, research on the spatiotemporal distribution and health effects of fine particulate matter (PM2.5 has been conducted in China. However, the limitations of different research scopes and methods have led to low comparability between regions regarding the mortality burden of PM2.5. A kriging model was used to simulate the distribution of PM2.5 in 2015 and 2016. Relative risk (RR at a specified PM2.5 exposure concentration was estimated with an integrated exposure–response (IER model for different causes of mortality: lung cancer (LC, ischaemic heart disease (IHD, cerebrovascular disease (stroke and chronic obstructive pulmonary disease (COPD. The population attributable fraction (PAF was adopted to estimate deaths attributed to PM2.5. 72.02% of cities experienced decreases in PM2.5 from 2015 to 2016. Due to the overall decrease in the PM2.5 concentration, the total number of deaths decreased by approximately 10,658 per million in 336 cities, including a decrease of 1400, 1836, 6312 and 1110 caused by LC, IHD, stroke and COPD, respectively. Our results suggest that the overall PM2.5 concentration and PM2.5-related deaths exhibited decreasing trends in China, although air quality in local areas has deteriorated. To improve air pollution control strategies, regional PM2.5 concentrations and trends should be fully considered.

  20. EFFECTS OF SUBCHRONIC EXPOSURE TO CONCENTRATED AMBIENT PARTICULATES ON ELECTROCARDIOGRAM AND HEART RATE VARIABILITY IN SPONTANEOUSLY HYPERTENSIVE RATS

    Science.gov (United States)

    Epidemiological studies have linked air pollution exposure to adverse respiratory health effects, especially in individuals with inflammatory airways disease. Symptomatic asthmatics appear to be at greatest risk. We previously demonstrated that exposure of rats to particulate...

  1. Assessment of population exposure to particulate matter pollution in Chongqing, China.

    Science.gov (United States)

    Wang, Shuxiao; Zhao, Yu; Chen, Gangcai; Wang, Fei; Aunan, Kristin; Hao, Jiming

    2008-05-01

    To determine the population exposure to PM(10) in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM(10) concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM(10) were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 microg/m(3), respectively, in winter, summer and as the annual average. Indoor PM(10) level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM(10) exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas.

  2. Assessment of population exposure to particulate matter pollution in Chongqing, China

    Energy Technology Data Exchange (ETDEWEB)

    Shuxiao Wang; Yu Zhao; Gangcai Chen; Fei Wang; Aunan Kristin; Jiming Hao [Tsinghua University, Beijing (China). Department of Environmental Science and Engineering

    2008-05-15

    To determine the population exposure to PM10 in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM10 concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM10 were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 {mu}g/m{sup 3}, respectively, in winter, summer and as the annual average. Indoor PM10 level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM10 exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas.

  3. Influence of advections of particulate matter from biomass combustion on specific-cause mortality in Madrid in the period 2004-2009.

    Science.gov (United States)

    Linares, C; Carmona, R; Tobías, A; Mirón, I J; Díaz, J

    2015-05-01

    Approximately, 20 % of particulate and aerosol emissions into the urban atmosphere are of natural origin (including wildfires and Saharan dust). During these natural episodes, PM10 and PM2.5 levels usually exceed World Health Organisation (WHO) health protection thresholds. This study sought to evaluate the possible effect of advections of particulate matter from biomass fuel combustion on daily specific-cause mortality among the general population and the segment aged ≥ 75 years in Madrid. Ecological time-series study in the city of Madrid from January 01, 2004 to December 31, 2009. The dependent variable analysed was daily mortality due to natural (ICD-10:A00-R99), circulatory (ICD-10:I00-I99), and respiratory (ICD-10:J00-J99) causes in the population, both general and aged ≥ 75 years. The following independent and control variables were considered: a) daily mean PM2.5 and PM10 concentrations; b) maximum daily temperature; c) daily mean O3 and NO2 concentrations; d) advection of particulate matter from biomass combustion ( http://www.calima.ws/ ), using a dichotomous variable and e) linear trend and seasonalities. We conducted a descriptive analysis, performed a test of means and, to ascertain relative risk, fitted a model using autoregressive Poisson regression and stratifying by days with and without biomass advection, in both populations. Of the 2192 days analysed, biomass advection occurred on 56, with mean PM2.5 and PM10 values registering a significant increase during these days. PM10 had a greater impact on organic mortality with advection (RRall ages = 1.035 [1.011-1.060]; RR  ≥  75 years = 1.066 [1.031-1.103]) than did PM2.5 without advection (RRall ages = 1.017 [1.009-1.025]; RR  ≥  75 years = 1.012 [1.003-1.022]). Among specific causes, respiratory-though not circulatory-causes were associated with PM10 on days with advection in ≥ 75 year age group. PM10, rather than PM2.5, were associated with an increase in natural

  4. Impacts of Intercontinental Transport of Anthropogenic Fine Particulate Matter on Human Mortality

    Science.gov (United States)

    Anenberg, Susan C.; West, J. Jason; Hongbin, Yu; Chin, Mian; Schulz, Michael; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Fiore, Arlene; hide

    2014-01-01

    Fine particulate matter with diameter of 2.5 microns or less (PM2.5) is associated with premature mortality and can travel long distances, impacting air quality and health on intercontinental scales. We estimate the mortality impacts of 20 % anthropogenic primary PM2.5 and PM2.5 precursor emission reductions in each of four major industrial regions (North America, Europe, East Asia, and South Asia) using an ensemble of global chemical transport model simulations coordinated by the Task Force on Hemispheric Transport of Air Pollution and epidemiologically-derived concentration-response functions. We estimate that while 93-97 % of avoided deaths from reducing emissions in all four regions occur within the source region, 3-7 % (11,500; 95 % confidence interval, 8,800-14,200) occur outside the source region from concentrations transported between continents. Approximately 17 and 13 % of global deaths avoided by reducing North America and Europe emissions occur extraregionally, owing to large downwind populations, compared with 4 and 2 % for South and East Asia. The coarse resolution global models used here may underestimate intraregional health benefits occurring on local scales, affecting these relative contributions of extraregional versus intraregional health benefits. Compared with a previous study of 20 % ozone precursor emission reductions, we find that despite greater transport efficiency for ozone, absolute mortality impacts of intercontinental PM2.5 transport are comparable or greater for neighboring source-receptor pairs, due to the stronger effect of PM2.5 on mortality. However, uncertainties in modeling and concentration-response relationships are large for both estimates.

  5. Exposure to Ambient Fine Particulate Air Pollution in Utero as a Risk Factor for Child Stunting in Bangladesh.

    Science.gov (United States)

    Goyal, Nihit; Canning, David

    2017-12-23

    Pregnant mothers in Bangladesh are exposed to very high and worsening levels of ambient air pollution. Maternal exposure to fine particulate matter has been associated with low birth weight at much lower levels of exposure, leading us to suspect the potentially large effects of air pollution on stunting in children in Bangladesh. We estimate the relationship between exposure to air pollution in utero and child stunting by pooling outcome data from four waves of the nationally representative Bangladesh Demographic and Health Survey conducted between 2004 and 2014, and calculating children's exposure to ambient fine particulate matter in utero using high resolution satellite data. We find significant increases in the relative risk of child stunting, wasting, and underweight with higher levels of in utero exposure to air pollution, after controlling for other factors that have been found to contribute to child anthropometric failure. We estimate the relative risk of stunting in the second, third, and fourth quartiles of exposure as 1.074 (95% confidence interval: 1.014-1.138), 1.150 (95% confidence interval: 1.069-1.237, and 1.132 (95% confidence interval: 1.031-1.243), respectively. Over half of all children in Bangladesh in our sample were exposed to an annual ambient fine particulate matter level in excess of 46 µg/m³; these children had a relative risk of stunting over 1.13 times that of children in the lowest quartile of exposure. Reducing air pollution in Bangladesh could significantly contribute to the Sustainable Development Goal of reducing child stunting.

  6. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates

    Energy Technology Data Exchange (ETDEWEB)

    Rabovsky, J.; Judy, D.J.; Rodak, D.J.; Petersen, M.

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under conditions of particulate exposure and virus infection, serum IFN levels peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE.

  7. Effects of long-term exposure to air pollution on natural-cause mortality

    DEFF Research Database (Denmark)

    Beelen, Rob; Raaschou-Nielsen, Ole; Stafoggia, Massimo

    2013-01-01

    Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air...... pollutants....

  8. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease.

    Science.gov (United States)

    Langrish, Jeremy P; Li, Xi; Wang, Shengfeng; Lee, Matthew M Y; Barnes, Gareth D; Miller, Mark R; Cassee, Flemming R; Boon, Nicholas A; Donaldson, Ken; Li, Jing; Li, Liming; Mills, Nicholas L; Newby, David E; Jiang, Lixin

    2012-03-01

    Air pollution exposure increases cardiovascular morbidity and mortality and is a major global public health concern. We investigated the benefits of reducing personal exposure to urban air pollution in patients with coronary heart disease. In an open randomized crossover trial, 98 patients with coronary heart disease walked on a predefined route in central Beijing, China, under different conditions: once while using a highly efficient face mask, and once while not using the mask. Symptoms, exercise, personal air pollution exposure, blood pressure, heart rate, and 12-lead electrocardiography were monitored throughout the 24-hr study period. Ambient air pollutants were dominated by fine and ultrafine particulate matter (PM) that was present at high levels [74 μg/m³ for PM(2.5) (PM with aerodynamic diamater reduced maximal ST segment depression (-142 vs. -156 μV, p = 0.046) over the 24-hr period. When the face mask was used during the prescribed walk, mean arterial pressure was lower (93 ± 10 vs. 96 ± 10 mmHg, p = 0.025) and heart rate variability increased (high-frequency power: 54 vs. 40 msec², p = 0.005; high-frequency normalized power: 23.5 vs. 20.5 msec, p = 0.001; root mean square successive differences: 16.7 vs. 14.8 msec, p = 0.007). However, mask use did not appear to influence heart rate or energy expenditure. Reducing personal exposure to air pollution using a highly efficient face mask appeared to reduce symptoms and improve a range of cardiovascular health measures in patients with coronary heart disease. Such interventions to reduce personal exposure to PM air pollution have the potential to reduce the incidence of cardiovascular events in this highly susceptible population.

  9. Short-term exposure to fine and coarse particles and mortality: A multicity time-series study in East Asia

    International Nuclear Information System (INIS)

    Lee, Hyewon; Honda, Yasushi; Hashizume, Masahiro; Guo, Yue Leon; Wu, Chang-Fu; Kan, Haidong; Jung, Kweon; Lim, Youn-Hee; Yi, Seungmuk; Kim, Ho

    2015-01-01

    Few studies on size-specific health effects of particulate matter have been conducted in Asia. We examined the association between both fine and coarse particles (PM_2_._5 and PM_1_0_−_2_._5) and mortality across 11 East Asian cities from 4 countries (Korea, Japan, Taiwan, and China). We performed a two-stage analysis: we generated city-specific estimates using a time-series analysis with a generalized additive model (Quasi-Poisson distribution), and estimated the overall effects by conducting a meta-analysis. Each 10−μg/m"3 increase in PM_2_._5 (lag01) was associated with an increase of 0.38% (95% confidence interval = 0.21%–0.55%) in all causes mortality, 0.96% (0.46%–1.46%) in cardiovascular mortality, and 1% (0.23%–1.78%) in respiratory mortality. Each 10−μg/m"3 increase in PM_1_0_−_2_._5 (lag01) was associated with cardiovascular mortality (0.69%, [0.05%–1.33%]), although this association attenuated after controlling for other pollutants, especially PM_2_._5. Increased mortality was associated with increasing PM_2_._5 and PM_1_0_−_2_._5 concentrations over 11 East Asian cities. - Highlights: • Few studies on size-specific health effects of PM have been conducted in East Asia. • We estimated size-specific PM effects on mortality over 11 East Asian cities. • Both fine and coarse particles were associated with mortality in East Asian cites. • Effect estimates for fine particles were higher than those for coarse particles. - Short-term exposure to PM_2_._5 and PM_1_0_−_2_._5 was associated with an increased risk of mortality in East Asian cities, and PM_2_._5 effect estimates were higher than PM_1_0_−_2_._5.

  10. Assessment of population exposure to particulate matter pollution in Chongqing, China

    International Nuclear Information System (INIS)

    Wang Shuxiao; Zhao Yu; Chen Gangcai; Wang Fei; Aunan, Kristin; Hao Jiming

    2008-01-01

    To determine the population exposure to PM 10 in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM 10 concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM 10 were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 μg/m 3 , respectively, in winter, summer and as the annual average. Indoor PM 10 level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM 10 exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas. - Using an indirect microenvironment model, the population weighted exposure (PWE) to PM 10 in Chongqing was estimated to be 211 μg/m 3 with significant contribution from indoor pollution

  11. Assessment of population exposure to particulate matter pollution in Chongqing, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shuxiao [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: shxwang@tsinghua.edu.cn; Zhao Yu [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Chen Gangcai; Wang Fei [Institute of Environmental Science and Technology of Chongqing, Chongqing 630020 (China); Aunan, Kristin [Center for International Climate and Environmental Research, P.O. Box 1129, Blindern, 0318 Oslo (Norway); Hao Jiming [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2008-05-15

    To determine the population exposure to PM{sub 10} in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM{sub 10} concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM{sub 10} were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 {mu}g/m{sup 3}, respectively, in winter, summer and as the annual average. Indoor PM{sub 10} level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM{sub 10} exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas. - Using an indirect microenvironment model, the population weighted exposure (PWE) to PM{sub 10} in Chongqing was estimated to be 211 {mu}g/m{sup 3} with significant contribution from indoor pollution.

  12. Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009

    Science.gov (United States)

    Laden, Francine; Dockery, Douglas; Schwartz, Joel

    2012-01-01

    Background: Epidemiologic studies have reported associations between fine particles (aerodynamic diameter ≤ 2.5 µm; PM2.5) and mortality. However, concerns have been raised regarding the sensitivity of the results to model specifications, lower exposures, and averaging time. Objective: We addressed these issues using 11 additional years of follow-up of the Harvard Six Cities study, incorporating recent lower exposures. Methods: We replicated the previously applied Cox regression, and examined different time lags, the shape of the concentration–response relationship using penalized splines, and changes in the slope of the relation over time. We then conducted Poisson survival analysis with time-varying effects for smoking, sex, and education. Results: Since 2001, average PM2.5 levels, for all six cities, were < 18 µg/m3. Each increase in PM2.5 (10 µg/m3) was associated with an adjusted increased risk of all-cause mortality (PM2.5 average on previous year) of 14% [95% confidence interval (CI): 7, 22], and with 26% (95% CI: 14, 40) and 37% (95% CI: 7, 75) increases in cardiovascular and lung-cancer mortality (PM2.5 average of three previous years), respectively. The concentration–response relationship was linear down to PM2.5 concentrations of 8 µg/m3. Mortality rate ratios for PM2.5 fluctuated over time, but without clear trends despite a substantial drop in the sulfate fraction. Poisson models produced similar results. Conclusions: These results suggest that further public policy efforts that reduce fine particulate matter air pollution are likely to have continuing public health benefits. PMID:22456598

  13. Assessment of occupational exposure and contamination by means of airborne particulate matter and biomonitors using k0 instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Menezes, M.A. de B.C.; Pereira Maia, E.C.; Filho, S.S.; Albinati, C.

    2002-01-01

    In order to assess the elemental concentration level in a galvanizing industry and alert for the need to assess the outcome of a long-term exposure, scalp hair and toenail samples were used as bioindicators and the industry environment was evaluated through airborne particulate matter. The elemental concentration results have pointed out a high exposure to pollutant at workplaces and a high elemental concentration in biomonitors suggesting endogenous contamination. The majority of the elements determined in airborne particulate matter were also determined in hair and toenail samples. The results evidence the efficiency of these matrixes as biomonitors and the importance to carry out the airborne particulate matter sampling in parallel to these biomonitors mainly in occupational epidemiological studies. (author)

  14. Seasonal Variability of Concentration and Air Quality of Ambient Particulate Matter in Sosnowiec City

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2015-12-01

    Full Text Available Introduction: Exposing the population to more than standard concentration of particulate matter (PM is a crucial factor shaping the public health on urbanized areas both in Europe and Poland. In most cases, exceeded air quality standards relate to the winter period, in which there has been the greatest amount. Many studies have indicated, that exposure to PM can cause adverse health effects. Human exposure especially to fine particles (with an aerodynamic diameter less than 2.5 µm, causes risk of cardiovascular and respiratory diseases, due to daily mortality and hospital admissions. Various types of epidemiological studies have indicated, that ambient air pollution is responsible for increasing risk of lung cancer. For this reason, in 2013 The International Agency for Research on Cancer (IARC classified outdoor air pollution and particulate matter as carcinogenic to humans (Group 1.

  15. Do causal concentration-response functions exist? A critical review of associational and causal relations between fine particulate matter and mortality.

    Science.gov (United States)

    Cox, Louis Anthony Tony

    2017-08-01

    Concentration-response (C-R) functions relating concentrations of pollutants in ambient air to mortality risks or other adverse health effects provide the basis for many public health risk assessments, benefits estimates for clean air regulations, and recommendations for revisions to existing air quality standards. The assumption that C-R functions relating levels of exposure and levels of response estimated from historical data usefully predict how future changes in concentrations would change risks has seldom been carefully tested. This paper critically reviews literature on C-R functions for fine particulate matter (PM2.5) and mortality risks. We find that most of them describe historical associations rather than valid causal models for predicting effects of interventions that change concentrations. The few papers that explicitly attempt to model causality rely on unverified modeling assumptions, casting doubt on their predictions about effects of interventions. A large literature on modern causal inference algorithms for observational data has been little used in C-R modeling. Applying these methods to publicly available data from Boston and the South Coast Air Quality Management District around Los Angeles shows that C-R functions estimated for one do not hold for the other. Changes in month-specific PM2.5 concentrations from one year to the next do not help to predict corresponding changes in average elderly mortality rates in either location. Thus, the assumption that estimated C-R relations predict effects of pollution-reducing interventions may not be true. Better causal modeling methods are needed to better predict how reducing air pollution would affect public health.

  16. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    Science.gov (United States)

    Ashworth, Danielle C.; Fuller, Gary W.; Toledano, Mireille B.; Font, Anna; Elliott, Paul; Hansell, Anna L.; de Hoogh, Kees

    2013-01-01

    Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure) as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs) in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks. PMID:23935644

  17. Comparison of particulate matter exposure estimates in young children from personal sampling equipment and a robotic sampler.

    Science.gov (United States)

    Sagona, Jessica A; Shalat, Stuart L; Wang, Zuocheng; Ramagopal, Maya; Black, Kathleen; Hernandez, Marta; Mainelis, Gediminas

    2017-05-01

    Accurate characterization of particulate matter (PM) exposure in young children is difficult, because personal samplers are often too heavy, bulky or impractical to be used. The Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler was developed to help address this problem. In this study, we measured inhalable PM exposures in 2-year-olds via a lightweight personal sampler worn in a small backpack and evaluated the use of a robotic sampler with an identical sampling train for estimating PM exposure in this age group. PM mass concentrations measured by the personal sampler ranged from 100 to almost 1,200 μg/m 3 , with a median value of 331 μg/m 3 . PM concentrations measured by PIPER were considerably lower, ranging from 14 to 513 μg/m 3 with a median value of 56 μg/m 3 . Floor cleaning habits and activity patterns of the 2-year-olds varied widely by home; vigorous play and recent floor cleaning were most associated with higher personal exposure. Our findings highlight the need for additional characterization of children's activity patterns and their effect on personal exposures.

  18. Homologous Recombination Repair Signaling in Chemical Carcinogenesis: Prolonged Particulate Hexavalent Chromium Exposure Suppresses the Rad51 Response in Human Lung Cells

    Science.gov (United States)

    Qin, Qin; Xie, Hong; Wise, Sandra S.; Browning, Cynthia L.; Thompson, Kelsey N.; Holmes, Amie L.; Wise, John Pierce

    2014-01-01

    The aim of this study was to focus on hexavalent chromium, [Cr(VI)], a chemical carcinogen and major public health concern, and consider its ability to impact DNA double strand break repair. We further focused on particulate Cr(VI), because it is the more potent carcinogenic form of Cr(VI). DNA double strand break repair serves to protect cells against the detrimental effects of DNA double strand breaks. For particulate Cr(VI), data show DNA double strand break repair must be overcome for neoplastic transformation to occur. Acute Cr(VI) exposures reveal a robust DNA double strand break repair response, however, longer exposures have not been considered. Using the comet assay, we found longer exposures to particulate zinc chromate induced concentration-dependent increases in DNA double strand breaks indicating breaks were occurring throughout the exposure time. Acute (24 h) exposure induced DNA double strand break repair signaling by inducing Mre11 foci formation, ATM phosphorylation and phosphorylated ATM foci formation, Rad51 protein levels and Rad51 foci formation. However, longer exposures reduced the Rad51 response. These data indicate a major chemical carcinogen can simultaneously induce DNA double strand breaks and alter their repair and describe a new and important aspect of the carcinogenic mechanism for Cr(VI). PMID:25173789

  19. Exploring exposure to Agent Orange and increased mortality due to bladder cancer.

    Science.gov (United States)

    Mossanen, Matthew; Kibel, Adam S; Goldman, Rose H

    2017-11-01

    During the Vietnam War, many veterans were exposed to Agent Orange (AO), a chemical defoliant containing varying levels of the carcinogen dioxin. The health effects of AO exposure have been widely studied in the VA population. Here we review and interpret data regarding the association between AO exposure and bladder cancer (BC) mortality. Data evaluating the association between AO and BC is limited. Methods characterizing exposure have become more sophisticated over time. Several studies support the link between AO exposure and increased mortality due to BC, including the Korean Veterans Health Study. Available data suggest an association with exposure to AO and increased mortality due to BC. In patients exposed to AO, increased frequency of cystoscopic surveillance and potentially more aggressive therapy for those with BC may be warranted but utility of these strategies remains to be proven. Additional research is required to better understand the relationship between AO and BC. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effect of Mitochondrial Oxidative Stress and Age on the Signaling Pathway of Ultrafine Particulate Matter Exposure in Murine Aorta

    Science.gov (United States)

    Epidemiological studies have linked ultrafine particulate matter (PM) exposure and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure. Advanced age is one ...

  1. Association of fine particles with respiratory disease mortality: a meta-analysis.

    Science.gov (United States)

    Chang, Xuhong; Zhou, Liangjia; Tang, Meng; Wang, Bei

    2015-01-01

    Short-time exposure to high levels of fine particles (particulate matter with an aerodynamic diameter≤2.5 μm; PM2.5) may trigger respiratory disease, but this association has not been determined. The objective of this study was to evaluate and quantify the short-time exposure to fine particles on respiratory disease mortality. Published articles were obtained from electronic databases and a validity assessment was used. The meta-analysis was conducted with the incorporation of good-quality studies. After applying the inclusion criteria, 9 articles were included in the study. The methodological qualities of the published studies were good, and every study achieved a score of 3. Fine particles were significantly associated with an increase in respiratory mortality risk (for every 10 μg/m3 increment, rate difference [RD]=1.32%, 95% confidence interval [CI]: 0.95%-1.68%; p=.000). These findings indicate that short-time exposure to fine particles could increase the risk of respiratory disease mortality.

  2. Global chemical composition of ambient fine particulate matter for exposure assessment.

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  3. Traffic-related particulate air pollution exposure in urban areas

    Science.gov (United States)

    Borrego, C.; Tchepel, O.; Costa, A. M.; Martins, H.; Ferreira, J.; Miranda, A. I.

    In the last years, there has been an increase of scientific studies confirming that long- and short-term exposure to particulate matter (PM) pollution leads to adverse health effects. The development of a methodology for the determination of accumulated human exposure in urban areas is the main objective of the current work, combining information on concentrations at different microenvironments and population time-activity pattern data. A link between a mesoscale meteorological and dispersion model and a local scale air quality model was developed to define the boundary conditions for the local scale application. The time-activity pattern of the population was derived from statistical information for different sub-population groups and linked to digital city maps. Finally, the hourly PM 10 concentrations for indoor and outdoor microenvironments were estimated for the Lisbon city centre, which was chosen as the case-study, based on the local scale air quality model application for a selected period. This methodology is a first approach to estimate population exposure, calculated as the total daily values above the thresholds recommended for long- and short-term health effects. Obtained results reveal that in Lisbon city centre a large number of persons are exposed to PM levels exceeding the legislated limit value.

  4. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates.

    Science.gov (United States)

    Rabovsky, J; Judy, D J; Rodak, D J; Petersen, M

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under these conditions of particulate exposure and virus infection, serum IFN levels in the mice used in this study peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE (Hahon et al., (1985). The data suggest the relationship that exists

  5. Association between short-term exposure to ultrafine particles and mortality in eight European urban areas

    DEFF Research Database (Denmark)

    Stafoggia, Massimo; Schneider, Alexandra; Cyrys, Josef

    2017-01-01

    urban areas of Finland, Sweden, Denmark, Germany, Italy, Spain, and Greece, between 1999 and 2013. We applied city-specific time-series Poisson regression models and pooled them with random-effects meta-analysis. RESULTS: We estimated a weak, delayed association between particle number concentration...... and particulate matter (PM) and daily mortality in eight European urban areas. METHODS: We collected daily data on non-accidental and cardio-respiratory mortality, particle number concentrations (as proxy for ultrafine particle number concentration), fine and coarse PM, gases and meteorologic parameters in eight...... and non-accidental mortality, with mortality increasing by approximately 0.35% per 10,000 particles/cm increases in particle number concentration occurring 5 to 7 days before death. A similar pattern was found for cause-specific mortality. Estimates decreased after adjustment for fine particles (PM2...

  6. Valuing mortality impacts of smoke exposure from major southern California wildfires

    Science.gov (United States)

    Ikuho Kochi; Patricia A. Champ; John B. Loomis; Geoffrey H. Donovan

    2012-01-01

    While the mortality impacts of urban air pollution have been well addressed in the literature, very little is known about the mortality impacts and associated social cost from wildfire-smoke exposure (Kochi et al., 2010; U.S. Environmental Protection Agency, 2004). In an attempt to address this knowledge gap, we estimate the social cost associated with excess mortality...

  7. Use of historical uranium air sampling data to estimate worker exposure potential to airborne radioactive particulate in a uranium processing facility.

    Science.gov (United States)

    Methner, M M; Feng, H A; Utterback, D F

    2001-12-01

    Historical industrial hygiene monitoring records from a uranium processing plant were collected and analyzed to characterize exposure potential to airborne radioactive particulate. More than 2,100 samples were collected during the period of 1954-1968. The data was organized by job title, plant number, and year of measurement. Laboratory analysis of air samples indicated a wide range of potential exposures to the alpha-emitting particulate. Logarithmic transformation of the data was necessary to approximate Gaussian distributions. Geometric Mean (GM) values were used as the measure of central tendency within years. GM values ranged from 23-49 disintegrations per minute per cubic meter of air sampled (dpm/m3) with the years 1963 and 1964 being significantly higher than other years (ANOVA: p exposure potential across plants, GM ranged from 20-68 dpm/m3, with plants 5 and 8 being significantly higher than the others (ANOVA: p Exposure potential for specific job titles across the plants varied widely. GM for clerks was the lowest (11 dpm/m3) while furnace operators were the highest (235 dpm/m3). Other job titles with potentially high exposures were chemical operators, forklift operators, machine operators, and furnace operators. This analysis indicates the magnitude and distributions of worker exposure to alpha-emitting airborne particulate. Additional analysis and epidemiologic studies are planned for this facility.

  8. Indoor exposure to environmental cigarette smoke, but not other inhaled particulates associates with respiratory symptoms and diminished lung function in adults

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise L N; Sigsgaard, Torben

    2010-01-01

    Exposure to particulate matter (PM) can induce airway inflammation and exacerbation of asthma. However, there is limited knowledge about the effects of exposure to indoor sources of PM. We investigated the associations between self-reported exposure to indoor sources of PM and lower airway sympto...

  9. Cause-specific mortality in British coal workers and exposure to respirable dust and quartz

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; MacCalman, L. [Institute of Occupational Medicine, Edinburgh (United Kingdom)

    2010-04-15

    In the 1950s the Pneumoconiosis Field Research (PFR) programme was set up to study the health of British coal workers. Studies included regular health surveys, an intensive characterisation of workers' individual exposures, and entry to a cohort followed up to the present for cause-specific mortality. This study reports on analyses of cause-specific mortality in a cohort of almost 18 000 men from 10 British collieries. External analyses used standardised mortality ratios (SMRs), comparing observed mortality with reference rates from the regions in which the collieries were situated. Causes investigated include lung and stomach cancers, chronic obstructive pulmonary disease and cardiovascular endpoints. Internal analyses used Cox regression models with time-dependent exposures adjusting for the confounding effects of age, smoking, cohort entry date and regional differences in population mortality rates. Several causes showed evidence of a healthy worker effect early in the follow-up, with a deficit in the SMR diminishing over time. For most of the causes there was a significant excess in the latter part of follow-up. Internal analyses found evidence of an association between increased risks of lung cancer and increased quartz exposure, particularly at a lag of 15 years. Risks of mortality from non-malignant respiratory disease showed increases with increased exposure to respirable dust. This paper adds to the evidence on the long-term effects of exposure to coalmine dust on mortality from respiratory diseases.

  10. Cause-specific mortality in British coal workers and exposure to respirable dust and quartz

    Energy Technology Data Exchange (ETDEWEB)

    Brian G Miller; Laura MacCalman [Institute of Occupational Medicine, Edinburgh (United Kingdom)

    2010-04-15

    In the 1950s the Pneumoconiosis Field Research (PFR) programme was set up to study the health of British coal workers. Studies included regular health surveys, an intensive characterisation of workers' individual exposures, and entry to a cohort followed up to the present for cause-specific mortality. This study reports on analyses of cause-specific mortality in a cohort of almost 18?000 men from 10 British collieries. External analyses used standardised mortality ratios (SMRs), comparing observed mortality with reference rates from the regions in which the collieries were situated. Causes investigated include lung and stomach cancers, chronic obstructive pulmonary disease and cardiovascular endpoints. Internal analyses used Cox regression models with time-dependent exposures adjusting for the confounding effects of age, smoking, cohort entry date and regional differences in population mortality rates. Several causes showed evidence of a healthy worker effect early in the follow-up, with a deficit in the SMR diminishing over time. For most of the causes there was a significant excess in the latter part of follow-up. Internal analyses found evidence of an association between increased risks of lung cancer and increased quartz exposure, particularly at a lag of 15 years. Risks of mortality from non-malignant respiratory disease showed increases with increased exposure to respirable dust. This paper adds to the evidence on the long-term effects of exposure to coalmine dust on mortality from respiratory diseases.

  11. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Loft, Steffen; Jacobsen, Nicklas Raun

    2010-01-01

    Wood combustion is a significant source of ambient particulate matter (PM) in many regions of the world. Exposure occurs through inhalation or ingestion after deposition of wood smoke particulate matter (WSPM) on crops and food. We investigated effects of ambient PM and WSPM by intragastric...

  12. Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities

    NARCIS (Netherlands)

    Okokon, E.O.; Yli-Tuomi, T.; Turunen, A.W.; Taimisto, P.; Pennanen, A.; Vouitsis, I.; Samaras, Z.; Voogt, M.; Keuken, M.; Lanki, T.

    2017-01-01

    Background: In order to curb traffic-related air pollution and its impact on the physical environment, contemporary city commuters are encouraged to shift from private car use to active or public transport modes. However, personal exposures to particulate matter (PM), black carbon and noise during

  13. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  14. Air Pollution and Nonmalignant Respiratory Mortality in 16 Cohorts within the ESCAPE Project

    DEFF Research Database (Denmark)

    Dimakopoulou, Konstantina; Samoli, Evangelia; Beelen, Rob

    2014-01-01

    Rationale: Prospective cohort studies have shown that chronic exposure to particulate matter and traffic related air pollution is associated with reduced survival. However, the effects on non-malignant respiratory mortality are less studied and those reported are less consistent. Objectives: We...... have investigated the relationship of long-term exposure to air pollution and non-malignant respiratory mortality in 16 cohorts with individual level data within the multi center European Study of Cohorts for Air Pollution Effects (ESCAPE). Methods: Data from 16 ongoing cohort studies from Europe were...... used. The total number of subjects was 307,553. There were 1,559 respiratory deaths during follow-up. Measurements: Air pollution exposure was estimated by land use regression models at the baseline residential addresses of study participants and traffic-proximity variables were derived from...

  15. Mortality from non-malignant respiratory diseases among people with silicosis in Hong Kong: exposure-response analyses for exposure to silica dust.

    Science.gov (United States)

    Tse, L A; Yu, I T S; Leung, C C; Tam, W; Wong, T W

    2007-02-01

    To examine the exposure-response relationships between various indices of exposure to silica dust and the mortality from non-malignant respiratory diseases (NMRDs) or chronic obstructive pulmonary diseases (COPDs) among a cohort of workers with silicosis in Hong Kong. The concentrations of respirable silica dust were assigned to each industry and job task according to historical industrial hygiene measurements documented previously in Hong Kong. Exposure indices included cumulative dust exposure (CDE) and mean dust concentration (MDC). Penalised smoothing spline models were used as a preliminary step to detect outliers and guide further analyses. Multiple Cox's proportional hazard models were used to estimate the dust effects on the risk of mortality from NMRDs or COPDs after truncating the highest exposures. 371 of the 853 (43.49%) deaths occurring among 2789 workers with silicosis during 1981-99 were from NMRDs, and 101 (27.22%) NMRDs were COPDs. Multiple Cox's proportional hazard models showed that CDE (p = 0.009) and MDC (pcaisson workers and among those ever employed in other occupations with high exposure to silica dust. No exposure-response relationship was observed for surface construction workers with low exposures. A clear upward trend for both NMRDs and COPDs mortality was found with increasing severity of radiological silicosis. This study documented an exposure-response relationship between exposure to silica dust and the risk of death from NMRDs or COPDs among workers with silicosis, except for surface construction workers with low exposures. The risk of mortality from NMRDs increased significantly with the progression of International Labor Organization categories, independent of dust effects.

  16. Community air pollution and mortality: Analysis of 1980 data from US metropolitan areas. 1: Particulate air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, F.W.

    1992-11-01

    1980 data from up to 149 metropolitan areas were used to define cross-sectional associations between community air pollution and excess human mortality. The regression model proposed by Oezkaynak and Thurston, which accounted for age, race, education, poverty, and population density, was evaluated and several new models were developed. The new models also accounted for population change, drinking water hardness, and smoking, and included a more detailed description of race. Cause-of-death categories analyzed include all causes, all non-external causes, major cardiovascular diseases, and chronic obstructive pulmonary diseases (COPD). Both annual mortality rates and their logarithms were analyzed. The data on particulates were averaged across all monitoring stations available for each SMSA and the TSP data were restricted to the year 1980. The associations between mortality and air pollution were found to be dependent on the socioeconomic factors included in the models, the specific locations included din the data set, and the type of statistical model used. Statistically significant associations were found between TSP and mortality due to non-external causes with log-linear models, but not with a linear model, and between TS and COPD mortality for both linear and log-linear models. When the sulfate contribution to TSP was subtracted, the relationship with COPD mortality was strengthened. Scatter plots and quintile analyses suggested a TSP threshold for COPD mortality at around 65 ug/m{sup 3} (annual average). SO{sub 4}{sup {minus}2}, Mn, PM{sup 15}, and PM{sub 2.5} were not significantly associated with mortality using the new models.

  17. Historic air pollution exposure and long-term mortality risks in England and Wales: prospective longitudinal cohort study.

    Science.gov (United States)

    Hansell, Anna; Ghosh, Rebecca E; Blangiardo, Marta; Perkins, Chloe; Vienneau, Danielle; Goffe, Kayoung; Briggs, David; Gulliver, John

    2016-04-01

    Long-term air pollution exposure contributes to mortality but there are few studies examining effects of very long-term (>25 years) exposures. This study investigated modelled air pollution concentrations at residence for 1971, 1981, 1991 (black smoke (BS) and SO2) and 2001 (PM10) in relation to mortality up to 2009 in 367,658 members of the longitudinal survey, a 1% sample of the English Census. Outcomes were all-cause (excluding accidents), cardiovascular (CV) and respiratory mortality. BS and SO2 exposures remained associated with mortality decades after exposure-BS exposure in 1971 was significantly associated with all-cause (OR 1.02 (95% CI 1.01 to 1.04)) and respiratory (OR 1.05 (95% CI 1.01 to 1.09)) mortality in 2002-2009 (ORs expressed per 10 μg/m(3)). Largest effect sizes were seen for more recent exposures and for respiratory disease. PM10 exposure in 2001 was associated with all outcomes in 2002-2009 with stronger associations for respiratory (OR 1.22 (95% CI 1.04 to 1.44)) than CV mortality (OR 1.12 (95% CI 1.01 to 1.25)). Adjusting PM10 for past BS and SO2 exposures in 1971, 1981 and 1991 reduced the all-cause OR to 1.16 (95% CI 1.07 to 1.26) while CV and respiratory associations lost significance, suggesting confounding by past air pollution exposure, but there was no evidence for effect modification. Limitations include limited information on confounding by smoking and exposure misclassification of historic exposures. This large national study suggests that air pollution exposure has long-term effects on mortality that persist decades after exposure, and that historic air pollution exposures influence current estimates of associations between air pollution and mortality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. The effects of dust–haze on mortality are modified by seasons and individual characteristics in Guangzhou, China

    International Nuclear Information System (INIS)

    Liu, Tao; Zhang, Yong Hui; Xu, Yan Jun; Lin, Hua Liang; Xu, Xiao Jun; Luo, Yuan; Xiao, JianPeng; Zeng, Wei Lin; Zhang, Wan Fang; Chu, Cordia; Keogh, Kandice; Rutherford, Shannon; Qian, Zhengmin; Du, Yao Dong

    2014-01-01

    This study aimed to investigate the effects of dust–haze on mortality and to estimate the seasonal and individual-specific modification effects in Guangzhou, China. Mortality, air pollution and meteorological data were collected for 2006–2011. A dust–haze day was defined as daily visibility 10 . We concluded that dust–haze significantly increased mortality risk in Guangzhou, China, and this effect appears to be dominated by particulate mass and modified by season and individual-specific factors. - Highlights: • We assessed the health impact of dust–haze in a megacity of southern China. • A dust–haze was defined according to visibility and relative humidity. • Dust–haze increased mortality risk, which may be dominated by particulate mass. • The dust–haze effects were modified by season and individual-specific factors. - This study extends our understanding of the health impact of dust–haze in southern China, and provides local evidence for health to advocate for improved air emissions control and strategies to reduce population exposure

  19. The association between air pollution and mortality in Thailand.

    Science.gov (United States)

    Guo, Yuming; Li, Shanshan; Tawatsupa, Benjawan; Punnasiri, Kornwipa; Jaakkola, Jouni J K; Williams, Gail

    2014-07-01

    Bayesian statistical inference with a case-crossover design was used to examine the effects of air pollutants {Particulate matter pollutants had significant short-term impacts on non-accidental mortality. An increase of 10 μg/m(3) in PM10, 10 ppb in O₃, 1 ppb in SO₂ were associated with a 0.40% (95% posterior interval (PI): 0.22, 0.59%), 0.78% (95% PI: 0.20, 1.35%) and 0.34% (95% PI: 0.17, 0.50%) increase of non-accidental mortality, respectively. O₃ air pollution is significantly associated with cardiovascular mortality, while PM10 is significantly related to respiratory mortality. In general, the effects of all pollutants on all mortality types were higher in summer and winter than those in the rainy season. This study highlights the effects of exposure to air pollution on mortality risks in Thailand. Our findings support the Thailand government in aiming to reduce high levels of air pollution.

  20. Advances in exposure and toxicity assessment of particulate matter: An overview of presentations at the 2009 Toxicology and Risk Assessment Conference

    International Nuclear Information System (INIS)

    Gunasekar, Palur G.; Stanek, Lindsay W.

    2011-01-01

    The 2009 Toxicology and Risk Assessment Conference (TRAC) session on 'Advances in Exposure and Toxicity Assessment of Particulate Matter' was held in April 2009 in West Chester, OH. The goal of this session was to bring together toxicology, geology and risk assessment experts from the Department of Defense and academia to examine issues in exposure assessment and report on recent epidemiological findings of health effects associated with particulate matter (PM) exposure. Important aspects of PM exposure research are to detect and monitor low levels of PM with various chemical compositions and to assess the health risks associated with these exposures. As part of the overall theme, some presenters discussed collection methods for sand and dust from Iraqi and Afghanistan regions, health issues among deployed personnel, and future directions for risk assessment research among these populations. The remaining speakers focused on the toxicity of ultrafine PM and the characterization of aerosols generated during ballistic impacts of tungsten heavy alloys.

  1. Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women.

    Science.gov (United States)

    Honda, Trenton; Eliot, Melissa N; Eaton, Charles B; Whitsel, Eric; Stewart, James D; Mu, Lina; Suh, Helen; Szpiro, Adam; Kaufman, Joel D; Vedal, Sverre; Wellenius, Gregory A

    2017-08-01

    Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM 2.5 ), respirable (PM 10 ), and course (PM 10-2.5 ) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM 2.5 , PM 10 , and PM 10-2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM 2.5 and PM 10 fractions. The association between PM 2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave-related mortality

    International Nuclear Information System (INIS)

    Rey, Gregoire; Fouillet, Anne; Bessemoulin, Pierre; Frayssinet, Philippe; Dufour, Anne; Jougla, Eric; Hemon, Denis

    2009-01-01

    Heat waves may become a serious threat to the health and safety of people who currently live in temperate climates. It was therefore of interest to investigate whether more deprived populations are more vulnerable to heat waves. In order to address the question on a fine geographical scale, the spatial heterogeneity of the excess mortality in France associated with the European heat wave of August 2003 was analysed. A deprivation index and a heat exposure index were used jointly to describe the heterogeneity on the Canton scale (3,706 spatial units). During the heat wave period, the heat exposure index explained 68% of the extra-Poisson spatial variability of the heat wave mortality ratios. The heat exposure index was greater in the most urbanized areas. For the three upper quintiles of heat exposure in the densely populated Paris area, excess mortality rates were twofold higher in the most deprived Cantons (about 20 excess deaths/100,000 people/day) than in the least deprived Cantons (about 10 excess deaths/100,000 people/day). No such interaction was observed for the rest of France, which was less exposed to heat and less heterogeneous in terms of deprivation. Although a marked increase in mortality was associated with heat wave exposure for all degrees of deprivation, deprivation appears to be a vulnerability factor with respect to heat-wave-associated mortality.

  3. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Diabetes mellitus and fine particulate matter from diesel exhaust (DEP are both important contributors to the development of cardiovascular disease (CVD. Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml, and/or high glucose (HG, 25.5 mM. Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS, time-to-90% shortening (TPS(90, time-to-90% relengthening (TR(90 and maximal velocities of shortening/relengthening (±dL/dt, using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR(90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated

  4. Elevated personal exposure to particulate matter from human activities in a residence.

    Science.gov (United States)

    Ferro, Andrea R; Kopperud, Royal J; Hildemann, Lynn M

    2004-01-01

    Continuous laser particle counters collocated with time-integrated filter samplers were used to measure personal, indoor, and outdoor particulate matter (PM) concentrations for a variety of prescribed human activities during a 5-day experimental period in a home in Redwood City, CA, USA. The mean daytime personal exposures to PM(2.5) and PM(5) during prescribed activities were 6 and 17 times, respectively, as high as the pre-activity indoor background concentration. Activities that resulted in the highest exposures of PM(2.5), PM(5), and PM(10) were those that disturbed dust reservoirs on furniture and textiles, such as dry dusting, folding clothes and blankets, and making a bed. The vigor of activity and type of flooring were also important factors for dust resuspension. Personal exposures to PM(2.5) and PM(5) were 1.4 and 1.6 times, respectively, as high as the indoor concentration as measured by a stationary monitor. The ratio of personal exposure to the indoor concentration was a function of both particle size and the distance of the human activity from the stationary indoor monitor. The results demonstrate that a wide variety of indoor human resuspension activities increase human exposure to PM and contribute to the "personal cloud" effect.

  5. Ambient air pollution, smog episodes and mortality in Jinan, China.

    Science.gov (United States)

    Zhang, Jun; Liu, Yao; Cui, Liang-Liang; Liu, Shou-Qin; Yin, Xi-Xiang; Li, Huai-Chen

    2017-09-11

    We aimed to assess the acute effects of ambient air pollution and weather conditions on mortality in the context of Chinese smog episodes. A total of 209,321 deaths were recorded in Jinan, a large city in eastern China, during 2011-15. The mean concentrations of daily particulate matter ≤10 μm (PM 10 ), fine particulate matter (PM 2.5 ), sulfur dioxide (SO 2 ) and nitrogen dioxide (NO 2 ) were 169 μg/m 3 , 100 μg/m 3 , 77 μg/m 3 , and 54 μg/m 3 , respectively. Increases of 10 μg/m 3 in PM 10 , PM 2.5 , SO 2 and NO 2 were associated with 1.11% (95% CI 0.96-1.26%), 0.71% (95% CI 0.60-0.82%), 1.69% (95% CI 1.56-1.83%), and 3.12% (95% CI 2.72-3.53%) increases in daily non-accidental mortality rates, respectively. Moreover, the risk estimates for these 4 pollutants were higher in association with respiratory and cardiovascular mortality. The effects of all the evaluated pollutants on mortality were greater in winter than in summer. Smog episodes were associated with a 5.87% (95% CI 0.16-11.58%) increase in the rate of overall mortality. This study highlights the effect of exposure to air pollution on the rate of mortality in China.

  6. Health impact of exposure to suspended particulate matter. Epidemiology of long-term effects

    International Nuclear Information System (INIS)

    Heinrich, Joachim; Peters, Annette; Wichmann, H.-Erich; Univ. Muenchen; Grote, Veit

    2002-01-01

    Chronic effects of ambient air pollutants are studied by cross-sectional and cohort designs including adjustment for confounder on an individual basis. This review summarizes the state of the art about chronic effects of ambient particulate air pollutants. A majority of regional cross-sectional studies show a higher risk for non-allergic, infectious respiratory diseases such as bronchitis in children who grew up in highly polluted areas. Impaired lung function was only shown in few of these studies, whereas in adults impairments were homogeneously seen in cross-sectional studies. A 10 μg/m 3 TSP or PM 10 increase in annual means increases the prevalence of bronchitis in children by 20-40%. According to North-American cohort studies total mortality can be estimated to increase by 24-50% for PM 10 (per 50 μg/m 3 increase), 17-25% for PM 2.5 (per 25 μg/m 3 increase), and 10-50% for sulfates (per 15 μg/m 3 increase). Prevalence of bronchitis and infectious respiratory health in East German children decreased along with the improvement of air quality. Further studies on chronic effects including an improved exposure assessment are needed to quantify health effects more precisely. These future studies should include a higher number of areas with different air pollution levels. They should help to set up more evidence-based regulations for the control of air pollutants and to improve the evaluation of clean air acts. (orig.) [de

  7. Particulate air pollution and impaired lung function [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Laura Paulin

    2016-02-01

    Full Text Available Air pollution is a leading cause of morbidity and mortality throughout the world, particularly in individuals with existing lung disease. Of the most common air pollutants, particulate matter (PM is associated with an increased risk of exacerbations and respiratory symptoms in individuals with existing lung disease, and to a lesser extent, in those without known respiratory issues. The majority of published research has focused on the effects of PM exposures on symptoms and health care utilization. Fewer studies focus on the impact of PM on objective measurements of pulmonary function. This review will focus on the effects of PM exposure on objective measurements of lung function in both healthy individuals and those with existing lung disease.

  8. ASSOCIATIONS BETWEEN OUTDOOR PARTICULATE (PM2.5) CONCENTRATIONS AND GASEOUS CO-POLLUTANT EXPOSURE LEVELS FOR COPD AND MI COHORTS IN ATLANTA, GA

    Science.gov (United States)

    Epidemiological studies indicate that daily ambient particulate matter (PM2.5) concentrations are associated with increased mortality, hospital admissions, and respiratory and cardiovascular effects. It is possible that the observed significant associations are the result of c...

  9. Effects of exposure estimation errors on estimated exposure-response relations for PM2.5.

    Science.gov (United States)

    Cox, Louis Anthony Tony

    2018-07-01

    Associations between fine particulate matter (PM2.5) exposure concentrations and a wide variety of undesirable outcomes, from autism and auto theft to elderly mortality, suicide, and violent crime, have been widely reported. Influential articles have argued that reducing National Ambient Air Quality Standards for PM2.5 is desirable to reduce these outcomes. Yet, other studies have found that reducing black smoke and other particulate matter by as much as 70% and dozens of micrograms per cubic meter has not detectably affected all-cause mortality rates even after decades, despite strong, statistically significant positive exposure concentration-response (C-R) associations between them. This paper examines whether this disconnect between association and causation might be explained in part by ignored estimation errors in estimated exposure concentrations. We use EPA air quality monitor data from the Los Angeles area of California to examine the shapes of estimated C-R functions for PM2.5 when the true C-R functions are assumed to be step functions with well-defined response thresholds. The estimated C-R functions mistakenly show risk as smoothly increasing with concentrations even well below the response thresholds, thus incorrectly predicting substantial risk reductions from reductions in concentrations that do not affect health risks. We conclude that ignored estimation errors obscure the shapes of true C-R functions, including possible thresholds, possibly leading to unrealistic predictions of the changes in risk caused by changing exposures. Instead of estimating improvements in public health per unit reduction (e.g., per 10 µg/m 3 decrease) in average PM2.5 concentrations, it may be essential to consider how interventions change the distributions of exposure concentrations. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Association between Exposure to Ambient Air Particulates and Metabolic Syndrome Components in a Saudi Arabian Population

    Directory of Open Access Journals (Sweden)

    Magdy Shamy

    2017-12-01

    Full Text Available Recent epidemiological evidence suggests that exposure to particulates may be a factor in the etiology of metabolic syndrome (MetS. In this novel study, we investigated the relationship between particulate levels and prevalence of MetS component abnormalities (hypertension, hyperglycemia, obesity in a recruited cohort (N = 2025 in Jeddah, Saudi Arabia. We observed significant associations between a 10 μg/m3 increase in PM2.5 and increased risks for MetS (Risk Ratio (RR: 1.12; 95% Confidence Interval (CI: 1.06–1.19, hyperglycemia (RR: 1.08; 95% CI: 1.03–1.14, and hypertension (RR: 1.09; 95% CI: 1.04–1.14. PM2.5 from soil/road dust was found to be associated with hyperglycemia (RR: 1.12; 95% CI: 1.06–1.19 and hypertension (RR: 1.11; 95% CI: 1.05–1.18, while PM2.5 from traffic was associated with hyperglycemia (RR: 1.33; 95% CI: 1.05–1.71. We did not observe any health associations with source-specific mass exposures. Our findings suggest that exposure to specific elemental components of PM2.5, especially Ni, may contribute to the development of cardiometabolic disorders.

  11. Development of asthmatic inflammation in mice following early-life exposure to ambient environmental particulates and chronic allergen challenge

    Directory of Open Access Journals (Sweden)

    Cristan Herbert

    2013-03-01

    Childhood exposure to environmental particulates increases the risk of development of asthma. The underlying mechanisms might include oxidant injury to airway epithelial cells (AEC. We investigated the ability of ambient environmental particulates to contribute to sensitization via the airways, and thus to the pathogenesis of childhood asthma. To do so, we devised a novel model in which weanling BALB/c mice were exposed to both ambient particulate pollutants and ovalbumin for sensitization via the respiratory tract, followed by chronic inhalational challenge with a low mass concentration of the antigen. We also examined whether these particulates caused oxidant injury and activation of AEC in vitro. Furthermore, we assessed the potential benefit of minimizing oxidative stress to AEC through the period of sensitization and challenge by dietary intervention. We found that characteristic features of asthmatic inflammation developed only in animals that received particulates at the same time as respiratory sensitization, and were then chronically challenged with allergen. However, these animals did not develop airway hyper-responsiveness. Ambient particulates induced epithelial injury in vitro, with evidence of oxidative stress and production of both pro-inflammatory cytokines and Th2-promoting cytokines such as IL-33. Treatment of AEC with an antioxidant in vitro inhibited the pro-inflammatory cytokine response to these particulates. Ambient particulates also induced pro-inflammatory cytokine expression following administration to weanling mice. However, early-life dietary supplementation with antioxidants did not prevent the development of an asthmatic inflammatory response in animals that were exposed to particulates, sensitized and challenged. We conclude that injury to airway epithelium by ambient environmental particulates in early life is capable of promoting the development of an asthmatic inflammatory response in sensitized and antigen-challenged mice. These

  12. Particulate Air Pollution, Ambulatory Heart Rate Variability, and Cardiac Arrhythmia in Retirement Community Residents with Coronary Artery Disease

    Science.gov (United States)

    Longhurst, John; Tjoa, Thomas; Sioutas, Constantinos; Delfino, Ralph J.

    2013-01-01

    Background: Decreased heart rate variability (HRV) has been associated with future cardiac morbidity and mortality and is often used as a marker of altered cardiac autonomic balance in studies of health effects of airborne particulate matter. Fewer studies have evaluated associations between air pollutants and cardiac arrhythmia. Objectives: We examined relationships between cardiac arrhythmias, HRV, and exposures to airborne particulate matter. Methods: We measured HRV and arrhythmia with ambulatory electrocardiograms in a cohort panel study for up to 235 hr per participant among 50 nonsmokers with coronary artery disease who were ≥ 71 years of age and living in four retirement communities in the Los Angeles, California, Air Basin. Exposures included hourly outdoor gases, hourly traffic-related and secondary organic aerosol markers, and daily size-fractionated particle mass. We used repeated measures analyses, adjusting for actigraph-derived physical activity and heart rate, temperature, day of week, season, and community location. Results: Ventricular tachycardia was significantly increased in association with increases in markers of traffic-related particles, secondary organic carbon, and ozone. Few consistent associations were observed for supraventricular tachycardia. Particulates were significantly associated with decreased ambulatory HRV only in the 20 participants using ACE (angiotensin I–converting enzyme) inhibitors. Conclusions: Although these data support the hypothesis that particulate exposures may increase the risk of ventricular tachycardia for elderly people with coronary artery disease, HRV was not associated with exposure in most of our participants. These results are consistent with previous findings in this cohort for systemic inflammation, blood pressure, and ST segment depression. Citation: Bartell SM, Longhurst J, Tjoa T, Sioutas C, Delfino RJ. 2013. Particulate air pollution, ambulatory heart rate variability, and cardiac arrhythmia in

  13. Long-term air pollution exposure and cardio- respiratory mortality: a review.

    Science.gov (United States)

    Hoek, Gerard; Krishnan, Ranjini M; Beelen, Rob; Peters, Annette; Ostro, Bart; Brunekreef, Bert; Kaufman, Joel D

    2013-05-28

    Current day concentrations of ambient air pollution have been associated with a range of adverse health effects, particularly mortality and morbidity due to cardiovascular and respiratory diseases. In this review, we summarize the evidence from epidemiological studies on long-term exposure to fine and coarse particles, nitrogen dioxide (NO2) and elemental carbon on mortality from all-causes, cardiovascular disease and respiratory disease. We also summarize the findings on potentially susceptible subgroups across studies. We identified studies through a search in the databases Medline and Scopus and previous reviews until January 2013 and performed a meta-analysis if more than five studies were available for the same exposure metric.

