WorldWideScience

Sample records for partially hydrolysed products

  1. Acetone-butanol fermentation of lignocellulosic hydrolysates for the butanol production

    Science.gov (United States)

    Morozova, Tatyana; Semyonov, Sergey

    2017-11-01

    It is known that the use of lignocellulosic hydrolysates reduces the production cost of biofuel such as biobutanol and bioethanol. But for the most successful application of the hydrolysates for the biofuel production, it is necessary to apply an inexpensive and effective detoxification method and to use of cost-effective growth factors. In the present study, we evaluated the use of an acid hydrolysate of spruce and an enzymatic hydrolysate of miscanthus cellulose for the biobutanol production. To remove inhibitors from the hydrolysates, we applied the traditional physicochemical method with overliming and the biodetoxification method based on the use of the specially adapted activated sludge. Calcium hydroxide (150 g/L) was used for the neutralization. The biological method of detoxification of lignocellulosic hydrolysates was carried out under non-sterile conditions at room temperature by the specially adapted activated sludge of the urban wastewater treatment plants. The acetone-butanol fermentation was carried out by a strain of bacteria Clostridium acetobutylicum ATCC 824. The treatment by overliming removed 84-85 % and 83-86% of 5-hydroxymethylfurfural (5-HMF) and furfural from the hydrolysates respectively. Using the method of biodetoxification the content of furfural decreased by 98% and concentration of 5-HMF - by 97-99%. In the present study as an inexpensive source of growth substances for the fermentation of the hydrolysates it has been suggested to use decantate of the brewer's spent grain. The obtained results showed that the brewer's spent grain can be used in the biofuel production as efficiently as the synthetic growth substances.

  2. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis.

    Science.gov (United States)

    Canilha, Larissa; Carvalho, Walter; Felipe, Maria das Graças de Almeida; Silva, João Batista de Almeida e; Giulietti, Marco

    2010-05-01

    The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).

  3. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.

    Science.gov (United States)

    Liu, Lu; Chang, Hou-Min; Jameel, Hasan; Park, Sunkyu

    2018-03-01

    Biomass hydrolysate from autohydrolysis pretreatment was used for furfural production considering it is in rich of xylose, xylo-oligomers, and other decomposition products from hemicellulose structure. By using the vapor-releasing reactor system, furfural was protected from degradation by separating it from the reaction media. The maximum furfural yield of 73% was achieved at 200 °C for biomass hydrolysate without the use of the catalyst. This is because the presence of organic acids such as acetic acid in hydrolysate functioned as a catalyst. According to the results in this study, biomass hydrolysate with a vapor-releasing system proves to be efficient for furfural production. The biorefinery process which allows the separation of xylose-rich autohydrolysate from other parts from biomass feedstock also improves the overall application of the biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effects of orally administered fumonisin B₁ (FB₁), partially hydrolysed FB₁, hydrolysed FB₁ and N-(1-deoxy-D-fructos-1-yl) FB₁ on the sphingolipid metabolism in rats.

    Science.gov (United States)

    Hahn, Irene; Nagl, Veronika; Schwartz-Zimmermann, Heidi Elisabeth; Varga, Elisabeth; Schwarz, Christiane; Slavik, Veronika; Reisinger, Nicole; Malachová, Alexandra; Cirlini, Martina; Generotti, Silvia; Dall'Asta, Chiara; Krska, Rudolf; Moll, Wulf-Dieter; Berthiller, Franz

    2015-02-01

    Fumonisin B1 (FB1) is a Fusarium mycotoxin frequently occurring in maize-based food and feed. Alkaline processing like nixtamalisation of maize generates partially and fully hydrolysed FB1 (pHFB1 and HFB1) and thermal treatment in the presence of reducing sugars leads to formation of N-(1-deoxy-D-fructos-1-yl) fumonisin B1 (NDF). The toxicity of these metabolites, in particular their effect on the sphingolipid metabolism, is either unknown or discussed controversially. We produced high purity FB1, pHFB1a+b, HFB1 and NDF and fed them to male Sprague Dawley rats for three weeks. Once a week, urine and faeces samples were collected over 24 h and analysed for fumonisin metabolites as well as for the sphinganine (Sa) to sphingosine (So) ratio by validated LC-MS/MS based methods. While the latter was significantly increased in the FB1 positive control group, the Sa/So ratios of the partially and fully hydrolysed fumonisins were indifferent from the negative control group. Although NDF was partly cleaved during digestion, the liberated amounts of FB1 did not raise the Sa/So ratio. These results show that the investigated alkaline and thermal processing products of FB1 were, at the tested concentrations, non-toxic for rats, and suggest that according food processing can reduce fumonisin toxicity for humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Optimization of Protein Hydrolysate Production Process from Jatropha curcas Cake

    OpenAIRE

    Waraporn Apiwatanapiwat; Pilanee Vaithanomsat; Phanu Somkliang; Taweesiri Malapant

    2009-01-01

    This was the first document revealing the investigation of protein hydrolysate production optimization from J. curcas cake. Proximate analysis of raw material showed 18.98% protein, 5.31% ash, 8.52% moisture and 12.18% lipid. The appropriate protein hydrolysate production process began with grinding the J. curcas cake into small pieces. Then it was suspended in 2.5% sodium hydroxide solution with ratio between solution/ J. curcas cake at 80:1 (v/w). The hydrolysis reactio...

  6. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    Science.gov (United States)

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  7. Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber.

    Science.gov (United States)

    Terán Hilares, Ruly; de Souza, Rebeca Andrade; Marcelino, Paulo Franco; da Silva, Silvio Silvério; Dragone, Giuliano; Mussatto, Solange I; Santos, Júlio César

    2018-04-15

    Sugarcane bagasse (SCB) hydrolysate could be an interesting source for red pigment production by Monascus ruber Tieghem IOC 2225. The influence of different wavelength of light-emitting diode (LED) at 250 μmol.m -2 .s -1 of photon flux density on red pigment production by M. ruber in glucose-based medium was evaluated. Then, SCB hydrolysate was used as carbon source under the previously selected light incidence conditions. In glucose-based medium, the highest pigment production was achieved in fermentation assisted with orange LED light (8.28 UA 490nm ), white light (8.26 UA 490nm ) and under dark condition (7.45 UA 490nm ). By using SCB hydrolysate-based medium, the highest red pigment production (18.71 AU 490nm ) was achieved under dark condition and the glucose and cellobiose present in the hydrolysate were metabolized. SCB enzymatic hydrolysate was demonstrated to be a promising carbon source for high thermal stability red pigment production (activation energy of 10.5 kcal.mol -1 ), turning an interesting alternative for implementation in biorefineries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Separation of FFA from Partially Hydrogenated Soybean Oil Hydrolysate by Means of Membrane Processing

    DEFF Research Database (Denmark)

    Jala, Ram Chandra Reddy; Guo, Zheng; Xu, Xuebing

    2011-01-01

    Different types of commercial porous and non-porous polymeric membranes have been investigated for their capabilities to separate free fatty acids (FFA) from hydrolysate of partially hydrogenated soybean oil. A regenerated cellulose (RC, PLAC) membrane exhibited the most prominent difference...... in rejection between FFA and glycerides and the highest flux (27 kg h−1 m−2) in hydrolysate ethanol solution. The results also showed that, besides the pore size of membrane, the membrane flux depended largely on the property matching between membrane and solvent, as observed (40 kg h−1 m−2) flux was achieved...... with methanol but no flux detected with hexane for PLAC. The polyvinyl alcohol (PVA, NTR-729 HF) and Polyamide (PA, NTR-759HR) membranes gave the second and third highest flux (10.1 and 5.7 kg h−1 m−2, respectively), where solute rejections for NTR-759HR were 95.9% for triacylglycerols (TG), 83...

  9. Production of arapaima protein hydrolysate using Aspergillus flavo-furcatis protease and pancreatin

    Directory of Open Access Journals (Sweden)

    Flávia de Carvalho Paiva

    2015-03-01

    Full Text Available The processing of arapaima (Arapaima gigas generates a lot of residues that can be used for the development of new products of industrial interest. This study aimed at evaluating the production of protein hydrolysates from arapaima residues using Aspergillus flavo-furcatis protease and commercial pancreatin, as well as characterizing their nutritional and microbiological qualities. The raw material used was meat mechanically separated from arapaima carcasses (MMSA. Two products were developed: a protein hydrolysate of arapaima using a commercial enzyme (PHACE and another one using microbial enzyme (PHAME. The MMSA and the hydrolysates were analyzed for chemical composition, microbiological quality, degree of hydrolysis, digestibility and amino acid profile. The results showed that the PHACE protein content was 73.47 %. This value was significantly higher, when compared to the PHAME (58.03 %. However, both products showed high digestibility values, absence of microbial contaminants and reduced lipid content. Among the enzymes used, pancreatin was the most efficient one in the preparation of the final product, which showed essential amino acids content higher than the requirements for human adults. The hydrolysate developed using A. flavo-furcatis enzymes presented essential amino acids score lower than 1.0, being tryptophan the most limiting one.

  10. Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber

    DEFF Research Database (Denmark)

    Terán Hilares, Ruly; de Souza, Rebeca Andrade; Marcelino, Paulo Franco

    2018-01-01

    condition (7.45 UA490nm). By using SCB hydrolysate-based medium, the highest red pigment production (18.71 AU490nm) was achieved under dark condition and the glucose and cellobiose present in the hydrolysate were metabolized. SCB enzymatic hydrolysate was demonstrated to be a promising carbon source...

  11. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    Science.gov (United States)

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  12. Effect of nitrogen source concentration on curdlan production by Agrobacterium sp. ATCC 31749 grown on prairie cordgrass hydrolysates.

    Science.gov (United States)

    West, Thomas P

    2016-01-01

    The effect of nitrogen source concentration on the production of the polysaccharide curdlan by the bacterium Agrobacterium sp. ATCC 31749 from hydrolysates of prairie cordgrass was examined. The highest curdlan concentrations were produced by ATCC 31749 when grown on a medium containing a solids-only hydrolysate and the nitrogen source ammonium phosphate (2.2 mM) or on a medium containing a complete hydrolysate and 3.3 mM ammonium phosphate. The latter medium sustained a higher level of bacterial curdlan production than the former medium after 144 hr. Biomass production by ATCC 31749 was highest after 144 hr when grown on a medium containing a solids-only hydrolysate and 2.2 or 8.7 mM ammonium phosphate. On the medium containing the complete hydrolysate, biomass production by ATCC 31749 was highest after 144 hr when 3.3 mM ammonium phosphate was present. Bacterial biomass production after 144 hr was greater on the complete hydrolysate medium compared to the solids-only hydrolysate medium. Curdlan yield produced by ATCC 31749 after 144 hr from the complete hydrolysate medium containing 3.3 mM ammonium phosphate was higher than from the solids-only hydrolysate medium containing 2.2 mM ammonium phosphate.

  13. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: an Overview.

    Science.gov (United States)

    Zamora-Sillero, Juan; Gharsallaoui, Adem; Prentice, Carlos

    2018-04-01

    The inadequate management of fish processing waste or by-products is one of the major problems that fish industry has to face nowadays. The mismanagement of this raw material leads to economic loss and environmental problems. The demand for the use of these by-products has led to the development of several processes in order to recover biomolecules from fish by-products. An efficient way to add value to fish waste protein is protein hydrolysis. Protein hydrolysates improve the functional properties and allow the release of peptides of different sizes with several bioactivities such as antioxidant, antimicrobial, antihypertensive, anti-inflammatory, or antihyperglycemic among others. This paper reviews different methods for the production of protein hydrolysates as well as current research about several fish by-products protein hydrolysates bioactive properties, aiming the dual objective: adding value to these underutilized by-products and minimizing their negative impact on the environment.

  14. Production of pullulan from raw potato starch hydrolysates by a new strain of Auerobasidium pullulans.

    Science.gov (United States)

    Wu, Shengjun; Lu, Mingsheng; Chen, Jing; Fang, Yaowei; Wu, Leilei; Xu, Yan; Wang, Shujun

    2016-01-01

    In the present study, hydrolysis of potato starch with marine cold-adapted α-amylase and pullulan production from the hydrolysates by a new strain of Auerobasidium pullulans isolated from sea mud were conducted. The hydrolysis conditions were optimized as follows: reaction time 2h, pH 6.5, temperature 20°C, and α-amylase amount 12 U/g. Under these optimum hydrolysis conditions, the DE value of the potato starch hydrolysates reached to 49.56. The potato starch hydrolysates consist of glucose, maltose, isomaltose, maltotriose, and trace of other maltooligosaccharides with degree of polymerization ranged 4-7. The maximum production of pullulan at 96 h from the hydrolysate of potato starch was 36.17 g/L, which was higher than those obtained from glucose (22.07 g/L, p<0.05) and sucrose (31.42 g/L, p<0.05). Analysis of the high performance liquid chromatography of the hydrolysates of the pullulan product with pullulanase indicated that the main composition is maltotriose, thus confirming the pullulan structure of this pullulan product. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Isoprene Production on Enzymatic Hydrolysate of Peanut Hull Using Different Pretreatment Methods

    Directory of Open Access Journals (Sweden)

    Sumeng Wang

    2016-01-01

    Full Text Available The present study is about the use of peanut hull for isoprene production. In this study, two pretreatment methods, hydrogen peroxide-acetic acid (HPAC and popping, were employed prior to enzymatic hydrolysis, which could destroy the lignocellulosic structure and accordingly improve the efficiency of enzymatic hydrolysis. It is proven that the isoprene production on enzymatic hydrolysate with HPAC pretreatment is about 1.9-fold higher than that of popping pretreatment. Moreover, through High Performance Liquid Chromatography (HPLC analysis, the amount and category of inhibitors such as formic acid, acetic acid, and HMF were assayed and were varied in different enzymatic hydrolysates, which may be the reason leading to a decrease in isoprene production during fermentation. To further increase the isoprene yield, the enzymatic hydrolysate of HPAC was detoxified by activated carbon. As a result, using the detoxified enzymatic hydrolysate as the carbon source, the engineered strain YJM21 could accumulate 297.5 mg/L isoprene, which accounted for about 90% of isoprene production by YJM21 fermented on pure glucose (338.6 mg/L. This work is thought to be the first attempt on isoprene production by E. coli using peanut hull as the feedstock. More importantly, it also shows the prospect of peanut hull to be considered as an alternative feedstock for bio-based chemicals or biofuels production due to its easy access and high polysaccharide content.

  16. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    Science.gov (United States)

    Deng, Li-Hong; Tang, Yong; Liu, Yun

    2014-01-01

    Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification. PMID:25133211

  17. Characterization of Animal By-Product Hydrolysates to Be Used as Healthy and Bioactive Ingredients in Food

    DEFF Research Database (Denmark)

    Damgaard, Trine Desiree

    The world meat production and consumption has increased rapidly over the last couple of decades, due to population and income growth. In contrast to the meat, the consumption of animal by-products has been declining, leaving large amounts of by-products underutilized. As many by-products are highly...... nutritious as well as being good sources of protein, they represent interesting substrates for the generation of bioactive hydrolysates and peptides. Different porcine and bovine by-products were hydrolysed with a mixture consisting of Alcalase®and Protamex, and tested in relation to antioxidant capacity...... and their “meat factor” effect, i.e. their ability to enhance in vitro iron availability. Hydrolysates of different animal by-products displayed antioxidant capacities as observed by several assays intended to test different antioxidant mechanisms. The radical scavenging capacity of the hydrolysates was found...

  18. Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast

    Science.gov (United States)

    Mardawati, Efri; Andoyo, R.; Syukra, K. A.; Kresnowati, MTAP; Bindar, Y.

    2018-03-01

    The abundance of corn production in Indonesia offers the potential for its application as the raw material for biorefinery process. The hemicellulose content in corn cobs can be considered to be used as a raw material for xylitol production. The purpose of this research was to study the effect of hydrolysis methods for xylitol production and the effect of the hydrolyzed corn cobs to produce xylitol through fermentation. Hydrolysis methods that would be evaluated were acid and enzymatic hydrolysis. The result showed that the xylitol yield of fermented solution using enzymatic hydrolysates was 0.216 g-xylitol/g-xylose, which was higher than the one that used acid hydrolysates, which was 0.100 g-xylitol/g-xylose. Moreover, the specific growth rate of biomass in fermentation using enzymatic hydrolysates was also higher than the one that used acid hydrolysates, 0.039/h compared to 0.0056/h.

  19. Improved production of an enzyme that hydrolyses raw yam starch by Penicillium sp. S-22 using fed-batch fermentation.

    Science.gov (United States)

    Sun, Hai-Yan; Ge, Xiang-Yang; Zhang, Wei-Guo

    2006-11-01

    A newly isolated strain, Penicillium sp. S-22, was used to produce an enzyme that hydrolyses raw yam starch [raw yam starch digesting enzyme (RYSDE)]. The enzyme activity and overall enzyme productivity were respectively 16 U/ml and 0.19 U/ml h in the batch culture. The enzyme activity increased to 85 U/ml by feeding of partially hydrolyzed raw yam starch. When a mixture containing partially hydrolyzed raw yam starch and peptone was fed by a pH-stat strategy, the enzyme activity reached 366 U/ml, 23-fold of that obtained in the batch culture, and the overall productivity reached 3.4 U/ml h, which was 18-fold of that in the batch culture.

  20. Ethanol production from marine algal hydrolysates using Escherichia coli KO11.

    Science.gov (United States)

    Kim, Nag-Jong; Li, Hui; Jung, Kwonsu; Chang, Ho Nam; Lee, Pyung Cheon

    2011-08-01

    Algae biomass is a potential raw material for the production of biofuels and other chemicals. In this study, biomass of the marine algae, Ulva lactuca, Gelidium amansii,Laminaria japonica, and Sargassum fulvellum, was treated with acid and commercially available hydrolytic enzymes. The hydrolysates contained glucose, mannose, galactose, and mannitol, among other sugars, at different ratios. The Laminaria japonica hydrolysate contained up to 30.5% mannitol and 6.98% glucose in the hydrolysate solids. Ethanogenic recombinant Escherichia coli KO11 was able to utilize both mannitol and glucose and produced 0.4g ethanol per g of carbohydrate when cultured in L. japonica hydrolysate supplemented with Luria-Bertani medium and hydrolytic enzymes. The strategy of acid hydrolysis followed by simultaneous enzyme treatment and inoculation with E. coli KO11 could be a viable strategy to produce ethanol from marine alga biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement.

    Science.gov (United States)

    Yang, Ming; Kuittinen, Suvi; Vepsäläinen, Jouko; Zhang, Junhua; Pappinen, Ari

    2017-11-01

    This study aims to improve acetone-butanol-ethanol production from the hydrolysates of lignocellulosic material by supplementing starchy slurry as nutrients. In the fermentations of glucose, xylose and the hydrolysates of Salix schwerinii, the normal supplements such as buffer, minerals, and vitamins solutions were replaced with the barley starchy slurry. The ABE production was increased from 0.86 to 14.7g/L by supplementation of starchy slurry in the fermentation of xylose and the utilization of xylose increased from 29% to 81%. In the fermentations of hemicellulosic and enzymatic hydrolysates from S. schwerinii, the ABE yields were increased from 0 and 0.26 to 0.35 and 0.33g/g sugars, respectively. The results suggested that the starchy slurry supplied the essential nutrients for ABE fermentation. The starchy slurry as supplement could improve the ABE production from both hemicellulosic and cellulosic hydrolysate of lignocelluloses, and it is particularly helpful for enhancing the utilization of xylose from hemicelluloses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    Directory of Open Access Journals (Sweden)

    Li-Hong Deng

    2014-01-01

    Full Text Available Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification.

  3. Production of functional protein hydrolysates from Egyptian breeds ...

    African Journals Online (AJOL)

    Production of functional protein hydrolysates from Egyptian breeds of soybean and lupin seeds. AA khalil, SS Mohamed, FS Taha, EN Karlsson. Abstract. Enzymatic hydrolysis is an agro-processing aid that can be utilized in order to improve nutritional quality of protein extracts from many sources. In this study, protein ...

  4. Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy.

    Science.gov (United States)

    Liu, Yating; Wang, Yanping; Liu, Hongjuan; Zhang, Jian'an

    2015-03-01

    In recent years, energy crisis and environmental issues such as greenhouse effect, global warming, etc. has roused peoples' concern. Biodiesel, as renewable energy, has attracted much attention to deal with such problems. This work studied the lipid production by Rhodotorula glutinis with undetoxified corncob hydrolysate. The results indicated that R. glutinis had high tolerance to the inhibitors in corncob hydrolysate and it could utilize undetoxified corncob hydrolysate directly for lipid production. The cell grew well with undetoxified hydrolysate in the batch culture of 5L fermentor with the optimized C/N ratio of 75, lipid titer and lipid content reached 5.5g/L and 36.4%, respectively. High cell density culture with two-stage nitrogen feeding strategy was studied to enhance the lipid production, biomass, lipid concentration and lipid content of 70.8, 33.5g/L and 47.2% were obtained. The results indicated the potential application for lipid production by R. glutinis with corncob hydrolysate directly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation.

    Science.gov (United States)

    Zhou, Zhongxin; Yin, Zheng; Hu, Xiaoqing

    2014-01-01

    Monascus pigment has traditionally been produced by the fermentation of Monascus using rice powder or glucose as a culture substrate. Submerged fermentation can produce stable Monascus pigment yield and control the accumulation of the by-product, citrinin, which can then be more easily removed. To reduce the cost of Monascus submerged fermentation, the feasibility of corncob hydrolysate as an alternative substrate was investigated. Results showed that, when compared with a conventional glucose medium, the corncob hydrolysate medium produced an equivalent pigment yield without stimulating citrinin accumulation. Furthermore, the corncob hydrolysate medium and cultivation conditions were optimized to enhance pigment production and decrease citrinin synthesis. When Monascus sp. was cultured under dark conditions in the presence of caprylic acid, pigment production was increased to 25.8 ± 0.8 UA500 /mL, which was higher than that achieved in a glucose medium (24.0 ± 0.9 UA500 /mL), and those obtained in previously reported Monascus submerged fermentations using the same yield unit; on the other hand, citrinin accumulation was decreased to 26.2 ± 1.9 µg/L, which was significantly lower than that generated in the glucose control (44.3 ± 2.2 µg/L) and in those previously reported fermentations. Thus, corncob hydrolysate was proved to be an efficient alternative substrate for Monascus pigment production through submerged fermentation, which showed significant advantages over a conventional glucose substrate. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  6. Potential Use of Gelidium amansii Acid Hydrolysate for Lactic Acid Production by Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    Sung-Soo Jang

    2013-01-01

    Full Text Available Galactose and glucose are the main monosaccharides produced from the saccharification of Gelidium amansii. They were hydrolysed with 3 % (by volume H2SO4 at 140 °C for 5 min and obtained at concentrations of 19.60 and 10.21 g/L, respectively. G. amansii hydrolysate (5 %, by mass per volume was used as a substrate for L(+-lactic acid production by Lactobacillus rhamnosus. The maximum lactic acid yield (YP/S was 42.03 % with optical purity of 84.54 %. Lactic acid produced from G. amansii hydrolysate can be applicable, among others, for the production of lactic acid esters, like ethyl or methyl lactate, and disinfectant in seaweed cultivation.

  7. Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast.

    Science.gov (United States)

    Soares, Jimmy; Demeke, Mekonnen M; Van de Velde, Miet; Foulquié-Moreno, Maria R; Kerstens, Dorien; Sels, Bert F; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2017-11-01

    The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Production of hydrolysate from processed Nile tilapia (Oreochromis niloticus residues and assessment of its antioxidant activity

    Directory of Open Access Journals (Sweden)

    Daniela Miotto BERNARDI

    2016-01-01

    Full Text Available Abstract The objective of this work was to produce protein hydrolysates from by-products of the Nile tilapia fileting process, and to assess the effects of different hydrolysis times on the antioxidant activity of the hydrolysed animal-based protein, in free form and incorporated into a food matrix. Gutted tilapia heads and carcasses were hydrolysed by Alcalase® for different hydrolysis times producing six hydrolysates. The protein content, degree of hydrolysis, reverse-phase high-performance liquid chromatography, and antioxidant activity by the ORAC, FRAP and TEAC methods were analysed. Three mini-hamburger formulations were produced and the lipidic oxidation of mini-hamburger was determined by TBARS. The protein contained in the residue was completely recovered in the process. The hydrolysates varied in their degree of hydrolysis, but presented similar levels of antioxidant activity. In the mini-hamburgers the hydrolysate was capable of delaying oxidation after 7 days of storage. Hydrolysis of tilapia processing by-products produced peptides may be used in the formulation of functional foods.

  9. Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass.

    Science.gov (United States)

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-08-01

    Efficient resource usage is important for cost-effective microalgae production, where the incorporation of waste streams and recycled water into the process has great potential. This study builds upon emerging research on nutrient recycling in thraustochytrid production, where waste streams are recovered after lipid extraction and recycled into future cultures. This research investigates the nitrogen flux of recycled hydrolysate derived from enzymatic lipid extraction of thraustochytrid biomass. Results indicated the proteinaceous content of the recycled hydrolysate can offset the need to supply fresh nitrogen in a secondary culture, without detrimental impact upon the produced biomass. The treatment employing the recycled hydrolysate with no nitrogen addition accumulated 14.86 g L(-1) of biomass in 141 h with 43.3 % (w/w) lipid content compared to the control which had 9.26 g L(-1) and 46.9 % (w/w), respectively. This improved nutrient efficiency and wastewater recovery represents considerable potential for enhanced resource efficiency of commercial thraustochytrid production.

  10. Lactic acid production on brewers' spent grain hydrolysate by lactobacillus Rhamnosus and Lactobacillus fermentum

    OpenAIRE

    Pejin, Jelena; Mojović, Ljiljana; Kocić-Tanackov, Sunčica; Radosavljević, Miloš; Đukić-Vuković, Aleksandra; Nikolić, Svetlana

    2014-01-01

    Brewers' spent grain (BSG) is the major by-product of the brewing industry, representing around 85% of the total by-products generated. Per 100 L of beer produced 20 kg of brewer's spent grain are obtained. BSG is a lignocellulosic material and due to its high content of protein and fibre, it can also serve as a raw material in biotechnology i.e. in lactic acid production. In this study brewer's spent grain hydrolysate was produced using optimal conditions. Hydrolysates were used for lactic a...

  11. Development toward rapid and efficient screening for high performance hydrolysate lots in a recombinant monoclonal antibody manufacturing process.

    Science.gov (United States)

    Luo, Ying; Pierce, Karisa M

    2012-07-01

    Plant-derived hydrolysates are widely used in mammalian cell culture media to increase yields of recombinant proteins and monoclonal antibodies (mAbs). However, these chemically varied and undefined raw materials can have negative impact on yield and/or product quality in large-scale cell culture processes. Traditional methods that rely on fractionation of hydrolysates yielded little success in improving hydrolysate quality. We took a holistic approach to develop an efficient and reliable method to screen intact soy hydrolysate lots for commercial recombinant mAb manufacturing. Combined high-resolution (1) H nuclear magnetic resonance (NMR) spectroscopy and partial least squares (PLS) analysis led to a prediction model between product titer and NMR fingerprinting of soy hydrolysate with cross-validated correlation coefficient R(2) of 0.87 and root-mean-squared-error of cross-validation RMSECV% of 11.2%. This approach screens for high performance hydrolysate lots, therefore ensuring process consistency and product quality in the mAb manufacturing process. Furthermore, PLS analysis was successful in discerning multiple markers (DL-lactate, soy saccharides, citrate and succinate) among hydrolysate components that positively and negatively correlate with titer. Interestingly, these markers correlate to the metabolic characteristics of some strains of taxonomically diverse lactic acid bacteria (LAB). Thus our findings indicate that LAB strains may exist during hydrolysate manufacturing steps and their biochemical activities may attribute to the titer enhancement effect of soy hydrolysates. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  12. Production of Transglutaminase by Streptoverticillium ladakanum NRRL-3191 Grown on Media Made from Hydrolysates of Sorghum Straw

    Directory of Open Access Journals (Sweden)

    Simón J. Téllez-Luis

    2004-01-01

    Full Text Available The aim of this work was to elucidate the suitability of the biotechnological production of transglutaminase by Streptoverticillium ladakanum NRRL-3191 grown on media made from hydrolysates of sorghum straw. Transglutaminase activity was determined in fermentations on sorghum straw hydrolysates and commercial xylose with initial xylose 10, 20 or 30 g/L. Using media containing commercial xylose 20 g/L, transglutaminase activity up to 0.282 U/mL was obtained in 96 h. Using neutralized, charcoal-treated hydrolysates of sorghum straw with xylose 30 g/L sterilized in autoclave at 121 °C, up to 0.155 U/mL was obtained in 96 h. However, when the sterilization was performed by filtration, using the same hydrolysates with xylose 20 g/L, up to 0.348 U/mL was obtained in 72 h. It was demonstrated that hydrolysates of sorghum straw are suitable media for transglutaminase production by Streptoverticillium ladakanum.

  13. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    Science.gov (United States)

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. Copyright © 2015. Published by Elsevier Ltd.

  14. Production of Lupinus angustifolius protein hydrolysates with improved functional properties

    Directory of Open Access Journals (Sweden)

    Millán, Francisco

    2005-06-01

    Full Text Available Protein hydrolysates wer e obtained from lupin flour and from the purified globulin α -conglutin, and their functional properties were studied. Hydrolysis with alcalase for 60 minutes yielded degrees of hydrolysis ranging from 4 % to 11 % for lupin flour, and from 4 % to 13% for α -conglutin. Protein solubility, oil absorption, foam capacity and stability, emulsifying activity, and emulsion stability of hydrolysates with 6% degree of hydrolysis were determined and compared with the properties of the original flour. The protein hydrolysates showed better functional properties than the original proteins. Most importantly, the solubility of the α -conglutin and L. angustifolius flour hydrolysates was increased by 43 % and 52 %, respectively. Thus, lupin seed protein hydrolysates have improved functional properties and could be used in the elaboration of a variety of products such as breads, cakes, and salad dressings.Se obtuvieron hidrolizados proteicos de la harina del altramuz y de la globulina α - conglutina purificada y se estudiaron sus propiedades funcionales. La hidrólisis con alcalasa durante 60 minutos produjo hidrolizados con grados de hidrólisis entre el 4 % y el 11 % para la harina y entre el 4 % y el 13 % para la α - conglutina. Se estudió en un hidrolizado con un 6 % de grado de hidrólisis la solubilidad proteica, absorción de aceite, capacidad y estabilidad espumante y actividad y estabilidad emulsificante. Los hidrolizados proteicos mostraron mejores propiedades funcionales que las proteínas originales. Más aún, la solubilidad de los hidrolizados de α - conglutina y la harina se incrementó en un 43 % y 52 % respectivamente. Así pues, hidrolizados de proteínas de semilla de lupino presentan mejores propiedades funcionales y podrían usarse en la elaboración de productos como pan, dulces, salsas o cremas.

  15. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

    Science.gov (United States)

    Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluat...

  16. High-yield production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate.

    Science.gov (United States)

    Zhang, Min; Gu, Lei; Cheng, Chao; Zhu, Junru; Wu, Hao; Ma, Jiangfeng; Dong, Weiliang; Kong, Xiangping; Jiang, Min; Ouyang, Pingkai

    2017-08-01

    Chicory is an agricultural plant with considerable potential as a carbohydrate substrate for low-cost production of biochemicals. In this work, the production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate was investigated. The bioconversion process initially suffered from the leakage of fructose to the phosphoketolase pathway, resulting in a low mannitol yield. When inulin hydrolysate was supplemented with glucose as a substrate for mannitol production in combination with aeration induction and nicotinic acid induced redox modulation strategies, the mannitol yield greatly improved. Under these conditions, significant improvement in the glucose consumption rate, intracellular NADH levels and mannitol dehydrogenase specific activity were observed, with mannitol production increasing from 64.6 to 88.1 g/L and overall yield increase from 0.69 to 0.94 g/g. This work demonstrated an efficient method for the production of mannitol from inulin hydrolysate with a high overall yield.

  17. Protein Hydrolysates/Peptides in Animal Nutrition

    Science.gov (United States)

    McCalla, Jeff; Waugh, Terry; Lohry, Eric

    The use of protein hydrolysates as an important nutrient for growth and maintenance has been increasing in animal nutrition. Although animal proteins and protein hydrolysates are widely used however, recently vegetable protein hydrolysates are gaining importance. This chapter reviews the use of protein hydrolysates developed by enzyme hydrolysis and by solid state fermentation process in animal nutrition especially for piglets and compares it with the standard products such as plasma and fishmeal.

  18. Production of butanol (a biofuel) from agricultural residues: Part II - Use of corn stover and switchgrass hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Nasib; Saha, Badal C.; Hector, Ronald E.; Dien, Bruce; Iten, Loren; Bowman, Michael J.; Cotta, Michael A. [United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research, 1815 N. University Street, Peoria, IL 61604 (United States); Hughes, Stephen; Liu, Siqing [USDA-ARS-NCAUR, Renewable Product Technology, 1815 N. University Street, Peoria, IL 61604 (United States); Sarath, Gautam [USDA-ARS, Grain, Forage, and Bioenergy Research Unit, University of Nebraska, 314 Biochemistry Hall, East Campus, Lincoln, NE 68583 (United States)

    2010-04-15

    Acetone butanol ethanol (ABE) was produced from hydrolysed corn stover and switchgrass using Clostridium beijerinckii P260. A control experiment using glucose resulted in the production of 21.06 g L{sup -1} total ABE. In this experiment an ABE yield and productivity of 0.41 and 0.31 g L{sup -1} h{sup -1} was achieved, respectively. Fermentation of untreated corn stover hydrolysate (CSH) exhibited no growth and no ABE production; however, upon dilution with water (two fold) and wheat straw hydrolysate (WSH, ratio 1:1), 16.00 and 18.04 g L{sup -1} ABE was produced, respectively. These experiments resulted in ABE productivity of 0.17-0.21 g L{sup -1} h{sup -1}. Inhibitors present in CSH were removed by treating the hydrolysate with Ca(OH){sub 2} (overliming). The culture was able to produce 26.27 g L{sup -1} ABE after inhibitor removal. Untreated switchgrass hydrolysate (SGH) was poorly fermented and the culture did not produce more than 1.48 g L{sup -1} ABE which was improved to 14.61 g L{sup -1}. It is suggested that biomass pretreatment methods that do not generate inhibitors be investigated. Alternately, cultures resistant to inhibitors and able to produce butanol at high concentrations may be another approach to improve the current process. (author)

  19. Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey.

    Science.gov (United States)

    Athira, Syamala; Mann, Bimlesh; Saini, Prerna; Sharma, Rajan; Kumar, Rajesh; Singh, Ashish Kumar

    2015-11-01

    Cheese whey is a rich by-product in nutritional terms, possessing components with high biological value, excellent functional properties, and an inert flavour profile. In the present study, mozzarella cheese whey was ultra-filtrated to remove lactose and mineral. The retentate was hydrolysed with food-grade enzyme alcalase and the hydrolysis conditions (pH, temperature and time) were optimised for maximum antioxidant activity using response surface methodology. Whey protein hydrolysed for 8 h at pH 9 and 55 °C showed a maximum antioxidant activity of 1.18 ± 0.015 µmol Trolox mg(-1) protein. The antioxidant peptides were further enriched by ultra-filtration through a 3 kDa membrane. Seven peptides - β-Lg f(123-131), β-Lg f(122-131), β-Lg f(124-131), β-Lg f(123-134), β-Lg f(122-131), β-Lg f(96-100) and β-Lg f(94-100) - were identified by LC-MS/MS in the 3 kDa permeate of the hydrolysate. The incorporation of whey protein hydrolysate (WPH) in lemon whey drink (5-10 g L(-1)) increased the antioxidant activity from 76% to 90% as compared to control. Hydrolysis of ultra-filtrated retentate of whey can be an energy- and cost-effective method for the direct production of WPH from whey compared to the industrial production of WPH from whey protein concentrate. This study suggests that WPH with good nutritional and biological properties can be effectively used in health-promoting foods as a biofunctional ingredient. © 2014 Society of Chemical Industry.

  20. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.

    Science.gov (United States)

    Li, Lixiang; Li, Kun; Wang, Kai; Chen, Chao; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-10-01

    In this study, a thermophilic Bacillus licheniformis strain X10 was newly isolated for 2,3-butanediol (2,3-BD) production from lignocellulosic hydrolysate. Strain X10 could utilize glucose and xylose simultaneously without carbon catabolite repression. In addition, strain X10 possesses high tolerance to fermentation inhibitors including furfural, vanillin, formic acid, and acetic acid. In a fed-batch fermentation, 74.0g/L of 2,3-BD was obtained from corn stover hydrolysate, with a productivity of 2.1g/Lh and a yield of 94.6%. Thus, this thermophilic B. licheniformis strain is a candidate for the development of efficient industrial production of 2,3-BD from corn stover hydrolysate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Maillard reaction of a shrimp by-product protein hydrolysate: chemical changes and inhibiting effects of reactive oxygen species in human HepG2 cells.

    Science.gov (United States)

    Zha, Fengchao; Wei, Binbin; Chen, Shengjun; Dong, Shiyuan; Zeng, Mingyong; Liu, Zunying

    2015-06-01

    Recently, much attention has been given to improving the antioxidant activity of protein hydrolysates via the Maillard reaction, but little is known about the cellular antioxidant activity of Maillard reaction products (MRPs) from protein hydrolysates. We first investigated chemical characterization and the cellular antioxidant activity of MRPs in a shrimp (Litopenaeus vannamei) by-product protein hydrolysate (SBH)-glucose system at 110 °C for up to 10 h of heating. Solutions of SBH and glucose were also heated alone as controls. The Maillard reaction greatly resulted in the increase of hydroxymethylfurfural (HMF) and browning intensity, high molecular weight fraction, and reduction of the total amino acid in SBH with the heating time, which correlated well with the free radical scavenging activity of MRPs. MRPs had stronger inhibiting effects on oxidative stress of human HepG2 cells than the original SBH, and its cellular antioxidant activity strongly correlated with free radical scavenging activity, but less affected by the browning intensity and HMF level. The caramelization of glucose partially affected the HMF level and free radical scavenging activity of MRPs, but it was not related to the cellular antioxidant activity. The cellular antioxidant activity of MRPs for 5 h of heating time appeared to reach a maximum level, which was mainly due to carbonyl ammonia condensation reaction. In conclusion, the Maillard reaction is a potential method to increase the cellular antioxidant activity of a shrimp by-product protein hydrolysate, but the higher HMF levels and the lower amino acid content in MRPs should also be considered.

  2. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate.

    Science.gov (United States)

    Zhou, Xin; Zhou, Xuelian; Tang, Xiusheng; Xu, Yong

    2018-08-01

    One of the major obstacles in process of lignocellulosic biorefinery is the utilization of pre-hydrolysate from pre-treatment. Although lignocellulosic pre-hydrolysate can serve as an economic starting material for xylonic acid production, the advancement of xylonic acid or xylonate is still limited by further commercial value or applications. In the present study, xylose in the high concentration wheat straw pre-hydrolysate was first in-situ biooxidized to xylonate by Gluconobacter oxydans. To meet the needs of commercialization, crude powdered calcium xylonate was prepared by drying process and calcium xylonate content in the prepared crude product was more than 70%. Then, the calcium xylonate product was evaluated as concrete admixture without any complex purification steps and the results demonstrated that xylonate could improve the performance of concrete. Overall, the crude xylonate product directly produced from low-cost wheat straw pre-hydrolysate can potentially be developed as retarding reducer, which could subsequently benefit lignocellulosic biorefinery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process.

    Science.gov (United States)

    Lu, Congcong; Dong, Jie; Yang, Shang-Tian

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates. PMID:26863012

  5. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  6. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Directory of Open Access Journals (Sweden)

    Ting Jiang

    Full Text Available An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH, condensed acid-catalyzed liquid hot water hydrolysate (CALH and condensed acid-catalyzed sulfite hydrolysate (CASH as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF, vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  7. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi

    2016-06-01

    The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation.

    Science.gov (United States)

    Neelamegam, Annamalai; Al-Battashi, Huda; Al-Bahry, Saif; Nallusamy, Sivakumar

    2018-01-10

    Waste paper, a major fraction of municipal solid waste, has a potential to serve as renewable feedstock for the biorefineries of fuels, chemicals and materials due to rich in cellulose and abundant at low cost. This study evaluates the possibility of waste office paper (WOP) to serve as a potential feedstock for the biorefinery production of poly (3-hydroxybutyrate). In this study, the WOP was pretreated, enzymatically saccharified and the hydrolysate was used for PHB production. The hydrolysate mainly consists of glucose (22.70g/L) and xylose (1.78g/L) and the corresponding sugar yield was about 816mg/g. Ammonium sulphate and C/N ratio 20 were identified as most favorable for high yield of PHB. The batch fermentation of Cupriavidus necator using the pretreated WOP hydrolysate resulted in cell biomass, PHB production and PHB content of 7.74g/L, 4.45g/L and 57.52%, respectively. The volumetric productivity and yield achieved were 0.061g/L/h and 0.210g/g sugar, respectively. The results suggested that WOP could be a potential alternative feedstock for the biorefinery production of bioplastics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Physiological Importance and Mechanisms of Protein Hydrolysate Absorption

    Science.gov (United States)

    Zhanghi, Brian M.; Matthews, James C.

    Understanding opportunities to maximize the efficient digestion and assimilation by production animals of plant- and animal-derived protein products is critical for farmers, nutritionists, and feed manufacturers to sustain and expand the affordable production of high quality animal products for human consumption. The challenge to nutritionists is to match gastrointestinal tract load to existing or ­inducible digestive and absorptive capacities. The challenge to feed manufacturers is to develop products that are efficient substrates for digestion, absorption, and/or both events. Ultimately, the efficient absorption of digesta proteins depends on the mediated passage (transport) of protein hydrosylate products as dipeptides and unbound amino acids across the lumen- and blood-facing membranes of intestinal absorptive cells. Data testing the relative efficiency of supplying protein as hydrolysates or specific dipeptides versus as free amino acids, and the response of animals in several physiological states to feeding of protein hydrolysates, are presented and reviewed in this chapter. Next, data describing the transport mechanisms responsible for absorbing protein hydrolysate digestion products, and the known and putative regulation of these mechanisms by their substrates (small peptides) and hormones are presented and reviewed. Several conclusions are drawn regarding the efficient use of protein hydrolysate-based diets for particular physiological states, the economically-practical application of which likely will depend on technological advances in the manufacture of protein hydrolysate products.

  10. Biogas production from wheat straw in batch and UASB reactors: the roles of pretreatment and seaweed hydrolysate as a co-substrate.

    Science.gov (United States)

    Nkemka, Valentine Nkongndem; Murto, Marika

    2013-01-01

    This research evaluated biogas production in batch and UASB reactors from pilot-scale acid catalysed steam pretreated and enzymatic hydrolysed wheat straw. The results showed that the pretreatment was efficient and, a sugar yield of 95% was obtained. The pretreatment improved the methane yield (0.28 m(3)/kg VS(added)) by 57% compared to untreated straw. Treatment of the straw hydrolysate with nutrient supplementation in a UASB reactor resulted in a high methane production rate, 2.70 m(3)/m(3).d at a sustainable OLR of 10.4 kg COD/m(3).d and with a COD reduction of 94%. Alternatively, co-digestion of the straw and seaweed hydrolysates in a UASB reactor also maintained a stable anaerobic process and can thus reduce the cost of nutrients addition. We have shown that biogas production from wheat straw can be competitive by pretreatment, high methane production rate in UASB reactors and also by co-digestion with seaweed hydrolysate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.

    Science.gov (United States)

    Miazek, Krystian; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2017-04-01

    This work evaluates the possibility of using beech wood (Fagus sylvatica) dilute-acid (H 2 SO 4 ) hydrolysate as a feedstock for Chlorella sorokiniana growth, fatty acid and pigment production. Neutralized wood acid hydrolysate, containing organic and mineral compounds, was tested on Chlorella growth at different concentrations and compared to growth under phototrophic conditions. Chlorella growth was improved at lower loadings and inhibited at higher loadings. Based on these results, a 12% neutralized wood acid hydrolysate (Hyd12%) loading was selected to investigate its impact on Chlorella growth, fatty acid and pigment production. Hyd12% improved microalgal biomass, fatty acid and pigment productivities both in light and in dark, when compared to photoautotrophic control. Light intensity had substantial influence on fatty acid and pigment composition in Chlorella culture during Hyd12%-based growth. Moreover, heterotrophic Chlorella cultivation with Hyd12% also showed that wood hydrolysate can constitute an attractive feedstock for microalgae cultivation in case of lack of light. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol.

    Science.gov (United States)

    Arslan, Yeşim; Eken-Saraçoğlu, Nurdan

    2010-11-01

    In this study, we investigated the use of hazelnut shell as a renewable and low cost lignocellulosic material for bioethanol production for the first time. High lignin content of hazelnut shell is an important obstacle for such a biotransformation. Biomass hydrolysis with acids yields reducing sugar with several inhibitors which limit the fermentability of sugars. The various conditioning methods for biomass and hydrolysate were performed to overcome the toxicity and their effects on the subsequent fermentation of hazelnut shell hydrolysate by Pichia stipitis were evaluated with shaking flasks experiments. Hazelnut shells hydrolysis with 0.7M H(2)SO(4) yielded 49 gl(-1) total reducing sugars and fermentation inhibitors in untreated hydrolysate. First, it was shown that several hydrolysate detoxification methods were solely inefficient in achieving cell growth and ethanol production in the fermentation of hazelnut shell hydrolysates derived from non-delignified biomass. Next, different pretreatments of hazelnut shells were considered for delignification and employed before hydrolysis in conjunction with hydrolysate detoxification to improve alcohol fermentation. Among six delignification methods, the most effective pretreatment regarding to ethanol concentration includes the treatment of shells with 3% (w/v) NaOH at room temperature, which was integrated with sequential hydrolysate detoxification by overliming and then treatment with charcoal twice at 60 degrees C. This treatment brought about a total reduction of 97% in furans and 88.4% in phenolics. Almost all trialed treatments caused significant sugar loss. Under the best assayed conditions, ethanol concentration of 16.79gl(-1) was reached from a hazelnut shell hyrolysate containing initial 50g total reducing sugar l(-1) after partial synthetic xylose supplementation. This value is equal to 91.25% of ethanol concentration that was obtained from synthetic d-xylose under same conditions. The present study

  13. Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate

    DEFF Research Database (Denmark)

    López-Linares, Juan Carlos; Romero, Inmaculada; Cara, Cristobal

    2018-01-01

    This study evaluated the possibility of using rapeseed straw hemicellulosic hydrolysate as a fermentation medium for xylitol production. Two yeast strains, namely Debaryomyces hansenii and Candida guilliermondii, were used for this bioconversion process and their performance to convert xylose...

  14. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC)

    DEFF Research Database (Denmark)

    Thygesen, Anders; Marzorati, Massimo; Boon, Nico

    2011-01-01

    In a microbial electrolysis cell (MEC), hydrolysate produced by hydrothermal treatment of wheat straw was used for hydrogen production during selective recovery of phenols. The average H2 production rate was 0.61 m3 H2/m3 MEC·day and equivalent to a rate of 0.40 kg COD/m3 MEC·day. The microbial...... the energy content in the consumed compounds and the cell voltage of 0.7 V. The highest hydrogen production was equivalent to 0.8 kg COD/m3 MEC·day and was obtained at pH 7–8 and 25°C. Accumulation of 53% w/v phenolic compounds in the liquor was obtained by stepwise addition of the hydrolysate during...

  15. Stability and oxidation products of hydrolysable tannins in basic conditions detected by HPLC/DAD-ESI/QTOF/MS.

    Science.gov (United States)

    Tuominen, Anu; Sundman, Terhi

    2013-01-01

    Hydrolysable tannins occur in plants that are used for food or medicine by humans or herbivores. Basic conditions can alter the structures of tannins, that is, the oxidation of phenolic groups can lead to the formation of toxic quinones. Previously, these labile quinones and other oxidation products have been studied with colorimetric or electron paramagnetic resonance methods, which give limited information about products. To study the stability and oxidation products of hydrolysable tannins in basic conditions using HPLC with a diode-array detector (DAD) combined with electrospray ionisation (ESI) and quadrupole time-of-flight (QTOF) MS. Three galloyl glucoses, four galloyl derivatives with different polyols and three ellagitannins were purified from plants. The incubation reactions of tannins were monitored by HPLC/DAD at five pH values and in reduced oxygen conditions. Reaction products were identified based on UV spectra and mass spectral fragmentation obtained with the high-resolution HPLC/DAD-ESI/QTOF/MS. The use of a base-resistant HPLC column enabled injections without the sample pre-treatment and thus detection of short-lived products. Hydrolysable tannins were unstable in basic conditions and half-lives were mostly less than 10 min at pH 10. Degradation rates were faster at pH 11 but slower at milder pH. The HPLC analyses revealed that various products were formed and identified to be the result of hydrolysis, deprotonation and oxidation. Interestingly, the main hydrolysis product was ellagic acid; it was also formed from galloyl glucoses that do not contain oxidatively coupled galloyl groups in their initial structures. HPLD/DAD-ESI/QTOF/MS was an efficient method for the identification of polyphenol oxidation products and showed how different pH conditions determine the fate of hydrolysable tannins. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Mixture of residual fish hydrolysate and fish extract hydrolysate to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... 42°C. Replacement of nutrient broth-starch with residual fish hydrolysate-starch led to the enzyme production to .... Paddy husk, raw unpolished rice, fertilizers such as ..... Saunders BC (eds) Practical Organic Chemistry. 4th.

  17. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    DEFF Research Database (Denmark)

    Thygesen, Anders; Poulsen, Finn Willy; Angelidaki, Irini

    2011-01-01

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation...... in 95% degradation of the xylan and glucan. The study demonstrates that lignocellulosic hydrolysate can be used for co-treatment with domestic wastewater for power generation in microbial fuel cells....... density with the hydrolysate was higher than the one with only xylan (120 mW m−2) and carboxylic acids as fuel. The higher power density can be caused by the presence of phenolic compounds in the hydrolysates, which could mediate electron transport. Electricity generation with the hydrolysate resulted...

  18. Antiulcerative Activity of Milk Proteins Hydrolysates.

    Science.gov (United States)

    Carrillo, Wilman; Monteiro, Karin Maia; Martínez-Maqueda, Daniel; Ramos, Mercedes; Recio, Isidra; Carvalho, João Ernesto de

    2018-04-01

    Several studies have shown the protective effect of dairy products, especially α-lactalbumin and derived hydrolysates, against induced gastric ulcerative lesions. The mucus strengthening represents an important mechanism in the defense of gastrointestinal mucosa. Previously, a hydrolysate from casein (CNH) and a hydrolysate from whey protein concentrate rich in β-lactoglobulin (WPH) demonstrated a stimulatory activity on mucus production in intestinal goblet cells. The aim of this work was to evaluate the possible antiulcerative activity of these two hydrolysates in an ethanol-induced ulcer model in rats. All tested samples significantly reduced the ulcerative lesions index (ULI), compared with the saline solution, using doses of 300 and 1000 mg kg -1 body weight with decreases up to 66.3% ULI. A dose-response relationship was found for both hydrolysates. The involvement of endogenous sulfhydryl (SH) groups and prostaglandins (PGs) in the antiulcerative activity was evaluated using their blockage. The antiulcerative activity of WPH showed a drastic decrease in presence of N-ethylmaleimide (from 41.4% to 9.2% ULI). However, the CNH antiulcerative properties were not significantly affected. The cytoprotective effect of WPH appears to depend on a PG-mediated mechanism. In conclusion, CNH and WPH demonstrated in vivo antiulcerative properties and represent a promising alternative as protectors of the gastric mucosa.

  19. Cellulase Production from Spent Lignocellulose Hydrolysates by Recombinant Aspergillus niger▿

    Science.gov (United States)

    Alriksson, Björn; Rose, Shaunita H.; van Zyl, Willem H.; Sjöde, Anders; Nilvebrant, Nils-Olof; Jönsson, Leif J.

    2009-01-01

    A recombinant Aspergillus niger strain expressing the Hypocrea jecorina endoglucanase Cel7B was grown on spent hydrolysates (stillage) from sugarcane bagasse and spruce wood. The spent hydrolysates served as excellent growth media for the Cel7B-producing strain, A. niger D15[egI], which displayed higher endoglucanase activities in the spent hydrolysates than in standard medium with a comparable monosaccharide content (e.g., 2,100 nkat/ml in spent bagasse hydrolysate compared to 480 nkat/ml in standard glucose-based medium). In addition, A. niger D15[egI] was also able to consume or convert other lignocellulose-derived compounds, such as acetic acid, furan aldehydes, and phenolic compounds, which are recognized as inhibitors of yeast during ethanolic fermentation. The results indicate that enzymes can be produced from the stillage stream as a high-value coproduct in second-generation bioethanol plants in a way that also facilitates recirculation of process water. PMID:19251882

  20. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong

    2016-10-01

    Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    Science.gov (United States)

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-06-01

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis.

    Science.gov (United States)

    Jia, Honghua; Shao, Tingting; Zhong, Chao; Li, Hengxiang; Jiang, Min; Zhou, Hua; Wei, Ping

    2016-10-20

    In this paper, we produced hemicellulosic hydrolysate from corncob by tetrabutylammonium hydroxide (TBAH) extraction and dilute acid hydrolysis combined, further evaluating the feasibility of the resultant corncob hemicellulosic hydrolysate used in xylitol production by Candida tropicalis. Optimized conditions for corncob hemicellulose extraction by TBAH was obtained via response surface methodology: time of 90min, temperature of 60°C, liquid/solid ratio of 12 (v/w), and TBAH concentration of 55%, resulting in a hemicellulose extraction of 80.07% under these conditions. The FT-IR spectrum of the extracted corncob hemicellulose is consistent with that of birchwood hemicellulose and exhibits specific absorbance of hemicelluloses at 1380, 1168, 1050, and 900cm(-1). In addition, we found that C. tropicalis can ferment the resulting corncob hemicellulosic hydrolysate with pH adjustment and activated charcoal treatment leading to a high xylitol yield and productivity of 0.77g/g and 2.45g/(Lh), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    Science.gov (United States)

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  4. Evaluation of cotton stalk hydrolysate for xylitol production.

    Science.gov (United States)

    Sapcı, Burcu; Akpinar, Ozlem; Bolukbasi, Ufuk; Yilmaz, Levent

    2016-07-03

    Cotton stalk is a widely distributed and abundant lignocellulosic waste found in Turkey. Because of its rich xylose content, it can be a promising source for the production of xylitol. Xylitol can be produced by chemical or biotechnological methods. Because the biotechnological method is a simple process with great substrate specificity and low energy requirements, it is more of an economic alternative for the xylitol production. This study aimed to use cotton stalk for the production of xylitol with Candida tropicalis Kuen 1022. For this purpose, the combined effects of different oxygen concentration, inoculum level and substrate concentration were investigated to obtain high xylitol yield and volumetric xylitol production rate. Candida tropicalis Kuen 1022 afforded different concentrations of xylitol depending on xylose concentration, inoculum level, and oxygen concentration. The optimum xylose, yeast concentration, and airflow rate for cotton stalk hydrolysate were found as 10.41 g L(-1), 0.99 g L(-1), and 1.02 vvm, respectively, and under these conditions, xylitol yield and volumetric xylitol production rate were obtained as 36% and 0.06 g L(-1) hr(-1), respectively. The results of this study show that cotton stalk can serve as a potential renewable source for the production of xylitol.

  5. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.

    Science.gov (United States)

    Guirimand, Gregory; Sasaki, Kengo; Inokuma, Kentaro; Bamba, Takahiro; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-04-01

    Xylitol, a value-added polyol deriving from D-xylose, is widely used in both the food and pharmaceutical industries. Despite extensive studies aiming to streamline the production of xylitol, the manufacturing cost of this product remains high while demand is constantly growing worldwide. Biotechnological production of xylitol from lignocellulosic waste may constitute an advantageous and sustainable option to address this issue. However, to date, there have been few reports of biomass conversion to xylitol. In the present study, xylitol was directly produced from rice straw hydrolysate using a recombinant Saccharomyces cerevisiae YPH499 strain expressing cytosolic xylose reductase (XR), along with β-glucosidase (BGL), xylosidase (XYL), and xylanase (XYN) enzymes (co-)displayed on the cell surface; xylitol production by this strain did not require addition of any commercial enzymes. All of these enzymes contributed to the consolidated bioprocessing (CBP) of the lignocellulosic hydrolysate to xylitol to produce 5.8 g/L xylitol with 79.5 % of theoretical yield from xylose contained in the biomass. Furthermore, nanofiltration of the rice straw hydrolysate provided removal of fermentation inhibitors while simultaneously increasing sugar concentrations, facilitating high concentration xylitol production (37.9 g/L) in the CBP. This study is the first report (to our knowledge) of the combination of cell surface engineering approach and membrane separation technology for xylitol production, which could be extended to further industrial applications.

  6. Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2012-12-01

    Full Text Available Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus and Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas sp. were evaluated. Papain hydrolysis showed the highest DH value (89.44%, followed by alcalase hydrolysis (83.35%. Bromelain hydrolysate after one and seven hours of hydrolysis exhibited the highest antibacterial activities against Pseudomonas sp., P. aeruginosa and E. coli at 51.85%, 30.07% and 30.45%, respectively compared to the other hydrolysates. Protein hydrolysate generated by papain after 8 h hydrolysis showed maximum antibacterial activity against S. aureus at 20.19%. The potent hydrolysates were further fractionated using RP-HPLC and antibacterial activity of the collected fractions from each hydrolysate were evaluated, wherein among them only three fractions from the bromelain hydrolysates exhibited inhibitory activities against Pseudomonas sp., P. aeruginosa and E. coli at 24%, 25.5% and 27.1%, respectively and one fraction of papain hydrolysate showed antibacterial activity of 33.1% against S. aureus. The evaluation of the relationship between DH and antibacterial activities of papain and bromelain hydrolysates revealed a meaningful correlation of four and six order functions.

  7. Inhibitory Compounds in Lignocellulosic Biomass Hydrolysates during Hydrolysate Fermentation Processes

    NARCIS (Netherlands)

    Zha, Y.; Muilwijk, B.; Coulier, L.C.; Punt, P.J.

    2012-01-01

    To compare the composition and performance of various lignocellulosic biomass hydrolysates as fermentation media, 8 hydrolysates were generated from a grass-like and a wood biomass. The hydrolysate preparation methods used were 1) dilute acid, 2) mild alkaline, 3) alkaline/peracetic acid, and 4)

  8. Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production

    Directory of Open Access Journals (Sweden)

    J. M. Marton

    2006-03-01

    Full Text Available Xylitol has sweetening, anticariogenic and clinical properties that have attracted the attention of the food and pharmaceutical industries. The conversion of sugars from lignocellulosic biomass into xylitol by D-xylose-fermenting yeast represents an alternative to the chemical process for producing this polyol. A good source of D-xylose is sugarcane bagasse, which can be hydrolyzed with dilute acid. However, acetic acid, which is toxic to the yeast, also appears in the hydrolysate, inhibiting microbe metabolism. Xylitol production depends on the initial D-xylose concentration, which can be increased by concentrating the hydrolysate by vacuum evaporation. However, with this procedure the amount of acetic acid is also increased, aggravating the problem of cell inhibition. Hydrolysate treatment with powdered activated charcoal is used to remove or decrease the concentration of this inhibitor, improving xylitol productivity as a consequence. Our work was an attempt to improve the fermentation of Candida guilliermondii yeast in sugarcane bagasse hydrolysate by treating the medium with seven types of commercial powdered activated charcoals (Synth, Carbon Delta A, Carbon Delta G, Carbon 117, Carbon 118L, Carbon 147 and Carvorite, each with its own unique physicochemical properties. Various adsorption conditions were established for the variables temperature, contact time, shaking, pH and charcoal concentration. The experiments were based on multivariate statistical concepts, with the application of fractional factorial design techniques to identify the variables that are important in the process. Subsequently, the levels of these variables were quantified by overlaying the level curves, which permitted the establishment of the best adsorption conditions for attaining high levels of xylitol volumetric productivity and D-xylose-to-xylitol conversion. This procedure consisted in increasing the original pH of the hydrolysate to 7.0 with CaO and reducing it

  9. Processing Methods of Alkaline Hydrolysate from Rice Husk

    Directory of Open Access Journals (Sweden)

    Olga D. Arefieva

    2017-07-01

    Full Text Available This paper devoted to finding processing methods of alkaline hydrolysate produced from rice husk pre-extraction, and discusses alkaline hydrolysate processing schemed and disengagement of some products: amorphous silica of various quality, alkaline lignin, and water and alkaline extraction polysaccharides. Silica samples were characterized: crude (air-dried, burnt (no preliminary water treatment, washed in distilled water, and washed in distilled water and burnt. Waste water parameters upon the extraction of solids from alkaline hydrolysate dropped a few dozens or thousand times depending on the applied processing method. Color decreased a few thousand times, turbidity was virtually eliminated, chemical oxygen demanded about 20–136 times; polyphenols content might decrease 50% or be virtually eliminated. The most prospective scheme obtained the two following solid products from rice husk alkaline hydrolysate: amorphous silica and alkaline extraction polysaccharide. Chemical oxygen demand of the remaining waste water decreased about 140 times compared to the silica-free solution.

  10. Enteral Tube Feeding Nutritional Protein Hydrolysate Production Under Different Factors By Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Nguyen ThiQuynhHoa

    2015-01-01

    Full Text Available Abstract Hydrolysis of proteins involves the cleavage of peptide bonds to give peptides of varying sizes and amino acid composition. There are a number of types of hydrolysis enzymatic acid or alkali hydrolysis. Chemical hydrolysis is difficult to control and reduces the nutritional quality of products destroying L-form amino acids and producing toxic substances such as lysino-alanine. Enzymatic hydrolysis works without destructing amino acids and by avoiding the extreme temperatures and pH levels required for chemical hydrolysis the nutritional properties of the protein hydrolysates remain largely unaffected. In this research we investigate the fat removal and protein hydrolysis from pork meat to produce the enteral tube feeding nutritional protein hydrolysate for patient. Our results are as follows meat moisture 75.1 protein 22.6 lipid 1.71 ash 0.5 vitamin B1 1.384mg100g n hexantreatment at 80oCin 45 minutes and drying 30 minutes in 90oC.Viscosity of the hydrolysate is very low 2.240 0.092 cPand high degree of hydrolysis 31.390 0.138 . The final protein powder has balance nutritional components and acid amines low microorganisms which are safety for human consumption.

  11. Effect of Protein Hydrolysates on Pancreatic Cancer Cells

    DEFF Research Database (Denmark)

    Ossum, Carlo G.; Andersen, Lisa Lystbæk; Nielsen, Henrik Hauch

    Effect of Fish Protein Hydrolysates on Pancreatic Cancer Cells Carlo G. Ossum1, Lisa Lystbæk Andersen2, Henrik Hauch Nielsen2, Else K. Hoffmann1, and Flemming Jessen2 1University of Copenhagen, Department of Biology, Denmark, 2Technical University of Denmark (DTU), National Food Institute, Denmark...... hydrolysates obtained by enzymatic hydrolysis on cancer cell proliferation. Skin and belly flap muscle from trout were hydrolysed with the unspecific proteases Alcalase, Neutrase, or UE1 (all from Novozymes, Bagsværd, Denmark) to a hydrolysis degree of 1-15%. The hydrolysates were tested for biological...... activities affecting cell proliferation and ability to modulate caspase activity in pancreatic cancer cells COLO357 and BxPC-3 in vitro. A number of the hydrolysates showed caspase promoting activity; in particular products containing muscle tissue, i.e. belly flap, were able to stimulate caspase activity...

  12. Selection of lactic acid bacteria able to ferment inulin hydrolysates

    Directory of Open Access Journals (Sweden)

    Octavian BASTON

    2012-12-01

    Full Text Available Eight homofermentative lactic acid bacteria isolates were tested for lactic acid production using chicory and Jerusalem artichoke hydrolysate as substrate. The pH, lactic acid yield and productivity were used to select the best homolactic bacteria for lactic acid production. The selected strains produced lactic acid at maximum yield after 24 hours of fermentation and the productivity was greater at 24 hours of fermentation. From all studied strains, Lb1 and Lb2 showed the best results regarding lactic acid yields andproductivity. After 48 hours of chicory and Jerusalem artichhoke hydrolysates fermentation, from all the studied strains, Lb2 produced the highest lactic acid yield (0.97%. Lb2 produced after 48 hours of fermentation the lowest pH value of 3.45±0.01. Lb2 showed greater lactic acid productivity compared to the other studied lactic acid bacteria, the highest values, 0.13 g·L-1·h-1fromJerusalem artichoke hydrolysate and 0.11g·L-1·h-1 from chicory hydrolysate, being produced after 24 hours of fermentation.

  13. Sport Nutrition Drinks Based on Octopus Protein Hydrolysate

    OpenAIRE

    Bambang Riyanto; Wini Trilaksani; Rika Lestari

    2017-01-01

    AbstractSport nutrition drinks are well-known in escalating athlete’s performance and endurance. These product developed from whey protein hydrolysates and soybean protein hydrolysates have already been recognized, however expansion from marine product is comparatively rare. Octopus (Octopus cyanea) widely acknowledged containing taurine and rich in amino acids is potential to be developed as ingredient for sport nutrition drink. The aims of this study were to create and characterize sport nu...

  14. Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Xia, Liming

    2010-12-15

    Three corn stover hydrolysates, enzymatic hydrolysates prepared from acid and alkaline pretreatments separately and hemicellulosic hydrolysate prepared from acid pretreatment, were evaluated in composition and fermentability. For enzymatic hydrolysate from alkaline pretreatment, ethanol yield on fermentable sugars and fermentation efficiency reached highest among the three hydrolysates; meanwhile, ethanol yield on dry corn stover reached 0.175 g/g, higher than the sum of those of two hydrolysates from acid pretreatment. Fermentation process of the enzymatic hydrolysate from alkaline pretreatment was further investigated using free and immobilized cells of recombinant Saccharomyces cerevisiae ZU-10. Concentrated hydrolysate containing 66.9 g/L glucose and 32.1 g/L xylose was utilized. In the fermentation with free cells, 41.2 g/L ethanol was obtained within 72 h with an ethanol yield on fermentable sugars of 0.416 g/g. Immobilized cells greatly enhanced the ethanol productivity, while the ethanol yield on fermentable sugars of 0.411 g/g could still be reached. Repeated batch fermentation with immobilized cells was further attempted up to six batches. The ethanol yield on fermentable sugars maintained above 0.403 g/g with all glucose and more than 92.83% xylose utilized in each batch. These results demonstrate the feasibility and efficiency of ethanol production from corn stover hydrolysates. (author)

  15. Sensory and aromatic characteristics of tongue sole by-products hydrolysates (Cynoglossus senegalensis)

    OpenAIRE

    Sylla, K. S. B.; Berge, Jean-pascal; Prost, Carole; Musabyemariya, B.; Seydi, Mg

    2009-01-01

    Tongue sole by-products coming from fish-filleting plant were hydrolyzed by Protamex® protease. To identify the future application of hydrolysates, a sensory analysis was carried out.The sensory profile was performed with a jury of 14 specialized judges.11 profiles were found by this panel of tasting. In addition, the aromatic characterization revealed that 57 molecules are responsible for these odours described in sensory analysis.The description of these aromatic compounds opens potentia...