  14. Increased mortality exposure within the family rather than individual mortality experiences triggers faster life-history strategies in historic human populations

    NARCIS (Netherlands)

    Störmer, Charlotte; Lummaa, Virpi

    2014-01-01

    impact of family versus individual-level effects of mortality exposure on two central life-history parameters, ages at first marriage and first birth, in three historical human populations (Germany, Finland, Canada). Mortality experience is measured as the confrontation with sibling deaths within

  15. Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland

    Science.gov (United States)

    de Hoogh, Kees; Hauri, Dimitri; Vicedo-Cabrera, Ana M.; Schindler, Christian; Huss, Anke; Röösli, Martin

    2017-01-01

    Background: Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. Objectives: We investigated the effects of radon and UV exposure on skin cancer mortality. Methods: Cox proportional hazard regression was used to study the association between exposures and skin cancer mortality in adults from the Swiss National Cohort. Modeled radon exposure and erythemal-weighted UV dose were assigned to addresses at baseline. Effect estimates were adjusted for sex, civil status, mother tongue, education, job position, neighborhood socioeconomic position, and UV exposure from outdoor occupation. Results: The study included 5.2 million adults (mean age 48 y) and 2,989 skin cancer deaths, with 1,900 indicating malignant melanoma (MM) as the primary cause of death. Adjusted hazard ratios (HR) for MM at age 60 were 1.16 (95% CI: 1.04, 1.29) per 100Bq/m3 radon and 1.11 (1.01, 1.23) per W/m2 in UV dose. Radon effects decreased with age. Risk of MM death associated with residential UV exposure was higher for individuals engaged in outdoor work with UV exposure (HR 1.94 [1.17, 3.23]), though not statistically significantly different compared to not working outdoors (HR 1.09 [0.99, 1.21], p=0.09). Conclusions: There is considerable variation in radon and UV exposure across Switzerland. Our study suggests both are relevant risk factors for skin cancer mortality. A better understanding of the role of the UV radiation and radon exposure is of high public health relevance. https://doi.org/10.1289/EHP825 PMID:28686556

  16. Elemental carbon exposure at residence and survival after acute myocardial infarction.

    Science.gov (United States)

    von Klot, Stephanie; Gryparis, Alexandros; Tonne, Cathryn; Yanosky, Jeffrey; Coull, Brent A; Goldberg, Robert J; Lessard, Darleen; Melly, Steven J; Suh, Helen H; Schwartz, Joel

    2009-07-01

    Particulate air pollution has been consistently related to cardiovascular mortality. Some evidence suggests that particulate matter may accelerate the atherosclerotic process. Effects of within-city variations of particulate air pollution on survival after an acute cardiovascular event have been little explored. We conducted a cohort study of hospital survivors of acute myocardial infarction (MI) from the Worcester, MA, metropolitan area to investigate the long-term effects of within-city variation in traffic-related air pollution on mortality. The study builds on an ongoing community-wide investigation examining changes over time in MI incidence and case-fatality rates. We included confirmed cases of MI in 1995, 1997, 1999, 2001, and 2003. Long-term survival status was ascertained through 2005. A validated spatiotemporal land use regression model for traffic-related air pollution was developed and annual averages of elemental carbon at residence estimated. The effect of estimated elemental carbon on the long-term mortality of patients discharged after MI was analyzed using a Cox proportional hazards model, controlling for a variety of demographic, medical history, and clinical variables. Of the 3895 patients with validated MI, 44% died during follow-up. Exposure to estimated elemental carbon in the year of entry into the study was 0.44 microg/m on average. All-cause mortality increased by 15% (95% confidence interval = 0.03%-29%) per interquartile range increase in estimated yearly elemental carbon (0.24 microg/m) after the second year of survival. No association between traffic-related pollution and all-cause mortality was observed during the first 2 years of follow-up. Chronic traffic-related particulate air pollution is associated with increased mortality in hospital survivors of acute MI after the second year of survival.

  17. Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020.

    Science.gov (United States)

    Maji, Kamal Jyoti; Dikshit, Anil Kumar; Arora, Mohit; Deshpande, Ashok

    2018-01-15

    In past decade of rapid industrial development and urbanization, China has witnessed increasingly persistent severe haze and smog episodes, posing serious health hazards to the Chinese population, especially in densely populated cities. Quantification of health impacts attributable to PM 2.5 (particulates with aerodynamic diameter≤2.5μm) has important policy implications to tackle air pollution. The Chinese national monitoring network has recently included direct measurements of ground level PM 2.5 , providing a potentially more reliable source for exposure assessment. This study reports PM 2.5 -related long-term mortality of year 2015 in 161 cities of nine regions across China using integrated exposure risk (IER) model for PM 2.5 exposure-response functions (ERF). It further provides an estimate of the potential health benefits by year 2020 with a realization of the goals of Air Pollution Prevention and Control Action Plan (APPCAP) and the three interim targets (ITs) and Air Quality Guidelines (AQG) for PM 2.5 by the World Health Organization (WHO). PM 2.5 -related premature mortality in 161 cities was 652 thousand, about 6.92% of total deaths in China during year 2015. Among all premature deaths, contributions of cerebrovascular disease (stroke), ischemic heart disease (IHD), chronic obstructive pulmonary disease (COPD), lung cancer (LC) and acute lower respiratory infections (ALRIs) were 51.70, 26.26, 11.77, 9.45 and 0.82%, respectively. The premature mortality in densely populated cities is very high, such as Tianjin (12,533/year), Beijing (18,817/year), Baoding (10,932/year), Shanghai (18,679/year), Chongqing (23,561/year), Chengdu (11,809/year), Harbin (9037/year) and Linyi (9141/year). The potential health benefits will be 4.4, 16.2, 34.5, 63.6 and 81.5% of the total present premature mortality when PM 2.5 concentrations in China meet the APPCAP, WHO IT-1, IT-2, IT-3 and AQG respectively, by the year 2020. In the current situation, by the end of year 2030

  18. Aircraft noise, air pollution, and mortality from myocardial infarction.

    Science.gov (United States)

    Huss, Anke; Spoerri, Adrian; Egger, Matthias; Röösli, Martin

    2010-11-01

    Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. We analyzed the Swiss National Cohort, which includes geocoded information on residence. Exposure to aircraft noise and air pollution was determined based on geospatial noise and air-pollution (PM10) models and distance to major roads. We used Cox proportional hazard models, with age as the timescale. We compared the risk of death across categories of A-weighted sound pressure levels (dB(A)) and by duration of living in exposed corridors, adjusting for PM10 levels, distance to major roads, sex, education, and socioeconomic position of the municipality. We analyzed 4.6 million persons older than 30 years who were followed from near the end of 2000 through December 2005, including 15,532 deaths from myocardial infarction (ICD-10 codes I 21, I 22). Mortality increased with increasing level and duration of aircraft noise. The adjusted hazard ratio comparing ≥60 dB(A) with noise. Aircraft noise was associated with mortality from myocardial infarction, with a dose-response relationship for level and duration of exposure. The association does not appear to be explained by exposure to particulate matter air pollution, education, or socioeconomic status of the municipality.

  19. All-cause mortality and radar exposure among french navy personnel: a 30 years cohort study

    International Nuclear Information System (INIS)

    Dabouis, V.; Arvers, P.; Debouzy, J.C.; Perrin, A.; Hours, M.

    2006-01-01

    To improve operational performance in a modern navy force, radiofrequency (RF) and microwaves emitting devices are widely used. It has been suggested that exposure to electromagnetic fields could be associated with greater health hazards and higher mortality. The all-cause mortality of 39488 militaries of the French navy forces was studied over the period 1975-2001 with a cohort epidemiological study. They served from 1975 until 1995. In a first step, the mortality of radar exposed militaries was compared to a control group formed by militaries who served during the same period in the same environment but without radar exposure. Administrative procedures for identifying militaries and their vital status were equivalent in the radar and the control groups. The age standardized mortality ratio in the radar navy personnel was 0.70 (95% CI: 0.54-0.90). In professional militaries, no difference in mortality ratio was found according to duration of estimated exposure. During a 30 years period of observation, we found no increase in all-cause mortality in the French navy personnel who were close to radar equipments

  20. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  1. Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities : Results from time series data from the APHEA project

    NARCIS (Netherlands)

    Katsouyanni, K; Touloumi, G; Spix, C; Schwartz, J; Balducci, F; Medina, S; Rossi, G; Wojtyniak, B; Sunyer, J; Bacharova, L; Schouten, JP; Ponka, A; Anderson, HR

    1997-01-01

    Objectives: To carry out a prospective combined quantitative analysis of the associations between all cause mortality and ambient particulate matter and sulphur dioxide. . Design: Analysis of time series data on daily number of deaths from all causes and concentrations of sulphur dioxide and

  2. Characteristics of Airborne Particulates Containing Naturally Occurring Radioactive Materials in Monazite Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Geon; Choi, Cheol Kyu; Park, Il; Kim, Min Jun; Go, A Ra; Ji, Seung Woo; Kim, Kwang Pyo [Kyunghee University, Yongin (Korea, Republic of); Koo, Bon Cheol [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of this study was to characterize physicochemical properties of airborne particulates at a monazite pulverization industry. The properties included particulate size distribution, concentration, shape, density, and radioactivity concentration. Monazite is one of the minerals containing naturally occurring radioactive material (NORM). Therefore, external and internal exposure can be occurred to the workers in monazite industry. The major exposure pathway of the workers is internal exposure due to inhalation of airborne particulates. According to International Commission on Radiological Protection (ICRP), radiation dose due to inhaled particulates containing NORM depends on particulate properties. Therefore, ICRP recommended the internal dose assessment using measured physicochemical properties of the airborne particulates. In the absence of specific information, ICRP provided default reference values. In this study, we characterized physicochemical properties of airborne particulates at a monazite pulverization industry. The databases of particulate information can be used for accurate internal dose assessment of worker.

  3. Increased mortality exposure within the family rather than individual mortality experiences triggers faster life-history strategies in historic human populations.

    Science.gov (United States)

    Störmer, Charlotte; Lummaa, Virpi

    2014-01-01

    Life History Theory predicts that extrinsic mortality risk is one of the most important factors shaping (human) life histories. Evidence from contemporary populations suggests that individuals confronted with high mortality environments show characteristic traits of fast life-history strategies: they marry and reproduce earlier, have shorter birth intervals and invest less in their offspring. However, little is known of the impact of mortality experiences on the speed of life histories in historical human populations with generally higher mortality risk, and on male life histories in particular. Furthermore, it remains unknown whether individual-level mortality experiences within the family have a greater effect on life-history decisions or family membership explains life-history variation. In a comparative approach using event history analyses, we study the impact of family versus individual-level effects of mortality exposure on two central life-history parameters, ages at first marriage and first birth, in three historical human populations (Germany, Finland, Canada). Mortality experience is measured as the confrontation with sibling deaths within the natal family up to an individual's age of 15. Results show that the speed of life histories is not adjusted according to individual-level mortality experiences but is due to family-level effects. The general finding of lower ages at marriage/reproduction after exposure to higher mortality in the family holds for both females and males. This study provides evidence for the importance of the family environment for reproductive timing while individual-level mortality experiences seem to play only a minor role in reproductive life history decisions in humans.

  4. Lung cancer mortality among European rock/slag wool workers: exposure-response analysis.

    Science.gov (United States)

    Consonni, D; Boffetta, P; Andersen, A; Chang-Claude, J; Cherrie, J W; Ferro, G; Frentzel-Beyme, R; Hansen, J; Olsen, J; Plato, N; Westerholm, P; Saracci, R

    1998-08-01

    The purpose was to analyze the relationship between semi-quantitative indices of exposure to manmade vitreous fibers and lung cancer mortality among European rock/slag wool (RSW) workers. The study population comprised 9,603 male workers employed in RSW production in seven factories in Denmark, Norway, Sweden, and Germany, followed up for mortality as of 1990-91. Estimates of past exposure to respirable fibers were used to calculate cumulative exposure with a 15-year lag and maximum annual exposure based on employment history up to 1977. Rate ratios were estimated via multivariate Poisson regression, adjusting for country, age, calendar year, time since first employment, and employment status. A total of 159 lung cancer deaths were included in the analysis of which 97 among workers with more than one year of employment. We found nonstatistically significant trends in lung cancer risk according to cumulative exposure. Relative risks (RR) in the four quartiles were 1.0 (reference), 1.3 (95 percent confidence interval [CI] = 0.8-2.4), 1.2 (CI = 0.7-2.1), and 1.5 (CI = 0.7-3.0, P test for trend = 0.4). When workers with less than one year of employment were excluded, there was no increased risk; the RRs in the four quartiles were 1.0, 0.9 (CI = 0.4-2.0), 0.8 (CI = 0.3-1.9), and 1.0 (CI = 0.4-2.7). No trend was present according to maximum annual exposure. The results were not consistent among countries. We found a positive association between exposure to respirable fibers and lung cancer mortality. However, the lack of statistical significance, the dependence of the results on inclusion of short-term workers, the lack of consistency among countries, and the possible correlation between exposure to respirable fibers and to other agents reduce the weight of such evidence.

  5. Impact of short-term preconceptional exposure to particulate air pollution on treatment outcome in couples undergoing in vitro fertilization and embryo transfer (IVF/ET)

    Science.gov (United States)

    Maluf, Mariangela; Czeresnia, Carlos Eduardo; Januário, Daniela Aparecida Nicolosi Foltran; Saldiva, Paulo Hilário Nascimento

    2010-01-01

    Purpose To assess the potential effects of short-term exposure to particulate air pollution during follicular phase on clinical, laboratory, and pregnancy outcomes of women undergoing IVF/ET. Methods Retrospective cohort study of 400 first IVF/ET cycles of women exposed to ambient particulate matter during follicular phase. Particulate matter (PM) was categorized into quartiles (Q1: ≤30.48 µg/m3, Q2: 30.49–42.00 µg/m3, Q3: 42.01–56.72 µg/m3, and Q4: >56.72 µg/m3). Results Clinical, laboratory, or treatment variables were not affected by follicular phase PM exposure periods. Women exposed to Q4 period during the follicular phase of conception cycles had a higher risk of miscarriage (odds ratio, 5.05; 95% confidence interval: 1.04–25.51) when compared to women exposed to Q1–3 periods. Conclusion Our results show an association between brief exposure to high levels of ambient PM during the preconceptional period and early pregnancy loss, although no effect of this exposure on clinical, laboratory, and treatment outcomes was observed. PMID:20405197

  6. Further assessment of the effects of occupational radiation exposure in the United Kingdom Atomic Energy Authority mortality study

    International Nuclear Information System (INIS)

    Inskip, Hazel; Beral, Valerie; Fraser, Patricia; Booth, Margaret; Coleman, D.; Brown, Ann

    1987-01-01

    The United Kingdom Atomic Energy Authority mortality study was designed to investigate the relation between exposure to ionising radiation and mortality among the Authority's employees. The study covered the years 1946 to 1979 during which time the frequency with which personal film dosimeters were issued changed from weekly to monthly, and the threshold level below which measurements were not made decreased 20-fold. Exposure from 'below threshold' readings made an important contribution to total exposure in the early years. Estimates, based on the remeasurement of a sample of old films, indicated that the average whole body exposure before 1961 may have been about double that which was measured. Furthermore, although records were kept of when dosimeters were lost or damaged, the associated exposures were unknown and could only be estimated. Workers whose dosimeter readings were missing for more than 5% of the time during which they were monitored had higher all cause mortality and higher mortality from accidents and violence than other radiation workers. The results of analyses of mortality in relation to whole body exposure were compared when (a) the exposures included estimates of the below threshold and missing exposures and (b) when these exposures were assumed to be zero. (author)

  7. Prolonged particulate chromate exposure does not inhibit homologous recombination repair in North Atlantic right whale (Eubalaena glacialis) lung cells.

    Science.gov (United States)

    Browning, Cynthia L; Wise, Catherine F; Wise, John Pierce

    2017-09-15

    Chromosome instability is a common feature of cancers that forms due to the misrepair of DNA double strand breaks. Homologous recombination (HR) repair is a high fidelity DNA repair pathway that utilizes a homologous DNA sequence to accurately repair such damage and protect the genome. Prolonged exposure (>72h) to the human lung carcinogen, particulate hexavalent chromium (Cr(VI)), inhibits HR repair, resulting in increased chromosome instability in human cells. Comparative studies have shown acute Cr(VI) exposure induces less chromosome damage in whale cells than human cells, suggesting investigating the effect of this carcinogen in other species may inform efforts to prevent Cr(VI)-induced chromosome instability. Thus, the goal of this study was to determine the effect of prolonged Cr(VI) exposure on HR repair and clastogenesis in North Atlantic right whale (Eubalaena glacialis) lung cells. We show particulate Cr(VI) induces HR repair activity after both acute (24h) and prolonged (120h) exposure in North Atlantic right whale cells. Although the RAD51 response was lower following prolonged Cr(VI) exposure compared to acute exposure, the response was sufficient for HR repair to occur. In accordance with active HR repair, no increase in Cr(VI)-induced clastogenesis was observed with increased exposure time. These results suggest prolonged Cr(VI) exposure affects HR repair and genomic stability differently in whale and human lung cells. Future investigation of the differences in how human and whale cells respond to chemical carcinogens may provide valuable insight into mechanisms of preventing chemical carcinogenesis. Copyright © 2017. Published by Elsevier Inc.

  8. Mobile Monitoring of Diesel Particulate Matter Exposure within Five Urban Microenvironments, Portland, OR

    Science.gov (United States)

    Orlando, P. J.; Bennett, B. A.; George, L. A.

    2016-12-01

    Diesel particulate matter (DPM) is a hazardous air pollutant linked to mortality and morbidity outcomes including cancer, cardiovascular disease, and adverse respiratory effects. The EPA's Air Toxics Assessment indicated that more than 50% of Oregonians are exposed to 10 times the ambient benchmark concentration (ABC) of 0.1 μgm-3 for DPM. These model estimates have not been verified with measurements, potentially limiting policy action. We developed a mobile monitoring platform to ground-truth model predictions and characterize DPM spatial variation. Using black carbon (BC) as a marker, concentrations within five urban microenvironments (a construction site, an arterial, a bus mall, a city park, and an indoor workspace) were sampled within Portland, OR. The mobile monitoring platform consisted of a bicycle and trailer equipped with an aethalometer measuring BC mass, a Data Ram 4 measuring total PM2.5 mass, and a Q-Starz GPS recording location; each instrument was monitoring in 1 second intervals. Concentrations of BC were used as an indicator of DPM. The construction site had the highest DPM concentration (7 μg m-3). The indoor workspace and the park had the lowest DPM (0.3 μg m-3). Near the construction site, DPM constituted approximately 50% of the total PM2.5. However, at the park, DPM was attributed to only 6% of the total PM2.5, while the indoor space constituted 15%. Concentrations of BC near construction sites were observed to exceed 67 times the state ABC of 0.1 μg m-3 (Figure). These results signify the need to better characterize the urban exposure to DPM, as even the cleanest microenvironments may be 3 times above the ABC. Our mobile monitoring platform will help further elucidate how local-scale sources contribute to the broader distribution of DPM within Portland, while providing a tool for both residents and DEQ to effectively mitigate the health impacts from DPM exposure.

  9. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  10. Alcohol's Collateral Damage: Childhood Exposure to Problem Drinkers and Subsequent Adult Mortality Risk.

    Science.gov (United States)

    Rogers, Richard G; Lawrence, Elizabeth M; Montez, Jennifer Karas

    2016-12-07

    The importance of childhood circumstances, broadly defined, for shaping adult health and longevity is well-established. But the significance of one of the most prevalent childhood adversities-exposure to problem drinkers-has been understudied from a sociological perspective and remains poorly understood. We address this gap by drawing on cumulative inequality theory, using data from the 1988-2011 National Health Interview Survey-Linked Mortality Files, and estimating Cox proportional hazards models to examine the relationship between exposure to problem drinkers in childhood and adult mortality risk. Childhood exposure to problem drinkers is common (nearly 1 in 5 individuals were exposed) and elevates adult overall and cause-specific mortality risk. Compared to individuals who had not lived with a problem drinker during childhood, those who had done so suffered 17 percent higher risk of death (prisk. Favorable socioeconomic status in adulthood does not ameliorate the consequences of childhood exposure to problem drinkers. The primary intervening mechanisms are risky behaviors, including adult drinking and smoking. The findings-which reveal that the influence of problem drinking is far-reaching and long-term-should inform policies to improve childhood circumstances, reduce detrimental effects of problem drinking, and increase life expectancy.

  11. Long-Term Fine Particulate Matter Exposure and Major Depressive Disorder in a Community-Based Urban Cohort

    Science.gov (United States)

    Kim, Kyoung-Nam; Lim, Youn-Hee; Bae, Hyun Joo; Kim, Myounghee; Jung, Kweon; Hong, Yun-Chul

    2016-01-01

    Background: Previous studies have associated short-term air pollution exposure with depression. Although an animal study showed an association between long-term exposure to particulate matter ≤ 2.5 μm (PM2.5) and depression, epidemiological studies assessing the long-term association are scarce. Objective: We aimed to determine the association between long-term PM2.5 exposure and major depressive disorder (MDD). Methods: A total of 27,270 participants 15–79 years of age who maintained an address within the same districts in Seoul, Republic of Korea, throughout the entire study period (between 2002 and 2010) and without a previous MDD diagnosis were analyzed. We used three district-specific exposure indices as measures of long-term PM2.5 exposure. Cox proportional hazards models adjusted for potential confounding factors and measured at district and individual levels were constructed. We further conducted stratified analyses according to underlying chronic diseases such as diabetes mellitus, cardiovascular disease, and chronic obstructive pulmonary disease. Results: The risk of MDD during the follow-up period (2008–2010) increased with an increase of 10 μg/m3 in PM2.5 in 2007 [hazard ratio (HR) = 1.44; 95% CI: 1.17, 1.78], PM2.5 between 2007 and 2010 (HR = 1.59; 95% CI: 1.02, 2.49), and 12-month moving average of PM2.5 until an event or censor (HR = 1.47; 95% CI: 1.14, 1.90). The association between long-term PM2.5 exposure and MDD was greater in participants with underlying chronic diseases than in participants without these diseases. Conclusion: Long-term PM2.5 exposure increased the risk of MDD among the general population. Individuals with underlying chronic diseases are more vulnerable to long-term PM2.5 exposure. Citation: Kim KN, Lim YH, Bae HJ, Kim M, Jung K, Hong YC. 2016. Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort. Environ Health Perspect 124:1547–1553; http://dx.doi.org/10

  12. Particulate matter and neutron activation analysis

    International Nuclear Information System (INIS)

    Otoshi, Tsunehiko

    2003-01-01

    In these years, economy of East Asian region is rapidly growing, and countries in this region are facing serious environmental problems. Neutron activation analysis is known as one of high-sensitive analytical method for multi elements. And it is a useful tool for environmental research, particularly for the study on atmospheric particulate matter that consists of various constituents. Elemental concentration represents status of air, such as emission of heavy metals from industries and municipal incinerators, transportation of soil derived elements more than thousands of kilometers, and so on. These monitoring data obtained by neutron activation analysis can be a cue to evaluate environment problems. Japanese government launched National Air Surveillance Network (NASN) employing neutron activation analysis in 1974, and the data has been accumulated at about twenty sampling sites. As a result of mitigation measure of air pollution sources, concentrations of elements that have anthropogenic sources decreased particularly at the beginning of the monitoring period. However, even now, concentrations of these anthropogenic elements reflect the characteristics of each sampling site, e.g. industrial/urban, rural, and remote. Soil derived elements have a seasonal variation because of the contribution of continental dust transported by strong westerly winds prevailing in winter and spring season. The health effects associated with trace elements in particulate matter have not been well characterized. However, there is increasing evidence that particulate air pollution, especially fine portion of particles in many different cities is associated with acute mortality. Neutron activation analysis is also expected to provide useful information to this new study field related to human exposures and health risk. (author)

  13. Measuring the Bioenergetic Effects of 1,2-Naphthoquinone Exposure on Human Lung Macrophages Using Seahorse Extracellular Flux Analyses

    Science.gov (United States)

    Exposure to ambient particulate matter (PM) is one of the leading causes of morbidity and mortality in humans. Quinones are organic PM components that induce inflammatory responses through redox cycling and electrophilic attack. 1,2-naphthoquinone (1,2-NQ) has previously been sho...

  14. Urban and Transport Planning Related Exposures and Mortality: A Health Impact Assessment for Cities.

    Science.gov (United States)

    Mueller, Natalie; Rojas-Rueda, David; Basagaña, Xavier; Cirach, Marta; Cole-Hunter, Tom; Dadvand, Payam; Donaire-Gonzalez, David; Foraster, Maria; Gascon, Mireia; Martinez, David; Tonne, Cathryn; Triguero-Mas, Margarita; Valentín, Antònia; Nieuwenhuijsen, Mark

    2017-01-01

    By 2050, nearly 70% of the global population is projected to live in urban areas. Because the environments we inhabit affect our health, urban and transport designs that promote healthy living are needed. We estimated the number of premature deaths preventable under compliance with international exposure recommendations for physical activity (PA), air pollution, noise, heat, and access to green spaces. We developed and applied the Urban and TranspOrt Planning Health Impact Assessment (UTOPHIA) tool to Barcelona, Spain. Exposure estimates and mortality data were available for 1,357,361 residents. We compared recommended with current exposure levels. We quantified the associations between exposures and mortality and calculated population attributable fractions to estimate the number of premature deaths preventable. We also modeled life-expectancy and economic impacts. We estimated that annually, nearly 20% of mortality could be prevented if international recommendations for performance of PA; exposure to air pollution, noise, and heat; and access to green space were followed. Estimations showed that the greatest portion of preventable deaths was attributable to increases in PA, followed by reductions of exposure to air pollution, traffic noise, and heat. Access to green spaces had smaller effects on mortality. Compliance was estimated to increase the average life expectancy by 360 (95% CI: 219, 493) days and result in economic savings of 9.3 (95% CI: 4.9, 13.2) billion EUR/year. PA factors and environmental exposures can be modified by changes in urban and transport planning. We emphasize the need for a) the reduction of motorized traffic through the promotion of active and public transport and b) the provision of green infrastructure, both of which are suggested to provide opportunities for PA and for mitigation of air pollution, noise, and heat. Citation: Mueller N, Rojas-Rueda D, Basagaña X, Cirach M, Cole-Hunter T, Dadvand P, Donaire-Gonzalez D, Foraster M

  15. Mesothelioma mortality surveillance and asbestos exposure tracking in Italy

    Directory of Open Access Journals (Sweden)

    Lucia Fazzo

    2012-01-01

    Full Text Available INTRODUCTION: Spatial distribution of mortality from pleural mesothelioma (which in the ICD-10 Revision has a specific code: C45.0 in Italy for the period 2003-2009 is described. Previous mortality studies at national level employed the topographic code "Malignant neoplasms of pleura", because of unavailability of a specific code in ICD-9 Revision for pleural mesothelioma. METHODS: Standardized mortality ratios were computed for all municipalities, using each regional population as reference; for municipalities in Regions with rate higher than the national rate, the latter has been used as reference. SMRs were computed specifically also for each Italian Polluted Sites "of national concern for environmental remediation" (IPS with asbestos exposure sources, composed by one or more municipalities, using regional rate as reference. Spatial Scan Statistics procedure, using SatScan software, was applied in cluster analysis: the country was divided into geographic macro-areas and the relative risks (RR express the ratio of risk within the cluster to the risk of the macro-area outside the cluster. Clusters with p-value < 0.10 were selected. RESULTS: The national standardized annual mortality rate was 1.7 cases per 100 000. Several areas with evident burden of asbestos-related disease were detected. Significant clusters were found in correspondence to asbestos-cement industries (e.g. Casale Monferrato, women: RR = 28.7, shipyards (e.g. Trieste, men: RR = 4.8, petrochemical industries (e.g. Priolo, men: RR = 6.9 and a stone quarry contaminated by fluoro-edenite fibres (Biancavilla, women: RR = 25.9. Some of the increased clusters correspond to IPS. CONCLUSIONS: The results may contribute to detect asbestos exposure and to set priorites for environmental remediation.

  16. Environmental Inequality in Exposures to Airborne Particulate Matter Components in the United States

    Science.gov (United States)

    Ebisu, Keita

    2012-01-01

    Background: Growing evidence indicates that toxicity of fine particulate matter ≤ 2.5 μm in diameter (PM2.5) differs by chemical component. Exposure to components may differ by population. Objectives: We investigated whether exposures to PM2.5 components differ by race/ethnicity, age, and socioeconomic status (SES). Methods: Long-term exposures (2000 through 2006) were estimated for 215 U.S. census tracts for PM2.5 and for 14 PM2.5 components. Population-weighted exposures were combined to generate overall estimated exposures by race/ethnicity, education, poverty status, employment, age, and earnings. We compared population characteristics for tracts with and without PM2.5 component monitors. Results: Larger disparities in estimated exposures were observed for components than for PM2.5 total mass. For race/ethnicity, whites generally had the lowest exposures. Non-Hispanic blacks had higher exposures than did whites for 13 of the 14 components. Hispanics generally had the highest exposures (e.g., 152% higher than whites for chlorine, 94% higher for aluminum). Young persons (0–19 years of age) had levels as high as or higher than other ages for all exposures except sulfate. Persons with lower SES had higher estimated exposures, with some exceptions. For example, a 10% increase in the proportion unemployed was associated with a 20.0% increase in vanadium and an 18.3% increase in elemental carbon. Census tracts with monitors had more non-Hispanic blacks, lower education and earnings, and higher unemployment and poverty than did tracts without monitors. Conclusions: Exposures to PM2.5 components differed by race/ethnicity, age, and SES. If some components are more toxic than others, certain populations are likely to suffer higher health burdens. Demographics differed between populations covered and not covered by monitors. PMID:22889745

  17. Associations between short-term exposure to ambient sulfur dioxide and increased cause-specific mortality in 272 Chinese cities.

    Science.gov (United States)

    Wang, Lijun; Liu, Cong; Meng, Xia; Niu, Yue; Lin, Zhijing; Liu, Yunning; Liu, Jiangmei; Qi, Jinlei; You, Jinling; Tse, Lap Ah; Chen, Jianmin; Zhou, Maigeng; Chen, Renjie; Yin, Peng; Kan, Haidong

    2018-04-28

    Ambient sulfur dioxide (SO 2 ) remains a major air pollutant in developing countries, but epidemiological evidence about its health effects was not abundant and inconsistent. To evaluate the associations between short-term exposure to SO 2 and cause-specific mortality in China. We conducted a nationwide time-series analysis in 272 major Chinese cities (2013-2015). We used the over-dispersed generalized linear model together with the Bayesian hierarchical model to analyze the data. Two-pollutant models were fitted to test the robustness of the associations. We conducted stratification analyses to examine potential effect modifications by age, sex and educational level. On average, the annual-mean SO 2 concentrations was 29.8 μg/m 3 in 272 cities. We observed positive and associations of SO 2 with total and cardiorespiratory mortality. A 10 μg/m 3 increase in two-day average concentrations of SO 2 was associated with increments of 0.59% in mortality from total non-accidental causes, 0.70% from total cardiovascular diseases, 0.55% from total respiratory diseases, 0.64% from hypertension disease, 0.65% from coronary heart disease, 0.58% from stroke, and 0.69% from chronic obstructive pulmonary disease. In two-pollutant models, there were no significant differences between single-pollutant model and two-pollutant model estimates with fine particulate matter, carbon monoxide and ozone, but the estimates decreased substantially after adjusting for nitrogen dioxide, especially in South China. The associations were stronger in warmer cities, in older people and in less-educated subgroups. This nationwide study demonstrated associations of daily SO 2 concentrations with increased total and cardiorespiratory mortality, but the associations might not be independent from NO 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Temporal trends in respiratory mortality and short-term effects of air pollutants in Shenyang, China.

    Science.gov (United States)

    Xue, Xiaoxia; Chen, Jianping; Sun, Baijun; Zhou, Baosen; Li, Xuelian

    2018-04-01

    Short-term exposures to air pollution are associated with acute effects on respiratory health. This study aimed to describe 10-year temporal trends in respiratory mortality in the urban areas of Shenyang, China, according to gender and age and estimate the effects of air pollution on respiratory diseases (ICD-10J00-J99) and lung cancer (ICD-10 C33-C34) using a case-crossover design. During the study period 2013-2015, the exposure-response relationship between ambient air pollutants and mortality data was fitted by a quasi-Poisson model. Age-standardized mortality rates for a combined number of respiratory diseases and for lung cancer declined in Shenyang; however, death counts increased with aging. Deaths from respiratory diseases increased by 4.7% (95% CI, 0.00-9.9), and lung cancer mortality increased by 6.5% (95% CI, 1.2-12.0), both associated with a 10 μg/m 3 increase in exposure to particulate matter pollutants. These results provided an updated estimate of the short-term effects of air pollution in Shenyang. Since population aging is also associated with increasing mortality from respiratory diseases and lung cancer, reinforcing air quality control measures and health-promoting behaviors is urgent and necessary in Shenyang.

  19. Commuters' exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-06-01

    Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. The aim of our study was to assess differences in commuters' exposure to traffic-related air pollution related to transport mode, route, and fuel type. We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Commuters' rush hour exposures were significantly influenced by mode of transport, route, and fuel type.

  20. Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; McKone, T.E.; Jolliet, Olivier

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  1. The impact of total suspended particulate concentration on workers’ health at ceramic industry

    Science.gov (United States)

    Sintorini, M. M.

    2018-01-01

    Ceramic production process pollutes the air with particulate matter at high concentration and has negative impact on the workers. The objective of this research was to determine the particulate concentration in the air and to analyse its impact on the workers. This research used cross sectional method to correlate the particulate concentration, temperature, humidity, smoke level and level of workers’ compliance with safety regulations. Sampling was conducted from April to May 2012 in three locations, i.e. exposure area (Mass Preparation I, II) and non-exposure area (Forming area). In the exposure area (Mass Preparation I and II) where the particulate concentrations were 22.3673 mg/m3 and 14.8277 mg/m3, and 58.33%, the workers had bad health status. In the non-exposure area, where the particulate concentration was 3.2185 mg/m3 and 25% the workers had bad health status. The Odds Ratio among the workers in exposure area was 4.2 times higher than the workers in the non-exposure area.

  2. The Public Health and Air Pollution in Asia (PAPA) Project: estimating the mortality effects of particulate matter in Bangkok, Thailand.

    Science.gov (United States)

    Vichit-Vadakan, Nuntavarn; Vajanapoom, Nitaya; Ostro, Bart

    2008-09-01

    Air pollution data in Bangkok, Thailand, indicate that levels of particulate matter with aerodynamic diameter air pollution in Bangkok, Thailand. The study period extended from 1999 to 2003, for which the Ministry of Public Health provided the mortality data. Measures of air pollution were derived from air monitoring stations, and information on temperature and relative humidity was obtained from the weather station in central Bangkok. The statistical analysis followed the common protocol for the multicity PAPA (Public Health and Air Pollution Project in Asia) project in using a natural cubic spline model with smooths of time and weather. The excess risk for non-accidental mortality was 1.3% [95% confidence interval (CI), 0.8-1.7] per 10 microg/m(3) of PM(10), with higher excess risks for cardiovascular and above age 65 mortality of 1.9% (95% CI, 0.8-3.0) and 1.5% (95% CI, 0.9-2.1), respectively. In addition, the effects from PM(10) appear to be consistent in multipollutant models. The results suggest strong associations between several different mortality outcomes and PM(10). In many cases, the effect estimates were higher than those typically reported in Western industrialized nations.

  3. Biomarkers of World Trade Center Particulate Matter Exposure: Physiology of distal airway and blood biomarkers that predict FEV1 decline

    Science.gov (United States)

    Weiden, Michael D.; Kwon, Sophia; Caraher, Erin; Berger, Kenneth I.; Reibman, Joan; Rom, William N.; Prezant, David J.; Nolan, Anna

    2016-01-01

    Biomarkers can be important predictors of disease severity and progression. The intense exposure to particulates and other toxins from the destruction of the World Trade Center (WTC) overwhelmed the lung’s normal protective barriers. The Fire Department of New York (FDNY) cohort not only had baseline pre-exposure lung function measures but also had serum samples banked soon after their WTC exposure. This well phenotyped group of highly exposed first responders is an ideal cohort for biomarker discovery and eventual validation. Disease progression was heterogeneous in this group in that some individuals subsequently developed abnormal lung function while others recovered. Airflow obstruction predominated in WTC exposed patients who were symptomatic. Multiple independent disease pathways may cause this abnormal FEV1 after irritant exposure. WTC exposure activates one or more of these pathways causing abnormal FEV1 in an individual. Our hypothesis was that serum biomarkers expressed within 6 months after World Trade Center (WTC) exposure reflect active disease pathways and predict subsequent development or protection from abnormal FEV1exposure that were predictive of their FEV1 up to 7 years after their WTC exposure. Predicting future risk of airway injury after particulate exposures can focus monitoring and early treatment on a subset of patients in greatest need of these services. PMID:26024341

  4. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993–2002

    International Nuclear Information System (INIS)

    Boscoe, Francis P; Schymura, Maria J

    2006-01-01

    An inverse relationship between solar ultraviolet-B (UV-B) exposure and non-skin cancer mortality has long been reported. Vitamin D, acquired primarily through exposure to the sun via the skin, is believed to inhibit tumor development and growth and reduce mortality for certain cancers. We extend the analysis of this relationship to include cancer incidence as well as mortality, using higher quality and higher resolution data sets than have typically been available. Over three million incident cancer cases between 1998 and 2002 and three million cancer deaths between 1993 and 2002 in the continental United States were regressed against daily satellite-measured solar UV-B levels, adjusting for numerous confounders. Relative risks of reduced solar UV-B exposure were calculated for thirty-two different cancer sites. For non-Hispanic whites, an inverse relationship between solar UV-B exposure and cancer incidence and mortality was observed for ten sites: bladder, colon, Hodgkin lymphoma, myeloma, other biliary, prostate, rectum, stomach, uterus, and vulva. Weaker evidence of an inverse relationship was observed for six sites: breast, kidney, leukemia, non-Hodgkin lymphoma, pancreas, and small intestine. For three sites, inverse relationships were seen that varied markedly by sex: esophagus (stronger in males than females), gallbladder (stronger in females than males), and thyroid (only seen in females). No association was found for bone and joint, brain, larynx, liver, nasal cavity, ovary, soft tissue, male thyroid, and miscellaneous cancers. A positive association between solar UV-B exposure and cancer mortality and incidence was found for anus, cervix, oral cavity, melanoma, and other non-epithelial skin cancer. This paper adds to the mounting evidence for the influential role of solar UV-B exposure on cancer, particularly for some of the less-well studied digestive cancers. The relative risks for cancer incidence are similar to those for cancer mortality for most

  5. Mortality from internal and external radiation exposure in a cohort of male German uranium millers, 1946-2008

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M.; Dufey, F.; Schnelzer, M.; Sogl, M.; Walsh, L. [Federal Office for Radiation Protection, Neuherberg (Germany). Dept. of Radiation Protection and Health; Laurier, D. [Institute for Radiological Protection and Nuclear Safety (IRSN), Paris (France); Nowak, D. [LMU Muenchen (Germany). Inst. for Occupational Medicine and Environmental Medicine; Marsh, J.W. [Public Health England, Chilton, Didcot (United Kingdom)

    2015-05-15

    To examine exposure-response relationships between ionizing radiation and several mortality outcomes in a subgroup of 4,054 men of the German uranium miner cohort study, who worked between 1946 and 1989 in milling facilities, but never underground or in open pit mines. Mortality follow-up was from 1946 to 2008, accumulating 158,383 person-years at risk. Cumulative exposure to radon progeny in working level months (WLM) (mean = 8, max = 127), long-lived radionuclides from uranium ore dust in kBqh/m{sup 3} (mean = 3.9, max = 132), external gamma radiation in mSv (mean = 26, max = 667) and silica dust was estimated by a comprehensive job-exposure matrix. Internal Poisson regression models were applied to estimate the linear excess relative risk (ERR) per unit of cumulative exposure. Overall, a total of 457, 717 and 111 deaths occurred from malignant cancer, cardiovascular diseases and non-malignant respiratory diseases, respectively. Uranium ore dust and silica dust were not associated with mortality from any of these disease groups. A statistically significant relationship between cumulative radon exposure and mortality from all cancers (ERR/100 WLM = 1.71; p = 0.02), primarily due to lung cancer (n = 159; ERR/100 WLM = 3.39; p = 0.05), was found. With respect to cumulative external gamma radiation, an excess of mortality of solid cancers (n = 434; ERR/Sv = 1.86; p = 0.06), primarily due to stomach cancer (n = 49, ERR/Sv = 10.0; p = 0.12), was present. The present findings show an excess mortality from lung cancer due to radon exposure and from solid cancers due to external gamma radiation in uranium millers that was not statistically significant. Exposure to uranium was not associated with any cause of death, but absorbed organ doses were estimated to be low.

  6. Mortality from internal and external radiation exposure in a cohort of male German uranium millers, 1946-2008

    International Nuclear Information System (INIS)

    Kreuzer, M.; Dufey, F.; Schnelzer, M.; Sogl, M.; Walsh, L.; Nowak, D.

    2015-01-01

    To examine exposure-response relationships between ionizing radiation and several mortality outcomes in a subgroup of 4,054 men of the German uranium miner cohort study, who worked between 1946 and 1989 in milling facilities, but never underground or in open pit mines. Mortality follow-up was from 1946 to 2008, accumulating 158,383 person-years at risk. Cumulative exposure to radon progeny in working level months (WLM) (mean = 8, max = 127), long-lived radionuclides from uranium ore dust in kBqh/m 3 (mean = 3.9, max = 132), external gamma radiation in mSv (mean = 26, max = 667) and silica dust was estimated by a comprehensive job-exposure matrix. Internal Poisson regression models were applied to estimate the linear excess relative risk (ERR) per unit of cumulative exposure. Overall, a total of 457, 717 and 111 deaths occurred from malignant cancer, cardiovascular diseases and non-malignant respiratory diseases, respectively. Uranium ore dust and silica dust were not associated with mortality from any of these disease groups. A statistically significant relationship between cumulative radon exposure and mortality from all cancers (ERR/100 WLM = 1.71; p = 0.02), primarily due to lung cancer (n = 159; ERR/100 WLM = 3.39; p = 0.05), was found. With respect to cumulative external gamma radiation, an excess of mortality of solid cancers (n = 434; ERR/Sv = 1.86; p = 0.06), primarily due to stomach cancer (n = 49, ERR/Sv = 10.0; p = 0.12), was present. The present findings show an excess mortality from lung cancer due to radon exposure and from solid cancers due to external gamma radiation in uranium millers that was not statistically significant. Exposure to uranium was not associated with any cause of death, but absorbed organ doses were estimated to be low.

  7. Effect of socioeconomic status on the association between air pollution and mortality in Bogota, Colombia

    Directory of Open Access Journals (Sweden)

    Luis Camilo Blanco-Becerra

    2014-07-01

    Full Text Available Objective. To evaluate the modification effect of socioeconomic status (SES on the association between acute exposure to particulate matter less than 10 microns in aerodynamic diameter (PM10 and mortality in Bogota, Colombia. Materials and methods. A time-series ecological study was conducted (1998-2006. The localities of the cities were stratified using principal components analysis, creating three levels of aggregation that allowed for the evaluation of the impact of SES on the relationship between mortality and air pollution. Results. For all ages, the change in the mortality risk for all causes was 0.76% (95%CI 0.27-1.26 for SES I (low, 0.58% (95%CI 0.16-1.00 for SES II (mid and -0.29% (95%CI -1.16-0.57 for SES III (high per 10μg/m3 increment in the daily average of PM10 on day of death. Conclusions. The results suggest that SES significantly modifies the effect of environmental exposure to PM10 on mortality from all causes and respiratory causes.

  8. Analysis of the mortality among Cogema workers monitored for external radiation exposure

    International Nuclear Information System (INIS)

    Metz-Flamant, C.; Hitz, M.; Samson, E.; Rogel, A.; Telle-Lamberton, M.; Tirmarche, M.; Caer, S.; Quesne, B.

    2006-01-01

    The present study follows 9287 Cogema workers exposed to low level of ionizing radiation from the beginning of employment to the end of 1994. This paper presents analyses of the mortality of Cogema workers monitored for external radiation exposure and the relation between their mortality and their cumulative external radiation dose. Workers were followed up for an average of 13 years. The percentage of subjects lost to follow up was less than 1%. during the follow-up period, 441 deaths occurred. The mean cumulative dose among the whole cohort was 19.4 mSv. As expected, the mortality of the cohort was lower than that of the French national population. The healthy worker effect is often observed in other nuclear workers studies. Part of the healthy worker effect is explained by a proportion of unemployed persons in general population, with a higher mortality rate. All causes S.M.R. increased with calendar period and duration of employment. this increase was not significant for all cancers S.M.R. by duration of employment. This could illustrate the decrease of the initial selection at employment with time. A significant increase in risk was observed for all cancers excluding leukemia mortality with increase of radiation dose in the 15-country study. Significant excess of leukemia by cumulative radiation exposure was observed in the 3-country study and was borderline significant in the 15-country study and in the UK National register for radiation workers study. A positive trend, not statistically significant, by level of external doses was observed in our study for all cancers and leukemia excluding chronic lymphatic leukemia mortality, but the analyses lack of statistical power. A significant trend was observed only for non-Hodgkin lymphoma death, but considering the large number of statistic tests computed, this result must be carefully interpreted. A borderline significant trend was observed for lung cancer death, a significant increase risk of lung cancer death

  9. Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities.

    Science.gov (United States)

    Okokon, Enembe O; Yli-Tuomi, Tarja; Turunen, Anu W; Taimisto, Pekka; Pennanen, Arto; Vouitsis, Ilias; Samaras, Zissis; Voogt, Marita; Keuken, Menno; Lanki, Timo

    2017-04-01

    In order to curb traffic-related air pollution and its impact on the physical environment, contemporary city commuters are encouraged to shift from private car use to active or public transport modes. However, personal exposures to particulate matter (PM), black carbon and noise during commuting may be substantial. Therefore, studies comparing exposures during recommended modes of transport versus car trips are needed. We measured personal exposure to various-sized particulates, soot, and noise during commuting by bicycle, bus and car in three European cities: Helsinki in Finland, Rotterdam in the Netherlands and Thessaloniki in Greece using portable monitoring devices. We monitored commonly travelled routes in these cities. The total number of one-way trips yielding data on any of the measured parameters were 84, 72, 94 and 69 for bicycle, bus, closed-window car and open-window car modes, respectively. The highest mean PM 2.5 (85µg/m 3 ), PM 10 (131µg/m 3 ), black carbon (10.9µg/m 3 ) and noise (75dBA) levels were recorded on the bus, bus (again), open-window car and bicycle modes, respectively, all in Thessaloniki, PM and soot concentrations were generally higher during biking and taking a bus than during a drive in a a car with closed windows. Ratios of bike:car PM 10 ranged from 1.1 in Thessaloniki to 2.6 in Helsinki, while bus:car ratios ranged from in 1.0 in Rotterdam to 5.6 in Thessaloniki. Higher noise levels were mostly recorded during bicycle rides. Based on our study, active- and public-transport commuters are often at risk of higher air pollution and noise exposure than private car users. This should be taken into account in urban transportation planning. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Chemical characterization and sources of personal exposure to fine particulate matter in the general population of Guangzhou, China

    Science.gov (United States)

    Chen, Xiao-Cui; Jahn, Heiko J.; Engling, Guenter; Ward, Tony J.; Kraemer, Alexander; Ho, Kin-Fai; Hung-Lam Yim, Steve; Chan, Chuen-Yu

    2017-04-01

    Fine particulate matter pollution severely deteriorates the environmental conditions and negatively impacts human health in the Chinese megacity Guangzhou. Concurrent ambient and personal measurements of fine particulate matter (PM2.5) were conducted in Guangzhou, China. Personal-to-ambient (P-C) relationships of PM2.5 chemical components were determined and sources of personal PM2.5 exposure were evaluated using principal component analysis along with a mixed-effects model. Water-soluble inorganic ions (mainly secondary inorganic ions) and anhydrosugars exhibited median personal-to-ambient (P/C) ratios < 1 accompanied by strong P-C correlations, indicating that these constituents in personal PM2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca2+) showed median P/C ratios greater than unity, which indicated that among subjects who spent a great amount of time indoors, aside from particles of ambient origin, individual's total exposure to PM2.5 includes contributions of non-ambient exposure while indoors and outdoors (e.g., local traffic, indoor sources, personal activities). SO42- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO42- in the urban area of Guangzhou. EC, Ca2+, and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca2+ to personal PM2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient

  11. [Estimation of the excess of lung cancer mortality risk associated to environmental tobacco smoke exposure of hospitality workers].

    Science.gov (United States)

    López, M José; Nebot, Manel; Juárez, Olga; Ariza, Carles; Salles, Joan; Serrahima, Eulàlia

    2006-01-14

    To estimate the excess lung cancer mortality risk associated with environmental tobacco (ETS) smoke exposure among hospitality workers. The estimation was done using objective measures in several hospitality settings in Barcelona. Vapour phase nicotine was measured in several hospitality settings. These measurements were used to estimate the excess lung cancer mortality risk associated with ETS exposure for a 40 year working life, using the formula developed by Repace and Lowrey. Excess lung cancer mortality risk associated with ETS exposure was higher than 145 deaths per 100,000 workers in all places studied, except for cafeterias in hospitals, where excess lung cancer mortality risk was 22 per 100,000. In discoteques, for comparison, excess lung cancer mortality risk is 1,733 deaths per 100,000 workers. Hospitality workers are exposed to ETS levels related to a very high excess lung cancer mortality risk. These data confirm that ETS control measures are needed to protect hospital workers.

  12. External radiation dose and cancer mortality among French nuclear workers: considering potential confounding by internal radiation exposure.

    Science.gov (United States)

    Fournier, L; Laurent, O; Samson, E; Caër-Lorho, S; Laroche, P; Le Guen, B; Laurier, D; Leuraud, K

    2016-11-01

    French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat à l'Energie Atomique), AREVA NC, or EDF (Electricité de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.

  13. External radiation dose and cancer mortality among French nuclear workers. Considering potential confounding by internal radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, L.; Laurent, O.; Samson, E.; Caer-Lorho, S.; Laurier, D.; Leuraud, K. [Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses (France). Ionizing Radiation Epidemiology Lab.; Laroche, P. [AREVA, Paris (France); Le Guen, B. [EDF, Saint Denis (France)

    2016-11-15

    French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat a l'Energie Atomique), AREVA NC, or EDF (Electricite de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.

  14. COPPER-DEPENDENT INFLAMMATION AND NUCLEAR FACTOR-KB ACTIVATION BY PARTICULATE AIR POLLUTION

    Science.gov (United States)

    Particulate air pollution causes increased cardiopulmonary morbidity and mortality, but the chemical determinants responsible for its biologic effects are not understood. We studied the effect of total suspended particulates collected in Provo, Utah, an area where an increase in ...

  15. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993–2002

    Directory of Open Access Journals (Sweden)

    Boscoe Francis P

    2006-11-01

    Full Text Available Abstract Background An inverse relationship between solar ultraviolet-B (UV-B exposure and non-skin cancer mortality has long been reported. Vitamin D, acquired primarily through exposure to the sun via the skin, is believed to inhibit tumor development and growth and reduce mortality for certain cancers. Methods We extend the analysis of this relationship to include cancer incidence as well as mortality, using higher quality and higher resolution data sets than have typically been available. Over three million incident cancer cases between 1998 and 2002 and three million cancer deaths between 1993 and 2002 in the continental United States were regressed against daily satellite-measured solar UV-B levels, adjusting for numerous confounders. Relative risks of reduced solar UV-B exposure were calculated for thirty-two different cancer sites. Results For non-Hispanic whites, an inverse relationship between solar UV-B exposure and cancer incidence and mortality was observed for ten sites: bladder, colon, Hodgkin lymphoma, myeloma, other biliary, prostate, rectum, stomach, uterus, and vulva. Weaker evidence of an inverse relationship was observed for six sites: breast, kidney, leukemia, non-Hodgkin lymphoma, pancreas, and small intestine. For three sites, inverse relationships were seen that varied markedly by sex: esophagus (stronger in males than females, gallbladder (stronger in females than males, and thyroid (only seen in females. No association was found for bone and joint, brain, larynx, liver, nasal cavity, ovary, soft tissue, male thyroid, and miscellaneous cancers. A positive association between solar UV-B exposure and cancer mortality and incidence was found for anus, cervix, oral cavity, melanoma, and other non-epithelial skin cancer. Conclusion This paper adds to the mounting evidence for the influential role of solar UV-B exposure on cancer, particularly for some of the less-well studied digestive cancers. The relative risks for cancer

  16. Fine particulate matter components and mortality in Greater Houston: Did the risk reduce from 2000 to 2011?

    International Nuclear Information System (INIS)

    Liu, Suyang; Zhang, Kai

    2015-01-01

    Fine particulate matter (less than 2.5 μm in aerodynamic diameter; PM_2_._5) pollution poses a major environmental threat in Greater Houston due to rapid economic growth and the numerous PM_2_._5 sources including ports, vehicles, and the largest petrochemical industry in the United States (U.S.). Our objectives were to estimate the short-term associations between the PM_2_._5 components and mortality during 2000–2011, and evaluate whether these associations have changed over time. A total of 333,317 deaths were included in our assessment, with an average of 76 deaths per day. We selected 17 PM_2_._5 components from the U.S. Environmental Protection Agency's Chemical Speciation Network, and then applied Poisson regression models to assess the associations between the PM_2_._5 components and mortality. Additionally, we repeated our analysis for two consecutive periods: 2000–2005 and 2006–2011. Interquartile range increases in ammonium (0.881 μg/m"3), nitrate (0.487 μg/m"3), sulfate (2.245 μg/m"3), and vanadium (0.004 μg/m"3) were associated with an increased risk in mortality of 0.69% (95% confidence interval (CI): 0.26, 1.12%), 0.38% (95% CI: 0.11, 0.66%), 0.61% (95% CI: 0.15, 1.06%), and 0.58% (95% CI: 0.12, 1.04%), respectively. Seasonal analysis suggested that the associations were strongest during the winter months. The association between PM_2_._5 mass and mortality decreased during 2000–2011, however, the PM_2_._5 components showed no notable changes in mortality risk over time. Our study indicates that the short-term associations between PM_2_._5 and mortality differ across the PM_2_._5 components and suggests that future air pollution control measures should not only focus on mass but also pollutant sources. - Highlights: • PM_2_._5 concentrations were associated with increased mortality risk. • A few major PM_2_._5 components were associated with increased mortality risk. • Associations were generally strongest in winter in Greater

  17. Association between long-term exposure to ambient air pollution and diabetes mortality in the US.

    Science.gov (United States)

    Lim, Chris C; Hayes, Richard B; Ahn, Jiyoung; Shao, Yongzhao; Silverman, Debra T; Jones, Rena R; Garcia, Cynthia; Thurston, George D

    2018-05-17

    Recent mechanistic and epidemiological evidence implicates air pollution as a potential risk factor for diabetes; however, mortality risks have not been evaluated in a large US cohort assessing exposures to multiple pollutants with detailed consideration of personal risk factors for diabetes. We assessed the effects of long-term ambient air pollution exposures on diabetes mortality in the NIH-AARP Diet and Health Study, a cohort of approximately a half million subjects across the contiguous U.S. The cohort, with a follow-up period between 1995 and 2011, was linked to residential census tract estimates for annual mean concentration levels of PM 2.5 , NO 2 , and O 3 . Associations between the air pollutants and the risk of diabetes mortality (N = 3598) were evaluated using multivariate Cox proportional hazards models adjusted for both individual-level and census-level contextual covariates. Diabetes mortality was significantly associated with increasing levels of both PM 2.5 (HR = 1.19; 95% CI: 1.03-1.39 per 10 μg/m 3 ) and NO 2 (HR = 1.09; 95% CI: 1.01-1.18 per 10 ppb). The strength of the relationship was robust to alternate exposure assessments and model specifications. We also observed significant effect modification, with elevated mortality risks observed among those with higher BMI and lower levels of fruit consumption. We found that long-term exposure to PM 2.5 and NO 2 , but not O 3 , is related to increased risk of diabetes mortality in the U.S, with attenuation of adverse effects by lower BMI and higher fruit consumption, suggesting that air pollution is involved in the etiology and/or control of diabetes. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  19. Particulate matter and heart disease: Evidence from epidemiological studies

    International Nuclear Information System (INIS)

    Peters, Annette

    2005-01-01

    The association between particulate matter and heart disease was noted in the mid-nineties of last century when the epidemiological evidence for an association between air pollution and hospital admissions due to cardiovascular disease accumulated and first hypotheses regarding the pathomechanism were formulated. Nowadays, epidemiological studies have demonstrated coherent associations between daily changes in concentrations of ambient particles and cardiovascular disease mortality, hospital admission, disease exacerbation in patients with cardiovascular disease and early physiological responses in healthy individuals consistent with a risk factor profile deterioration. In addition, evidence was found that annual average PM 2.5 exposures are associated with increased risks for mortality caused by ischemic heart disease and dysrhythmia. Thereby, evidence is suggesting not only a short-term exacerbation of cardiovascular disease by ambient particle concentrations but also a potential role of particles in defining patients' vulnerability to acute coronary events. While this concept is consistent with the current understanding of the factors defining patients' vulnerability, the mechanisms and the time-scales on which the particle-induced vulnerability might operate are unknown

  20. Relationship of cigarette smoking and radiation exposure to cancer mortality in Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Prentice, R.L.; Yoshimoto, Y.; Mason, M.W.