  16. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum

    Science.gov (United States)

    Dan Jiang; Fang, Zhen; Chin, Siew-Xian; Tian, Xiao-Fei; Su, Tong-Chao

    2016-06-01

    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7-64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.

  17. Evaluation of nutrient supplementation to charcoal-treated and untreated rice straw hydrolysate for xylitol production by Candida guilliermondii

    Directory of Open Access Journals (Sweden)

    Solange Inês Mussatto

    2005-05-01

    Full Text Available Xylitol was produced by Candida guilliermondii from charcoal-treated and untreated rice straw hemicellulosic hydrolysate with or without nutrients (ammonium sulphate, calcium chloride, rice bran extract. Both, xylitol yield and volumetric productivity decreased significantly when the nutrients were added to treated and untreated hydrolysates. In the treated hydrolysate, the efficiency of xylose conversion to xylitol was 79% when the nutrients were omitted. The results demonstrated that rice straw hemicellulosic hydrolysate treated with activated charcoal was a cheap source of xylose and other nutrients for xylitol production by C. guilliermondii. The non-necessity of adding nutrients to the hydrolysate media would be very advantageous since the process becomes less costly.Este trabalho avaliou a produção de xilitol pela levedura Candida guilliermondii, a partir de hidrolisado hemicelulósico de palha de arroz não tratado e tratado com carvão ativo, ambos suplementados ou não com nutrientes (sulfato de amônio, cloreto de cálcio e extrato de farelo de arroz. Os resultados mostraram que tanto o rendimento como a produtividade volumétrica em xilitol diminuíram quando os nutrientes foram adicionados em ambos hidrolisados, tratado e não tratado. Em hidrolisado tratado, a eficiência de conversão de xilose em xilitol foi de 79% quando em ausência de nutrientes. Estes resultados mostram que o hidrolisado hemicelulósico de palha de arroz tratado com carvão ativo é uma fonte barata de xilose e outros nutrientes, para a produção de xilitol por Candida guilliermondii. A não necessidade de adicionar nutrientes ao meio a base de hidrolisado é muito vantajosa, uma vez que o processo se torna mais econômico.

  18. Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction.

    Science.gov (United States)

    Brandenburg, Jule; Poppele, Ieva; Blomqvist, Johanna; Puke, Maris; Pickova, Jana; Sandgren, Mats; Rapoport, Alexander; Vedernikovs, Nikolajs; Passoth, Volkmar

    2018-05-26

    This study investigates biofuel production from wheat straw hydrolysate, from which furfural was extracted using a patented method developed at the Latvian State Institute of Wood Chemistry. The solid remainder after furfural extraction, corresponding to 67.6% of the wheat straw dry matter, contained 69.9% cellulose of which 4% was decomposed during the furfural extraction and 26.3% lignin. Enzymatic hydrolysis released 44% of the glucose monomers in the cellulose. The resulting hydrolysate contained mainly glucose and very little amount of acetic acid. Xylose was not detectable. Consequently, the undiluted hydrolysate did not inhibit growth of yeast strains belonging to Saccharomyces cerevisiae, Lipomyces starkeyi, and Rhodotorula babjevae. In the fermentations, average final ethanol concentrations of 23.85 g/l were obtained, corresponding to a yield of 0.53 g ethanol per g released glucose. L. starkeyi generated lipids with a rate of 0.08 g/h and a yield of 0.09 g per g consumed glucose. R. babjevae produced lipids with a rate of 0.18 g/h and a yield of 0.17 per g consumed glucose. In both yeasts, desaturation increased during cultivation. Remarkably, the R. babjevae strain used in this study produced considerable amounts of heptadecenoic, α,- and γ-linolenic acid.

  19. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source

    International Nuclear Information System (INIS)

    Chang, Yi-Huang; Chang, Ku-Shang; Lee, Ching-Fu; Hsu, Chuan-Liang; Huang, Cheng-Wei; Jang, Hung-Der

    2015-01-01

    To realize the feasibility of biodiesel production from high-lipid cell culture, microbial lipid production by the oleaginous yeasts was studied using glucose and sucrose as carbon source. Among the tested strains, Cryptococcus sp. SM5S05 accumulated the highest levels of intracellular lipids. The crude lipid contents of Cryptococcus sp. cultured in yeast malt agar reached 30% on a dry weight basis. The accumulation of lipids strongly depended on carbon/nitrogen ratio and nitrogen concentration. The highest content of lipids, measured at a carbon/nitrogen ratio of 60–90 and at a nitrogen concentration of 0.2%, was 60–57% lipids in the dry biomass. Batch cultures using corncob hydrolysate demonstrated that there was minimal inhibitory effect with a reducing sugar concentration of 60 g l −1 or higher. Batch cultures of Cryptococcus sp. SM5S05 in the corncob hydrolysate medium with 60 g l −1 glucose resulted in a dry biomass, lipid yields, and content of 12.6 g l −1 , 7.6 g l −1 , and 60.2%, respectively. The lipids contained mainly long-chain saturated and unsaturated fatty acids with 16 and 18 carbon atoms. The fatty acid profile of Cryptococcus oils was quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with corncob hydrolysate being utilized as the raw material for the oleaginous yeast. The results showed that the microbial lipid from Cryptococcus sp. was a potential alternative resource for biodiesel production. - Highlights: • Microbial oil production from oleaginous yeast Cryptococcus sp. was studied. • Accumulation of lipid strongly depended on C/N ratio and nitrogen concentration. • Cultures in hydrolysate medium with 60 g/l glucose resulted in maximum lipid yields. • Maximal lipid content in the Cryptococcus sp. were 60.2% on dried weight basis

  20. Xylitol Production from Eucalyptus Wood Hydrolysates in Low-Cost Fermentation Media

    Directory of Open Access Journals (Sweden)

    José Diz

    2002-01-01

    Full Text Available Several aspects concerning the bioconversion of xylose-containing hydrolysates (obtained from Eucalyptus wood into xylitol were assessed. Debaryomyces hansenii yeast strains were adapted to fermentation media (obtained either by prehydrolysis or autohydrolysis- posthydrolysis of wood supplemented with low-cost nutrients. Media containing up to 80 g/L xylose were efficiently fermented when the hydrolysates were detoxified by charcoal adsorption and supplemented with corn steep liquor.

  1. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.

    Science.gov (United States)

    Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián

    2015-08-01

    Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Sport Nutrition Drinks Based on Octopus Protein Hydrolysate

    Directory of Open Access Journals (Sweden)

    Bambang Riyanto

    2017-02-01

    Full Text Available AbstractSport nutrition drinks are well-known in escalating athlete’s performance and endurance. These product developed from whey protein hydrolysates and soybean protein hydrolysates have already been recognized, however expansion from marine product is comparatively rare. Octopus (Octopus cyanea widely acknowledged containing taurine and rich in amino acids is potential to be developed as ingredient for sport nutrition drink. The aims of this study were to create and characterize sport nutrition drinks based on marine peptides through Octopus protein hydrolyzate. Octopus protein hydrolysate has 77.78±2.69% degree of hydrolysis and 751.02±10.63 mg / 100g taurine. Sports nutrition drinks with the addition of 4% Octopus protein hydrolyzate was acceptable sensory panelists, and the serving size of 600 ml contained taurine 726.06±0.82 mg and detected 17 types of amino acids.

  3. In Situ Biodiesel Production from Fast-Growing and High Oil Content Chlorella pyrenoidosa in Rice Straw Hydrolysate

    Science.gov (United States)

    Li, Penglin; Miao, Xiaoling; Li, Rongxiu; Zhong, Jianjiang

    2011-01-01

    Rice straw hydrolysate was used as lignocellulose-based carbon source for Chlorella pyrenoidosa cultivation and the feasibility of in situ biodiesel production was investigated. 13.7 g/L sugar was obtained by enzymatic hydrolyzation of rice straw. Chlorella pyrenoidosa showed a rapid growth in the rice straw hydrolysate medium, the maximum biomass concentration of 2.83 g/L was obtained in only 48 hours. The lipid content of the cells reached as high as 56.3%. In situ transesterification was performed for biodiesel production. The optimized condition was 1 g algal powder, 6 mL n-hexane, and 4 mL methanol with 0.5 M sulfuric acid at the temperature of 90°C in 2-hour reaction time, under which over 99% methyl ester content and about 95% biodiesel yield were obtained. The results suggested that the method has great potential in the production of biofuels with lignocellulose as an alternative carbon source for microalgae cultivation. PMID:21318171

  4. Production and partial purification of glucoamylase from Aspergillus ...

    African Journals Online (AJOL)

    Glucoamylase is an enzyme that hydrolyses 1,4α and 1,6β-glucosidic linkages in polysaccharides yielding glucose. Aspergillus niger strains 1, 2 and 3 were locally isolated from cassava peel dumpsite for the production of glucoamylase enzyme. A. niger strains 1, 2 and 3 were screened for their hyper producing ability on ...

  5. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.

    Science.gov (United States)

    Benesova, P; Kucera, D; Marova, I; Obruca, S

    2017-08-01

    The chicken feather hydrolysate (FH) has been tested as a potential complex nitrogen source for the production of polyhydroxyalkanoates by Cupriavidus necator H16 when waste frying oil was used as a carbon source. The addition of FH into the mineral salt media with decreased inorganic nitrogen source concentration improved the yields of biomass and polyhydrohyalkanoates. The highest yields were achieved when 10 vol.% of FH prepared by microwave-assisted alkaline hydrolysis of 60 g l -1 feather was added. In this case, the poly(3-hydroxybutyrate) (PHB) yields were improved by more than about 50% as compared with control cultivation. A positive impact of FH was also observed for accumulation of copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) when sodium propionate was used as a precursor. The copolymer has superior processing and mechanical properties in comparison with PHB homopolymer. The application of FH eliminated the inhibitory effect of propionate and resulted in altered content of 3-hydroxyvalerate (3HV) in copolymer. Therefore, the hydrolysed feather can serve as an excellent complex source of nitrogen for the polyhydroxyalkanoates (PHA) production. Moreover, by the combination of two inexpensive types of waste, such as waste frying oil and feather hydrolysate, it is possible to produce PHA with substantially improved efficiency and sustainability. Millions of tons of feathers, important waste product of poultry-processing industry, are disposed off annually without any further benefits. Thus, there is an inevitable need for new technologies that enable ecologically and economically sensible processing of this waste. Herein, we report that alkali-hydrolysed feathers can be used as a complex nitrogen source considerably improving polyhydroxyalkanoates production on waste frying oil employing Cupriavidus necator. © 2017 The Society for Applied Microbiology.

  6. Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864.

    Science.gov (United States)

    Dong, Jin-Jun; Han, Rui-Zhi; Xu, Guo-Chao; Gong, Lei; Xing, Wan-Ru; Ni, Ye

    2018-07-01

    The toxicity of furfural residues (FRs) hydrolysate is a major obstacle in its application. This work focused on the detoxification of FRs hydrolysate and its application in butanol fermentation. Combination of activated carbon and resin 717 was appropriate for the detoxification of hydrolysate. Mixed sterilization of FRs hydrolysate and corn steep liquor (CSL) was better than the separate ones, since proteins in CSL could adsorb and remove toxic components during sterilization. The results further confirmed that simultaneous sterilization of activated carbon + resin and fermentation medium was more efficient for detoxification and butanol production, in which 76.4% of phenolic compounds and 99.3% of Maillard reaction products were removed, 8.48 g/L butanol and 12.61 g/L total solvent were obtained. This study provides feasible and economic approaches for the detoxification of FRs hydrolysate and its application in butanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Pork fat hydrolysed by Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Sørensen, B. B.; Stahnke, Louise Heller; Zeuthen, Peter

    1993-01-01

    Staphylococcus xylosus is used as a starter culture in the production of fermented sausages. Its ability to hydrolyse pork fat was investigated. Within 15 days of incubation an interaction of bacterial growth, lipase production and lipase activity in a pork fat containing medium caused liberation...

  8. Biological activity of egg-yolk protein by-product hydrolysates obtained with the use of non-commercial plant protease

    Directory of Open Access Journals (Sweden)

    A. Zambrowicz

    2015-12-01

    Full Text Available Enzymatic hydrolysis leads to improved functional and biological properties of protein by-products, which can be further used as nutraceuticals and protein ingredients for food applications.The present study evaluated ACE-inhibitory, antioxidant and immunostimulating activities in hydrolysates of egg-yolk protein by-product (YP, generated during industrial process of delipidation of yolk. The protein substrate was hydrolyzed using non-commercial protease from Asian pumpkin (Cucurbita ficifolia. The reaction was conducted in 0.1 M Tris-HCl buffer (pH 8.0 at temperature of 37°C for 4 hours using different enzyme doses (100-1000 U/mg of substrate. The protein degradation was monitored by the determination of the degree of hydrolysis (DH, release of free amino groups (FAG and by RP-HPLC. In the obtained hydrolysates we also evaluated biological activities. It was shown that the highest DH of substrate (46.6% was obtained after 4h of reaction at the highest amount of enzyme. This hydrolysate exhibited antioxidant activity, including ferricion reducing (FRAP (56.41 μg Fe2+/mg, ferric ion chelating (695.76 μg Fe2+/mg and DPPH free radical scavenging (0.89 μmol troloxeq/mg as well as ACE-inhibitory (IC50=837.75 μg/mL activities.The research showed improved biological properties of enzymatically modified YP by-product.

  9. Effect of alkaline cooking of maize on the content of fumonisins B1 and B2 and their hydrolysed forms.

    Science.gov (United States)

    De Girolamo, A; Lattanzio, V M T; Schena, R; Visconti, A; Pascale, M

    2016-02-01

    The effect of nixtamalization on the content of fumonisins (FBs), hydrolysed (HFBs) and partially hydrolysed (PHFBs) fumonisins in maize was investigated at laboratory-scale. Maize naturally contaminated with FBs and PHFBs was cooked with lime. Starting raw maize, steeping and washing waters and final masa fractions were analysed for toxin content. Control-cooking experiments without lime were also carried out. The nixtamalization reduced the amount of FBs and PHFBs in masa and converted them to HFBs. However, the three forms of fumonisins collected in all fractions amounted to 183%, indicating that nixtamalization made available forms of matrix-associated fumonisins that were then converted to their hydrolysed forms. Control-cooking enhanced FBs and PHFBs reduction, due to the solubility of fumonisins in water during the steeping process, but did not form HFBs. These findings indicate that benefits associated with enhancing the nutritional value of nixtamalized maize are also associated with a safer product in terms of fumonisin contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    OpenAIRE

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-...

  11. Recovery of monosaccharides from lignocellulosic hydrolysates by ion exclusion chromatography.

    Science.gov (United States)

    Lodi, Gabriele; Pellegrini, Laura Annamaria; Aliverti, Alessandro; Rivas Torres, Beatriz; Bernardi, Marco; Morbidelli, Massimo; Storti, Giuseppe

    2017-05-05

    The production of sugars from lignocellulosic biomass is the key to a sustainable, renewable chemical industry. Glucose, xylose and other monosaccharides can be easily produced by hydrolyzing cellulose and hemicellulose, the primary polysaccharides in biomass. However, the hydrolysis of biomass generates byproducts that, together with the mineral acid normally added in the hydrolysis step, have to be removed before the downstream conversion processes. In this work, the recovery of monosaccharides from lignocellulosic hydrolysates by means of Ion Exclusion Chromatography (IEC) has been studied. The analyzed process relies on new pretreatment and hydrolysis steps, involving the neutralization of the hydrolysate with sodium hydroxide. The adsorption behavior of the main components involved in the separation has been experimentally investigated. Pulse tests at the high loading encountered in preparative conditions have been performed for a selected group of model components found in the hydrolysates. For all the electrolytes, the retention volume fraction was always between the interparticle porosity and the total column porosity, confirming that ion exclusion was the dominant retention mechanism. On the other hand, sugars eluted before the total column porosity, indicating partial steric exclusion from the resin pores. This observation was then confirmed by size-exclusion experiments with polyethylene glycol standards, from which the distribution coefficient of the studied sugars has been determined. The comparison between the elution profiles of the same sugars in pure form and as a mixture present in the hydrolysate showed differences in both peak shape and retention times. Therefore, an investigation of the influence of the main electrolytes contained in the hydrolysates on sugars adsorption has been performed through the pulse on a plateau method. The electrolytes were found to enhance the sugars retention by promoting their adsorption onto the resin. However

  12. Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors

    International Nuclear Information System (INIS)

    Qureshi, Nasib; Saha, Badal C.; Hector, Ronald E.; Cotta, Michael A.

    2008-01-01

    In these studies, alkaline peroxide pretreatment of wheat straw was investigated. Pretreated wheat straw was hydrolyzed using cellulolytic and xylanolytic enzymes, and the hydrolysate was used to produce butanol using Clostridium beijerinckii P260. The culture produced less than 2.59 g L -1 acetone-butanol-ethanol (ABE) from alkaline peroxide wheat straw hydrolysate (APWSH) that had not been treated to reduce salt concentration (a neutralization product). However, fermentation was successful after inhibitors (salts) were removed from the hydrolysate by electrodialysis. A control glucose fermentation resulted in the production of 21.37 g L -1 ABE, while salt removed APWSH resulted in the production of 22.17 g L -1 ABE. In the two fermentations, reactor productivities were 0.30 and 0.55 g L -1 h -1 , respectively. A comparison of use of different substrates (corn fiber, wheat straw) and different pretreatment techniques (dilute sulfuric acid, alkaline peroxide) suggests that generation of inhibitors is substrate and pretreatment specific

  13. Production of Fish Hydrolysates Protein From Waste of Fish Carp (Cyprinus Carpio) by Enzymatic Hydrolysis

    OpenAIRE

    Saputra, Dede; Nurhayati, Tati

    2016-01-01

    Fish Protein Hydrolysates (FPH) is the mixed products of polypeptide, dipeptides, and amino acid. It can be produced from materials that contained of protein by acid reaction, base reaction or enzymatic hydrolysis. The objectives of this study were to study the production of FPH from fish carp meat at post rigor phase and viscera by enzymatic hydrolysis, to determine the specific activity of papain enzyme, and to determine the solubility of FPH. Capacity of fish hydrolyzing can be identified ...

  14. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment.

    Science.gov (United States)

    Qiao, Jian-Jun; Zhang, Yan-Fei; Sun, Li-Fan; Liu, Wei-Wei; Zhu, Hong-Ji; Zhang, Zhijun

    2011-09-01

    Spent mushroom substrate (SMS) was treated with dilute sulfuric acid followed by cellulase and xylanase treatment to produce hydrolysates that could be used as the basis for media for the production of value added products. A L9 (3(4)) orthogonal experiment was performed to optimize the acid treatment process. Pretreatment with 6% (w/w) dilute sulfuric acid at 120°C for 120 min provided the highest reducing sugar yield of 267.57 g/kg SMS. No furfural was detected in the hydrolysates. Exposure to 20PFU of cellulase and 200 XU of xylanase per gram of pretreated SMS at 40°C resulted in the release of 79.85 g/kg or reducing sugars per kg acid pretreated SMS. The dilute sulfuric acid could be recycled to process fresh SMS four times. SMS hydrolysates neutralized with ammonium hydroxide, sodium hydroxide, or calcium hydroxide could be used as the carbon source for cultivation of Lactococcus lactis subsp. lactis W28 and a cell density of 2.9×10(11)CFU/mL could be obtained. The results provide a foundation for the development of value-added products based on SMS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Direct hydrogen production from dilute-acid pretreated sugarcane bagasse hydrolysate using the newly isolated Thermoanaerobacterium thermosaccharolyticum MJ1.

    Science.gov (United States)

    Hu, Bin-Bin; Zhu, Ming-Jun

    2017-05-03

    Energy shortage and environmental pollution are two severe global problems, and biological hydrogen production from lignocellulose shows great potential as a promising alternative biofuel to replace the fossil fuels. Currently, most studies on hydrogen production from lignocellulose concentrate on cellulolytic microbe, pretreatment method, process optimization and development of new raw materials. Due to no effective approaches to relieve the inhibiting effect of inhibitors, the acid pretreated lignocellulose hydrolysate was directly discarded and caused environmental problems, suggesting that isolation of inhibitor-tolerant strains may facilitate the utilization of acid pretreated lignocellulose hydrolysate. Thermophilic bacteria for producing hydrogen from various kinds of sugars were screened, and the new strain named MJ1 was isolated from paper sludge, with 99% identity to Thermoanaerobacterium thermosaccharolyticum by 16S rRNA gene analysis. The hydrogen yields of 11.18, 4.25 and 2.15 mol-H 2 /mol sugar can be reached at an initial concentration of 5 g/L cellobiose, glucose and xylose, respectively. The main metabolites were acetate and butyrate. More important, MJ1 had an excellent tolerance to inhibitors of dilute-acid (1%, g/v) pretreated sugarcane bagasse hydrolysate (DAPSBH) and could efficiently utilize DAPSBH for hydrogen production without detoxication, with a production higher than that of pure sugars. The hydrogen could be quickly produced with the maximum hydrogen production reached at 24 h. The hydrogen production reached 39.64, 105.42, 111.75 and 110.44 mM at 20, 40, 60 and 80% of DAPSBH, respectively. Supplementation of CaCO 3 enhanced the hydrogen production by 21.32% versus the control. These results demonstrate that MJ1 could directly utilize DAPSBH for biohydrogen production without detoxication and can serve as an excellent candidate for industrialization of hydrogen production from DAPSBH. The results also suggest that isolating unique

  16. Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate.

    Science.gov (United States)

    Aulitto, Martina; Fusco, Salvatore; Bartolucci, Simonetta; Franzén, Carl Johan; Contursi, Patrizia

    2017-01-01

    The transition from a petroleum-based economy towards more sustainable bioprocesses for the production of fuels and chemicals (circular economy) is necessary to alleviate the impact of anthropic activities on the global ecosystem. Lignocellulosic biomass-derived sugars are suitable alternative feedstocks that can be fermented or biochemically converted to value-added products. An example is lactic acid, which is an essential chemical for the production of polylactic acid, a biodegradable bioplastic. However, lactic acid is still mainly produced by Lactobacillus species via fermentation of starch-containing materials, the use of which competes with the supply of food and feed. A thermophilic and cellulolytic lactic acid producer was isolated from bean processing waste and was identified as a new strain of Bacillus coagulans , named MA-13. This bacterium fermented lignocellulose-derived sugars to lactic acid at 55 °C and pH 5.5. Moreover, it was found to be a robust strain able to tolerate high concentrations of hydrolysate obtained from wheat straw pre-treated by acid-catalysed (pre-)hydrolysis and steam explosion, especially when cultivated in controlled bioreactor conditions. Indeed, unlike what was observed in microscale cultivations (complete growth inhibition at hydrolysate concentrations above 50%), B. coagulans MA-13 was able to grow and ferment in 95% hydrolysate-containing bioreactor fermentations. This bacterium was also found to secrete soluble thermophilic cellulases, which could be produced at low temperature (37 °C), still retaining an optimal operational activity at 50 °C. The above-mentioned features make B. coagulans MA-13 an appealing starting point for future development of a consolidated bioprocess for production of lactic acid from lignocellulosic biomass, after further strain development by genetic and evolutionary engineering. Its optimal temperature and pH of growth match with the operational conditions of fungal enzymes hitherto

  17. Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose.

    Science.gov (United States)

    Wu, Jiaqiang; Hu, Jinlong; Zhao, Shumiao; He, Mingxiong; Hu, Guoquan; Ge, Xiangyang; Peng, Nan

    2018-05-01

    Yeasts are good candidates to utilize the hydrolysates of lignocellulose, the most abundant bioresource, for bioproducts. This study aimed to evaluate the efficiencies of single-cell protein (SCP) and xylitol production by a novel yeast strain, Candida intermedia FL023, from lignocellulosic hydrolysates and xylose. This strain efficiently assimilated hexose, pentose, and cellubiose for cell mass production with the crude protein content of 484.2 g kg -1 dry cell mass. SCP was produced by strain FL023 using corncob hydrolysate and urea as the carbon and nitrogen sources with the dry cell mass productivity 0.86 g L -1  h -1 and the yield of 0.40 g g -1 sugar. SCP was also produced using NaOH-pretreated Miscanthus sinensis straw and corn steep liquor as the carbon and nitrogen sources through simultaneous saccharification and fermentation with the dry cell productivity of 0.23 g L -1  h -1 and yield of 0.17 g g -1 straw. C. intermedia FL023 was tolerant to 0.5 g L -1 furfural, acetic acid, and syringaldehyde in xylitol fermentation and produced 45.7 g L -1 xylitol from xylose with the productivity of 0.38 g L -1  h -1 and the yield of 0.57 g g -1 xylose. This study provides feasible methods for feed and food additive production from the abundant lignocellulosic bioresources.

  18. Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption.

    Science.gov (United States)

    Jeong, So-Yeon; Trinh, Ly Thi Phi; Lee, Hong-Joo; Lee, Jae-Won

    2014-01-01

    A two-step detoxification process consisting of electrodialysis and adsorption was performed to improve the fermentability of oxalic acid hydrolysates. The constituents of the hydrolysate differed significantly between mixed hardwood and softwood. Acetic acid and furfural concentrations were high in the mixed hardwood, whereas 5-hydroxymethylfurfural (HMF) concentration was relatively low compared with that of the mixed softwood. The removal efficiency of acetic acid reached 100% by electrodialysis (ED) process in both hydrolysates, while those of furfural and HMF showed very low, due to non-ionizable properties. Most of the remaining inhibitors were removed by XAD-4 resin. In the mixed hardwood hydrolysate without removal of the inhibitors, ethanol fermentation was not completed. Meanwhile, both ED-treated hydrolysates successfully produced ethanol with 0.08 and 0.15 g/Lh ethanol productivity, respectively. The maximum ethanol productivity was attained after fermentation with 0.27 and 0.35 g/Lh of detoxified hydrolysates, which were treated by ED, followed by XAD-4 resin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate.

    Science.gov (United States)

    Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; Silva, Silvio S

    2013-10-01

    Selection of the raw material and its efficient utilization are the critical factors in economization of second generation (2G) ethanol production. Fermentation of the released sugars into ethanol by a suitable ethanol producing microorganism using cheap media ingredients is the cornerstone of the overall process. This study evaluated the potential of rice bran extract (RBE) as a cheap nitrogen source for the production of 2G ethanol by Scheffersomyces (Pichia) stipitis NRRL Y-7124 using sugarcane bagasse (SB) hemicellulosic hydrolysate. Dilute acid hydrolysis of SB showed 12.45 g/l of xylose and 0.67 g/l of glucose along with inhibitors. It was concentrated by vacuum evaporation and submitted to sequential detoxification (neutralization by calcium hydroxide and charcoal adsorption). The detoxified hydrolysate revealed the removal of furfural (81 %) and 5-hydroxymethylfurfural (61 %) leading to the final concentration of glucose (1.69 g/l) and xylose (33.03 g/l). S. stipitis was grown in three different fermentation media composed of detoxified hydrolysate as carbon source supplemented with varying nitrogen sources i.e. medium #1 (RBE + ammonium sulfate + calcium chloride), medium #2 (yeast extract + peptone) and medium #3 (yeast extract + peptone + malt extract). Medium #1 showed maximum ethanol production (8.6 g/l, yield 0.22 g/g) followed by medium #2 (8.1 g/l, yield 0.19 g/g) and medium #3 (7.4 g/l, yield 0.18 g/g).

  20. Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii).

    Science.gov (United States)

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    Red seaweed, Kappaphycus alvarezii, holds great promise for use in biofuel production due to its high carbohydrate content. In this study, we investigated the effect of fermentation inhibitors to the K. alvarezii hydrolysate on cell growth and ethanol fermentation. In addition, detoxification of fermentation inhibitors was performed to decrease the fermentation inhibitory effect. 5-Hydroxymethylfurfural and levulinic acid, which are liberated from acidic hydrolysis, was also observed in the hydrolysate of K. alvarezii. These compounds inhibited ethanol fermentation. In order to remove these inhibitors, activated charcoal and calcium hydroxide were introduced. The efficiency of activated charcoals was examined and over-liming was used to remove the inhibitors. Activated charcoal was found to be more effective than calcium hydroxide to remove the inhibitors. Detoxification by activated charcoal strongly improved the fermentability of dilute acid hydrolysate in the production of bioethanol from K. alvarezii with Saccharomyces cerevisiae. The optimal detoxifying conditions were found to be below an activated charcoal concentration of 5%.

  1. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    Science.gov (United States)

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  2. Transglutaminase-treated conjugation of sodium caseinate and corn fiber gum hydrolysate: Interfacial and dilatational properties.

    Science.gov (United States)

    Liu, Yan; Selig, Michael J; Yadav, Madhav P; Yin, Lijun; Abbaspourrad, Alireza

    2018-05-01

    This study compliments previous work where peroxidase was successfully used to crosslink corn fiber gum (CFG) with bovine serum albumin and improve CFG's emulsifying properties. Herein, an alternative type of enzyme, transglutaminase, was used to prepare conjugates of CFG and sodium caseinate. Additionally, the CFG was partially hydrolyzed by sulfuric acid and its crosslinking pattern with caseinate was evaluated. The interfacial crosslinking degree between caseinate and CFG increased after hydrolysis according to high performance size exclusion chromatography. The equilibrium interfacial tension of CFG hydrolysate-caseinate conjugate was lower than that of CFG-caseinate conjugate as the rearrangement rate of the CFG hydrolysate-caseinate conjugate was higher. The dilatational modulus of CFG hydrolysate decreased from that of CFG. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.

    Science.gov (United States)

    Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-10-01

    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121°C for 30min in presence of 0.18molL(-1) H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (gL(-1)) glucose (20-30), xylose (15-25), sucrose (5-11) and arabinose (0.7-10). Fermentations were carried out at laboratory (2L) and pilot (50L) scales in presence of 10gL(-1) yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78gg(-1), respectively. The productivity was 4.02gL(-1)h(-1). Downstream processing resulted in a pure formulation containing 937gL(-1)l(+)-lactic acid with an optical purity of 99.7%. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Fast Startup of Semi-Pilot-Scale Anaerobic Digestion of Food Waste Acid Hydrolysate for Biogas Production.

    Science.gov (United States)

    Huang, Chao; Zhao, Cheng; Guo, Hai-Jun; Wang, Can; Luo, Mu-Tan; Xiong, Lian; Li, Hai-Long; Chen, Xue-Fang; Chen, Xin-De

    2017-12-27

    In this study, a fast startup of semi-pilot-scale anaerobic digestion of food waste acid hydrolysate for biogas production was carried out for the first time. During the period of fast startup, more than 85% of chemical oxygen demand (COD) can be degraded, and even more than 90% of COD can be degraded during the later stage of anaerobic digestion. During this anaerobic digestion process, the biogas yield, the methane yield, and the CH 4 content in biogas were 0.542 ± 0.056 m 3 /kg COD consumption , 0.442 ± 0.053 m 3 /kg COD consumption , and 81.52 ± 3.05%, respectively, and these values were high and stable. Besides, the fermentation pH was very stable, in which no acidification was observed during the anaerobic digestion process (outlet pH was 7.26 ± 0.05 for the whole anaerobic digestion). Overall, the startup of this anaerobic digestion can be completed in a short period (the system can be stable 2 days after the substrate was pumped into the bioreactor), and anaerobic digestion of food waste acid hydrolysate is feasible and attractive for industrial treatment of food waste and biogas production.

  5. Antioxidative Activity of Tobacco Leaf Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Guohua Rao

    2007-01-01

    Full Text Available Discarded tobacco leaf protein hydrolysate (DTLPH was prepared by enzymatic hydrolysis using papain and then separated using ultrafiltration (UF membranes with molecular mass cut-off (MMCO of 10, 5, 3 and 1 kDa. Four permeate fractions including 10-K, 5-K, 3-K and 1-K (the permeate fractions from 10, 5, 3 and 1 kDa hydrolysate fractions were obtained. The 5-K hydrolysate fraction had high oxidation inhibilitory ratio (42.62 %, which was about twofold higher than the original hydrolysate and as high as that of vitamin E (α-tocopherol. The fractionated hydrolysates were superior to the original hydrolysate in the antioxidative activity tested. Moreover, these separated hydrolysates showed the enhanced functional property. The amino acid composition of 5-K hydrolysate was analyzed and the results show that the high antioxidative activity of 5-K hydrolysate was derived from high content of histidine, methionine, cystine and tryptophan.

  6. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Latorres, J M; Rios, D G; Saggiomo, G; Wasielesky, W; Prentice-Hernandez, C

    2018-02-01

    Protein hydrolysates from white shrimp ( Litopenaeus vannamei ) with different degrees of hydrolysis (DH-10 and 20%) were prepared using the enzymes Alcalase 2.4 L and Protamex. The hydrolysates were evaluated for amino acid composition, solubility, foaming properties, emulsifying and antioxidant activity. All the hydrolysates showed high concentrations of Glutamic Acid, Aspartic acid, Arginine, Glycine, Lysine, Proline. It was found that the increase in the production of negatively charged amino acids was related to increase in DH. The hydrophobic amino acids were higher for hydrolysates obtained with Alcalase (10% DH) and Protamex (20% DH). The results indicated that higher degree of hydrolysis showed positive relation with the protein solubility of the hydrolysates, while negatively influenced foam and emulsification properties. The antioxidant properties presented by the white shrimp protein hydrolysates were influenced by the composition and peptides size. Hydrolysates with higher peptide chain showed the highest antioxidant power for the 2,2-Diphenyl-1-picrylhydrazyl radical scavenging and reducing power, while hydrolysates with lower peptide chain showed higher antioxidant power for 2,2'-azinobis (3-ethylbenzothiazoline sulfonic acid) radical scavenging. All hydrolysates showed dose-dependent antioxidant activities. Therefore, the results of the present study suggest that white shrimp is a potential source of protein hydrolysates as bioactive ingredients for the use in the formulation of functional foods as well as natural antioxidants in lipid food systems.

  7. Percutaneous removal of pulmonary artery emboli with hydrolyser catheter in pigs

    International Nuclear Information System (INIS)

    Lacoursiere, L.; Millward, S.; Veinot, J.P.; Labinaz, M.

    2001-01-01

    To evaluate the efficacy and safety of the Hydrolyser catheter for per,cutaneous treatment of massive pulmonary embolism in pigs. Twelve pigs, each weighing between 55 kg and 89 kg, were used. Radio-opaque 9 cm x 0.8 cm and 4.5 cm x 0.8 cm clots, produced by mixing pig blood with iodinated contrast agent in vacutainers, were injected via the jugular vein until central pulmonary embolism (main and proximal lobar arteries) was obtained with significant systemic and pulmonary hemodynamic modifications. From a femoral approach, the 7-French Hydrolyser thrombectomy catheter was run over a 0.025-inch (0.64-mm) guide wire to remove the pulmonary emboli. Hemodynamic, gasometric and angiographic monitoring was performed before and after treatment. The procedure's safety and completeness of emboli removal was assessed by cardiopulmonary autopsy. Three of the 12 pigs died during embolization. Thrombectomy was therefore performed in 9, and central emboli could be obtained in 7 of the 9. The Hydrolyser could be manipulated only in central pulmonary arteries and could aspirate only central emboli in 5 of the 7 pigs that had them. Despite minimal angiographic improvement seen in these 5, there was no significant hemodynamic and gasometric improvement after treatment. The procedure induced an increase in free hemoglobin blood levels. Autopsies revealed an average of 2 endothelial injuries per pig (mainly adherent endocardial thrombi) in both nontreated (n = 3) and Hydrolyser-treated (n = 9) groups. The Hydrolyser thrombectomy catheter can be promptly positioned and easily steered in central pulmonary arteries. It can be used to partially remove central emboli, but not peripheral pulmonary emboli. Most of the injuries observed may not have been strictly related to Hydrolyser use. The pig might not be a suitable animal model for treatment of massive pulmonary embolism. (author)

  8. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    Science.gov (United States)

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  9. Co-fermentation of the main sugar types from a beechwood organosolv hydrolysate by several strains of Bacillus coagulans results in effective lactic acid production

    Directory of Open Access Journals (Sweden)

    Robert Glaser

    2018-06-01

    Full Text Available Bacillus coagulans is an interesting facultative anaerobic microorganism for biotechnological production of lactic acid that arouses interest. To determine the efficiency of biotechnological production of lactic acid from lignocellulosic feedstock hydrolysates, five Bacillus coagulans strains were grown in lignocellulose organosolv hydrolysate from ethanol/water-pulped beechwood. Parameter estimation based on a Monod-type model was used to derive the basic key parameters for a performance evaluation of the batch process. Three of the Bacillus coagulans strains, including DSM No. 2314, were able to produce lactate, primarily via uptake of glucose and xylose. Two other strains were identified as having the ability of utilizing cellobiose to a high degree, but they also had a lower affinity to xylose. The lactate yield concentration varied from 79.4 ± 2.1 g/L to 93.7 ± 1.4 g/L (85.4 ± 4.7 % of consumed carbohydrates from the diluted organosolv hydrolysate.

  10. Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium.

    Science.gov (United States)

    Konishi, Masaaki; Yoshida, Yuka; Horiuchi, Jun-ichi

    2015-03-01

    Sophorolipids (SLs) are amphiphilic compounds produced from a variety of saccharides and vegetable oils by the yeast Starmerella bombicola and related strains, and they have commercial uses as detergents. In the present study, SL production was investigated using a corncob hydrolysate (CCH) medium derived from lignocellulosic feedstocks as a source of hydrophilic carbon substrates. Excess sulfuric acid concentrations during pretreatment of the corncobs increased the furfural concentrations and turned the CCH dark brown. The optimal sulfuric acid concentration was 1% (w/v), and the treated CCH, containing 45 g/l glucose, allowed the production of 33.7 g/l of SLs following 4 days of cultivation. Additional autoclaving (121°C, 20 min) inhibited SL production and cell growth by 36% and 40%, respectively. Ammonium nitrate (0.1 g-N/l) restored SL production to the autoclaved CCH. Finally, a cost-effective SL production of 49.2 g/l, with a volumetric productivity of 12.3 g/l/day, was achieved using CCH medium during batch cultivation in a jar fermentor. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Sensory Characteristics of Mud Clam (Polymesoda Erosa) Hydrolysate

    International Nuclear Information System (INIS)

    Normah Ismail; Noorasma Mustakim

    2016-01-01

    Mud clam (Polymesoda erosa) was hydrolysed using two different microbial enzymes; alcalase and flavourzyme. The volatile compounds, amino acids and molecular weight associated with umami and bitter taste in mud clam hydrolysate were determined by head space solid phase micro-extraction gas chromatography (HS-SPME-GCMS), High performance liquid chromatography (HPLC) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The characteristics of hydrolysates produced using alcalase and flavourzyme were compared. In total, eighteen, seven and six volatile compounds were identified in the flesh, alcalase hydrolysate and flavourzyme hydrolysate, respectively. 2-piperidinone volatile compound content which is associated with bitterness was 6.79 % in alcalase hydrolysate and 3.78 % in flavourzyme hydrolysate. SDS-PAGE results showed that alcalase hydrolysate contains smaller peptide (<52 kDa) compared to flavourzyme hydrolysate (<126 kDa). In addition, sensory analysis using quantitative descriptive analysis (QDA) showed that flavourzyme hydroysate was the least bitter but elicited more umami taste compared to alcalase hydrolysate. Further treatments are still needed to enhance umami taste and to remove bitter taste in mud clam hydrolysate. (author)

  12. A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates.

    Science.gov (United States)

    Xu, Yang; Li, Yuting; Bao, Tao; Zheng, Xiaodong; Chen, Wei; Wang, Jianxu

    2017-04-15

    Cauliflower by-products (CBP) are rich in leaf protein. Every year tons of CBP will lead to environmental pollution. Therefore, this study was conducted to extract leaf protein from CBP and investigate its biological activities. Our results showed that the optimal extraction parameters were: a liquid to solid ratio of 4mL/g, a pH of 11, an ultrasonic extraction lasting 15min, and at an applied power of 175W. Under these optimized conditions, 12.066g of soluble leaf protein (SLP) was obtained from 1000g of CBP and its extraction yield was 53.07%. The obtained SLP was further hydrolysed by Alcalase and the SLP hydrolysate (SLPH) showed a potent angiotensin I-converting enzyme (ACE) inhibitory activity with an IC 50 value of 138.545μg/mL in vitro. In addition, SLPH promoted the glucose consumption and enhanced the glycogen content in HepG2 cells. Overall, our results suggested that CBP may be recycled for designing future functional foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Utilization of spent brewer’s yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate

    Directory of Open Access Journals (Sweden)

    M Bayarjargal

    2014-09-01

    Full Text Available Spent brewer’s yeast (Saccharomyces cerevisiae is a rich source of protein, vitamins and widely used as a raw material for production of food supplements. The autolysis and enzymatic treatment of spent brewer’s yeast using Pancreatin (2.5% and Flavourzyme (2.5% were performed at 45 °C and 50 °C, respectively. The autolysis and hydrolysis processes were evaluated by determining a soluble solids, soluble protein concentration and α-amino nitrogen content in a reaction mixture. The yield of pancreatic digest and α-amino nitrogen content was high in comparison with autolysis and Flavourzyme treatment. The total solids recovery in dry Yeast hydrolysate was about 50%, a protein and α-amino nitrogen content was 55.9 and 4.8%, respectively. These results show the possibility of utilizing the spent brewer’s yeast as hydrolysate using hydrolytic enzymes and use it as a food supplement after biological experiments.DOI: http://dx.doi.org/10.5564/mjc.v12i0.179 Mongolian Journal of Chemistry Vol.12 2011: 88-91

  14. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate

    DEFF Research Database (Denmark)

    Bai, Dongmei; Li, S.Z.; Liu, Z.L.

    2008-01-01

    -added production of a variety of bioproducts. Lactic acid can be used as a precursor for poly-lactic acid production. Although current industrial lactic acid is produced by lactic acid bacteria using enriched medium, production by Rhizopus oryzae is preferred due to its exclusive formation of the......-isomer and a simple nutrition requirement by the fungus. Production of-L-(+)-lactic acid by R. oryzae using xylose has been reported; however, its yield and conversion rate are poor compared with that of using glucose. In this study, we report an adapted R. oryzae strain HZS6 that significantly improved efficiency...... of substrate utilization and enhanced production of L-(+)-lactic acid from corncob hydrolysate. It increased L-(+)-lactic acid final concentration, yield, and volumetric productivity more than twofold compared with its parental strain. The optimized growth and fermentation conditions for Strain HZS6 were...

  15. Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion-exchange resin column

    Directory of Open Access Journals (Sweden)

    Nampoothiri K. Madhavan

    1999-01-01

    Full Text Available Investigations were carried out with the aim of producing L-glutamic acid from Brevibacterium sp. by utilizing a locally available starchy substrate, cassava (Manihot esculenta Crantz. Initial studies were carried out in shake flasks, which showed that even though the yield was high with 85-90 DE (Dextrose Equivalent value, the maximum conversion yield (~34% was obtained by using only partially digested starch hydrolysate, i.e. 45-50 DE. Fermentations were carried out in batch mode in a 5 L fermenter, using suitably diluted cassava starch hydrolysate, using a 85-90 DE value hydrolysate. Media supplemented with nutrients resulted in an accumulation of 21 g/L glutamic acid with a fairly high (66.3% conversation yield of glucose to glutamic acid (based on glucose consumed and on 81.74% theoretical conversion rate. The bioreactor conditions most conducive for maximum production were pH 7.5, temperature 30°C and an agitation of 180 rpm. When fermentation was conducted in fed-batch mode by keeping the residual reducing sugar concentration at 5% w/v, 25.0 g/L of glutamate was obtained after 40 h fermentation (16% more the batch mode. Chromatographic separation by ion-exchange resin was used for the recovery and purification of glutamic acid. It was further crystallized and separated by making use of its low solubility at the isoelectric point (pH 3.2.

  16. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit

    International Nuclear Information System (INIS)

    Benhabiles, M.S.; Abdi, N.; Drouiche, N.; Lounici, H.; Pauss, A.; Goosen, M.F.A.; Mameri, N.

    2012-01-01

    The aims of the study were to optimize the production a fish protein hydrolysate (FPH) by enzymatic hydrolysis of sardine solid waste using crude pepsin, and to scale up the process in a bioreactor coupled to an ultrafiltration unit for product recovery. Results showed that the crude pepsin prepared by autolysis of the mucous membranes of a sheep stomach at optimal conditions (i. e. pH = 1.5–2 and incubation time of 6 h) could be satisfactory used for the enzymatic hydrolysis of fish solid waste. The optimal conditions for enzymatic reaction were: temperature 48 °C, and pH 1.5. The scale up of the enzymatic hydrolysis and the coupling of the reactor an ultrafiltration unit to concentrate the hydrolysate gave good results with a rejection coefficient for the protein hydrolysate product in the range of 90%. The volumetric concentration factor was 2.5, with a permeate flux of 200 L m −2 bar −1 . However, the results also suggest that the ultrafiltration product concentration process may be operating beyond the critical flux at which point irreversible membrane fouling occurs. - Highlights: ► Evaluating to produce a (FPH) by enzymatic hydrolysis of sardine solid wastes was achieved. ► Investigation of key parameters for optimal conditions for enzymatic hydrolysis have been studied. ► Valorization of sardine waste was realized by enzymatic hydrolysis process. ► Performances of this enzyme gave comparable results to those obtained with commercial pepsin. ► The nutritional quality of the FPH produced appears to be satisfactory.

  17. Towards an Understanding of How Protein Hydrolysates Stimulate More Efficient Biosynthesis in Cultured Cells

    Science.gov (United States)

    Siemensma, André; Babcock, James; Wilcox, Chris; Huttinga, Hans

    In the light of the growing demand for high quality plant-derived hydrolysates (i.e., HyPep™ and UltraPep™ series), Sheffield Bio-Science has developed a new hydrolysate platform that addresses the need for animal-free cell culture medium supplements while also minimizing variability concerns. The platform is based upon a novel approach to enzymatic digestion and more refined processing. At the heart of the platform is a rationally designed animal component-free (ACF) enzyme cocktail that includes both proteases and non-proteolytic enzymes (hydrolases) whose activities can also liberate primary components of the polymerized non-protein portion of the raw material. This enzyme system is added during a highly optimized process step that targets specific enzyme-substrate reactions to expand the range of beneficial nutritional factors made available to cells in culture. Such factors are fundamental to improving the bio-performance of the culture system, as they provide not merely growth-promoting peptides and amino acids, but also key carbohydrates, lipids, minerals, and vitamins that improve both rate and quality of protein expression, and serve to improve culture life due to osmo-protectant and anti-apoptotic properties. Also of significant note is that, compared to typical hydrolysates, the production process is greatly reduced and requires fewer steps, intrinsically yielding a better-controlled and therefore more reproducible product. Finally, the more sophisticated approach to enzymatic digestion renders hydrolysates more amenable to sterile filtration, allowing hydrolysate end users to experience streamlined media preparation and bioreactor supplementation activities. Current and future development activities will evolve from a better understanding of the complex interactions within a handful of key biochemical pathways that impact the growth and productivity of industrially relevant organisms. Presented in this chapter are some examples of the efforts that

  18. Pretreatment and fermentation strategies to overcome the toxicity of acetic acid in hemicellulosic hydrolysates

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    Acetic acid is one of the most important toxic compounds present in hemicellulosic hydrolysates. In order to overcome this problem, several strategies were studied for both biomass pretreatment and fermentation steps. Biomass deacetylation by mild alkaline pretreatment or using high pressure CO2...... where acetic acid can also be integrated as a valuable final product. For the fermentation step, it is well known that hemicellulosic hydrolysates usually need to be detoxified prior use as fermentation medium in order to improve the performance of the microorganism to convert sugars in the product...... of interest. Although detoxification improves the fermentability of hydrolysates, this additional step adds cost and complexity to the process and generates extra waste products. In this sense, the adaptation of the fermenting microorganism to increased concentrations of acetic acid can be considered...

  19. Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate.

    Science.gov (United States)

    Zhao, Lei; Cao, Guang-Li; Sheng, Tao; Ren, Hong-Yu; Wang, Ai-Jie; Zhang, Jian; Zhong, Ying-Juan; Ren, Nan-Qi

    2017-11-01

    Mycelia pellets were employed as biological carrier in a continuous stirred tank reactor to reduce biomass washout and enhance hydrogen production from cornstalk hydrolysate. Hydraulic retention time (HRT) and influent substrate concentration played critical roles on hydrogen production of the bioreactor. The maximum hydrogen production rate of 14.2mmol H 2 L -1 h -1 was obtained at optimized HRT of 6h and influent concentration of 20g/L, 2.6 times higher than the counterpart without mycelia pellets. With excellent immobilization ability, biomass accumulated in the reactor and reached 1.6g/L under the optimum conditions. Upon further energy conversion analysis, continuous hydrogen production with mycelia pellets gave the maximum energy conversion efficiency of 17.8%. These results indicate mycelia pellet is an ideal biological carrier to improve biomass retention capacity of the reactor and enhance hydrogen recovery efficiency from lignocellulosic biomass, and meanwhile provides a new direction for economic and efficient hydrogen production process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Use of Protein Hydrolysates in Industrial Starter Culture Fermentations

    Science.gov (United States)

    Ummadi, Madhavi (Soni); Curic-Bawden, Mirjana

    Lactic acid bacteria (LAB) have been used as starter cultures for fermenting foods long before the importance of microorganisms were recognized. The most important group of LAB are the lactococci, lactobacilli, streptococci, and pediococci. Additionally, bifidobacteria have been included as a probiotic, providing added value to the product. Since the genera involved are so diverse, the nutritional requirements (energy, carbon and nitrogen sources) differ significantly between and within species. Designing an optimum fermentation medium for production of active and vigorous LAB starter cultures and probiotics requires selecting the right raw ingredients, especially protein hydrolysates that can provide adequate nutrients for growth and viability. This chapter attempts to describe the application of various commercial protein hydrolysates used for production of dairy and meat starter cultures, with special emphasis on meeting the nitrogen requirements of industrially important LAB species.

  1. Protein hydrolysates in sports nutrition

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2009-09-01

    Full Text Available Abstract It has been suggested that protein hydrolysates providing mainly di- and tripeptides are superior to intact (whole proteins and free amino acids in terms of skeletal muscle protein anabolism. This review provides a critical examination of protein hydrolysate studies conducted in healthy humans with special reference to sports nutrition. The effects of protein hydrolysate ingestion on blood amino acid levels, muscle protein anabolism, body composition, exercise performance and muscle glycogen resynthesis are discussed.

  2. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit

    Energy Technology Data Exchange (ETDEWEB)

    Benhabiles, M.S.; Abdi, N. [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Drouiche, N., E-mail: nadjibdrouiche@yahoo.fr [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Silicon Technology Development Unit (UDTS) 2, Bd Frantz Fanon BP140, Alger-7 Merveilles, 16000 (Algeria); Lounici, H. [National Polytechnic school of Algiers, B.P. 182-16200, El Harrach, Algiers (Algeria); Pauss, A. [University of Technology of Compiegne, Departement Genie chimique,B.P. 20.509, 60205 Compiegne cedex (France); Goosen, M.F.A. [Alfaisal University, Riyadh (Saudi Arabia); Mameri, N. [University of Technology of Compiegne, Departement Genie chimique,B.P. 20.509, 60205 Compiegne cedex (France)

    2012-05-01

    The aims of the study were to optimize the production a fish protein hydrolysate (FPH) by enzymatic hydrolysis of sardine solid waste using crude pepsin, and to scale up the process in a bioreactor coupled to an ultrafiltration unit for product recovery. Results showed that the crude pepsin prepared by autolysis of the mucous membranes of a sheep stomach at optimal conditions (i. e. pH = 1.5-2 and incubation time of 6 h) could be satisfactory used for the enzymatic hydrolysis of fish solid waste. The optimal conditions for enzymatic reaction were: temperature 48 Degree-Sign C, and pH 1.5. The scale up of the enzymatic hydrolysis and the coupling of the reactor an ultrafiltration unit to concentrate the hydrolysate gave good results with a rejection coefficient for the protein hydrolysate product in the range of 90%. The volumetric concentration factor was 2.5, with a permeate flux of 200 L m{sup -2} bar{sup -1}. However, the results also suggest that the ultrafiltration product concentration process may be operating beyond the critical flux at which point irreversible membrane fouling occurs. - Highlights: Black-Right-Pointing-Pointer Evaluating to produce a (FPH) by enzymatic hydrolysis of sardine solid wastes was achieved. Black-Right-Pointing-Pointer Investigation of key parameters for optimal conditions for enzymatic hydrolysis have been studied. Black-Right-Pointing-Pointer Valorization of sardine waste was realized by enzymatic hydrolysis process. Black-Right-Pointing-Pointer Performances of this enzyme gave comparable results to those obtained with commercial pepsin. Black-Right-Pointing-Pointer The nutritional quality of the FPH produced appears to be satisfactory.

  3. Preparation of salted meat products, e.g. cured bacon - by injecting liquid comprising meat proteins hydrolysed with enzymes

    DEFF Research Database (Denmark)

    1997-01-01

    Preparation of salted meat products comprises the following:(1) meat is chopped into fine pieces and mixed with water to form a slurry; (2) enzymes hydrolyse proteins in the meat; (3) adding a culture to the resulting medium, which comprises short peptide chains or amino acids; (4) forming...... flavourings as the culture is growing, and (5) injecting the liquid into pieces of meat....

  4. Production and functional characterisation of antioxidative hydrolysates from corn protein via enzymatic hydrolysis and ultrafiltration.

    Science.gov (United States)

    Zhou, Kequan; Sun, Shi; Canning, Corene

    2012-12-01

    Corn protein was hydrolysed by three microbial proteases and further separated by sequential ultra-filtration to 12 hydrolysate fractions which were investigated for free radical scavenging capacity and chelating activity. The oxygen radical absorbance capacity (ORAC) of the hydrolysates varied significantly between 65.6 and 191.4μmoles Trolox equivalents (TE)/g dried weight with a small peptide fraction (NP-F3) produced by neutral protease (NP) possessing the highest antioxidant activity. The 1,1-diphenyl-2-picrylhydrazyl radical (DPPH()) scavenging activities of the hydrolysate fractions also varied significantly between 18.4 and 38.7μmoles TE/g. Two fractions (AP-F2 and AP-F3) produced by alkaline protease (AP) showed the strongest activity. However, no significant difference was detected on the chelating activity of the fractions. NP-F3, AP-F2, and AP-F3 were incorporated into ground beef to determine their effects on lipid oxidation during 15-day storage period. NP-F3 was the only fraction that inhibited lipid oxidation at both 250 and 500μg/g levels by as much as 52.9%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review.

    Science.gov (United States)

    Chalamaiah, M; Dinesh Kumar, B; Hemalatha, R; Jyothirmayi, T

    2012-12-15

    The fish processing industry produces more than 60% by-products as waste, which includes skin, head, viscera, trimmings, liver, frames, bones, and roes. These by-product wastes contain good amount of protein rich material that are normally processed into low market-value products, such as animal feed, fish meal and fertilizer. In view of utilizing these fish industry wastes, and for increasing the value to several underutilised fish species, protein hydrolysates from fish proteins are being prepared by several researchers all over the world. Fish protein hydrolysates are breakdown products of enzymatic conversion of fish proteins into smaller peptides, which normally contain 2-20 amino acids. In recent years, fish protein hydrolysates have attracted much attention of food biotechnologists due to the availability of large quantities of raw material for the process, and presence of high protein content with good amino acid balance and bioactive peptides (antioxidant, antihypertensive, immunomodulatory and antimicrobial peptides). Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate.

    Science.gov (United States)

    Martin, M; Kopaliani, I; Jannasch, A; Mund, C; Todorov, V; Henle, T; Deussen, A

    2015-12-01

    Angiotensin-converting enzyme inhibitors are treatment of choice in hypertensive patients. Clinically used inhibitors exhibit a structural similarity to naturally occurring peptides. This study evaluated antihypertensive and cardioprotective effects of ACE-inhibiting peptides derived from food proteins in spontaneously hypertensive rats. Isoleucine-tryptophan (in vitro IC50 for ACE = 0.7 μm), a whey protein hydrolysate containing an augmented fraction of isoleucine-tryptophan, or captopril was given to spontaneously hypertensive rats (n = 60) over 14 weeks. Two further groups, receiving either no supplement (Placebo) or intact whey protein, served as controls. Systolic blood pressure age-dependently increased in the Placebo group, whereas the blood pressure rise was effectively blunted by isoleucine-tryptophan, whey protein hydrolysate and captopril (-42 ± 3, -38 ± 5, -55 ± 4 mm Hg vs. Placebo). At study end, myocardial mass was lower in isoleucine-tryptophan and captopril groups but only partially in the hydrolysate group. Coronary flow reserve (1 μm adenosine) was improved in isoleucine-tryptophan and captopril groups. Plasma ACE activity was significantly decreased in isoleucine-tryptophan, hydrolysate and captopril groups, but in aortic tissue only after isoleucine-tryptophan or captopril treatment. This was associated with lowered expression and activity of matrix metalloproteinase-2. Following isoleucine-tryptophan and captopril treatments, gene expression of renin was significantly increased indicating an active feedback within renin-angiotensin system. Whey protein hydrolysate and isoleucine-tryptophan powerfully inhibit plasma ACE resulting in antihypertensive effects. Moreover, isoleucine-tryptophan blunts tissue ACE activity, reduces matrix metalloproteinase-2 activity and improves coronary flow reserve. Thus, whey protein hydrolysate and particularly isoleucine-tryptophan may serve as innovative food additives with the goal of attenuating

  7. Chitosan mediated enhancement of hydrolysable tannin in Phyllanthus debilis Klein ex Willd via plant cell suspension culture.

    Science.gov (United States)

    V, Malayaman; N, Sisubalan; R P, Senthilkumar; S, Sheik Mohamed; R, Ranjithkumar; M, Ghouse Basha

    2017-11-01

    Phyllanthus debilis Klein ex Willd. is wild medicinal plant used in the traditional system of medicine. This plant has been actively used for hepatoprotection and to cure many diseases including jaundice and so on; which leads to complete extinction of this particular species. Therefore, the chitosan mediated cost effective cell suspension method has been developed for the production of hydrolysable tannin. The hydrolysable tannins are the main therapeutically active constituents with antioxidant, anticancer, and antimicrobial properties. An in vitro cell suspension culture was optimized by adding chitosan for production of hydrolysable tannin. According to the growth kinetics, a maximum biomass of 4.46±0.06g fresh cell weight and 1.33±0.04g dry cell weight were obtained from the optimal suspension medium consisted of MS medium+0.5mgL -1 BAP+1.5mgL -1 NAA. Chitosan was treated at the stationary phase which leads to the highest accumulation of hydrolysable tannin compared to the untreated control. Hydrolysable tannin was observed and compared using HPLC at the Rt of 4.91 in both chitosan treated and untreated cells. This is the first ever report where use of chitosan has been done to enhance the production of the hydrolysable tannin in P. debilis using cell suspension culture technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fermentation of pretreated corncob hemicellulose hydrolysate to ...

    African Journals Online (AJOL)

    academicjournal

    single carbon source because the ethanol conversion of glucose was higher than that of xylose. Using parallel fermentation of corncob hemicellulose acid hydrolysate and the artificially prepared hydrolysate, it was found that complex components in the corncob hemicellulose acid hydrolysate probably promoted ethanol ...

  9. Bioactive L acidissima protein hydrolysates using Box-Behnken design.

    Science.gov (United States)

    Sonawane, Sachin K; Arya, Shalini S

    2017-07-01

    This study examines the extraction and hydrolysis of proteins using single factor and Box-Behnken Design (BBD). From single factor tests, optimised extraction parameters were 1% alkali concentration, 40 °C temperature, 60 min time, and 1:20 solid to alkali ratio. Under these conditions; 924.31 mg/g of total protein was obtained from Limonia acidissima (L acidissima). The maximum degree of hydrolysis was 39.82% at pH 2, enzyme to substrate ratio 2.5% (w/w), and hydrolysis time was 42.41 min using BBD design. L acidissima seed protein hydrolysate showed 32.94% DPPH and 88.18% of ABTS activity at concentration of 100 µg/ml and 1 mg/ml, respectively. Reducing power of 0.16 and metal chelating activity of 87.39% was obtained from 5 mg/ml protein hydrolysates. This implied that L acidissima seed protein hydrolysate could be utilised in protein rich product or as protein supplements.

  10. Antioxidant and antimicrobial activity of lecithin free egg yolk protein preparation hydrolysates obtained with digestive enzymes

    Directory of Open Access Journals (Sweden)

    Aleksandra Zambrowicz

    2012-12-01

    Full Text Available ABSTRACT:Several biological activities have now been associated with egg protein- derived peptides, including antihypertensive, antimicrobial, immunomodulatory, anticancer and antioxidantactivities, highlighting the importance of these biopeptides in human health, and disease prevention and treatment. Special attention has been given to peptides with antioxidant and antimicrobial activities as a new source of natural preservatives in food industry. In this study, the antioxidant properties of the egg-yolk protein by-product (YP hydrolysates were evaluated based on their radical scavenging capacity (DPPH, Fe2+chelating effect and ferric reducing power (FRAP. Furthermore, antimicrobial properties of obtained hydrolysates against Bacillus species were studied. The degrees (DHs of hydrolysis for 4h hydrolysates were: 19.1%, 13.5% and 13.0%, for pepsin, chymotrypsin and trypsin, respectively. Pepsin was the most effective in producing the free amino groups (1410.3 μmolGly/g. The RP-HPLC profiles of the protein hydrolysates showed differences in the hydrophobicity of the generated peptides.Trypsin hydrolysate obtained after 4h reaction demonstrated the strongest DPPH free radical scavenging activity (0.85 µmol Troloxeq/mg. Trypsin and chymotrypsin hydrolysates obtained after 4h reaction exhibited 4 times higher ferric reducing capacity than those treated bypepsin. The hydrolysis products obtained from YP exhibited significant chelating activity. The 4h trypsin hydrolysate exhibited weak antimicrobial activity against B. subtilis B3; B. cereus B512; B. cereus B 3p and B. laterosporum B6.

  11. Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysate from unicorn leatherjacket skin.

    Science.gov (United States)

    Karnjanapratum, Supatra; O'Callaghan, Yvonne C; Benjakul, Soottawat; O'Brien, Nora

    2016-07-01

    The in vitro cellular bioactivities including, antioxidant, immunomodulatory and antiproliferative effects of a gelatin hydrolysate (GH) prepared from unicorn leatherjacket skin, using partially purified glycyl endopeptidase, were investigated in order to optimize the use of fish skin waste products as functional food ingredients. GH under the tested concentrations (750-1500 µg mL(-1) ) protected against H2 O2 -induced DNA damage in U937 cells. GH also protected against the H2 O2 -induced reduction in cellular antioxidant enzyme activities, superoxide dismutase and catalase, in HepG2 cells. GH demonstrated immunomodulatory potential by reducing pro-inflammatory cytokine (interleukin-6 (IL-6) and IL-1β) production and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Cell proliferation in human colon cancer (Caco-2) cells was significantly reduced in a dose-dependent manner following incubation with GH. These results indicate that GH has several bioactivities which support its potential as a promising functional food ingredient with various health benefits. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Antimicrobial potential for the combination of bovine lactoferrin or its hydrolysate with lactoferrin-resistant probiotics against foodborne pathogens.

    Science.gov (United States)

    Chen, P-W; Jheng, T T; Shyu, C-L; Mao, F C

    2013-03-01

    Previous reports have shown that several probiotic strains can resist the antibacterial activity of bovine lactoferrin (bLf), but the results are inconsistent. Moreover, a portion of orally administered apo-bLf is digested in vivo by pepsin to yield bLf hydrolysate, which produces stronger antibacterial activity than that observed with apo-bLf. However, whether bLf hydrolysate affects the growth of probiotic strains is unclear. Therefore, various probiotic strains in Taiwan were collected and evaluated for activity against apo-bLf and bLf hydrolysate in vitro. Thirteen probiotic strains were evaluated, and the growth of Lactobacillus acidophilus ATCC 4356, Lactobacillus salivarius ATCC 11741, Lactobacillus rhamnosus ATCC 53103, Bifidobacterium longum ATCC 15707, and Bifidobacterium lactis BCRC 17394 were inhibited by both apo-bLf and bLf hydrolysate. The growth of 8 strains were not affected by apo-bLf and bLf hydrolysate, including L. rhamnosus ATCC 7469, Lactobacillus reuteri ATCC 23272, Lactobacillus fermentum ATCC 11739, Lactobacillus coryniformis ATCC 25602, L. acidophilus BCRC 14065, Bifidobacterium infantis ATCC 15697, Bifidobacterium bifidum ATCC 29521, and Pediococcus acidilactici ATCC 8081. However, apo-bLf and its hydrolysate inhibited the growth of foodborne pathogens, including Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Enterococcus faecalis. Moreover, the supernatants produced by L. fermentum, B. lactis, and B. longum inhibited the growth of most pathogens. Importantly, a combination of apo-bLf or bLf hydrolysate with the supernatants of cultures of the organisms described above showed synergistic or partially synergistic effects against the growth of most of the selected pathogens. In conclusion, several probiotic strains are resistant to apo-bLf and bLf hydrolysate, warranting clinical studies to evaluate the antimicrobial potential for the combination of apo-bLf or its hydrolysate with specific probiotics. Copyright

  13. Production and partial characterisation of feruloyl esterase by Sporotrichum thermophile in solid-state fermentation

    DEFF Research Database (Denmark)

    Topakas, E.; Kalogeris, E.; Kekos, D.

    2003-01-01

    A number of factors affecting production of feruloyl esterase an enzyme that hydrolyse ester linkages of ferulic acid (FA) in plant cell walls, by the thermophylic fungus Sporotrichum thermophile under solid state fermentation (SSF) were investigated. Initial moisture content and type of carbon...

  14. Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL-pretreated lodgepole pine.