    1983-01-01

    Cancer mortality among 40,498 Hiroshima and Nagasaki residents was examined in relation to cigarette smoking habits and estimated atomic bomb radiation exposure level. Relative risk (RR) models that are either multiplicative or additive in the two exposures were emphasized. Most analyses were directed toward all nonhematologic (ANH) cancer, stomach cancer, lung cancer, or digestive tract cancer other than stomach cancer, for which there were, respectively, 1,725, 658, 281, and 338 deaths in the follow-up period for this study. Persons heavily exposed to both cigarette smoke and radiation were found to have significantly lower cancer mortality than multiplicative RR models would suggest for ANH cancer, stomach cancer, and digestive tract cancer other than stomach cancer. Surprisingly, the RR function appeared not only to be submultiplicative for some of these cancer site categories but also may be subadditive. The lung cancer RR function could not be distinguished from either a multiplicative or an additive form. The number of deaths was sufficient to permit some more detailed study of ANH cancer mortality: RR functions appeared to be consistent between males and females, though a paucity of heavy smoking females limits the precision of this comparison. The submultiplicative nature of the RR function mentioned above was particularly pronounced among persons who were relatively young (less than or equal to 30 yr of age) at the time of radiation exposure. The RR function for these younger subjects depends strongly on both radiation and cigarette smoke exposure levels. Implications of these findings are discussed in relation to human carcinogenesis models. As a byproduct, cancer mortality of several sites is significantly related to radiation exposure in this population, after accommodation for the possible confounding effects of cigarette smoking

  1. Recent Advances in Particulate Matter and Nanoparticle Toxicology: A Review of the In Vivo and In Vitro Studies

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2013-01-01

    Full Text Available Epidemiological and clinical studies have linked exposure to particulate matter (PM to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use of in vivo experimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of various in vitro models has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques.

  2. Does respiratory health contribute to the effects of long-term air pollution exposure on cardiovascular mortality?

    OpenAIRE

    Heinrich Joachim; Gehring Ulrike; Ranft Ulrich; Sugiri Dorothea; Schikowski Tamara; Wichmann H-Erich; Krämer Ursula

    2007-01-01

    Abstract Background There is growing epidemiological evidence that short-term and long-term exposure to high levels of air pollution may increase cardiovascular morbidity and mortality. In addition, epidemiological studies have shown an association between air pollution exposure and respiratory health. To what extent the association between cardiovascular mortality and air pollution is driven by the impact of air pollution on respiratory health is unknown. The aim of this study was to investi...

  3. Co-exposure to ultrafine particulate matter and ozone causes electrocardiogram changes indicative of increased arrhythmia risk in mice

    Science.gov (United States)

    Numerous studies have shown a relationship between acute air pollution exposure and increased risk for cardiovascular morbidity and mortality. Due to the inherent complexity of air pollution, recent studies have focused on co-exposures to better understand potential interactions....

  4. Air pollution and mortality: Determination of a quantitative association

    International Nuclear Information System (INIS)

    Ostro, B.

    1994-01-01

    Over the last few decades, several epidemiologic studies have reported associations between daily concentrations of ambient particulate matter and mortality among the general population. Among these studies, statistically significant relationships have been found using several alternative measures of particulate matter including total suspended particulates (TSP) for particles of all sizes], fine particles (particles less than 25 microns in diameter), British smoke (BS), coefficient of haze (COH), and sulfates. None has involved measurement of the mass of particulate matter less than 10 microns in diameter (PM10), the metric used by the U.S. Environmental Protection Agency (EPA) in the National Ambient Air Quality Standards. The studies have been conducted in several different cities and seasons, thereby incorporating a wide range of climates, chemical compositions of particulate matter, and populations. The epidemiologic. investigations have used two principal study designs: time-series and cross-sectional. Time-series analysis examines changes in daily mortality rates within a specific area as air pollution levels fluctuate. A cross-sectional analysis compares differences in mortality rates across several cities at a selected point or period of time. This paper seeks to examine the air pollution-mortality association in view of these criteria, with particular focus on the consistency of the association. Replication of results in other environments and populations is a powerful test before causality can be inferred. The check for consistency will be accomplished by reviewing and comparing the results of the more recent empirical studies. Ultimately, the results of these calculations are presented in terms of the percent increase in mortality associated with changes in PM 10 . After examining the consistency of the associations, some of the other criteria will be briefly discuss

  5. Influence of exposure differences on city-to-city heterogeneity ...

    Science.gov (United States)

    Multi-city population-based epidemiological studies have observed heterogeneity between city-specific fine particulate matter (PM2.5)-mortality effect estimates. These studies typically use ambient monitoring data as a surrogate for exposure leading to potential exposure misclassification. The level of exposure misclassification can differ by city affecting the observed health effect estimate. The objective of this analysis is to evaluate whether previously developed residential infiltration-based city clusters can explain city-to-city heterogeneity in PM2.5 mortality risk estimates. In a prior paper 94 cities were clustered based on residential infiltration factors (e.g. home age/size, prevalence of air conditioning (AC)), resulting in 5 clusters. For this analysis, the association between PM2.5 and all-cause mortality was first determined in 77 cities across the United States for 2001–2005. Next, a second stage analysis was conducted evaluating the influence of cluster assignment on heterogeneity in the risk estimates. Associations between a 2-day (lag 0–1 days) moving average of PM2.5 concentrations and non-accidental mortality were determined for each city. Estimated effects ranged from −3.2 to 5.1% with a pooled estimate of 0.33% (95% CI: 0.13, 0.53) increase in mortality per 10 μg/m3 increase in PM2.5. The second stage analysis determined that cluster assignment was marginally significant in explaining the city-to-city heterogeneity. The health effe

  6. Long-term exposure to gaseous air pollutants and cardio-respiratory mortality in Brisbane, Australia

    Directory of Open Access Journals (Sweden)

    Xiao Yu Wang

    2009-05-01

    Full Text Available This study examines the association of long-term exposure to gaseous air pollution with cardio-respiratory mortality in Brisbane, Australia, in the period 1996-2004. The pollutant concentrations were estimated using geographical information system (GIS techniques at the statistical local area (SLA level. The generalized estimating equations model was used to investigate the impact of nitrogen dioxide (NO2, ozone (O3 and sulphur dioxide (SO2 on mortality due to cardio-respiratory disease after adjusting for a range of potential confounders. An increase of 4.7% (95% confidence interval = 0.7-8.9% in cardio-respiratory mortality for 1 part per billion (ppb increment in annual average concentration of SO2 was estimated. However, there was no significant association between long-term exposures to NO2 or O3 and death due to cardio-respiratory disease. The results indicate that the annual average concentration of SO2 is associated with cardio-respiratory mortality at the SLA level and this association appears to vary with the geographical area.

  7. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004

    International Nuclear Information System (INIS)

    Zhang Minsi; Song Yu; Cai Xuhui

    2007-01-01

    Particulate air pollution is a serious problem in Beijing. The annual concentration of particulate matter with aerodynamic diameter less than 10 μm (PM 10 ), ranging from 141 to 166 μg m -3 in 2000-2004, could be very harmful to human health. In this paper, we presented the mortality and morbidity effects of PM 10 pollution based on statistical data and the epidemiological exposure-response function. The economic costs to health during the 5 years were estimated to lie between US$1670 and $3655 million annually, accounting for about 6.55% of Beijing's gross domestic product each year. The total costs were apportioned into two parts caused by: the local emissions and long-range transported pollution. The contribution from local emissions dominated the total costs, accounting on average for 3.60% of GDP. However, the contributions from transported pollution cannot be neglected, and the relative percentage to the total costs from the other regions could account for about 45%. An energy policy and effective measures should be proposed to reduce particulate matter, especially PM 2.5 pollution in Beijing to protect public health. The Beijing government also needs to cooperate with the other local governments to reduce high background level of particulate air pollution

  8. Radon exposure and mortality among the French cohort of uranium miners: 1946-1999

    International Nuclear Information System (INIS)

    Vacquier, B.; Tirmarche, M.; Laurier, D.; Caer, S.; Quesne, B.

    2006-01-01

    Full text of publication follows: The French cohort of uranium miners aims at evaluating the mortality risk of miners exposed to low levels of radon and its decay products and to other occupational hazards. Its primary aim is the quantification of the relationship between cumulated radon exposure and the risk of lung cancer death. However this study also allows to analyse risks for causes of death other than lung cancer. We present a new analysis of the mortality based on an extended follow-up of the cohort to end of 1999. Materials and methods: The French cohort of uranium miners has been followed by the Institut de Radioprotection et de Surete Nucleaire (I.R.S.N.) since the 1980's, in collaboration with the Occupational Medical Service of Compagnie Generale des Matieres Nucleaires (Cogema). The cohort was recently enlarged and the follow-up extended up to 1999. It includes men employed as miners for at least 1 year since 1946 at the Commissariat a l Energie Atomique (Cea) or at the Cogema. Individual vital status was ascertained through a national database and causes of death were determined according to death certificates. For each miner, yearly radon exposures was reconstructed and expressed in working level month (W.L.M.). Risk of death was estimated relatively to external reference rates from the general French male population. The classical method of standardized mortality ratios (S.M.R.s) was used to adjust for age and calendar year. Exposure-risk relationships have been estimated by Poisson regression, using a linear excess relative risk (E.R.R.) model with a lag time of 5 years. Results: The cohort comprises 5,098 miners. The mean duration of follow -up is 30.1 years (total of 153,272 person-years). The number of radon exposed miners is 4,134 with an average cumulative radon exposure of 36.5 W.L.M.. Miners lost to follow-up represent 1.4% of the cohort. A total of 1,471 deaths before age 85 is observed up to 1999. The analysis shows no excess for all

  9. An indoor air filtration study in homes of elderly

    DEFF Research Database (Denmark)

    Karottki, Dorina Gabriela; Spilak, Michal; Frederiksen, Marie

    2013-01-01

    Exposure to particulate air pollution increases respiratory and cardiovascular morbidity and mortality, especially in elderly, possibly through inflammation and vascular dysfunction.......Exposure to particulate air pollution increases respiratory and cardiovascular morbidity and mortality, especially in elderly, possibly through inflammation and vascular dysfunction....

  10. Effect of irradiation and exposure to nitrogen on the mortality of adults. Tribolium confusum J. du V

    International Nuclear Information System (INIS)

    Buscarlet, L.A.; Aminian, B.; Bali, C.

    1986-09-01

    For insect control irradiation can be improved by combination with other methods in order to limit the dose and hence to preserve the sensory qualities of some foods like fresh fruits, or to kill more rapidly the adult stage for avoiding the risk that a shipment be rejected because of the presence of living insects. The effect of irradiation with long exposure to inert gaz has not been reported yet. This study presents preliminary results on Tribolium confusum. Irradiation alone from 120 to 1000 Gy killed 100% of adults T. confusum in 12 to 15 days. At 60 Gy 10% insects were living after 28 days and at 40 Gy no mortality was observed. Mortality of adults T. confusum observed 10 days after exposure to nitrogen increased with the exposure time. 100 % mortality was reached for 17 hours exposure. When insects were exposed to nitrogen before or after irradiation synergic effects were observed. The greatest efficiency was obtained when insects were irradiated at 600 Gy after 9 hr exposure. When insects were exposed to nitrogen during irradiation the protective effectt of a short exposure (1/2 hr) was observed only for low doses (< 60 Gy). For a long exposure (9 hr) early irradiation at 600 Gy was more efficient than late irradiation

  11. How to estimate exposure when studying the temperature-mortality relationship? A case study of the Paris area.

    Science.gov (United States)

    Schaeffer, Laura; de Crouy-Chanel, Perrine; Wagner, Vérène; Desplat, Julien; Pascal, Mathilde

    2016-01-01

    Time series studies assessing the effect of temperature on mortality generally use temperatures measured by a single weather station. In the Paris region, there is a substantial measurement network, and a variety of exposure indicators created from multiple stations can be tested. The aim of this study is to test the influence of exposure indicators on the temperature-mortality relationship in the Paris region. The relationship between temperature and non-accidental mortality was assessed based on a time series analysis using Poisson regression and a generalised additive model. Twenty-five stations in Paris and its three neighbouring departments were used to create four exposure indicators. These indicators were (1) the temperature recorded by one reference station, (2) a simple average of the temperatures of all stations, (3) an average weighted on the departmental population and (4) a classification of the stations based on land use and an average weighted on the population in each class. The relative risks and the Akaike criteria were similar for all the exposure indicators. The estimated temperature-mortality relationship therefore did not appear to be significantly affected by the indicator used, regardless of study zone (departments or region) or age group. The increase in temperatures from the 90(th) to the 99(th) percentile of the temperature distribution led to a significant increase in mortality over 75 years (RR = 1.10 [95% CI, 1.07; 1.14]). Conversely, the decrease in temperature between the 10(th) and 1(st) percentile had a significant effect on the mortality under 75 years (RR = 1.04 [95% CI, 1.01; 1.06]). In the Paris area, there is no added value in taking multiple climatic stations into account when estimating exposure in time series studies. Methods to better represent the subtle temperature variations in densely populated areas in epidemiological studies are needed.

  12. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers

    Science.gov (United States)

    Int Panis, Luc; de Geus, Bas; Vandenbulcke, Grégory; Willems, Hanny; Degraeuwe, Bart; Bleux, Nico; Mishra, Vinit; Thomas, Isabelle; Meeusen, Romain

    2010-06-01

    Emerging evidence suggests that short episodes of high exposure to air pollution occur while commuting. These events can result in potentially adverse health effects. We present a quantification of the exposure of car passengers and cyclists to particulate matter (PM). We have simultaneously measured concentrations (PNC, PM2.5 and PM10) and ventilatory parameters (minute ventilation (VE), breathing frequency and tidal volume) in three Belgian locations (Brussels, Louvain-la-Neuve and Mol) for 55 persons (38 male and 17 female). Subjects were first driven by car and then cycled along identical routes in a pairwise design. Concentrations and lung deposition of PNC and PM mass were compared between biking trips and car trips. Mean bicycle/car ratios for PNC and PM are close to 1 and rarely significant. The size and magnitude of the differences in concentrations depend on the location which confirms similar inconsistencies reported in literature. On the other hand, the results from this study demonstrate that bicycle/car differences for inhaled quantities and lung deposited dose are large and consistent across locations. These differences are caused by increased VE in cyclists which significantly increases their exposure to traffic exhaust. The VE while riding a bicycle is 4.3 times higher compared to car passengers. This aspect has been ignored or severely underestimated in previous studies. Integrated health risk evaluations of transport modes or cycling policies should therefore use exposure estimates rather than concentrations.

  13. Does respiratory health contribute to the effects of long-term air pollution exposure on cardiovascular mortality?

    Directory of Open Access Journals (Sweden)

    Heinrich Joachim

    2007-03-01

    Full Text Available Abstract Background There is growing epidemiological evidence that short-term and long-term exposure to high levels of air pollution may increase cardiovascular morbidity and mortality. In addition, epidemiological studies have shown an association between air pollution exposure and respiratory health. To what extent the association between cardiovascular mortality and air pollution is driven by the impact of air pollution on respiratory health is unknown. The aim of this study was to investigate whether respiratory health at baseline contributes to the effects of long-term exposure to high levels of air pollution on cardiovascular mortality in a cohort of elderly women. Method We analyzed data from 4750 women, aged 55 at the baseline investigation in the years 1985–1994. 2593 of these women had their lung function tested by spirometry. Respiratory diseases and symptoms were asked by questionnaire. Ambient air pollution exposure was assessed by the concentrations of NO2 and total suspended particles at fixed monitoring sites and by the distance of residency to a major road. A mortality follow-up of these women was conducted between 2001 and 2003. For the statistical analysis, Cox' regression was used. Results Women with impaired lung function or pre-existing respiratory diseases had a higher risk of dying from cardiovascular causes. The impact of impaired lung function declined over time. The risk ratio (RR of women with forced expiratory volume in one second (FEV1 of less than 80% predicted to die from cardiovascular causes was RR = 3.79 (95%CI: 1.64–8.74 at 5 years survival time and RR = 1.35 (95%CI: 0.66–2.77 at 12 years. The association between air pollution levels and cardiovascular death rate was strong and statistically significant. However, this association did only change marginally when including indicators of respiratory health into the regression analysis. Furthermore, no interaction between air pollution and respiratory health

  14. Does respiratory health contribute to the effects of long-term air pollution exposure on cardiovascular mortality?

    Science.gov (United States)

    Schikowski, Tamara; Sugiri, Dorothea; Ranft, Ulrich; Gehring, Ulrike; Heinrich, Joachim; Wichmann, H-Erich; Krämer, Ursula

    2007-03-07

    There is growing epidemiological evidence that short-term and long-term exposure to high levels of air pollution may increase cardiovascular morbidity and mortality. In addition, epidemiological studies have shown an association between air pollution exposure and respiratory health. To what extent the association between cardiovascular mortality and air pollution is driven by the impact of air pollution on respiratory health is unknown. The aim of this study was to investigate whether respiratory health at baseline contributes to the effects of long-term exposure to high levels of air pollution on cardiovascular mortality in a cohort of elderly women. We analyzed data from 4750 women, aged 55 at the baseline investigation in the years 1985-1994. 2593 of these women had their lung function tested by spirometry. Respiratory diseases and symptoms were asked by questionnaire. Ambient air pollution exposure was assessed by the concentrations of NO2 and total suspended particles at fixed monitoring sites and by the distance of residency to a major road. A mortality follow-up of these women was conducted between 2001 and 2003. For the statistical analysis, Cox' regression was used. Women with impaired lung function or pre-existing respiratory diseases had a higher risk of dying from cardiovascular causes. The impact of impaired lung function declined over time. The risk ratio (RR) of women with forced expiratory volume in one second (FEV1) of less than 80% predicted to die from cardiovascular causes was RR = 3.79 (95%CI: 1.64-8.74) at 5 years survival time and RR = 1.35 (95%CI: 0.66-2.77) at 12 years. The association between air pollution levels and cardiovascular death rate was strong and statistically significant. However, this association did only change marginally when including indicators of respiratory health into the regression analysis. Furthermore, no interaction between air pollution and respiratory health on cardiovascular mortality indicating a higher risk of

  15. Effects of metal-rich particulate matter exposure on exogenous and endogenous viral sequence methylation in healthy steel-workers.

    Science.gov (United States)

    Mercorio, Roberta; Bonzini, Matteo; Angelici, Laura; Iodice, Simona; Delbue, Serena; Mariani, Jacopo; Apostoli, Pietro; Pesatori, Angela Cecilia; Bollati, Valentina

    2017-11-01

    Inhaled particles have been shown to produce systemic changes in DNA methylation. Global hypomethylation has been associated to viral sequence reactivation, possibly linked to the activation of pro-inflammatory pathways occurring after exposure. This observation provides a rationale to investigate viral sequence (both exogenous and endogenous) methylation in association to metal-rich particulate matter exposure. To verify this hypothesis, we chose the Wp promoter of the Epstein-Barr Virus (EBV-Wp) and the promoter of the human-endogenous-retrovirus w (HERV-w), respectively as a paradigm of an exogenous and an endogenous retroviral sequence, to be investigated by bisulfite PCR Pyrosequencing. We enrolled 63 male workers in an electric furnace steel plant, exposed to high level of metal-rich particulate matter. Comparing samples obtained in the first day of a work week (time 0-baseline, after 2 days off work) and the samples obtained after 3 days of work (time 1-post exposure), the mean methylation of EBV-Wp was significantly higher at baseline compared to post-exposure (mean baseline = 56.7%5mC; mean post-exposure = 47.9%5mC; p-value = 0.009), whereas the mean methylation of HERV-w did not significantly differ. Individual exposure to inhalable particles and metals was estimated based on measures in all working areas and time spent by the study subjects in each area. In a regression model adjusted for age, body mass index and smoking, PM and metal components had a positive association with EBV-Wp methylation (i.e. PM10: β = 5.99, p-value < 0.038; nickel: β = 17.82, p-value = 0.02; arsenic: β = 13.59, p-value < 0.015). The difference observed comparing baseline and post-exposure samples may be suggestive of a rapid change in EBV methylation induced by air particles, while correlation between EBV methylation and PM/metal exposure may represent a more stable adaptive mechanism. Future studies investigating a larger panel of viral sequences could better elucidate

  16. Workplace exposure to traffic-derived nanoscaled particulates

    International Nuclear Information System (INIS)

    Viana, M; DIez, S; Alastuey, A; Querol, X; Reche, C

    2011-01-01

    Workplace exposure to traffic-derived nanoscaled particulates was determined at a chemical research facility. Sub-micron particles were monitored by means of a multi-angle absorption photometer (MAAP) and a laser spectrometer (GRIMM 1107), providing 10-minute black carbon (BC) concentrations and 15-minute PM 1 concentrations, respectively, over a 4-month period (22/03/2010 - 28/07/2010). BC levels were simultaneously monitored during 1-day periods using a handheld aethalometer (Magee AE51), with excellent agreement between both techniques (MAAP and AE51, r 2 = 0.96, y = 0.84x).The studied laboratory is located on the 5th floor of an 8-storey building in an urban background environment in Barcelona, Spain. The laboratory was not in use during the study period, and both of its doors were kept open at all times in order to ensure air circulation between the study laboratory and the remaining offices and laboratories on the same floor (where workers were exposed). Windows were kept closed at all times. Indoor BC and PM 1 concentrations were compared with ambient BC and PM 1 levels from an outdoor monitoring station located at 1 (1.76 to 1.02), suggesting that it is necessary to monitor the variability of penetration factors as a function of time. BC emission sources in the workplace still need to be determined, but could be related to printer/photocopier toner emissions and laboratory work. Potential contamination due to the monitoring instruments (pumps) was discarded through the analysis of daily indoor BC cycles.

  17. The mortality cost of particulate matter due to emissions in the Stockholm area : an investigation into harmfulness, sources and the geographical dimension of their impact

    Science.gov (United States)

    2008-12-01

    The findings in this report are that there is not an one-to-one correspondence between emissions and costs. The reason for this is that the cost is based on health impacts which in turn are related to population exposure. Combustion particulate matte...

  18. Extreme Precipitation and Flooding: Exposure Characterization and the Association Between Exposure and Mortality in 108 United States Communities, 1987-2005

    Science.gov (United States)

    Severson, R. L.; Peng, R. D.; Anderson, G. B.

    2017-12-01

    There is substantial evidence that extreme precipitation and flooding are serious threats to public health and safety. These threats are predicted to increase with climate change. Epidemiological studies investigating the health effects of these events vary in the methods used to characterize exposure. Here, we compare two sources of precipitation data (National Oceanic and Atmospheric Administration (NOAA) station-based and North American Land Data Assimilation Systems (NLDAS-2) Reanalysis data-based) for estimating exposure to extreme precipitation and two sources of flooding data, based on United States Geological Survey (USGS) streamflow gages and the NOAA Storm Events database. We investigate associations between each of the four exposure metrics and short-term risk of four causes of mortality (accidental, respiratory-related, cardiovascular-related, and all-cause) in the United States from 1987 through 2005. Average daily precipitation values from the two precipitation data sources were moderately correlated (Spearman's rho = 0.74); however, values from the two data sources were less correlated when comparing binary metrics of exposure to extreme precipitation days (Jaccard index (J) = 0.35). Binary metrics of daily flood exposure were poorly correlated between the two flood data sources (Spearman's rho = 0.07; J = 0.05). There was little correlation between extreme precipitation exposure and flood exposure in study communities. We did not observe evidence of a positive association between any of the four exposure metrics and risk of any of the four mortality outcomes considered. Our results suggest, due to the observed lack of agreement between different extreme precipitation and flood metrics, that exposure to extreme precipitation may not serve as an effective surrogate for exposures related to flooding. Furthermore, It is possible that extreme precipitation and flood exposures may often be too localized to allow accurate exposure assessment at the

  19. Health effects of particulate air pollution and airborne desert dust

    Science.gov (United States)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  20. Outdoor air pollution as a possible modifiable risk factor to reduce mortality in post-stroke population

    Directory of Open Access Journals (Sweden)

    Anita Desikan

    2017-01-01

    Full Text Available Outdoor air pollution is a known risk factor for mortality and morbidity. The type of air pollutant most reliably associated with disease is particulate matter (PM, especially finer particulate matter that can reach deeper into the lungs like PM2.5 (particulate matter diameter < 2.5 μm. Some subpopulations may be particularly vulnerable to PM pollution. This review focuses on one subgroup, long-term stroke survivors, and the emerging evidence suggesting that survivors of a stroke may be at a higher risk from the deleterious effects of PM pollution. While the mechanisms for mortality are still under debate, long-term stroke survivors may be vulnerable to similar mechanisms that underlie the well-established association between PM pollution and cardiovascular disease. The fact that long-term stroke survivors of ischemic, but not hemorrhagic, strokes appear to be more vulnerable to the risk of death from higher PM pollution may also bolster the connection to ischemic heart disease. Survivors of an ischemic stroke may be more vulnerable to dying from higher concentrations of PM pollution than the general population. The clinical implications of this association suggest that reduced exposure to PM pollution may result in fewer deaths amongst stroke survivors.

  1. Fine particulate matter components and mortality in Greater Houston: Did the risk reduce from 2000 to 2011?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suyang; Zhang, Kai, E-mail: Kai.Zhang@uth.tmc.edu

    2015-12-15

    Fine particulate matter (less than 2.5 μm in aerodynamic diameter; PM{sub 2.5}) pollution poses a major environmental threat in Greater Houston due to rapid economic growth and the numerous PM{sub 2.5} sources including ports, vehicles, and the largest petrochemical industry in the United States (U.S.). Our objectives were to estimate the short-term associations between the PM{sub 2.5} components and mortality during 2000–2011, and evaluate whether these associations have changed over time. A total of 333,317 deaths were included in our assessment, with an average of 76 deaths per day. We selected 17 PM{sub 2.5} components from the U.S. Environmental Protection Agency's Chemical Speciation Network, and then applied Poisson regression models to assess the associations between the PM{sub 2.5} components and mortality. Additionally, we repeated our analysis for two consecutive periods: 2000–2005 and 2006–2011. Interquartile range increases in ammonium (0.881 μg/m{sup 3}), nitrate (0.487 μg/m{sup 3}), sulfate (2.245 μg/m{sup 3}), and vanadium (0.004 μg/m{sup 3}) were associated with an increased risk in mortality of 0.69% (95% confidence interval (CI): 0.26, 1.12%), 0.38% (95% CI: 0.11, 0.66%), 0.61% (95% CI: 0.15, 1.06%), and 0.58% (95% CI: 0.12, 1.04%), respectively. Seasonal analysis suggested that the associations were strongest during the winter months. The association between PM{sub 2.5} mass and mortality decreased during 2000–2011, however, the PM{sub 2.5} components showed no notable changes in mortality risk over time. Our study indicates that the short-term associations between PM{sub 2.5} and mortality differ across the PM{sub 2.5} components and suggests that future air pollution control measures should not only focus on mass but also pollutant sources. - Highlights: • PM{sub 2.5} concentrations were associated with increased mortality risk. • A few major PM{sub 2.5} components were associated with increased mortality risk.

  2. Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers

    Science.gov (United States)

    Wu, Chang-Fu; Delfino, Ralph J.; Floro, Joshua N.; Quintana, Penelope J. E.; Samimi, Behzad S.; Kleinman, Michael T.; Allen, Ryan W.; Sally Liu, L.-J.

    It has been shown that acute exposures to particulate matter (PM) may exacerbate asthma in children. However, most epidemiological studies have relied on time-integrated PM measurements taken at a centrally located stationary monitoring sites. In this article, we characterized children's short-term personal exposures to PM 2.5 (PM with aerodynamic diameters size-selective inlet was used to estimate real-time PM 2.5 concentrations on 20 asthmatic children, inside and outside of their residences, and at a central site. The personal and indoor pDRs were operated passively, while the home outdoor and central site instruments were operated actively. The subjects received 29.2% of their exposures at school, even though they only spent 16.4% of their time there. More precise personal clouds were estimated for the home-indoor and home-outdoor microenvironments where PM concentrations were measured. The personal cloud increased with increasing activity levels and was higher during outdoor activities than during indoor activities. We built models to predict personal PM exposures based on either microenvironmental or central-site PM 2.5 measurements, and evaluated the modeled exposures against the actual personal measurements. A multiple regression model with central site PM concentration as the main predictor had a better prediction power ( R2=0.41) than a three-microenvironmental model ( R2=0.11). We further constructed a source-specific exposure model utilizing the time-space-activity information and the particle infiltration efficiencies (mean=0.72±0.15) calculated from a recursive mass balance model. It was estimated that the mean hourly personal exposures resulting from ambient, indoor-generated, and personal activity PM 2.5 were 11.1, 5.5, and 10.0 μg/m 3, respectively, when the modeling error was minimized. The high PM 2.5 exposure to personal activities reported in our study is likely due to children's more active lifestyle as compared with older adult subjects in

  3. Ultrafine Particulate Matter Combined With Ozone Exacerbates Lung Injury in Mature Adult Rats With Cardiovascular Disease.

    Science.gov (United States)

    Wong, Emily M; Walby, William F; Wilson, Dennis W; Tablin, Fern; Schelegle, Edward S

    2018-05-01

    Particulate matter (PM) and ozone (O3) are dominant air pollutants that contribute to development and exacerbation of multiple cardiopulmonary diseases. Mature adults with cardiovascular disease (CVD) are particularly susceptible to air pollution-related cardiopulmonary morbidities and mortalities. The aim was to investigate the biologic potency of ultrafine particulate matter (UFPM) combined with O3 in the lungs of mature adult normotensive and spontaneously hypertensive (SH) Wistar-Kyoto rats. Conscious, mature adult male normal Wistar-Kyoto (NW) and SH rats were exposed to one of the following atmospheres: filtered air (FA); UFPM (∼ 250 μg/m3); O3 (1.0 ppm); or UFPM + O3 (∼ 250 μg/m3 + 1.0 ppm) combined for 6 h, followed by an 8 h FA recovery period. Lung sections were evaluated for lesions in the large airways, terminal bronchiolar/alveolar duct regions, alveolar parenchyma, and vasculature. NW and SH rats were similarly affected by the combined-pollutant exposure, displaying severe injury in both large and small airways. SH rats were particularly susceptible to O3 exposure, exhibiting increased injury scores in terminal bronchioles and epithelial degeneration in large airways. UFPM-exposure groups had minimal histologic changes. The chemical composition of UFPM was altered by the addition of O3, indicating that ozonolysis promoted compound degradation. O3 increased the biologic potency of UFPM, resulting in greater lung injury following exposure. Pathologic manifestations of CVD may confer susceptibility to air pollution by impairing normal lung defenses and responses to exposure.

  4. Air pollution and mortality: Determination of a quantitative association

    Energy Technology Data Exchange (ETDEWEB)

    Ostro, B

    1994-07-01

    Over the last few decades, several epidemiologic studies have reported associations between daily concentrations of ambient particulate matter and mortality among the general population. Among these studies, statistically significant relationships have been found using several alternative measures of particulate matter including total suspended particulates (TSP) for particles of all sizes], fine particles (particles less than 25 microns in diameter), British smoke (BS), coefficient of haze (COH), and sulfates. None has involved measurement of the mass of particulate matter less than 10 microns in diameter (PM10), the metric used by the U.S. Environmental Protection Agency (EPA) in the National Ambient Air Quality Standards. The studies have been conducted in several different cities and seasons, thereby incorporating a wide range of climates, chemical compositions of particulate matter, and populations. The epidemiologic. investigations have used two principal study designs: time-series and cross-sectional. Time-series analysis examines changes in daily mortality rates within a specific area as air pollution levels fluctuate. A cross-sectional analysis compares differences in mortality rates across several cities at a selected point or period of time. This paper seeks to examine the air pollution-mortality association in view of these criteria, with particular focus on the consistency of the association. Replication of results in other environments and populations is a powerful test before causality can be inferred. The check for consistency will be accomplished by reviewing and comparing the results of the more recent empirical studies. Ultimately, the results of these calculations are presented in terms of the percent increase in mortality associated with changes in PM{sub 10}. After examining the consistency of the associations, some of the other criteria will be briefly discuss.

  5. MicroRNAs are associated with blood-pressure effects of exposure to particulate matter: Results from a mediated moderation analysis.

    Science.gov (United States)

    Motta, Valeria; Favero, Chiara; Dioni, Laura; Iodice, Simona; Battaglia, Cristina; Angelici, Laura; Vigna, Luisella; Pesatori, Angela Cecilia; Bollati, Valentina

    2016-04-01

    Exposure to particulate air pollution is associated with increased blood pressure (BP), a well-established risk factor for cardiovascular disease. To elucidate the mechanisms underlying this relationship, we investigated whether the effects of particulate matter of less than 10μm in aerodynamic diameter (PM10) on BP are mediated by microRNAs. We recruited 90 obese individuals and we assessed their PM10 exposure 24 and 48h before the recruitment day. We performed multivariate linear regression models to investigate the effects of PM10 on BP. Using the TaqMan® Low-Density Array, we experimentally evaluated and technically validated the expression levels of 377 human miRNAs in peripheral blood. We developed a mediated moderation analysis to estimate the proportion of PM10 effects on BP that was mediated by miRNA expression. PM10 exposure 24 and 48h before the recruitment day was associated with increased systolic BP (β=1.22mmHg, P=0.019; β=1.24mmHg, P=0.019, respectively) and diastolic BP (β=0.67mmHg, P=0.044; β=0.91mmHg, P=0.007, respectively). We identified nine miRNAs associated with PM10 levels 48h after exposure. A conditional indirect effect (CIE=-0.1431) of PM10 on diastolic BP, which was mediated by microRNA-101, was found in individuals with lower values of mean body mass index. Our data provide evidence that miRNAs are a molecular mechanism underlying the BP-related effects of air pollution exposure, and indicate miR-101 as epigenetic mechanism to be further investigated. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Childhood leukemia mortality and farming exposure in South Korea: A national population-based birth cohort study.

    Science.gov (United States)

    Cha, Eun Shil; Hwang, Seung-sik; Lee, Won Jin

    2014-08-01

    The aim of this study was to evaluate the relationship between leukemia mortality and exposure to farming among children in South Korea. A retrospective cohort study of South Korean children was conducted using data collected by the national birth register between 1995 and 2006; these data were then individually linked to death data. A cohort of 6,479,406 children was followed from birth until either their death or until December 31, 2006. For surrogate measures of pesticide exposure, we used residence at birth, paternal occupation, and month of conception from the birth certificate. Farming and pesticide exposure indexes by county were calculated using information derived from the 2000 agricultural census. Poisson regression analyses were used to calculate rate ratios (RRs) of childhood leukemia deaths according to indices of exposure to agricultural pesticides after adjustment for potential confounders. In total 585 leukemia deaths were observed during the study period. Childhood leukemia mortality was significantly elevated in children born in rural areas (RR=1.43, 95%CI 1.09-1.86) compared to those in metropolises, and in counties with both the highest farming index (RR=1.33, 95%CI 1.04-1.69) and pesticide exposure index (RR=1.30, 95%CI 1.02-1.66) compared to those in the reference group. However, exposure-response associations were significant only in relation to the farming index. When the analyses were limited to rural areas, the risk of death from leukemia among boys conceived between spring and fall increased over those conceived in winter. Our results show an increase in mortality from childhood leukemia in rural areas; however, further studies are warranted to investigate the environmental factors contributing to the excess mortality from childhood leukemia in rural areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study.

    Science.gov (United States)

    Brunekreef, Bert; Beelen, Rob; Hoek, Gerard; Schouten, Leo; Bausch-Goldbohm, Sandra; Fischer, Paul; Armstrong, Ben; Hughes, Edward; Jerrett, Michael; van den Brandt, Piet

    2009-03-01

    black smoke (a simple marker for soot) and nitrogen dioxide (NO2) as indicators of traffic-related air pollution, as well as nitric oxide (NO), sulfur dioxide (SO2), and particulate matter with aerodynamic diameter pollution contributions at regional, urban, and local scales. We used interpolation from data obtained routinely at regional stations of the National Air Quality Monitoring Network (NAQMN) to estimate the regional component of exposure at the home address. Average pollutant concentrations were estimated from NAQMN measurements for the period 1976 through 1996. Land-use regression methods were used to estimate the urban exposure component. For the local exposure component, geographic information systems (GISs) were used to generate indicators of traffic exposure that included traffic intensity on and distance to nearby roads. A major effort was made to collect traffic intensity data from individual municipalities. The exposure variables were refined considerably from those used in the pilot study, but we also analyzed the data for the full cohort in the current study using the exposure indicators of the pilot study. We analyzed the data in models with the estimated overall pollutant concentration as a single variable and with the background concentration (the sum of regional and urban components) and the local exposure estimate from traffic indicators as separate variables. In the full-cohort analyses adjusted for the limited set of confounders, estimated overall exposure concentrations of black smoke, NO2, NO, and PM2.5 were associated with mortality. For a 10-microg/m3 increase in the black smoke concentration, the relative risk (RR) (95% confidence interval [CI]) was 1.05 (1.00-1.11) for natural-cause (nonaccidental) mortality, 1.04 (0.95-1.13) for cardiovascular mortality, 1.22 (0.99-1.50) for respiratory mortality, 1.03 (0.88-1.20) for lung cancer mortality, and 1.04 (0.97-1.12) for noncardiopulmonary, non-lung cancer mortality. Results were similar for

  8. Satellite-based estimates of long-term exposure to fine particulate matter are associated with C-reactive protein in 30 034 Taiwanese adults.

    Science.gov (United States)

    Zhang, Zilong; Chang, Ly-Yun; Lau, Alexis K H; Chan, Ta-Chien; Chieh Chuang, Yuan; Chan, Jimmy; Lin, Changqing; Kai Jiang, Wun; Dear, Keith; Zee, Benny C Y; Yeoh, Eng-Kiong; Hoek, Gerard; Tam, Tony; Qian Lao, Xiang

    2017-08-01

    Particulate matter (PM) air pollution is associated with the risk of cardiovascular morbidity and mortality. However, the biological mechanism underlying the associations remains unclear. Atherosclerosis, the underlying pathology of cardiovascular disease, is a chronic inflammatory process. We therefore investigated the association of long-term exposure to fine PM (PM2.5) with C-reactive protein (CRP), a sensitive marker of systemic inflammation, in a large Taiwanese population. Participants were from a large cohort who participated in a standard medical examination programme with measurements of high-sensitivity CRP between 2007 and 2014. We used a spatiotemporal model to estimate 2-year average PM2.5 exposure at each participant's address, based on satellite-derived aerosol optical depth data. General regression models were used for baseline data analysis and mixed-effects linear regression models were used for repeated data analysis to investigate the associations between PM2.5 exposure and CRP, adjusting for a wide range of potential confounders. In this population of 30 034 participants with 39 096 measurements, every 5 μg/m3 PM2.5 increment was associated with a 1.31% increase in CRP [95% confidence interval (CI): 1.00%, 1.63%) after adjusting for confounders. For those participants with repeated CRP measurements, no significant changes were observed between the first and last measurements (0.88 mg/l vs 0.89 mg/l, P = 0.337). The PM2.5 concentrations remained stable over time between 2007 and 2014. Long-term exposure to PM2.5 is associated with increased level of systemic inflammation, supporting the biological link between PM2.5 air pollution and deteriorating cardiovascular health. Air pollution reduction should be an important strategy to prevent cardiovascular disease. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association

  9. Divergent effects of urban particulate air pollution on allergic airway responses in experimental asthma: a comparison of field exposure studies

    Directory of Open Access Journals (Sweden)

    Wagner James G

    2012-07-01

    Full Text Available Abstract Background Increases in ambient particulate matter of aerodynamic diameter of 2.5 μm (PM2.5 are associated with asthma morbidity and mortality. The overall objective of this study was to test the hypothesis that PM2.5 derived from two distinct urban U.S. communities would induce variable responses to aggravate airway symptoms during experimental asthma. Methods We used a mobile laboratory to conduct community-based inhalation exposures to laboratory rats with ovalbumin-induced allergic airways disease. In Grand Rapids exposures were conducted within 60 m of a major roadway, whereas the Detroit was located in an industrial area more than 400 m from roadways. Immediately after nasal allergen challenge, Brown Norway rats were exposed by whole body inhalation to either concentrated air particles (CAPs or filtered air for 8 h (7:00 AM - 3:00 PM. Both ambient and concentrated PM2.5 was assessed for mass, size fractionation, and major component analyses, and trace element content. Sixteen hours after exposures, bronchoalveolar lavage fluid (BALF and lung lobes were collected and evaluated for airway inflammatory and mucus responses. Results Similar CAPs mass concentrations were generated in Detroit (542 μg/m3 and Grand Rapids (519 μg/m3. Exposure to CAPs at either site had no effects in lungs of non-allergic rats. In contrast, asthmatic rats had 200% increases in airway mucus and had more BALF neutrophils (250% increase, eosinophils (90%, and total protein (300% compared to controls. Exposure to Detroit CAPs enhanced all allergic inflammatory endpoints by 30-100%, whereas inhalation of Grand Rapids CAPs suppressed all allergic responses by 50%. Detroit CAPs were characterized by high sulfate, smaller sized particles and were derived from local combustion sources. Conversely Grand Rapids CAPs were derived primarily from motor vehicle sources. Conclusions Despite inhalation exposure to the same mass concentration of urban PM2

  10. Occupational exposure and mortality in the German uranium miner cohort; Berufliche Exposition und Mortalitaet in der deutschen Uranbergarbeiterkohorte

    Energy Technology Data Exchange (ETDEWEB)

    Schnelzer, M.; Dufey, F.; Grosche, B.; Sogl, M.; Tschense, A.; Walsh, L.; Kreuzer, M. [Bundesamt fuer Strahlenschutz, Neuherberg (Germany). Fachbereich Strahlenschutz und Gesundheit; Dahmann, D. [Berufsgenossenschaft Rohstoffe und chemische Industrie, Bochum (Germany). Inst. fuer Gefahrstoff-Forschung; Lehmann, F. [Berufsgenossenschaft Rohstoffe und chemische Industrie, Gera (Germany). Praeventionsbereich; Otten, H. [Deutsche Gesetzliche Unfallversicherung, Berlin (Germany)

    2014-07-01

    The German uranium miners cohort study comprises 58,982 men employed in the GDR by the Wismut company for at least six months between 1946 and 1989. Particularly in the early years, miners were exposed to high levels of radon, silica and other harmful substances. The aim of the cohort study is to investigate the health effects of occupational exposures. The cohort was established in 1998 with mortality follow-ups every five years, i.e. vital status and cause of death are ascertained. Annual exposures to radon progeny, external gamma-radiation, long-lived radionuclides, fine dust, silica and arsenic dust were individually assessed by means of a comprehensive job-exposure matrix. For data analyses Poisson regression models were used. By end of 2008, 25,438 (43 %) cohort members were deceased with known cause of death in 94 %. In total 7,780 cancer mortalities were observed, including 3,500 from lung cancer. Lung cancer mortality is twice as high as in the general population largely due to occupational radon progeny and silica exposure. Also 975 silicosis deaths were observed and there is some evidence for a relationship between radon progeny exposure and cancers of the extra-thoracic airways. Circulatory diseases and non-malignant diseases of the airways were also investigated, but no relationship to occupational exposure was found. Up to now health effects of uranium mining in the Wismut cohort primarily manifest themselves as increases in lung cancer and silicosis mortality due to high radon progeny and silica exposure. With increasing duration of follow-up, further findings regarding more rare causes of death and levels of exposure relevant today are expected.

  11. Quantification of Health Effects Related to SO{sub 2}, NO{sub 2}, O{sub 3} and Particulate Matter Exposure. Report from the Nordic Expert Meeting Oslo, 15-17 October, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Clench-Aas, J.; Krzyzanowski, M. [eds.

    1996-12-31

    The Nordic Council of Ministers founded a workshop of European and Nordic experts to assess the current literature and develop dose-response functions for the criteria air quality indicators of SO{sub 2}, NO{sub 2}, O{sub 3} and particulate matter. This is the report from the workshop held in Oslo on October 15-17, 1995. Estimates of exposure-response relationships are needed to assess the health impact of environmental factors. Based on available research evidence, the relationships for the common air pollutants - particulate matter, sulphur dioxide, ozone and nitrogen dioxide - were reviewed. The Meeting concluded by quantifying exposure-response relationships for particulate matter, SO{sub 2} and ozone; the relationship for NO{sub 2} was not quantified. The Meeting also identified other exposure-response relationships considered to be substantiated, but for which the available data did not provide sufficient background to quantify the risk. The reported concentration-response associations relate to short-term changes in risk due to changes in levels of pollutants. For chronic effects of prolonged exposures the data were judged to be insufficient for quantification. 211 refs., 3 figs., 7 tabs.

  12. Long-term exposure to fine particulate matter and incidence of diabetes in the Danish Nurse Cohort

    DEFF Research Database (Denmark)

    Hansen, Anne Busch; Ravnskjær, Line; Loft, Steffen

    2016-01-01

    AIMS/HYPOTHESIS: It has been suggested that air pollution may increase the risk of type 2 diabetes but data on particulate matter with diameter PM2.5) are inconsistent. We examined the association between long-term exposure to PM2.5 and diabetes incidence. METHODS: We used the Danish Nurse...... Cohort with 28,731 female nurses who at recruitment in 1993 or 1999 reported information on diabetes prevalence and risk factors, and obtained data on incidence of diabetes from National Diabetes Register until 2013. We estimated annual mean concentrations of PM2.5, particulate matter with diameter ... diabetes. We detected a significant positive association between PM2.5 and diabetes incidence (hazard ratio; 95% confidence interval: 1.11; 1.02-1.22 per interquartile range of 3.1μg/m(3)), and weaker associations for PM10 (1.06; 0.98-1.14 per 2.8μg/m(3)), NO2 (1.05; 0.99-1.12 per 7.5μg/m(3)), and NOx (1...

  13. Evaluation of airborne particulates and fungi during hospital renovation.

    Science.gov (United States)

    Overberger, P A; Wadowsky, R M; Schaper, M M

    1995-07-01

    This study was conducted over 30 weeks on a hospital floor undergoing partial renovation. Some patients housed on the floor were immunosuppressed, including bone marrow transplant recipients. The construction zone was placed under negative pressure and was separated from patient rooms by existing hospital walls and via erection of a temporary barrier. Other control measures minimized patient exposure to airborne materials. Air sampling was done for 3 weeks prior to construction, 24 weeks during construction, and 3 weeks after renovation was completed. Airborne particulate concentrations, total spore counts, particle size, and fungal species were assessed. At the beginning of the renovation there were increases in airborne particulates (from 0.2 to 2.0 mg/m3) and fungal spores (from 3.5 to 350 colony forming units (CFU/m3), but only in the construction zone. Throughout the remainder of the renovation, particulate and fungal spore levels fluctuated inside the construction zone but remained close to baseline values in the patient area. When renovation was completed, particulates and spore counts inside the construction zone decreased to preconstruction levels. The primary fungus isolated from air samples was Penicillium. This study demonstrated that control measures were effective in reducing exposures of hospitalized patients to airborne particulates and spores and in reducing the increased risk of aspergillosis and other fungal infections associated with hospital construction projects. The data from this study may be useful in establishing exposure guidelines for other health care settings.

  14. Estimating the acute health effects of coarse particulate matter accounting for exposure measurement error.

    Science.gov (United States)

    Chang, Howard H; Peng, Roger D; Dominici, Francesca

    2011-10-01

    In air pollution epidemiology, there is a growing interest in estimating the health effects of coarse particulate matter (PM) with aerodynamic diameter between 2.5 and 10 μm. Coarse PM concentrations can exhibit considerable spatial heterogeneity because the particles travel shorter distances and do not remain suspended in the atmosphere for an extended period of time. In this paper, we develop a modeling approach for estimating the short-term effects of air pollution in time series analysis when the ambient concentrations vary spatially within the study region. Specifically, our approach quantifies the error in the exposure variable by characterizing, on any given day, the disagreement in ambient concentrations measured across monitoring stations. This is accomplished by viewing monitor-level measurements as error-prone repeated measurements of the unobserved population average exposure. Inference is carried out in a Bayesian framework to fully account for uncertainty in the estimation of model parameters. Finally, by using different exposure indicators, we investigate the sensitivity of the association between coarse PM and daily hospital admissions based on a recent national multisite time series analysis. Among Medicare enrollees from 59 US counties between the period 1999 and 2005, we find a consistent positive association between coarse PM and same-day admission for cardiovascular diseases.

  15. Prolonged exposure to particulate chromate inhibits RAD51 nuclear import mediator proteins.

    Science.gov (United States)

    Browning, Cynthia L; Wise, John Pierce

    2017-09-15

    Particulate hexavalent chromium (Cr(VI)) is a human lung carcinogen and a human health concern. The induction of structural chromosome instability is considered to be a driving mechanism of Cr(VI)-induced carcinogenesis. Homologous recombination repair protects against Cr(VI)-induced chromosome damage, due to its highly accurate repair of Cr(VI)-induced DNA double strand breaks. However, recent studies demonstrate Cr(VI) inhibits homologous recombination repair through the misregulation of RAD51. RAD51 is an essential protein in HR repair that facilitates the search for a homologous sequence. Recent studies show prolonged Cr(VI) exposure prevents proper RAD51 subcellular localization, causing it to accumulate in the cytoplasm. Since nuclear import of RAD51 is crucial to its function, this study investigated the effect of Cr(VI) on the RAD51 nuclear import mediators, RAD51C and BRCA2. We show acute (24h) Cr(VI) exposure induces the proper localization of RAD51C and BRCA2. In contrast, prolonged (120h) exposure increased the cytoplasmic localization of both proteins, although RAD51C localization was more severely impaired. These results correlate temporally with the previously reported Cr(VI)-induced RAD51 cytoplasmic accumulation. In addition, we found Cr(VI) does not inhibit interaction between RAD51 and its nuclear import mediators. Altogether, our results suggest prolonged Cr(VI) exposure inhibits the nuclear import of RAD51C, and to a lesser extent, BRCA2, which results in the cytoplasmic accumulation of RAD51. Cr(VI)-induced inhibition of nuclear import may play a key role in its carcinogenic mechanism since the nuclear import of many tumor suppressor proteins and DNA repair proteins is crucial to their function. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Impact of Oxidant Gases on the Relationship between Outdoor Fine Particulate Air Pollution and Nonaccidental, Cardiovascular, and Respiratory Mortality.

    Science.gov (United States)

    Weichenthal, Scott; Pinault, Lauren L; Burnett, Richard T

    2017-11-27

    Outdoor fine particulate air pollution (PM 2.5 ) is known to increase mortality risk and is recognized as an important contributor to global disease burden. However, less is known about how oxidant gases may modify the chronic health effects of PM 2.5 . In this study, we examined how the oxidant capacity of O 3 and NO 2 (using a redox-weighted average, O x ) may modify the relationship between PM 2.5 and mortality in the 2001 Canadian Census Health and Environment Cohort. In total, 2,448,500 people were followed over a 10.6-year period. Each 3.86 µg/m 3 increase in PM 2.5 was associated with nonaccidental (Hazard Ratio (HR) = 1.095, 95% CI: 1.077, 1.112), cardiovascular (HR = 1.088, 95% CI: 1.059, 1.118), and respiratory mortality (HR = 1.110, 95% CI: 1.051, 1.171) in the highest tertile of O x whereas weaker/null associations were observed in the middle and lower tertiles. Analysis of joint non-linear concentration-response relationships for PM 2.5 and O x suggested threshold concentrations between approximately 23 and 25 ppb with O x concentrations above these values strengthening PM 2.5 -mortality associations. Overall, our findings suggest that oxidant gases enhance the chronic health risks of PM 2.5 . In some areas, reductions in O x concentrations may have the added benefit of reducing the public health impacts of PM 2.5 even if mass concentrations remain unchanged.

  17. Burden of mortality and years of life lost due to ambient PM10 pollution in Wuhan, China.

    Science.gov (United States)

    Zhang, Yunquan; Peng, Minjin; Yu, Chuanhua; Zhang, Lan

    2017-11-01

    Ambient particulate matter (PM) has been mainly linked with mortality and morbidity when assessing PM-associated health effects. Up-to-date epidemiologic evidence is very sparse regarding the relation between PM and years of life lost (YLL). The present study aimed to estimate the burden of YLL and mortality due to ambient PM pollution. Individual records of all registered deaths and daily data on PM 10 and meteorology during 2009-2012 were obtained in Wuhan, central China. Using a time-series study design, we applied generalized additive model to assess the short-term association of 10-μg/m 3 increase in PM 10 with daily YLL and mortality, adjusting for long-term trend and seasonality, mean temperature, relative humidity, public holiday, and day of the week. A linear-no-threshold dose-response association was observed between daily ambient PM 10 and mortality outcomes. PM 10 pollution along lag 0-1 days was found to be mostly strongly associated with mortality and YLL. The effects of PM 10 on cause-specific mortality and YLL showed generally similar seasonal patterns, with stronger associations consistently occurring in winter and/or autumn. Compared with males and younger persons, females and the elderly suffered more significantly from both increased YLL and mortality due to ambient PM 10 pollution. Stratified analyses by education level (0-6 and 7 + years) demonstrated great mortality impact on both subgroups, whereas only low-educated persons were strongly affected by PM 10 -associated burden of YLL. Our study confirmed that short-term PM 10 exposure was linearly associated with significant increases in both mortality incidence and years of life lost. Given the non-threshold adverse effects on mortality burden, the on-going efforts to reduce particulate air pollution would substantially benefit public health in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cigarette smoking and radiation exposure in relation to cancer mortality, Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Prentice, R.L.; Yoshimoto, Yasuhiko; Mason, M.W.

    1983-05-01

    Cancer mortality among 40,498 Hiroshima and Nagasaki residents was examined in relation to cigarette smoking habits and estimated atomic bomb radiation exposure. Relative risk models that are either multiplicative or additive in the two exposures (smoking radiation) were emphasized. Most analyses were directed toward all nonhematologic cancer, stomach cancer, lung cancer, or digestive cancer other than stomach, for which there were, respectively, 1,725, 658, 281, and 338 deaths in the follow-up period of this study. Persons heavily exposed to both cigarette smoke and radiation were found to have significantly lower cancer mortality than multiplcative relative risk models would suggest for all nonhematologic cancer, stomach cancer, and digestive cancer other than stomach. Surprisingly, the relative risk function appeared not only to be submultiplicative for these cancer sites, but to be subadditive as well. The lung cancer relative risk function could not be distinguished from either a multiplicative or an additive form. The number of deaths was sufficient to permit some more detailed study of all nonhematologic cancer mortality: Relative risk functions appeared to be consistent between males and females though a paucity of heavy smoking females limits the precision of this comparison. (author)

  19. Air Pollution and Deaths among Elderly Residents of São Paulo, Brazil: An Analysis of Mortality Displacement.

    Science.gov (United States)

    Costa, Amine Farias; Hoek, Gerard; Brunekreef, Bert; Ponce de Leon, Antônio C M

    2017-03-01

    Evaluation of short-term mortality displacement is essential to accurately estimate the impact of short-term air pollution exposure on public health. We quantified mortality displacement by estimating single-day lag effects and cumulative effects of air pollutants on mortality using distributed lag models. We performed a daily time series of nonaccidental and cause-specific mortality among elderly residents of São Paulo, Brazil, between 2000 and 2011. Effects of particulate matter smaller than 10 μm (PM 10 ), nitrogen dioxide (NO 2 ) and carbon monoxide (CO) were estimated in Poisson generalized additive models. Single-day lag effects of air pollutant exposure were estimated for 0-, 1- and 2-day lags. Distributed lag models with lags of 0-10, 0-20 and 0-30 days were used to assess mortality displacement and potential cumulative exposure effects. PM 10 , NO 2 and CO were significantly associated with nonaccidental and cause-specific deaths in both single-day lag and cumulative lag models. Cumulative effect estimates for 0-10 days were larger than estimates for single-day lags. Cumulative effect estimates for 0-30 days were essentially zero for nonaccidental and circulatory deaths but remained elevated for respiratory and cancer deaths. We found evidence of mortality displacement within 30 days for nonaccidental and circulatory deaths in elderly residents of São Paulo. We did not find evidence of mortality displacement within 30 days for respiratory or cancer deaths. Citation: Costa AF, Hoek G, Brunekreef B, Ponce de Leon AC. 2017. Air pollution and deaths among elderly residents of São Paulo, Brazil: an analysis of mortality displacement. Environ Health Perspect 125:349-354; http://dx.doi.org/10.1289/EHP98.

  20. Association of soil arsenic and nickel exposure with cancer mortality rates, a town-scale ecological study in Suzhou, China.

    Science.gov (United States)

    Chen, Kai; Liao, Qi Lin; Ma, Zong Wei; Jin, Yang; Hua, Ming; Bi, Jun; Huang, Lei

    2015-04-01

    Heavy metals and arsenic are well-known carcinogens. However, few studies have examined whether soil heavy metals and arsenic concentrations associate with cancer in the general population. In this ecological study, we aimed to evaluate the association of heavy metals and arsenic in soil with cancer mortality rates during 2005-2010 in Suzhou, China, after controlling for education and smoking prevalence. In 2005, a total of 1683 soil samples with a sampling density of one sample every 4 km(2) were analyzed. Generalized linear model with a quasi-Poisson regression was applied to evaluate the association between town-scale cancer mortality rates and soil heavy metal concentrations. Results showed that soil arsenic exposure had a significant relationship with colon, gastric, kidney, lung, and nasopharyngeal cancer mortality rates and soil nickel exposure was significantly associated with liver and lung cancer. The associations of soil arsenic and nickel exposure with colon, gastric, kidney, and liver cancer in male were higher than those in female. The observed associations of soil arsenic and nickel with cancer mortality rates were less sensitive to alternative exposure metrics. Our findings would contribute to the understanding of the carcinogenic effect of soil arsenic and nickel exposure in general population.