    Science.gov (United States)

    Zhou, Haifeng; Lan, Tianqing; Dien, Bruce S; Hector, Ronald E; Zhu, J Y

    2014-01-01

    The performances of five yeast strains under three levels of toxicity were evaluated using hydrolysates from lodgepole pine pretreated by Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL). The highest level of toxicity was represented by the whole pretreated biomass slurry, while intermediate toxicity was represented by the hydrolysate with partial loading of pretreatment spent liquor. The zero toxicity was represented using the enzymatic hydrolysate produced from thoroughly washed SPORL lodgepole pine solids. The results indicate that strains D5A and YRH400 can tolerate the whole pretreated biomass slurry to produce 90.1 and 73.5% theoretical ethanol yield. Strains Y1528, YRH403, and FPL450 did not grow in whole hydrolysate cultures and were observed to have lower ethanol productivities than D5A and YRH400 on the hydrolysate with intermediate toxicity. Both YRH400 and YRH403 were genetically engineered for xylose fermentation but were not able to consume xylose efficiently in hydrolysate. © 2014 American Institute of Chemical Engineers.

  15. Raw mechanically separated chicken meat and salmon protein hydrolysate as protein sources in extruded dog food

    DEFF Research Database (Denmark)

    Tjernsbekk, M. T.; Tauson, A. H.; Kraugerud, O. F.

    2017-01-01

    Protein quality was evaluated for mechanically separated chicken meat (MSC) and salmon protein hydrolysate (SPH), and for extruded dog foods where MSC or SPH partially replaced poultry meal (PM). Apparent total tract digestibility (ATTD) of crude protein (CP) and amino acids (AA) in the protein...

  16. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli.

    Science.gov (United States)

    Su, Buli; Wu, Mianbin; Zhang, Zhe; Lin, Jianping; Yang, Lirong

    2015-09-01

    A metabolically engineered Escherichia coli has been constructed for the production of xylitol, one of the top 12 platform chemicals from agricultural sources identified by the US Department of Energy. An optimal plasmid was constructed to express xylose reductase from Neurospora crassa with almost no inclusion bodies at relatively high temperature. The phosphoenolpyruvate-dependent glucose phosphotransferase system (ptsG) was disrupted to eliminate catabolite repression and allow simultaneous uptake of glucose and xylose. The native pathway for D-xylose catabolism in E. coli W3110 was blocked by deleting the xylose isomerase (xylA) and xylulose kinase (xylB) genes. The putative pathway for xylitol phosphorylation was also blocked by disrupting the phosphoenolpyruvate-dependent fructose phosphotransferase system (ptsF). The xylitol producing recombinant E. coli allowed production of 172.4 g L(-1) xylitol after 110 h of fed-batch cultivation with an average productivity of 1.57 g L(-1) h(-1). The molar yield of xylitol to glucose reached approximately 2.2 (mol xylitol mol(-1) glucose). Furthermore, the recombinant strain also produced about 150 g L(-1) xylitol from hemicellulosic sugars in modified M9 minimal medium and the overall productivity was 1.40 g L(-1) h(-1), representing the highest xylitol concentration and productivity reported to date from hemicellulosic sugars using bacteria. Thus, this engineered E. coli is a candidate for the development of efficient industrial-scale production of xylitol from hemicellulosic hydrolysate. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis

    DEFF Research Database (Denmark)

    Garde, Arvid; Jonsson, Gunnar Eigil; Schmidt, A. S.

    2002-01-01

    Lactic acid production by Lactobacillus brevis and Lactobacillus pentosus on a hemicellulose hydrolysate (HH) of wet-oxidized wheat straw was evaluated. The potential of 11-12 g/l fermentable sugars was released from the HH through either enzymatic or acidic pretreatment. Fermentation of added......% of the theoretical maximum yield after enzymatic, or acid treatment of HH, respectively. Individually, neither of the two strains were able to fully utilize the relatively broad spectra of sugars released by the acid and enzyme treatments; however, lactic acid production increased to 95% of the theoretical maximum...... yield by co-inoculation of both strains. Xylulose was the main sugar released after enzymatic treatment of HH with Celluclast(R). Lb. brevis was able to degrade xylobiose, but was unable to assimilate xylulose, whereas Lb. pentosus was able to assimilate xylulose but unable to degrade xylobiose. (C...

  18. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain

    Science.gov (United States)

    Heer, Dominik; Sauer, Uwe

    2008-01-01

    Summary The production of fuel ethanol from low‐cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre‐treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real‐world lignocellulosic hydrolysates and determined their toxicological effect on yeast. By correlating the potential inhibitor abundance to the growth‐inhibiting properties of the corresponding hydrolysates, we identified furfural as an important contributor to hydrolysate toxicity for yeast. Subsequently, we conducted a targeted evolution experiment to improve growth behaviour of the half industrial Saccharomyces cerevisiae strain TMB3400 in the hydrolysates. After about 300 generations, representative clones from these evolved populations exhibited significantly reduced lag phases in medium containing the single inhibitor furfural, but also in hydrolysate‐supplemented medium. Furthermore, these strains were able to grow at concentrations of hydrolysates that effectively killed the parental strain and exhibited significantly improved bioconversion characteristics under industrially relevant conditions. The improved resistance of our evolved strains was based on their capacity to remain viable in a toxic environment during the prolonged, furfural induced lag phase. PMID:21261870

  19. Purification and Biochemical Characterization of a Neutral Serine Protease from Trichoderma harzianum. Use in Antibacterial Peptide Production from a Fish By-Product Hydrolysate.

    Science.gov (United States)

    Aissaoui, Neyssene; Chobert, Jean-Marc; Haertlé, Thomas; Marzouki, M Nejib; Abidi, Ferid

    2017-06-01

    This study reports the purification and biochemical characterization of an extracellular neutral protease from the fungus Trichoderma harzianum. The protease (Th-Protease) was purified from the culture supernatant to homogeneity by a three-step procedure with 14.2% recovery and 9.06-fold increase in specific activity. The purified enzyme appeared as a single protein band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a molecular mass of about 20 kDa. The optimum pH and temperature for the proteolytic activity were pH 7.0 and 40 °C, respectively. The enzyme was then investigated for its potential application in the production of antibacterial peptides. Interestingly, Scorpaena notata viscera protein hydrolysate prepared using the purified serine protease (Th-Protease) showed remarkable in vitro antibacterial activities. A peptide with a high antibacterial activity was further purified by a three-step procedure, and its sequence was identified as FPIGMGHGSRPA. The result of this study offers a promising alternative to produce natural antibacterial peptides from fish protein hydrolysate.

  20. Exploring the potential of lactic acid production from lignocellulosic hydrolysates with various ratios of hexose versus pentose by Bacillus coagulans IPE22.

    Science.gov (United States)

    Wang, Yujue; Cao, Weifeng; Luo, Jianquan; Wan, Yinhua

    2018-08-01

    The aim of this study was to investigate the feasibility of utilizing different lignocellulosic hydrolysates with various hexose versus pentose (H:P) ratios to produce lactic acid (LA) from Bacillus coagulans IPE22 by fermentations with single and mixed sugar. In single sugar utilization, glucose tended to promote LA production, and xylose preferred to enhance cell growth. In mixed sugar utilization, glucose and pentose were consumed simultaneously when glucose concentration was lower than 20 g/L, and almost the same concentration of LA (50 g/L) was obtained regardless of the differences of H:P values. Finally, LA production from corn cob hydrolysates (CCH) contained 60 g/L mixed sugar verified the mechanisms found in the fermentations with simulated sugar mixture. Comparing with single glucose utilization, CCH utilization was faster and the yield of LA was not significantly affected. Therefore, the great potential of producing LA with lignocellulosic materials by B. coagulans was proved. Copyright © 2018. Published by Elsevier Ltd.

  1. Relationships between the structure of wheat gluten and ACE inhibitory activity of hydrolysate: stepwise multiple linear regression analysis.

    Science.gov (United States)

    Zhang, Yanyan; Ma, Haile; Wang, Bei; Qu, Wenjuan; Wali, Asif; Zhou, Cunshan

    2016-08-01

    Ultrasound pretreatment of wheat gluten (WG) before enzymolysis can improve the angiotensin converting enzyme (ACE) inhibitory activity of the hydrolysates by alerting the structure of substrate proteins. Establishment of a relationship between the structure of WG and ACE inhibitory activity of the hydrolysates to judge the end point of the ultrasonic pretreatment is vital. The results of stepwise multiple linear regression (MLR) showed that the contents of free sulfhydryl, α-helix, disulfide bond, surface hydrophobicity and random coil were significantly correlated to ACE Inhibitory activity of the hydrolysate, with the standard partial regression coefficients were 3.729, -0.676, -0.252, 0.022 and 0.156, respectively. The R(2) of this model was 0.970. External validation showed that the stepwise MLR model could well predict the ACE inhibitory activity of hydrolysate based on the content of free sulfhydryl, α-helix, disulfide bond, surface hydrophobicity and random coil of WG before hydrolysis. A stepwise multiple linear regression model describing the quantitative relationships between the structure of WG and the ACE Inhibitory activity of the hydrolysates was established. This model can be used to predict the endpoint of the ultrasonic pretreatment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates.

    Science.gov (United States)

    Venuste, Muhamyankaka; Zhang, Xiaoming; Shoemaker, Charles F; Karangwa, Eric; Abbas, Shabbar; Kamdem, Patrick Eugene

    2013-04-30

    Nutritional and antioxidant properties of pumpkin meal and their hydrolysates prepared by hydrolysis with alcalase, flavourzyme, protamex or neutrase were evaluated. The hydrolysis process significantly increased protein content from 67.07% to 92.22%. All the essential amino acids met the Food and Agriculture Organization of United Nations/World Health Organization (WHO/FAO) suggested requirements for children and adults. The amino acid score (AAS) of meal was increased from 65.59 to 73.00 except for flavourzyme (62.97) and protamex (62.50). The Biological Value (BV) was increased from 53.18 to 83.44 except for protamex (40.97). However hydrolysis decreased the Essential Amino Acid/Total Amino Acid ratio (EAA/TAA) from 32.98% to 29.43%. Protein Efficiency Ratio (PER) was comparable to that of good quality protein (1.5) except for flavourzyme hydrolysate which had PER1 = 0.92, PER2 = 1.03, PER3 = 0.38. The in vitro protein digestibility (IVPD) increased from 71.32% to 77.96%. Antioxidant activity increased in a dose-dependent manner. At 10 mg mL(-1), the hydrolysates had increased 1,1-diphenyl-2-picrylhydrazy (DPPH) radical scavenging activities from 21.89% to 85.27%, the reducing power increased from Abs(700nm) 0.21 to 0.48. Metal (Iron) chelating ability was improved from 30.50% to 80.03% at 1 mg mL(-1). Hydrolysates also showed better capabilities to suppress or delay lipid peroxidation in a linoleic acid model system. Different proteases lead to different Degrees of Hydrolysis (DH), molecular weight (MW) distribution, amino acid composition and sequence, which influenced the nutritional properties and antioxidant activities of the hydrolysates. Alcalase was the most promising protease in production of pumpkin protein hydrolysates with improved nutritional quality, while flavourzyme was best in production of hydrolysates with improved antioxidative activity among various assays. These results showed that hydrolysates from by-products of pumpkin oil

  3. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates.

    Science.gov (United States)

    Hall, Felicia G; Jones, Owen G; O'Haire, Marguerite E; Liceaga, Andrea M

    2017-06-01

    Recently, the benefits of entomophagy have been widely discussed. Due to western cultures' reluctance, entomophagy practices are leaning more towards incorporating insects into food products. In this study, whole crickets (Gryllodes sigillatus) were hydrolyzed with alcalase at 0.5, 1.5, and 3.0% (w/w) for 30, 60, and 90min. Degree of hydrolysis (DH), amino acid composition, solubility, emulsion and foaming properties were evaluated. Hydrolysis produced peptides with 26-52% DH compared to the control containing no enzyme (5% DH). Protein solubility of hydrolysates improved (p30% soluble protein at pH 3 and 7 and 50-90% at alkaline pH, compared with the control. Emulsion activity index ranged from 7 to 32m 2 /g, while foamability ranged from 100 to 155% for all hydrolysates. These improved functional properties demonstrate the potential to develop cricket protein hydrolysates as a source of functional alternative protein in food ingredient formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Casein Hydrolysate with Glycemic Control Properties: Evidence from Cells, Animal Models, and Humans.

    Science.gov (United States)

    Drummond, Elaine; Flynn, Sarah; Whelan, Helena; Nongonierma, Alice B; Holton, Thérèse A; Robinson, Aisling; Egan, Thelma; Cagney, Gerard; Shields, Denis C; Gibney, Eileen R; Newsholme, Philip; Gaudel, Celine; Jacquier, Jean-Christophe; Noronha, Nessa; FitzGerald, Richard J; Brennan, Lorraine

    2018-05-02

    Evidence exists to support the role of dairy derived proteins whey and casein in glycemic management. The objective of the present study was to use a cell screening method to identify a suitable casein hydrolysate and to examine its ability to impact glycemia related parameters in an animal model and in humans. Following screening for the ability to stimulate insulin secretion in pancreatic beta cells, a casein hydrolysate was selected and further studied in the ob/ob mouse model. An acute postprandial study was performed in 62 overweight and obese adults. Acute and long-term supplementation with the casein hydrolysate in in vivo studies in mice revealed a glucose lowering effect and a lipid reducing effect of the hydrolysate (43% reduction in overall liver fat). The postprandial human study revealed a significant increase in insulin secretion ( p = 0.04) concomitant with a reduction in glucose ( p = 0.03). The area under the curve for the change in glucose decreased from 181.84 ± 14.6 to 153.87 ± 13.02 ( p = 0.009). Overall, the data supports further work on the hydrolysate to develop into a functional food product.

  5. Antihypertensive potential of bioactive hydrolysate from edible bird's nest

    Science.gov (United States)

    Ramachandran, Ravisangkar; Babji, Abdul Salam; Sani, Norrakiah Abdullah

    2018-04-01

    The aim of this study is to determine and compare the proximate composition, the degree of hydrolysis (DH) and the antihypertensive activity of edible bird's nest (EBN) hydrolysates of two different drying methods. Four types of enzymes (alcalase, bromelain, pancreatin and papain) were used in this study and with different hydrolysis time (30, 60, 90, 120, 180 and 240 min). The highest DH for alcalase (79.48 - 84.09%), pancreatine (77.10 - 80.45%) and papain (82.33%) for EBN hydrolysates was produced with alcalase treatment at 60 - 90 min, pancreatine treatment at 30 - 90 min and papain treatment at 90 min. Bromelain generated hydrolysates showed low DH. EBN hydrolysed using alcalase, pancreatin and papain have significantly higher protein content compared to raw EBN and the moisture content of all hydrolysates treatments was significantly lower compared to raw EBN. For antihypertensive assay, freeze dried EBN hydrolysates have higher antihypertensive activity compared to spray dried hydrolysates. The highest antihypertensive activity for freeze dried samples was produced by alcalase, bromelain and pancreatin and in the range of 80.22 - 86.97%. Meanwhile, papain proved to be less effective in producing hydrolysate with antihypertensive ability. In conclusion, EBN hydrolysate prepared by alcalase, bromelain and pancreatin could be classified as a functional food as it showed significant antihypertensive activity.

  6. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.

    1998-02-01

    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  7. Poultry feed based on protein hydrolysate derived from chrome-tanned leather solid waste: creating value from waste.

    Science.gov (United States)

    Chaudhary, Rubina; Pati, Anupama

    2016-04-01

    Leather industry generates huge amount of chrome-containing leather solid waste which creates major environment problems to tanners worldwide. Chrome-tanned leather solid waste is primarily chromium complex of collagen protein. The presence of chromium limits its protein application in animal feed industry. The purified protein hydrolysate with zero chromium could be used in poultry feed. In this study, an attempt has been made to assess performance of poultry with purified protein hydrolysate as a feed derived from chrome-tanned leather waste as partial replacement of soyabean meal as a sole source of protein for growing broiler chickens. Growth study was conducted to evaluate the effect of feeding protein hydrolysate on performance and physiochemical characteristics of meat of broiler chickens. Two experimental diets containing various levels of protein hydrolysate (EI-20 % and EII-30 %) were evaluated. The comparative study was performed as control with soyabean meal. Daily feed intake, body weight gain and feed conversion ratio were measured from day 8 to day 35. At the end of the study, birds were randomly selected and slaughtered to evaluate for physiochemical characteristics of meat. Diet had significant effects on feed intake and body weight gain. Birds fed with 20 and 30 % protein hydrolysate consumed 9.5 and 17.5 % higher amount of feed and gained 6.5 and 16.6 % higher than soyabean meal-fed birds. The current study produced evidence that protein hydrolysate can replace up to 75 % of soyabean meal in broiler diets without affecting either growth performance or meat characteristics.

  8. 21 CFR 573.200 - Condensed animal protein hydrolysate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed animal protein hydrolysate. 573.200... ANIMALS Food Additive Listing § 573.200 Condensed animal protein hydrolysate. (a) Identity. The condensed animal protein hydrolysate is produced from the meat byproducts scraped from cured (salted) hides taken...

  9. Bitterness and Physichochemical Properties of Angelwing Clam (Pholas Orientalis) Hydrolysate

    International Nuclear Information System (INIS)

    Normah Ismail; Nurul Fasihah Razak

    2016-01-01

    Protein hydrolysates from angelwing clam were obtained by enzymatic hydrolysis using bromelain. The bitterness of hydrolysates was evaluated based on the degree hydrolysis (DH), sensory analysis, molecular weight distribution and functional group. By using 3 % of enzyme substrate ratio bromelain resulted in high DH value at 12.57 % when angelwing clam was hydrolysed for 2 hours. Sensory analysis showed that angelwing hydrolysate was bitter. Angelwing hydrolysate had molecular weight below 50 kDa. The lower molecular weight indicated that the protein has been degraded into smaller peptide chains which contribute to bitter taste. Moreover, the high peak of amine group in angelwing hydrolysate (3385.6 cm -1 ) suggested that bitterness exists. Angelwing hydrolysate had higher protein content, lower fat content and had good water holding capacity than the flesh. This result suggested that angelwing hydrolysate could be useful as food ingredient even though bitter taste developed after the hydrolysis. Thus, debittering should be considered in order to pave the way for full utilization of angelwing clam hydrolysate as a food ingredient. (author)

  10. Improvement of biotechnological xylitol production by glucose during cultive of Candida guilliermondii in sugarcane bagasse hydrolysate

    Directory of Open Access Journals (Sweden)

    Débora Danielle Virgínio da Silva

    2007-03-01

    Full Text Available The effect of glucose on xylose-to-xylitol bioconversion by Candida guilliermondii was examined by adding it to sugarcane bagasse hydrolysate medium to obtain different glucose:xylose ratios (1:25, 1:12, 1:5 and 1:2.5. Under experimental conditions, increasing glucose:xylose ratio improved the assimilation of the xylose present in the hydrolysate by yeast, resulting in biomass increase, and in the formation of xylitol and glycerol/ethanol by-products. Maximum values of xylitol yield (0.59 g g-1 and volumetric productivity (0.53 g l-1.h-1 were obtained with glucose:xylose ratio of 1:5, resulting in the higher conversion efficiency (64.3%.O efeito da glicose na bioconversão de xilose em xilitol por Candida guilliermondii foi avaliado em hidrolisado hemicelulósico de bagaço de cana com diferentes relações glicose:xilose (1:25, 1:12, 1:5 and 1:2,5. Sob as condições experimentais, o aumento da relação glicose:xilose favoreceu a assimilação da xilose presente no hidrolisado, resultando em aumento da biomassa celular e aumento da formação de xilitol e dos sub-produtos glicerol e etanol. Os valores máximos do fator de conversão de xilose em xilitol (0,59 g g-1 e da produtividade volumétrica de xilitol (0,53 g l-1.h-1 foram obtidos com a relação glicose:xilose 1:5, resultando na maior eficiência de conversão (64,3%.

  11. Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland.

    Science.gov (United States)

    Jessen, Jan Eric; Orlygsson, Johann

    2012-01-01

    Thermophilic bacteria have gained increased attention as candidates for bioethanol production from lignocellulosic biomass. This study investigated ethanol production by Thermoanaerobacter strain J1 from hydrolysates made from lignocellulosic biomass in batch cultures. The effect of increased initial glucose concentration and the partial pressure of hydrogen on end product formation were examined. The strain showed a broad substrate spectrum, and high ethanol yields were observed on glucose (1.70 mol/mol) and xylose (1.25 mol/mol). Ethanol yields were, however, dramatically lowered by adding thiosulfate or by cocultivating strain J1 with a hydrogenotrophic methanogen with acetate becoming the major end product. Ethanol production from 4.5 g/L of lignocellulosic biomass hydrolysates (grass, hemp stem, wheat straw, newspaper, and cellulose) pretreated with acid or alkali and the enzymes Celluclast and Novozymes 188 was investigated. The highest ethanol yields were obtained on cellulose (7.5 mM·g(-1)) but the lowest on straw (0.8 mM·g(-1)). Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The largest increase was on straw hydrolysates where ethanol production increased from 0.8 mM·g(-1) to 3.3 mM·g(-1) using alkali-pretreated biomass. The highest ethanol yields on lignocellulosic hydrolysates were observed with hemp hydrolysates pretreated with acid, 4.2 mM·g(-1).

  12. Production and characterization of cowpea protein hydrolysate with optimum nitrogen solubility by enzymatic hydrolysis using pepsin.

    Science.gov (United States)

    Mune Mune, Martin Alain; Minka, Samuel René

    2017-06-01

    Cowpea is a source of low-cost and good nutritional quality protein for utilization in food formulations in replacement of animal proteins. Therefore it is necessary that cowpea protein exhibits good functionality, particularly protein solubility which affects the other functional properties. The objective of this study was to produce cowpea protein hydrolysate exhibiting optimum solubility by the adequate combination of hydrolysis parameters, namely time, solid/liquid ratio (SLR) and enzyme/substrate ratio (ESR), and to determine its functional properties and molecular characteristics. A Box-Behnken experimental design was used for the experiments, and a second-order polynomial to model the effects of hydrolysis time, SLR and ESR on the degree of hydrolysis and nitrogen solubility index. The optimum hydrolysis conditions of time 208.61 min, SLR 1/15 (w/w) and ESR 2.25% (w/w) yielded a nitrogen solubility of 75.71%. Protein breakdown and the peptide profile following enzymatic hydrolysis were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and size exclusion chromatography. Cowpea protein hydrolysate showed higher oil absorption capacity, emulsifying activity and foaming ability compared with the concentrate. The solubility of cowpea protein hydrolysate was adequately optimized by response surface methodology, and the hydrolysate showed adequate functionality for use in food. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    Science.gov (United States)

    Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

    2013-07-02

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  14. Conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans JI12.

    Science.gov (United States)

    Ye, Lidan; Hudari, Mohammad Sufian Bin; Zhou, Xingding; Zhang, Dongxu; Li, Zhi; Wu, Jin Chuan

    2013-06-01

    Cost-effective conversion of lignocellulose hydrolysate to optically pure lactic acid is commercially attractive but very challenging. Bacillus coagulans JI12 was isolated from natural environment and used to produce L-lactic acid (optical purity > 99.5 %) from lignocellulose sugars and acid hydrolysate of oil palm empty fruit bunch (EFB) at 50 °C and pH 6.0 without sterilization of the medium. In fed-batch fermentation with 85 g/L initial xylose and 55 g/L xylose added after 7.5 h, 137.5 g/L lactic acid was produced with a yield of 98 % and a productivity of 4.4 g/L h. In batch fermentation of a sugar mixture containing 8.5 % xylose, 1 % glucose, and 1 % L-arabinose, the lactic acid yield and productivity reached 98 % and 4.8 g/L h, respectively. When EFB hydrolysate was used, 59.2 g/L of lactic acid was produced within 9.5 h at a yield of 97 % and a productivity of 6.2 g/L h, which are the highest among those ever reported from lignocellulose hydrolysates. These results indicate that B. coagulans JI12 is a promising strain for industrial production of L-lactic acid from lignocellulose hydrolysate.

  15. Protein Hydrolysates from Non-bovine and Plant Sources Replaces Tryptone in Microbiological Media

    Science.gov (United States)

    Ranganathan, Yamini; Patel, Shifa; Pasupuleti, Vijai K.; Meganathan, R.

    Tryptone (pancreatic digest of casein) is a common ingredient in laboratory and fermentation media for growing wild-type and genetically modified microorganisms. Many of the commercially manufactured products such as human growth hormone, antibiotics, insulin, etc. are produced by recombinant strains grown on materials derived from bovine sources. With the emergence of Bovine Spongiform Encephalopathy (BSE) and the consequent increase in Food and Drug Administration (FDA) regulations, elimination of materials of bovine origin from fermentation media is of paramount importance. To achieve this objective, a number of protein hydrolysates derived from non-bovine animal and plant sources were evaluated. Tryptone in Luria-Bertani (LB) broth was replaced with an equal quantity of alternate protein hydrolysates. Four of the six hydrolysates (one animal and three from plants) were found to efficiently replace the tryptone present in LB-medium as measured by growth rate and growth yield of a recombinant Escherichia coli strain. In addition, we have determined plasmid stability, inducibility and activity of the plasmid encoded β-galactosidase in the recombinant strain grown in the presence of various protein hydrolysates.

  16. Studies on the conversion of cellulose hydrolysate into citric acid by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Manonmani, H.K.; Sreekantiah, K.R.

    1987-06-01

    The production of citric acid by Aspergillus niger (16) was studied using enzymatic hydrolysate of alkali-treated bagasse by solid state fermentation. Saccharification and fermentations were carried out sequentially as well as simultaneously. Conditions for optimum citric acid production using cellulose hydrolysate medium were: sugar concentration: 7% (w/w); NaNO/sub 3/; 400 mg/N/sub 2//l medium; KH/sub 2/PO/sub 4/:/0.1%/l medium; ethanol: 3% (v/w); 1 ml of 1 x 10 squared m fluoroacetate and coconut oil: 3% (v/w). Simultaneous saccharification and fermentation was not found to be suitable for citric acid production. 44% conversion of total reducing sugars to citric acid was obtained in 72 hours fermentation by sequential process with the above mentioned parameters. (Refs. 15).

  17. Fed-batch hydrolysate addition and cell separation by settling in high cell density lignocellulosic ethanol fermentations on AFEX™ corn stover in the Rapid Bioconversion with Integrated recycling Technology process.

    Science.gov (United States)

    Sarks, Cory; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2017-09-01

    The Rapid Bioconversion with Integrated recycling Technology (RaBIT) process uses enzyme and yeast recycling to improve cellulosic ethanol production economics. The previous versions of the RaBIT process exhibited decreased xylose consumption using cell recycle for a variety of different micro-organisms. Process changes were tested in an attempt to eliminate the xylose consumption decrease. Three different RaBIT process changes were evaluated in this work including (1) shortening the fermentation time, (2) fed-batch hydrolysate addition, and (3) selective cell recycling using a settling method. Shorting the RaBIT fermentation process to 11 h and introducing fed-batch hydrolysate addition eliminated any xylose consumption decrease over ten fermentation cycles; otherwise, decreased xylose consumption was apparent by the third cell recycle event. However, partial removal of yeast cells during recycle was not economical when compared to recycling all yeast cells.

  18. Effect of Casein Hydrolysates on Yogurt Fermentation and Texture Properties during Storage

    Directory of Open Access Journals (Sweden)

    Qiang-Zhong Zhao

    2006-01-01

    Full Text Available Effects of casein hydrolysates by papain on acidification of the yogurts and growth of probiotic bacteria during yogurt fermentation have been investigated. The viability of probiotic bacteria and texture characteristics of the yogurts during storage at 4 °C have been evaluated. The hydrolysates strongly decreased the fermentation and coagulation time of the yogurts. The post-fermentation acidification was retarded by the hydrolysates. The hydrolysates increased the probiotic counts during initial fermentation stage. The growth of the probiotic organisms decreased at the final stage. Survival of probiotic bacteria was improved by the hydrolysates. The hydrolysates significantly (p<0.05 increased the adhesiveness of the yogurts except for 0.5 % of hydrolysate with degree of hydrolysis of 8.5 %. The sensory evaluation scores of the yogurts were significantly (p<0.05 improved by the hydrolysates after the storage. The effect of casein hydrolysates on fermentation and texture properties was related to the molecular mass of the hydrolysates.

  19. Production of Ethanol from Sugars and Lignocellulosic Biomass by Thermoanaerobacter J1 Isolated from a Hot Spring in Iceland

    Directory of Open Access Journals (Sweden)

    Jan Eric Jessen

    2012-01-01

    Full Text Available Thermophilic bacteria have gained increased attention as candidates for bioethanol production from lignocellulosic biomass. This study investigated ethanol production by Thermoanaerobacter strain J1 from hydrolysates made from lignocellulosic biomass in batch cultures. The effect of increased initial glucose concentration and the partial pressure of hydrogen on end product formation were examined. The strain showed a broad substrate spectrum, and high ethanol yields were observed on glucose (1.70 mol/mol and xylose (1.25 mol/mol. Ethanol yields were, however, dramatically lowered by adding thiosulfate or by cocultivating strain J1 with a hydrogenotrophic methanogen with acetate becoming the major end product. Ethanol production from 4.5 g/L of lignocellulosic biomass hydrolysates (grass, hemp stem, wheat straw, newspaper, and cellulose pretreated with acid or alkali and the enzymes Celluclast and Novozymes 188 was investigated. The highest ethanol yields were obtained on cellulose (7.5 mM·g−1 but the lowest on straw (0.8 mM·g−1. Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The largest increase was on straw hydrolysates where ethanol production increased from 0.8 mM·g−1 to 3.3 mM·g−1 using alkali-pretreated biomass. The highest ethanol yields on lignocellulosic hydrolysates were observed with hemp hydrolysates pretreated with acid, 4.2 mM·g−1.

  20. Safety of protein hydrolysates, fractions thereof and

    NARCIS (Netherlands)

    Gertjan Schaafsma

    2009-01-01

    This paper evaluates the safety for humans with regard to consumption of protein hydrolysates and fractions thereof, including bioactive peptides. The available literature on the safety of protein, protein hydrolysates, fractions thereof and free amino acids on relevant food legislation is reviewed

  1. Protein hydrolysates from the alga Chlorella vulgaris 87/1 with potentialities in immuno nutrition

    International Nuclear Information System (INIS)

    Morris, Humberto J; Carrillo, Olimpia; Almarales, Angel; Bermudez, Rosa C; Alonso, Maria E; Borges, Leonardo; Quintana, Maria M; Fontaine, Roberto; Llaurado, Gabriel; Hernandez, Martha

    2009-01-01

    Chlorella vulgaris (Chlorophyta, Chlorophyceae) has received a particular attention in the programmes of microalgae utilisation in biotechnology. Enzymatic hydrolysis of cell proteins represents a very promising method to increase protein digestibility and thus, for obtaining hydrolysates with improved nutritional and functional properties. However, this technology has been little approached and the biological evaluation of hydrolysates has had a strictly nutritional nature. The design of hydrolysis conditions that combined for the first time, the use of C.vulgaris 87/1 treated with ethanol and pancreatin at pH values of 7.5-8.0, led to a product with a degree of hydrolysis of 20-22% and yields of 50-55%, characterised by a high digestibility (97.2%) and nitrogen solubility over a wide pH range (2.0-10.0). Hydrolysis curves were fitted to an exponential model, common to many food proteins. The bulk of the product dry matter consists of soluble peptides and free amino acids (47.7%) with three main peptides of molecular masses between 2 and 5 kDa. The oral administration of Chlorella hydrolysate (500 mg/kg) to undernourished Balb/c mice provided benefits in terms of liver protein metabolism and the induction of anabolic processes in gut mucosa. The hydrolysate also enhanced the immunological recovery, as judged by the stimulation of haemopoiesis, monocyte macrophage system activation, as well as humoral and cell mediated immune functions, like T-dependent antibody response and the reconstitution of delayed-type hypersensitivity (DTH) response. These results represent the first findings in the world concerning the immunomodulating effects of a microalgae protein hydrolysate. (author)

  2. Model Study To Assess Softwood Hemicellulose Hydrolysates as the Carbon Source for PHB Production in Paraburkholderia sacchari IPT 101.

    Science.gov (United States)

    Dietrich, Karolin; Dumont, Marie-Josée; Schwinghamer, Timothy; Orsat, Valérie; Del Rio, Luis F

    2018-01-08

    Softwood hemicellulose hydrolysates are a cheap source of sugars that can be used as a feedstock to produce polyhydroxybutyrates (PHB), which are biobased and compostable bacterial polyesters. To assess the potential of the hemicellulosic sugars as a carbon source for PHB production, synthetic media containing softwood hemicellulose sugars (glucose, mannose, galactose, xylose, arabinose) and the potentially inhibitory lignocellulose degradation products (acetic acid, 5-hydroxymethylfurfural (HMF), furfural, and vanillin) were fermented with the model strain Paraburkholderia sacchari IPT 101. Relative to pure glucose, individual fermentation for 24 h with 20 g/L mannose or galactose exhibited maximum specific growth rates of 97% and 60%, respectively. On the other hand, with sugar mixtures of glucose, mannose, galactose, xylose, and arabinose, the strain converted all sugars simultaneously to reach a maximum PHB concentration of 5.72 g/L and 80.5% PHB after 51 h. The addition of the inhibitor mixture at the following concentration, sodium acetate (2.11 g/L), HMF (0.67 g/L), furfural (0.66 g/L), and vanillin (0.93 g/L), to the sugar mixture stopped the growth entirely within 24 h. Individually, the inhibitors either had no effect or only reduced growth. Moreover, it was found that a bacterial inoculum with high initial cell density (optical density, OD ≥ 5.6) could overcome the growth inhibition to yield an OD of 13 within 24 h. Therefore, softwood hemicellulose sugars are viable carbon sources for PHB production. Nevertheless, real softwood hemicellulose hydrolysates need detoxification or a high inoculum to overcome inhibitory effects and allow bacterial growth.

  3. Conversion of C6 and C5 sugars in undetoxified wet exploded bagasse hydrolysates using Scheffersomyces (Pichia) stipitis CBS6054

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2013-01-01

    Sugarcane bagasse is a potential feedstock for cellulosic ethanol production, rich in both glucan and xylan. This stresses the importance of utilizing both C6 and C5 sugars for conversion into ethanol in order to improve the process economics. During processing of the hydrolysate degradation...... products such as acetate, 5-hydroxymethylfurfural (HMF) and furfural are formed, which are known to inhibit microbial growth at higher concentrations. In the current study, conversion of both glucose and xylose sugars into ethanol in wet exploded bagasse hydrolysates was investigated without detoxification...... using Scheffersomyces (Pichia) stipitis CBS6054, a native xylose utilizing yeast strain. The sugar utilization ratio and ethanol yield (Yp/s) ranged from 88-100% and 0.33-0.41 ± 0.02 g/g, respectively, in all the hydrolysates tested. Hydrolysate after wet explosion at 185°C and 6 bar O2, composed...

  4. Production of a novel wheat gluten hydrolysate containing dipeptidyl peptidase-IV inhibitory tripeptides using ginger protease.

    Science.gov (United States)

    Taga, Yuki; Hayashida, Osamu; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2017-09-01

    Wheat gluten is a Pro-rich protein complex comprising glutenins and gliadins. Previous studies have reported that oral intake of enzymatic hydrolysates of gluten has beneficial effects, such as suppression of muscle injury and improvement of hepatitis. Here, we utilized ginger protease that preferentially cleaves peptide bonds with Pro at the P 2 position to produce a novel type of wheat gluten hydrolysate. Ginger protease efficiently hydrolyzed gluten, particularly under weak acidic conditions, to peptides with an average molecular weight of ginger protease can be used as a functional food for patients with type 2 diabetes.

  5. Sequential recycling of enzymatic lipid-extracted hydrolysate in fermentations with a thraustochytrid.

    Science.gov (United States)

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-06-01

    This study extends the findings of prior studies proposing and validating nutrient recycling for the heterotrophic microalgae, Thraustochytrium sp. (T18), grown in optimized fed-batch conditions. Sequential nutrient recycling of enzymatically-derived hydrolysate in fermentors succeeded at growing the tested thraustochytrid strain, with little evidence of inhibition or detrimental effects upon culture health. The average maximum biomass obtained in the recycled hydrolysate was 63.68±1.46gL(-1) in 90h the first recycle followed by 65.27±1.15gL(-1) in 90h in the subsequent recycle of the same material. These compared to 58.59gL(-1) and 64.92gL(-1) observed in fresh media in the same time. Lipid production was slightly impaired, however, with a maximum total fatty acid content of 62.2±0.30% in the recycled hydrolysate compared to 69.4% in fresh control media. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Xylose reductase and xylitol dehydrogenase activities of Candida guilliermondii as a function of different treatments of sugarcane bagasse hemicellulosic hydrolysate employing experimental design.

    Science.gov (United States)

    Alves, Lourdes A; Vitolo, Michele; Felipe, Maria das Graças A; de Almeida e Silva, João Batista

    2002-01-01

    The sugarcane bagasse hydrolysate, which is rich in xylose, can be used as culture medium for Candida guilliermondii in xylitol production. However, the hydrolysate obtained from bagasse by acid hydrolysis at 120 degrees C for 20 min has by-products (acetic acid and furfural, among others), which are toxic to the yeast over certain concentrations. So, the hydrolysate must be pretreated before using in fermentation. The pretreatment variables considered were: adsorption time (15,37.5, and 60 min), type of acid used (H2So4 and H3Po4), hydrolysate concentration (original, twofold, and fourfold concentrated), and active charcoal (0.5, 1.75 and 3.0%). The suitability of the pretreatment was followed by measuring the xylose reductase (XR) and xylitol dehydrogenase (XD) activity of yeast grown in each treated hydrolysate. The response surface methodology (2(4) full factorial design with a centered face) indicated that the hydrolysate might be concentrated fourfold and the pH adjusted to 7.0 with CaO, followed by reduction to 5.5 with H3PO4. After that it was treated with active charcoal (3.0%) by 60 min. This pretreated hydrolysate attained the high XR/XD ratio of 4.5.

  7. Chemical structure, comparison antioxidant capacity and separation antioxidant of hen, duck and quail egg white protein hydrolysate

    Science.gov (United States)

    Fatah, A.; Meihu, M.; Ning, Q.; Setiani, B. E.; Bintoro, V. P.

    2018-01-01

    Amino acid linkages as proteins are nutritional substance which important for diet intake. Purification protein procesing undergo heating procedure process followed by additional of proteolytic enzymes or acid had been resulting in protein hydrolysates. A protein hydrolysate describe as many free amino acids bound together through a complex mixture of peptides. Egg white protein hydrolysates is one of subject interested to study for human health or industry product. The objectives of the research are to determine and identification the antioxidant derived from egg white hydrolysate protein. Identification of chemical structure of albumen and albumen protein hydrolysate was examine using IR Spectrophotometry. While comparison of antioxidant capacity and antioxidant separation egg albumen was also investigate using FTIR method (Fourier Transform Infrared Spectroscopy). Hen, duck and quail albumen egg white and on hydrolisate form were used as research materials. The results were showing that different time and enzyme of hydrolysis were not influence at secondary structure of hydrolysate albumen protein. Phytochemical content such as alcohol and hydroxyl compound which have potential as functional group of antioxidant were detected in all of the samples. Their results of radical scavenging activities samples hydrolyzed by pepsin were respectively 89.40%, 50.25% and 85.13%. Whereas the radical scavenging activities of hydrolysates hydrolyzed by papain were 72.85%, 61% and 76.45% respectively.

  8. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans.

    Science.gov (United States)

    Ma, Kedong; Hu, Guoquan; Pan, Liwei; Wang, Zichao; Zhou, Yi; Wang, Yanwei; Ruan, Zhiyong; He, Mingxiong

    2016-11-01

    A thermophilic strain Bacillus coagulans (NBRC 12714) was employed to produce l-lactic acid from corn stover hydrolysate in membrane integrated continuous fermentation. The strain NBRC 12714 metabolized glucose and xylose by the Embden-Meyerhof-Parnas pathway (EMP) and the pentose phosphate pathway (PPP), producing l-lactic acid with optical purity >99.5%. The overall l-lactic acid titer of 92g/l with a yield of 0.91g/g and a productivity of 13.8g/l/h were achieved at a dilution rate of 0.15h(-1). The productivity obtained was 1.6-fold than that of conventional continuous fermentation without cell recycling, and also was the highest among the relevant studies ever reported. These results indicated that the process developed had great potential for economical industrial production of l-lactic acid from lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Safety evaluation of an IPP tripeptide-containing milk protein hydrolysate

    NARCIS (Netherlands)

    Ponstein-Simarro Doorten, A.Y.; Wiel, J.A.G. van de; Jonker, D.

    2009-01-01

    Tensguard™ is a milk protein hydrolysate containing the lactotripeptide IPP. It is derived from cow's milk, which is present in the human diet and has a safe history of consumption. The final Tensguard™ product, a supplement or a functional food ingredient, is intended for use by people who want to

  10. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Science.gov (United States)

    Li, Yanan; Jiang, Han; Huang, Guangrong

    2017-01-01

    Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements. PMID:28617327

  11. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Directory of Open Access Journals (Sweden)

    Yanan Li

    2017-06-01

    Full Text Available Iron (Fe is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements.

  12. Effects of Wheat Gluten Hydrolysate and Its Ultrafiltration Fractions on Dough Properties and Bread Quality

    Directory of Open Access Journals (Sweden)

    Mouming Zhao

    2007-01-01

    Full Text Available Two fractions (50-K and permeate from a proteolytic hydrolysate (degree of hydrolysis, DH=3.8 % of wheat gluten were separated using ultrafiltration (UF membrane with molecular mass cut-off of 50 kDa. The effects of the wheat gluten hydrolysate (WGH and its UF fractions on the mixing behaviour and viscoelastic properties of wheat dough were presented. The WGH and its UF fractions modified the mixing properties of dough. The addition of these fractions improved the viscoelastic characteristics of wheat dough. A significant (p<0.05 effect of 50-K fraction on these characteristics of wheat dough was observed. After adding these fractions, the bread was considered acceptable by the sensory panel. Also, 50-K fraction resulted in significant (p<0.05 increase in the crumb firmness, while the bread made with wheat flour with WGH and permeate (P fraction showed softer crumbs compared to that of wheat flour. Moreover, these fractions had anti-staling properties for bread during storage. Hence, the wheat gluten hydrolysate and its UF fractions are the products with promising potential in the baking products.

  13. Ultrafiltration of hemicellulose hydrolysate fermentation broth

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Desiriani, Ria; Wenten, I. G.

    2017-03-01

    Hemicelulosic material is often used as the main substrate to obtain high-value products such as xylose. The five carbon sugar, xylose, could be further processed by fermentation to produce xylitol. However, not only the hemicellulose hydrolysate fermentation broth contains xylitol, but also metabolite products, residual substances, biomass and mineral salts. Therefore, in order to obtain the end products, various separation processes are required to separate and purify the desired product from the fermentation broth. One of the most promising downstream processing methods of fermentation broth clarification is ultrafiltration due to its potential for energy saving and higher purity. In addition, ultrafiltration membrane has a high performance in separating inhibitory components in the fermentation broth. This paper assesses the influence of operating conditions; including trans-membrane pressure, velocity, pH of the fermentation broth solutions, and also to the xylitol concentration in the product. The challenges of the ultrafiltration process will be pointed out.

  14. Cellulose with a High Fractal Dimension Is Easily Hydrolysable under Acid Catalysis

    Directory of Open Access Journals (Sweden)

    Mariana Díaz

    2017-05-01

    Full Text Available The adsorption of three diverse amino acids couples onto the surface of microcrystalline cellulose was studied. Characterisation of modified celluloses included changes in the polarity and in roughness. The amino acids partially break down the hydrogen bonding network of the cellulose structure, leading to more reactive cellulose residues that were easily hydrolysed to glucose in the presence of hydrochloric acid or tungstophosphoric acid catalysts. The conversion of cellulose and selectivity for glucose was highly dependent on the self-assembled amino acids adsorbed onto the cellulose and the catalyst.

  15. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shoubao [Huainan Normal Univ., Anhui (China). School of Life Science; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao [Chinese Academy of Sciences, Hefei (China). Key Lab. of Ion Beam Bio-engineering of Inst. of Plasma Physics

    2012-05-15

    The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 {+-} 1.86 g/l, an optimal ethanol concentration of 87.91 {+-} 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h. (orig.)

  16. Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment.

    Science.gov (United States)

    Girgih, Abraham T; Chao, Dongfang; Lin, Lin; He, Rong; Jung, Stephanie; Aluko, Rotimi E

    2015-12-01

    Isolated pea protein (IPP) dispersions (1%, w/v) were pretreated with high pressure (HP) of 200, 400, or 600 MPa for 5 min at 24 °C or high temperature (HT) for 30 min at 100 °C prior to hydrolysis with 1% (w/w) Alcalase. HP pretreatment of IPP at 400 and 600 MPa levels led to significantly (P40%) oxygen radical absorption capacity (ORAC) of hydrolysates. 2,2-Diphenyl-1-picrylhydrazyl, superoxide radical and hydroxyl radical scavenging activities of pea protein hydrolysates were also significantly (PProtein hydrolysates from HT IPP showed no ORAC, superoxide or hydroxyl scavenging activity but had significantly (Pprotein hydrolysates had weaker antioxidant properties than glutathione but overall, the HP pretreatment was superior to HT pretreatment in facilitating enzymatic release of antioxidant peptides from IPP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Conversion of Corn Stover Hydrolysates to Acids: Comparison Between Clostridium carboxidivorans P7 and Microbial Communities Developed from Lake Sediment and an Anaerobic Digester

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Xia, Chunjie [Southern Illinois University; Kumar, Aditi [Carbondale Community High School; Liang, Yanna [Southern Illinois University

    2017-01-18

    Anaerobic fermentation is an environmentally sustainable technology for converting a variety of feedstocks to biofuels and bioproducts. Considering the complex nature of lignocellulosic hydrolysates, we aimed to investigate product formation from corn stover hydrolysates by using microbial communities under anaerobic conditions. A community developed from lake sediment was able to produce lactic acid from only glucose in the raw or overlimed hydrolysates. Another community from an anaerobic digester, however, was capable of using all hexose and pentose sugars in the raw and undetoxified hydrolysates and released lactic acid at 26.76 g/L. A pure acetogen, Clostridium carboxidivorans P7, was able to grow on the raw and overlimed hydrolysates, too. But the consumption of sugars was minimal and the total released acid concentrations were less than 2 g/L. Next generation sequencing of the enriched community derived from the anaerobic digester revealed the presence of Lactobacillus strains. The predominant species were Lactobacillus parafarraginis (72.6%) and L. buchneri (13.4%). Product titer from using this enriched community can be further enhanced by cultivating at fed-batch or continuous fermentation modes. Results from this study widened the door for producing valuable products from lignocellulosic feedstocks through using mixed cultures.

  18. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30

    Science.gov (United States)

    Rita C.L.B. Rodrigues; William R. Kenealy; Thomas W. Jeffries

    2011-01-01

    Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono-and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a D-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3 -Ä1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic...

  19. Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their co-fermentations.

    Science.gov (United States)

    da Cunha-Pereira, Fernanda; Hickert, Lilian Raquel; Sehnem, Nicole Teixeira; de Souza-Cruz, Priscila Brasil; Rosa, Carlos Augusto; Ayub, Marco Antônio Záchia

    2011-03-01

    The production of ethanol by the new yeast Spathaspora arborariae using rice hull hydrolysate (RHH) as substrate, either alone or in co-cultures with Saccharomyces cerevisiae is presented. Cultivations were also carried out in synthetic medium to gather physiological information on these systems, especially concerning their ability to grow and produce ethanol in the presence of acetic acid, furfural, and hydroxymethylfurfural, which are toxic compounds usually present in lignocellulosic hydrolysates. S. arborariae was able to metabolize xilose and glucose present in the hydrolysate, with ethanol yields (Y(P/S)(et)) of 0.45. In co-cultures, ethanol yields peaked to 0.77 and 0.62 in the synthetic medium and in RHH, respectively. When the toxic compounds were added to the synthetic medium, their presence produced negative effects on biomass formation and ethanol productivity. This work shows good prospects for the use of the new yeast S. arborariae alone and in co-cultures with S. cerevisiae for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. 2,3-Butanediol and Acetoin Production from Enzymatic Hydrolysate of Ionic Liquid-pretreated Cellulose by Paenibacillus polymyxa

    Directory of Open Access Journals (Sweden)

    Li-qun Jiang

    2015-01-01

    Full Text Available A safe microorganism (class 1, Paenibacillus polymyxa, was used for 2,3-butanediol and acetoin production, which could make the fermentation process cheaper and less complex. It showed a broad substrate spectrum, such as mannose, galactose, cellobiose, glycerol, the mixture of glucose and xylose, and the mixture of glucose and cellobiose. In addition, the strain can utilize highly concentrated glucose that was obtained by enzymatic hydrolysis of ionic liquid-pretreated cellulose. With a 15% initial cellulose consistency, the final glucose concentration was 109.5 g/L with 65.7% glucose yield. Without any treatment, the hydrolysate was successfully used to produce 2,3-butanediol and acetoin with a yield of 81.7% and a productivity of 0.7 g/(L•h by Paenibacillus polymyxa. Higher concentration and higher productivity with relatively high yield, compared with previous works by acid hydrolysis, of 2,3-butanediol and acetoin were achieved. All these novel improvements offer significant opportunities to further decrease the cost of large-scale 2,3-butanediol and acetoin production.

  1. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.

    Science.gov (United States)

    Hasunuma, Tomohisa; Ismail, Ku Syahidah Ku; Nambu, Yumiko; Kondo, Akihiko

    2014-02-01

    Lignocellulosic biomass dedicated to bioethanol production usually contains pentoses and inhibitory compounds such as furfural that are not well tolerated by Saccharomyces cerevisiae. Thus, S. cerevisiae strains with the capability of utilizing both glucose and xylose in the presence of inhibitors such as furfural are very important in industrial ethanol production. Under the synergistic conditions of transaldolase (TAL) and alcohol dehydrogenase (ADH) overexpression, S. cerevisiae MT8-1X/TAL-ADH was able to produce 1.3-fold and 2.3-fold more ethanol in the presence of 70 mM furfural than a TAL-expressing strain and a control strain, respectively. We also tested the strains' ability by mimicking industrial ethanol production from hemicellulosic hydrolysate containing fermentation inhibitors, and ethanol production was further improved by 16% when using MT8-1X/TAL-ADH compared to the control strain. Transcript analysis further revealed that besides the pentose phosphate pathway genes TKL1 and TAL1, ADH7 was also upregulated in response to furfural stress, which resulted in higher ethanol production compared to the TAL-expressing strain. The improved capability of our modified strain was based on its capacity to more quickly reduce furfural in situ resulting in higher ethanol production. The co-expression of TAL/ADH genes is one crucial strategy to fully utilize undetoxified lignocellulosic hydrolysate, leading to cost-competitive ethanol production. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Angiotensin converting enzyme (ACE) inhibitory and antihypertensive activities of protein hydrolysate from meat of Kacang goat (Capra aegagrus hircus).

    Science.gov (United States)

    Mirdhayati, Irdha; Hermanianto, Joko; Wijaya, Christofora H; Sajuthi, Dondin; Arihara, Keizo

    2016-08-01

    The meat of Kacang goat has potential for production of a protein hydrolysate. Functional ingredients from protein hydrolysate of Kacang goat meat were determined by the consistency of angiotensin-converting enzyme (ACE) inhibitory activity and antihypertensive effect. This study examined the potency of Kacang goat protein hydrolysate in ACE inhibition and antihypertensive activity. Protein hydrolysates of Kacang goat meat were prepared using sequential digestion of endo-proteinase and protease complex at several concentrations and hydrolysis times. The highest ACE inhibitory activity resulted from a hydrolysate that was digested for 4 h with 5 g kg(-1) of both enzymes. An ACE inhibitory peptide was purified and a novel peptide found with a sequence of Phe-Gln-Pro-Ser (IC50 value of 27.0 µmol L(-1) ). Both protein hydrolysates and a synthesised peptide (Phe-Gln-Pro-Ser) demonstrated potent antihypertensive activities in spontaneously hypertensive rats. Protein hydrolysate of Kacang goat meat produced by sequential digestion with endo-proteinase and protease complex has great potential as a functional ingredient, particularly as an antihypertensive agent. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Factors affecting antioxidant activity of soybean meal and caseine protein hydrolysates

    International Nuclear Information System (INIS)

    Korczak, J.

    1998-01-01

    Antioxidative activity of protein hydrolysates was dependent on the raw material, condition of hydrolysis and lipid substrate used in model systems. Soybean meal hydrolysate was more active in lard and in linoleic acid emulsion than caseine hydrolysate, whereas caseine was more active in vegetable oils. Antioxidant activity of evaluated protein hydrolysates in all lipid systems, with or without oxidation catalysts, suggests them as natural food additives for lipid stabilization, thus for improvement of its nutritional value and sensory properties

  4. Enzymatic hydrolysis of Grass Carp fish skin hydrolysates able to promote the proliferation of Streptococcus thermophilus.

    Science.gov (United States)

    Wang, Xiao-Nan; Qin, Mei; Feng, Yu-Ying; Chen, Jian-Kang; Song, Yi-Shan

    2017-09-01

    The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated. Grass Carp fish skin was hydrolysed to peptides by enzymatic hydrolysis using protease ProteAX, and for the S. thermophilus growth, the optimal enzymatic hydrolysis conditions were temperature of 60 °C, initial pH of 9.0, enzyme concentration of 10 g kg -1 , hydrolysis time of 80 min, and ratio of material to liquid of 1:2. The Grass Carp fish skin hydrolysate (GCFSH) prepared under the optimum conditions was fractionated to five fragments (GCFSH 1, GCFSH 2, GCFSH 3, GCFSH 4, GCFSH 5) according to molecular weight sizes, in which the fragments GCFSH 4 and GCFSH 5, with molecular weights of less than 1000 Da, significantly promoted the growth of S. thermophilus. The hydrolysis process of Grass Carp fish skin can be simplified, and the peptides with molecular weights below 1000 Da in the hydrolysates are the best nitrogen source for proliferation of S. thermophilus. This work can provide a fundamental theoretical basis for the production of multi-component functional foods, especially in milk drinks or yogurt. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Lipid accumulation by pelletized culture of Mucor circinelloides on corn stover hydrolysate.

    Science.gov (United States)

    Reis, Cristiano E R; Zhang, Jianguo; Hu, Bo

    2014-09-01

    Microbial oil accumulated by fungal cells is a potential feedstock for biodiesel production, and lignocellulosic materials can serve as the carbon source to support the fungal growth. The dilute acid pretreatment of corn stover can effectively break down its lignin structure, and this process generates a hydrolysate containing mostly xylose at very dilute concentration and numerous by-products that may significantly inhibit the cell growth. This study utilized corn stover hydrolysate as the culture media for the growth of Mucor circinelloides. The results showed that Mucor cells formed pellets during the cell growth, which facilitates the cell harvest from dilute solution. The results also showed that the inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), and acetic acid could be avoided if their concentration was low. In fact, all these by-products may be assimilated as carbon sources for the fungal growth. The results proved the feasibility to reuse the cultural broth water for acid pretreatment and then use for subsequent cell cultivation. The results will have a direct impact on the overall water usage of the process.

  6. Development of Sausages Containing Mechanically Deboned Chicken Meat Hydrolysates.

    Science.gov (United States)

    Jin, S K; Choi, J S; Choi, Y J; Lee, S J; Lee, S Y; Hur, S J

    2015-07-01

    Pork meat sausages were prepared using protein hydrolysates from mechanically deboned chicken meat (MDCM). In terms of the color, compared to the controls before and after storage, the redness (a*) was significantly higher in sausages containing MDCM hydrolysates, ascorbate, and sodium erythorbate. After storage, compared to the other sausage samples, the yellowness (b*) was lower in the sausages containing ascorbate and sodium erythorbate. TBARS was not significantly different among the sausage samples before storage, whereas TBARS and DPPH radical scavenging activities were significantly higher in the sausagescontainingascorbate and sodium erythorbate, compared to the other sausage samples after 4 wk of storage. In terms of sensory evaluation, the color was significantly higher in the sausages containing MDCM hydrolysates, ascorbate, and sodium erythorbate, compared to the other sausage samples after 4 wk of storage. The "off-flavor" and overall acceptability were significantly lower in the sausages containing MDCM hydrolysates than in the other sausage samples. In most of the developed countries, meat from spent laying hens is not consumed, leading toan urgent need for effectively utilization or disposal methods. In this study, sausages were prepared using spent laying hens and protein hydrolysates from mechanically deboned chicken meat. Sausage can be made by spent laying hens hydrolysates, although overall acceptability was lower than those of other sausage samples. © 2015 Institute of Food Technologists®

  7. Investigation of antioxidant potential of peptide fractions from the Tra Catfish by-product-derived hydrolysate using Alcalase® 2.4 L FG

    Science.gov (United States)

    Vo, Tam D. L.; Chung, Duy T. M.; Doan, Kien T.; Le, Duy T.; Trinh, Hung V.

    2017-09-01

    In this study, the antioxidant capacity of peptide fractions isolated from the Tra Catfish (Pangasius hypophthalmus) by-product-derived proteolysate using ultrafiltration centrifugal devices with 5 distinct molecular-weight cutoffs (MWCOs) of 1 kDa, 3 kDa, 5 kDa, 10 kDa, and 30 kDa was investigated. Firstly, the chemical composition of the Tra Catfish by-products was analyzed. The result showed that the Tra Catfish by-products contained 58.5% moisture, 33.9% crude protein, 50.1% crude lipid and 15.8% ash (on dry weight basis). Secondly, the effects of hydrolysis time, enzyme content on the antioxidant potential of the proteolysate were studied using DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical scavenging method (DPPH• SM) and FRAP (Ferric Reducing Antioxidant Potential) method. Alcalase® 2.4 L FG was used for hydrolysis. The result of antioxidant activity of the hydrolysate showed that the 50% DPPH• inhibition concentration (IC50) of the hydrolysate reached about 6775 µg/mL which was 1645-fold higher than that of vitamin C and 17-fold higher than that of BHT (ButylatedHydroxytoluene) with the degree of hydrolysis (DH) of the hydrolysate of 14.6% when hydrolysis time was 5 hours, enzyme/substrate (E/S) ratio was 30 U/g protein, hydrolysis temperature was 55°C, and pH was 7.5. The antioxidant potential of hydrolysate using FRAP method reached about 52.12 µM Trolox equivalent which was 53-fold and 18-fold lower than those of vitamin C and BHT, respectively, when the hydrolysis time was 5 h, enzyme/substrate ratio was 30 U/g protein, temperature was 500C, and pH level was 8. Next, the proteolysate was further fractionated using MWCOs of 1 kDa, 3 kDa, 5 kDa, 10 kDa, and 30 kDa and the peptide fractions were investigated for their antioxidant activity. The result showed that the <1 kDa fraction showed strongest antioxidant activity with the IC50 of 1313.31 ± 50.65 µg/mL and FRAP value of 906.90 ± 44.32 µM Trolox equivalent. The second strongest fraction

  8. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2008-01-01

    was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has......Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70C. Undetoxified wheat straw hydrolysate was used (3-12% dry matter), corresponding...... to sugar mixtures of glucose and xylose ranging from 12 to 41 g/l. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/l) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate...

  9. Bioactivity of Cod and Chicken Protein Hydrolysates before and after in vitro Gastrointestinal Digestion

    DEFF Research Database (Denmark)

    Jamnik, Polona; Istenič, Katja; Wulff, Tune

    2017-01-01

    , where values of cod and chicken were (95.5±1.2) and (90.5±0.7) %, respectively. Neither species nor digestion had any effect on cellular metabolic energy. At proteome level, digested hydrolysates gave again significantly stronger responses than undigested counterparts; cod peptides here also gave...... somewhat stronger response than chicken peptides. The knowledge of the action of food protein hydrolysates and their digests within live cells, also at proteome level, is important for further validation of their activity in higher eukaryotes to develop new products, such as in this case chicken and cod...... muscle-derived peptides as functional ingredients....

  10. Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies

    NARCIS (Netherlands)

    Kiewiet, Mensiena B. Gea; van Esch, Betty C. A. M.; Garssen, Johan; Faas, Marijke M.; de Vos, Paul

    2017-01-01

    Scope: Partially hydrolyzed cow's milk proteins are used to prevent cow's milk allergy in children. Here we studied the immunomodulatory mechanisms of partial cow's milk hydrolysates in vivo. Methods and results: Mice were sensitized with whey or partially hydrolyzed whey using cholera toxin.

  11. Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies

    NARCIS (Netherlands)

    Kiewiet, Mensiena B. Gea; van Esch, Betty C. A. M.; Garssen, Johan; Faas, Marijke M.; de Vos, Paul

    Scope: Partially hydrolyzed cow's milk proteins are used to prevent cow's milk allergy in children. Here we studied the immunomodulatory mechanisms of partial cow's milk hydrolysates in vivo. Methods and results: Mice were sensitized with whey or partially hydrolyzed whey using cholera toxin.

  12. Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies

    NARCIS (Netherlands)

    Kiewiet, Mensiena B Gea; van Esch, Betty C A M; Garssen, Johan; Faas, Marijke M; Vos, Paul

    2017-01-01

    SCOPE: Partially hydrolyzed cow's milk proteins are used to prevent cow's milk allergy in children. Here we studied the immunomodulatory mechanisms of partial cow's milk hydrolysates in vivo. METHODS AND RESULTS: Mice were sensitized with whey or partially hydrolyzed whey using cholera toxin.

  13. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Katahira, Satoshi; Fukuda, Hideki [Kobe Univ. (Japan). Div. of Molecular Science; Mizuike, Atsuko; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2006-10-15

    The sulfuric acid hydrolysate of lignocellulosic biomass, such as wood chips, from the forest industry is an important material for fuel bioethanol production. In this study, we constructed a recombinant yeast strain that can ferment xylose and cellooligosaccharides by integrating genes for the intercellular expressions of xylose reductase and xylitol dehydrogenase from Pichia stipitis, and xylulokinase from Saccharomyces cerevisiae and a gene for displaying ss-glucosidase from Aspergillus acleatus on the cell surface. In the fermentation of the sulfuric acid hydrolysate of wood chips, xylose and cellooligosaccharides were completely fermented after 36 h by the recombinant strain, and then about 30 g/l ethanol was produced from 73 g/l total sugar added at the beginning. In this case, the ethanol yield of this recombinant yeast was much higher than that of the control yeast. These results demonstrate that the fermentation of the lignocellulose hydrolysate is performed efficiently by the recombinant Saccharomyces strain with abilities for xylose assimilation and cellooligosaccharide degradation. (orig.)

  14. Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking

    Directory of Open Access Journals (Sweden)

    Mahta Mirzaei

    2018-04-01

    Full Text Available Kluyveromyces marxianus protein hydrolysates were prepared by two different sonicated-enzymatic (trypsin and chymotrypsin hydrolysis treatments to obtain antioxidant and ACE-inhibitory peptides. Trypsin and chymotrypsin hydrolysates obtained by 5 h, exhibited the highest antioxidant and ACE-inhibitory activities. After fractionation using ultrafiltration and reverse phase high performance liquid chromatography (RP-HPLC techniques, two new peptides were identified. One fragment (LL-9, MW = 1180 Da with the amino acid sequence of Leu-Pro-Glu-Ser-Val-His-Leu-Asp-Lys showed significant ACE inhibitory activity (IC50 = 22.88 μM while another peptide fragment (VL-9, MW = 1118 Da with the amino acid sequence of Val-Leu-Ser-Thr-Ser-Phe-Pro-Pro-Lys showed the highest antioxidant and ACE inhibitory properties (IC50 = 15.20 μM, 5568 μM TE/mg protein. The molecular docking studies revealed that the ACE inhibitory activities of VL-9 is due to interaction with the S2 (His513, His353, Glu281 and S′1 (Glu162 pockets of ACE and LL-9 can fit perfectly into the S1 (Thr345 and S2 (Tyr520, Lys511, Gln281 pockets of ACE. Keywords: K. marxianus, Bioactive peptides, Antioxidant, ACE inhibitory, Protein hydrolysate

  15. Assessment of safety and efficiency of nitrogen organic fertilizers from animal-based protein hydrolysates--a laboratory multidisciplinary approach.

    Science.gov (United States)

    Corte, Laura; Dell'abate, Maria Teresa; Magini, Alessandro; Migliore, Melania; Felici, Barbara; Roscini, Luca; Sardella, Roccaldo; Tancini, Brunella; Emiliani, Carla; Cardinali, Gianluigi; Benedetti, Anna

    2014-01-30

    Protein hydrolysates or hydrolysed proteins (HPs) are high-N organic fertilizers allowing the recovery of by-products (leather meal and fluid hydrolysed proteins) otherwise disposed of as polluting wastes, thus enhancing matter and energy conservation in agricultural systems while decreasing potential pollution. Chemical and biological characteristics of HPs of animal origin were analysed in this work to assess their safety, environmental sustainability and agricultural efficacy as fertilizers. Different HPs obtained by thermal, chemical and enzymatic hydrolytic processes were characterized by Fourier transform infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis, and their safety and efficacy were assessed through bioassays, ecotoxicological tests and soil biochemistry analyses. HPs can be discriminated according to their origin and hydrolysis system by proteomic and metabolomic methods. Three experimental systems, soil microbiota, yeast and plants, were employed to detect possible negative effects exerted by HPs. The results showed that these compounds do not significantly interfere with metabolomic activity or the reproductive system. The absence of toxic and genotoxic effects of the hydrolysates prepared by the three hydrolytic processes suggests that they do not negatively affect eukaryotic cells and soil ecosystems and that they can be used in conventional and organic farming as an important nitrogen source derived from otherwise highly polluting by-products. © 2013 Society of Chemical Industry.

  16. Production of Fish Hydrolysates Protein From Waste of Fish Carp (Cyprinus Carpio by Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Dede Saputra

    2016-03-01

    Full Text Available Fish Protein Hydrolysates (FPH is the mixed products of polypeptide, dipeptides, and amino acid. It can be produced from materials that contained of protein by acid reaction, base reaction or enzymatic hydrolysis. The objectives of this study were to study the production of FPH from fish carp meat at post rigor phase and viscera by enzymatic hydrolysis, to determine the specific activity of papain enzyme, and to determine the solubility of FPH. Capacity of fish hydrolyzing can be identified by analyzing the content of dissolved total nitrogen (NTT compared with nitrogen total ingredient (NTB in order to get the value of total soluble nitrogen/total nitrogen material (NTT/NTB. The hydrolysis processes were carried out in 0,26% (w/v papain, 60 οC for 3 hours. The result showed that the specific activity of papain enzyme was about 3.28 U/mg. Solubility of FPH by comparing NTT/NTB was about 0.29% (fish meat and 0.40% (fish viscera. Proximate test of protein content of fish meat was 18.34 ± 0.04 (g/100 g; while viscera was about 0.95±0.04 (g/100 g. The result indicated that product waste of fish carp had potential as a major of source of FPH.

  17. [Prediction of total nitrogen and alkali hydrolysable nitrogen content in loess using hyperspectral data based on correlation analysis and partial least squares regression].