  1. Age-at-exposure effects on risk estimates for non-cancer mortality in the Japanese atomic bomb survivors

    International Nuclear Information System (INIS)

    Zhang Wei; Muirhead, Colin R; Hunter, Nezahat

    2005-01-01

    Statistically significant increases in non-cancer disease mortality with radiation dose have been observed among survivors of the atomic bombings of Hiroshima and Nagasaki. The increasing trends arise particularly for diseases of the circulatory, digestive, and respiratory systems. Rates for survivors exposed to a dose of 1 Sv are elevated by about 10%, a smaller relative increase than that for cancer. The aetiology of this increased risk is not yet understood. Neither animal nor human studies have found clear evidence for excess non-cancer mortality at the lower range of doses received by A-bomb survivors. In this paper, we examine the age and time patterns of excess risks in the A-bomb survivors. The results suggest that the excess relative risk of non-cancer disease mortality might be highest for exposure at ages 30-49 years, and that those exposed at ages 0-29 years might have a very low excess relative risk compared with those exposed at older ages. The differences in excess relative risk for different age-at-exposure groups imply that the dose response relationships for non-cancer disease mortality need to be modelled with adjustment for age-at-exposure

  2. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study

    Directory of Open Access Journals (Sweden)

    Kristof Y Neven, MSc

    2018-04-01

    Full Text Available Summary: Background: Exposure to particulate air pollution has been linked with risk of carcinogenesis. Damage to repair pathways might have long-term adverse health effects. We aimed to investigate the association of prenatal exposure to air pollution with placental mutation rate and the DNA methylation of key placental DNA repair genes. Methods: This cohort study used data from the ongoing ENVironmental Influence ON early AGEing (ENVIRONAGE birth cohort, which enrols pairs of mothers and neonates (singleton births only at the East-Limburg Hospital (Genk, Belgium. Placental DNA samples were collected after birth. We used bisulfite-PCR-pyrosequencing to investigate the mutation rate of Alu (a marker for overall DNA mutation and DNA methylation in the promoter genes of key DNA repair and tumour suppressor genes (APEX1, OGG1, PARP1, ERCC1, ERCC4, p53, and DAPK1. We used a high-resolution air pollution model to estimate exposure to particulate matter with a diameter less than 2·5 μm (PM2·5, black carbon, and NO2 over the entire pregnancy on the basis of maternal address. Alu mutation was analysed with a linear regression model, and methylation values of the selected genes were analysed in mixed-effects models. Effect estimates are presented as the relative percentage change in methylation for an ambient air pollution increment of one IQR (ie, the difference between the first and third quartiles of exposure in the entire cohort. Findings: 500 biobanked placental DNA samples were randomly selected from 814 pairs of mothers and neonates who were recruited to the cohort between Feb 1, 2010, and Dec 31, 2014, of which 463 samples met the pyrosequencing quality control criteria. IQR exposure increments were 3·84 μg/m3 for PM2·5, 0·36 μg/m3 for black carbon, and 5·34 μg/m3 for NO2. Among these samples, increased Alu mutation rate was associated with greater exposure to PM2·5 (r=0·26, p<0·0001 and black carbon (r=0·33, p<0·0001, but not NO2

  3. Exposure of magnetic bacteria to simulated mobile phone-type RF radiation has no impact on mortality.

    Science.gov (United States)

    Cranfield, Charles G; Wieser, Heinz Gregor; Dobson, Jon

    2003-09-01

    The interaction of mobile phone RF emissions with biogenic magnetite in the human brain has been proposed as a potential mechanism for mobile phone bioeffects. This is of particular interest in light of the discovery of magnetite in human brain tissue. Previous experiments using magnetite-containing bacteria exposed directly to emissions from a mobile phone have indicated that these emissions might be causing greater levels of cell death in these bacterial populations when compared to sham exposures. A repeat of these experiments examining only the radio frequency (RF) global system for mobile communication (GSM) component of the mobile phone signal in a well-defined waveguide system (REFLEX), shows no significant change in cell mortality compared to sham exposures. A nonmagnetite containing bacterial cell strain (CC-26) with similar genotype and phenotype to the magnetotactic bacteria was used as a control. These also showed no significant change in cell mortality between RF and sham exposed samples. Results indicate that the RF components of mobile phone exposure do not appear to be responsible for previous findings indicating cell mortality as a result of direct mobile phone exposure. A further mobile phone emission component that should be investigated is the 2-Hz magnetic field pulse generated by battery currents during periods of discontinuous transmission.

  4. Combined effects of exposure to dim light at night and fine particulate matter on C3H/HeNHsd mice.

    Science.gov (United States)

    Hogan, Matthew K; Kovalycsik, Taylor; Sun, Qinghua; Rajagopalan, Sanjay; Nelson, Randy J

    2015-11-01

    Air and light pollution contribute to fetal abnormalities, increase prevalence of cancer, metabolic and cardiorespiratory diseases, and central nervous system (CNS) disorders. A component of air pollution, particulate matter, and the phenomenon of dim light at night (dLAN) both result in neuroinflammation, which has been implicated in several CNS disorders. The combinatorial role of these pollutants on health outcomes has not been assessed. Male C3H/HeNHsd mice, with intact melatonin production, were used to model humans exposed to circadian disruption by dLAN and contaminated environmental air. We hypothesized exposure to 2.5 μm of particulate matter (PM2.5) and dLAN (5lx) combines to upregulate neuroinflammatory cytokine expression and alter hippocampal morphology compared to mice exposed to filtered air (FA) and housed under dark nights (LD). We also hypothesized that exposure to PM2.5 and dLAN provokes anxiety-like and depressive-like responses. For four weeks, four groups of mice were simultaneously exposed to ambient concentrated PM2.5 or FA and/or dLAN or LD. Following exposure, mice underwent several behavioral assays and hippocampi were collected for qPCR and morphological analyses. Our results are generally comparable to previous PM2.5 and dLAN reports conducted on mice and implicate PM2.5 and dLAN as potential factors contributing to depression and anxiety. Short-term exposure to PM2.5 and dLAN upregulated neuroinflammatory cytokines and altered CA1 hippocampal structural changes, as well as provoked depressive-like responses (anhedonia). However, combined, PM2.5 and dLAN exposure did not have additive effects, as hypothesized, suggesting a ceiling effect of neuroinflammation may exist in response to multiple pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case-crossover analysis.

    Science.gov (United States)

    Yamazaki, S; Nitta, H; Ono, M; Green, J; Fukuhara, S

    2007-01-01

    To examine the association of hourly time lagged concentration of ambient particulate matter and death due to stroke. Mortality data for five years (January 1990 to December 1994) were obtained from the Ministry of Health, Labour, and Welfare of Japan. Data were used only if the deceased was 65 years old or older at the time of death, if death was attributed to intracerebral haemorrhage or ischaemic stroke, and if the deceased lived in one of 13 major urban areas. Hourly mean concentrations of PM7, NO2, and photochemical oxidants were measured at monitoring stations in the 13 areas. Time stratified case-crossover analysis was used to examine the data for evidence of triggering stroke mortality. The 1-hour mean concentration of PM7 measured about 2 hours before death was associated with the risk of death due to intracerebral haemorrhage from April to September (odds ratio = 2.40, 95% CI 1.48 to 3.89, for exposure to PM7 of more than 200 microg/m3 (threshold)). The higher risk was independent of the 24-hour mean concentration of PM7. PM7 was not associated with death due to ischaemic stroke. Transiently high concentrations of PM7 are associated with death due to intracerebral haemorrhage. Air quality standards or guidelines for particulate matter should be based not only on 24-hour mean concentrations, but also on hourly data.

  6. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case‐crossover analysis

    Science.gov (United States)

    Yamazaki, S; Nitta, H; Ono, M; Green, J; Fukuhara, S

    2007-01-01

    Aims To examine the association of hourly time lagged concentration of ambient particulate matter and death due to stroke. Methods Mortality data for five years (January 1990 to December 1994) were obtained from the Ministry of Health, Labour, and Welfare of Japan. Data were used only if the deceased was 65 years old or older at the time of death, if death was attributed to intracerebral haemorrhage or ischaemic stroke, and if the deceased lived in one of 13 major urban areas. Hourly mean concentrations of PM7, NO2, and photochemical oxidants were measured at monitoring stations in the 13 areas. Time stratified case‐crossover analysis was used to examine the data for evidence of triggering stroke mortality. Results The 1‐hour mean concentration of PM7 measured about 2 hours before death was associated with the risk of death due to intracerebral haemorrhage from April to September (odds ratio = 2.40, 95% CI 1.48 to 3.89, for exposure to PM7 of more than 200 μg/m3 (threshold)). The higher risk was independent of the 24‐hour mean concentration of PM7. PM7 was not associated with death due to ischaemic stroke. Conclusions Transiently high concentrations of PM7 are associated with death due to intracerebral haemorrhage. Air quality standards or guidelines for particulate matter should be based not only on 24‐hour mean concentrations, but also on hourly data. PMID:16847037

  7. Seasonal variation in the acute effect of particulate air pollution on mortality in the China Air Pollution and Health Effects Study (CAPES)

    Science.gov (United States)

    Chen, Renjie; Peng, Roger D.; Meng, Xia; Zhou, Zhijun; Chen, Bingheng; Kan, Haidong

    2013-01-01

    Epidemiological findings concerning the seasonal variation in the acute effect of particulate matter (PM) are inconsistent. We investigated the seasonality in the association between PM with an aerodynamic diameter of less than 10 μm (PM10) and daily mortality in 17 Chinese cities. We fitted the “main” time-series model after adjustment for time-varying confounders using smooth functions with natural splines. We established a “seasonal” model to obtain the season-specific effect estimates of PM10, and a “harmonic” model to show the seasonal pattern that allows PM10 effects to vary smoothly with the day in a year. At the national level, a 10 μg/m3 increase in the two-day moving average concentrations (lag 01) of PM10 was associated with 0.45% [95% posterior interval (PI), 0.15% to 0.76%], 0.17% (95% PI, −0.09% to 0.43%), 0.55% (95% PI, 0.15% to 0.96%) and 0.25% (95%PI, −0.05% to 0.56%) increases in total mortality for winter, spring, summer and fall, respectively. For the smoothly-varying plots of seasonality, we identified a two-peak pattern in winter and summer. The observed seasonal pattern was generally insensitive to model specifications. Our analyses suggest that the acute effect of particulate air pollution could vary by seasons with the largest effect in winter and summer in China. To our knowledge, this is the first multicity study in developing countries to analyze the seasonal variations of PM-related health effects. PMID:23500824

  8. Sex-specific associations between particulate matter exposure and gene expression in independent discovery and validation cohorts of middle-aged men and women

    DEFF Research Database (Denmark)

    Vrijens, Karen; Winckelmans, Ellen; Tsamou, Maria

    2017-01-01

    Background: Particulate matter (PM) exposure leads to premature death, mainly due to respiratory and cardiovascular diseases. Objectives: Identification of transcriptomic biomarkers of air pollution exposure and effect in a healthy adult population. Methods: Microarray analyses were performed in 98...... healthy volunteers (48 men, 50 women). The expression of eight sex-specific candidate biomarker genes (significantly associated with PM10 in the discovery cohort and with a reported link to air pollution-related disease) was measured with qPCR in an independent validation cohort (75 men, 94 women...

  9. Association of Exposure to Fine Particulate Matter and Risk Factors of Non-Communicable Diseases in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Parinaz Poursafa

    2017-10-01

    Full Text Available Background: Risk factors of non-communicable disease (NCD origin from early life, and exposure to environmental pollutant may be a predisposing factor. This study aimed to investigate the association of air quality index (AQI and fine particulate matter (PM2.5 with some NCD risk factors in a sample of Iranian children and adolescents. Materials and Methods: This cross-sectional study was conducted in 2014 to 2016 among children and adolescents, aged 6-18 years, in Isfahan, Iran. Physical examination, including weight, height, and blood pressure, was conducted by standard methods. Fasting blood sample was obtained for fasting blood glucose, total cholesterol, high density lipoprotein-cholesterol, low-density lipoprotein- cholesterol, and triglycerides. The mean AQI and PM2.5 values from the study time till one year prior to the survey were used. Multiple linear regression analysis was conducted for the association of AQI and PM2.5 with other variables. Results: Participants consisted of 186 children and adolescents with mean (SD age of 10.52(2.38 years. Exposure to higher level of PM2.5 had significant associations with higher levels of systolic blood pressure, low-density lipoprotein cholesterol, and triglycerides. It also had positive relationship with other risk factors and inverse association with low-density lipoprotein cholesterol (LDL-C, but these associations were not statistically significant. The corresponding figures were not significant for AQI. Conclusion: At current study results showed that exposure to higher levels of fine particulates was associated with some NCD risk factors in children and adolescents. Early life prevention of NCDs can lead to large reductions in disease risk; adverse effects of ambient pollutants should be considered in this regard.

  10. Particulate Matter Exposure and Preterm Birth: Estimates of U.S. Attributable Burden and Economic Costs.

    Science.gov (United States)

    Trasande, Leonardo; Malecha, Patrick; Attina, Teresa M

    2016-12-01

    Preterm birth (PTB) rates (11.4% in 2013) in the United States remain high and are a substantial cause of morbidity. Studies of prenatal exposure have associated particulate matter ≤ 2.5 μm in diameter (PM2.5) and other ambient air pollutants with adverse birth outcomes; yet, to our knowledge, burden and costs of PM2.5-attributable PTB have not been estimated in the United States. We aimed to estimate burden of PTB in the United States and economic costs attributable to PM2.5 exposure in 2010. Annual deciles of PM2.5 were obtained from the U.S. Environmental Protection Agency. We converted PTB odds ratio (OR), identified in a previous meta-analysis (1.15 per 10 μg/m3 for our base case, 1.07-1.16 for low- and high-end scenarios) to relative risk (RRs), to obtain an estimate that better represents the true relative risk. A reference level (RL) of 8.8 μg/m3 was applied. We then used the RR estimates and county-level PTB prevalence to quantify PM2.5-attributable PTB. Direct medical costs were obtained from the 2007 Institute of Medicine report, and lost economic productivity (LEP) was estimated using a meta-analysis of PTB-associated IQ loss, and well-established relationships of IQ loss with LEP. All costs were calculated using 2010 dollars. An estimated 3.32% of PTBs nationally (corresponding to 15,808 PTBs) in 2010 could be attributed to PM2.5 (PM2.5 > 8.8 μg/m3). Attributable PTBs cost were estimated at $5.09 billion [sensitivity analysis (SA): $2.43-9.66 B], of which $760 million were spent for medical care (SA: $362 M-1.44 B). The estimated PM2.5 attributable fraction (AF) of PTB was highest in urban counties, with highest AFs in the Ohio Valley and the southern United States. PM2.5 may contribute substantially to burden and costs of PTB in the United States, and considerable health and economic benefits could be achieved through environmental regulatory interventions that reduce PM2.5 exposure in pregnancy. Citation: Trasande L, Malecha P, Attina TM. 2016

  11. The effects of dust–haze on mortality are modified by seasons and individual characteristics in Guangzhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao [Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, No. 160, Qunxian Road, Panyu District, Guangzhou 511430 (China); Environment and Health, Guangdong Provincial Key Medical Discipline of Twelfth Five-Year Plan, Guangzhou 511430 (China); Zhang, Yong Hui [Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430 (China); Xu, Yan Jun [Institute of Chronic Noncommunicable Disease Prevention and Control, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430 (China); Lin, Hua Liang [Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, No. 160, Qunxian Road, Panyu District, Guangzhou 511430 (China); Environment and Health, Guangdong Provincial Key Medical Discipline of Twelfth Five-Year Plan, Guangzhou 511430 (China); Xu, Xiao Jun [Institute of Chronic Noncommunicable Disease Prevention and Control, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430 (China); Luo, Yuan; Xiao, JianPeng; Zeng, Wei Lin [Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, No. 160, Qunxian Road, Panyu District, Guangzhou 511430 (China); Environment and Health, Guangdong Provincial Key Medical Discipline of Twelfth Five-Year Plan, Guangzhou 511430 (China); Zhang, Wan Fang [Liwan Center for Disease Control and Prevention, Guangzhou 510176 (China); Chu, Cordia; Keogh, Kandice; Rutherford, Shannon [Griffith University, Brisbane 4111 (Australia); Qian, Zhengmin [Department of Epidemiology, School of Public Health, Saint Louis University, Saint Louis, MO 63104 (United States); Du, Yao Dong [Climate Center of Guangdong Province, Guangzhou 510080 (China); others, and

    2014-04-01

    This study aimed to investigate the effects of dust–haze on mortality and to estimate the seasonal and individual-specific modification effects in Guangzhou, China. Mortality, air pollution and meteorological data were collected for 2006–2011. A dust–haze day was defined as daily visibility <10 km with relative humidity <90%. This definition was further divided into light (8–10 km), medium (5–8 km) and heavy dust–haze (<5 km). A distributed lag linear model (DLM) was employed. Light, medium and heavy dust–haze days were associated with increased mortality of 3.4%, 6.8% and 10.4% respectively, at a lag of 0–6 days. This effect was more pronounced during the cold season, for cardiovascular mortality (CVD), respiratory mortality (RESP), in males and people ≥60years. These effects became insignificant after adjustment for PM{sub 10}. We concluded that dust–haze significantly increased mortality risk in Guangzhou, China, and this effect appears to be dominated by particulate mass and modified by season and individual-specific factors. - Highlights: • We assessed the health impact of dust–haze in a megacity of southern China. • A dust–haze was defined according to visibility and relative humidity. • Dust–haze increased mortality risk, which may be dominated by particulate mass. • The dust–haze effects were modified by season and individual-specific factors. - This study extends our understanding of the health impact of dust–haze in southern China, and provides local evidence for health to advocate for improved air emissions control and strategies to reduce population exposure.

  12. An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan.

    Science.gov (United States)

    Katanoda, Kota; Sobue, Tomotaka; Satoh, Hiroshi; Tajima, Kazuo; Suzuki, Takaichiro; Nakatsuka, Haruo; Takezaki, Toshiro; Nakayama, Tomio; Nitta, Hiroshi; Tanabe, Kiyoshi; Tominaga, Suketami

    2011-01-01

    Evidence for a link between long-term exposure to air pollution and lung cancer is limited to Western populations. In this prospective cohort study, we examined this association in a Japanese population. The study comprised 63 520 participants living in 6 areas in 3 Japanese prefectures who were enrolled between 1983 and 1985. Exposure to particulate matter less than 2.5 µm in aerodynamic diameter (PM(2.5)), sulfur dioxide (SO(2)), and nitrogen dioxide (NO(2)) was assessed using data from monitoring stations located in or nearby each area. The Cox proportional hazards model was used to calculate the hazard ratios associated with the average concentrations of these air pollutants. The 10-year average concentrations of PM(2.5), SO(2), and NO(2) before recruitment (1974-1983) were 16.8 to 41.9 µg/m(3), 2.4 to 19.0 ppb, and 1.2 to 33.7 ppb, respectively (inter-area range). During an average follow-up of 8.7 years, there were 6687 deaths, including 518 deaths from lung cancer. The hazard ratios for lung cancer mortality associated with a 10-unit increase in PM(2.5) (µg/m(3)), SO(2) (ppb), and NO(2) (ppb) were 1.24 (95% confidence interval: 1.12-1.37), 1.26 (1.07-1.48), and 1.17 (1.10-1.26), respectively, after adjustment for tobacco smoking and other confounding factors. In addition, a significant increase in risk was observed for male smokers and female never smokers. Respiratory diseases, particularly pneumonia, were also significantly associated with all the air pollutants. Long-term exposure to air pollution is associated with lung cancer and respiratory diseases in Japan.

  13. Chronic obstructive pulmonary disease symptom effects of long-term cumulative exposure to ambient levels of total suspended particulates and sulfur dioxide in California Seventh-Day Adventist residents

    Energy Technology Data Exchange (ETDEWEB)

    Euler, G.L.; Abbey, D.E.; Magie, A.R.; Hodgkin, J.E.

    1987-07-01

    Risk of chronic obstructive pulmonary disease symptoms due to long-term exposure to ambient levels of total suspended particulates (TSP) and sulfur dioxide (SO/sub 2/) symptoms was ascertained using the National Heart, Lung, and Blood Institute (NHLBI) respiratory symptoms questionnaire on 7445 Seventh-Day Adventists. They were non-smokers, at least 25 yr of age, and had lived 11 yr or more in areas ranging from high to low photochemical air pollution in California. Participant cumulative exposures to each pollutant in excess of four thresholds were estimated using monthly residence zip code histories and interpolated dosages from state air monitoring stations. These pollutant thresholds were entered individually and in combination in multiple logistic regression analyses with eight covariables including passive smoking. Statistically significant associations with chronic symptoms were seen for: SO/sub 2/ exposure above 4 pphm (104 mcg/m3), (p = .03), relative risk 1.18 for 500 hr/yr of exposure; and for total suspended particulates (TSP) above 200 mcg/m3, (p less than .00001), relative risk of 1.22 for 750 hr/yr.

  14. Outdoor Air Pollution and COPD-Related Emergency Department Visits, Hospital Admissions, and Mortality: A Meta-Analysis.

    Science.gov (United States)

    DeVries, Rebecca; Kriebel, David; Sama, Susan

    2017-02-01

    A systematic literature review was performed to identify all peer-reviewed literature quantifying the association between short-term exposures of particulate matter <2.5 microns (PM 2.5 ), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ) and COPD-related emergency department (ED) visits, hospital admissions (HA), and mortality. These results were then pooled for each pollutant through meta-analyses with a random effects model. Subgroup meta-analyses were explored to study the effects of selected lag/averaging times and health outcomes. A total of 37 studies satisfied our inclusion criteria, contributing to a total of approximately 1,115,000 COPD-related acute events (950,000 HAs, 80,000 EDs, and 130,000 deaths) to our meta-estimates. An increase in PM 2.5 of 10 ug/m 3 was associated with a 2.5% (95% CI: 1.6-3.4%) increased risk of COPD-related ED and HA, an increase of 10 ug/m 3 in NO 2 was associated with a 4.2% (2.5-6.0%) increase, and an increase of 10 ug/m 3 in SO 2 was associated with a 2.1% (0.7-3.5%) increase. The strength of these pooled effect estimates, however, varied depending on the selected lag/averaging time between exposure and outcome. Similar pooled effects were estimated for each pollutant and COPD-related mortality. These results suggest an ongoing threat to the health of COPD patients from both outdoor particulates and gaseous pollutants. Ambient outdoor concentrations of PM 2.5 , NO 2 , and SO 2 were significantly and positively associated with both COPD-related morbidity and mortality.

  15. Particle size and chemical constituents of ambient particulate pollution associated with cardiovascular mortality in Guangzhou, China

    International Nuclear Information System (INIS)

    Lin, Hualiang; Tao, Jun; Du, Yaodong; Liu, Tao; Qian, Zhengmin; Tian, Linwei; Di, Qian; Rutherford, Shannon; Guo, Lingchuan; Zeng, Weilin; Xiao, Jianpeng; Li, Xing; He, Zhihui; Xu, Yanjun; Ma, Wenjun

    2016-01-01

    Though significant associations between particulate matter (PM) air pollution and cardiovascular diseases have been widely reported, it remains unclear what characteristics, such as particle size and chemical constituents, may be responsible for the effects. A time-series model was applied to examine the cardiovascular effects of particle size (for the period of 2009–2011) and chemical constituents (2007–2010) in Guangzhou, we controlled for potential confounders in the model, such as time trends, day of the week, public holidays, meteorological factors and influenza epidemic. We found significant associations of cardiovascular mortality with PM_1_0, PM_2_._5 and PM_1; the excess risk (ER) was 6.10% (95% CI: 1.76%, 10.64%), 6.11% (95% CI: 1.76%, 10.64%) and 6.48% (95% CI: 2.10%, 11.06%) for per IQR increase in PM_1_0, PM_2_._5 and PM_1 at moving averages for the current day and the previous 3 days (lag_0_3), respectively. We did not find significant effects of PM_2_._5_-_1_0 and PM_1_-_2_._5. For PM_2_._5 constituents, we found that organic carbon, elemental carbon, sulfate, nitrate and ammonium were significantly associated with cardiovascular mortality, the corresponding ER for an IQR concentration increase at lag_0_3 was 1.13% (95% CI: 0.10%, 2.17%), 2.77% (95% CI: 0.72%, 4.86%), 2.21% (95% CI: 1.05%, 3.38%), 1.98% (95% CI: 0.54%, 3.44%), and 3.38% (95% CI: 1.56%, 5.23%), respectively. These results were robust to adjustment of other air pollutants and they remained consistent in various sensitivity analyses by changing model parameters. Our study suggests that PM_1 and constituents from combustion and secondary aerosols might be important characteristics of PM pollution associated with cardiovascular mortality in Guangzhou. - Highlights: • PM_1_0, PM_2_._5 and PM_1 were significantly associated with cardiovascular mortality. • We did not find significant cardiovascular effects of PM_2_._5_-_1_0 and PM_1_-_2_._5. • PM_1 might be most responsible for

  16. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  17. Ambient air pollution exposure and respiratory, cardiovascular and cerebrovascular mortality in Cape Town, South Africa: 2001–2006.

    Science.gov (United States)

    Wichmann, Janine; Voyi, Kuku

    2012-11-05

    Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM(10), SO(2) and NO(2) levels and daily respiratory (RD), cardiovascular (CVD) and cerebrovascular (CBD) mortality in Cape Town (2001-2006) was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR) increase in PM(10) (12 mg/m3) and NO(2) (12 mg/m3) significantly increased CBD mortality by 4% and 8%, respectively. A significant increase of 3% in CVD mortality was observed per IQR increase in NO(2) and SO(2) (8 mg/m3). In the warm period, PM(10) was significantly associated with RD and CVD mortality. NO(2) had significant associations with CBD, RD and CVD mortality, whilst SO(2) was associated with CVD mortality. None of the pollutants were associated with any of the three outcomes in the cold period. Susceptible groups depended on the cause-specific mortality and air pollutant. There is significant RD, CVD and CBD mortality risk associated with ambient air pollution exposure in South Africa, higher than reported in developed countries.

  18. Ambient Air Pollution Exposure and Respiratory, Cardiovascular and Cerebrovascular Mortality in Cape Town, South Africa: 2001–2006

    Directory of Open Access Journals (Sweden)

    Kuku Voyi

    2012-11-01

    Full Text Available Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM10, SO2 and NO2 levels and daily respiratory (RD, cardiovascular (CVD and cerebrovascular (CBD mortality in Cape Town (2001–2006 was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR increase in PM10 (12 mg/m3 and NO2 (12 mg/m3 significantly increased CBD mortality by 4% and 8%, respectively. A significant increase of 3% in CVD mortality was observed per IQR increase in NO2 and SO2 (8 mg/m3. In the warm period, PM10 was significantly associated with RD and CVD mortality. NO2 had significant associations with CBD, RD and CVD mortality, whilst SO2 was associated with CVD mortality. None of the pollutants were associated with any of the three outcomes in the cold period. Susceptible groups depended on the cause-specific mortality and air pollutant. There is significant RD, CVD and CBD mortality risk associated with ambient air pollution exposure in South Africa, higher than reported in developed countries.

  19. Prenatal famine exposure and adult mortality from cancer, cardiovascular disease, and other causes through age 63 years

    NARCIS (Netherlands)

    Ekamper, P.; van Poppel, F.W.A.; Stein, A.D.; Bijwaard, G.E.; Lumey, L.H.

    2015-01-01

    Nutritional conditions in early life may affect adult health, but prior studies of mortality have been limited to small samples. We evaluated the relationship between pre-/perinatal famine exposure during the Dutch Hunger Winter of 1944–1945 and mortality through age 63 years among 41,096 men born

  20. Exposure levels of farmers and veterinarians to particulate matter and gases uring operational tasks in pig-fattening houses

    Directory of Open Access Journals (Sweden)

    Nele Van Ransbeeck

    2014-09-01

    Full Text Available The main objective of the study was to assess particulate matter (PM exposure levels for both the farmer and the veterinarian during different operational tasks in pig-fattening houses, and to estimate their exposure levels on a daily working basis (time-weighted average (TWA. The measured PM fractions were: inhalable and respirable PM, PM10, PM2.5 and PM1. The effects of pig age, pen floor type (conventional or low emission surface and cleaning of the pens on the personal PM exposure were also investigated. Indoor concentrations of NH[sub]3[/sub], CH[sub]4[/sub], and CO[sub]2[/sub] were additionally measured during some operational tasks. The results showed that personal exposure levels can become extremely high during some operational tasks performed by the farmer or veterinarian. The highest concentration levels were observed during feed shovelling and blood sampling, the lowest during the weighing of the pigs. For the farmer, the estimated TWA exposure levels of inhalable and respirable PM were 6.0 and 0.29 mg m[sup] -3[/sup] , respectively. These exposure levels for the veterinarian were, respectively, 10.6 and 0.74 mg m[sup] -3[/sup] . The PM concentration levels were mainly determined by the performed operational tasks. There was no significant effect of pig age, pen floor type, nor cleaning of the pens on the personal exposure levels.

  1. Ambient particulate matter air pollution and cardiopulmonary diseases.

    Science.gov (United States)

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. A Review of Particulate Matter and Health: Focus on Developing Countries.

    OpenAIRE

    L. Panyacosit

    2000-01-01

    The burden of ill human health attributable to particulate air pollution is a critical problem of growing concern. In developing countries it is not uncommon to experience today the same particulate matter levels that characterized the devastating "London fog episodes" of the 1950s which resulted in over 4000 cases of premature mortality and countless cases of exacerbated morbidity related health endpoints. This literature review gives an overview of the situation in developing countries...

  3. Computing transient exposure to indoor pollutants

    International Nuclear Information System (INIS)

    Owczarski, P.C.; Parker, G.B.

    1983-03-01

    A computer code, CORRAL, is used to compute the transient levels of gases and respirable particulates in a residence. Predictions of time-varying exposure to radon (from the outside air, soil and well water) and respirable particulates (from outside air, wood stove operation and cigarette smoke) for a mother and child over 24 hours are made. Average 24-hour radon exposures are 13 times background (0.75 pCi/l) for the child and 4.5 times background for the mother. Average 24-hour respirable particulate exposures are 5.6 times background (100 μg/m 3 ) for the mother and 4.2 times background for the child. The controlling parameters examined are source location, flow rates between rooms, air infiltration rate and lifestyle. The first three are shown to influence the formation of local pockets of high concentration of radon and particulates, and the last parameter shows that lifestyle patterns ultimately govern individual exposure to these pockets of high concentrations. The code is useful for examination of mitigation measures to reduce exposure and examination of the effects that the controlling parameters have on exposure to indoor pollutants

  4. Mortality study of Los Alamos workers with higher exposures to plutonium

    International Nuclear Information System (INIS)

    Voelz, G.L.; Wilkinson, G.S.; Healy, J.W.; McInroy, J.F.; Tietjen, G.L.

    1983-01-01

    A group of white male workers with the highest internal depositions of plutonium at the Los Alamos National Laboratory was selected in 1974 for a study of mortality. This group of 224 persons includes all those with an estimated deposition (in 1974) of 10 nanocuries or more of plutonium, principally 239 Pu but also in some cases 238 Pu. Follow-up of these workers is 100% complete through 1980. Smoking histories were obtained on all persons. Exposure histories for external radiation and plutonium were reviewed for each subject. Standardized mortality ratios (SMR) were calculated using rates for white males in the United States population, adjusted for age and year of death. SMRs are low for all causes of death (56; 95% CI 40, 75) or for all malignant neoplasms (54; 95% CI 23,106). Cancers of interest for plutonium exposures, including cancers of bone, lung, liver, and bone marrow/lymphatic systems, were infrequent or absent. The absence of a detectable excess of cancer deaths is consistent with the low calculated risk to these workers using current radiation risk coefficients. An alternate theory that suggests much higher risk of lung cancer due to synergistic effects of smoking and inhaled insoluble plutonium particles is not supported by this study

  5. Some confounding factors in the study of mortality and occupational exposures

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1982-01-01

    With the recent interest in the study of occupational exposures, the impact of certain selective biases in the groups studied is a matter of some concern. In this paper, data from the Hanford nuclear facility population (southeastern Washington State, 1947-1976), which includes many radiation workers, are used to illustrate a method for examining the effect on mortality of such potentially confounding variables as calendar year, length of time since entering the industry, employment status, length of employment, job category, and initial employment year. The analysis, which is based on the Mantel-Haenszel procedure as adapted for a prospective study, differs from most previous studies of occupational variables which have relied primarily on comparing standardized mortality ratios (utilizing an external control) for various subgroups of the population. Results of this analysis confirm other studies in that reduced death rates are observed for early years of follow-up and for those with higher socioeconomic status (as indicated by job category). In addition, workers employed less than two years and especially terminated workers are found to have elevated death rates as compared with the remainder of the study population. It is important that such correlations be taken into account in planning and interpreting analyses of the effects of occupational exposure

  6. Maternal exposure to airborne particulate matter causes postnatal immunological dysfunction in mice offspring

    International Nuclear Information System (INIS)

    Hong, Xinru; Liu, Chaobin; Chen, Xiaoqiu; Song, Yanfeng; Wang, Qin; Wang, Ping; Hu, Dian

    2013-01-01

    Evidence suggests that prenatal exposure to air pollution affects the ontogeny and development of the fetal immune system. The aim of this study was to investigate the effect of maternal exposure to airborne particulate matter (PM) on immune function in postnatal offspring. Pregnant female ICR mice were intralaryngopharyngeally administered with 30 μl of phosphate buffered solution (the control group) or resuspended PM of Standard Reference Material 1649a at 0.09 (low), 0.28 (medium), 1.85 (high) or 6.92 (overdose) μg/μl once every three days from day 0 to 18 of pregnancy (n = 8–10). Offspring were sacrificed on postnatal day 30. Interleukin-4 and interferon-γ levels in plasma and splenocytes, splenic lymphocyte proliferation, and expressions of GATA-3 and T-bet mRNA in the spleen were tested. The spleen and thymus were histopathologically examined. The offspring of the medium, high and overdose PM-exposed dams showed significantly suppressed splenocyte proliferation. Decreased interferon-γ and increased interleukin-4 levels in the blood and splenocytes, and lowered T-bet and elevated GATA-3 mRNA expressions were found in the spleen in the medium, high and overdose groups when compared with the control or low dose group (P < 0.05). Histopathology revealed prominent tissue damage in the spleen and thymus in the overdose group. These results suggest that exposure of pregnant mice to PM modulates the fetal immune system, resulting in postnatal immune dysfunction by exacerbation of Thl/Th2 deviation. This deviation is associated with altered T-bet and GATA-3 gene expressions

  7. Seasonal analysis of the short-term effects of air pollution on daily mortality in Northeast Asia.

    Science.gov (United States)

    Kim, Satbyul Estella; Honda, Yasushi; Hashizume, Masahiro; Kan, Haidong; Lim, Youn-Hee; Lee, Hyewon; Kim, Clara Tammy; Yi, Seung-Muk; Kim, Ho

    2017-01-15

    The constituents and concentrations of pollutants, individual exposures, and biologic responses to air pollution may vary by season and meteorological conditions. However, evidence regarding seasonality of the acute effects of air pollution on mortality is limited and inconsistent. Herein, we examined seasonal patterns in the short-term associations of particulate matter (PM) smaller than 10μm (PM 10 ) with daily mortality in 29 cities of three northeast Asian countries. Stratified time-series models were used to determine whether season altered the effect of PM 10 on mortality. This effect was first quantified within each season and at each location using a time-series model, after which city-specific estimates were pooled using a hierarchical Bayesian model. In all data sets, 3,675,348 non-accidental deaths were registered from 1993 to 2009. In Japan, a 10μg/m 3 increase in PM 10 was significantly associated with increases in non-accidental mortality of 0.44% (95% confidence interval [CI]: 0.03%, 0.8%) in spring and 0.42% (0.02%, 0.82%) in fall. In South Korea, a 10μg/m 3 increase in PM 10 was significantly associated with increases in non-accidental mortality of 0.51% (0.01%, 1.01%) in summer and 0.45% (0.03%, 0.87%) in fall, in cardiovascular disease mortality of 0.96% (0.29%, 1.63%) in fall, and in respiratory disease mortality of 1.57% (0.40%, 2.75%) in fall. In China, a 10μg/m 3 increase in PM 10 was associated with increases in non-accidental mortality of 0.33% (0.01%, 0.66%) in summer and 0.41% (0.09%, 0.73%) in winter, in cardiovascular disease mortality of 0.41% (0.08%, 0.74%) in spring and 0.33% (0.02%, 0.64%) in winter, and in respiratory diseases mortality of 0.78% (0.27%, 1.30%) in winter. Our analyses suggest that the acute effect of particulate air pollution could vary seasonally and geographically. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Global and regional trends in particulate air quality and attributable health burden over the past 50 years

    Science.gov (United States)

    Butt, Edward W.; Turnock, Steven T.; Rigby, Richard; Reddington, Carly L.; Yoshioka, Masaru; Johnson, Jill S.; Regayre, Leighton A.; Pringle, Kirsty J.; Mann, Graham W.; Spracklen, Dominick V.

    2017-04-01

    Long-term exposure to ambient particulate matter (PM2.5, mass of particles with an aerodynamic dry diameter of population-weighted PM2.5 increased by 37% to 48% dominated by large increases over China (53% to 66%) and India (70% to 116%). We find that global attributable mortality due to long-term PM2.5 exposure increased by 124% to 147% between 1960 and 2009, substantially more than the increase in PM2.5 concentrations over the same period. This increase is dominated by India and China and is driven by population growth and an ageing population combined with increased PM2.5 concentrations. Our results show that PM2.5 concentrations in China and India will need to be reduced substantially to slow the increasing attributable health burdens that are being driven by population growth and an older population.

  9. No consistent effects of prenatal or neonatal exposure to Spanish flu on late-life mortality in 24 developed countries

    Directory of Open Access Journals (Sweden)

    Alan Cohen

    2010-04-01

    Full Text Available We test the effects of early life exposure to disease on later health by looking for differences in late-life mortality in cohorts born around the 1918-1919 flu pandemic using data from the Human Mortality Database for 24 countries. After controlling for age, period, and sex effects, residual mortality rates did not differ systematically for flu cohorts relative to surrounding cohorts. We calculate at most a 20-day reduction in life expectancy for flu cohorts; likely values are much smaller. Estimates of influenza incidence during the pandemic suggest that exposure was high enough for this to be a robust negative result.

  10. Thermal extremes mortality risk assessment in urban areas

    Directory of Open Access Journals (Sweden)

    Paulo Canário

    2010-06-01

    Full Text Available The impact of heat waves on mortality has been the subject of numerous studies and the focus of attention of various national and international governmental bodies. In the summer of 2003 alone, which was exceptionally hot, the number of deaths in 12 European countries increased by 70,000. The overall trend of warming will lead to an increase in frequency, duration and intensity of heat waves and to an increase in heat related mortality. The need to assess the risk of death due to extreme heat, at a detailed spatial scale, has determined the implementation of a research project based on a general model of risk for potentially destructive natural phenomena; the model uses the relationship between hazard and vulnerability and was designed primarily for urban areas. The major hazardous meteorological variables are those that determine the thermal complex (air temperature, radiative temperature, wind and humidity and the variables related to air quality (mainly ozone and Particulate matter. Vulnerability takes into account the population sensitivity (at various spatial scales and their exposure to thermal extremes.

  11. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage.

    Science.gov (United States)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon

    2016-03-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Nanoparticles: a review of particle toxicology following inhalation exposure.

    Science.gov (United States)

    Bakand, Shahnaz; Hayes, Amanda; Dechsakulthorn, Finance

    2012-01-01

    It is expected that the rapid expansion of nanotechnology will bring many potential benefits. However, initial investigations have demonstrated that nanomaterials may adversely affect human health and the environment. By increasing the application of nanoparticles, protection of the human respiratory system from exposure to airborne nanoparticles and ultrafine particulates has become an emerging health concern. Available research has demonstrated an association between exposure to ambient airborne particulates and ultrafine particles and various adverse heath effects including increased morbidity and mortality. Nanomaterial structures are more likely to be toxic than the same materials of conventional sized samples and can be inhaled more deeply into the lungs. While the respiratory tract is considered as the primary target organ for inhaled nanoparticles, recent research has demonstrated that extrapulmonary organs are also affected. The very small size distribution and large surface area of nanoparticles available to undergo reactions may play a significant role in nanotoxicity, yet very little is known about their interactions with biological systems. This review explores the possible underlying toxicity mechanisms of nanoparticles following inhalational exposure. Nanoparticles differ from the same conventional material at a larger scale in physical, chemical and biological characteristics; therefore it is critical to recognize the potential risk of nanoparticle exposure using appropriate toxicity test methods. Current advances and limitations of toxicity assessment methods of nanoparticles are discussed highlighting the recent improvements of in vitro screening tools for the safety evaluation of the rapidly expanding area of nanotechnology.

  13. Clustering cities with similar fine particulate matter exposure characteristics based on infiltration and in-vehicle commuting factors

    Science.gov (United States)

    Epidemiological studies have observed between city heterogeneity in PM2.5-mortality risk estimates. These differences could potentially be due to the use of central-site monitors as a surrogate for exposure which do not account for an individual's activities or ambient pollutant ...

  14. A five-year study of particulate matter (PM2.5) and cerebrovascular diseases

    International Nuclear Information System (INIS)

    Leiva G, Manuel A.; Santibañez, Daniela A.; Ibarra E, Sergio; Matus C, Patricia; Seguel, Rodrigo

    2013-01-01

    Cerebrovascular accidents, or strokes, are the second leading cause of mortality and the leading cause of morbidity in both Chile and the rest of the world. However, the relationship between particulate matter pollution and strokes is not well characterized. The association between fine particle concentration and stroke admissions was studied. Data on hospital admissions due to cerebrovascular accidents were collected from the Ministry of Health. Air quality and meteorological data were taken from the Air Quality database of the Santiago Metropolitan Area. Santiago reported 33,624 stroke admissions between January 1, 2002 and December 30, 2006. PM2.5 concentration was markedly seasonal, increasing during the winter. This study found an association between PM2.5 exposure and hospital admissions for stroke; for every PM2.5 concentration increase of 10 μg m −3 , the risk of emergency hospital admissions for cerebrovascular causes increased by 1.29% (95% CI 0.552%–2.03%). Highlights: •Particulate matter pollution – cerebrovascular diseases relationship is not well known. •Cerebrovascular diseases are the second leading cause of mortality and the leading cause of morbidity. •PM2.5 increase 10 μg/m 3 the risk of hospital admissions for stroke causes increases by 1.29%. •The results are similar to that of other cities worldwide. -- Relationship between PM pollution and strokes is not well characterized. In Santiago the risk of the stroke increased by 1.29%; for every increase of 10 μg m −3 in PM2.5

  15. Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures

    Science.gov (United States)

    Fruin, Scott A.; Winer, Arthur M.; Rodes, Charles E.

    This research assessed in-vehicle exposures to black carbon (BC) as an indicator of diesel particulate matter (DPM) exposures. Approximately 50 h of real-time Aethalometer BC measurements were made inside vehicles driven on freeway and arterial loops in Los Angeles and Sacramento. Video tapes of the driver's view were transcribed to record the traffic conditions, vehicles followed, and vehicle occupant observations, and these results were tested for their associations with BC concentration. In-vehicle BC concentrations were highest when directly following diesel-powered vehicles, particularly those with low exhaust pipe locations. The lowest BC concentrations were observed while following gasoline-powered passenger cars, on average no different than not following any vehicle. Because diesel vehicles were over-sampled in the field study, results were not representative of real-world driving. To calculate representative exposures, in-vehicle BC concentrations were grouped by the type of vehicle followed, for each road type and congestion level. These groupings were then re-sampled stochastically, in proportion to the fraction of statewide vehicle miles traveled (VMT) under each of those conditions. The approximately 6% of time spent following diesel vehicles led to 23% of the in-vehicle BC exposure, while the remaining exposure was due to elevated roadway BC concentrations. In-vehicle BC exposures averaged 6 μg m -3 in Los Angeles and the Bay Area, the regions with the highest congestion and the majority of the state's VMT. The statewide average in-vehicle BC exposure was 4 μg m -3, corresponding to DPM concentrations of 7-23 μg m -3, depending on the Aethalometer response to elemental carbon (EC) and the EC fraction of the DPM. In-vehicle contributions to overall DPM exposures ranged from approximately 30% to 55% of total DPM exposure on a statewide population basis. Thus, although time spent in vehicles was only 1.5 h day -1 on average, vehicles may be the most

  16. Airborne Particulate Matter Induces Nonallergic Eosinophilic Sinonasal Inflammation in Mice.

    Science.gov (United States)

    Ramanathan, Murugappan; London, Nyall R; Tharakan, Anuj; Surya, Nitya; Sussan, Thomas E; Rao, Xiaoquan; Lin, Sandra Y; Toskala, Elina; Rajagopalan, Sanjay; Biswal, Shyam

    2017-07-01

    Exposure to airborne particulate matter (PM) has been linked to aggravation of respiratory symptoms, increased risk of cardiovascular disease, and all-cause mortality. Although the health effects of PM on the lower pulmonary airway have been extensively studied, little is known regarding the impact of chronic PM exposure on the upper sinonasal airway. We sought to test the impact of chronic airborne PM exposure on the upper respiratory system in vivo. Mice were subjected, by inhalation, to concentrated fine (2.5 μm) PM 6 h/d, 5 d/wk, for 16 weeks. Mean airborne fine PM concentration was 60.92 μm/m 3 , a concentration of fine PM lower than that reported in some major global cities. Mice were then killed and analyzed for evidence of inflammation and barrier breakdown compared with control mice. Evidence of the destructive effects of chronic airborne PM on sinonasal health in vivo, including proinflammatory cytokine release, and macrophage and neutrophil inflammatory cell accumulation was observed. A significant increase in epithelial barrier dysfunction was observed, as assessed by serum albumin accumulation in nasal airway lavage fluid, as well as decreased expression of adhesion molecules, including claudin-1 and epithelial cadherin. A significant increase in eosinophilic inflammation, including increased IL-13, eotaxin-1, and eosinophil accumulation, was also observed. Collectively, although largely observational, these studies demonstrate the destructive effects of chronic airborne PM exposure on the sinonasal airway barrier disruption and nonallergic eosinophilic inflammation in mice.

  17. Bioaccessibility and Speciation of Potential Toxicants in Some Geogenic Sources of Atmospheric Particulate Matter

    Science.gov (United States)

    Morman, S. A.; Wolf, R. E.; Plumlee, G.; Reynolds, R. L.

    2008-12-01

    The correlation of exposure to particulate matter (PM) and increased morbidity and mortality was established in the 1970's. Research focused on elucidating mechanisms of action (i.e. particle size, composition, and biodurability), has generally examined anthropogenic sources such as solid or liquid combustion byproducts of fossil fuels, byproducts from the smelting of metal ores, and commercial/industrial mineral dusts (asbestos, crystalline silica. metal dusts). While many studies exist on agricultural exposures to inorganic dust, far fewer have examined health issues related to particulate matter contributions from rural, non-agricultural dusts or other geogenic sources. Geogenic PM (produced by natural processes such as volcanic ash, volcanic fog (vog), dusts from dry lakes or glacial deposits, smoke and windborne ash from wildfires, and dusts containing various soil pathogens) and geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities such as dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices etc.) are increasingly recognized as potential agents of toxicity and disease, via both environmental and occupational exposures. Surface sediment on some dry lake beds may contribute significant amounts of mineral dusts to the atmospheric load. For example, Owens Lake (a dry lake in southern California) has been a major source of PM10 (particulate matter less than 10 micrometers) dust in the United States. Dusts from dry and drying saline lakes may contain high concentrations of metals, such as arsenic, with known human health toxicity. Wildfires, consuming over nine million acres in 2007, also contribute significant amounts of particulate matter in addition to their other hazards. Designed to estimate the bioaccessibility of metals in soils, dusts and other environmental materials by measuring the reactivity of the

  18. PREFACE: SPECIAL SECTION OF THE JOURNAL OF AIR & WASTE MANAGEMENT ASSOCIATION FOR PARTICULATE MATTER: ATMOSPHERIC SCIENCES, EXPOSURE AND THE FOURTH COLLOQUIUM ON PM AND HUMAN HEALTH

    Science.gov (United States)

    This dedicated issue of the Journal of the Air & Waste Management Association contains 17 peer-reviewed scientific papers that were presented at the specialty conference, “Particulate Matter: Atmospheric Sciences, Exposure and the Fourth Colloquium on PM and Human Health,” that w...

  19. Racial isolation and exposure to airborne particulate matter and ozone in understudied US populations: Environmental justice applications of downscaled numerical model output.

    Science.gov (United States)

    Bravo, Mercedes A; Anthopolos, Rebecca; Bell, Michelle L; Miranda, Marie Lynn

    2016-01-01

    Researchers and policymakers are increasingly focused on combined exposures to social and environmental stressors, especially given how often these stressors tend to co-locate. Such exposures are equally relevant in urban and rural areas and may accrue disproportionately to particular communities or specific subpopulations. To estimate relationships between racial isolation (RI), a measure of the extent to which minority racial/ethnic group members are exposed to only one another, and long-term particulate matter with an aerodynamic diameter of poverty. RI is associated with higher 5year estimated PM2.5 concentrations in urban, suburban, and rural census tracts, adding to evidence that segregation is broadly associated with disparate air pollution exposures. Disproportionate burdens to adverse exposures such as air pollution may be a pathway to racial/ethnic disparities in health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Source Contributions to Premature Mortality Due to Ambient Particulate Matter in China

    Science.gov (United States)

    Hu, J.; Huang, L.; Ying, Q.; Zhang, H.; Shi, Z.

    2016-12-01

    Outdoor air pollution is linked to various health effects. Globally it is estimated that ambient air pollution caused 3.3 million premature deaths in 2010. The health risk occurs predominantly in developing countries, particularly in Asia. China has been suffering serious air pollution in recent decades. The annual concentrations of ambient PM2.5 are more than five times higher than the WHO guideline value in many populous Chinese cities. Sustained exposure to high PM2.5 concentrations greatly threatens public health in this country. Recognizing the severity of the air pollution situation, the Chinese government has set a target in 2013 to reduce PM2.5 level by up to 25% in major metropolitan areas by 2017. It is urgently needed for China to assess premature mortality caused by outdoor air pollution, identify source contributions of the premature mortality, and evaluate responses of the premature mortality to air quality improvement, in order to design effective control plans and set priority for air pollution controls to better protect public health. In this study, we determined the spatial distribution of excess mortality (ΔMort) due to adult (> 30 years old) ischemic heart disease (IHD), cerebrovascular disease (CEV), chronic obstructive pulmonary disease (COPD) and lung cancer (LC) at 36-km horizontal resolution for 2013 from the predicted annual-average surface PM2.5 concentrations using an updated source-oriented Community Multiscale Air Quality (CMAQ) model along with an ensemble of four regional and global emission inventories. Observation data fusing was applied to provide additional correction of the biases in the PM2.5 concentration field from the ensemble. Source contributions to ΔMort were determined based on total ΔMort and fractional source contributions to PM2.5 mass concentrations. We estimated that ΔMort due to COPD, LC, IHD and CEV are 0.329, 0.148, 0.239 and 0.953 million in China, respectively, leading to a total ΔMort of 1.669 million

  1. Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals

    International Nuclear Information System (INIS)

    Wallenborn, J. Grace; Schladweiler, Mette J.; Richards, Judy H.; Kodavanti, Urmila P.

    2009-01-01

    Biological mechanisms underlying the association between particulate matter (PM) exposure and increased cardiovascular health effects are under investigation. Water-soluble metals reaching systemic circulation following pulmonary exposure are likely exerting a direct effect. However, it is unclear whether specific PM-associated metals may be driving this. We hypothesized that exposure to equimolar amounts of five individual PM-associated metals would cause differential pulmonary and cardiac effects. We exposed male WKY rats (14 weeks old) via a single intratracheal instillation (IT) to saline or 1 μmol/kg body weight of zinc, nickel, vanadium, copper, or iron in sulfate form. Responses were analyzed 4, 24, 48, or 96 h after exposure. Pulmonary effects were assessed by bronchoalveolar lavage fluid levels of total cells, macrophages, neutrophils, protein, albumin, and activities of lactate dehydrogenase, γ-glutamyl transferase, and n-acetyl glucosaminidase. Copper induced earlier pulmonary injury/inflammation, while zinc and nickel produced later effects. Vanadium or iron exposure induced minimal pulmonary injury/inflammation. Zinc, nickel, or copper increased serum cholesterol, red blood cells, and white blood cells at different time points. IT of nickel and copper increased expression of metallothionein-1 (MT-1) in the lung. Zinc, nickel, vanadium, and iron increased hepatic MT-1 expression. No significant changes in zinc transporter-1 (ZnT-1) expression were noted in the lung or liver; however, zinc increased cardiac ZnT-1 at 24 h, indicating a possible zinc-specific cardiac effect. Nickel exposure induced an increase in cardiac ferritin 96 h after IT. This data set demonstrating metal-specific cardiotoxicity is important in linking metal-enriched anthropogenic PM sources with adverse health effects.

  2. Health risk assessment of occupational exposure to particulate-phase polycyclic aromatic hydrocarbons associated with Chinese, Malay and Indian cooking.

    Science.gov (United States)

    Wei See, Siao; Karthikeyan, Sathrugnan; Balasubramanian, Rajasekhar

    2006-03-01

    Food cooking using liquefied petroleum gas (LPG) has received considerable attention in recent years since it is an important source of particulate air pollution in indoor environments for non-smokers. Exposure to organic compounds such as polycyclic aromatic hydrocarbons (PAHs) contained in particles is of particular health concern since some of these compounds are suspected carcinogens. It is therefore necessary to chemically characterize the airborne particles emitted from gas cooking to assess their possible health impacts. In this work, the levels of fine particulate matter (PM(2.5)) and 16 priority PAHs were determined in three different ethnic commercial kitchens, specifically Chinese, Malay and Indian food stalls, where distinctive cooking methods were employed. The mass concentrations of PM(2.5) and PAHs, and the fraction of PAHs in PM(2.5) were the highest at the Malay stall (245.3 microg m(-3), 609.0 ng m(-3), and 0.25%, respectively), followed by the Chinese stall (201.6 microg m(-3), 141.0 ng m(-3), and 0.07%), and the Indian stall (186.9 microg m(-3), 37.9 ng m(-3), and 0.02%). This difference in the levels of particulate pollution among the three stalls may be attributed to the different cooking methods employed at the food stalls, the amount of food cooked, and the cooking time, although the most sensitive parameter appears to be the predominant cooking method used. Frying processes, especially deep-frying, produce more air pollutants, possibly due to the high oil temperatures used in such operations. Furthermore, it is found that frying, be it deep-frying at the Malay stall or stir-frying at the Chinese stall, gave rise to an abundance of higher molecular weight PAHs such as benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene and benzo[g,h,i]perylene whereas low-temperature cooking, such as simmering at the Indian stall, has a higher concentration of lower molecular weight PAHs. In addition, the correlation matrices and diagnostic ratios of PAHs were

  3. Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex.

    Science.gov (United States)

    Lee, Alison; Leon Hsu, Hsiao-Hsien; Mathilda Chiu, Yueh-Hsiu; Bose, Sonali; Rosa, Maria José; Kloog, Itai; Wilson, Ander; Schwartz, Joel; Cohen, Sheldon; Coull, Brent A; Wright, Robert O; Wright, Rosalind J

    2018-05-01

    The impact of prenatal ambient air pollution on child asthma may be modified by maternal stress, child sex, and exposure dose and timing. We prospectively examined associations between coexposure to prenatal particulate matter with an aerodynamic diameter of less than 2.5 microns (PM 2.5 ) and maternal stress and childhood asthma (n = 736). Daily PM 2.5 exposure during pregnancy was estimated using a validated satellite-based spatiotemporally resolved prediction model. Prenatal maternal negative life events (NLEs) were dichotomized around the median (high: NLE ≥ 3; low: NLE stress and child sex. Bayesian distributed lag interaction models identified a critical window of exposure (19-23 weeks' gestation, cumulative odds ratio, 1.15; 95% CI, 1.03-1.26; per interquartile range [1.7 μg/m 3 ] increase in prenatal PM 2.5 level) during which children concomitantly exposed to prenatal PM 2.5 and maternal stress had increased risk of asthma. No significant association was seen in children born to women reporting low prenatal stress. When examining modifying effects of prenatal stress and fetal sex, we found that boys born to mothers with higher prenatal stress were most vulnerable (19-21 weeks' gestation; cumulative odds ratio, 1.28; 95% CI, 1.15-1.41; per interquartile range increase in PM 2.5 ). Prenatal PM 2.5 exposure during sensitive windows is associated with increased risk of child asthma, especially in boys concurrently exposed to elevated maternal stress. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. The burden of COPD mortality due to ambient air pollution in Guangzhou, China

    Science.gov (United States)

    Li, Li; Yang, Jun; Song, Yun-Feng; Chen, Ping-Yan; Ou, Chun-Quan

    2016-05-01

    Few studies have investigated the chronic obstructive pulmonary disease (COPD) mortality fraction attributable to air pollution and modification by individual characteristics of air pollution effects. We applied distributed lag non-linear models to assess the associations between air pollution and COPD mortality in 2007-2011 in Guangzhou, China, and the total COPD mortality fraction attributable to air pollution was calculated as well. We found that an increase of 10 μg/m3 in particulate matter with an aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) was associated with a 1.58% (95% confidence interval (CI): 0.12-3.06%), 3.45% (95% CI: 1.30-5.66%) and 2.35% (95% CI: 0.42-4.32%) increase of COPD mortality over a lag of 0-15 days, respectively. Greater air pollution effects were observed in the elderly, males and residents with low educational attainment. The results showed 10.91% (95% CI: 1.02-9.58%), 12.71% (95% CI: 5.03-19.85%) and 13.38% (95% CI: 2.67-22.84%) COPD mortality was attributable to current PM10, SO2 and NO2 exposure, respectively. In conclusion, the associations between air pollution and COPD mortality differed by individual characteristics. There were remarkable COPD mortality burdens attributable to air pollution in Guangzhou.