    Science.gov (United States)

    Liu, Xiu-ying; Wang, Li; Chang, Qing-rui; Wang, Xiao-xing; Shang, Yan

    2015-07-01

    Wuqi County of Shaanxi Province, where the vegetation recovering measures have been carried out for years, was taken as the study area. A total of 100 loess samples from 24 different profiles were collected. Total nitrogen (TN) and alkali hydrolysable nitrogen (AHN) contents of the soil samples were analyzed, and the soil samples were scanned in the visible/near-infrared (VNIR) region of 350-2500 nm in the laboratory. The calibration models were developed between TN and AHN contents and VNIR values based on correlation analysis (CA) and partial least squares regression (PLS). Independent samples validated the calibration models. The results indicated that the optimum model for predicting TN of loess was established by using first derivative of reflectance. The best model for predicting AHN of loess was established by using normal derivative spectra. The optimum TN model could effectively predict TN in loess from 0 to 40 cm, but the optimum AHN model could only roughly predict AHN at the same depth. This study provided a good method for rapidly predicting TN of loess where vegetation recovering measures have been adopted, but prediction of AHN needs to be further studied.

  18. Microbial Production of Xylitol from Oil Palm Empty Fruit Bunch Hydrolysate: Effects of Inoculum and pH

    Directory of Open Access Journals (Sweden)

    M.T.A.P. Kresnowati

    2016-11-01

    Full Text Available Considering its high content of hemicellulose, oil palm empty fruit bunch (EFB lignocellulosic biomass waste from palm oil processing has the potential to be utilized as the raw material for the production of xylitol, a low calorie, low GI, and anti cariogenic alternative sugar with similar sweetness to sucrose. This research explored the possibility of converting EFB to xylitol via green microbial fermentation, in particular the effects of inoculum and initial pH on the fermentation performance. It was observed that the cell concentration in the inoculum and the initial pH affect cell growth and xylitol production. pH 5 was observed to give the best fermentation performance. Further, the fermentation tended to yield more xylitol at higher initial cell concentration. It was also observed that no growth or fermentation inhibitory compounds were found in the EFB hydrolysate obtained from enzymatic hydrolysis of EFB. Thus it can be used directly as substrate for xylitol fermentation.

  19. Protein hydrolysates are avoided by herbivores but not by omnivores in two-choice preference tests.

    Directory of Open Access Journals (Sweden)

    Kristin L Field

    Full Text Available The negative sensory properties of casein hydrolysates (HC often limit their usage in products intended for human consumption, despite HC being nutritious and having many functional benefits. Recent, but taxonomically limited, evidence suggests that other animals also avoid consuming HC when alternatives exist.We evaluated ingestive responses of five herbivorous species (guinea pig, mountain beaver, gopher, vole, and rabbit and five omnivorous species (rat, coyote, house mouse, white-footed mouse, and deer mouse; N = 16-18/species using solid foods containing 20% HC in a series of two-choice preference tests that used a non-protein, cellulose-based alternative. Individuals were also tested with collagen hydrolysate (gelatin; GE to determine whether it would induce similar ingestive responses to those induced by HC. Despite HC and GE having very different nutritional and sensory qualities, both hydrolysates produced similar preference score patterns. We found that the herbivores generally avoided the hydrolysates while the omnivores consumed them at similar levels to the cellulose diet or, more rarely, preferred them (HC by the white-footed mouse; GE by the rat. Follow-up preference tests pairing HC and the nutritionally equivalent intact casein (C were performed on the three mouse species and the guinea pigs. For the mice, mean HC preference scores were lower in the HC v C compared to the HC v Cel tests, indicating that HC's sensory qualities negatively affected its consumption. However, responses were species-specific. For the guinea pigs, repeated exposure to HC or C (4.7-h sessions; N = 10 were found to increase subsequent HC preference scores in an HC v C preference test, which was interpreted in the light of conservative foraging strategies thought to typify herbivores.This is the first empirical study of dietary niche-related taxonomic differences in ingestive responses to protein hydrolysates using multiple species under comparable

  20. Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex*

    Science.gov (United States)

    Sindayikengera, Séverin; Xia, Wen-shui

    2006-01-01

    Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and evaluated for their nutritional qualities. Their chemical composition, protein solubility, amino acid composition, essential amino acid index (EAA index), biological value (BV), nutritional index (NI), chemical score, enzymic protein efficiency ratio (E-PER) and in vitro protein digestibility (IVPD) were determined. The results indicated that the enzymatic hydrolysis of WPC 80 and sodium caseinate by Protamex improved the solubility and IVPD of their hydrolysates. WPC 80, sodium caseinate and their hydrolysates were high-quality proteins and had a surplus of essential amino acids compared with the FAO/WHO/UNU (1985) reference standard. The nutritive value of WPC 80 and its hydrolysates was superior to that of sodium caseinate and its hydrolysates as indicated by some nutritional parameters such as the amino acid composition, chemical score, EAA index and predicted BV. However, the E-PER was lower for the WPC hydrolysates as compared to unhydrolyzed WPC 80 but sodium caseinate and its hydrolysates did not differ significantly. The nutritional qualities of WPC 80, sodium caseinate and their hydrolysates were good and make them appropriate for food formulations or as nutritional supplements. PMID:16421963

  1. Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source.

    Science.gov (United States)

    Yen, Hong-Wei; Chang, Jung-Tzu

    2015-05-01

    The conversion of abundant lignocellulosic biomass (LCB) to valuable compounds has become a very attractive idea recently. This study successfully used LCB (rice straw) hydrolysate as a carbon source for the cultivation of oleaginous yeast-Rhodotorula glutinis in an airlift bioreactor. The lipid content of 34.3 ± 0.6% was obtained in an airlift batch with 60 g reducing sugars/L of LCB hydrolysate at a 2 vvm aeration rate. While using LCB hydrolysate as the carbon source, oleic acid (C18:1) and linoleic acid (C18:2) were the predominant fatty acids of the microbial lipids. Using LCB hydrolysate in the airlift bioreactor at 2 vvm achieved the highest cell mass growth as compared to the agitation tank. Despite the low lipid content of the batch using LCB hydrolysate, this low cost feedstock has the potential of being adopted for the production of β-carotene instead of lipid accumulation in the airlift bioreactor for the cultivation of R. glutinis. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Continuous hydrogen and methane production from Agave tequilana bagasse hydrolysate by sequential process to maximize energy recovery efficiency.

    Science.gov (United States)

    Montiel Corona, Virginia; Razo-Flores, Elías

    2018-02-01

    Continuous H 2 and CH 4 production in a two-stage process to increase energy recovery from agave bagasse enzymatic-hydrolysate was studied. In the first stage, the effect of organic loading rate (OLR) and stirring speed on volumetric hydrogen production rate (VHPR) was evaluated in a continuous stirred tank reactor (CSTR); by controlling the homoacetogenesis with the agitation speed and maintaining an OLR of 44 g COD/L-d, it was possible to reach a VHPR of 6 L H 2 /L-d, equivalent to 1.34 kJ/g bagasse. In the second stage, the effluent from CSTR was used as substrate to feed a UASB reactor for CH 4 production. Volumetric methane production rate (VMPR) of 6.4 L CH 4 /L-d was achieved with a high OLR (20 g COD/L-d) and short hydraulic retention time (HRT, 14 h), producing 225 mL CH 4 /g-bagasse equivalent to 7.88 kJ/g bagasse. The two-stage continuous process significantly increased energy conversion efficiency (56%) compared to one-stage hydrogen production (8.2%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    Science.gov (United States)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  4. SOYBEAN AND CASEIN HYDROLYSATES INDUCE GRAPEVINE IMMUNE RESPONSES AND RESISTANCE AGAINST PLASMOPARA VITICOLA

    Directory of Open Access Journals (Sweden)

    Nihed eLachhab

    2014-12-01

    Full Text Available Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy and casein (cas to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to the control, respectively. Since both hydrolysates might trigger the plant immunity, we investigated their ability to elicit grapevine defence responses. On grapevine cell suspensions, a different free cytosolic calcium signature was recorded for each hydrolysate, whereas a similar transient phosphorylation of two MAP kinases of 45 and 49 kDa was observed. These signalling events were followed by transcriptome reprogramming, including the up-regulation of defence genes encoding pathogenesis-related (PR proteins and the stilbene synthase enzyme responsible for the biosynthesis of resveratrol, the main grapevine phytoalexin. Liquid chromatography analyses confirmed the production of resveratrol and its dimer metabolites, δ- and ε-viniferins. Overall, soy effects were more pronounced as compared to the cas one. Both hydrolysates proved to act as elicitors to enhance grapevine immunity against pathogen attack.

  5. Safety assessment of Maillard reaction products of chicken bone hydrolysate using Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Jin-Zhi Wang

    2016-03-01

    Full Text Available Background: The Maillard reaction products of chicken bone hydrolysate (MRPB containing 38% protein, which is a derived product from chicken bone, is usually used as a flavor enhancer or food ingredient. In the face of a paucity of reported data regarding the safety profile of controversial Maillard reaction products, the potential health effects of MRPB were evaluated in a subchronic rodent feeding study. Methods: Sprague–Dawley rats (SD, 5/sex/group were administered diets containing 9, 3, 1, or 0% of MRPB derived from chicken bone for 13 weeks. Results: During the 13-week treatment period, no mortality occurred, and no remarkable changes in general condition and behavior were observed. The consumption of MRPB did not have any effect on body weight or feed and water consumption. At the same time, there was no significant increase in the weights of the heart, liver, lung, kidney, spleen, small intestine, and thymus in groups for both sexes. Serological examination showed serum alanine aminotransferase in both sexes was decreased significantly, indicating liver cell protection. No treatment-related histopathological differences were observed between the control and test groups. Conclusion: Based on the results of this study, the addition of 9% MRPB in the diet had no adverse effect on both male and female SD rats during the 90-day observation. Those results would provide useful information on the safety of a meaty flavor enhancer from bone residue as a byproduct of meat industry.

  6. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose.

    Science.gov (United States)

    Hong, Xu; Meng, Jun; Lu, Rong-Rong

    2015-01-01

    The Maillard reaction is widely used to improve the functional properties or biological activities of food. The purpose of this study was to investigate the effect of the Maillard reaction on angiotensin I converting enzyme (ACE) inhibitory activity in a casein hydrolysate-xylose system. Two-step hydrolysis was used to prepare casein ACE inhibitory peptides. Maillard reaction products (MRPs) were prepared by heating hydrolyzed casein with xylose at pH 8.0, 110 °C for up to 16 h. The results showed that the content of free amino group decreased (P Maillard reaction (P reaction in the MRPs. The study shows that the Maillard reaction under appropriate conditions can improve the ACE inhibitory activity of casein hydrolysate effectively. © 2014 Society of Chemical Industry.

  7. Bitterness in sodium caseinate hydrolysates: role of enzyme preparation and degree of hydrolysis.

    Science.gov (United States)

    O'Sullivan, Dara; Nongonierma, Alice B; FitzGerald, Richard J

    2017-10-01

    Enzymatic hydrolysis of sodium caseinate (NaCas) may lead to the development of bitterness. Careful selection of hydrolysis conditions (i.e. enzyme preparation and duration) yielding different degrees of hydrolysis (DH) may aid in the development of low bitterness. Eighteen NaCas hydrolysates were generated with four enzyme preparations (Alcalase 2.4L, Prolyve 1000, FlavorPro Whey and pepsin) to different DH values. Hydrolysate bitterness score, assessed using a trained panel (ten assessors), generally increased at higher DH values for Alcalase, Prolyve and pepsin hydrolysates. However, all FlavorPro Whey hydrolysates (DH 0.38-10.62%) displayed low bitterness score values ( 0.05). Enzyme preparation and DH affect the bitterness of NaCas hydrolysates. The results are relevant for the generation of NaCas hydrolysates with reduced bitterness. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Protein and protein hydrolysates in sports nutrition.

    Science.gov (United States)

    van Loon, Luc J C; Kies, Arie K; Saris, Wim H M

    2007-08-01

    With the increasing knowledge about the role of nutrition in increasing exercise performance, it has become clear over the last 2 decades that amino acids, protein, and protein hydrolysates can play an important role. Most of the attention has been focused on their effects at a muscular level. As these nutrients are ingested, however, it also means that gastrointestinal digestibility and absorption can modulate their efficacy significantly. Therefore, discussing the role of amino acids, protein, and protein hydrolysates in sports nutrition entails holding a discussion on all levels of the metabolic route. On May 28-29, 2007, a small group of researchers active in the field of exercise science and protein metabolism presented an overview of the different aspects of the application of protein and protein hydrolysates in sports nutrition. In addition, they were asked to share their opinions on the future progress in their fields of research. In this overview, an introduction to the workshop and a short summary of its outcome is provided.

  9. An Imperative Type Hierarchy with Partial Products

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff; Schmidt, Erik Meineche

    1989-01-01

    notation for defining recursive types, that is superior to traditional type sums and products. We show how the ordering on types extends to an ordering on types with invariants. We allow the use of least upper bounds in type definitions and show how to compute upper bounds of invariants.......A type hierarchy for a programming language defines an ordering on the types such that any application for small types may be reused for all larger types. The imperative facet makes this non-trivial; the straight-forward definitions will yield an inconsistent system. We introduce a new type...... constructor, the partial product, and show how to define a consistent hierarchy in the context of fully recursive types. A simple polymorphism is derived by introducing a notion of placeholder types. By extending the partial product types to include structural invariants we obtain a particularly appropriate...

  10. A mutation of Aspergillus niger for hyper-production of citric acid from corn meal hydrolysate in a bioreactor*

    Science.gov (United States)

    Hu, Wei; Liu, Jing; Chen, Ji-hong; Wang, Shu-yang; Lu, Dong; Wu, Qing-hua; Li, Wen-jian

    2014-01-01

    The properties of the screened mutants for hyper-production of citric acid induced by carbon (12C6+) ion beams and X-ray irradiation were investigated in our current study. Among these mutants, mutant H4002 screened from 12C6+ ion irradiation had a higher yield of citric acid production than the parental strain in a 250-ml shaking flash. These expanded submerged experiments in a bioreactor were also carried out for mutant H4002. The results showed that (177.7–196.0) g/L citric acid was accumulated by H4002 through exploiting corn meal hydrolysate (containing initial 200.0–235.7 g/L sugar) with the productivity of (2.96–3.27) g/(L∙h). This was especially true when the initial sugar concentration was 210 g/L, and the best economical citric acid production reached (187.5±0.7) g/L with a productivity of 3.13 g/(L∙h). It was observed that mutant H4002 can utilize low-cost corn meal as a feedstock to efficiently produce citric acid. These results imply that the H4002 strain has the industrial production potentiality for citric acid and offers strong competition for the citric acid industry. PMID:25367793

  11. A mutation of Aspergillus niger for hyper-production of citric acid from corn meal hydrolysate in a bioreactor.

    Science.gov (United States)

    Hu, Wei; Liu, Jing; Chen, Ji-hong; Wang, Shu-yang; Lu, Dong; Wu, Qing-hua; Li, Wen-jian

    2014-11-01

    The properties of the screened mutants for hyper-production of citric acid induced by carbon ((12)C(6+)) ion beams and X-ray irradiation were investigated in our current study. Among these mutants, mutant H4002 screened from (12)C(6+) ion irradiation had a higher yield of citric acid production than the parental strain in a 250-ml shaking flash. These expanded submerged experiments in a bioreactor were also carried out for mutant H4002. The results showed that (177.7-196.0) g/L citric acid was accumulated by H4002 through exploiting corn meal hydrolysate (containing initial 200.0-235.7 g/L sugar) with the productivity of (2.96-3.27) g/(L∙h). This was especially true when the initial sugar concentration was 210 g/L, and the best economical citric acid production reached (187.5±0.7) g/L with a productivity of 3.13 g/(L∙h). It was observed that mutant H4002 can utilize low-cost corn meal as a feedstock to efficiently produce citric acid. These results imply that the H4002 strain has the industrial production potentiality for citric acid and offers strong competition for the citric acid industry.

  12. Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.

    Science.gov (United States)

    Oosthuyse, T; Carstens, M; Millen, A M E

    2015-07-01

    The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15 g/h whey or casein hydrolysate with 63 g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2 h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2 h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33 g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19 g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Immunomodulatory potential of a brewers' spent grain protein hydrolysate incorporated into low-fat milk following in vitro gastrointestinal digestion.

    Science.gov (United States)

    Crowley, Damian; O'Callaghan, Yvonne; McCarthy, Aoife; Connolly, Alan; Piggott, Charles O; FitzGerald, Richard J; O'Brien, Nora M

    2015-01-01

    Brewers' spent grain (BSG) protein rich fraction was previously hydrolysed using Alcalase (U) and three additional fractions were prepared by membrane fractionation; a 5-kDa retentate (U > 5), a 5-kDa permeate (U milk, subjected to simulated gastrointestinal digestion (SGID) and their anti-inflammatory potential was investigated. The digestates caused a significant reduction (p RAW 264.7 cells. IL-2 and interferon-γ (IFN-γ) production in stimulated Jurkat T cells and IL-1β and tumor necrosis factor-α (TNF-α) production in stimulated RAW 264.7 cells were not affected in the presence of the digestates. Results show that a SGID milk product supplemented with BSG hydrolysate and its associated ultrafiltered fractions can confer anti-inflammatory effects in Jurkat T cells.

  14. Effect of oxygen partial pressure on production of animal virus (VSV)

    OpenAIRE

    Lim, Hyun S.; Chang, Kern H.; Kim, Jung H.

    1999-01-01

    The effect of oxygen partial pressure on viral replication was investigated with Vero/VSV system. At 10% oxygen partial pressure in spinner culture, VSV titer was significantly increased 130 fold compared to that obtained at 21%. A similar result was obtained for viral production in 1liter bioreactor. This implies that oxygen partial pressure during viral production has to be low. In low oxygen partial pressure, malondialdehyde concentration was decreased about 5 fold. Thus, low oxygen partia...

  15. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mei; Liu, Guang-Lei; Chi, Zhe; Chi, Zhen-Ming [Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No. 5, Qingdao 266003 (China)

    2010-01-15

    Rhodotorula mucilaginosa TJY15a which was isolated from surface of marine fish could accumulate a large amount of lipid from hydrolysate of cassava starch. The cells contained 47.9% (w/w) oil during batch cultivation, whereas 52.9% (w/w) of lipid was obtained during the fed-batch cultivation. At the end of the fed-batch cultivation, all the starch were converted into reducing sugar and only 0.34 g dm{sup -3} of reducing sugar was left in the fermented medium. Therefore, the marine-derived R. mucilaginosa TJY15a was another candidate for single cell oil production. The fatty acids from R. mucilaginosa TJY15a were mainly composed of palmitic acid (C{sub 16:0}), palmitoleic acid (C{sub 16:1}), stearic acid (C{sub 18:0}), oleic acid (C{sub 18:1}) and linolenic acid (C{sub 18:2}), suggesting that the fatty acids could be used as feedstock for biodiesel production. (author)

  16. Microbial Lipid Production from Enzymatic Hydrolysate of Pecan Nutshell Pretreated by Combined Pretreatment.

    Science.gov (United States)

    Qin, Lizhen; Qian, Hanyu; He, Yucai

    2017-12-01

    Biodiesel is a fuel composed of monoalkyl esters of long-chain fatty acids derived from renewable biomass sources. In this study, biomass waste pecan nutshell (PS) was attempted to be converted into microbial oil. For effective utilization of PS, sequential pretreatment with ethylene glycol-H 2 SO 4 -water (78:2:20, wt:wt:wt) at 130 °C for 30 min and aqueous ammonia (25 wt%) at 50 °C for 24 h was used to enhance its enzymatic saccharification. Significant linear correlation was obtained about delignification-saccharification (R 2  = 0.9507). SEM and FTIR results indicated that combination pretreatment could effectively remove lignin and xylan in PS for promoting its enzymatic saccharification. After 72 h, the reducing sugars from the hydrolysis of 50 g/L pretreated PS by combination pretreatment could be obtained at 73.6% yield. Using the recovered PS hydrolysates containing 20 g/L glucose as carbon source, microbial lipids produced from the PS hydrolysates by Rhodococcus opacus ACCC41043. Four fatty acids including palmitic acid (C16:0; 23.1%), palmitoleic acid (C16:1; 22.4%), stearic acid (C18:0; 15.3%), and oleic acid (C18:1; 23.9%) were distributed in total fatty acids. In conclusion, this strategy has potential application in the future.

  17. Antibacterial activity of papain hydrolysed camel whey and its fractions

    DEFF Research Database (Denmark)

    Abdel-Hamid, Mahmoud; Goda, Hanan A.; De Gobba, Cristian

    2016-01-01

    Camel whey (ON) was hydrolysed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial activity of the CW, camel whey hydrolysate (CWH) and the obtained SEC-fractions was assessed using the disc-diffusion method. The CWH exhibited significantly...

  18. Evaluation of the possibility of using brewer’s spent grain for the fermentation of lignocellulosic hydrolysates to biobutanol

    Directory of Open Access Journals (Sweden)

    Morozova Tatyana Sergeevna

    2017-06-01

    Full Text Available The paper deals with the investigation of the possible using of brewer’s grain as a source of growth substabces in acetone-butanol fermentation of lignocellulosic hydrolysates in order to reduce the cost of biobutanol production and to utilize the brewery waste. The fermentation of glucose was carried out at different concentrations of the brewer’s grain by Clostridium acetobutylicum ATCC 824. In the experiments on fermentation of the lignocellulosic hydrolysates an enzymatic hydrolysate of miscanthus cellulose containing 34.8 g/l glucose and 15.6 g/l xylose was used as a source of reducing substances. The sterilization of the medium was carried out at 0.5 KPa for 20 minutes. The sterilization of the growth and reducing substances sources was conducted separately to prevent caramelization of products and melanoidins. For inoculation the spores of 3% (vol/vol C. acetobutylicum ATCC 824 were transferred to a fresh medium. The strain was grown at 37 °С under anaerobic conditions. In a series of experiments on the evaluation of the influence of the brewer’s grain on the fermentability of carbohydrates by the strain of C. acetobutylicum АТСС 824, limiting and inhibitive concentrations of brewer’s grain were determined in the medium, which were 2 and 20 % vol., respectively. The optimal amount of the brewer’s grain was about 6 % vol. At the optimal concentration of the brewer’s grain the fermentation of lignocellulosic hydrolysates occured in all replicates. It was characterized by intensive gas and foam formation that corresponds to the data in literature. After 79-88 h of fermentation of miscanthus cellulose hydrolysate the product yield amounted 10.14±0.87 g/L butanol, 02.48±0.53 acetone, 01.02±0.42 g/L ethanol. It was found that at an optimum concentration both the fresh and sour brewer’s grain can be used in the fermentation. After the acetone-butanol fermentation the brewer’s grain can be used as a food for farm animals

  19. Improvement of D-Ribose Production from Corn Starch Hydrolysate by a Transketolase-Deficient Strain Bacillus subtilis UJS0717

    Science.gov (United States)

    Wei, Zhuan; Zhou, Jue; Sun, WenJing; Cui, FengJie; Xu, QinHua; Liu, ChangFeng

    2015-01-01

    D-Ribose is a five-carbon sugar and generally used as an energy source to improve athletic performance and the ability. The culture conditions for maximum D-ribose production performance from cheap raw material corn starch hydrolysate were improved by using one-factor-at-a-time experiments and a three-level Box-Behnken factorial design. The optimal fermentation parameters were obtained as 36°C culture temperature, 10% inoculum volume, and 7.0 initial pH. The mathematical model was then developed to show the effect of each medium composition and their interactions on the production of D-ribose and estimated that the optimized D-ribose production performance with the concentration of 62.13 g/L, yield of 0.40 g/g, and volumetric productivity of 0.86 g/L·h could be obtained when the medium compositions were set as 157 g/L glucose, 21 g/L corn steep liquor, 3.2 g/L (NH4)2SO4, 1 g/L yeast extract, 0.05 g/L MnSO4·H2O, and 20 g/L CaCO3. These findings indicated the D-ribose production performance was significantly improved compared to that under original conditions. PMID:26759810

  20. Drench application of fish-derived protein hydrolysates affects lettuce growth, chlorophyll content, and gas exchange

    Science.gov (United States)

    The use of biostimulants to enhance crop production has gained considerable momentum because of its contribution to agroecological sustainability. Protein hydrolysates (PHs) are an important group of plant biostimulants that have received increasing attention in recent years due to their positive ef...

  1. Simulated Moving Bed Chromatography: Separation and Recovery of Sugars and Ionic Liquid from Biomass Hydrolysates

    Science.gov (United States)

    Caes, Benjamin R.; Van Oosbree, Thomas R.; Lu, Fachuang; Ralph, John; Maravelias, Christos T.

    2015-01-01

    Simulated moving bed chromatography, a continuous separation method, enables the nearly quantitative recovery of sugar products and ionic liquid solvent from chemical hydrolysates of biomass. The ensuing sugars support microbial growth, and the residual lignin from the process is intact. PMID:23939991

  2. Comparison of Nitrogen Bioaccessibility from Salmon and Whey Protein Hydrolysates using a Human Gastrointestinal Model (TIM-1

    Directory of Open Access Journals (Sweden)

    Bomi Framroze

    2014-05-01

    Full Text Available Background: The TIM-1 system is a computer-controlled multi-compartmental dynamic model that closely simulates in vivo gastrointestinal tract digestion in humans. During digestion, the compounds released from meal matrix by gastric and intestinal secretions (enzymes are progressively absorbed through semipermeable membranes depending on their molecular weight. These absorbed (dialysed compounds are considered as bioaccessible, which means that they can be theoretically absorbed by the small intestine in the body. Methods: Salmon protein hydrolysate (SPH, whey protein hydrolysates extensively (WPHHigh or weakly (WPH-Low hydrolysed, non-hydrolysed whey protein isolate (WPI and mixtures of WPI:SPH (90:10, 80:20 were digested in TIM-1 using the conditions for a fast gastrointestinal transit that simulate the digestion of a liquid meal in human adults. During digestion (2 hours, samples were collected in intestinal compartments (duodenum, jejunum, and ileum and in both jejunal and ileal dialysates to determine their nitrogen content. All the products were compared in terms of kinetics of nitrogen absorption through the semipermeable membranes (bioaccessible nitrogen and nitrogen distribution throughout the intestinal compartments at the end of the 2 hour digestion. Results: After a 2 h-digestion in TIM-1, SPH was the protein substrate from which the highest amount of nitrogen (67.0% becomes available for the small intestine absorption. WPH-High had the second highest amount (56.0% of bioaccessible nitrogen while this amount decreased to 38.5–42.2% for the other protein substrates. The high nitrogen bioaccessibility of SPH is consistent with its richness in low molecular weight peptides (50% < 1000 Da. Conclusions: The results of this study indicate that SPH provides a higher proportion of bioaccessible nitrogen to a healthy adult compared to all forms of whey proteins, including extensively hydrolysed whey protein hydrolysate. The substitution of

  3. The hypolipidemic effect and antithrombotic activity of Mucuna pruriens protein hydrolysates.

    Science.gov (United States)

    Herrera Chalé, Francisco; Ruiz Ruiz, Jorge Carlos; Betancur Ancona, David; Acevedo Fernández, Juan José; Segura Campos, Maira Rubi

    2016-01-01

    Hydrolysates and peptide fractions (PF) obtained from M. pruriens protein concentrates with commercial and digestive enzymatic systems were studied for their hypolipidemic and antithrombotic activities. Hydrolysates obtained with Pepsin-Pancreatin (PP) and their peptide fractions inhibited cholesterol micellar solubility with a maximum value of 1.83% in PP. Wistar rats were used to evaluate the hypolipidemic effect of hydrolysates and PF. The higher reductions of cholesterol and triglyceride levels were exhibited by PP and both peptide fractions 10 kDa from both hydrolysates showed the maximum antithrombotic activity with values of 33.33% for PF > 10 kDa from AF and 31.72% for PF > 10 kDa from PP. The results suggest that M. pruriens bioactive peptides with the hypolipidemic effect and antithrombotic activity might be utilized as nutraceuticals.

  4. Comparison of Neuroprotective and Cognition-Enhancing Properties of Hydrolysates from Soybean, Walnut, and Peanut Protein

    Directory of Open Access Journals (Sweden)

    Wenzhi Li

    2016-01-01

    Full Text Available Hydrolysates were prepared from soybean, walnut, and peanut protein by papain, respectively. Their amino acid compositions and molecular weight distributions, the effects of various hydrolysates on H2O2-induced injury PC12 cells, and cognition of mice were investigated, respectively. Results showed that the three hydrolysates were dominated by the peptides with 1–3 KDa with large amount of neurotrophic amino acids. All the hydrolysates exhibited much stronger inhibitory activity against H2O2-induced toxicity than cerebrolysin, and soy protein hydrolysate showed the highest activity. Moreover, the hydrolysates also could reduce the rate of nonviable apoptotic cells at the concentration of 2 mg/mL. The test of animal’s cognition indicated that three hydrolysates could present partly better effect of improving recurred memory ability of normal mice and consolidated memory ability of anisodine-treated mice than piracetam. Therefore, soybean, walnut, and peanut protein hydrolysates were recommended as a potential food raw material for prevention or treatment of neurodegenerative disorders.

  5. Statistical Optimization of Medium for Pullulan Production by Aureobasidium pullulans NCPS2016 Using Fructose and Soybean Meal Hydrolysates

    Directory of Open Access Journals (Sweden)

    Jinyu Yang

    2018-06-01

    Full Text Available Pullulan, with its excellent characteristics of film-forming, water solubility, and biodegradability, is attracting more and more attention in agricultural products preservation. However, high pullulan production cost largely restricts its widely application due to its low production. In order to improve pullulan production by Aureobasidium pullulans NCPS2016, the medium was optimized using single factor experiment and response surface methodology. Based on the single factor experiments, the contents of soybean meal hydrolysates (SMHs, (NH42SO4, and K2HPO4·3H2O were considered to be main factors influencing the extracellular polysaccharide (EPS production, and were further optimized by Box–Behnken design. The optimal content of SMHs of 7.71 g/L, (NH42SO4 of 0.35 g/L, and K2HPO4·3H2O of 8.83 g/L were defined. Finally, EPS production of 59.8 g/L was obtained, 39% higher in comparison with the production in the basal medium. The purified EPS produced by NCPS2016 was confirmed to be pullulan. This is the first time fructose is reported to be the optimal carbon source for pullulan production by Aureobasidium pullulans, which is of great significance for the further study of the mechanism of the synthesis of pullulan by NCPS2016. Also, the results here have laid a foundation for reducing the industrial production cost of pullulan.

  6. Single Cell Oil Production from Hydrolysates of Inulin by a Newly Isolated Yeast Papiliotrema laurentii AM113 for Biodiesel Making.

    Science.gov (United States)

    Wang, Guangyuan; Liu, Lin; Liang, Wenxing

    2018-01-01

    Microbial oils are among the most attractive alternative feedstocks for biodiesel production. In this study, a newly isolated yeast strain, AM113 of Papiliotrema laurentii, was identified as a potential lipid producer, which could accumulate a large amount of intracellular lipids from hydrolysates of inulin. P. laurentii AM113 was able to produce 54.6% (w/w) of intracellular oil in its cells and 18.2 g/l of dry cell mass in a fed-batch fermentation. The yields of lipid and biomass were 0.14 and 0.25 g per gram of consumed sugar, respectively. The lipid productivity was 0.092 g of oil per hour. Compositions of the fatty acids produced were C 14:0 (0.9%), C 16:0 (10.8%), C 16:1 (9.7%), C 18:0 (6.5%), C 18:1 (60.3%), and C 18:2 (11.8%). Biodiesel obtained from the extracted lipids could be burnt well. This study not only provides a promising candidate for single cell oil production, but will also probably facilitate more efficient biodiesel production.

  7. Short communication: Tryptic β-casein hydrolysate modulates enteric nervous system development in primary culture.

    Science.gov (United States)

    Cossais, F; Clawin-Rädecker, I; Lorenzen, P C; Klempt, M

    2017-05-01

    The intestinal tract of the newborn is particularly sensitive to gastrointestinal disorders, such as infantile diarrhea or necrotizing colitis. Perinatal development of the gut also encompasses the maturation of the enteric nervous system (ENS), a main regulator of intestinal motility and barrier functions. It was recently shown that ENS maturation can be enhanced by nutritional factors to improve intestinal maturation. Bioactivity of milk proteins is often latent, requiring the release of bioactive peptides from inactive native proteins. Several casein-derived hydrolysates presenting immunomodulatory properties have been described recently. Furthermore, accumulating data indicate that milk-derived hydrolysate can enhance gut maturation and enrichment of milk formula with such hydrolysates has recently been proposed. However, the capability of milk-derived bioactive hydrolysate to target ENS maturation has not been analyzed so far. We, therefore, investigated the potential of a recently described tryptic β-casein hydrolysate to modulate ENS growth parameters in an in vitro model of rat primary culture of ENS. Rat primary cultures of ENS were incubated with a bioactive tryptic β-casein hydrolysate and compared with untreated controls or to cultures treated with native β-casein or a Prolyve β-casein hydrolysate (Lyven, Colombelles, France). Differentiation of enteric neurons and enteric glial cells, and establishment of enteric neural network were analyzed using immunohistochemistry and quantitative PCR. Effect of tryptic β-casein hydrolysate on bone morphogenetic proteins (BMP)/Smad pathway, an essential regulator of ENS development, was further assessed using quantitative PCR and immunochemistry. Tryptic β-casein hydrolysate stimulated neurite outgrowth and simultaneously modulated the formation of enteric ganglia-like structures, whereas native β-casein or Prolyve β-casein hydrolysate did not. Additionally, treatment with tryptic bioactive

  8. Production of DagA and ethanol by sequential utilization of sugars in a mixed-sugar medium simulating microalgal hydrolysate.