  5. Mortality from non‐malignant respiratory diseases among people with silicosis in Hong Kong: exposure–response analyses for exposure to silica dust

    Science.gov (United States)

    Tse, L A; Yu, I T S; Leung, C C; Tam, W; Wong, T W

    2007-01-01

    Objectives To examine the exposure–response relationships between various indices of exposure to silica dust and the mortality from non‐malignant respiratory diseases (NMRDs) or chronic obstructive pulmonary diseases (COPDs) among a cohort of workers with silicosis in Hong Kong. Methods The concentrations of respirable silica dust were assigned to each industry and job task according to historical industrial hygiene measurements documented previously in Hong Kong. Exposure indices included cumulative dust exposure (CDE) and mean dust concentration (MDC). Penalised smoothing spline models were used as a preliminary step to detect outliers and guide further analyses. Multiple Cox's proportional hazard models were used to estimate the dust effects on the risk of mortality from NMRDs or COPDs after truncating the highest exposures. Results 371 of the 853 (43.49%) deaths occurring among 2789 workers with silicosis during 1981–99 were from NMRDs, and 101 (27.22%) NMRDs were COPDs. Multiple Cox's proportional hazard models showed that CDE (p = 0.009) and MDC (pcaisson workers and among those ever employed in other occupations with high exposure to silica dust. No exposure–response relationship was observed for surface construction workers with low exposures. A clear upward trend for both NMRDs and COPDs mortality was found with increasing severity of radiological silicosis. Conclusion This study documented an exposure–response relationship between exposure to silica dust and the risk of death from NMRDs or COPDs among workers with silicosis, except for surface construction workers with low exposures. The risk of mortality from NMRDs increased significantly with the progression of International Labor Organization categories, independent of dust effects. PMID:16973737

  6. Prenatal famine exposure and adult mortality from cancer, cardiovascular disease, and other causes through age 63 years.

    Science.gov (United States)

    Ekamper, Peter; van Poppel, Frans; Stein, Aryeh D; Bijwaard, Govert E; Lumey, L H

    2015-02-15

    Nutritional conditions in early life may affect adult health, but prior studies of mortality have been limited to small samples. We evaluated the relationship between pre-/perinatal famine exposure during the Dutch Hunger Winter of 1944-1945 and mortality through age 63 years among 41,096 men born in 1944-1947 and examined at age 18 years for universal military service in the Netherlands. Of these men, 22,952 had been born around the time of the Dutch famine in 6 affected cities; the remainder served as unexposed controls. Cox proportional hazards models were used to estimate hazard ratios for death from cancer, heart disease, other natural causes, and external causes. After 1,853,023 person-years of follow-up, we recorded 1,938 deaths from cancer, 1,040 from heart disease, 1,418 from other natural causes, and 523 from external causes. We found no increase in mortality from cancer or cardiovascular disease after prenatal famine exposure. However, there were increases in mortality from other natural causes (hazard ratio = 1.24, 95% confidence interval: 1.03, 1.49) and external causes (hazard ratio = 1.46, 95% confidence interval: 1.09, 1.97) after famine exposure in the first trimester of gestation. Further follow-up of the cohort is needed to provide more accurate risk estimates of mortality from specific causes of death after nutritional disturbances during gestation and very early life. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Commuter exposure to particulate matter and particle-bound PAHs in three transportation modes in Beijing, China

    International Nuclear Information System (INIS)

    Yan, Caiqing; Zheng, Mei; Yang, Qiaoyun; Zhang, Qunfang; Qiu, Xinghua; Zhang, Yanjun; Fu, Huaiyu; Li, Xiaoying; Zhu, Tong; Zhu, Yifang

    2015-01-01

    Exposure to fine and ultrafine particles as well as particulate polycyclic aromatic hydrocarbons (PAHs) by commuters in three transportation modes (walking, subway and bus) were examined in December 2011 in Beijing, China. During the study period, real-time measured median PM 2.5 mass concentration (PMC) for walking, riding buses and taking the subway were 26.7, 32.9 and 56.9 μg m −3 , respectively, and particle number concentrations (PNC) were 1.1 × 10 4 , 1.0 × 10 4 and 2.2 × 10 4  cm −3 . Commuters were exposed to higher PNC in air-conditioned buses and aboveground-railway, but higher PMC in underground-subway compared to aboveground-railway. PNC in roadway modes (bus and walking) peaked at noon, but was lower during traffic rush hours, negatively correlated with PMC. Toxic potential of particulate-PAHs estimated based on benzo(a)pyrene toxic equivalents (BaP TEQs) showed that walking pedestrians were subjected to higher BaP TEQs than bus (2.7-fold) and subway (3.6-fold) commuters, though the highest PMC and PNC were observed in subway. - Highlights: • The highest PNC and PM 2.5 occurred around noon and late rush hours, respectively. • Higher PM 2.5 and PNC, but lower PAHs and BaP TEQ were found in Beijing subway. • Traffic congestion, roadside cooking, and construction evidently enhanced roadway PM. • Ventilation and air-conditioning system impact PM level in bus and subway cabins. - Higher PMC and PNC, but lower particulate PAHs and BaP TEQ were found in Beijing subway. PNC and PMC in on-roadway modes were peaked around noon and late rush hours, respectively

  8. Ambient particulate matter as a risk factor for suicide.

    Science.gov (United States)

    Kim, Changsoo; Jung, Sang Hyuk; Kang, Dae Ryong; Kim, Hyeon Chang; Moon, Ki Tae; Hur, Nam Wook; Shin, Dong Chun; Suh, Il

    2010-09-01

    The authors assessed the relationship between exposure to ambient particulate matter and suicide in urban settings during a 1-year period. The association between particulate matter and suicide was determined using a time-stratified case-crossover approach in which subjects served as their own controls. All suicide cases (4,341) in 2004 that occurred in seven cities in the Republic of Korea were included. Hourly mean concentrations of particulate matter suicide risk associated with an interquartile range increase in particulate matter was determined by conditional logistic regression analysis after adjusting for national holidays and meteorological factors. Subgroup analysis was performed after stratification by underlying disease (cardiovascular disease, diabetes mellitus, chronic obstructive pulmonary disease, cancer, and psychiatric illness). The largest associations were a 9.0% increase (95% CI=2.4-16.1) and a 10.1% (95% CI=2.0-19.0) increase in suicide risk related to an interquartile range increase in particulate matter suicide) and particulate matter suicide), respectively. Among individuals with cardiovascular disease, a significant association between particulate matter suicide) and suicide was observed (18.9%; 95% CI=3.2-37.0). Conclusions: A transient increase in particulate matter was associated with increased suicide risk, especially for individuals with preexisting cardiovascular disease.

  9. Biomonitoring of toxic compounds of airborne particulate matter in urban and industriel areas

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ro-Poulsen, Helge

    2010-01-01

    The toxicity and ecotoxicity of airborne particulate matter is determined by its physical features, but also by its chemical composition. The standardised exposure of accumulative bioindicator plants is suggested as an efficient and reliable tool to assess and monitor effects of particulate matter...

  10. Influence of Exposure Error and Effect Modification by Socioeconomic Status on the Association of Acute Cardiovascular Mortality with Particulate Matter in Phoenix

    Science.gov (United States)

    Using ZIP code-level mortality data, the association of cardiovascular mortality with PM2.5 and PM10-2.5,measured at a central monitoring site, was determined for three populations at different distances from the monitoring site but with similar numbers of d...

  11. Cardiovascular mortality and exposure to extremely low frequency magnetic fields: a cohort study of Swiss railway workers

    Directory of Open Access Journals (Sweden)

    Pfluger Dominik

    2008-07-01

    Full Text Available Abstract Background Exposure to intermittent magnetic fields of 16 Hz has been shown to reduce heart rate variability, and decreased heart rate variability predicts cardiovascular mortality. We examined mortality from cardiovascular causes in railway workers exposed to varying degrees to intermittent 16.7 Hz magnetic fields. Methods We studied a cohort of 20,141 Swiss railway employees between 1972 and 2002, including highly exposed train drivers (median lifetime exposure 120.5 μT-years, and less or little exposed shunting yard engineers (42.1 μT-years, train attendants (13.3 μT-years and station masters (5.7 μT-years. During 464,129 person-years of follow up, 5,413 deaths were recorded and 3,594 deaths were attributed to cardio-vascular diseases. We analyzed data using Cox proportional hazards models. Results For all cardiovascular mortality the hazard ratio compared to station masters was 0.99 (95%CI: 0.91, 1.08 in train drivers, 1.13 (95%CI: 0.98, 1.30 in shunting yard engineers, and 1.09 (95%CI: 1.00, 1.19 in train attendants.Corresponding hazard ratios for arrhythmia related deaths were 1.04 (95%CI: 0.68, 1.59, 0.58 (95%CI: 0.24, 1.37 and 1.30 (95%CI: 0.87, 1.93 and for acute myocardial infarction 1.00 (95%CI: 0.73, 1.36, 1.56 (95%CI: 1.04, 2.32, and 1.14 (95%CI: 0.85, 1.53. The hazard ratio for arrhythmia related deaths per 100 μT-years of cumulative exposure was 0.94 (95%CI: 0.71, 1.24 and 0.91 (95%CI: 0.75, 1.11 for acute myocardial infarction. Conclusion This study provides evidence against an association between long-term occupational exposure to intermittent 16.7 Hz magnetic fields and cardiovascular mortality.

  12. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    Science.gov (United States)

    Nie, Dongyang; Chen, Mindong; Ge, Xinlei; Zhang, Kai; Ge, Pengxiang

    2018-01-01

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits. PMID:29584626

  13. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    Directory of Open Access Journals (Sweden)

    Dongyang Nie

    2018-03-01

    Full Text Available Particulate matter (PM air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5 over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER model was applied to assess premature mortality, years of life lost (YLL attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF, stroke was the major cause of death, followed by ischemic heart disease (IHD, lung cancer (LC and chronic obstructive pulmonary disease (COPD. The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO Air Quality Guidelines (AQG of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  14. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing.

    Science.gov (United States)

    Nie, Dongyang; Chen, Mindong; Wu, Yun; Ge, Xinlei; Hu, Jianlin; Zhang, Kai; Ge, Pengxiang

    2018-03-27

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM 2.5 ) over Nanjing were analyzed using hourly and daily averaged PM 2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM 2.5 , and mortality benefits due to PM 2.5 reductions. The concentrations of PM 2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM 2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM 2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM 2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m³, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  15. Short-term effect of severe exposure to methylmercury on atherosclerotic heart disease and hypertension mortality in Minamata.

    Science.gov (United States)

    Inoue, Sachiko; Yorifuji, Takashi; Tsuda, Toshihide; Doi, Hiroyuki

    2012-02-15

    Recent studies suggest potential adverse effects of methylmercury exposure on myocardial infarction and hypertension, although the evidence is still limited. We thus evaluated this association using age-standardized mortality ratios (ASMRs) in Minamata, where severe methylmercury poisoning had occurred. We obtained mortality data from annual vital statistics and demographic statistics from census. We then compared mortality of atherosclerotic heart disease including degenerative heart disease and hypertension in Minamata-city with those in Kumamoto Prefecture, which includes Minamata city, as a control. We estimated ASMRs and 95% confidence intervals (CIs) during the period from 1953 to 1970. ASMRs of atherosclerotic heart disease were continuously decreased during the period from 1953 to 1967. In contrast, the ASMR of hypertension was significantly elevated during the period from 1963 to 1967 (SMR=1.38, CI; 1.06-1.80); but they decreased later. Although dilution is present in this ecological study, our study supports the notion that methylmercury exposure induces hypertension. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis

    DEFF Research Database (Denmark)

    Møller, Peter; Mikkelsen, Lone; Vesterdal, Lise Kristine

    2011-01-01

    and inflammatory pathways. We have assessed the effect of exposure to particulate matter on progression of atherosclerosis and vasomotor function in humans, animals, and ex vivo experimental systems. The type of particles that have been tested in these systems encompass TiO(2), carbon black, fullerene C(60...... of particulate matter....

  17. Solid cancer mortality associated with chronic external radiation exposure at the French atomic energy commission and nuclear fuel company.

    Science.gov (United States)

    Metz-Flamant, C; Samson, E; Caër-Lorho, S; Acker, A; Laurier, D

    2011-07-01

    Studies of nuclear workers make it possible to directly quantify the risks associated with ionizing radiation exposure at low doses and low dose rates. Studies of the CEA (Commissariat à l'Energie Atomique) and AREVA Nuclear Cycle (AREVA NC) cohort, currently the most informative such group in France, describe the long-term risk to nuclear workers associated with external exposure. Our aim is to assess the risk of mortality from solid cancers among CEA and AREVA NC nuclear workers and its association with external radiation exposure. Standardized mortality ratios (SMRs) were calculated and internal Poisson regressions were conducted, controlling for the main confounding factors [sex, attained age, calendar period, company and socioeconomic status (SES)]. During the period 1968-2004, there were 2,035 solid cancers among the 36,769 CEA-AREVA NC workers. Cumulative external radiation exposure was assessed for the period 1950-2004, and the mean cumulative dose was 12.1 mSv. Mortality rates for all causes and all solid cancers were both significantly lower in this cohort than in the general population. A significant excess of deaths from pleural cancer, not associated with cumulative external dose, was observed, probably due to past asbestos exposure. We observed a significant excess of melanoma, also unassociated with dose. Although cumulative external dose was not associated with mortality from all solid cancers, the central estimated excess relative risk (ERR) per Sv of 0.46 for solid cancer mortality was higher than the 0.26 calculated for male Hiroshima and Nagasaki A-bomb survivors 50 years or older and exposed at the age of 30 years or older. The modification of our results after stratification for SES demonstrates the importance of this characteristic in occupational studies, because it makes it possible to take class-based lifestyle differences into account, at least partly. These results show the great potential of a further joint international study of

  18. Exposure of miners to diesel exhaust particulates in underground nonmetal mines.

    Science.gov (United States)

    Cohen, H J; Borak, J; Hall, T; Sirianni, G; Chemerynski, S

    2002-01-01

    A study was initiated to examine worker exposures in seven underground nonmetal mines and to examine the precision of the National Institute for Occupational Safety and Health (NIOSH) 5040 sampling and analytical method for diesel exhaust that has recently been adopted for compliance monitoring by the Mine Safety and Health Administration (MSHA). Approximately 1000 air samples using cyclones were taken on workers and in areas throughout the mines. Results indicated that worker exposures were consistently above the MSHA final limit of 160 micrograms/m3 (time-weighted average; TWA) for total carbon as determined by the NIOSH 5040 method and greater than the proposed American Conference of Governmental Industrial Hygienists TLV limit of 20 micrograms/m3 (TWA) for elemental carbon. A number of difficulties were documented when sampling for diesel exhaust using organic carbon: high and variable blank values from filters, a high variability (+/- 20%) from duplicate punches from the same sampling filter, a consistent positive interference (+26%) when open-faced monitors were sampled side-by-side with cyclones, poor correlation (r 2 = 0.38) to elemental carbon levels, and an interference from limestone that could not be adequately corrected by acid-washing of filters. The sampling and analytical precision (relative standard deviation) was approximately 11% for elemental carbon, 17% for organic carbon, and 11% for total carbon. An hypothesis is presented and supported with data that gaseous organic carbon constituents of diesel exhaust adsorb onto not only the submicron elemental carbon particles found in diesel exhaust, but also mining ore dusts. Such mining dusts are mostly nonrespirable and should not be considered equivalent to submicron diesel particulates in their potential for adverse pulmonary effects. It is recommended that size-selective sampling be employed, rather than open-faced monitoring, when using the NIOSH 5040 method.

  19. Lifetime trauma exposure and prospective cardiovascular events and all-cause mortality: findings from the Heart and Soul Study.

    Science.gov (United States)

    Hendrickson, Carolyn M; Neylan, Thomas C; Na, Beeya; Regan, Mathilda; Zhang, Qian; Cohen, Beth E

    2013-01-01

    Little is known about the effect of cumulative psychological trauma on health outcomes in patients with cardiovascular disease. The objective of this study was to prospectively examine the association between lifetime trauma exposure and recurrent cardiovascular events or all-cause mortality in patients with existing cardiovascular disease. A total of 1021 men and women with cardiovascular disease were recruited in 2000 to 2002 and followed annually. Trauma history and psychiatric comorbidities were assessed at baseline using the Computerized Diagnostic Interview Schedule for DSM-IV. Health behaviors were assessed using standardized questionnaires. Outcome data were collected annually, and all medical records were reviewed by two independent, blinded physician adjudicators. We used Cox proportional hazards models to evaluate the association between lifetime trauma exposure and the composite outcome of cardiovascular events and all-cause mortality. During an average of 7.5 years of follow-up, there were 503 cardiovascular events and deaths. Compared with the 251 participants in the lowest trauma exposure quartile, the 256 participants in the highest exposure quartile had a 38% greater risk of adverse outcomes (hazard ratio = 1.38, 95% confidence interval = 1.06-1.81), adjusted for age, sex, race, income, education, depression, posttraumatic stress disorder, generalized anxiety disorder, smoking, physical inactivity, and illicit drug abuse. Cumulative exposure to psychological trauma was associated with an increased risk of recurrent cardiovascular events and mortality, independent of psychiatric comorbidities and health behaviors. These data add to a growing literature showing enduring effects of repeated trauma exposure on health that are independent of trauma-related psychiatric disorders such as depression and posttraumatic stress disorder.

  20. Modelling exposure of oceanic higher trophic-level consumers to polychlorinated biphenyls: pollution 'hotspots' in relation to mass mortality events of marine mammals.

    Science.gov (United States)

    Handoh, Itsuki C; Kawai, Toru

    2014-08-30

    Marine mammals in the past mass mortality events may have been susceptible to infection because their immune systems were suppressed through the bioaccumulation of environmental pollutants such as polychlorinated biphenyls (PCBs). We compiled mortality event data sets of 33 marine mammal species, and employed a Finely-Advanced Transboundary Environmental model (FATE) to model the exposure of the global fish community to PCB congeners, in order to define critical exposure levels (CELs) of PCBs above which mass mortality events are likely to occur. Our modelling approach enabled us to describe the mass mortality events in the context of exposure of higher-trophic consumers to PCBs and to identify marine pollution 'hotspots' such as the Mediterranean Sea and north-western European coasts. We demonstrated that the CELs can be applied to quantify a chemical pollution Planetary Boundary, under which a safe operating space for marine mammals and humanity can exist. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM10)

    International Nuclear Information System (INIS)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih; Bai, Ni; Vincent, Renaud; Francis, Gordon A.; Sin, Don D.; Van Eeden, Stephan F.

    2013-01-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM 10 ) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM 10 . New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM 10 /saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM 10 exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM 10 impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM 10 increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM 10 . Taken together, statins protect against PM 10 -induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM 10 ) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal macrophages, lipid accumulation, and

  2. Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans.

    Science.gov (United States)

    Wei, Yongjie; Han, In-Kyu; Hu, Min; Shao, Min; Zhang, Junfeng Jim; Tang, Xiaoyan

    2010-11-01

    Recent studies suggest that DNA oxidative damage be related to the chemical constituents of ambient particles. The purpose of this study was to examine whether particulate polycyclic aromatic hydrocarbons (PAHs) and quinone-structure chemicals increase body burden of oxidative stress in human exposed to heavy traffic volume. We recruited two nonsmoking security guards who worked at a university campus gate near a heavily trafficked road. Each subject wore a personal air sampler for 24h per day to estimate exposures to 24 PAHs and anthraquinone (AnQ) in PM(2.5). Daily pre- and post-work shift spot urines were collected for 29d from each subject. Urine samples were analyzed for 8-hydroxy-2'-deoxyguanosine (8-OHdG). Additionally, using 19 organic tracers other than 24 PAHs and AnQ, a receptor source apportionment model of chemical mass balance was applied to determine the contributions of sources on the PM: gasoline vehicle, diesel vehicle, coal burning, vegetable debris, cooking, natural gas and biomass burning. The relationship among urinary 8-OHdG, individual PAH, and AnQ was demonstrated as follows: the average urinary concentration of 8-OHdG was increased more than three times after 8-h work-shift than those before the work shift. All the 24 PAH and AnQ levels were positively and significantly associated with the post-work urinary 8-OHdG. The results from source apportionment suggest vehicular emission to be the dominant source of personal exposure to PM(2.5). Our finding indicates that personal air exposures to 24 individual PAHs and AnQ originating from traffic emissions are important in increasing oxidative burdens in human body. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. No consistent effects of prenatal or neonatal exposure to Spanish flu on late-life mortality in 24 developed countries

    DEFF Research Database (Denmark)

    Cohen, Alan; Tillinghast, J; Canudas-Romo, V

    2010-01-01

    We test the effects of early life exposure to disease on later health by looking for differences in late-life mortality in cohorts born around the 1918-1919 flu pandemic using data from the Human Mortality Database for 24 countries. After controlling for age, period, and sex effects, residual...

  4. Global burden of mortalities due to chronic exposure to ambient PM2.5 from open combustion of domestic waste

    Science.gov (United States)

    Kodros, John K.; Wiedinmyer, Christine; Ford, Bonne; Cucinotta, Rachel; Gan, Ryan; Magzamen, Sheryl; Pierce, Jeffrey R.

    2016-12-01

    Uncontrolled combustion of domestic waste has been observed in many countries, creating concerns for air quality; however, the health implications have not yet been quantified. We incorporate the Wiedinmyer et al (2014 Environ. Sci. Technol. 48 9523-30) emissions inventory into the global chemical-transport model, GEOS-Chem, and provide a first estimate of premature adult mortalities from chronic exposure to ambient PM2.5 from uncontrolled combustion of domestic waste. Using the concentration-response functions (CRFs) of Burnett et al (2014 Environ. Health Perspect. 122 397-403), we estimate that waste-combustion emissions result in 270 000 (5th-95th: 213 000-328 000) premature adult mortalities per year. The confidence interval results only from uncertainty in the CRFs and assumes equal toxicity of waste-combustion PM2.5 to all other PM2.5 sources. We acknowledge that this result is likely sensitive to choice of chemical-transport model, CRFs, and emission inventories. Our central estimate equates to 9% of adult mortalities from exposure to ambient PM2.5 reported in the Global Burden of Disease Study 2010. Exposure to PM2.5 from waste combustion increases the risk of premature mortality by more than 0.5% for greater than 50% of the population. We consider sensitivity simulations to uncertainty in waste-combustion emission mass, the removal of waste-combustion emissions, and model resolution. A factor-of-2 uncertainty in waste-combustion PM2.5 leads to central estimates ranging from 138 000 to 518 000 mortalities per year for factors-of-2 reductions and increases, respectively. Complete removal of waste combustion would only avoid 191 000 (5th-95th: 151 000-224 000) mortalities per year (smaller than the total contributed premature mortalities due to nonlinear CRFs). Decreasing model resolution from 2° × 2.5° to 4° × 5° results in 16% fewer mortalities attributed to waste-combustion PM2.5, and over Asia, decreasing resolution from 0.5° × 0.666° to 2° × 2

  5. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  6. Bulky PAH-DNA induced by exposure of a co-culture model of human alveolar macrophages and embryonic epithelial cells to atmospheric particulate pollution

    International Nuclear Information System (INIS)

    Abbas, Imane; Garcon, Guillaume; Billet, Sylvain; Shirali, Pirouz; Andre, Veronique; Le Goff, Jeremie; Sichel, Francois; Roy Saint-Georges, Francoise; Mulliez, Philippe

    2012-01-01

    Because of their deep penetration in human lungs, fine airborne particulate matter were described as mainly responsible for the deleterious effects of exposure to air pollution on health. Organic constituents are adsorbed on particles surface and, after inhalation, some (polycyclic aromatic hydrocarbons, PAHs) can be activated into reactive metabolites and can bind to DNA. The formation of bulky DNA adducts has been researched after exposure of mono-and co-cultures of alveolar macrophages (AM) and human embryonic human lung epithelial (L132), to fine air pollution particulate matter Air samples have been collected with cascade impactor and characterized: size distribution (92.15% 2 /g), inorganic (Fe, AI, Ca, Na, K, Mg, Pb, etc.) and organic compounds (PAHs, etc.). 32 P post-labeling method was applied to detect bulky DNA adducts in AM and L132, in mono-and co-cultures, 72 h after their exposure to atmospheric particles at their Lethals and Effects concentrations or (LC or CE) to 50% (i.e. MA: EC 50 = 74.63 μg/mL and L132: LC-5-0 = 75.36 μg/mL). Exposure to desorbed particles (MA: C1= 61.11 μg/mL and L132 : C2 = 61.71 μg/mL) and B[a]P (1 μM) were included. Bulky PAH-DNA adducts were detected in AM in mono-culture after exposure to total particles (Pt), to B[a]P and desorbed particles (Pd). Whatever the exposure, no DNA adduct was detected in L132 in mono-culture. These results are coherent with the enzymatic activities of cytochrome P450 l Al in AM and L132. Exposure of co-culture to Pt, or Pd induced bulky adducts to DNA in AM but not in L132. Exposure to B[a]P alone has altered the DNA of AM and L132, in co-culture. Exposure to Pt is closer to the environmental conditions, but conferred an exposure to amounts of genotoxic agents compared to studies using organic extracts. The formation of bulky DNA adducts was nevertheless observed in AM exposed to Pt, in mono- or co-culture, indicating that they were competent in terms of metabolic activation of PAHs. The

  7. Estimating particulate matter health impact related to the combustion of different fossil fuels

    OpenAIRE

    Kuenen , Jeroen; Gschwind , Benoît; Drebszok , Kamila M.; Stetter , Daniel; Kranenburg , Richard; Hendriks , Carlijn; Lefèvre , Mireille; Blanc , Isabelle; Wyrwa , Artur; Schaap , Martijn

    2013-01-01

    International audience; Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin...

  8. Ambient air pollution exposure and the incidence of related health effects among racial/ethnic minorities

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Wernette, D.R.

    1997-02-01

    Differences among racial and ethnic groups in morbidity and mortality rates for diseases, including diseases with environmental causes, have been extensively documented. However, documenting the linkages between environmental contaminants, individual exposures, and disease incidence has been hindered by difficulties in measuring exposure for the population in general and for minority populations in particular. After briefly discussing research findings on associations of common air pollutants with disease incidence, the authors summarize recent studies of radial/ethnic subgroup differences in incidence of these diseases in the US. They then present evidence of both historic and current patterns of disproportionate minority group exposure to air pollution as measured by residence in areas where ambient air quality standards are violated. The current indications of disproportionate potential exposures of minority and low-income populations to air pollutants represent the continuation of a historical trend. The evidence of linkage between disproportionate exposure to air pollution of racial/ethnic minorities and low-income groups and their higher rates of some air pollution-related diseases is largely circumstantial. Differences in disease incidence and mortality rates among racial/ethnic groups are discussed for respiratory diseases, cancers, and lead poisoning. Pollutants of concern include CO, Pb, SO{sub 2}, O{sub 3}, and particulates.

  9. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage

    International Nuclear Information System (INIS)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J.; Rudich, Yinon

    2016-01-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. - Highlights: • Repeated exposure to urban PM cause systemic inflammation and oxidative damage to lung tissue lipids and proteins. • Repeated exposure to these PM extracts decreased transcription of Nrf2 protective genes. • Single as opposed to repeated exposure, induced confined lung response accompanied by activated defense mechanisms. • Metals, potentially from break and tire wear, drive the pulmonary response with exposure to urban PM. - Repeated exposures to urban PM water extracts

  10. Radiation exposure in manned spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Buecker, H. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)); Horneck, G. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)); Facius, R. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)); Reitz, G. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany))

    1993-08-01

    Space missions exposure humans to a radiation environment of a particulate composition and intensity not encountered within our biosphere. The natural radiation environment encountered in Earth orbit is a complex mixture of charged particles of galactic and solar origin and of those trapped by the geomagnetic field. In addition, secondaries are produced by interaction of cosmic ray primaries with the spacecraft shielding material. Among this large variety of radiation components in space, it is likely that the heavy ions are the significant species as far as radiobiological effects are concerned. In addition, a synergistic interaction of microgravity and radiation on living systems has been reported in some instances. Based on an admissible risk of 3% mortality due to cancers induced during a working career, radiation protection guidelines have been developed for this radiation environment. (orig.)

  11. A geographical information system-based analysis of cancer mortality and population exposure to coal mining activities in West Virginia, United States of America

    Directory of Open Access Journals (Sweden)

    Michael Hendryx

    2010-05-01

    Full Text Available Cancer incidence and mortality rates are high in West Virginia compared to the rest of the United States of America. Previous research has suggested that exposure to activities of the coal mining industry may contribute to elevated cancer mortality, although exposure measures have been limited. This study tests alternative specifications of exposure to mining activity to determine whether a measure based on location of mines, processing plants, coal slurry impoundments and underground slurry injection sites relative to population levels is superior to a previously-reported measure of exposure based on tons mined at the county level, in the prediction of age-adjusted cancer mortality rates. To this end, we utilize two geographical information system (GIS techniques – exploratory spatial data analysis and inverse distance mapping – to construct new statistical analyses. Total, respiratory and “other” age-adjusted cancer mortality rates in West Virginia were found to be more highly associated with the GIS-exposure measure than the tonnage measure, before and after statistical control for smoking rates. The superior performance of the GIS measure, based on where people in the state live relative to mining activity, suggests that activities of the industry contribute to cancer mortality. Further confirmation of observed phenomena is necessary with person-level studies, but the results add to the body of evidence that coal mining poses environmental risks to population health in West Virginia.

  12. Changes to the structure of blood clots formed in the presence of fine particulate matter

    International Nuclear Information System (INIS)

    Metassan, Sofian; Routledge, Michael N; Ariens, Robert A S; Scott, D Julian

    2009-01-01

    Both long-term and short-term exposure (one to two hours) to particulate matter are associated with morbidity and mortality caused by cardiovascular diseases. The underlying mechanisms leading to cardiovascular events are unclear, however, changes to blood coagulability upon exposure to ultrafine particulate matter (UFPM, the smallest of which can enter the circulation) is a plausible mechanism. Objectives: This study aims to investigate the direct effects of particulate matter on fibrin polymerization, lateral aggregation and the formation of fibrin network structure. Methods: Standard Urban Particulate Matter (PM) was suspended in Tris buffer centrifuged and filtered with <200nm filter to obtain ultrafine PM or their water-soluble components. Purified normal fibrinogen was made to clot by adding thrombin and calcium chloride in the presence of varying concentrations of PM. Permeation properties (Darcy constant [Ks]) and turbidity of clots were measured to investigate the effects on flow-rate, pore size, and fibrin polymerization. In addition, confocal microscopy was performed to study detailed clot structure. Results: Total PM increased the Ks of clots in a dose dependant manner (Ks = 4.4, 6.9 and 13.2 x 10-9 cm2 for 0, 50 and 100 |ag/ml total PM concentrations, respectively). Filtered PM also produced a significant increase in Ks at PM concentration of 17 |ag/ml. Final turbidity measurements at 20min were obtained for varying concentrations of PM. Maximum optical density (OD) for 1 mg/ml fibrinogen at 0, 50, 100 and 200 |ag/ml total PM concentrations were 0.39, 0.42, 0.45 and 0.46, respectively. The maximum OD for 0, 17, 34 and 68 |ag/ml filtered PM concentrations were 0.39, 0.42 0.47 and 0.51, respectively, suggesting an increase in fibre diameter with increasing particulate concentration. The lag phase was significantly shorter and the rate of polymerisation was significantly faster in the presence of 68 |ag/ml filtered PM. Confocal microscopy results showed

  13. Effects of long-term exposure to traffic-related air pollution on mortality and lung cancer

    NARCIS (Netherlands)

    Beelen, R.M.J.

    2008-01-01

    We assessed the association between long-term exposure to air pollution and cause-specific mortality and lung cancer incidence using data from an ongoing cohort study: the Netherlands Cohort Study on Diet and Cancer (NLCS). The NLCS study was initiated in September 1986 with the enrollment of

  14. An oral multi-particulate, modified release, hydrocortisone replacement therapy that provides physiological cortisol exposure

    Science.gov (United States)

    Huatan, Hiep; Merke, Deborah; Arlt, Wiebke; Ross, Richard J.

    2013-01-01

    Objective It is not possible with current hydrocortisone replacement to mimic the diurnal cortisol profile in patients with adrenal insufficiency. Previous attempts with modified release technology were unsuccessful. Our objective was to develop hydrocortisone formulations that recreate the diurnal cortisol profile using multi-particulate technology. Design and Measurements Screening by in-vitro dissolution profiles, pharmacokinetic testing in dexamethasone suppressed dogs and humans, and comparison to a reference population. Setting Field laboratories and clinical research facility. Results Formulations were generated using an enteric (delayed-release) design configuration with an extended (sustained-release) dissolution profile. In-vitro dissolution confirmed delayed and sustained hydrocortisone release. However, in dogs and humans, sustained release resulted in reduced bioavailability. A formulation, DIURF-006, was developed that maintained delayed release but omitted the sustained release functionality. Pharmacokinetic characterisation of DIURF-006 showed that, despite absence of a sustained release component, absorption was sufficiently sustained to deliver extended hydrocortisone absorption. In dexamethasone-suppressed volunteers (n=16) receiving a twice daily ‘toothbrush’ regimen (20mg at 23:00h and 10mg at 07:00h), DIURF-006 gave a similar cortisol profile to physiological cortisol levels: DIURF-006 vs physiological, Geomean AUC 5610 vs 4706 hr*nmol/l, Geomean Cmax 665 vs 594 nmol/l and Median Tmax 8.5h vs clock time 08:12 hours for peak cortisol. The relative bioavailability of DIURF-006 vs hydrocortisone was 89% and cortisol levels increased linearly with doses between 5 and 30mg. Conclusion A multi-particulate oral hydrocortisone formulation with only an enteric coat provides delayed and sustained absorption and when given in a ‘toothbrush’ regimen provides physiological cortisol exposure. PMID:23980724

  15. Measures of anticholinergic drug exposure, serum anticholinergic activity, and all-cause postdischarge mortality in older hospitalized patients with hip fractures

    NARCIS (Netherlands)

    Mangoni, Arduino A.; van Munster, Barbara C.; Woodman, Richard J.; de Rooij, Sophia E.

    2013-01-01

    To assess possible associations between anticholinergic drug exposure and serum anticholinergic activity (SAA) and their capacities to predict all-cause mortality in older hospitalized patients. Academic medical center. Data on clinical characteristics, full medication exposure, SAA, and 4

  16. Embryonic/fetal mortality after exposure to tritiated water in pregnant Swiss albino mice during different gestation periods

    International Nuclear Information System (INIS)

    Sharma, Kalpana; Saini, M.R.

    1993-01-01

    Pregnant Swiss albino mice were given a priming injection(im) of tritiated water (HTO) at the dose rate of 2.3 and 5 μCi/ml body water (74, III or 185 K Bq/ml body water) at 0,6 and 14 day post conception (d.p.c) and were subsequently maintained on tritiated drinking water ad libitum during preimplantation (0-5 d.p.c), organogenetic (6-12 d.c.p.) or fetal (14-18 d.p.c) period, respectively. On day 18 of gestation the females were sacrificed by cervical dislocation to record the implant sites per dam and embryonic/fetal mortality. Significant reduction was observed in average implant sites per dam when the females were exposed to any of the three doses during the preimplantation period due to embryonic resorption before implantation. However, the same was found to be within the normal range when mothers were exposed during the organogenetic or fetal period. Prenatal mortality (embryonic resorption/fetal death) was higher after in utero exposure to different doses during preimplantation period as compared to organogenetic period, but mortality did not occur after exposure to any of the doses during the fetal period. Occurrence of mortality was found to be dose dependent. (author). 25 refs., 1 tab

  17. Eosinophilia and biotoxin exposure in bottlenose dolphins (Tursiops truncatus) from a coastal area impacted by repeated mortality events

    International Nuclear Information System (INIS)

    Schwacke, Lori H.; Twiner, Michael J.; De Guise, Sylvain; Balmer, Brian C.; Wells, Randall S.; Townsend, Forrest I.; Rotstein, David C.; Varela, Rene A.; Hansen, Larry J.; Zolman, Eric S.; Spradlin, Trevor R.

    2010-01-01

    Bottlenose dolphins (Tursiops truncatus) inhabiting coastal waters in the northern Gulf of Mexico have been impacted by recurrent unusual mortality events over the past few decades. Several of these mortality events along the Florida panhandle have been tentatively attributed to poisoning from brevetoxin produced by the dinoflagellate Karenia brevis. While dolphins in other regions of the Florida coast are often exposed to K. brevis blooms, large-scale dolphin mortality events are relatively rare and the frequency and magnitude of die-offs along the Panhandle raise concern for the apparent vulnerability of dolphins in this region. We report results from dolphin health assessments conducted near St. Joseph Bay, Florida, an area impacted by 3 unusual die-offs within a 7-year time span. An eosinophilia syndrome, manifested as an elevated blood eosinophil count without obvious cause, was observed in 23% of sampled dolphins. Elevated eosinophil counts were associated with decreased T-lymphocyte proliferation and increased neutrophil phagocytosis. In addition, indication of chronic low-level exposure to another algal toxin, domoic acid produced by the diatom Pseudo-nitzschia spp., was determined. Previous studies of other marine mammal populations exposed recurrently to Pseudo-nitzschia blooms have suggested a possible link between the eosinophilia and domoic acid exposure. While the chronic eosinophilia syndrome could over the long-term produce organ damage and alter immunological status and thereby increase vulnerability to other challenges, the significance of the high prevalence of the syndrome to the observed mortality events in the St. Joseph Bay area is unclear. Nonetheless, the unusual immunological findings and concurrent evidence of domoic acid exposure in this sentinel marine species suggest a need for further investigation to elucidate potential links between chronic, low-level exposure to algal toxins and immune health.

  18. Eosinophilia and biotoxin exposure in bottlenose dolphins (Tursiops truncatus) from a coastal area impacted by repeated mortality events

    Energy Technology Data Exchange (ETDEWEB)

    Schwacke, Lori H., E-mail: Lori.Schwacke@noaa.gov [National Oceanic and Atmospheric Administration, National Ocean Service, Center for Human Health Risks, 331 Fort Johnson Road, Charleston, SC 29412 (United States); Twiner, Michael J. [National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412 (United States); De Guise, Sylvain [University of Connecticut, Department of Pathobiology and Veterinary Science, 61 North Eagleville Road, U-89, Storrs, CT 06269 (United States); Balmer, Brian C.; Wells, Randall S. [Chicago Zoological Society, c/o Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236 (United States); Townsend, Forrest I. [Bayside Hospital for Animals, 251 N.E. Racetrack Road, Fort Walton Beach, FL 32547 (United States); Rotstein, David C. [National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Marine Mammal Health and Stranding Response Program, 1315 East West Highway, Silver Spring, MD 20910 (United States); Varela, Rene A. [Ocean Embassy Inc, 6433 Pinecastle Blvd, Ste 2, Orlando, FL 32809 (United States); Hansen, Larry J. [National Oceanic and Atmospheric Administration, National Marine Fisheries Service Southeast Fisheries Science Center,101 Pivers Island Road, Beaufort, NC 28516 (United States); Zolman, Eric S. [National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412 (United States); Spradlin, Trevor R. [National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Marine Mammal Health and Stranding Response Program, 1315 East West Highway, Silver Spring, MD 20910 (United States); and others

    2010-08-15

    Bottlenose dolphins (Tursiops truncatus) inhabiting coastal waters in the northern Gulf of Mexico have been impacted by recurrent unusual mortality events over the past few decades. Several of these mortality events along the Florida panhandle have been tentatively attributed to poisoning from brevetoxin produced by the dinoflagellate Karenia brevis. While dolphins in other regions of the Florida coast are often exposed to K. brevis blooms, large-scale dolphin mortality events are relatively rare and the frequency and magnitude of die-offs along the Panhandle raise concern for the apparent vulnerability of dolphins in this region. We report results from dolphin health assessments conducted near St. Joseph Bay, Florida, an area impacted by 3 unusual die-offs within a 7-year time span. An eosinophilia syndrome, manifested as an elevated blood eosinophil count without obvious cause, was observed in 23% of sampled dolphins. Elevated eosinophil counts were associated with decreased T-lymphocyte proliferation and increased neutrophil phagocytosis. In addition, indication of chronic low-level exposure to another algal toxin, domoic acid produced by the diatom Pseudo-nitzschia spp., was determined. Previous studies of other marine mammal populations exposed recurrently to Pseudo-nitzschia blooms have suggested a possible link between the eosinophilia and domoic acid exposure. While the chronic eosinophilia syndrome could over the long-term produce organ damage and alter immunological status and thereby increase vulnerability to other challenges, the significance of the high prevalence of the syndrome to the observed mortality events in the St. Joseph Bay area is unclear. Nonetheless, the unusual immunological findings and concurrent evidence of domoic acid exposure in this sentinel marine species suggest a need for further investigation to elucidate potential links between chronic, low-level exposure to algal toxins and immune health.

  19. Temperature modifies the health effects of particulate matter in Brisbane, Australia

    Science.gov (United States)

    Ren, Cizao; Tong, Shilu

    2006-11-01

    A few epidemiological studies have examined whether there was an interactive effect between temperature and ambient particulate matter on cardiorespiratory morbidity and mortality, but the results were inconsistent. The present study used three time-series approaches to explore whether maximum temperature modified the impact of ambient particulate matter less than 10 μm in diameter (PM10) on daily respiratory hospital admissions, cardiovascular hospital admissions, respiratory emergency visits, cardiovascular emergency visits, non-external cause mortality and cardiovascular mortality in Brisbane between 1996 and 2001. The analytical approaches included a bivariate response surface model, a non-stratification parametric model and a stratification parametric model. Results show that there existed a statistically significant interaction between PM10 and temperature on most health outcomes at various lags. PM10 exhibited more adverse health effects on warm days than cold days. The choice of the degree of freedom for smoothers to adjust for confounders and the selection of arbitrary cut-offs for temperature affected the interaction estimates to a certain extent, but did not change the overall conclusion. The results imply that it is important to control and reduce the emission of air particles in Brisbane, particularly when temperature increases.

  20. Factors influencing mobile source particulate matter emissions-to-exposure relationships in the Boston urban area.

    Science.gov (United States)

    Greco, Susan L; Wilson, Andrew M; Hanna, Steven R; Levy, Jonathan I

    2007-11-15

    Benefit-cost and regulatory impact analyses often use atmospheric dispersion models with coarse resolution to estimate the benefits of proposed mobile source emission control regulations. This approach may bias health estimates or miss important intra-urban variability for primary air pollutants. In this study, we estimate primary fine particulate matter (PM2.5) intake fractions (iF; the fraction of a pollutant emitted from a source that is inhaled by the population) for each of 23 398 road segments in the Boston Metro Core area to evaluate the potential for intra-urban variability in the emissions-to-exposure relationship. We estimate iFs using the CAL3QHCR line source model combined with residential populations within 5000 m of each road segment. The annual average values for the road segments range from 0.8 to 53 per million, with a mean of 12 per million. On average, 46% of the total exposure is realized within 200 m of the road segment, though this varies from 0 to 93% largely due to variable population patterns. Our findings indicate the likelihood of substantial intra-urban variability in mobile source primary PM2.5 iF that accounting for population movement with time, localized meteorological conditions, and street-canyon configurations would likely increase.

  1. The Effects of Fine Particulate Air Pollution on Daily Mortality: A Case-Crossover Study in a Subtropical City, Taipei, Taiwan

    Directory of Open Access Journals (Sweden)

    Shang-Shyue Tsai

    2014-05-01

    Full Text Available This study was undertaken to determine whether there was an association between PM2.5 levels and daily mortality in Taipei, Taiwan, the largest metropolitan city with a subtropical climate. Daily mortality, air pollution, and weather data for Taipei were obtained for the period from 2006–2008. The relative risk of daily mortality was estimated using a time-stratified case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. For the single pollutant model, PM2.5 showed association with total mortality both on warm (>23 °C and cool days (<23 °C. There is no indication of an association between PM2.5 and risk of death due to respiratory diseases both on warm and cool days. PM2.5 had effects on the risk of death from cardiovascular diseases only on cool days. In the two-pollutant models, PM2.5 remained effects on the risk of mortality for all cause and cardiovascular disease after the inclusion of SO2 and O3 both on warm and cool days. This study provides evidence that short-term exposure to PM2.5 increased the risk of death for all cause and cardiovascular disease.

  2. Effect of co-exposure to nickel and particulate matter on insulin resistance and mitochondrial dysfunction in a mouse model.

    Science.gov (United States)

    Xu, Xiaohua; Rao, Xiaoquan; Wang, Tse-Yao; Jiang, Silis Y; Ying, Zhekang; Liu, Cuiqing; Wang, Aixia; Zhong, Mianhua; Deiuliis, Jeffrey A; Maiseyeu, Andrei; Rajagopalan, Sanjay; Lippmann, Morton; Chen, Lung-Chi; Sun, Qinghua

    2012-11-05

    It has been well recognized that toxicity of fine ambient air particulate matter (PM(2.5)) may depend on its chemical constituents, including components such as soluble metals that may theoretically exert distinctive effects. We have recently demonstrated an important effect of PM(2.5) on metabolic function. Since transition metals, such as nickel (Ni), represent an important component of exposure in certain environments, and may significantly influence the toxicity of inhalational exposure, we investigated the effects of Ni as a variable component of ambient PM(2.5) exposure. Male ApoE knockout mice were exposed to filtered air (FA), fine-sized nickel sulfate particles alone (Ni) at 0.44 μg/m(3), concentrated ambient air PM(2.5) (CAPs) at a mean of 70 μg/m(3), or CAPs+Ni in Tuxedo, NY, 6 hours/day, 5 days/week, for 3 months. Exposure to Ni, irrespective of co-exposure to CAPs, resulted in body weight gain, while exposure to CAPs+Ni significantly enhanced fasting glucose and worsened insulin resistance measures (HOMA-IR), when compared with exposure to CAPs alone. CAPs+Ni exposure induced a significant decrease in phosphorylation of AMP-activated protein kinase (AMPK) α. Exposure to Ni or CAPs+Ni significantly induced microcirculatory dysfunction and increased monocytic cell infiltration into lung and adipose, and decreased uncoupling protein 1 expression at gene and protein levels and several brown adipocyte-specific genes in adipose tissue. Ni exposure has effects on metabolic and inflammatory parameters that are comparable to that of CAPs. Additionally, Ni synergistically exacerbates CAPs-induced adverse effects on some of, but not all of, these parameters, that may be mediated via the AMPK signaling pathway. These findings have important implications for inhaled transition metal toxicity that may exert synergistic effects with other PM(2.5) components.

  3. The Increase in Animal Mortality Risk following Exposure to Sparsely Ionizing Radiation Is Not Linear Quadratic with Dose

    OpenAIRE

    Haley, Benjamin M.; Paunesku, Tatjana; Grdina, David J.; Woloschak, Gayle E.

    2015-01-01

    Introduction The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bo...

  4. Mortality due to Vegetation Fire-Originated PM2.5 Exposure in Europe-Assessment for the Years 2005 and 2008.

    Science.gov (United States)

    Kollanus, Virpi; Prank, Marje; Gens, Alexandra; Soares, Joana; Vira, Julius; Kukkonen, Jaakko; Sofiev, Mikhail; Salonen, Raimo O; Lanki, Timo

    2017-01-01

    Vegetation fires can release substantial quantities of fine particles (PM2.5), which are harmful to health. The fire smoke may be transported over long distances and can cause adverse health effects over wide areas. We aimed to assess annual mortality attributable to short-term exposures to vegetation fire-originated PM2.5 in different regions of Europe. PM2.5 emissions from vegetation fires in Europe in 2005 and 2008 were evaluated based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data on fire radiative power. Atmospheric transport of the emissions was modeled using the System for Integrated modeLling of Atmospheric coMposition (SILAM) chemical transport model. Mortality impacts were estimated for 27 European countries based on a) modeled daily PM2.5 concentrations and b) population data, both presented in a 50 × 50 km2 spatial grid; c) an exposure-response function for short-term PM2.5 exposure and daily nonaccidental mortality; and d) country-level data for background mortality risk. In the 27 countries overall, an estimated 1,483 and 1,080 premature deaths were attributable to the vegetation fire-originated PM2.5 in 2005 and 2008, respectively. Estimated impacts were highest in southern and eastern Europe. However, all countries were affected by fire-originated PM2.5, and even the lower concentrations in western and northern Europe contributed substantially (~ 30%) to the overall estimate of attributable mortality. Our assessment suggests that air pollution caused by PM2.5 released from vegetation fires is a notable risk factor for public health in Europe. Moreover, the risk can be expected to increase in the future as climate change proceeds. This factor should be taken into consideration when evaluating the overall health and socioeconomic impacts of these fires. Citation: Kollanus V, Prank M, Gens A, Soares J, Vira J, Kukkonen J, Sofiev M, Salonen RO, Lanki T. 2017. Mortality due to vegetation fire-originated PM2.5 exposure in Europe

  5. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM{sub 10})

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Bai, Ni [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver (Canada); Vincent, Renaud [Environmental Health Sciences and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa (Canada); Francis, Gordon A.; Sin, Don D. [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Van Eeden, Stephan F., E-mail: Stephan.vanEeden@hli.ubc.ca [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada)

    2013-10-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM{sub 10}) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM{sub 10}. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM{sub 10}/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM{sub 10} exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM{sub 10} impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM{sub 10} increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM{sub 10}. Taken together, statins protect against PM{sub 10}-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM{sub 10}) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal

  6. Assessment of diesel particulate matter exposure in the workplace: freight terminals†

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Smith, Thomas J.; Garshick, Eric; Laden, Francine; Marr, Linsey C.; Molina, Luisa T.

    2008-01-01

    A large study has been undertaken to assess the exposure to diesel exhaust within diesel trucking terminals. A critical component of this assessment is an analysis of the variation in carbonaceous particulate matter (PM) across trucking terminal locations; consistency in the primary sources can be effectively tracked by analyzing trends in elemental carbon (EC) and organic molecular marker concentrations. Ambient samples were collected at yard, dock and repair shop work stations in 7 terminals in the USA and 1 in Mexico. Concentrations of EC ranged from 0.2 to 12 μg m−3 among the terminals, which corresponds to the range seen in the concentration of summed hopanes (0.5 to 20.5 ng m−3). However, when chemical mass balance (CMB) source apportionment results were presented as percent contribution to organic carbon (OC) concentrations, the contribution of mobile sources to OC are similar among the terminals in different cities. The average mobile source percent contribution to OC was 75.3 ± 17.1% for truck repair shops, 65.4 ± 20.4% for the docks and 38.4 ± 9.5% for the terminal yard samples. A relatively consistent mobile source impact was present at all the terminals only when considering percentage of total OC concentrations, not in terms of absolute concentrations. PMID:18392272

  7. Smoke exposure at western wildfires.

    Science.gov (United States)

    Timothy E. Reinhardt; Roger D. Ottmar

    2000-01-01

    Smoke exposure measurements among firefighters at wildfires in the Western United States between 1992 and 1995 showed that altogether most exposures were not significant, between 3 and 5 percent of the shift-average exposures exceeded occupational exposure limits for carbon monoxide and respiratory irritants. Exposure to benzene and total suspended particulate was not...

  8. Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice

    International Nuclear Information System (INIS)

    Bai Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; Breemen, Cornelis van; Eeden, Stephan F. van

    2011-01-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods: ApoE knockout mice (30-week) were exposed to DE (at 200 μg/m 3 of particulate matter) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400 W). NF-κB (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-κB (p65) was determined by real-time PCR. Results: DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by ∼ 20%, which was partly reversed by 1400 W. The mRNA expression of iNOS and NF-κB was significantly augmented after DE exposure. NF-κB activity was enhanced 2-fold after DE inhalation, and the augmented NF-κB activity was positively correlated with iNOS expression (R 2 = 0.5998). Conclusions: We show that exposure to DE increases iNOS expression and activity possibly via NF-κB-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. - Highlights: → Exposed ApoE knockout mice (30-week) to diesel exhaust (DE) for 7 weeks. → Examine iNOS expression and activity in the blood vessels and heart. → DE exposure

  9. Long-term exposure to ambient ozone and mortality: a quantitative systematic review and meta-analysis of evidence from cohort studies.

    Science.gov (United States)

    Atkinson, R W; Butland, B K; Dimitroulopoulou, C; Heal, M R; Stedman, J R; Carslaw, N; Jarvis, D; Heaviside, C; Vardoulakis, S; Walton, H; Anderson, H R

    2016-02-23

    While there is good evidence for associations between short-term exposure to ozone and a range of adverse health outcomes, the evidence from narrative reviews for long-term exposure is suggestive of associations with respiratory mortality only. We conducted a systematic, quantitative evaluation of the evidence from cohort studies, reporting associations between long-term exposure to ozone and mortality. Cohort studies published in peer-reviewed journals indexed in EMBASE and MEDLINE to September 2015 and PubMed to October 2015 and cited in reviews/key publications were identified via search strings using terms relating to study design, pollutant and health outcome. Study details and estimate information were extracted and used to calculate standardised effect estimates expressed as HRs per 10 ppb increment in long-term ozone concentrations. 14 publications from 8 cohorts presented results for ozone and all-cause and cause-specific mortality. We found no evidence of associations between long-term annual O3 concentrations and the risk of death from all causes, cardiovascular or respiratory diseases, or lung cancer. 4 cohorts assessed ozone concentrations measured during the warm season. Summary HRs for cardiovascular and respiratory causes of death derived from 3 cohorts were 1.01 (95% CI 1.00 to 1.02) and 1.03 (95% CI 1.01 to 1.05) per 10 ppb, respectively. Our quantitative review revealed a paucity of independent studies regarding the associations between long-term exposure to ozone and mortality. The potential impact of climate change and increasing anthropogenic emissions of ozone precursors on ozone levels worldwide suggests further studies of the long-term effects of exposure to high ozone levels are warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Exposures to thoracic particulate matter, endotoxin, and glucan during post-Hurricane Katrina restoration work, New Orleans 2005-2012.

    Science.gov (United States)

    Rando, Roy J; Kwon, Cheol-Woong; Lefante, John J

    2014-01-01

    In the aftermath of Hurricane Katrina, which devastated the city of New Orleans in August 2005, restoration workers were at risk for respiratory illness from exposure to airborne particles and microbial agents. In support of an epidemiologic investigation of this risk, an exposure assessment for restoration work activities (demolition, trash & debris management, landscape restoration, sewer/waterline repair, and mold remediation) was performed from 2005 to 2012. For 2005 and 2006, Occupational Safety and Health Administration (OSHA) data (n = 730) for personal and area monitoring of total and respirable dust exposures of restoration workers were accessed and analyzed. The most significant exposures were for demolition work, with average respirable dust exposures in 2005 above the action level of 2.5 mg/m(3) and 17.6% of exposures exceeding the permissible exposure limit (PEL) (5 mg/m(3)). Additional personal and area monitoring for thoracic particulate matter was performed from 2007 to 2012 (n = 774) and samples were assayed for endotoxin and (1→3, 1→6)-β-D-glucan (n = 202). In order to integrate the OSHA data with the later monitoring data, three independent predictive models were developed to convert total and respirable dust measures into the equivalent thoracic dust. The three models were not statistically different and the modeling results were in good agreement with an overall coefficient of variation of 16% for the thoracic dust means across work activities estimated by each of the three models. Overall, thoracic dust exposure levels decreased by about an order of magnitude within the first year after Katrina and then more gradually declined and stabilized through 2012. Estimated average exposures to endotoxin and microbial glucan in 2005 were as high as 256 EU/m(3) and 118 μg/m(3), respectively, and likewise were seen to decrease dramatically and stabilize after 2005. The results of this exposure assessment support previously published reports of

  11. Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts: Space for Exploration

    Science.gov (United States)

    Elgart, S. R.; Little, M. P.; Campbell, L. J.; Milder, C. M.; Shavers, M. R.; Huff, J. L.; Patel, Z. S.

    2018-01-01

    Of the many possible health challenges posed during extended exploratory missions to space, the effects of space radiation on cardiovascular disease and cancer are of particular concern. There are unique challenges to estimating those radiation risks; care and appropriate and rigorous methodology should be applied when considering small cohorts such as the NASA astronaut population. The objective of this work was to establish whether there is evidence for excess cardiovascular disease or cancer mortality in an early NASA astronaut cohort and determine if a correlation exists between space radiation exposure and mortality.

  12. Associations between long-term exposure to ambient particulate air pollution and type 2 diabetes prevalence, blood glucose and glycosylated hemoglobin levels in China

    Science.gov (United States)

    Zhao, Yaohui; Ma, Zongwei; Bi, Jun; Liu, Yang; Meng, Xia; Wang, Yafeng; Cai, Jing; Chen, Renjie; Kan, Haidong

    2016-01-01

    Background The evidence for an association between particulate air pollution and type 2 diabetes mellitus (T2DM) in developing countries was very scarce. Objective To investigate the associations of long-term exposure to fine particulate matter (PM2.5) with T2DM prevalence and with fasting glucose and glycosylated hemoglobin (HbA1c) levels in China. Methods This is a cross-sectional study based on a nation-wide baseline survey of 11,847 adults who participated in the China Health and Retirement Longitudinal Study from June 2011 to March 2012. The average residential exposure to PM2.5 for each participant in the same period was estimated using a satellite-based spatial statistical model. We determined the association between PM2.5 and T2DM prevalence by multivariable logistic regression models. We also evaluated the association between PM2.5 and fasting glucose and HbA1c levels using multivariable linear regression models. Stratification analyses were conducted to explore potential effect modification. Results We identified 1,760 cases of T2DM, corresponding to 14.9% of the study population. The average PM2.5 exposure for all participants was 72.6 μg/m3 during the study period. An interquartile range increase in PM2.5 (41.1μg/m3) was significantly associated with increased T2DM prevalence (prevalence ratio, PR=1.14), and elevated levels of fasting glucose (0.26 mmol/L) and HbA1c (0.08%). The associations of PM2.5 with T2DM prevalence and with fasting glucose and HbA1c were stronger in several subgroups. Conclusions This nationwide cross-sectional study suggested that long-term exposure to PM2.5 might increase the risk of T2DM in China. PMID:27148900

  13. Diagnosis, monitoring and prevention of exposure-related non-communicable diseases in the living and working environment: DiMoPEx-project is designed to determine the impacts of environmental exposure on human health.

    Science.gov (United States)

    Budnik, Lygia Therese; Adam, Balazs; Albin, Maria; Banelli, Barbara; Baur, Xaver; Belpoggi, Fiorella; Bolognesi, Claudia; Broberg, Karin; Gustavsson, Per; Göen, Thomas; Fischer, Axel; Jarosinska, Dorota; Manservisi, Fabiana; O'Kennedy, Richard; Øvrevik, Johan; Paunovic, Elizabet; Ritz, Beate; Scheepers, Paul T J; Schlünssen, Vivi; Schwarzenbach, Heidi; Schwarze, Per E; Sheils, Orla; Sigsgaard, Torben; Van Damme, Karel; Casteleyn, Ludwine

    2018-01-01

    The WHO has ranked environmental hazardous exposures in the living and working environment among the top risk factors for chronic disease mortality. Worldwide, about 40 million people die each year from noncommunicable diseases (NCDs) including cancer, diabetes, and chronic cardiovascular, neurological and lung diseases. The exposure to ambient pollution in the living and working environment is exacerbated by individual susceptibilities and lifestyle-driven factors to produce complex and complicated NCD etiologies. Research addressing the links between environmental exposure and disease prevalence is key for prevention of the pandemic increase in NCD morbidity and mortality. However, the long latency, the chronic course of some diseases and the necessity to address cumulative exposures over very long periods does mean that it is often difficult to identify causal environmental exposures. EU-funded COST Action DiMoPEx is developing new concepts for a better understanding of health-environment (including gene-environment) interactions in the etiology of NCDs. The overarching idea is to teach and train scientists and physicians to learn how to include efficient and valid exposure assessments in their research and in their clinical practice in current and future cooperative projects. DiMoPEx partners have identified some of the emerging research needs, which include the lack of evidence-based exposure data and the need for human-equivalent animal models mirroring human lifespan and low-dose cumulative exposures. Utilizing an interdisciplinary approach incorporating seven working groups, DiMoPEx will focus on aspects of air pollution with particulate matter including dust and fibers and on exposure to low doses of solvents and sensitizing agents. Biomarkers of early exposure and their associated effects as indicators of disease-derived information will be tested and standardized within individual projects. Risks arising from some NCDs, like pneumoconioses, cancers and

  14. EDITORIAL: Global impacts of particulate matter air pollution

    Science.gov (United States)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  15. Lung injury, inflammation and Akt signaling following inhalation of particulate hexavalent chromium

    International Nuclear Information System (INIS)

    Beaver, Laura M.; Stemmy, Erik J.; Constant, Stephanie L.; Schwartz, Arnold; Little, Laura G.; Gigley, Jason P.; Chun, Gina; Sugden, Kent D.

    2009-01-01

    Certain particulate hexavalent chromium [Cr(VI)] compounds are human respiratory carcinogens that release genotoxic soluble chromate, and are associated with fibrosis, fibrosarcomas, adenocarcinomas and squamous cell carcinomas of the lung. We postulate that inflammatory processes and mediators may contribute to the etiology of Cr(VI) carcinogenesis, however the immediate (0-24 h) pathologic injury and immune responses after exposure to particulate chromates have not been adequately investigated. Our aim was to determine the nature of the lung injury, inflammatory response, and survival signaling responses following intranasal exposure of BALB/c mice to particulate basic zinc chromate. Factors associated with lung injury, inflammation and survival signaling were measured in airway lavage fluid and in lung tissue. A single chromate exposure induced an acute immune response in the lung, characterized by a rapid and significant increase in IL-6 and GRO-α levels, an influx of neutrophils, and a decline in macrophages in lung airways. Histological examination of lung tissue in animals challenged with a single chromate exposure revealed an increase in bronchiolar cell apoptosis and mucosal injury. Furthermore, chromate exposure induced injury and inflammation that progressed to alveolar and interstitial pneumonitis. Finally, a single Cr(VI) challenge resulted in a rapid and persistent increase in the number of airways immunoreactive for phosphorylation of the survival signaling protein Akt, on serine 473. These data illustrate that chromate induces both survival signaling and an inflammatory response in the lung, which we postulate may contribute to early oncogenesis

  16. A comprehensive review of European epidemiological studies on particulate matter exposure and health

    Energy Technology Data Exchange (ETDEWEB)

    Negri, E.; Gallus, S. [Department of Epidemiology, Mario Negri Institute, Milan (Italy); Boffetta, P. [International Agency for Research on Cancer, Lyon (France); McLaughlin, J.K. [International Epidemiology Institute, Rockville, MD (United States); La Vecchia, C. [Institute of Medical Statistics and Biometry, University of Milan (Italy)

    2011-06-15

    There are a limited number of papers on the long term effect of air pollution on morbidity and mortality in Europe, particularly with reference to small particles with aerodynamic diameters less than 2.5 microns (PM2.5). Most information comes from US cohort studies, including the American Cancer Society Cancer Prevention Study II, the Harvard Six Cities Study, the Adventists' Health Study of Smog, and the Veterans' Cohort Mortality Study. Ambient levels of several relevant pollutants are more variable within Europe than in the USA, and are in several areas comparably high. Selected European cohort studies, including the Netherlands Cohort Study on Diet and Cancer and the European Prospective Investigation on Cancer and Nutrition study found some association between indicators of air pollution such as PM10 or NO2 and lung cancer risk, but the results were inconsistent and inadequate to address the health effects of exposure to PM2.5. In addition to the effect on mortality, there are open issues on the potential impact of air pollution on childhood asthma, allergy and airway disease. In consideration of the difficulties in estimating the prevalence of the conditions in various populations, these issues require additional focus. In order to provide an indication on possible further analyses of existing European datasets, and on future new studies, a critical review of existing literature (with a focus on European data) was performed. The project resulted in a detailed report (see Appendix 1) and in a paper published in the European Journal of Cancer Prevention.

  17. Mortality, fog and atmospheric pollution

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A E; Bradley, W H

    1960-01-01

    A study was made associating climate and atmospheric pollution with excess mortality in greater London during the winter of 1958 and 1959. It was a particularly foggy winter with 6 major episodes, 4 of which resembled previous dangerous smogs. There were two additional periods of high pollution without fog. Excess mortality during these 8 periods ranged from 70 to 230. During one period, a flu epidemic accompanied the fog. In 4 to 6 foggy periods, morbidity (hospital bed demand) also increased. This small number of observations indicates mortality association: on 2/3 of days with high SO/sub 2/ (2.5 pphM) or high particulate soot (10 mg/m/sup 3/), and on all days with thick fog, there was an increase in mortality (20 deaths more than previous day) on that or the following day. Fifteen-day moving mortality index and bronchitis mortality index were significantly correlated with black suspended matter and SO/sub 2/; association with pneumonia was not significant. Also little or no relation between mortality and humidity, mean temperature, or barometric pressure was found. Rapid response of mortality to air pollution may indicate that pollution affects mostly those already ill.

  18. Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: comparison of emission rates and secondhand exposure.

    Science.gov (United States)

    Saffari, Arian; Daher, Nancy; Ruprecht, Ario; De Marco, Cinzia; Pozzi, Paolo; Boffi, Roberto; Hamad, Samera H; Shafer, Martin M; Schauer, James J; Westerdahl, Dane; Sioutas, Constantinos

    2014-01-01

    In recent years, electronic cigarettes have gained increasing popularity as alternatives to normal (tobacco-containing) cigarettes. In the present study, particles generated by e-cigarettes and normal cigarettes have been analyzed and the degree of exposure to different chemical agents and their emission rates were quantified. Despite the 10-fold decrease in the total exposure to particulate elements in e-cigarettes compared to normal cigarettes, specific metals (e.g. Ni and Ag) still displayed a higher emission rate from e-cigarettes. Further analysis indicated that the contribution of e-liquid to the emission of these metals is rather minimal, implying that they likely originate from other components of the e-cigarette device or other indoor sources. Organic species had lower emission rates during e-cigarette consumption compared to normal cigarettes. Of particular note was the non-detectable emission of polycyclic aromatic hydrocarbons (PAHs) from e-cigarettes, while substantial emission of these species was observed from normal cigarettes. Overall, with the exception of Ni, Zn, and Ag, the consumption of e-cigarettes resulted in a remarkable decrease in secondhand exposure to all metals and organic compounds. Implementing quality control protocols on the manufacture of e-cigarettes would further minimize the emission of metals from these devices and improve their safety and associated health effects.

  19. Cause-specific stillbirth and exposure to chemical constituents and sources of fine particulate matter.

    Science.gov (United States)

    Ebisu, Keita; Malig, Brian; Hasheminassab, Sina; Sioutas, Constantinos; Basu, Rupa

    2018-01-01

    The stillbirth rate in the United States is relatively high, but limited evidence is available linking stillbirth with fine particulate matter (PM 2.5 ), its chemical constituents and sources. In this study, we explored associations between cause-specific stillbirth and prenatal exposures to those pollutants with using live birth and stillbirth records from eight California locations during 2002-2009. ICD-10 codes were used to identify cause of stillbirth from stillbirth records. PM 2.5 total mass and chemical constituents were collected from ambient monitors and PM 2.5 sources were quantified using Positive Matrix Factorization. Conditional logistic regression was applied using a nested case-control study design (N = 32,262). We found that different causes of stillbirth were associated with different PM 2.5 sources and/or chemical constituents. For stillbirths due to fetal growth, the odds ratio (OR) per interquartile range increase in gestational age-adjusted exposure to PM 2.5 total mass was 1.23 (95% confidence interval (CI): 1.06, 1.44). Similar associations were found with resuspended soil (OR=1.25, 95% CI: 1.10, 1.42), and secondary ammonium sulfate (OR=1.45, 95% CI: 1.18, 1.78). No associations were found between any pollutants and stillbirths caused by maternal complications. This study highlighted the importance of investigating cause-specific stillbirth and the differential toxicity levels of specific PM 2.5 sources and chemical constituents. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Short-term effect of fine particulate air pollution on daily mortality: a case-crossover study in a tropical city, Kaohsiung, Taiwan.

    Science.gov (United States)

    Tsai, Shang-Shyue; Chen, Chih-Cheng; Yang, Chun-Yuh

    2014-01-01

    Many studies have examined the short-term effects of air pollution on frequency of daily mortality over the past two decades. However, information on the relationship between levels of fine particles (PM(2.5)) and daily mortality is relatively sparse due to limited availability of monitoring data. Further the results are inconsistent. This study was undertaken to determine whether there was an association between PM(2.5) levels and daily mortality rate in Kaohsiung, Taiwan, a large industrial city with a tropical climate. Daily mortality rate, air pollution parameters, and weather data for Kaohsiung were obtained for the period from 2006 through 2008. The relative risk of daily mortality occurrence was estimated using a time-stratified case-crossover approach, controlling for (1) weather variables, (2) day of the week, (3) seasonality, and (4) long-term time trends. For the single-pollutant model (without adjustment for other pollutants), no significant effects were found between PM(2.5) and frequency of daily mortality on warm days (≥25°C). On cool days, PM(2.5) showed significant correlation with increased risk of mortality rate for all causes and circulatory diseases in single-pollutant model. There was no indication of an association between PM(2.5) and deaths due to respiratory diseases. The relationship appeared to be stronger on cool days. This study provided evidence of associations between short-term exposure to PM(2.5) and elevated risk of death for all cause and circulatory diseases.

  1. Estimating survival probabilities by exposure levels: utilizing vital statistics and complex survey data with mortality follow-up.

    Science.gov (United States)

    Landsman, V; Lou, W Y W; Graubard, B I

    2015-05-20

    We present a two-step approach for estimating hazard rates and, consequently, survival probabilities, by levels of general categorical exposure. The resulting estimator utilizes three sources of data: vital statistics data and census data are used at the first step to estimate the overall hazard rate for a given combination of gender and age group, and cohort data constructed from a nationally representative complex survey with linked mortality records, are used at the second step to divide the overall hazard rate by exposure levels. We present an explicit expression for the resulting estimator and consider two methods for variance estimation that account for complex multistage sample design: (1) the leaving-one-out jackknife method, and (2) the Taylor linearization method, which provides an analytic formula for the variance estimator. The methods are illustrated with smoking and all-cause mortality data from the US National Health Interview Survey Linked Mortality Files, and the proposed estimator is compared with a previously studied crude hazard rate estimator that uses survey data only. The advantages of a two-step approach and possible extensions of the proposed estimator are discussed. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask.

    Science.gov (United States)

    Langrish, Jeremy P; Mills, Nicholas L; Chan, Julian Kk; Leseman, Daan Lac; Aitken, Robert J; Fokkens, Paul Hb; Cassee, Flemming R; Li, Jing; Donaldson, Ken; Newby, David E; Jiang, Lixin

    2009-03-13

    Exposure to air pollution is an important risk factor for cardiovascular morbidity and mortality, and is associated with increased blood pressure, reduced heart rate variability, endothelial dysfunction and myocardial ischaemia. Our objectives were to assess the cardiovascular effects of reducing air pollution exposure by wearing a facemask. In an open-label cross-over randomised controlled trial, 15 healthy volunteers (median age 28 years) walked on a predefined city centre route in Beijing in the presence and absence of a highly efficient facemask. Personal exposure to ambient air pollution and exercise was assessed continuously using portable real-time monitors and global positional system tracking respectively. Cardiovascular effects were assessed by continuous 12-lead electrocardiographic and ambulatory blood pressure monitoring. Ambient exposure (PM2.5 86 +/- 61 vs 140 +/- 113 mug/m3; particle number 2.4 +/- 0.4 vs 2.3 +/- 0.4 x 104 particles/cm3), temperature (29 +/- 1 vs 28 +/- 3 degrees C) and relative humidity (63 +/- 10 vs 64 +/- 19%) were similar (P > 0.05 for all) on both study days. During the 2-hour city walk, systolic blood pressure was lower (114 +/- 10 vs 121 +/- 11 mmHg, P 0.05). Over the 24-hour period heart rate variability increased (SDNN 65.6 +/- 11.5 vs 61.2 +/- 11.4 ms, P pollution on blood pressure and heart rate variability. This simple intervention has the potential to protect susceptible individuals and prevent cardiovascular events in cities with high concentrations of ambient air pollution.

  3. Diesel particulate matter exposure in South African platinum mines: an overview

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2014-08-01

    Full Text Available Personal diesel particulate matter (DPM) sampling was conducted on nearly 300 mine workers in the diesel and non-diesel sections of three platinum mines in South Africa. Respiratory health questionnaires were administered to all of these workers...

  4. All-cause mortality increased by environmental cadmium exposure in the Japanese general population in cadmium non-polluted areas.

    Science.gov (United States)

    Suwazono, Yasushi; Nogawa, Kazuhiro; Morikawa, Yuko; Nishijo, Muneko; Kobayashi, Etsuko; Kido, Teruhiko; Nakagawa, Hideaki; Nogawa, Koji

    2015-07-01

    The aim of the present study was to evaluate the effect of environmental cadmium (Cd) exposure indicated by urinary Cd on all-cause mortality in the Japanese general population. A 19-year cohort study was conducted in 1067 men and 1590 women aged 50 years or older who lived in three cadmium non-polluted areas in Japan. The subjects were divided into four quartiles based on creatinine adjusted U-Cd (µg g(-1) cre). The hazard ratio (HR) and 95% confidence interval (CI) for continuous U-Cd or the quartiles of U-Cd were estimated for all-cause mortality using a proportional hazards regression.The all-cause mortality rates per 1000 person years were 31.2 and 15.1 in men and women, respectively. Continuous U-Cd (+1 µg g(-1) cre) was significantly related to the all-cause mortality in men (HR 1.05, 95% CI: 1.02-1.09) and women (HR 1.04, 95% CI: 1.01-1.07). Furthermore in men, the third (1.96-3.22 µg g(-1) cre) and fourth quartile (≥3.23 µg g(-1) cre) of U-Cd showed a significant, positive HR (third: HR 1.35, 95% CI: 1.03-1.77, fourth: HR 1.64, 95% CI: 1.26-2.14) for all-cause mortality compared with the first quartile (women, the fourth quartile of U-Cd (≥4.66 µg g(-1) cre) also showed a significant HR (1.49, 95% CI 1.11-2.00) for all-cause mortality compared with the first quartile (<1.46 µg g(-1) cre).In the present study, U-Cd was significantly associated with increased mortality in the Japanese general population, indicating that environmental Cd exposure adversely affects the life prognosis in Cd non-polluted areas in Japan. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter.

    Science.gov (United States)

    Morakinyo, Oyewale Mayowa; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley; Hunter, Raymond Paul

    2016-06-14

    Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or) keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality.

  6. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter

    Directory of Open Access Journals (Sweden)

    Oyewale Mayowa Morakinyo

    2016-06-01

    Full Text Available Particulate matter (PM is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality.

  7. Natural Cause Mortality and Long-Term Exposure to Particle Components

    DEFF Research Database (Denmark)

    Beelen, Rob; Hoek, Gerard; Raaschou-Nielsen, Ole

    2015-01-01

    standardized protocol. Annual average concentrations of Copper (Cu), Iron (Fe), Potassium (K), Nickel (Ni), Sulfur (S), Silicon (Si), Vanadium (V) and Zinc (Zn) within PM size fractions PM2.5) and ...-up 14.3 years). Hazard ratios were positive for almost all elements and statistically significant for PM2.5 sulfur (1.14; 95% CI: 1.06, 1.23 per 200 ng/m3). In a two-pollutant model, the association with PM2.5 sulfur was robust to adjustment for PM2.5 mass, whereas the association with PM2.5 mass...... was reduced. CONCLUSIONS: Long-term exposure to PM2.5 sulfur was associated with natural cause mortality. This association was robust to adjustment for other pollutants and PM2.5....

  8. Elemental constituents of particulate matter and newborn’s size in eight European cohorts

    NARCIS (Netherlands)

    Pedersen, M.; Gehring, U.; Beelen, R.; Wang, M.; Giorgis-Allemand, L.; Andersen, A.M.N.; Basagaña, X.; Bernard, C.; Cirach, M.; Forastiere, F.; Hoogh, K. de; Gražuleviĉvienė, R.; Gruzieva, O.; Hoek, G.; Jedynska, A.; Klümper, C.; Kooter, I.M.; Krämer, U.; Kukkonen, J.; Porta, D.; Postma, D.S.; Raaschou-Nielsen, O.; Rossem, L. van; Sunyer, J.; Sørensen, M.; Tsai, M.Y.; Vrijkotte, T.G.M.; Wilhelm, M.; Nieuwenhuijsen, M.J.; Pershagen, G.; Brunekreef, B.; Kogevinas, M.; Slama, R.

    2016-01-01

    Background: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn’s size have been little examined. Objective: We aimed to investigate the associations of exposure to elemental

  9. Personal exposure measurements of school-children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China.

    Science.gov (United States)

    Zhang, Lijun; Guo, Changyi; Jia, Xiaodong; Xu, Huihui; Pan, Meizhu; Xu, Dong; Shen, Xianbiao; Zhang, Jianghua; Tan, Jianguo; Qian, Hailei; Dong, Chunyang; Shi, Yewen; Zhou, Xiaodan; Wu, Chen

    2018-01-01

    The aim of this study was to perform an exposure assessment of PM2.5 (particulate matter less than 2.5μm in aerodynamic diameter) among children and to explore the potential sources of exposure from both indoor and outdoor environments. In terms of real-time exposure measurements of PM2.5, we collected data from 57 children aged 8-12 years (9.64 ± 0.93 years) in two schools in Shanghai, China. Simultaneously, questionnaire surveys and time-activity diaries were used to estimate the environment at home and daily time-activity patterns in order to estimate the exposure dose of PM2.5 in these children. Principle component regression analysis was used to explore the influence of potential sources of PM2.5 exposure. All the median personal exposure and microenvironment PM2.5 concentrations greatly exceeded the daily 24-h PM2.5 Ambient Air Quality Standards of China, the USA, and the World Health Organization (WHO). The median Etotal (the sum of the PM2.5 exposure levels in different microenvironment and fractional time) of all students was 3014.13 (μg.h)/m3. The concentration of time-weighted average (TWA) exposure of all students was 137.01 μg/m3. The median TWA exposure level during the on-campus period (135.81 μg/m3) was significantly higher than the off-campus period (115.50 μg/m3, P = 0.013 < 0.05). Besides ambient air pollution and meteorological conditions, storey height of the classroom and mode of transportation to school were significantly correlated with children's daily PM2.5 exposure. Children in the two selected schools were exposed to high concentrations of PM2.5 in winter of 2013 in Shanghai. Their personal PM2.5 exposure was mainly associated with ambient air conditions, storey height of the classroom, and children's transportation mode to school.

  10. Dose-dependent relationship between prenatal exposure to fine particulates and exhaled carbon monoxide in non-asthmatic children. A population-based birth cohort study

    Directory of Open Access Journals (Sweden)

    Wiesław A. Jędrychowski

    2013-02-01

    Full Text Available Objectives: The main goal of the study was to assess possible association between fetal exposure to fi ne particulate matter (PM2.5 and exhaled carbon monoxide (eCO measured in non-asthmatic children. Material and Methods: The subjects include 118 children taking part in an ongoing population-based birth cohort study in Kraków. Personal samplers of PM2.5 were used to measure fi ne particle mass in the fetal period and carbon monoxide (CO in exhaled breath from a single exhalation effort at the age of 7. In the statistical analysis of the effect of prenatal PM2.5 exposure on eCO, a set of potential confounders, such as environmental tobacco smoke (ETS, city residence area, sensitization to house dust allergens and the occurrence of respiratory symptoms monitored over the seven-year follow-up was considered. Results: The level of eCO did not correlate with the self-reported ETS exposure recorded over the follow-up, however, there was a positive signifi cant relationship with the prenatal PM2.5 exposure (non-parametric trend p = 0.042. The eCO mean level was higher in atopic children (geometric mean = 2.06 ppm, 95% CI: 1.58–2.66 ppm than in non-atopic ones (geometric mean = 1.57 ppm, 95% CI: 1.47–1.73 ppm and the difference was statistically signifi cant (p = 0.036. As for the respiratory symptoms, eCO values were associated positively only with the cough severity score recorded in the follow-up (nonparametric trend p = 0.057. In the nested multivariable linear regression model, only the effects of prenatal PM2.5 and cough severity recorded in the follow-up were related to eCO level. The prenatal PM2.5 exposure represented 5.1%, while children’s cough represented only 2.6% of the eCO variability. Conclusion: Our study suggests that elevated eCO in non-asthmatic children may result from oxidative stress experienced in the fetal period and that heme oxygenase (HO activity in body tissues may be programmed in the fetal period by the exposure to

  11. Mortality effects assessment of ambient PM2.5 pollution in the 74 leading cities of China.

    Science.gov (United States)

    Fang, Die; Wang, Qin'geng; Li, Huiming; Yu, Yiyong; Lu, Yan; Qian, Xin

    2016-11-01

    Ambient fine particulate matter (PM2.5) pollution is currently a most severe and worrisome environmental problem in China. However, current knowledge of the health effects of this pollution is insufficient. This study aims to provide an overall understanding regarding the long-term mortality effects of current PM2.5 pollution in China and the potential health benefits of realizing the goals stipulated in the ongoing action plan of Air Pollution Prevention and Control (APPC) and the targets suggested by the WHO. Three typical causes and all-cause of PM2.5-related mortality were considered. The log-linear exposure-response function was adopted, and a meta-analysis was used to determine the exposure-response coefficients, based on newly available data in China and abroad. In the 74 leading cities of China, approximately 32% of the reported deaths, with a mortality rate of 1.9‰, were associated with PM2.5 in 2013, in which deaths from cardiovascular, respiratory and lung-cancer causes accounted for 20% of the reported deaths, with a mortality rate of 1.2‰. The regional difference is remarkable for the mortalities and proportions of the different causes. If the PM2.5 concentration goals of the APPC plan, the first interim and the guideline targets of the WHO could be achieved, the PM2.5-related all-cause mortality would be reduced by 25%, 64% and 95%, respectively, compared with that of 2013. PM2.5 pollution in China has incurred great health risks that are even worse than those of tobacco smoking. The health benefits of the APPC plan could be outstanding, although there is still great potential to improve future air quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Cancer mortality in Hanford workers

    International Nuclear Information System (INIS)

    Marks, S.; Gilbert, E.S.; Breitenstein, B.D.

    1978-01-01

    Personnel and radiation exposure data for past and present employees of the Hanford plant have been collected and analysed for a possible relationship of exposure to mortality. The occurrence of death in workers was established by the Social Security Administration and the cause of death obtained from death certificates. Mortality from all causes, all cancer cases and specific cancer types was related to the population at risk. Standardized mortality ratios were calculated for white males, using age- and calendar year-specific mortality rates for the U.S. population in the calculation of expected deaths. This analysis showed a substantial 'healthy worker effect' and no significantly high standardized mortality ratios for specific disease categories. A test for association of mortality with levels of radiation exposure revealed no correlation for all causes and all cancer. In carrying out this test, adjustment was made for age and calendar year of death, length of employment and occupational category. A statistically significant test for trend was obtained for multiple myeloma and carcinoma of the pancreas. However, in view of the absence of such a correlation for diseases more commonly associated with radiation exposure such as myeloid leukaemia, as well as the small number of deaths in higher exposure groups, the results cannot be considered definitive. Any conclusions based on these associations should be viewed in relation to the results of other studies. These results are compared with those of other investigators who have analysed the Hanford data. (author)

  13. Daily mortality and air pollutants: findings from Köln, Germany.

    Science.gov (United States)

    Spix, C; Wichmann, H E

    1996-04-01

    consequently little impact. Given the model, most of the range of SO2 values (5th centile to 95th centile) led to a 3-4% increase in mortality (significant), particulates led to a 2% increase (borderline significant, less data than for SO2), and NO2 had no relationship with mortality (measurements possibly not representative of actual exposure). Effects were usually delayed by a day.

  14. Individual-Level Concentrations of Fine Particulate Matter Chemical Components and Subclinical Atherosclerosis: A Cross-Sectional Analysis Based on 2 Advanced Exposure Prediction Models in the Multi-Ethnic Study of Atherosclerosis

    Science.gov (United States)

    Kim, Sun-Young; Sheppard, Lianne; Kaufman, Joel D.; Bergen, Silas; Szpiro, Adam A.; Larson, Timothy V.; Adar, Sara D.; Diez Roux, Ana V.; Polak, Joseph F.; Vedal, Sverre

    2014-01-01

    Long-term exposure to outdoor particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) has been associated with cardiovascular morbidity and mortality. The chemical composition of PM2.5 that may be most responsible for producing these associations has not been identified. We assessed cross-sectional associations between long-term concentrations of PM2.5 and 4 of its chemical components (sulfur, silicon, elemental carbon, and organic carbon (OC)) and subclinical atherosclerosis, measured as carotid intima-media thickness (CIMT) and coronary artery calcium, between 2000 and 2002 among 5,488 Multi-Ethnic Study of Atherosclerosis participants residing in 6 US metropolitan areas. Long-term concentrations of PM2.5 components at participants' homes were predicted using both city-specific spatiotemporal models and a national spatial model. The estimated differences in CIMT associated with interquartile-range increases in sulfur, silicon, and OC predictions from the spatiotemporal model were 0.022 mm (95% confidence interval (CI): 0.014, 0.031), 0.006 mm (95% CI: 0.000, 0.012), and 0.026 mm (95% CI: 0.019, 0.034), respectively. Findings were generally similar using the national spatial model predictions but were often sensitive to adjustment for city. We did not find strong evidence of associations with coronary artery calcium. Long-term concentrations of sulfur and OC, and possibly silicon, were associated with CIMT using 2 distinct exposure prediction modeling approaches. PMID:25164422

  15. A review of mortality associated with elongate mineral particle (EMP) exposure in occupational epidemiology studies of gold, talc, and taconite mining.

    Science.gov (United States)

    Mandel, Jeffrey H; Alexander, Bruce H; Ramachandran, Gurumurthy

    2016-12-01

    Mining of gold, taconite, and talc may involve exposure to elongate mineral particles (EMP). The involved EMPs are typically non-asbestiform, include dimensions that regulatory definitions exclude, and have been less studied. A review of the literature was undertaken for this exposure and occupational epidemiological studies that occur in gold, talc, and taconite mining. Quantitative EMP exposure information in these industries is incomplete. However, there are consistent findings of pneumoconiosis in each of these types of mining. A recent case-control study suggests a possible association between this exposure and mesothelioma. Lung cancer is inconsistently reported in these industries and is an unlikely outcome of non-asbestiform EMP exposure. There is evidence of cardiovascular mortality excess across all of these types of mining. Non-malignant respiratory disease and cardiovascular mortality have been consistently increased in these industries. Further investigation, including additional insights for the role of non-asbestiform EMP, is warranted. Am. J. Ind. Med. 59:1047-1060, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Assessing the short term impact of air pollution on mortality: a matching approach.

    Science.gov (United States)

    Baccini, Michela; Mattei, Alessandra; Mealli, Fabrizia; Bertazzi, Pier Alberto; Carugno, Michele

    2017-02-10

    The opportunity to assess short term impact of air pollution relies on the causal interpretation of the exposure-response association. However, up to now few studies explicitly faced this issue within a causal inference framework. In this paper, we reformulated the problem of assessing the short term impact of air pollution on health using the potential outcome approach to causal inference. We considered the impact of high daily levels of particulate matter ≤10 μm in diameter (PM 10 ) on mortality within two days from the exposure in the metropolitan area of Milan (Italy), during the period 2003-2006. Our research focus was the causal impact of a hypothetical intervention setting daily air pollution levels under a pre-fixed threshold. We applied a matching procedure based on propensity score to estimate the total number of attributable deaths (AD) during the study period. After defining the number of attributable deaths in terms of difference between potential outcomes, we used the estimated propensity score to match each high exposure day, namely each day with a level of exposure higher than 40 μg/m 3 , with a day with similar background characteristics but a level of exposure lower than 40 μg/m 3 . Then, we estimated the impact by comparing mortality between matched days. During the study period daily exposures larger than 40 μg/m 3 were responsible for 1079 deaths (90% CI: 116; 2042). The impact was more evident among the elderly than in the younger age classes. Exposures ≥ 40 μg/m 3 were responsible, among the elderly, for 1102 deaths (90% CI: 388, 1816), of which 797 from cardiovascular causes and 243 from respiratory causes. Clear evidence of an impact on respiratory mortality was found also in the age class 65-74, with 87 AD (90% CI: 11, 163). The propensity score matching turned out to be an appealing method to assess historical impacts in this field, which guarantees that the estimated total number of AD can be derived directly as sum

  17. Update on worker mortality data at Hanford

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1979-01-01

    The subject of this paper is a study of the effects on mortality of occupational exposure to ionizing radiation at the Hanford plant. The Hanford plant, which is located in southeastern Washington State, was established in the early forties as an installation for plutonium production. Many workers employed by the various contractors hold jobs involving some exposure to radiation. Yearly records of this exposure, obtained from dosimeter readings, as well as occupational data, are maintained for all employees. Mortality data are obtained by having the Social Security Administration periodically search their records for deaths of persons identified in the personnel rosters of Hanford contractors. Published analyses of worker mortality at Hanford have included workers initially employed before 1965 and mortality up to April 1, 1974. In this paper, the mortality data are updated to include deaths up to May 1, 1977, workers employed 1965 and later, and the most recent exposure data. In addition to updating results of earlier analyses, this paper provides a discussion of the problems involved in analyzing and interpreting occupational exposure and mortality data. For a more detailed discussion of these problems the reader is referred to the papers noted above

  18. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  19. Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae

    Science.gov (United States)

    Vidau, Cyril; Diogon, Marie; Aufauvre, Julie; Fontbonne, Régis; Viguès, Bernard; Brunet, Jean-Luc; Texier, Catherine; Biron, David G.; Blot, Nicolas; El Alaoui, Hicham; Belzunces, Luc P.; Delbac, Frédéric

    2011-01-01

    Background The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. Methodology/Finding Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. Conclusions/Significance After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing

  20. Interaction of PM2.5 airborne particulates with ZnO and TiO2 nanoparticles and their effect on bacteria.

    Science.gov (United States)

    Baysal, Asli; Saygin, Hasan; Ustabasi, Gul Sirin

    2017-12-21

    A significant knowledge gap in nanotechnology is the absence of standardized protocols for examining and comparison the effect of metal oxide nanoparticles on different environment media. Despite the large number of studies on ecotoxicity of nanoparticles, most of them disregard the particles physicochemical transformation under real exposure conditions and interaction with different environmental components like air, soil, water, etc. While one of the main exposure ways is inhalation and/or atmosphere for human and environment, there is no investigation between airborne particulates and nanoparticles. In this study, some metal oxide nanoparticle (ZnO and TiO 2 ) transformation and behavior in PM2.5 air particulate media were examined and evaluated by the influence on nanoparticle physicochemical properties (size, surface charge, surface functionalization) and on bacterium (Gram-positive Bacillus subtilis, Staphylococcus aureus/Gram-negative Escherichia coli, Pseudomonas aeruginosa bacteria) by testing in various concentrations of PM2.5 airborne particulate media to contribute to their environmental hazard and risk assessment in atmosphere. PM2.5 airborne particulate media affected their toxicity and physicochemical properties when compared the results obtained in controlled conditions. ZnO and TiO 2 surfaces were functionalized mainly with sulfoxide groups in PM2.5 air particulates. In addition, tested particles were not observed to be toxic in controlled conditions. However, these were observed inhibition in PM2.5 airborne particulates media by the exposure concentration. These observations and dependence of the bacteria viability ratio explain the importance of particulate matter-nanoparticle interaction.

  1. Alternative approach to analyzing occupational mortality data

    International Nuclear Information System (INIS)

    Gilbert, E.S.; Buchanan, J.A.

    1984-01-01

    It is widely recognized that analyzing occupational mortality by calculating standardized mortality ratios based on death rates from the general population is subject to a number of limitations. An alternative approach described in this report takes advantage of the fact that comparisons of mortality by subgroups and assessments of trends in mortality are often of equal or greater interest than overall assessments and that such comparisons do not require an external control. A computer program MOX (Mortality and Occupational Exposure) is available for performing the needed calculations for several diseases. MOX was written to asses the effect of radiation exposure on Hanford nuclear workers. For this application, analyses have been based on cumulative exposure computed (by MOX) from annual records of radiation exposure obtained from personal dosimeter readings. This program provides tests for differences and trends among subcategories defined by variables such as length of employment, job category, or exposure measurements and also provides control for age, calendar year, and several other potentially confounding variables. 29 references, 2 tables

  2. Air pollution and inhalation exposure to particulate matter of different sizes in rural households using improved stoves in central China.

    Science.gov (United States)

    Liu, Weijian; Shen, Guofeng; Chen, Yuanchen; Shen, Huizhong; Huang, Ye; Li, Tongchao; Wang, Yilong; Fu, Xiaofang; Tao, Shu; Liu, Wenxin; Huang-Fu, Yibo; Zhang, Weihao; Xue, Chunyu; Liu, Guangqing; Wu, Fuyong; Wong, Minghung

    2018-01-01

    Household air pollution is considered to be among the top environmental risks in China. To examine the performance of improved stoves for reduction of indoor particulate matter (PM) emission and exposure in rural households, individual inhalation exposure to size-resolved PM was investigated using personal portable samplers carried by residents using wood gasifier stoves or improved coal stoves in a rural county in Central China. Concentrations of PM with different sizes in stationary indoor and outdoor air were also monitored at paired sites. The stationary concentrations of size-resolved PM in indoor air were greater than those in outdoor air, especially finer particles PM 0.25 . The daily averaged exposure concentrations of PM 0.25 , PM 1.0 , PM 2.5 and total suspended particle for all the surveyed residents were 74.4±41.1, 159.3±74.3, 176.7±78.1 and 217.9±78.1μg/m 3 , respectively. Even using the improved stoves, the individual exposure to indoor PM far exceeded the air quality guideline by WHO at 25μg/m 3 . Submicron particles PM 1.0 were the dominant PM fraction for personal exposure and indoor and outdoor air. Personal exposure exhibited a closer correlation with indoor PM concentrations than that for outdoor concentrations. Both inhalation exposure and indoor air PM concentrations in the rural households with gasifier firewood stoves were evidently lower than the reported results using traditional firewood stoves. However, local governments in the studied rural areas should exercise caution when widely and hastily promoting gasifier firewood stoves in place of improved coal stoves, due to the higher PM levels in indoor and outdoor air and personal inhaled exposure. Copyright © 2017. Published by Elsevier B.V.

  3. LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPS) IN RATS

    Science.gov (United States)

    2003 AAR PM MeetingParticulate Matter: Atmospheric Sciences,Exposure and the Fourth Colloquium on PM and Human HealthLACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPs) IN RATS. JA Dye, LC Walsh, C...

  4. Respiratory morbidity associated with exposure to particulate matter in the environment

    Directory of Open Access Journals (Sweden)

    Elkin Martínez. L

    2011-11-01

    Full Text Available Introduction: it is assumed that prolonged exposure to airborne pollutants in the areas where people live or work can affect their respiratory systems. In order to demand for control measures aimed at protecting the community’s health, it is necessary to provide evidence for this claim. Methods: the respiratory morbidity of people living or working in urban areas of Medellín was analyzed (high particulate matter pollution. The average of PM10 is 60 µg/m3 and then compared with the respiratory morbidity of a matched sample of inhabitants living in the municipalities located in eastern Antioquia (low pollution. The average of PM10 is 30 µg/m3. Results: the groups that were compared were similar with respect to sociodemographic and other potential confounding variables. Upon comparing the two groups, a higher risk of respiratory signs and symptoms can be observed for subjects from the urban areas of Medellín. Nasal congestion, respiratory distress, and cough are the symptoms that occur in sharper contrast with relative risk of 2.60 95% CI (1.93, 3.62; 2.22 95% CI (1.56, 3.15 and 2.14 95% CI (1.63, 2.81 respectively. Conclusion: high pm10 levels as an indicator of air pollution in urban environments where people live and work contribute to a higher risk of respiratory disease. This implies adverse consequences both in economic and social terms. The control of such a situation hence becomes a social and professional priority.

  5. Occupational PAH Exposures during Prescribed Pile Burns

    Science.gov (United States)

    Robinson, M. S.; Anthony, T. R.; Littau, S. R.; Herckes, P.; Nelson, X.; Poplin, G. S.; Burgess, J. L.

    2008-01-01

    Wildland firefighters are exposed to particulate matter and gases containing polycyclic aromatic hydrocarbons (PAHs), many of which are known carcinogens. Our objective was to evaluate the extent of firefighter exposure to particulate and PAHs during prescribed pile burns of mainly ponderosa pine slash and determine whether these exposures were correlated with changes in urinary 1-hydroxypyrene (1-HP), a PAH metabolite. Personal and area sampling for particulate and PAH exposures were conducted on the White Mountain Apache Tribe reservation, working with 21 Bureau of Indian Affairs/Fort Apache Agency wildland firefighters during the fall of 2006. Urine samples were collected pre- and post-exposure and pulmonary function was measured. Personal PAH exposures were detectable for only 3 of 16 PAHs analyzed: naphthalene, phenanthrene, and fluorene, all of which were identified only in vapor-phase samples. Condensed-phase PAHs were detected in PM2.5 area samples (20 of 21 PAHs analyzed were detected, all but naphthalene) at concentrations below 1 μg m−3. The total PAH/PM2.5 mass fractions were roughly a factor of two higher during smoldering (1.06 ± 0.15) than ignition (0.55 ± 0.04 μg mg−1). There were no significant changes in urinary 1-HP or pulmonary function following exposure to pile burning. In summary, PAH exposures were low in pile burns, and urinary testing for a PAH metabolite failed to show a significant difference between baseline and post-exposure measurements. PMID:18515848

  6. Recurrent exposure to subclinical lipopolysaccharide increases mortality and induces cardiac fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Wilbur Y W Lew

    Full Text Available BACKGROUND: Circulating subclinical lipopolysaccharide (LPS occurs in health and disease. Ingesting high fatty meals increases LPS that cause metabolic endotoxemia. Subclinical LPS in periodontal disease may impair endothelial function. The heart may be targeted as cardiac cells express TLR4, the LPS receptor. It was hypothesized that recurrent exposure to subclinical LPS increases mortality and causes cardiac fibrosis. METHODS: C57Bl/6 mice were injected with intraperitoneal saline (control, low dose LPS (0.1 or 1 mg/kg, or moderate dose LPS (10 or 20 mg/kg, once a week for 3 months. Left ventricular (LV function (echocardiography, hemodynamics (tail cuff pressure and electrocardiograms (telemetry were measured. Cardiac fibrosis was assessed by picrosirius red staining and LV expression of fibrosis related genes (QRT-PCR. Adult cardiac fibroblasts were isolated and exposed to LPS. RESULTS: LPS injections transiently increased heart rate and blood pressure (<6 hours and mildly decreased LV function with full recovery by 24 hours. Mice tolerated weekly LPS for 2-3 months with no change in activity, appearance, appetite, weight, blood pressure, LV function, oximetry, or blood chemistries. Mortality increased after 60-90 days with moderate, but not low dose LPS. Arrhythmias occurred a few hours before death. LV collagen fraction area increased dose-dependently from 3.0±0.5% (SEM in the saline control group, to 5.6±0.5% with low dose LPS and 9.7±0.9% with moderate dose LPS (P<0.05 moderate vs low dose LPS, and each LPS dose vs control. LPS increased LV expression of collagen Iα1, collagen IIIα1, MMP2, MMP9, TIMP1, periostin and IL-6 (P<0.05 moderate vs low dose LPS and vs control. LPS increased α-SMA immunostaining of myofibroblasts. LPS dose-dependently increased IL-6 in isolated adult cardiac fibroblasts. CONCLUSIONS: Recurrent exposure to subclinical LPS increases mortality and induces cardiac fibrosis.

  7. Estimation of excess mortality due to long-term exposure to PM2.5 in Japan using a high-resolution model for present and future scenarios

    Science.gov (United States)

    Goto, Daisuke; Ueda, Kayo; Ng, Chris Fook Sheng; Takami, Akinori; Ariga, Toshinori; Matsuhashi, Keisuke; Nakajima, Teruyuki

    2016-09-01

    Particulate matter with a diameter of less than 2.5 μm, known as PM2.5, can affect human health, especially in elderly people. Because of the imminent aging of society in the near future in most developed countries, the human health impacts of PM2.5 must be evaluated. In this study, we used a global-to-regional atmospheric transport model to simulate PM2.5 in Japan with a high-resolution stretched grid system (∼10 km for the high-resolution model, HRM) for the present (the 2000) and the future (the 2030, as proposed by the Representative Concentrations Pathway 4.5, RCP4.5). We also used the same model with a low-resolution uniform grid system (∼100 km for the low-resolution model, LRM). These calculations were conducted by nudging meteorological fields obtained from an atmosphere-ocean coupled model and providing emission inventories used in the coupled model. After correcting for bias, we calculated the excess mortality due to long-term exposure to PM2.5 among the elderly (over 65 years old) based on different minimum PM2.5 concentration (MINPM) levels to account for uncertainty using the simulated PM2.5 distributions to express the health effect as a concentration-response function. As a result, we estimated the excess mortality for all of Japan to be 31,300 (95% confidence intervals: 20,700 to 42,600) people in 2000 and 28,600 (95% confidence intervals: 19,000 to 38,700) people in 2030 using the HRM with a MINPM of 5.8 μg/m3. In contrast, the LRM resulted in underestimates of approximately 30% (for PM2.5 concentrations in the 2000 and 2030), approximately 60% (excess mortality in the 2000) and approximately 90% (excess mortality in 2030) compared to the HRM results. We also found that the uncertainty in the MINPM value, especially for low PM2.5 concentrations in the future (2030) can cause large variability in the estimates, ranging from 0 (MINPM of 15 μg/m3 in both HRM and LRM) to 95,000 (MINPM of 0 μg/m3 in HRM) people.

  8. Chemical characterization and sources of personal exposure to fine particulate matter (PM2.5) in the megacity of Guangzhou, China.

    Science.gov (United States)

    Chen, Xiao-Cui; Jahn, Heiko J; Engling, Guenter; Ward, Tony J; Kraemer, Alexander; Ho, Kin-Fai; Yim, S H L; Chan, Chuen-Yu

    2017-12-01

    Concurrent ambient and personal measurements of fine particulate matter (PM 2.5 ) were conducted in eight districts of Guangzhou during the winter of 2011. Personal-to-ambient (P-C) relationships of PM 2.5 chemical components were determined and sources of personal PM 2.5 exposures were evaluated using principal component analysis and a mixed-effects model. Water-soluble inorganic ions (e.g., SO 4 2- , NO 3 - , NH 4 + , C 2 O 4 2- ) and anhydrosugars (e.g., levoglucosan, mannosan) exhibited median personal-to-ambient (P/C) ratios personal PM 2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca 2+ ) showed median P/C ratios greater than unity, illustrating significant impact of local traffic, indoor sources, and/or personal activities on individual's exposure. SO 4 2- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO 4 2- in the urban area of Guangzhou. EC, Ca 2+ , and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM 2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca 2+ to personal PM 2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient concentrations and personal exposures, indicating caution should be taken when using ambient concentrations as proxies for personal exposures in epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Risk of human exposure to polycyclic aromatic hydrocarbons: A case study in Beijing, China

    International Nuclear Information System (INIS)

    Yu, Yanxin; Li, Qi; Wang, Hui; Wang, Bin; Wang, Xilong; Ren, Aiguo; Tao, Shu

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) can cause adverse effects on human health. The relative contributions of their two major intake routes (diet and inhalation) to population PAH exposure are still unclear. We modeled the contributions of diet and inhalation to the overall PAH exposure of the population of Beijing in China, and assessed their human incremental lifetime cancer risks (ILCR) using a Mont Carlo simulation approach. The results showed that diet accounted for about 85% of low-molecular-weight PAH (L-PAH) exposure, while inhalation accounted for approximately 57% of high-molecular-weight PAH (H-PAH) exposure of the Beijing population. Meat and cereals were the main contributors to dietary PAH exposure. Both gaseous- and particulate-phase PAHs contributed to L-PAH exposure through inhalation, whereas exposure to H-PAHs was mostly from the particulate-phase. To reduce the cancer incidence of the Beijing population, more attention should be given to inhaled particulate-phase PAHs with considerable carcinogenic potential. - Highlights: • We modeled the contributions of diet and inhalation to population PAH exposure. • Diet contributed 85% of population exposure to low molecular-weight PAHs. • Inhalation contributed 57% of population exposure to high molecular-weight PAHs. • The PAH exposure level with body-weight adjustment decreased with age increasing. • The population cancer risk of PAH exposure is lower than the serious risk level. - The exposure of the Beijing population to carcinogenic polycyclic aromatic hydrocarbons was mainly from inhaled particulate matter

  10. The Shared Pathoetiological Effects of Particulate Air Pollution and the Social Environment on Fetal-Placental Development

    Science.gov (United States)

    2014-01-01

    Exposure to particulate air pollution and socioeconomic risk factors are shown to be independently associated with adverse pregnancy outcomes; however, their confounding relationship is an epidemiological challenge that requires understanding of their shared etiologic pathways affecting fetal-placental development. The purpose of this paper is to explore the etiological mechanisms associated with exposure to particulate air pollution in contributing to adverse pregnancy outcomes and how these mechanisms intersect with those related to socioeconomic status. Here we review the role of oxidative stress, inflammation and endocrine modification in the pathoetiology of deficient deep placentation and detail how the physical and social environments can act alone and collectively to mediate the established pathology linked to a spectrum of adverse pregnancy outcomes. We review the experimental and epidemiological literature showing that diet/nutrition, smoking, and psychosocial stress share similar pathways with that of particulate air pollution exposure to potentially exasperate the negative effects of either insult alone. Therefore, socially patterned risk factors often treated as nuisance parameters should be explored as potential effect modifiers that may operate at multiple levels of social geography. The degree to which deleterious exposures can be ameliorated or exacerbated via community-level social and environmental characteristics needs further exploration. PMID:25574176

  11. Particulate air pollution and vascular reactivity: the bus stop study.

    Science.gov (United States)

    Dales, Robert; Liu, Ling; Szyszkowicz, Mietek; Dalipaj, Mary; Willey, Jeff; Kulka, Ryan; Ruddy, Terrence D

    2007-11-01

    Particulate air pollution is associated with cardiovascular morbidity but mechanisms are not well understood. We tested the effects on vascular reactivity of exposure to fine particulates matter mass (PM(2.5)), number of particles bus stops. Flow-mediated vasodilation (FMD) of the brachial artery was then measured by ultrasound and expressed as: (maximum artery diameter after release of a blood pressure cuff inflated above systolic pressure-baseline resting diameter)/baseline resting diameter. A 30 microg/m(3) increase in PM(2.5) exposure corresponded to a 0.48% reduction in FMD, P=0.05 representing a 5% relative change in the maximum ability to dilate. Results were consistent between the two bus stops and not sensitive to type of analysis. No significant association was found between FMD and NO(2), PM(1.0) or traffic density. PM(2.5) may reduce the capacity to vasodilate, a potential explanation for the documented association with cardiovascular morbidity.

  12. Estimating particulate matter health impact related to the combustion of different fossil fuels

    International Nuclear Information System (INIS)

    Kuenen, Jeroen; Kranenburg, Richard; Hendriks, Carlijn; Schaap, Martijn; Gschwind, Benoit; Lefevre, Mireille; Blanc, Isabelle; Drebszok, Kamila; Wyrwa, Artur; Stetter, Daniel

    2013-01-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin of the modelled particulate matter distributions thoughout a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated for 2007-2009. These maps were combined with a health impact calculation to estimate Lost of Life Expectancy for each fuel categories. An user friendly web client was generated to access the results and use the web mapping service in an easy manner. (orig.)

  13. Exposure to fine particulate matter in the air alters placental structure and the renin-angiotensin system.

    Directory of Open Access Journals (Sweden)

    Sônia de Fátima Soto

    Full Text Available Female Wistar rats were exposed to filtered air (F or to concentrated fine particulate matter (P for 15 days. After mating, the rats were divided into four groups and again exposed to F or P (FF, FP, PF, PP beginning on day 6 of pregnancy. At embryonic day 19, the placenta was collected. The placental structure, the protein and gene expression of TGFβ1, VEGF-A, and its receptor Flk-1 and RAS were evaluated by indirect ELISA and quantitative real-time PCR.Exposure to P decreased the placental mass, size, and surface area as well as the TGFβ1, VEGF-A and Flk-1 content. In the maternal portion of the placenta, angiotensin II (AngII and its receptors AT1 (AT1R and AT2 (AT2R were decreased in the PF and PP groups. In the fetal portion of the placenta, AngII in the FP, PF and PP groups and AT2R in the PF and PP groups were decreased, but AT1R was increased in the FP group. VEGF-A gene expression was lower in the PP group than in the FF group.Exposure to pollutants before and/or during pregnancy alters some characteristics of the placenta, indicating a possible impairment of trophoblast invasion and placental angiogenesis with possible consequences for the maternal-fetal interaction, such as a limitation of fetal nutrition and growth.

  14. PARTICULATE MATTER AND HUMAN HEALTH: USING HUMAN STUDIES TO UNDERSTAND SUSCEPTIBILITY

    Science.gov (United States)

    The potential for experiencing adverse health effects from air pollution particulate matter (PM) exposure is an important public health issue. The World Health Organization has estimated that PM contributes to the deaths of 500,000 people world-wide each year. Epidemiologic stu...

  15. Measures of anticholinergic drug exposure, serum anticholinergic activity, and all-cause postdischarge mortality in older hospitalized patients with hip fractures

    NARCIS (Netherlands)

    Mangoni, Arduino A.; van Munster, Barbara C.; Woodman, Richard J.; de Rooij, Sophia E.

    Objectives: To assess possible associations between anticholinergic drug exposure and serum anticholinergic activity (SAA) and their capacities to predict all-cause mortality in older hospitalized patients. Setting: Academic medical center. Participants and Measurements: Data on clinical

  16. Animal mortality resulting from uniform exposures to photon radiations: Calculated LD50s and a compilation of experimental data

    International Nuclear Information System (INIS)

    Jones, T.D.; Morris, M.D.; Wells, S.M.; Young, R.W.

    1986-12-01

    Studies conducted during the 1950s and 1960s of radiation-induced mortality to diverse animal species under various exposure protocols were compiled into a mortality data base. Some 24 variables were extracted and recomputed from each of the published studies, which were collected from a variety of available sources, primarily journal articles. Two features of this compilation effort are (1) an attempt to give an estimate of the uniform dose received by the bone marrow in each treatment so that interspecies differences due to body size were minimized and (2) a recomputation of the LD 50 where sufficient experimental data are available. Exposure rates varied in magnitude from about 10 -2 to 10 3 R/min. This report describes the data base, the sources of data, and the data-handling techniques; presents a bibliography of studies compiled; and tabulates data from each study. 103 refs., 44 tabs

  17. Analysis of atmospheric particulate matter; application of optical and selected geochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mastalerz, M.; Glikson, M.; Simpson, R.W. [Indiana University, Bloomington, IN (United States). Indiana Geological Survey

    1998-09-01

    An increase in particulate matter in the atmosphere has been shown to be linked to increased mortality but this relationship is poorly understood. Light microscopy, electron microscopy, electron microprobe, and micro-FTIR techniques have been applied to study atmospheric particulates in Brisbane, Australia as a part of a study on asthma. The particulate matter samples were collected daily from April to August 1992, and the sampling covered the autumn period which is typically a time of high asthma incidence in Brisbane. Volumetrically, most atmospheric particulate matter is less than 2{mu}m in size. The microscopic analysis reveals that this material is composed mainly of combusted and incompletely burned hydrocarbons from motor vehicle exhaust emissions, quiescent spores of Mucorales, soil bacteria, and inorganic matter in the form of quartz and other silicates. Elemental and functional group analyses confirm microscope identification, documenting carbon-rich, aromatic exhaust material, more aliphatic pollen and spore material and inorganic matter. Fungal spores dominate bioaerosol and are very abundant from the end of April through May to mid-June. The cytoplasmic content of pollens or fungaonly regarded as allergenic. Particulates from the exhaust emissions and crustal material in a sub-micrometer size range may act as carriers or dispersive mechanisms for cytoplasmic material from fungal spores and pollens, perhaps causing periods of the highest exhaust emission to be the most allergenic. 25 refs., 4 figs., 1 tab.

  18. Exposure of children to airborne particulate matter of different size fractions during indoor physical education at school

    Energy Technology Data Exchange (ETDEWEB)

    Branis, Martin; Hytychova, Adela [Charles University in Prague, Faculty of Science, Institute for Environmental Studies, Albertov 6, 128 43 Prague 2 (Czech Republic); Safranek, Jiri [Charles University in Prague, Faculty of Physical Education, Department of outdoor sports, Jose Martiho 31, 162 52 Prague 6 (Czech Republic)

    2009-06-15

    Although moderate regular aerobic exercise is recommended for good health, adverse health consequences may be incurred by people who exercise in areas with high ambient pollution, such as in the centres of large cities with dense traffic. The exposure of children during exercise is of special concern because of their higher sensitivity to air pollutants. The size-segregated mass concentration of particulate matter was measured in a naturally ventilated elementary school gym during eight campaigns, seven to ten days long, from November 2005 through August 2006 in a central part of Prague (Czech Republic). The air was sampled using a five-stage cascade impactor. The indoor concentrations of PM{sub 2.5} recorded in the gym exceeded the WHO recommended 24-hour limit of 25 {mu}g m{sup -3} in 50% of the days measured. The average 24-h concentrations of PM{sub 2.5} (24.03 {mu}g m{sup -3}) in the studied school room did not differ much from those obtained from the nearest fixed site monitor (25.47 {mu}g m{sup -3}) and the indoor and ambient concentrations were closely correlated (correlation coefficient 0.91), suggesting a high outdoor-to-indoor penetration rate. The coarse indoor fraction concentration (PM{sub 2.5-10}) was associated with the number of exercising pupils (correlation coefficient 0.77), indicating that human activity is its main source. Considering the high pulmonary ventilation rate of exercising children and high outdoor particulate matter concentrations, the levels of both coarse and fine aerosols may represent a potential health risk for sensitive individuals during their physical education performed in naturally ventilated gyms in urban areas with high traffic intensity. (author)

  19. Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics

    Directory of Open Access Journals (Sweden)

    Peters Sheona

    2009-12-01

    Full Text Available Abstract This review focuses on outlining the toxicity of titanium dioxide (TiO2 particulates in vitro and in vivo, in order to understand their ability to detrimentally impact on human health. Evaluating the hazards associated with TiO2 particles is vital as it enables risk assessments to be conducted, by combining this information with knowledge on the likely exposure levels of humans. This review has concentrated on the toxicity of TiO2, due to the fact that the greatest number of studies by far have evaluated the toxicity of TiO2, in comparison to other metal oxide particulates. This derives from historical reasons (whereby the size dependency of particulate toxicity was first realised for TiO2 and due to its widespread application within consumer products (such as sunscreens. The pulmonary and dermal hazards of TiO2 have been a particular focus of the available studies, due to the past use of TiO2 as a (negative control when assessing the pulmonary toxicity of particulates, and due to its incorporation within consumer products such as sunscreens. Mechanistic processes that are critical to TiO2 particulate toxicity will also be discussed and it is apparent that, in the main, the oxidant driven inflammatory, genotoxic and cytotoxic consequences associated with TiO2 exposure, are inherently linked, and are evident both in vivo and in vitro. The attributes of TiO2 that have been identified as being most likely to drive the observed toxicity include particle size (and therefore surface area, crystallinity (and photocatalytic activity, surface chemistry, and particle aggregation/agglomeration tendency. The experimental set up also influences toxicological outcomes, so that the species (or model used, route of exposure, experiment duration, particle concentration and light conditions are all able to influence the findings of investigations. In addition, the applicability of the observed findings for particular TiO2 forms, to TiO2 particulates in

  20. Occupational radiation exposure and mortality study

    International Nuclear Information System (INIS)

    Coppock, E.; Dobson, D.; Fair, M.

    1992-06-01

    An epidemiological cohort study of some 300,000 Canadians enrolled in the National Dose Registry (NDR) is being undertaken to determine if there is excess cancer or other causes of mortality among those workers who are occupationally exposed to low levels of ionizing radiation. The results of this study may provide better understanding of the dose-response relationship for low doses of ionizing radiation and aid in the verification of risk estimates for radiation-induced cancer mortality. The Department of National Health and Welfare (DNHW) is responsible for the Registry; this study is being carried out by the Bureau of Radiation and Medical Devices (BRMD) with financial assistance and co-operation of various agencies including Statistics Canada and the Atomic Energy Control Board

  1. The mortality effect of ship-related fine particulate matter in the Sydney greater metropolitan region of NSW, Australia.

    Science.gov (United States)

    Broome, Richard A; Cope, Martin E; Goldsworthy, Brett; Goldsworthy, Laurie; Emmerson, Kathryn; Jegasothy, Edward; Morgan, Geoffrey G

    2016-02-01

    This study investigates the mortality effect of primary and secondary PM2.5 related to ship exhaust in the Sydney greater metropolitan region of Australia. A detailed inventory of ship exhaust emissions was used to model a) the 2010/11 concentration of ship-related PM2.5 across the region, and b) the reduction in PM2.5 concentration that would occur if ships used distillate fuel with a 0.1% sulfur content at berth or within 300 km of Sydney. The annual loss of life attributable to 2010/11 levels of ship-related PM2.5 and the improvement in survival associated with use of low-sulfur fuel were estimated from the modelled concentrations. In 2010/11, approximately 1.9% of the region-wide annual average population weighted-mean concentration of all natural and human-made PM2.5 was attributable to ship exhaust, and up to 9.4% at suburbs close to ports. An estimated 220 years of life were lost by people who died in 2010/11 as a result of ship exhaust-related exposure (95% CIβ: 140-290, where CIβ is the uncertainty in the concentration-response coefficient only). Use of 0.1% sulfur fuel at berth would reduce the population weighted-mean concentration of PM2.5 related to ship exhaust by 25% and result in a gain of 390 life-years over a twenty year period (95% CIβ: 260-520). Use of 0.1% sulfur fuel within 300 km of Sydney would reduce the concentration by 56% and result in a gain of 920 life-years over twenty years (95% CIβ: 600-1200). Ship exhaust is an important source of human exposure to PM2.5 in the Sydney greater metropolitan region. This assessment supports intervention to reduce ship emissions in the GMR. Local strategies to limit the sulfur content of fuel would reduce exposure and will become increasingly beneficial as the shipping industry expands. A requirement for use of 0.1% sulfur fuel by ships within 300 km of Sydney would provide more than twice the mortality benefit of a requirement for ships to use 0.1% sulfur fuel at berth. Copyright © 2015 Elsevier

  2. A case-crossover analysis of forest fire haze events and mortality in Malaysia

    Science.gov (United States)

    Sahani, Mazrura; Zainon, Nurul Ashikin; Wan Mahiyuddin, Wan Rozita; Latif, Mohd Talib; Hod, Rozita; Khan, Md Firoz; Tahir, Norhayati Mohd; Chan, Chang-Chuan

    2014-10-01

    The Southeast Asian (SEA) haze events due to forest fires are recurrent and affect Malaysia, particularly the Klang Valley region. The aim of this study is to examine the risk of haze days due to biomass burning in Southeast Asia on daily mortality in the Klang Valley region between 2000 and 2007. We used a case-crossover study design to model the effect of haze based on PM10 concentration to the daily mortality. The time-stratified control sampling approach was used, adjusted for particulate matter (PM10) concentrations, time trends and meteorological influences. Based on time series analysis of PM10 and backward trajectory analysis, haze days were defined when daily PM10 concentration exceeded 100 μg/m3. The results showed a total of 88 haze days were identified in the Klang Valley region during the study period. A total of 126,822 cases of death were recorded for natural mortality where respiratory mortality represented 8.56% (N = 10,854). Haze events were found to be significantly associated with natural and respiratory mortality at various lags. For natural mortality, haze events at lagged 2 showed significant association with children less than 14 years old (Odd Ratio (OR) = 1.41; 95% Confidence Interval (CI) = 1.01-1.99). Respiratory mortality was significantly associated with haze events for all ages at lagged 0 (OR = 1.19; 95% CI = 1.02-1.40). Age-and-gender-specific analysis showed an incremental risk of respiratory mortality among all males and elderly males above 60 years old at lagged 0 (OR = 1.34; 95% CI = 1.09-1.64 and OR = 1.41; 95% CI = 1.09-1.84 respectively). Adult females aged 15-59 years old were found to be at highest risk of respiratory mortality at lagged 5 (OR = 1.66; 95% CI = 1.03-1.99). This study clearly indicates that exposure to haze events showed immediate and delayed effects on mortality.

  3. Early growth rates and their relationships to mortalities of five breeds of chickens following exposure to acute gamma radiation stress

    International Nuclear Information System (INIS)

    Latimer, B.E.; Brisbin, I.L. Jr.

    1987-01-01

    Growth and mortality responses were recorded for 541 chicks, representing five different breeds of chickens, following acute exposures to gamma radiation stress at two days of age. Although there were no statistically significant differences in the LD50/30 of the five breeds studied, Cobb broilers showed the highest (1580R) and White Leghorn bantams the lowest (980R) levels, respectively. Other breeds studied included the standard White Leghorn, Athens Randombreds and a strain of feral bantam. Growth rates of body weights were proportionately more depressed by radiation stress than were body sizes, as measured by the lengths of the culmen, tarsus, middle toe and longest primary wing feather of all 32 day-old survivors. Among these structures, the length of the culmen seemed to be the least affected by radiation stress in all of the breeds studied. Feral bantams were able to tolerate the greatest depression in weight gain before exhibiting mortality at exposures below their LD50/30' while Cobb broilers tolerated the greatest depression of weight gain at higher exposure levels. There was a suggestion that those characteristics which were strongly selected for in the course of a particular breed's development were those which experienced the greatest proportional depressions following exposure to gamma radiation stress

  4. Air pollution exposure modeling of individuals

    Science.gov (United States)

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...

  5. Elemental composition of particulate matter and the association with lung function

    NARCIS (Netherlands)

    Eeftens, Marloes; Hoek, Gerard; Gruzieva, Olena; Mölter, Anna; Agius, Raymond; Beelen, Rob; Brunekreef, Bert; Custovic, Adnan; Cyrys, Josef; Fuertes, Elaine; Heinrich, Joachim; Hoffmann, Barbara; de Hoogh, Kees; Jedynska, Aleksandra; Keuken, Menno; Klümper, Claudia; Kooter, Ingeborg; Krämer, Ursula; Korek, Michal; Koppelman, Gerard H; Kuhlbusch, Thomas A J; Simpson, Angela; Smit, Henriëtte A; Tsai, Ming-Yi; Wang, Meng; Wolf, Kathrin; Pershagen, Göran; Gehring, Ulrike

    BACKGROUND: Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. METHODS: We conducted a multicenter study in 5

  6. Elemental composition of particulate matter and the association with lung function

    NARCIS (Netherlands)

    Eeftens, M.; Hoek, G.; Gruzieva, O.; Mölter, A.; Agius, R.; Beelen, R.; Brunekreef, B.; Custovic, A.; Cyrys, J.; Fuertes, E.; Heinrich, J.; Hoffmann, B.; De Hoogh, K.; Jedynska, A.; Keuken, M.; Klümper, C.; Kooter, I.; Krämer, U.; Korek, M.; Koppelman, G.H.; Kuhlbusch, T.A.J.; Simpson, A.; Smit, H.A.; Tsai, M.Y.; Wang, M.; Wolf, K.; Pershagen, G.; Gehring, U.

    2014-01-01

    BACKGROUND: Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. METHODS: We conducted a multicenter study in 5

  7. Air pollution and daily mortality in Erfurt, east Germany, 1980-1989.

    Science.gov (United States)

    Spix, C; Heinrich, J; Dockery, D; Schwartz, J; Völksch, G; Schwinkowski, K; Cöllen, C; Wichmann, H E

    1993-11-01

    In Erfurt, Germany, unfavorable geography and emissions from coal burning lead to very high ambient pollution (up to about 4000 micrograms/m3 SO2 in 1980-89). To assess possible health effects of these exposures, total daily mortality was obtained for this same period. A multivariate model was fitted, including corrections for long-term fluctuations, influenza epidemics, and meterology, before analyzing the effect of pollution. The best fit for pollution was obtained for log (SO2 daily mean) with a lag of 2 days. Daily mortality increased by 10% for an increase in SO2 from 23 to 929 micrograms/m3 (5% quantile to 95% quantile). A harvesting effect (fewer people die on a given day if more deaths occurred in the last 15 days) may modify this by +/- 2%. The effect for particulates (SP, 1988-89 only) was stronger than the effect of SO2. Log SP (daily mean) increasing from 15 micrograms/m3 to 331 micrograms/m3 (5% quantile to 95% quantile) was associated with a 22% increase in mortality. Depending on harvesting, the observable effect may lie between 14% and 27%. There is no indication of a threshold or synergism. The effects of air pollution are smaller than the effects of influenza epidemics and are of the same size as meterologic effects. The results for the lower end of the dose range are in agreement with linear models fitted in studies of moderate air pollution and episode studies.

  8. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions

    Science.gov (United States)

    Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna

    Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).

  9. Exposure to fine particulate matter and hospital admissions due to pneumonia: Effects on the number of hospital admissions and its costs.

    Science.gov (United States)

    Patto, Nicole Vargas; Nascimento, Luiz Fernando Costa; Mantovani, Katia Cristina C; Vieira, Luciana C P F S; Moreira, Demerval S

    2016-07-01

    Given that respiratory diseases are a major cause of hospitalization in children, the objectives of this study are to estimate the role of exposure to fine particulate matter in hospitalizations due to pneumonia and a possible reduction in the number of these hospitalizations and costs. An ecological time-series study was developed with data on hospitalization for pneumonia among children under 10 years of age living in São José do Rio Preto, state of São Paulo, using PM2.5 concentrations estimated using a mathematical model. We used Poisson regression with a dependent variable (hospitalization) associated with PM2.5 concentrations and adjusted for effective temperature, seasonality and day of the week, with estimates of reductions in the number of hospitalizations and costs. 1,161 children were admitted to hospital between October 1st, 2011, and September 30th, 2013; the average concentration of PM2.5 was 18.7 µg/m3 (≈32 µg/m3 of PM10) and exposure to this pollutant was associated with hospitalization four and five days after exposure. A 10 µg/m3 decrease in concentration would imply 256 less hospital admissions and savings of approximately R$ 220,000 in a medium-sized city.

  10. Acute and Subacute Effects of Urban Air Pollution on Cardiopulmonary Emergencies and Mortality: Time Series Studies in Austrian Cities

    Directory of Open Access Journals (Sweden)

    Daniel Rabczenko

    2013-10-01

    Full Text Available Daily pollution data (collected in Graz over 16 years and in the Linz over 18 years were used for time series studies (GAM and case-crossover on the relationship with daily mortality (overall and specific causes of death. Diagnoses of patients who had been transported to hospitals in Linz were also available on a daily basis from eight years for time series analyses of cardiopulmonary emergencies. Increases in air pollutant levels over several days were followed by increases in mortality and the observed effects increased with the length of the exposure window considered, up to a maximum of 15 days. These mortality changes in Graz and Linz showed similar patterns like the ones found before in Vienna. A significant association of mortality could be demonstrated with NO2, PM2.5 and PM10 even in summer, when concentrations are lower and mainly related to motor traffic. Cardiorespiratory ambulance transports increased with NO2/PM2.5/PM10 by 2.0/6.1/1.7% per 10 µg/m³ on the same day. Monitoring of NO2 (related to motor traffic and fine particulates at urban background stations predicts acute effects on cardiopulmonary emergencies and extended effects on cardiopulmonary mortality. Both components of urban air pollution are indicators of acute cardiopulmonary health risks, which need to be monitored and reduced, even below current standards.

  11. Personal exposure to particulate matter in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile.

    Science.gov (United States)

    Suárez, Liliana; Mesías, Stephanie; Iglesias, Verónica; Silva, Claudio; Cáceres, Dante D; Ruiz-Rudolph, Pablo

    2014-05-01

    The objective of this study was to compare personal exposure to particulate matter (fine and ultrafine particles) in commuters using different transport modes (bicycle, bus, car and subway) in a busy, assigned route in downtown Santiago, Chile. Volunteers carrying personal samplers completed scheduled commutes during the morning rush hours, while central site measurements were conducted in parallel. A total of 137 valid commutes were assessed. The impact of central site, traffic and other variables was explored with regression models. PM2.5 personal concentrations were equal to or slightly above central site measurements, while UFP personal concentrations were above them. Regression models showed impacts of both background levels and traffic emissions on personal PM2.5 and UFP exposure. Traffic impacts varied with transport modes. Estimates of traffic impacts on personal PM2.5 exposure were 2.0, 13.0, 16.9 and 17.5 μg m(-3), for car, bicycle, subway and bus, respectively; while for UFP exposure were 8400, 16 200, 25 600 and 30 100 counts per cm(3), for subway, car, bicycle and bus, respectively. After controlling the central site and transport mode, higher temperatures increased PM2.5 exposure and decreased UFP ones, while the wind direction affected UFP personal exposure. In conclusion, we found significant impacts of both central site background measurements and traffic emissions on personal exposure of volunteer commuters in an assigned route in Santiago, with impacts varying with transport modes.

  12. Associations between particulate matter composition and childhood blood pressure - The PIAMA study

    NARCIS (Netherlands)

    Bilenko, Natalya; Brunekreef, Bert; Beelen, Rob; Eeftens, Marloes; de Hoogh, Kees; Hoek, Gerard; Koppelman, Gerard H.; Wang, Meng; van Rossem, Lenie; Gehring, Ulrike

    2015-01-01

    Background: Childhood blood pressure is an important predictor of hypertension and cardiovascular disease in adulthood. Evidence for an association between ambient particulate matter (PM) exposure and blood pressure is increasing, but little is known about the relevance of different PM constituents.

  13. Cancer mortality among coke oven workers.

    OpenAIRE

    Redmond, C K

    1983-01-01

    The OSHA standard for coke oven emissions, which went into effect in January 1977, sets a permissible exposure limit to coke oven emissions of 150 micrograms/m3 benzene-soluble fraction of total particulate matter (BSFTPM). Review of the epidemiologic evidence for the standard indicates an excess relative risk for lung cancer as high as 16-fold in topside coke oven workers with 15 years of exposure or more. There is also evidence for a consistent dose-response relationship in lung cancer mort...

  14. Mortality of Hanford radiation workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1980-01-01

    Mortality from all causes for white males employed at Hanford for at least two years is 75 percent of that expected on the basis of US vital statistics. Mortality from cancer is 85 percent of that expected. These results are typical of a working population. Neither death from all causes nor death from all cancer types shows a positive correlation with external radiation exposures. Myeloid leukemia, the disease that several studies have found to be associated most strongly with radiation exposure, is not correlated with external radiation exposure of Hanford workers. Two specific cancers, multiple myeloma and to a lesser extent cancer of the pancreas, were found to be positively correlated with radiation exposure. The correlations identified result entirely from a small number of deaths (3 each for multiple myeloma and cancer of the pancreas) with cumulative exposure greater than 15 rem

  15. Particulate matter 2.5 (PM2.5) personal exposure evaluation on mechanics and administrative officers at the motor vehicle testing center at Pulo Gadung, DKI Jakarta.

    Science.gov (United States)

    Rizky, Zuly Prima; Yolla, Patricia Bebby; Ramdhan, Doni Hikmat

    2016-03-01

    Exposure to fine particulate matter (PM2.5) in both the short and long term has been known to cause deaths and health effects, especially related to the heart, blood vessels, and lungs. Based on this information, researchers conducted this study at a motor vehicle testing center unit at Pulo Gadung, in Jarkarta, to determine the concentration of PM2.5 that workers were exposed to. The major source of PM2.5 in this area is from the exhaust of gas emissions from motor vehicles, which is one of the largest contributors to the levels of PM in urban areas. Ten mechanics were picked from 16 mechanics that work in this station. Four administration workers from different posts were also picked to participate. The researcher conducted the PM2.5 personal exposure measurement during weekdays from 6 to 14 April 2015 (2 workers/day). This research was conducted to measure the particle number concentration with size Organization Air Quality Guidelines, the PM2.5 exposure of the mechanics and administrative officers exceeded the recommended exposure (25 μm/m3).

  16. Evaluation of particulate filtration efficiency of retrofit particulate filters for light duty vehicles

    International Nuclear Information System (INIS)

    Van Asch, R.; Verbeek, R.

    2009-10-01

    In the light of the currently running subsidy programme for particulate filters in the Netherlands, the Dutch ministry of spatial planning and environment (VROM) asked TNO to execute a desk study to evaluate the particulates filtration efficiency of retrofit particulate filters for light duty vehicles (passenger cars and vans). The typical retrofit particulate filters for light duty vehicles are also called 'open' or 'half-open' filters, because a part of the exhaust gas can pass through the particulate filter unfiltered. From design point they are very different from the majority of the factory installed particulate filters, which are also called wall-flow or 'closed' particulate filters. Due to these differences there is a large difference in filtration efficiency. Whereas the 'dosed' particulate filters show a filtration efficiency of larger than 90%, the filtration efficiency of 'open' particulate filters is generally lower (type approval minimum 30%), and strongly dependent on the conditions of use. The objective of the current project was to assess the average filtration efficiency of retrofit (open) particulate fillters on light duty vehicles in real world day to day driving, based on available literature data. Also, the reasons of a possible deviation with the type approval test results (minimum filtration efficiency of 30%) was investigated.

  17. Stabilization void-fill encapsulation high-efficiency particulate filters

    International Nuclear Information System (INIS)

    Alexander, R.G.; Stewart, W.E.; Phillips, S.J.; Serkowski, M.M.; England, J.L.; Boynton, H.C.

    1994-05-01

    This report discusses high-efficiency particulate air (HEPA) filter systems that which are contaminated with radionuclides are part of the nuclear fuel processing systems conducted by the US Department of Energy (DOE) and require replacement and safe and efficient disposal for plant safety. Two K-3 HEPA filters were removed from service, placed burial boxes, buried, and safely and efficiently stabilized remotely which reduced radiation exposure to personnel and the environment

  18. Traffic Related Aerosol Exposure And Their Risk Assessment Of Associated Metals In Delhi, India

    Directory of Open Access Journals (Sweden)

    Rajesh Kushwaha

    2013-12-01

    Full Text Available A pilot study was carried out in New Delhi, India, to assess the level of traffic related aerosol exposure, individually and associated metals. These investigations also try to formulate their risk assessment using different modes of transport on a typical journey to work route and compared Bus, Auto-rickshaws and Bike (Two Wheelers during the journey. The inhalable particulate matter monitored in winter period and also evaluated the potential health risk due to inhalation in the study. The exposure of Particulate matter was observed maximum in the Bike (502 ± 176.38 μgm-3 and minimum in the Auto-rickshaw (208.15 ± 61.38 μgm-3. In case of human exposure to metals (viz. Cu, Cd, Mn, Pb, Ni, Co, Cr, Fe, Zn, it was mostly exposed by Fe, Zn and Co and least exposed by Cd, Cr and Pb. Human health risk was estimated based on exposure and dosage response. The assessment of particulate-bound elements was calculated by assuming exposure of 6 h. The findings indicated that the exposure to particulate bound elements have relatively more adverse health effects. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 26-36 DOI: http://dx.doi.org/10.3126/ije.v2i1.9205

  19. Animal mortality resulting from uniform exposures to photon radiations: Calculated LD/sub 50/s and a compilation of experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T.D.; Morris, M.D.; Wells, S.M.; Young, R.W.

    1986-12-01

    Studies conducted during the 1950s and 1960s of radiation-induced mortality to diverse animal species under various exposure protocols were compiled into a mortality data base. Some 24 variables were extracted and recomputed from each of the published studies, which were collected from a variety of available sources, primarily journal articles. Two features of this compilation effort are (1) an attempt to give an estimate of the uniform dose received by the bone marrow in each treatment so that interspecies differences due to body size were minimized and (2) a recomputation of the LD/sub 50/ where sufficient experimental data are available. Exposure rates varied in magnitude from about 10/sup -2/ to 10/sup 3/ R/min. This report describes the data base, the sources of data, and the data-handling techniques; presents a bibliography of studies compiled; and tabulates data from each study. 103 refs., 44 tabs.

  20. Estimating population exposure to power plant emissions using CALPUFF: a case study in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Ying Zhou; Levy, J.I. [Harvard School of Public Health, Boston, MA (United States); Hammitt, J.K.; Evans, J.S. [Harvard Center for Risk Analysis, Boston, MA (United States)

    2003-02-01

    Epidemiological studies have shown a significant association between ambient particulate matter (PM) exposures and increased mortality and morbidity risk. Power plants are significant emitters of precursor gases of fine particulate matter. To evaluate the public health risk posed by power plants, it is necessary to evaluate population exposure to different pollutants. The concept of intake fraction (the fraction of a pollutant emitted that is eventually inhaled or ingested by a population) has been proposed to provide a simple summary measure of the relationship between emissions and exposure. Currently available intake fraction estimates from developing countries used models that look only at the near field impacts, which may not capture the full impact of a pollution source. This case study demonstrated how the intake fraction of power plant emissions in China can be calculated using a detailed long-range atmospheric dispersion model-CALPUFF. We found that the intake fraction of primary fine particles is roughly on the order of 10{sup -5}, while the intake fractions of sulfur dioxide, sulfate and nitrate are on the order of 10{sup -6}. These estimates are an order of magnitude higher than the US estimates. We also tested how sensitive the results were to key assumptions within the model. The size distribution of primary particles has a large impact on the intake fraction for primary particles while the background ammonia concentration is an important factor influencing the intake fraction of nitrate. The background ozone concentration has a moderate impact on the intake fraction of sulfate and nitrate. Our analysis shows that this approach is applicable to a developing country and it provides reasonable population exposure estimates. (author)

  1. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    Science.gov (United States)

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  2. Long-term traffic air and noise pollution in relation to mortality and hospital readmission among myocardial infarction survivors.

    Science.gov (United States)

    Tonne, Cathryn; Halonen, Jaana I; Beevers, Sean D; Dajnak, David; Gulliver, John; Kelly, Frank J; Wilkinson, Paul; Anderson, H Ross

    2016-01-01

    There is relatively little evidence of health effects of long-term exposure to traffic-related pollution in susceptible populations. We investigated whether long-term exposure to traffic air and noise pollution was associated with all-cause mortality or hospital readmission for myocardial infarction (MI) among survivors of hospital admission for MI. Patients from the Myocardial Ischaemia National Audit Project database resident in Greater London (n = 1 8,138) were followed for death or readmission for MI. High spatially-resolved annual average air pollution (11 metrics of primary traffic, regional or urban background) derived from a dispersion model (resolution 20 m × 20 m) and road traffic noise for the years 2003-2010 were used to assign exposure at residence. Hazard ratios (HR, 95% confidence interval (CI)) were estimated using Cox proportional hazards models. Most air pollutants were positively associated with all-cause mortality alone and in combination with hospital readmission. The largest associations with mortality per interquartile range (IQR) increase of pollutant were observed for non-exhaust particulate matter (PM(10)) (HR = 1.05 (95% CI 1.00, 1.10), IQR = 1.1 μg/m(3)); oxidant gases (HR = 1.05 (95% CI 1.00, 1.09), IQR = 3.2 μg/m(3)); and the coarse fraction of PM (HR = 1.05 (95% CI 1.00, 1.10), IQR = 0.9 μg/m(3)). Adjustment for traffic noise only slightly attenuated these associations. The association for a 5 dB increase in road-traffic noise with mortality was HR = 1.02 (95% CI 0.99, 1.06) independent of air pollution. These data support a relationship of primary traffic and regional/urban background air pollution with poor prognosis among MI survivors. Although imprecise, traffic noise appeared to have a modest association with prognosis independent of air pollution. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  3. Independent and additive association of prenatal famine exposure and intermediary life conditions with adult mortality between age 18-63 years

    NARCIS (Netherlands)

    Ekamper, P.; van Poppel, F.W.A.; Stein, A.D.; Lumey, L.H.

    2014-01-01

    Objectives To quantify the relation between prenatal famine exposure and adult mortality, taking into account mediating effects of intermediary life conditions. Design Historical follow-up study. Setting The Dutch famine (Hunger Winter) of 1944–1945 which occurred towards the end of WWII in occupied

  4. Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis.

    Science.gov (United States)

    Liu, Liqun; Breitner, Susanne; Pan, Xiaochuan; Franck, Ulrich; Leitte, Arne Marian; Wiedensohler, Alfred; von Klot, Stephanie; Wichmann, H-Erich; Peters, Annette; Schneider, Alexandra

    2011-05-25

    Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years), meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September) and cold periods (October to March) separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL) models. We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI): 1.057-1.140) for cardiovascular and 1.134 (95%CI: 1.050-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093) for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094) for cardiovascular mortality. The effects remained robust after considering particles as additional confounders. Both increases and decreases in air temperature are associated with an increased risk of cardiovascular mortality. The effects of

  5. Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis

    Directory of Open Access Journals (Sweden)

    Wiedensohler Alfred

    2011-05-01

    Full Text Available Abstract Background Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Methods Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years, meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September and cold periods (October to March separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL models. Results We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI: 1.057-1.140 for cardiovascular and 1.134 (95%CI: 1.050-1.224 for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093 for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224 for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094 for cardiovascular mortality. The effects remained robust after considering particles as additional confounders. Conclusions Both increases and decreases in air temperature are associated with an

  6. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Li, Xiangyu; Huang, Shuqiong; Jiao, Anqi; Yang, Xuhao; Yun, Junfeng; Wang, Yuxin; Xue, Xiaowei; Chu, Yuanyuan; Liu, Feifei; Liu, Yisi; Ren, Meng

    2017-01-01

    An increasing number of studies have been conducted to determine a possible linkage between maternal exposure to ambient fine particulate matter and effects on the developing human fetus that can lead to adverse birth outcomes, but, the present results are not consistent. A total of 23 studies published before July 2016 were collected and analyzed and the mean value of reported exposure to fine particulate matter (PM 2.5 ) ranged from 1.82 to 22.11 We found a significantly increased risk of preterm birth with interquartile range increase in PM 2.5 exposure throughout pregnancy (odds ratio (OR) = 1.03; 95% conditional independence (CI): 1.01–1.05). The pooled OR for the association between PM 2.5 exposure, per interquartile range increment, and term low birth weight throughout pregnancy was 1.03 (95% CI: 1.02–1.03). The pooled ORs for the association between PM 2.5 exposure per 10 increment, and term low birth weight and preterm birth were 1.05 (95% CI: 0.98–1.12) and 1.02 (95% CI: 0.93–1.12), respectively throughout pregnancy. There is a significant heterogeneity in most meta-analyses, except for pooled OR per interquartile range increase for term low birth weight throughout pregnancy. We here show that maternal exposure to fine particulate air pollution increases the risk of preterm birth and term low birth weight. However, the effect of exposure time needs to be further explored. In the future, prospective cohort studies and personal exposure measurements needs to be more widely utilized to better characterize the relationship between ambient fine particulate exposure and adverse birth outcomes. - Highlights: • The results had shorter intervals indicate and smaller heterogeneity by using IQR increment increase as selected standard. • The manuscript included the latest research results and updated the previous systematic review and meta-analysis. - Meta-analysis of preterm birth and term low birth weight of PM 2.5

  7. Air pollution and mortality in São Paulo, Brazil: Effects of multiple pollutants and analysis of susceptible populations.

    Science.gov (United States)

    Bravo, Mercedes A; Son, Jiyoung; de Freitas, Clarice Umbelino; Gouveia, Nelson; Bell, Michelle L

    2016-01-01

    Health impacts of air pollution may differ depending on sex, education, socioeconomic status (SES), location at time of death, and other factors. In São Paulo, Brazil, questions remain regarding roles of individual and community characteristics. We estimate susceptibility to air pollution based on individual characteristics, residential SES, and location at time of death (May 1996-December 2010). Exposures for particulate matter with an aerodynamic diameter ≤ 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3) were estimated using ambient monitors. Time-stratified case-crossover analysis was used with individual-level health data. Increased risk of non-accidental, cardiovascular, and respiratory mortality were associated with all pollutants (P effect estimates for those with > 11 years education were lower than estimates for those with 0 years education for NO2, SO2, and CO (1.66% (95% confidence interval: 0.23%, 3.08%); 1.51% (0.51%, 2.51%); and 2.82% (0.23%, 5.35%), respectively). PM10 cardiovascular mortality effects were (3.74% (0.044%, 7.30%)) lower for the high education group (> 11 years) compared with the no education group. Positive, significant associations between pollutants and mortality were observed for in-hospital deaths, but evidence of differences in air pollution-related mortality risk by location at time of death was not strong.

  8. Does exposure to aircraft noise increase the mortality from cardiovascular disease in the population living in the vicinity of airports? Results of an ecological study in France

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Evrard

    2015-01-01

    Full Text Available The impact of aircraft noise on health is of growing concern. We investigated the relationship between this exposure and mortality from cardiovascular disease, coronary heart disease, myocardial infarction, and stroke. We performed an ecological study on 161 communes (commune being the smallest administrative unit in France close to the following three major French airports: Paris-Charles de Gaulle, Lyon Saint-Exupéry, and Toulouse-Blagnac. The mortality data were provided by the French Center on Medical Causes of Death for the period 2007-2010. Based on the data provided by the French Civil Aviation Authority, a weighted average exposure to aircraft noise (L den AEI was computed at the commune level. A Poisson regression model with commune-specific random intercepts, adjusted for potential confounding factors including air pollution, was used to investigate the association between mortality rates and L den AEI. Positive associations were observed between L den AEI and mortality from cardiovascular disease [adjusted mortality rate ratio (MRR per 10 dB(A increase in L den AEI = 1.18; 95% confidence interval (CI: 1.11-1.25], coronary heart disease [MRR = 1.24 (1.12-1.36], and myocardial infarction [MRR = 1.28 (1.11-1.46]. Stroke mortality was more weakly associated with L den AEI [MRR = 1.08 (0.97-1.21]. These significant associations were not attenuated after the adjustment for air pollution. The present ecological study supports the hypothesis of an association between aircraft noise exposure and mortality from cardiovascular disease, coronary heart disease, and myocardial infarction. However, the potential for ecological bias and the possibility that this association could be due to residual confounding cannot be excluded.

  9. Air Quality and Early-Life Mortality: Evidence from Indonesia's Wildfires

    Science.gov (United States)

    Jayachandran, Seema

    2009-01-01

    Smoke from massive wildfires blanketed Indonesia in late 1997. This paper examines the impact that this air pollution (particulate matter) had on fetal, infant, and child mortality. Exploiting the sharp timing and spatial patterns of the pollution and inferring deaths from "missing children" in the 2000 Indonesian Census, I find that the…

  10. Mortality during winter smog episodes 1982, 1985, 1987 and 1993 in the Czech Republic.

    Science.gov (United States)

    Jelínková, J; Branis, M

    2001-10-01

    Severe air pollution episodes were recorded during the 1980s and early 1990s in the Czech Republic as a result of widespread combustion of brown coal. A population-based retrospective study investigated the relationship between air pollution and daily mortality in six highly polluted areas of the Czech Republic during smog episodes in 1982, 1985, 1987, and 1993. Total daily mortality, mortality by gender and age, cardiovascular mortality, respiratory mortality, data on weekly incidence of acute respiratory diseases and daily mean concentrations of sulphur dioxide and suspended particulate matter were used in the model. The effects of smog on daily mortality were estimated by multiple linear regression analysis. Significant increases in mortality were observed for the 1982 and 1987 episodes (6% and 9%). In 1982, mortality was significantly associated with mean concentration of sulphur dioxide (SO2) of the current and the preceding days and with the 4-day moving average. In the 1985 episode a significant increase in respiratory mortality in men and in both genders together, lagging by 2 and 3 days, was detected. During the 1987 episode significant associations of total daily mortality, mortality in persons over 65 years of age and mortality from cardiovascular or respiratory diseases with 4-day moving average of both pollutants were found. For the 1993 episode a significant association between mortality in women under 65, lagging by 3 days, and mean concentration of suspended particulate matter (SPM) was observed. Most of the results are consistent with other studies aimed at episodic air pollution during the 1950s and 1960s in Western Europe and the USA, in which outdoor air pollution was shown to be a significant predictor of mortality. However, non-significant or opposite associations between air pollution and mortality indicate that other factors may also play an important role. A stronger effect on men under 65 years of age, suggested by a previous Czech study

  11. Daily visibility and mortality: assessment of health benefits from improved visibility in Hong Kong.

    Science.gov (United States)

    Thach, Thuan-Quoc; Wong, Chit-Ming; Chan, King-Pan; Chau, Yuen-Kwan; Chung, Yat-Nork; Ou, Chun-Quan; Yang, Lin; Hedley, Anthony J

    2010-08-01

    Visibility in Hong Kong has deteriorated significantly over 40 years with visibility below 8km in the absence of fog, mist, or precipitation, increasing from 6.6 days in 1968 to 54.1 days in 2007. We assessed the short-term mortality effects of daily loss of visibility. During 1996-2006, we obtained mortality data for non-accidental and cardiorespiratory causes, visibility recorded as visual range in kilometers, temperature, and relative humidity from an urban observatory, and concentrations of four criteria pollutants. A generalized additive Poisson regression model with penalized cubic regression splines was fitted to control for time variant covariates. For non-accidental mortality, an interquartile range (IQR) of 6.5km decrease in visibility at lag0-1 days was associated with an excess risk (ER%) [95% CI] of 1.13 [0.49, 1.76] for all ages and 1.37 [0.65, 2.09] for ages 65 years and over; for cardiovascular mortality of 1.31 [0.13, 2.49] for all ages, and 1.72 [0.44, 3.00] for ages 65 years and over; and for respiratory mortality of 1.92 [0.49, 3.35] for all ages and 1.76 [0.28, 3.25] for ages 65 years and over. The estimated ER% for daily mortality derived from both visibility and air pollutant data were comparable in terms of magnitude, lag pattern, and exposure-response relationships especially when using particulate matter with aerodynamic diameter health risks from ambient air pollutants and a valid approach for the assessment of the public health impacts of air pollution and the benefits of air quality improvement measures in developing countries where pollutant monitoring data are scarce. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Characterization of vehicular brake service personnel exposure to airborne asbestos and particulate.

    Science.gov (United States)

    Weir, F W; Tolar, G; Meraz, L B

    2001-12-01

    Evaluation of fibers and total particulate generated during the servicing of drum brakes on motor vehicles as well as during the resurfacing (arcing) of brake shoes was conducted. Conditions for the studies were based on review of contemporary (approximately 1950-1980) working practices in the industry. This work was conducted in two parts. Phase 1 estimated the release of asbestos fibers and total particulate during brake inspection and replacement of light-duty vehicle rear drum brakes at an auto/truck repair facility. Two distinct work practices were evaluated: One rear wheel from each vehicle was serviced using compressed air to remove dust while the second rear wheel was serviced without compressed air. Area and personal monitoring of fiber levels demonstrated counts (without compressed air) that ranged from 0.05 to 0.2 f/cc. Fiber counts when using compressed air averaged from 0.05 to 0.9 f/cc. Results from real-time aerosol monitoring indicated elevated dust levels for about 15 minutes after blow out. With shop doors open, dust levels increased to 5.0 mg/m3 at blow out and returned to 0.08 mg/m3 within two minutes. When the shop doors were closed, the dust levels reached 13.5 mg/m3 at blow out and decreased to 1.68 mg/m3 within one minute and to background within 14 minutes. The Phase 2 series evaluated the release of fibers and other particulate from are grinding. For operations conducted under conditions simulating a workplace, a mean of 0.19 f/cc +/- 0.16 was determined. Dust levels averaged 0.25 mg/m3 +/- 0.05. Brake service monitoring in these tests demonstrates that asbestos fiber concentrations, considered on a time weighted average basis, should not exceed currently acceptable workplace standards whether or not the worker uses compressed air, nor during the arc grinding process when arcing is conducted in accord with the design of the equipment.

  13. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    International Nuclear Information System (INIS)

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-01-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM 10 and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM 10 collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM 10 exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  14. Self-reported exposure to pesticides and radiation related to pregnancy outcome--results from National Natality and Fetal Mortality Surveys

    International Nuclear Information System (INIS)

    Savitz, D.A.; Whelan, E.A.; Kleckner, R.C.

    1989-01-01

    Although fetal development is known to be sensitive to environmental agents, relatively little epidemiologic research has addressed this concern. Effects on pregnancy outcome of self-reported parental exposure to pesticides and to radiation were examined using data from the National Natality and Fetal Mortality Surveys, large national probability samples of live births and stillbirths occurring in 1980. In case-control analyses, maternal exposure to pesticides at home or work was associated with increased risk of stillbirth (odds ratios (ORs) = 1.5-1.6). Paternal pesticide exposure was associated with stillbirth (ORs = 1.2-1.4) and delivery of small-for-gestational-age infants (ORs = 1.4-2.0). A small increased risk of stillbirth (OR = 1.3) was found in relation to either parent's reported exposure to radiation. In spite of limitations in the quality of exposure data and the possibility of biased recall related to pregnancy outcome, associations of reported pesticide exposure to either parent with risk of stillbirth and small-for-gestational-age infants warrant further evaluation

  15. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia.

    Science.gov (United States)

    Crippa, P; Castruccio, S; Archer-Nicholls, S; Lebron, G B; Kuwata, M; Thota, A; Sumin, S; Butt, E; Wiedinmyer, C; Spracklen, D V

    2016-11-16

    Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153-17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality.

  16. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia

    Science.gov (United States)

    Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G. B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D. V.

    2016-11-01

    Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153-17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality.

  17. Interdigitated Pt-GaN Schottky interfaces for high-temperature soot-particulate sensing

    Science.gov (United States)

    So, Hongyun; Hou, Minmin; Jain, Sambhav R.; Lim, Jongwoo; Senesky, Debbie G.

    2016-04-01

    A microscale soot-particulate sensor using interdigitated platinum-gallium nitride (Pt-GaN) Schottky interfaces was developed to monitor fine soot particles within high-temperature environments (e.g., combustion exhausts and flues). Upon exposure to soot particles (30 to 50 nm in diameter) from an experimental chimney, an increased current (∼43.6%) is observed through the back-to-back Schottky contact to n-type GaN. This is attributed to a reduction in the effective Schottky barrier height (SBH) of ∼10 meV due to the electric field from the charged soot particles in the depletion region and exposed GaN surface. Furthermore, the microfabricated sensor was shown to recover sensitivity and regenerate the sensing response (∼11 meV SBH reduction) after exposure to temperature as high as 550 °C. This study supports the feasibility of a simple and reliable soot sensor to meet the increasing market demand for particulate matter sensing in harsh environments.

  18. Letter to the Editor: Applications Air Q Model on Estimate Health Effects Exposure to Air Pollutants

    Directory of Open Access Journals (Sweden)

    Gholamreza Goudarzi

    2016-02-01

    Full Text Available Epidemiologic studies in worldwide have measured increases in mortality and morbidity associated with air pollution (1-3. Quantifying the effects of air pollution on the human health in urban area causes an increasingly critical component in policy discussion (4-6. Air Q model was proved to be a valid and reliable tool to predicts health effects related to criteria  pollutants (particulate matter (PM, ozone (O3, nitrogen dioxide (NO2, sulfur dioxide (SO2, and carbon monoxide (CO, determinate  the  potential short term effects of air pollution  and allows the examination of various scenarios in which emission rates of pollutants are varied (7,8. Air Q software provided by the WHO European Centre for Environment and Health (ECEH (9. Air Q model is based on cohort studies and used to estimates of both attributable average reductions in life-span and numbers of mortality and morbidity associated with exposure to air pollution (10,11. Applications

  19. Impact of exposure to cooking fuels on stillbirths, perinatal, very early and late neonatal mortality - a multicenter prospective cohort study in rural communities in India, Pakistan, Kenya, Zambia and Guatemala.

    Science.gov (United States)

    Patel, Archana B; Meleth, Sreelatha; Pasha, Omrana; Goudar, Shivaprasad S; Esamai, Fabian; Garces, Ana L; Chomba, Elwyn; McClure, Elizabeth M; Wright, Linda L; Koso-Thomas, Marion; Moore, Janet L; Saleem, Sarah; Liechty, Edward A; Goldenberg, Robert L; Derman, Richard J; Hambidge, K Michael; Carlo, Waldemar A; Hibberd, Patricia L

    2015-01-01

    Consequences of exposure to household air pollution (HAP) from biomass fuels used for cooking on neonatal deaths and stillbirths is poorly understood. In a large multi-country observational study, we examined whether exposure to HAP was associated with perinatal mortality (stillbirths from gestation week 20 and deaths through day 7 of life) as well as when the deaths occurred (macerated, non-macerated stillbirths, very early neonatal mortality (day 0-2) and later neonatal mortality (day 3-28). Questions addressing household fuel use were asked at pregnancy, delivery, and neonatal follow-up visits in a prospective cohort study of pregnant women in rural communities in five low and lower middle income countries participating in the Global Network for Women and Children's Health's Maternal and Newborn Health Registry. The study was conducted between May 2011 and October 2012. Polluting fuels included kerosene, charcoal, coal, wood, straw, crop waste and dung. Clean fuels included electricity, liquefied petroleum gas (LPG), natural gas and biogas. We studied the outcomes of 65,912 singleton pregnancies, 18 % from households using clean fuels (59 % LPG) and 82 % from households using polluting fuels (86 % wood). Compared to households cooking with clean fuels, there was an increased risk of perinatal mortality among households using polluting fuels (adjusted relative risk (aRR) 1.44, 95 % confidence interval (CI) 1.30-1.61). Exposure to HAP increased the risk of having a macerated stillbirth (adjusted odds ratio (aOR) 1.66, 95%CI 1.23-2.25), non-macerated stillbirth (aOR 1.43, 95 % CI 1.15-1.85) and very early neonatal mortality (aOR 1.82, 95 % CI 1.47-2.22). Perinatal mortality was associated with exposure to HAP from week 20 of pregnancy through at least day 2 of life. Since pregnancy losses before labor and delivery are difficult to track, the effect of exposure to polluting fuels on global perinatal mortality may have previously been underestimated. Clinical

  20. Respiratory tract mortality in cement workers: a proportionate mortality study

    Science.gov (United States)

    2012-01-01

    Background The evidence regarding the association between lung cancer and occupational exposure to cement is controversial. This study investigated causes of deaths from cancer of respiratory tract among cement workers. Methods The deaths of the Greek Cement Workers Compensation Scheme were analyzed covering the period 1969-1998. All respiratory, lung, laryngeal and urinary bladder cancer proportionate mortality were calculated for cement production, maintenance, and office workers in the cement industry. Mortality from urinary bladder cancer was used as an indirect indicator of the confounding effect of smoking. Results Mortality from all respiratory cancer was significantly increased in cement production workers (PMR = 1.91; 95% CI 1.54 to 2.33). The proportionate mortality from lung cancer was significantly elevated (PMR = 2.05; 95% CI 1.65 to 2.52). A statistically significant increase in proportionate mortality due to respiratory (PMR = 1.7; 95% CI 1.2 to 2.34). and lung cancer (PMR = 1.67;95% CI = 1.15-2.34) among maintenance workers has been observed. The PMR among the three groups of workers (production, maintenance, office) did differ significantly for lung cancer (p = 0.001), while the PMR for urinary bladder cancer found to be similar among the three groups of cement workers. Conclusion Cement production, and maintenance workers presented increased lung and respiratory cancer proportionate mortality, and this finding probably cannot be explained by the confounding effect of smoking alone. Further research including use of prospective cohort studies is needed in order to establish a causal association between occupational exposure to cement and risk of lung cancer. PMID:22738120

  1. A statistical study of the macroepidemiology of air pollution and total mortality

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, F.W.; Malone, R.G.; Daum, M.L.; Mendell, N.R.; Yang, Chin-Chun

    1988-04-01

    A statistical analysis of spatial patterns of 1980 US urban total mortality (all causes) was performed, evaluating demographic, socioeconomic and air pollution factors as predictors. Specific mortality predictors included cigarette smoking, drinking water hardness, heating fuel use, and 1978-1982 annual concentrations of the following air pollutants: ozone, carbon monoxide, sulfate aerosol, particulate concentrations of lead, iron, cadmium, manganese, vanadium, as well as total and fine particle mass concentrations from the inhalable particulate network (dichotomous samplers). In addition, estimates of sulfur dioxide, oxides of nitrogen, and sulfate aerosol were made for each city using the ASTRAP long-range transport diffusion model, and entered into the analysis as independent variables. Because the number of cities with valid air quality and water hardness data varied considerably by pollutant, it was necessary to consider several different data sets, ranging from 48 to 952 cities. The relatively strong associations (ca. 5--10%) shown for 1980 pollution with 1980 total mortality are generally not confirmed by independent studies, for example, in Europe. In addition, the US studies did not find those pollutants with known adverse health effects at the concentrations in question (such as ozone or CO) to be associated with mortality. The question of causality vs. circumstantial association must therefore be regarded as still unresolved. 59 refs., 20 figs., 40 tabs.

  2. Assessment of occupational exposure and contamination by Means of airborne particulate matter and bio monitors using Nuclear technique

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B. C.; Maia, Elene C. P.; Albinati, Claudia; Filho, Serafim S.

    2001-01-01

    To make an occupational diagnosis is complex because of the difficulty to identify and characterise the expositions. Physicians do not usually have access to the quantity of raw material managed by the worker, dates, period of exposure to the substance. Besides this the onset of occupational diseases is similar to other chronic diseases. Then, this project aimed at assessing metal levels in a galvanising industry by means of biomonitors, scalp hair and toenails donated by workers, and particulate matter collected on air filter. The analysis of the samples was carried out by k0 instrumental neutron activation analysis, k0-INAA. The project was conducted together with the physicians of the Secretariat Municipal de Saude (Municipal Department of Health) and it was inserted in a Worker's Health Awareness Program. Belo Horizonte and surrounding areas are an important industrial centre, concentrating many industries in several areas. Only in Belo Horizonte there are more than 20 galvanising industries ranging from home factories to well equipped ones. This industry was chosen as Object of this project because it is responsible for the majority of patients who look for medical assistance because of metal contamination. Stationary air sampling was carried out in order to evaluate the level of elemental concentration in the indoor environment of the plant. Comparative Group sampling was carried out the same way as the Work Group for scalp hair and toenails. The irradiations were performed in the reactor TRIGA MARK I IPR-R1 in the CDTN. Elemental concentration results determined in the samples from non-exposed people were compared to values in the literature and there were no significant differences between the values. The airborne particulate matter results showed the high level of pollutants which the workers are exposed to inside the galvanising factory. The results obtained confirmed the medical suspicions of workers' contamination and the medical recommendations aimed

  3. Emissions of particulate-bound elements from stationary diesel engine: Characterization and risk assessment

    Science.gov (United States)

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-09-01

    There has been an increasing concern about the emissions of airborne particulate matter (PM) from diesel engines because of their close association with adverse health and environmental impacts. Among the alternative fuels being considered, biodiesel made by the transesterification of waste cooking oil has received wide attention in recent years because of its low cost and the added advantage of reducing waste oil disposal. This study was conducted to make a comparative evaluation of the particulate-bound elements emitted from ultra low sulphur diesel (ULSD) and waste cooking oil-derived biodiesel (B100) and a blend of both the fuels (B50). It was observed that the PM mass concentrations were reduced by about 36% when B100 was used. Crustal elements such as Mg, K and Al were found to be in higher concentrations compared to other elements emitted from both B100 and ULSD. Zn, Cr, Cu, Fe, Ni, Mg, Ba, K were found to be higher in the biodiesel exhaust while Co, Pb, Mn, Cd, Sr, and As were found to be higher in the ULSD exhaust. To evaluate the potential health risk due to inhalation of PM emitted from diesel engines running on ULSD and B100, health risk estimates based on exposure and dose-response assessments of particulate-bound elements were calculated assuming exposure for 24 h. The findings indicate that the exposure to PM of the B100 exhaust is relatively more hazardous and may pose adverse health effects compared to ULSD.

  4. Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways.

    NARCIS (Netherlands)

    Knol, A.B.; de Hartog, J.J.|info:eu-repo/dai/nl/288354850; Boogaard, H.|info:eu-repo/dai/nl/314406522; Slottje, P.|info:eu-repo/dai/nl/299345351; van der Sluijs, J.P.|info:eu-repo/dai/nl/073427489; Lebret, E.|info:eu-repo/dai/nl/071318917; Cassee, F.R.|info:eu-repo/dai/nl/143038990; Wardekker, J.A.|info:eu-repo/dai/nl/306644398; Ayres, J.G.; Borm, P.; Brunekreef, B.|info:eu-repo/dai/nl/067548180; Donaldson, K.; Forastiere, F.; Holgate, S.T.; Kreyling, W.; Nemery, B.; Pekkanen, J.; Stone, V.; Wichmann, H.E.; Hoek, G.|info:eu-repo/dai/nl/069553475

    2009-01-01

    ABSTRACT: BACKGROUND: Exposure to fine ambient particulate matter (PM) has consistently been associated with increased morbidity and mortality. The relationship between exposure to ultrafine particles (UFP) and health effects is less firmly established. If UFP cause health effects independently from

  5. Reduced lung cancer mortality in dairy farmers: is endotoxin exposure the key factor?

    Science.gov (United States)

    Mastrangelo, G; Marzia, V; Marcer, G

    1996-11-01

    From two areas in the Province of Padova, we selected 2,283 male farmers who worked either in cattle raising or in crop/orchard cultivation. There were 422 cohort deaths from 1970 to 1992. Using the regional population as a reference, the standardized mortality ratio (SMR) was calculated, with 95% confidence intervals (CI) based on the Poisson distribution. Cancer mortality was significantly reduced among the 1,561 dairy farmers (SMR = 0.65; CI = 0.53-0.81); there was a significant decrease in lung cancer (SMR = 0.49; CI = 0.31-0.74), whereas a significant increase from brain tumors was found (SMR = 2.83; CI = 1.04-6.17). Neither overall cancer mortality nor the lung cancer SMR deviated significantly from unity for the 722 crop/orchard farmers. Among dairy farmers, moreover, lung cancer SMRs showed a significant downward trend across the quartiles of increasing length of work, 0.96 in the first quartile, and 0.48, 0.40, and 0.25 in the second, third, and fourth quartiles, respectively. Moreover, lung cancer risk decreased with increasing farm land area, with SMRs in the quartiles of 0.89, 0.37, 0.41 and 0.19. This decrease cannot be attributed to either a selection (healthy worker effect) or a confounding (lower percentage of smokers) bias. Nor was it due to an artifact introduced by differences in age distribution among the quartiles. Dairy farmers are known to be exposed to higher airborne endotoxin concentrations; reasonably, this cumulative exposure increases further with years of work and area of farm. Endotoxins may have protected the dairy farmers against lung cancer through the tumor necrosis factor produced by alveolar macrophages.

  6. Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation.

    Science.gov (United States)

    Feld-Cook, Elisabeth E; Bovenkamp-Langlois, Lisa; Lomnicki, Slawo M

    2017-09-19

    Environmentally Persistent Free Radicals (EPFRs) are newly discovered, long-lived surface bound radicals that form on particulate matter and combustion borne particulates, such as fly ash. Human exposure to such particulates lead to translocation into the lungs and heart resulting in cardio-vascular and respiratory disease through the production of reactive oxygen species. Analysis of some waste incinerator fly ashes revealed a significant difference between their EPFR contents. Although EPFR formation occurs on the metal domains, these differences were correlated with the altering concentration of calcium and sulfur. To analyze these phenomena, surrogate fly ashes were synthesized to mimic the presence of their major mineral components, including metal oxides, calcium, and sulfur. The results of this study led to the conclusion that the presence of sulfates limits formation of EPFRs due to inhibition or poisoning of the transition metal active sites necessary for their formation. These findings provide a pathway toward understanding differences in EPFR presence on particulate matter and uncover the possibility of remediating EPFRs from incineration and hazardous waste sites.

  7. Education and Cause-specific Mortality

    DEFF Research Database (Denmark)

    Nordahl, Helene; Lange, Theis; Osler, Merete

    2014-01-01

    BACKGROUND: Differential exposures to behavioral risk factors have been shown to play an important mediating role on the education-mortality relation. However, little is known about the extent to which educational attainment interacts with health behavior, possibly through differential...... vulnerability. METHODS: In a cohort study of 76,294 participants 30 to 70 years of age, we estimated educational differences in cause-specific mortality from 1980 through 2009 and the mediating role of behavioral risk factors (smoking, alcohol intake, physical activity, and body mass index). With the use...... of marginal structural models and three-way effect decomposition, we simultaneously regarded the behavioral risk factors as intermediates and clarified the role of their interaction with educational exposure. RESULTS: Rate differences in mortality comparing participants with low to high education were 1...

  8. Increasing fine particulate air pollution in China and the potential use of exposure and biomarker data in disease prevention.

    Science.gov (United States)

    Wendt, Chris H; Ramachandran, Gurumurthy; Lo, Charles; Hertz, Marshall; Mandel, Jeffrey H

    2015-03-16

    Increased industrialization and urbanization have led to marked increases in air pollutants in China over the last decade. Pollutant levels in the north and eastern regions are often four times higher than current daily levels in the United States. Recent reports indicate a higher incidence of lung cancer and mortality in men and urban dwellers, but the contribution of air pollution to these findings remains unknown. Future studies that define individual exposures, combined with biomarkers linked to disease, will be essential to the understanding of risk posed by air pollution in China.

  9. Risk of human health by particulate matter as a source of air pollution--comparison with tobacco smoking.

    Science.gov (United States)

    Enomoto, Makoto; Tierney, William J; Nozaki, Kohsuke

    2008-08-01

    Increased air pollution, containing carcinogenic particulate matter smaller than 2.5 microm (PM(2.5)), has gained particular attention in recent years as a causative factor in the increased incidence of respiratory diseases, including lung cancer. Extensive carcinogenicity studies conducted recently under Good Laboratory Practice conditions by National Toxicology Program in the USA, Ramazzini Foundation in Italy or Contract Research Organizations on numerous chemical compounds have demonstrated the importance of considering dose levels, times and duration of exposure in the safety evaluation of carcinogenic as well as classical toxic agents. Data on exposure levels to chemical carcinogens that produce tumor development have contributed to the evaluation of human carcinogens from extrapolation of animal data. A popular held misconception is that the risk from smoking is the result of inhaling assorted particulate matter and by products from burning tobacco rather than the very low ng levels of carcinogens present in smoke. Consider the fact that a piece of toasted bread contains ng levels of the carcinogen urethane (ethyl carbamate). Yet, no one has considered toast to be a human carcinogen. Future human carcinogenic risk assessment should emphasize consideration of inhalation exposure to higher levels of benzo (a) pyrene and other possible carcinogens and particulate matter present in polluted air derived from automobile exhaust, pitch and coal tar on paved roads and asbestos, in addition to other environmental contaminant exposure via the food and drinking water.

  10. Mortality through 1990 among white male workers at the Los Alamos National Laboratory: Considering exposures to plutonium and external ionizing radiation

    International Nuclear Information System (INIS)

    Wiggs, L.D.; Johnson, E.R.; Cox-DeVore, C.A.; Voelz, G.L.

    1994-01-01

    A cohort mortality study was conducted of 15,727 white men employed by the Los Alamos National Laboratory, a nuclear research and development facility. Some of the workers at this facility have been exposed to various forms of ionizing radiation and other potentially hazardous materials. These analyses focused on whole-body ionizing radiation exposures and internal depositions of plutonium. The results indicated that overall mortality among this cohort is quite low, even after nearly 30 y of follow-up. No cause of death was significantly elevated among plutonium-exposed workers when compared with their unexposed coworkers; however, a rate ratio for lung cancer of 1.78 (95% CI = 0.79-3.99) was observed. A case of osteogenic sarcoma, a type of cancer related to plutonium exposure in animal studies, was also observed. Dose-response relationships for whole-body dose from external ionizing radiation and tritium were observed for cancers of the brain/central nervous system, the esophagus, and Hodgkin's disease. 34 refs., 1 fig., 7 tabs

  11. Kuwaiti oil fires—Particulate monitoring

    Science.gov (United States)

    Husain, Tahir; Amin, Mohamed B.

    The total suspended particulate (TSP) matters using a high-volume sampler and inhalable particulate matters using PM-10 samplers were collected at various locations in the Eastern Province of Saudi Arabia during and after the Kuwaiti oil fires. The collected samples were analysed for toxic metals and oil hydrocarbon concentrations including some carcinogenic organic compounds in addition to gravimetric analysis. The concentration values of particulate matters were determined on a daily basis at Dhahran. Abqaiq, Rahima, Tanajib and Jubail locations. The analyses of the filters show a high concentration of the inhalable particulate at various locations, especially when north or northwest winds were blowing. It was found that the inhalable particulate concentration exceeded the Meteorology and Environmental Protection Administration (MEPA) permissible limit of 340 μg m- 3 at most of these locations during May-October 1991. A trend between the total suspended particulate and inhalable particulate measured concurrently at the same locations was observed and a regression equation was developed to correlate PM-10 data with the total suspended particulate data.

  12. Baseline repeated measures from controlled human exposure studies: associations between ambient air pollution exposure and the systemic inflammatory biomarkers IL-6 and fibrinogen.

    Science.gov (United States)

    Thompson, Aaron M S; Zanobetti, Antonella; Silverman, Frances; Schwartz, Joel; Coull, Brent; Urch, Bruce; Speck, Mary; Brook, Jeffrey R; Manno, Michael; Gold, Diane R

    2010-01-01

    Systemic inflammation may be one of the mechanisms mediating the association between ambient air pollution and cardiovascular morbidity and mortality. Interleukin-6 (IL-6) and fibrinogen are biomarkers of systemic inflammation that are independent risk factors for cardio-vascular disease. We investigated the association between ambient air pollution and systemic inflammation using baseline measurements of IL-6 and fibrinogen from controlled human exposure studies. In this retrospective analysis we used repeated-measures data in 45 nonsmoking subjects. Hourly and daily moving averages were calculated for ozone, nitrogen dioxide, sulfur dioxide, and particulate matter pollutants on systemic IL-6 and fibrinogen. Effect modification by season was considered. We observed a positive association between IL-6 and O3 [0.31 SD per O3 interquartile range (IQR); 95% confidence interval (CI), 0.080.54] and between IL-6 and SO2 (0.25 SD per SO2 IQR; 95% CI, 0.060.43). We observed the strongest effects using 4-day moving averages. Responses to pollutants varied by season and tended to be higher in the summer, particularly for O3 and PM2.5. Fibrinogen was not associated with pollution. This study demonstrates a significant association between ambient pollutant levels and baseline levels of systemic IL-6. These findings have potential implications for controlled human exposure studies. Future research should consider whether ambient pollution exposure before chamber exposure modifies IL-6 response.

  13. Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure.

    Science.gov (United States)

    Caraher, Erin J; Kwon, Sophia; Haider, Syed H; Crowley, George; Lee, Audrey; Ebrahim, Minah; Zhang, Liqun; Chen, Lung-Chi; Gordon, Terry; Liu, Mengling; Prezant, David J; Schmidt, Ann Marie; Nolan, Anna

    2017-01-01

    World Trade Center-particulate matter(WTC-PM) exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI). The receptor for advanced glycation end-products (RAGE) is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV). Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE)≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72). Wild type(WT) and RAGE-deficient(Ager-/-) mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased sRAGE is

  14. Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure.

    Directory of Open Access Journals (Sweden)

    Erin J Caraher

    Full Text Available World Trade Center-particulate matter(WTC-PM exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI. The receptor for advanced glycation end-products (RAGE is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV. Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72. Wild type(WT and RAGE-deficient(Ager-/- mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased s

  15. Multimodel estimates of premature human mortality due to intercontinental transport of air pollution

    Science.gov (United States)

    Liang, C.; Silva, R.; West, J. J.; Sudo, K.; Lund, M. T.; Emmons, L. K.; Takemura, T.; Bian, H.

    2015-12-01

    Numerous modeling studies indicate that emissions from one continent influence air quality over others. Reducing air pollutant emissions from one continent can therefore benefit air quality and health on multiple continents. Here, we estimate the impacts of the intercontinental transport of ozone (O3) and fine particulate matter (PM2.5) on premature human mortality by using an ensemble of global chemical transport models coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). We use simulations of 20% reductions of all anthropogenic emissions from 13 regions (North America, Central America, South America, Europe, Northern Africa, Sub-Saharan Africa, Former Soviet Union, Middle East, East Asia, South Asia, South East Asia, Central Asia, and Australia) to calculate their impact on premature mortality within each region and elsewhere in the world. To better understand the impact of potential control strategies, we also analyze premature mortality for global 20% perturbations from five sectors individually: power and industry, ground transport, forest and savannah fires, residential, and others (shipping, aviation, and agriculture). Following previous studies, premature human mortality resulting from each perturbation scenario is calculated using a health impact function based on a log-linear model for O3 and an integrated exposure response model for PM2.5 to estimate relative risk. The spatial distribution of the exposed population (adults aged 25 and over) is obtained from the LandScan 2011 Global Population Dataset. Baseline mortality rates for chronic respiratory disease, ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, and lung cancer are estimated from the GBD 2010 country-level mortality dataset for the exposed population. Model results are regridded from each model's original grid to a common 0.5°x0.5° grid used to estimate mortality. We perform uncertainty analysis and evaluate the sensitivity

  16. IDENTIFICATION OF POSSIBLE SOURCES OF PARTICULATE MATTER IN THE PERSONAL CLOUD USING SEM/EDX

    Science.gov (United States)

    The United States Environmental Protection Agency (U.S. EPA) conducted the Baltimore Particulate Matter (PM) Epidemiology-Exposure Study of the Elderly during the summer of 1998. The study design included PM2.5 samples obtained from elderly (65+ years of age) retirement facility ...

  17. Public Health and Air Pollution in Asia (PAPA): a multicity study of short-term effects of air pollution on mortality.

    Science.gov (United States)

    Wong, Chit-Ming; Vichit-Vadakan, Nuntavarn; Kan, Haidong; Qian, Zhengmin

    2008-09-01

    Although the deleterious effects of air pollution from fossil fuel combustion have been demonstrated in many Western nations, fewer studies have been conducted in Asia. The Public Health and Air Pollution in Asia (PAPA) project assessed the effects of short-term exposure to air pollution on daily mortality in Bangkok, Thailand, and in three cities in China: Hong Kong, Shanghai, and Wuhan. Poisson regression models incorporating natural spline smoothing functions were used to adjust for seasonality and other time-varying covariates that might confound the association between air pollution and mortality. Effect estimates were determined for each city and then for the cities combined using a random effects method. In individual cities, associations were detected between most of the pollutants [nitrogen dioxide, sulfur dioxide, particulate matter air pollution than those in Western industrial nations because they spend more time outdoors and less time in air conditioning. Although the social and environmental conditions may be quite different, it is reasonable to apply estimates derived from previous health effect of air pollution studies in the West to Asia.

  18. EVALUATION OF A PERSONAL NEPHELOMETER FOR HUMAN EXPOSURE MONITORING

    Science.gov (United States)

    Current particulate matter (PM) exposure studies are using continuous personal nephelometers (pDR-1000, MIE, Inc.) to measure human exposure to PM. The personal nephelometer is a passive sampler which uses light scattering technology to measure particles ranging in size from 0....

  19. Mortality analyses in the updated French cohort of uranium miners (1946-2007)

    Energy Technology Data Exchange (ETDEWEB)

    Rage, E.; Caer-Lorho, S.; Drubay, D.; Ancelet, S.; Laurier, D. [Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (France). PRP-HOM, SRBE, LEPID; Laroche, P. [AREVA, Paris La Defense (France). Direction Sante

    2015-08-15

    The objectives are to analyze mortality risks in the extended follow-up of the French uranium miners' cohort and to examine their potential relation to occupational exposure to ionizing radiation (IR). The total cohort includes 5,086 uranium miners employed in the CEA-COGEMA group and followed up from 1946 to 2007. Vital status, causes of death, and cumulative radon exposures were recorded. The post-55 subcohort includes 3,377 miners first employed after 1955, for whom long-lived radionuclides (LLR) and external gamma-ray exposure were also recorded. External mortality analyses were performed by computing standardized mortality ratios (SMR). Excess relative risks (ERRs) due to IR exposures were estimated from Poisson regression models. The miners included in the total cohort were followed up for 35.4 years and exposed to 36.6 working level months (WLM) on average. There was no evidence of a difference in overall mortality between miners and the general French male population. Miners had a statistically significant excess mortality rate from lung cancer (SMR = 1.34 [95 % CI 1.16-1.53]) and from kidney cancer (SMR = 1.60 [1.03-2.39]). Cumulative radon exposure was significantly associated with lung cancer risk (ERR/100 WLM = 0.71 [0.31-1.30]) and cerebrovascular risk (ERR/100 WLM = 0.41 [0.04-1.03]). In the post-55 subcohort, this excess mortality from lung cancer remained associated with exposure to radon, and also with exposure to LLR and external gamma rays. Conclusions The analyses in the extended follow-up strengthen the results previously observed among French uranium miners about their excess risk of mortality and its association with their occupational IR exposure.

  20. Mortality analyses in the updated French cohort of uranium miners (1946-2007)

    International Nuclear Information System (INIS)

    Rage, E.; Caer-Lorho, S.; Drubay, D.; Ancelet, S.; Laurier, D.; Laroche, P.

    2015-01-01

    The objectives are to analyze mortality risks in the extended follow-up of the French uranium miners' cohort and to examine their potential relation to occupational exposure to ionizing radiation (IR). The total cohort includes 5,086 uranium miners employed in the CEA-COGEMA group and followed up from 1946 to 2007. Vital status, causes of death, and cumulative radon exposures were recorded. The post-55 subcohort includes 3,377 miners first employed after 1955, for whom long-lived radionuclides (LLR) and external gamma-ray exposure were also recorded. External mortality analyses were performed by computing standardized mortality ratios (SMR). Excess relative risks (ERRs) due to IR exposures were estimated from Poisson regression models. The miners included in the total cohort were followed up for 35.4 years and exposed to 36.6 working level months (WLM) on average. There was no evidence of a difference in overall mortality between miners and the general French male population. Miners had a statistically significant excess mortality rate from lung cancer (SMR = 1.34 [95 % CI 1.16-1.53]) and from kidney cancer (SMR = 1.60 [1.03-2.39]). Cumulative radon exposure was significantly associated with lung cancer risk (ERR/100 WLM = 0.71 [0.31-1.30]) and cerebrovascular risk (ERR/100 WLM = 0.41 [0.04-1.03]). In the post-55 subcohort, this excess mortality from lung cancer remained associated with exposure to radon, and also with exposure to LLR and external gamma rays. Conclusions The analyses in the extended follow-up strengthen the results previously observed among French uranium miners about their excess risk of mortality and its association with their occupational IR exposure.

  1. Occupational radiation exposure and mortality: second analysis of the National Registry for Radiation Workers

    International Nuclear Information System (INIS)

    Muirhead, C.R.; Goodill, A.A.; Haylock, R.G.E.; Vokes, J.; Little, M.P.; Jackson, D.A.; O'Hagan, J.A.; Thomas, J.M.; Kendall, G.M.; Silk, T.J.; Bingham, D.; Berridge, G.L.C.

    1999-01-01

    zero. For multiple myeloma there was an indication of an increasing trend in risk with external dose (p = 0.06), although the evidence for this trend disappeared after omitting workers monitored for exposure to internal emitters. The second NRRW analysis provides stronger inferences than the first on occupational radiation exposure and cancer mortality; the 90% confidence intervals for the risk per unit dose are tighter than before, and now exclude values which are greater than four times those seen among the Japanese A-bomb survivors, although they are also generally consistent with an observation of no raised risk. Furthermore, there is evidence, of borderline statistical significance, of an increasing risk for leukaemia excluding CLL, and, as with solid cancers, the data are consistent with the A-bomb findings. (author)

  2. The geocentric particulate distribution: Cometary, asteroidal, or space debris?

    Science.gov (United States)

    Mcdonnell, J. A. M.; Ratcliff, P. R.

    1992-01-01

    Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the

  3. Mortality after exposure to polychlorinated biphenyls and polychlorinated dibenzofurans: a meta-analysis of two highly exposed cohorts.

    Science.gov (United States)

    Li, Ming-Chieh; Chen, Pau-Chung; Tsai, Pei-Chien; Furue, Masutaka; Onozuka, Daisuke; Hagihara, Akihito; Uchi, Hiroshi; Yoshimura, Takesumi; Guo, Yue Leon

    2015-09-15

    Both Yucheng and Yusho were events of accidental exposure to highly doses of polychlorinated biphenyls and dibenzofurans in Asian people. Mortality experiences caused by various diseases were reported in both cohorts with similar and dissimilar findings. We thus conducted a meta-analysis of two cohorts to reevaluate the effects of PCBs and PCDFs on major causes of mortalities. Two recently updated Yucheng and Yusho mortality studies were included. For selected diseases, standardized mortality ratios (SMR) and 95% confidence intervals (95% CI) were extracted. Meta-analyses were conducted using a random-effects model only when heterogeneity (I(2)  > 50% and/or p value <0.10 by the Q test) was not found. A total of 1,803 Yucheng subjects (male, N = 830; female, N = 973) with 48,751 person-years of follow-up and 1,664 Yusho subjects (male, N = 860; female, N = 804) with 50,773 person-years are included. An increase in all-cause mortality (pooled SMR=1.2, 95% CI: 1.1-1.3, I(2)  = 0.0%), all cancers (pooled SMR=1.3, 95% CI: 1.1-1.6, I(2)  = 0.0%), lung cancer (pooled SMR=1.7, 95% CI: 1.2-2.3, I(2) =0.0%), heart disease (pooled SMR=1.3, 95% CI: 1.0-1.7, I(2)  = 43.4%) and hepatic disease (pooled SMR=1.9, 95% CI: 1.3-2.8, I(2)  = 0.0%) were found in pooled males. Significant elevation from liver cancer was found in pooled females (pooled SMR=2.0, 95% CI: 1.1-3.6, I(2)  = 0.0%). This meta-analysis of Yucheng and Yusho cohorts showed similar elevation from all cancer, lung cancer, heart disease and hepatic disease mortalities in exposed men. Furthermore, a new finding of elevated liver cancer mortality in exposed women was identified. © 2015 UICC.

  4. Studies of the mortality of A-bomb survivors. 8. Cancer mortality, 1950-1982

    International Nuclear Information System (INIS)

    Preston, D.L.; Kato, H.; Kopecky, K.; Fujita, S.

    1987-01-01

    This study extends an earlier one by 4 years (1979-1982) and includes mortality data on 11,393 additional Nagasaki survivors. Significant dose responses are observed for leukemia, multiple myeloma, and cancers of the lung, female breast, stomach, colon, esophagus, and urinary tract. Due to diagnostic difficulties, results for liver and ovarian cancers, while suggestive of significant dose responses, do not provide convincing evidence for radiogenic effects. No significant dose responses are seen for cancers of the gallbladder, prostate, rectum, pancreas, or uterus, or for lymphoma. For solid tumors, largely due to sex-specific differences in the background rates, the relative risk of radiation-induced mortality is greater for women than for men. For nonleukemic cancers the relative risk seen in those who were young when exposed has decreased with time, while the smaller risks for those who were older at exposure have tended to increase. While the absolute excess risks of radiation-induced mortality due to nonleukemic cancer have increased with time for all age-at-exposure groups, both excess and relative risks of leukemia have generally decreased with time. For leukemia, the rate of decrease in risk and the initial level of risk are inversely related to age at exposure

  5. Ambient Air Pollution Exposure and Respiratory, Cardiovascular and Cerebrovascular Mortality in Cape Town, South Africa: 2001?2006

    OpenAIRE

    Wichmann, Janine; Voyi, Kuku

    2012-01-01

    Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM10, SO2 and NO2 levels and daily respiratory (RD), cardiovascular (CVD) and cerebrovascular (CBD) mortality in Cape Town (2001–2006) was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR) increase in PM1...

  6. Two denominators for one numerator: the example of neonatal mortality.

    Science.gov (United States)

    Harmon, Quaker E; Basso, Olga; Weinberg, Clarice R; Wilcox, Allen J

    2018-06-01

    Preterm delivery is one of the strongest predictors of neonatal mortality. A given exposure may increase neonatal mortality directly, or indirectly by increasing the risk of preterm birth. Efforts to assess these direct and indirect effects are complicated by the fact that neonatal mortality arises from two distinct denominators (i.e. two risk sets). One risk set comprises fetuses, susceptible to intrauterine pathologies (such as malformations or infection), which can result in neonatal death. The other risk set comprises live births, who (unlike fetuses) are susceptible to problems of immaturity and complications of delivery. In practice, fetal and neonatal sources of neonatal mortality cannot be separated-not only because of incomplete information, but because risks from both sources can act on the same newborn. We use simulations to assess the repercussions of this structural problem. We first construct a scenario in which fetal and neonatal factors contribute separately to neonatal mortality. We introduce an exposure that increases risk of preterm birth (and thus neonatal mortality) without affecting the two baseline sets of neonatal mortality risk. We then calculate the apparent gestational-age-specific mortality for exposed and unexposed newborns, using as the denominator either fetuses or live births at a given gestational age. If conditioning on gestational age successfully blocked the mediating effect of preterm delivery, then exposure would have no effect on gestational-age-specific risk. Instead, we find apparent exposure effects with either denominator. Except for prediction, neither denominator provides a meaningful way to define gestational-age-specific neonatal mortality.

  7. Difference in Pro-Inflammatory Cytokine Responses Induced in THP1 Cells by Particulate Matter Collected on Days with and without ASIAN Dust Storms

    Directory of Open Access Journals (Sweden)

    Masanari Watanabe

    2015-07-01

    Full Text Available The associations between particulate matter from Asian dust storms (ADS and health disorders differ among studies, and the underlying mechanisms remain unclear. In this study, ADS and non-ADS particles were tested for their potential to induce pro-inflammatory cytokines associated with adverse respiratory effects. Particulate matter was collected in Japan during four periods in 2013 (2 × ADS periods; 2 × non-ADS. THP1 cells were exposed to this particulate matter, and the levels of various interleukins (ILs, and tumor necrosis factor (TNF-α were measured. Levels of IL-2 increased significantly following exposure to all particulate matter samples (compared to levels in a solvent control. Increased levels of IL-10 and TNF-α were also observed following exposure to particles collected during three (one ADS and two non-ADS and two (one ADS and one non-ADS collection periods, respectively. Thus, the effects of particulate matter on cytokine responses differed according to collection period, and the effects of ADS particles differed for each ADS event. Additionally, the levels of pro-inflammatory cytokines induced by ADS particles were not always higher than those induced by non-ADS particles.

  8. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study.

    NARCIS (Netherlands)

    Brunekreef, B.|info:eu-repo/dai/nl/067548180; Beelen, R.M.J.|info:eu-repo/dai/nl/30483100X; Hoek, G.|info:eu-repo/dai/nl/069553475; Schouten, L.J.; Bausch-Goldbohm, S.; Fischer, P.; Armstrong, B.; Hughes, E.; Jerrett, M.; v.d. Brandt, P.A.

    2009-01-01

    Evidence is increasing that long-term exposure to ambient air pollution is associated with deaths from cardiopulmonary diseases. In a 2002 pilot study, we reported clear indications that traffic-related air pollution, especially at the local scale, was related to cardiopulmonary mortality in a

  9. 77 FR 33002 - Proposed Extension of Existing Information Collection; Health Standards for Diesel Particulate...

    Science.gov (United States)

    2012-06-04

    ... information in accordance with the Paperwork Reduction Act of 1995. This program helps to assure that requested data can be provided in the desired format, reporting burden (time and financial resources) is... Extension of Existing Information Collection; Health Standards for Diesel Particulate Matter Exposure...

  10. Zebrafish Locomotor Responses Predict Irritant Potential of Smoke Particulate Matter from Five Biomass Fuels

    Science.gov (United States)

    Over the past few decades, the drying and warming trends of global climate change have increased wildland fire (WF) season length, as well as geographic area impacted. Consequently, exposures to WF fine particulate matter (PM2.5; aerodynamic diameter <2.5 µm) are likely ...

  11. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    International Nuclear Information System (INIS)

    Renard, Jean-Baptiste; Gaubicher, Bertrand; Thaury, Claire; Mineau, Jean-Luc

    2010-01-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration

  12. Indoor occupational exposure to radiation at the Silmet plant in Estonia

    International Nuclear Information System (INIS)

    Mustonen, R.; Markkanen, M; Oksanen, E.; Rajamaee, R.

    2000-01-01

    The main pathways of indoor occupational exposure to radiation at Silmet plant are inhaled thoron daughters, external radiation, and inhaled particulate radioactivity. The exposure time to receive 1 mSv effective dose from inhaled long-lived particulate radioactivity and from external gamma radiation is estimated at about 700 hours at Workplace 1 and about 160 hours at Workplace 2. The results for Workplace 2 represent radiologically the most extreme conditions found in the workplaces. The results show that the exposure of workers due inhalation of long-lived radionuclides and to external gamma radiation may well exceed 1 mSv per year and, therefore, continuous monitoring of doses of workers seems to be justified

  13. Soot accumulation in diesel particulate filters using ULSD and B20 biodiesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Charbonneau, P.; Wallace, J.S. [Toronto Univ., ON (Canada)

    2009-07-01

    Soot accumulation in a diesel particulate filter was investigated using a newly developed dissection method that loads and dissects diesel particulate filters (DPFs). In particular, this study examined the differences in soot accumulation between ultra-low sulphur diesel (ULSD) and a B20 biodiesel blend. DPFs loaded for exposure times of 1, 2, 5 and 10 hours. Scanning electron microscopy (SEM) was used to analyze the samples of the filter substrate. The differences in particulate size and number distribution between fuels were attributed to performance differences in DPFs. ULSD loaded filters experienced increased loading and a greater pressure drop across the filters. According to SEM images, the soot cake was a relatively shallow feature increasing in density to form discrete coarse agglomerates and cakes. It was concluded that this newly developed methodology has potential for future studies in DPF loading.

  14. A microfluidic paper-based analytical device for rapid quantification of particulate chromium

    International Nuclear Information System (INIS)

    Rattanarat, Poomrat; Dungchai, Wijitar; Cate, David M.; Siangproh, Weena; Volckens, John; Chailapakul, Orawon; Henry, Charles S.

    2013-01-01

    Graphical abstract: -- Highlights: •Cr detection using a paper-based analytical device. •Analysis of total Cr levels in particulate matter was achieved. •Method for on-paper oxidation of Cr to Cr(VI) using Ce(IV) was established. -- Abstract: Occupational exposure to Cr is concerning because of its myriad of health effects. Assessing chromium exposure is also cost and resource intensive because the analysis typically uses sophisticated instrumental techniques like inductively coupled plasma-mass spectrometry (ICP-MS). Here, we report a novel, simple, inexpensive microfluidic paper-based analytical device (μPAD) for measuring total Cr in airborne particulate matter. In the μPAD, tetravalent cerium (Ce(IV)) was used in a pretreatment zone to oxidize all soluble Cr to Cr(VI). After elution to the detection zone, Cr(VI) reacts with 1,5-diphenylcarbazide (1,5-DPC) forming 1,5-diphenylcarbazone (DPCO) and Cr(III). The resulting Cr(III) forms a distinct purple colored complex with the DPCO. As proof-of-principle, particulate matter (PM) collected on a sample filter was analyzed with the μPAD to quantify the mass of total Cr. A log-linear working range (0.23–3.75 μg; r 2 = 0.998) between Cr and color intensity was obtained with a detection limit of 0.12 μg. For validation, a certified reference containing multiple competing metals was analyzed. Quantitative agreement was obtained between known Cr levels in the sample and the Cr measured using the μPAD

  15. Contributions to the thorium occupational exposure in Brazil

    International Nuclear Information System (INIS)

    Cunha, Kenya Moore de Almeida Dias da

    1997-01-01

    There are around 15.000 workers in Brazil involved in the mining and milling processes of thorium bearing minerals. It is necessary to estimate the exposure of workers to airborne particulate containing thorium to estimate the risk associated with the inhalation of aerosols. The aims of this study were: - to develop a national cascade impactor and - to characterize the exposure of workers to airborne particulate containing Th in two plants and one industry that were chosen. Plant A and Pant B process niobium ore and industry C uses thorium nitrate to manufacture gas mantle. The national cascade impactor - ICN was developed to collect particulate in the range of 0,64 up to 19,4 μm. Its advantage over commercially available cascade impactors is the selections of particulate in the respirable and inhalable fractions of aerosol. The experimental calibration of the ICN agreed with the theoretical calibration. The results obtained with the ICN were compared to the ones obtained with other selective air samplers, in 3 plants. The particle size distribution and the Th mass concentration were determined in those plants. The size distribution of particulate containing Nb. U Zr, Pb. Fe, Y and Sr, and the elemental mass concentration was determined. A group of workers in installations B and C were also monitored through bioassay analysis of Th excreted in urine and feces. Air and bioassay results have shown that the systemic incorporation of Th is not significant. (author)

  16. Lagged PM2.5 effects in mortality time series: Critical impact of covariate model

    Science.gov (United States)

    The two most common approaches to modeling the effects of air pollution on mortality are the Harvard and the Johns Hopkins (NMMAPS) approaches. These two approaches, which use different sets of covariates, result in dissimilar estimates of the effect of lagged fine particulate ma...

  17. Mortality from cardiovascular diseases in the Semipalatinsk historical cohort, 1960-1999, and its relationship to radiation exposure.

    Science.gov (United States)

    Grosche, Bernd; Lackland, Daniel T; Land, Charles E; Simon, Steven L; Apsalikov, Kazbek N; Pivina, Ludmilla M; Bauer, Susanne; Gusev, Boris I

    2011-11-01

    The data on risk of mortality from cardiovascular disease due to radiation exposure at low or medium doses are inconsistent. This paper reports an analysis of the Semipalatinsk historical cohort exposed to radioactive fallout from nuclear testing in the vicinity of the Semipalatinsk Nuclear Test Site, Kazakhstan. The cohort study, which includes 19,545 persons of exposed and comparison villages in the Semipalatinsk region, had been set up in the 1960s and comprises 582,656 person-years of follow-up between 1960 and 1999. A dosimetric approach developed by the U.S. National Cancer Institute (NCI) has been used. Radiation dose estimates in this cohort range from 0 to 630 mGy (whole-body external). Overall, the exposed population showed a high mortality from cardiovascular disease. Rates of mortality from cardiovascular disease in the exposed group substantially exceeded those of the comparison group. Dose-response analyses were conducted for both the entire cohort and the exposed group only. A dose-response relationship that was found when analyzing the entire cohort could be explained completely by differences between the baseline rates in exposed and unexposed groups. When taking this difference into account, no statistically significant dose-response relationship for all cardiovascular disease, for heart disease, or for stroke was found. Our results suggest that within this population and at the level of doses estimated, there is no detectable risk of radiation-related mortality from cardiovascular disease.

  18. Low dose ionizing radiation exposure and cardiovascular disease mortality: cohort study based on Canadian national dose registry of radiation workers

    International Nuclear Information System (INIS)

    Zielinski, J. M.; Band, P. R.; Ashmore, P. J.; Jiang, H.; Shilnikova, N. S.; Tait, V. K.; Krewski, D.

    2009-01-01

    The purpose of our study was to assess the risk of cardiovascular disease (CVD) mortality in a Canadian cohort of 337 397 individuals (169 256 men and 168 141 women) occupationally exposed to ionizing radiation and included in the National Dose Registry (NDR) of Canada. Material and Methods: Exposure to high doses of ionizing radiation, such as those received during radiotherapy, leads to increased risk of cardiovascular diseases. The emerging evidence of excess risk of CVDs after exposure to doses well below those previously considered as safe warrants epidemiological studies of populations exposed to low levels of ionizing radiation. In the present study, the cohort consisted of employees at nuclear power stations (nuclear workers) as well as medical, dental and industrial workers. The mean whole body radiation dose was 8.6 mSv for men and 1.2 mSv for women. Results: During the study period (1951 - 1995), as many as 3 533 deaths from cardiovascular diseases have been identified (3 018 among men and 515 among women). In the cohort, CVD mortality was significantly lower than in the general population of Canada. The cohort showed a significant dose response both among men and women. Risk estimates of CVD mortality in the NDR cohort, when expressed as excess relative risk per unit dose, were higher than those in most other occupational cohorts and higher than in the studies of Japanese atomic bomb survivors. Conclusions: The study has demonstrated a strong positive association between radiation dose and the risk of CVD mortality. Caution needs to be exercised when interpreting these results, due to the potential bias introduced by dosimetry uncertainties, the possible record linkage errors, and especially by the lack of adjustment for non-radiation risk factors. (authors)

  19. Mortality and Morbidity Due to Exposure to Ambient NO2, SO2, and O3 in Isfahan in 2013-2014.

    Science.gov (United States)

    Abdolahnejad, Ali; Jafari, Negar; Mohammadi, Amir; Miri, Mohammad; Hajizadeh, Yaghoub

    2018-01-01

    The presence of air pollutants such as CO, NO 2 , SO 2 , O 3 , and PM in the ambient air mainly emitted from fossil fuels combustion has become a major health concern. The aims of this study were to estimate the attribution of NO 2 , SO 2 , and O 3 in the premature deaths and prevalence of cardiovascular and respiratory diseases in Isfahan in 2013-2014. In this study, short-term health effects (total mortality, cardiovascular and respiratory mortality, chronic obstructive pulmonary disease, and acute myocardial infarction) of exposure NO 2 , SO 2 , and O 3 on the population of Isfahan were assessed using AirQ 2.2.3 software suggested by the World Health Organization (WHO). The result showed that from nonaccident total mortality in 2013-2014 in Isfahan, the attributable proportion related to NO 2 , SO 2 , and O 3 were 1.03% (109 cases), 3.46% (365 cases), and 1.29% (136 cases), respectively. The percentage of days that people were exposed to the highest concentration of NO 2 (40-49 μg/m 3 ), SO 2 (60-69 μg/m 3 ), and O 3 (40-49 μg/m 3 ) was 34.46%, 16.85%, and 42.74% of a year, respectively. Total mortality attributed to NO 2 , SO 2 , and O 3 exposure was 0.36%, 0.79%, and 0.83%, respectively. The concentrations of NO 2 and SO 2 were upper than the WHO guidelines. The Air-Q software in spite of its limitations can provide useful information regarding the health outcome of the air pollutants. The results estimated in this study were considerable. This information can help the health authorities and policy makers to draw suitable strategies and fulfill effective emission control programs.

  20. Cancer mortality risk of nuclear power workers due to the exposure of ionising radiation in Germany

    International Nuclear Information System (INIS)

    Fehringer, F.; Seitz, G.; Hammer, G.P.; Blettner, M.

    2006-01-01

    A cohort study of German nuclear power workers was set up to investigate overall and cancer mortality risk related to a chronic exposure to ionising radiation of low-level dose. The German study was performed as a part of an international study carried out by the International Agency for Research on Cancer (IARC), Lyon. First results of the international study have been published recently [1]. German data are not yet included in this analysis. The German cohort consists of 4844 employees from 10 nuclear power plants. All persons who worked in these nuclear power plants in 1991 or started employment between 1991 und 1997 are included (except for employees of one plant, whose observation period started in 1992). These persons accumulated about 31,000 person years. Overall, 68 deaths were observed in the observation period between 1.1.1991-31.12.1997. Standardized mortality ratios (SMR) were computed for all causes of death, all cancers, cardiovascular diseases, external causes, and all other causes. Overall, a strong healthy worker effect was observed (SMR=0.52 [95% CI: 0.41;0.67]). No increase in total cancer mortality was seen (SMR=0.85 [95% CI: 0.53;1.30]). However, numbers are too small for stable risk estimates and further effort is under way to complete the cohort in terms of power plants and to extend the follow-up until 2005. (authors)

  1. Cancer mortality risk of nuclear power workers due to the exposure of ionising radiation in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Fehringer, F.; Seitz, G. [Berufsgenossenschaft der Feinmechanik und Elektrotechnik, Koln (Germany); Hammer, G.P.; Blettner, M. [Johannes Gutenberg-Universitat Mainz, Institut fur Medizinische Biometrie, Epidemiologie und Informatik des Klinikums (Germany)

    2006-07-01

    A cohort study of German nuclear power workers was set up to investigate overall and cancer mortality risk related to a chronic exposure to ionising radiation of low-level dose. The German study was performed as a part of an international study carried out by the International Agency for Research on Cancer (IARC), Lyon. First results of the international study have been published recently [1]. German data are not yet included in this analysis. The German cohort consists of 4844 employees from 10 nuclear power plants. All persons who worked in these nuclear power plants in 1991 or started employment between 1991 und 1997 are included (except for employees of one plant, whose observation period started in 1992). These persons accumulated about 31,000 person years. Overall, 68 deaths were observed in the observation period between 1.1.1991-31.12.1997. Standardized mortality ratios (SMR) were computed for all causes of death, all cancers, cardiovascular diseases, external causes, and all other causes. Overall, a strong healthy worker effect was observed (SMR=0.52 [95% CI: 0.41;0.67]). No increase in total cancer mortality was seen (SMR=0.85 [95% CI: 0.53;1.30]). However, numbers are too small for stable risk estimates and further effort is under way to complete the cohort in terms of power plants and to extend the follow-up until 2005. (authors)

  2. Electrical diesel particulate filter (DPF) regeneration

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-12-31

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  3. Estimation of disease burdens on preterm births and low birth weights attributable to maternal fine particulate matter exposure in Shanghai, China.

    Science.gov (United States)

    Liu, Anni; Qian, Naisi; Yu, Huiting; Chen, Renjie; Kan, Haidong

    2017-12-31

    Studies have shown that maternal exposure to particulate matter ≤2.5μm in aerodynamic diameter (PM 2.5 ) was associated with adverse birth outcomes such as preterm birth (PTB) and low birth weight (LBW). However, the burdens of PTB and LBW attributable to PM 2.5 were rarely evaluated, especially in developing countries. To estimate the burdens of PTBs and LBWs attributable to outdoor PM 2.5 in Shanghai, China. We collected annual-average PM 2.5 concentrations, concentration-response relationships between PM 2.5 exposure during pregnancy and PTBs and LBWs, rates of PTB and LBW, number of live births, and population sizes in grids of 10km×10km in Shanghai in 2013. Then, they were combined to estimate the odds ratios (ORs), relative risks (RRs), attributable fractions (AFs), and numbers of PTBs and LBWs associated with PM 2.5 exposure. The population-weighted annual-average concentration of PM 2.5 in Shanghai was 56.19μg/m 3 in 2013. According to the first-class limit of PM 2.5 (15μg/m 3 ) in the Ambient Air Quality Standards of China, the weighted RRs of PTBs or LBWs associated with PM 2.5 in Shanghai were 1.49 [95% confidence interval (CI): 1.16-1.80] and 1.31 (95% CI: 1.04-1.67), respectively. There might be 32.61% (95% CI: 13.93%-44.42%) or 4160 (95% CI: 1778-5667) PTBs and 23.36% (95% CI: 3.86%-40.02%) or 1882 (95% CI: 311-3224) LBWs attributable to PM 2.5 exposure. The estimates varied appreciably among different districts of Shanghai. Our analysis suggested that outdoor PM 2.5 air pollution might have led to considerable burdens of PTBs and LBWs in Shanghai, China. Copyright © 2017. Published by Elsevier B.V.

  4. Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates

    Science.gov (United States)

    An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate conce...

  5. Oxidative stress-induced telomeric erosion as a mechanism underlying airborne particulate matter-related cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Grahame Thomas J

    2012-06-01

    Full Text Available Abstract Particulate matter (PM pollution is responsible for hundreds of thousands of deaths worldwide, the majority due to cardiovascular disease (CVD. While many potential pathophysiological mechanisms have been proposed, there is not yet a consensus as to which are most important in causing pollution-related morbidity/mortality. Nor is there consensus regarding which specific types of PM are most likely to affect public health in this regard. One toxicological mechanism linking exposure to airborne PM with CVD outcomes is oxidative stress, a contributor to the development of CVD risk factors including atherosclerosis. Recent work suggests that accelerated shortening of telomeres and, thus, early senescence of cells may be an important pathway by which oxidative stress may accelerate biological aging and the resultant development of age-related morbidity. This pathway may explain a significant proportion of PM-related adverse health outcomes, since shortened telomeres accelerate the progression of many diseases. There is limited but consistent evidence that vehicular emissions produce oxidative stress in humans. Given that oxidative stress is associated with accelerated erosion of telomeres, and that shortened telomeres are linked with acceleration of biological ageing and greater incidence of various age-related pathology, including CVD, it is hypothesized that associations noted between certain pollution types and sources and oxidative stress may reflect a mechanism by which these pollutants result in CVD-related morbidity and mortality, namely accelerated aging via enhanced erosion of telomeres. This paper reviews the literature providing links among oxidative stress, accelerated erosion of telomeres, CVD, and specific sources and types of air pollutants. If certain PM species/sources might be responsible for adverse health outcomes via the proposed mechanism, perhaps the pathway to reducing mortality/morbidity from PM would become clearer

  6. Bladder cancer mortality of workers exposed to aromatic amines: a 58-year follow-up.

    Science.gov (United States)

    Pira, Enrico; Piolatto, Giorgio; Negri, Eva; Romano, Canzio; Boffetta, Paolo; Lipworth, Loren; McLaughlin, Joseph K; La Vecchia, Carlo

    2010-07-21

    We previously investigated bladder cancer risk in a cohort of dyestuff workers who were heavily exposed to aromatic amines from 1922 through 1972. We updated the follow-up by 14 years (through 2003) for 590 exposed workers to include more than 30 years of follow-up since last exposure to aromatic amines. Expected numbers of deaths from bladder cancer and other causes were computed by use of national mortality rates from 1951 to 1980 and regional mortality rates subsequently. There were 394 deaths, compared with 262.7 expected (standardized mortality ratio = 1.50, 95% confidence interval = 1.36 to 1.66). Overall, 56 deaths from bladder cancer were observed, compared with 3.4 expected (standardized mortality ratio = 16.5, 95% confidence interval = 12.4 to 21.4). The standardized mortality ratio for bladder cancer increased with younger age at first exposure and increasing duration of exposure. Although the standardized mortality ratio for bladder cancer steadily decreased with time since exposure stopped, the absolute risk remained approximately constant at 3.5 deaths per 1000 man-years up to 29 years after exposure stopped. Excess risk was apparent 30 years or more after last exposure.

  7. Decline in measles mortality: nutrition, age at infection, or exposure?

    Science.gov (United States)

    Aaby, Peter; Bukh, Jette; Lisse, Ida Maria; da Silva, Maria Clotilde

    1988-01-01

    The mortality from measles was studied in an urban area of Guinea-Bissau one year before and five years after the introduction of a vaccination programme. The years after the introduction of immunisation saw a decline in mortality among unvaccinated children with measles. This decline occurred despite a lower age at infection and an increasing prevalence of malnourished children. State of nutrition (weight for age) did not affect the outcome of measles infection. The incidence of isolated cases, however, increased in the period after the introduction of measles vaccination. As mortality was lower among these cases, diminished clustering explained some of the reduction in mortality. Comparison between the urban district and a rural area inhabited by the same ethnic group showed a lower age at infection, less clustering of cases, and lower case fatality ratios in the urban area. Endemic transmission of measles in urban districts leads to less clustering of cases, which may help explain the usually lower case fatality ratios in these areas. As measles vaccination increases herd immunity and diminishes clustering of cases, it may reduce mortality even among unvaccinated children who contract the disease. PMID:3133023

  8. Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung.

    Science.gov (United States)

    Pereira, C E L; Heck, T G; Saldiva, P H N; Rhoden, C R

    2007-10-01

    Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 +/- 0.51;P-20: 5.01 x 105 +/- 0.81; P air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.

  9. Lung Cancer Mortality among Uranium Gaseous Diffusion Plant Workers: A Cohort Study 1952–2004

    Directory of Open Access Journals (Sweden)

    LW Figgs

    2013-07-01

    Full Text Available Background: 9%–15% of all lung cancers are attributable to occupational exposures. Reports are disparate regarding elevated lung cancer mortality risk among workers employed at uranium gaseous diffusion plants. Objective: To investigate whether external radiation exposure is associated with lung cancer mortality risk among uranium gaseous diffusion workers. Methods: A cohort of 6820 nuclear industry workers employed from 1952 to 2003 at the Paducah uranium gaseous diffusion plant (PGDP was assembled. A job-specific exposure matrix (JEM was used to determine likely toxic metal exposure categories. In addition, radiation film badge dosimeters were used to monitor cumulative external ionizing radiation exposure. International Classification for Disease (ICD codes 9 and 10 were used to identify 147 lung cancer deaths. Logistic and proportional hazards regression were used to estimate lung cancer mortality risk. Results: Lung cancer mortality risk was elevated among workers who experienced external radiation >3.5 mrem and employment duration >12 years. Conclusion: Employees of uranium gaseous diffusion plants carry a higher risk of lung cancer mortality; the mortality is associated with increased radiation exposure and duration of employment.

  10. Associations between short-term exposure to nitrogen dioxide and mortality in 17 Chinese cities: the China Air Pollution and Health Effects Study (CAPES).

    Science.gov (United States)

    Chen, Renjie; Samoli, Evangelia; Wong, Chit-Ming; Huang, Wei; Wang, Zongshuang; Chen, Bingheng; Kan, Haidong

    2012-09-15

    Few multi-city studies in Asian developing countries have examined the acute health effects of ambient nitrogen dioxide (NO(2)). In the China Air Pollution and Health Effects Study (CAPES), we investigated the short-term association between NO(2) and mortality in 17 Chinese cities. We applied two-stage Bayesian hierarchical models to obtain city-specific and national average estimates for NO(2). In each city, we used Poisson regression models incorporating natural spline smoothing functions to adjust for long-term and seasonal trend of mortality, as well as other time-varying covariates. We examined the associations by age, gender and education status. We combined the individual-city estimates of the concentration-response curves to get an overall NO(2)-mortality association in China. The averaged daily concentrations of NO(2) in the 17 Chinese cities ranged from 26 μg/m(3) to 67 μg/m(3). In the combined analysis, a 10-μg/m(3) increase in two-day moving averaged NO(2) was associated with a 1.63% [95% posterior interval (PI), 1.09 to 2.17], 1.80% (95% PI, 1.00 to 2.59) and 2.52% (95% PI, 1.44 to 3.59) increase of total, cardiovascular, and respiratory mortality, respectively. These associations remained significant after adjustment for ambient particles or sulfur dioxide (SO(2)). Older people appeared to be more vulnerable to NO(2) exposure. The combined concentration-response curves indicated a linear association. Conclusively, this largest epidemiologic study of NO(2) in Asian developing countries to date suggests that short-term exposure to NO(2) is associated with increased mortality risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The Diesel Exhaust in Miners Study: III. Interrelations between respirable elemental carbon and gaseous and particulate components of diesel exhaust derived from area sampling in underground non-metal mining facilities.

    Science.gov (United States)

    Vermeulen, Roel; Coble, Joseph B; Yereb, Daniel; Lubin, Jay H; Blair, Aaron; Portengen, Lützen; Stewart, Patricia A; Attfield, Michael; Silverman, Debra T

    2010-10-01

    Diesel exhaust (DE) has been implicated as a potential lung carcinogen. However, the exact components of DE that might be involved have not been clearly identified. In the past, nitrogen oxides (NO(x)) and carbon oxides (CO(x)) were measured most frequently to estimate DE, but since the 1990s, the most commonly accepted surrogate for DE has been elemental carbon (EC). We developed quantitative estimates of historical exposure levels of respirable elemental carbon (REC) for an epidemiologic study of mortality, particularly lung cancer, among diesel-exposed miners by back-extrapolating 1998-2001 REC exposure levels using historical measurements of carbon monoxide (CO). The choice of CO was based on the availability of historical measurement data. Here, we evaluated the relationship of REC with CO and other current and historical components of DE from side-by-side area measurements taken in underground operations of seven non-metal mining facilities. The Pearson correlation coefficient of the natural log-transformed (Ln)REC measurements with the Ln(CO) measurements was 0.4. The correlation of REC with the other gaseous, organic carbon (OC), and particulate measurements ranged from 0.3 to 0.8. Factor analyses indicated that the gaseous components, including CO, together with REC, loaded most strongly on a presumed 'Diesel exhaust' factor, while the OC and particulate agents loaded predominantly on other factors. In addition, the relationship between Ln(REC) and Ln(CO) was approximately linear over a wide range of REC concentrations. The fact that CO correlated with REC, loaded on the same factor, and increased linearly in log-log space supported the use of CO in estimating historical exposure levels to DE.

  12. Longitudinal study of parasite-induced mortality of a long-lived host: the importance of exposure to non-parasitic stressors.

    Science.gov (United States)

    Chin, Hilary M-H; Luong, Lien T; Shostak, Allen W

    2017-12-01

    Hosts face mortality from parasitic and environmental stressors, but interactions of parasitism with other stressors are not well understood, particularly for long-lived hosts. We monitored survival of flour beetles (Tribolium confusum) in a longitudinal design incorporating cestode (Hymenolepis diminuta) infection, starvation and exposure to the pesticide diatomaceous earth (DE). We found that cestode cysticercoids exhibit increasing morphological damage and decreasing ability to excyst over time, but were never eliminated from the host. In the presence of even mild environmental stressors, host lifespan was reduced sufficiently that extensive degradation of cysticercoids was never realized. Median host lifespan was 200 days in the absence of stressors, and 3-197 days with parasitism, starvation and/or DE. Early survival of parasitized hosts was higher relative to controls in the presence of intermediate concentrations of DE, but reduced under all other conditions tested. Parasitism increased host mortality in the presence of other stressors at times when parasitism alone did not cause mortality, consistent with an interpretation of synergy. Environmental stressors modified the parasite numbers needed to reveal intensity-dependent host mortality, but only rarely masked intensity dependence. The longitudinal approach produced observations that would have been overlooked or misinterpreted if survival had only been monitored at a single time point.

  13. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    International Nuclear Information System (INIS)

    Yanamala, Naveena; Hatfield, Meghan K.; Farcas, Mariana T.; Schwegler-Berry, Diane; Hummer, Jon A.; Shurin, Michael R.; Birch, M. Eileen; Gutkin, Dmitriy W.; Kisin, Elena; Kagan, Valerian E.; Bugarski, Aleksandar D.; Shvedova, Anna A.

    2013-01-01

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure

  14. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Yanamala, Naveena, E-mail: wqu1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hatfield, Meghan K., E-mail: wla4@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Farcas, Mariana T., E-mail: woe7@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Schwegler-Berry, Diane [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hummer, Jon A., E-mail: qzh3@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shurin, Michael R., E-mail: shurinmr@upmc.edu [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Birch, M. Eileen, E-mail: mib2@cdc.gov [NIOSH/CDC, 4676 Columbia Parkway, Cincinnati, OH 45226 (United States); Gutkin, Dmitriy W., E-mail: dwgutkin@hotmail.com [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Kisin, Elena, E-mail: edk8@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, University of Pittsburgh, PA (United States); Bugarski, Aleksandar D., E-mail: zjl1@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Department Physiology and Pharmacology, WVU, Morgantown, WV 26505 (United States)

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

  15. Characterization and speciation of fine particulate matter inside the public transport buses running on bio-diesel.

    Science.gov (United States)

    2009-09-01

    Air pollution with respect to particulate matter was investigated in Toledo, Ohio, USA, a : city of approximately 300,000, in 2009. Two study buses were selected to reflect typical : exposure conditions of passengers while traveling in the bus. Monit...

  16. (Draft) Community air pollution and mortality: Analysis of 1980 data from US metropolitan areas

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, F.W.

    1992-11-01

    1980 data from up to 149 metropolitan areas were used to define cross-sectional associations between community air pollution and excess'' human mortality. The regression model proposed by Ozkaynak and Thurston (1987), which accounted for age, race, education, poverty, and population density, was evaluated and several new models were developed. The new models also accounted for migration, drinking water hardness, and smoking, and included a more detailed description of race. Cause-of-death categories analyzed include all causes, all non-external'' causes, major cardiovascular diseases, and chronic obstructive pulmonary diseases (COPD). Both annual mortality rates and their logarithms were analyzed. Air quality data were obtained from the EPA AIRS database (TSP, SO[sub 4][sup =], Mn, and ozone) and from the inhalable particulate network (PM[sub 15], PM[sub 2.5] and SO[sub 4][sup =], for 63[sup 4] locations). The data on particulates were averaged across all monitoring stations available for each SMSA and the TSP data were restricted to the year 1980. The associations between mortality and air pollution were found to be dependent on the socioeconomic factors included in the models, the specific locations included in the data set, and the type of statistical model used. Statistically significant associations were found as follows: between TSP and mortality due to non-external causes with log-linear models, but not with a linear model betweenestimated 10-year average (1980--90) ozone levels and 1980 non-external and cardiovascular deaths; and between TSP and COPD mortality for both linear and log-linear models. When the sulfate contribution to TSP was subtracted, the relationship with COPD mortality was strengthened.

  17. (Draft) Community air pollution and mortality: Analysis of 1980 data from US metropolitan areas

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, F.W.

    1992-11-01

    1980 data from up to 149 metropolitan areas were used to define cross-sectional associations between community air pollution and ``excess`` human mortality. The regression model proposed by Ozkaynak and Thurston (1987), which accounted for age, race, education, poverty, and population density, was evaluated and several new models were developed. The new models also accounted for migration, drinking water hardness, and smoking, and included a more detailed description of race. Cause-of-death categories analyzed include all causes, all ``non-external`` causes, major cardiovascular diseases, and chronic obstructive pulmonary diseases (COPD). Both annual mortality rates and their logarithms were analyzed. Air quality data were obtained from the EPA AIRS database (TSP, SO{sub 4}{sup =}, Mn, and ozone) and from the inhalable particulate network (PM{sub 15}, PM{sub 2.5} and SO{sub 4}{sup =}, for 63{sup 4} locations). The data on particulates were averaged across all monitoring stations available for each SMSA and the TSP data were restricted to the year 1980. The associations between mortality and air pollution were found to be dependent on the socioeconomic factors included in the models, the specific locations included in the data set, and the type of statistical model used. Statistically significant associations were found as follows: between TSP and mortality due to non-external causes with log-linear models, but not with a linear model betweenestimated 10-year average (1980--90) ozone levels and 1980 non-external and cardiovascular deaths; and between TSP and COPD mortality for both linear and log-linear models. When the sulfate contribution to TSP was subtracted, the relationship with COPD mortality was strengthened.

  18. From concentration to dose: factors influencing airborne particulate matter deposition in humans and rats

    NARCIS (Netherlands)

    Winter-sorkina R de; Cassee FR; LBV; LBO

    2003-01-01

    Particulate matter (PM) consisting of solid particles and droplets is present in the ambient air. Particles with an aerodynamic diameter less than 10 micro m can be inhaled by humans. Knowledge of the tissue-specific internal dose of PM is a critical link between individual external exposure and

  19. [Burden of disease attributable to ambient particulate matter pollution in 1990 and 2010 in China].

    Science.gov (United States)

    Liu, Shiwei; Zhou, Maigeng; Wang, Lijun; Li, Yichong; Liu, Yunning; Liu, Jiangmei; You, Jinling; Yin, Peng

    2015-04-01

    To assess the burden of disease attributable to ambient particulate matter pollution in 1990 and 2010 in China. On the basis of the results of the Global Burden of Diseases Study 2010 (GBD 2010) for China's estimates, we used population attributable fractions (PAF) to examine the burden of disease (mortality and disability-adjusted life years (DALY)) attributable to ambient particulate matter pollution in 1990 and 2010 in China, with 95% uncertainty interval (95% UI) estimate, and increasing rate to explore the trends of attributed burden of disease across the study period of 20 years. In 2010, 38.9% (95% UI: 27.0%-49.4%) of lower respiratory infections for disease, 35.0% (95% UI: 27.4%-41.1%) of stroke, and 21.0% (95% UI: 10.7%-30.3%) of chronic obstructive pulmonary disease (COPD) for ≥ 25 years adults were attributable to ambient particulate matter pollution, which accounted for 1.235 (95% UI: 1.038-1.410) million deaths and 25.230 (95% UI: 21.770-28.600) million person years DALY in total, and increased by 33.4% and 4.0%, respectively by comparison with that in 1990 (0.926 million and 24.260 million person years). Lung cancer accounted for the largest increasing rate of 154.5% (from 0.055 million to 0.140 million) and 130.1% (from 1.330 million person years to 3.060 million person years), followed by ischemic heart disease (118.5%, from 0.130 million to 0.284 million, and 86.6%, from 3.280 million person years to 6.120 million person years) and stroke (41.0%, from 0.429 million to 0.605 million, and 33.8%, from 8.970 million person years to 12.000 million person years). The attributed mortality for both gender mostly occurred in age group of 60-79 years (male: 0.260 million and 0.404 million accounting for 53.7% and 54.8%; female: 0.214 million and 0.236 million accounting for 48.5% and 47.5%) both in 1990 and 2010. The age group of 40-79 years accounted for the most portion of attributed DALY for both gender (male: 8.458 million person years and 13

  20. EXPOSURE TO URBAN AIR PARTICULATES ALTERS THE MACROPHAGE- MEDIATED INFLAMMATORY RESPONSE TO RESPIRATORY VIRAL INFECTION

    Science.gov (United States)

    Epidemiology studies associate increased pulmonary morbidity with episodes of high particulate air pollution (size range 0.1-10 microm diameter, PM10). Pneumonia, often viral in origin, is increased following episodes of high PM10 pollution. Therefore, this study was undertaken t...