    Science.gov (United States)

    Park, Juyi; Hong, Soon-Kwang; Chang, Yong Keun

    2015-09-01

    A novel two-step fermentation process using a mixed-sugar medium mimicking microalgal hydrolysate has been proposed to avoid glucose repression and thus to maximize substrate utilization efficiency. When DagA, a β-agarase was produced in one step in the mixed-sugar medium by using a recombinant Streptomyces lividans, glucose was found to have negative effects on the consumption of the other sugars and DagA biosynthesis causing low substrate utilization efficiency and low DagA productivity. To overcome such difficulties, a new strategy of sequential substrate utilization was developed. In the first step, glucose was consumed by Saccharomyces cerevisiae together with galactose and mannose producing ethanol, after which DagA was produced from the remaining sugars of xylose, rhamnose and ribose. Fucose was not consumed. By adopting this two-step process, the overall substrate utilization efficiency was increased approximately 3-fold with a nearly 2-fold improvement of DagA production, let alone the additional benefit of ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Low-melanin containing pullulan production from sugarcane bagasse hydrolysate by Aureobasidium pullulans in fermentations assisted by light-emitting diode.

    Science.gov (United States)

    Terán Hilares, Ruly; Orsi, Camila Ayres; Ahmed, Muhammad Ajaz; Marcelino, Paulo Franco; Menegatti, Carlos Renato; da Silva, Silvio Silvério; Dos Santos, Júlio César

    2017-04-01

    Pullulan is a polymer produced by Aureobasidium pullulans and the main bottleneck for its industrial production is the presence of melanin pigment. In this study, light-emitting diodes (LEDs) of different wavelengths were used to assist the fermentation process aiming to produce low-melanin containing pullulan by wild strain of A. pullulans LB83 with different carbon sources. Under white light using glucose-based medium, 11.75g.L -1 of pullulan with high melanin content (45.70UA 540nm .g -1 ) was obtained, this production improved in process assisted by blue LED light, that resulted in 15.77g.L -1 of pullulan with reduced content of melanin (4.46UA 540nm .g -1 ). By using sugarcane bagasse (SCB) hydrolysate as carbon source, similar concentration of pullulan (about 20g.L -1 ) was achieved using white and blue LED lights, with lower melanin contents in last. Use of LED light was found as a promising approach to assist biotechnological process for low-melanin containing pullulan production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Lisbeth; Hahn-Haegerdal, B. (Lund Univ. (Sweden). Dept. of Applied Microbiology)

    1993-01-01

    The sugar consumption rates and the product formation of yeasts (Saccharomyces cidri NCYC 775, S. cerevisiae NCYC 1047, S.cerevisiae ATCC 4132) and bacteria (Lactobacillus brevis DSM 20054, Lactococcus lactis ssp. lactis ATCC 19435, Escherichia coli ATCC 11303, Zymomonas mobilis ATCC 31821) were investigated in spent sulphite liquor and an enzymatic hydrolysate of steam-pretreated Salix caprea at different pH values in order to elucidate the suitability of the organisms with respect to future genetic engineering approaches. The possible inhibitory action of the two substrates on the investigated microorganisms was also considered. S.cerevisiae emerged as one of the better candidates, owing to its fast sugar consumption rate and efficient ethanol production. (author)

  11. Selecting optimal feast-to-famine ratio for a new polyhydroxyalkanoate (PHA) production system fed by valerate-dominant sludge hydrolysate.

    Science.gov (United States)

    Hao, Jiuxiao; Wang, Hui; Wang, Xiujin

    2018-04-01

    The feast-to-famine ratio (F/F) represents the extent of selective pressure during polyhydroxyalkanoate (PHA) culture selection. This study evaluated the effects of F/F on a new PHA production system by an enriched culture with valerate-dominant sludge hydrolysate and selected the optimal F/F. After the original F/F 1/3 was modified to 1/1, 1/2, 1/4, and 1/5, F/F did not affect their lengths of feast phase, but affected their biomass growth behaviors during the famine phase and PHA-producing abilities. The optimal F/F was 1/2, and compared with 1/3, it increased the maximal PHA content and the fraction of 3-hydroxyvalerate (3HV) and 3-hydroxy-2-methylvalerate (3H2MV) monomers, with higher productivity and better polymer properties. Although F/F 1/2 impaired the advantage of the dominant genus Delftia, it improved the PHA production rate while decreased biomass growth rate, meanwhile enhancing the utilization and conversion of valerate. These findings indicate that in contrast to previous studies using acetate-dominant substrate for PHA production, the new system fed by valerate-dominant substrate can adopt a higher F/F.

  12. Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    The two-stage process for extreme thermophilic hydrogen and thermophilic methane production from wheat straw hydrolysate was investigated in up-flow anaerobic sludge bed (UASB) reactors. Specific hydrogen and methane yields of 89ml-H2/g-VS (190ml-H2/g-sugars) and 307ml-CH4/g-VS, respectively were...... energy of 13.4kJ/g-VS. Dominant hydrogen-producing bacteria in the H2-UASB reactor were Thermoanaerobacter wiegelii, Caldanaerobacter subteraneus, and Caloramator fervidus. Meanwhile, the CH4-UASB reactor was dominated with methanogens of Methanosarcina mazei and Methanothermobacter defluvii. The results...

  13. Viability of the microencapsulation of a casein hydrolysate in lipid microparticles of cupuacu butter and stearic acid

    Directory of Open Access Journals (Sweden)

    Samantha Cristina Pinho

    2013-04-01

    Full Text Available Normal 0 21 false false false PT-BR X-NONE X-NONE Solid lipid microparticles produced with a mixture of cupuacu butter and stearic acid were used to microencapsulate a commercial casein hydrolysate (Hyprol 8052. The composition of the lipid matrix used for the production of the lipid microparticles was chosen according to data on the wide angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC of bulk lipid mixtures, which indicated that the presence of 10 % cupuacu butter was sufficient to significantly change the crystalline arrangement of pure stearic acid. Preliminary tests indicated that a minimum proportion of 4 % of surfactant (polysorbate 80 was necessary to produce empty spherical lipid particles with average diameters below 10 mm. The lipid microparticles were produced using 20 % cupuacu butter and 80 % stearic acid and then stabilized with 4 % of polysorbate 80, exhibiting an encapsulation efficiency of approximately 74 % of the casein hydrolysate. The melting temperature of the casein hydrolysate-loaded lipid microparticles was detected at 65.2 °C, demonstrating that the particles were solid at room temperature as expected and indicating that the incorporation of peptides had not affected their thermal behavior. After 25 days of storage, however, there was a release of approximately 30 % of the initial amount of encapsulated casein hydrolysate. This release was not thought to have been caused by the liberation of encapsulated casein hydrolysate. Instead, it was attributed to the possible desorption of the adsorbed peptides present on the surface of the lipid microparticles.

  14. A neutral endopeptidase in the microvillar membrane of pig intestine. Partial purification and properties

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Vyas, J P; Kenny, A J

    1980-01-01

    An enzyme hydrolysing [125I]iodo-insulin B chain was enriched in preparations of intestinal microvilli. The activity could be solubilized by Triton X-100 and was partially (76-fold) purified. It was very sensitive to inhibition by phosphoramidon and was also inhibited by chelating agents. In its...

  15. Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates.

    Science.gov (United States)

    Shazly, Ahmed Behdal; He, Zhiyong; El-Aziz, Mahmoud Abd; Zeng, Maomao; Zhang, Shuang; Qin, Fang; Chen, Jie

    2017-10-01

    Buffalo and bovine caseins were hydrolysed by alcalase and trypsin to produce novel antioxidant peptides. The casein hydrolysates were purified using ultrafiltration (UF) and further characterized by RP-HPLC. The fractions produced higher antioxidant activities were identified for their peptides using LC MS/MS. All UF-VI (MWcasein (UF-VI with 54.84-fold purification) showed higher antioxidant activity than that obtained by trypsin. Trypsin hydrolysate contained high amount of hydrophobic amino acids while alcalase hydrolysate consisted mainly of Ser, Arg, Ala and Leu. The antioxidant peptides identified by LC MS/MS were RELEE, MEDNKQ and TVA, EQL in buffalo casein hydrolysates produced by trypsin and alcalase, respectively. Mechanism and reaction pathways of selected antioxidant peptides with ABTS were proposed. Conclusively, buffalo casein provided antioxidant peptides similar to bovine, suggesting that buffalo casein is a novel source of antioxidant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Production and partial purification of extracellular tannase by ...

    African Journals Online (AJOL)

    End-product repression was also studied with inclusion of gallic acid to the growth medium. Enrichment with various additives of metal ions and detergents resulted in inhibition of tannase production. The enzyme was partially purified using ammonium sulfate precipitation followed by the use of DEAE-cellulose. SDS-PAGE ...

  17. Debittering of Protein Hydrolysates by Lactobacillus LBL-4 Aminopeptidase

    Directory of Open Access Journals (Sweden)

    Bozhidar Tchorbanov

    2011-01-01

    Full Text Available Yoghurt strain Lactobacillus LBL-4 cultivated for 8–10 h at pH ~6.0 was investigated as a considerable food-grade source of intracellular aminopeptidase. Cell-free extract manifesting >200 AP U/l was obtained from cells harvested from 1 L culture media. Subtilisin-induced hydrolysates of casein, soybean isolate, and Scenedesmus cell protein with degree of hydrolysis 20–22% incubated at 45∘C for 10 h by 10 AP U/g peptides caused an enlarging of DH up to 40–42%, 46–48%, and 38–40% respectively. The DH increased rapidly during the first 4 h, but gel chromatography studies on BioGel P-2 showed significant changes occurred during 4–10 h of enzyme action when the DH increased gradually. After the digestion, the remained AP activity can be recovered by ultrafiltration (yield 40–50%. Scenedesmus protein hydrolysate with DH 20% was inoculated by Lactobacillus LBL-4 cells, and after 72 h cultivation the DH reached 32%. The protein hydrolysates (DH above 40% obtained from casein and soybean isolate (high Q value demonstrated a negligible bitterness while Scenedesmus protein hydrolysates (low Q value after both treatments were free of bitterness.

  18. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor.

    Science.gov (United States)

    Zahed, Omid; Jouzani, Gholamreza Salehi; Abbasalizadeh, Saeed; Khodaiyan, Faramarz; Tabatabaei, Meisam

    2016-05-01

    The present study was set to develop a robust and economic biorefinery process for continuous co-production of ethanol and xylitol from rice straw in a membrane bioreactor. Acid pretreatment, enzymatic hydrolysis, detoxification, yeast strains selection, single and co-culture batch fermentation, and finally continuous co-fermentation were optimized. The combination of diluted acid pretreatment (3.5 %) and enzymatic conversion (1:10 enzyme (63 floating-point unit (FPU)/mL)/biomass ratio) resulted in the maximum sugar yield (81 % conversion). By concentrating the hydrolysates, sugars level increased by threefold while that of furfural reduced by 50 % (0.56 to 0.28 g/L). Combined application of active carbon and resin led to complete removal of furfural, hydroxyl methyl furfural, and acetic acid. The strains Saccharomyces cerevisiae NCIM 3090 with 66.4 g/L ethanol production and Candida tropicalis NCIM 3119 with 9.9 g/L xylitol production were selected. The maximum concentrations of ethanol and xylitol in the single cultures were recorded at 31.5 g/L (0.42 g/g yield) and 26.5 g/L (0.58 g/g yield), respectively. In the batch co-culture system, the ethanol and xylitol productions were 33.4 g/L (0.44 g/g yield) and 25.1 g/L (0.55 g/g yield), respectively. The maximum ethanol and xylitol volumetric productivity values in the batch co-culture system were 65 and 58 % after 25 and 60 h, but were improved in the continuous co-culture mode and reached 80 % (55 g/L) and 68 % (31 g/L) at the dilution rate of 0.03 L per hour, respectively. Hence, the continuous co-production strategy developed in this study could be recommended for producing value-added products from this hugely generated lignocellulosic waste.

  20. Antioxidant properties of Australian canola meal protein hydrolysates.

    Science.gov (United States)

    Alashi, Adeola M; Blanchard, Christopher L; Mailer, Rodney J; Agboola, Samson O; Mawson, A John; He, Rong; Girgih, Abraham; Aluko, Rotimi E

    2014-03-01

    Antioxidant activities of canola protein hydrolysates (CPHs) and peptide fractions prepared using five proteases and ultrafiltration membranes (1, 3, 5, and 10kDa) were investigated. CPHs had similar and adequate quantities of essential amino acids. The effective concentration that scavenged 50% (EC50) of the ABTS(+) was greatest for the <1kDa pancreatin fraction at 10.1μg/ml. CPHs and peptide fractions scavenged DPPH(+) with most of the EC50 values being <1.0mg/ml. Scavenging of superoxide radical was generally weak, except for the <1kDa pepsin peptide fraction that had a value of 51%. All CPHs inhibited linoleic acid oxidation with greater efficiency observed for pepsin hydrolysates. The oxygen radical absorbance capacity of Alcalase, chymotrypsin and pepsin hydrolysates was found to be better than that of glutathione (GSH) (p<0.05). These results show that CPHs have the potential to be used as bioactive ingredients in the formulation of functional foods against oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Giuseppe eColla

    2014-09-01

    Full Text Available The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L. coleoptile elongation rate test (experiment 1, a rooting test on tomato cuttings (experiment 2; and two greenhouse experiments: a dwarf pea (Pisum sativum L. growth test (experiment 3, and a tomato (Solanum lycopersicum L. nitrogen uptake trial (experiment 4. Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the four concentrations tested (0.375, 0.75, 1.5, and 3.0 ml/L, and inodole-3-acetic acid (IAA treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21%, 35%, 24%, and 26%, respectively in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L significantly increased the shoot length of the giberellin (GA-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5%, 15% and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances.

  2. Antioxidant activities of red tilapia (Oreochromis niloticus) protein hydrolysates as influenced by thermolysin and alcalase

    Science.gov (United States)

    Daud, Nur'Aliah; Babji, Abdul Salam; Yusop, Salma Mohamad

    2013-11-01

    The hydrolysis process was performed on fish meat from Red Tilapia (Oreochromis niloticus) by enzymes thermolysin and alcalase under optimum conditions. The hydrolysis was performed from 0 - 4 hours at 37°C. Hydrolysates after 2 hours incubation with thermolysin and alcalase had degree of hydrolysis of 76.29 % and 63.49 %, respectively. The freeze dried protein hydrolysate was tested for peptide content and characterized with respect to amino acid composition. The result of increased peptide content in Red Tilapia (O. Niloticus) hydrolysates obtained was directly proportional to the increase activities of different proteolytic enzymes. The result of amino acid composition showed that the sample used contained abundant Gly, Ala, Asp, Glu, Lys and Leu in residues or peptide sequences. Both enzymatic hydrolysates were tested for anti-oxidant activity with DPPH and ABTS assay. Alcalase yielded higher anti-oxidative activity than Thermolysin hydrolysates after 1 hour incubation, but both enzymes hydrolysates showed a significant decrease of anti-oxidant activity after 2 hours of incubation. Hydrolysates from Red Tilapia may contribute as a health promoting ingredient in functional foods to reduce oxidation stress caused by accumulated free radicals.

  3. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds.

    Science.gov (United States)

    Ndiaye, Fatou; Vuong, Tri; Duarte, Jairo; Aluko, Rotimi E; Matar, Chantal

    2012-02-01

    Enzymatic protein hydrolysates of yellow pea seed have been shown to possess high anti-oxidant and anti-bacterial activities. The aim of this work was to confirm the anti-oxidant, anti-inflammatory and immunomodulating activities of an enzymatic protein hydrolysate of yellow field pea seeds. The anti-oxidant and anti-inflammatory properties of peptides from yellow field pea proteins (Pisum sativum L.) were investigated in LPS/IFN-γ-activated RAW 264.7 NO⁻ macrophages. The immunomodulating potential of pea protein hydrolysate (PPH) was then studied in a murine model. Pea protein hydrolysate, after a 12 h pre-treatment, showed significant inhibition of NO production by activated macrophages up to 20%. Moreover, PPH significantly inhibited their secretion of pro-inflammatory cytokines, TNF-α- and IL-6, up to 35 and 80%, respectively. Oral administration of PPH in mice enhanced the phagocytic activity of their peritoneal macrophages and stimulated the gut mucosa immune response. The number of IgA+ cells was elevated in the small intestine lamina propria, accompanied by an increase in the number of IL-4+, IL-10+ and IFN-γ+ cells. This was correlated to up-regulation of IL-6 secretion by small intestine epithelial cells (IEC), probably responsible for B-cell terminal differentiation to IgA-secreting cells. Moreover, PPH might have increased IL-6 production in IECs via the stimulation of toll-like receptors (TLRs) family, especially TLR2 and TLR4 since either anti-TLR2 or anti-TLR4 was able to completely abolish PPH-induced IL-6 secretion. Enzymatic protein degradation confers anti-oxidant, anti-inflammatory and immunomodulating potentials to pea proteins, and the resulted peptides could be used as an alternative therapy for the prevention of inflammatory-related diseases.

  4. Improved physicochemical properties and hepatic protection of Maillard reaction products derived from fish protein hydrolysates and ribose.

    Science.gov (United States)

    Yang, Sung-Yong; Lee, Sanghoon; Pyo, Min Cheol; Jeon, Hyeonjin; Kim, Yoonsook; Lee, Kwang-Won

    2017-04-15

    High amounts of waste products generated from fish-processing need to be disposed of despite their potential nutritional value. A variety of methods, such as enzymatic hydrolysis, have been developed for these byproducts. In the current study, we investigated the physicochemical, biological and antioxidative properties of fish protein hydrolysates (FPH) conjugated with ribose through the Maillard reaction. These glycated conjugates of FPH (GFPH) had more viscous rheological properties than FPH and exhibited higher heat, emulsification and foaming stability. They also protected liver HepG2 cells against t-BHP-induced oxidative stress with enhanced glutathione synthesis in vitro. Furthermore, it was shown that GFPH induced upregulation of phase II enzyme expression, such as that of HO-1 and γ-GCL, via nuclear translocation of Nrf2 and phosphorylation of ERK. Taken together, these results demonstrate the potential of GFPH for use as a functional food ingredient with improved rheological and antioxidative properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Preparation and functional evaluation of collagen oligopeptide-rich hydrolysate from fish skin with the serine collagenolytic protease from Pseudoalteromonas sp. SM9913.

    Science.gov (United States)

    Chen, Xiu-Lan; Peng, Ming; Li, Jing; Tang, Bai-Lu; Shao, Xuan; Zhao, Fang; Liu, Chang; Zhang, Xi-Ying; Li, Ping-Yi; Shi, Mei; Zhang, Yu-Zhong; Song, Xiao-Yan

    2017-11-16

    Although several serine collagenolytic proteases from bacteria were reported, none has been used to prepare bioactive collagen peptides. MCP-01 is the most abundant extracellular protease of deep-sea Pseudoalteromonas sp. SM9913 and is a serine collagenolytic protease with high efficiency on fish collagen hydrolysis. Here, we set up a pilot scale process to ferment SM9913 for extracellular protease production. With SM9913 extracellular protease as a tool, a process to prepare collagen oligopeptide-rich hydrolysate from codfish skin was set up, which was further scaled up to pilot (100 L) and plant (2000 L) levels with yields >66%. The hydrolysates from laboratory-, pilot- and plant-scales had quite similar quality, containing ~95% peptides with molecular weights lower than 3000 Da and approximately 60% lower than 1000 Da, in which collagen oilgopeptides account for approximately 95%. Bioactivity analyses showed that the hydrolysate had moisture-retention ability, antioxidant activity, and promoting effect on cell viability of human dermal fibroblasts. Safety evaluation showed that the hydrolysate was nontoxic and nonirritating to skin. Therefore, SM9913 extracellular protease is a good enzyme to prepare bioactive oligopeptides from fish skin. The results also suggest that the collagen oligopeptides-rich hydrolysate may have potentials in biomedical, functional food, pharmaceutical and cosmetic industries.

  6. The impact of furfural concentrations and substrate-to-biomass ratios on biological hydrogen production from synthetic lignocellulosic hydrolysate using mesophilic anaerobic digester sludge.

    Science.gov (United States)

    Akobi, Chinaza; Hafez, Hisham; Nakhla, George

    2016-12-01

    This study evaluated the impact of furfural (a furan derivative) on hydrogen production rates and yields at initial substrate-to-microorganism ratios (S°/X°) of 4, 2, 1, and 0.5gCOD/gVSS and furfural concentrations of 4, 2, 1, and 0.5g/L. Fermentation studies were carried out in batches using synthetic lignocellulosic hydrolysate as substrate and mesophilic anaerobic digester sludge as seed. Contrary to other literature studies where furfural was inhibitory, this study showed that furfural concentrations of up to 1g/L enhanced hydrogen production with yields as high as 19% from the control (batch without furfural). Plots of hydrogen yields against gfurfural/gsugars and hydrogen yields versus gfurfural/gbiomass showed negative linear correlation indicating that these parameters influence biohydrogen production. Regression analysis indicated that gfurfural/gsugars initial exerted a greater effect on the degree of inhibition of hydrogen production than gfurfural/gVSS final . Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The effect of different protein hydrolysate/carbohydrate mixtures on postprandial glucagon and insulin responses in healthy subjects.

    Science.gov (United States)

    Claessens, M; Calame, W; Siemensma, A D; van Baak, M A; Saris, W H M

    2009-01-01

    To study the effect of four protein hydrolysates from vegetable (pea, gluten, rice and soy) and two protein hydrolysates from animal origin (whey and egg) on glucagon and insulin responses. Eight healthy normal-weight male subjects participated in this study. The study employed a repeated-measures design with Latin square randomization and single-blind trials. Protein hydrolysates used in this study (pea, rice, soy, gluten, whey and egg protein hydrolysate) consisted of 0.2 g hydrolysate per kg body weight (bw) and 0.2 g maltodextrin per kg bw and were compared to maltodextrin alone. Postprandial plasma glucose, glucagon, insulin and amino acids were determined over 2 h. All protein hydrolysates induced an enhanced insulin secretion compared to maltodextrin alone and a correspondingly low plasma glucose response. A significant difference was observed in area under the curve (AUC) for plasma glucagon between protein hydrolysates and the maltodextrin control drink (Pprotein hydrolysate induced the lowest glucagon response. High amino-acid-induced glucagon response does not necessarily go together with low insulin response. Protein hydrolysate source affects AUC for glucagon more profoundly than for insulin, although the protein load used in this study seemed to be at lower level for significant physiological effects.

  8. Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce.

    Science.gov (United States)

    Horváth, Ilona Sárvári; Sjöde, Anders; Nilvebrant, Nils-Olof; Zagorodni, Andrei; Jönsson, Leif J

    2004-01-01

    Six anion-exchange resins with different properties were compared with respect to detoxification of a dilute-acid hydrolysate of spruce prior to ethanolic fermentation with Saccharomyces cerevisiae. The six resins encompassed strong and weak functional groups as well as styrene-, phenol-, and acrylic-based matrices. In an analytical experimental series, fractions from columns packed with the different resins were analyzed regarding pH, glucose, furfural, hydroxymethylfurfural, phenolic compounds, levulinic acid, acetic acid, formic acid, and sulfate. An initial adsorption of glucose occurred in the strong alkaline environment and led to glucose accumulation at a later stage. Acetic and levulinic acid passed through the column before formic acid, whereas sulfate had the strongest affinity. In a preparative experimental series, one fraction from each of six columns packed with the different resins was collected for assay of the fermentability and analysis of glucose, mannose, and fermentation inhibitors. The fractions collected from strong anion-exchange resins with styrene-based matrices displayed the best fermentability: a sevenfold enhancement of ethanol productivity compared with untreated hydrolysate. Fractions from a strong anion exchanger with acrylic-based matrix and a weak exchanger with phenol-based resin displayed an intermediate improvement in fermentability, a four- to fivefold increase in ethanol productivity. The fractions from two weak exchangers with styrene- and acrylic-based matrices displayed a twofold increase in ethanol productivity. Phenolic compounds were more efficiently removed by resins with styrene- and phenol-based matrices than by resins with acrylic-based matrices.

  9. Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis.

    Science.gov (United States)

    Tang, Wenting; Zhang, Hui; Wang, Li; Qian, Haifeng; Qi, Xiguang

    2015-02-01

    Anchovy (Engraulis japonicus) cooking wastewater (ACWW) is a by-product resulted from the production of boiled-dried anchovies in the seafood processing industry. In this study, the protein hydrolysate of ACWW (ACWWPH) was found to have antimicrobial activity after enzymatic hydrolysis with Protamex. For the targeted screening of antibacterial peptides, liposomes constructed from Staphylococcus aureus membrane lipids were used in an equilibrium dialysis system. The hydrolysate was further purified by liposome equilibrium dialysis combined with high performance liquid chromatography. The purified antimicrobial peptide (ACWWP1) was determined to be GLSRLFTALK, with a molecular weight of 1104.6622Da. The peptide exhibited no haemolytic activity up to a concentration of 512μg/ml. It displayed a dose-dependent bactericidal effect in reconstituted milk. The change in cell surface hydrophobicity and membrane-permeable action of the purified ACWWP1 may have contributed to the antibacterial effect. This study suggests that liposome equilibrium dialysis can be used for the targeted screening of antimicrobial peptides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg.

    Science.gov (United States)

    Chalamaiah, M; Hemalatha, R; Jyothirmayi, T; Diwan, Prakash V; Bhaskarachary, K; Vajreswari, A; Ramesh Kumar, R; Dinesh Kumar, B

    2015-02-01

    The aim of this study was to prepare protein hydrolysates from underutilized common carp (Cyprinus carpio) egg and to investigate their immunomodulatory effects in vivo. Common carp (Cyprinus carpio) egg (roe) was hydrolysed by pepsin, trypsin, and Alcalase. Chemical composition (proximate, amino acid, mineral and fatty acid compositions) and molecular mass distribution of the three hydrolysates were determined. The carp egg protein hydrolysates (CEPHs) were evaluated for their immunomodulatory effects in BALB/c mice. CEPHs (0.25, 0.5 and 1 g/kg body weight) were orally administered daily to female BALB/c mice (4-6 wk, 18-20 g) for a period of 45 d. After 45 d, mice were sacrificed and different tissues were collected for the immunologic investigations. The three hydrolysates contained high protein content (64%-73%) with all essential amino acids, and good proportion of ω-3 fatty acids, especially docosahexaenoic acid. Molecular mass analysis of hydrolysates confirmed the conversion of large-molecular-weight roe proteins into peptides of different sizes (5-90 kDa). The three hydrolysates significantly enhanced the proliferation of spleen lymphocytes. Pepsin hydrolysate (0.5 g/kg body weight) significantly increased the splenic natural killer cell cytotoxicity, mucosal immunity (secretory immunoglobulin A) in the gut and level of serum immunoglobulin A. Whereas Alcalase hydrolysate induced significant increases in the percentages of CD4+ and CD8+ cells in spleen. The results demonstrate that CEPHs are able to improve the immune system and further reveal that different CEPHs may exert differential influences on the immune function. These results indicate that CEPHs could be useful for several applications in the health food, pharmaceutical, and nutraceutical industries. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Protein hydrolysates and recovery of muscle damage following eccentric exercise

    Directory of Open Access Journals (Sweden)

    Dale M.J.

    2015-01-01

    Full Text Available Background: A whey protein hydrolysate (NatraBoost XR; WPHNB has been shown to speed repair muscle damage. We sought to determine whether this benefit is specific to this hydrolysate to evaluate a marker for quality control. Methods: Three hydrolysates of the same whey protein isolate (WPI were prepared (WPHNB, WPH1 and WPH2. Isometric knee extensor strength was measured in 39 sedentary male participants before and after 100 maximal eccentric contractions of the knee extensors to induce muscle damage. Participants were then randomised to consume 250 ml of flavoured water (FW, n=9, or 250 ml of FW containing 25 g of either NatraBoost XR (n=3, WPH1 (n=9, WPH2 (n=9 or WPI (n=9. Strength was reassessed over the next seven days while the supplements were consumed daily. Fibroblasts were cultured for 48 hr in the presence of the different hydrolysates, WPI, saline or fetal bovine serum to ascertain effects on cell proliferation. Results: Strength was reduced in all treatment groups after eccentric exercise (P<0.001. Strength recovered steadily over 7 days in the FW, WPI, WPH1 and WPH2 treatment groups (P<0.001, with no difference between treatments (P=0.87. WPHNB promoted faster strength recovery compared with the other treatments (P<0.001. Fibroblast proliferation was greater with WPHNB compared with saline, WPI or the other hydrolysates (P<0.001. Conclusions: Promoting recovery from muscle damage seems unique to WPHNB. In vitro fibroblast proliferation may be a useful marker for quality control. It is not clear whether effects on fibroblast proliferation contribute to the in vivo effect of WPHNB on muscle damage.

  12. Identification of odor volatile compounds and deodorization of Paphia undulata enzymatic hydrolysate

    Science.gov (United States)

    Chen, Deke; Chen, Xin; Chen, Hua; Cai, Bingna; Wan, Peng; Zhu, Xiaolian; Sun, Han; Sun, Huili; Pan, Jianyu

    2016-12-01

    Unfavorable fishy odour is an inevitable problem in aquatic products. In the present study, headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analysis of volatiles from untreated samples and three deodorized samples (under the optimal conditions) of Paphia undulata enzymatic hydrolysate revealed that the compounds contributing to the distinctive odor were 1-octen-3-ol, n-hexanal, n-heptanal, 2,4-heptadienal, and 2,4-decadienal, whereas n-pentanal, n-octanal, n-octanol, benzaldehyde, 2-ethylfuran and 2-pentylfuran were the main contributors to the aromatic flavor. The deodorizing effects of activated carbon (AC) adsorption, yeast extract (YE) masking and tea polyphenol (TP) treatment on a P. undulata enzymatic hydrolysate were investigated using orthogonal experiments with sensory evaluation as the index. The following optimized deodorization conditions were obtained: AC adsorption (35 mg mL-1, 80°C, 40 min), YE masking (7 mg mL-1, 45°C, 30 min) and TP treatment (0.4 mg mL-1, 40°C, 50 min). AC adsorption effectively removed off-flavor volatile aldehydes and ketones. YE masking modified the odor profile by increasing the relative contents of aromatic compounds and decreasing the relative contents of aldehydes and ketones. The TP treatment was not effective in reducing the odor score, but it significantly reduced the relative content of aldehydes while increasing that of alkanes. It is also notable that TP effectively suppressed trimethylamine (TMA) formation in a P. undulate hydrolysate solution for a period of 72 h.

  13. Sensory analysis of hydrolysed meat preparations Análise sensorial de preparações com hidrolisados de carne

    Directory of Open Access Journals (Sweden)

    Maria Elisabeth Machado Pinto E Silva

    2010-06-01

    Full Text Available The use of hydrolysed meat in diets contributes to the improvement of protein, vitamin and mineral supply. This work aims at checking the acceptance pattern in meat hydrolysates. Four preparations have been developed with three types of hydrolysates in domestic-like conditions. Acceptance was verified by means of sensory analysis using the nine-point hedonic scale. Sensory tests have been carried out in three sessions (according to the kind of hydrolysates. In the evaluation file, information on age groups has been included. The statistical analysis has been made by ANOVA and Tukey test. The best accepted preparation have been the turkey and chicken hydrolysed balls. Hydrolysates can be used in many different kinds of preparations, but it is necessary to know both the age group it will be used to and its sensory and chemical-physical features to ensure the taste and the original appearance of the final product.A utilização de hidrolisados de carne em dietas melhora seu conteúdo protéico, de vitaminas e minerais. O objetivo do presente trabalho foi avaliar a aceitação de hidrolisados de carne. Quatro preparações foram desenvolvidas com três tipos de hidrolisados em condições similares às domésticas. . A aceitação foi avaliada com uso de escala hedônica de 9 pontos. Os testes foram realizados em três sessões (de acordo com o tipo de hidrolisado e, incluiu-se na ficha de avaliação informações de idade. A análise estatística foi realizada por ANOVA e teste de Tukey. As preparações mais aceitas foram os bolinhos com hidrolisados de peru e frango. Os hidrolisados podem ser utilizados em diversas preparações, sendo necessário o conhecimento da faixa etária a qual se destinam, suas características sensoriais e físico-químicas, para garantir o sabor e a aparência do produto final.

  14. Succinic acid production from Jerusalem artichoke

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Karakashev, Dimitar Borisov; Angelidaki, Irini

    In this work, A. succinogenes 130Z was used to produce succinic acid from Jerusalem artichoke tuber hydrolysate. Results showed that both fructose and glucose in the tuber hydrolysate were utilized for succinic acid production. The sugar utilization was found to be dependent on process control...... that Jerusalem artichoke tubers could be utilized for production of bio-succinic acid....

  15. Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation.

    Science.gov (United States)

    Soudham, Venkata Prabhakar; Brandberg, Tomas; Mikkola, Jyri-Pekka; Larsson, Christer

    2014-08-01

    The aim of the present work was to investigate whether a detoxification method already in use during waste water treatment could be functional also for ethanol production based on lignocellulosic substrates. Chemical conditioning of spruce hydrolysate with hydrogen peroxide (H₂O₂) and ferrous sulfate (FeSO₄) was shown to be an efficient strategy to remove significant amounts of inhibitory compounds and, simultaneously, to enhance the enzymatic hydrolysis and fermentability of the substrates. Without treatment, the hydrolysates were hardly fermentable with maximum ethanol concentration below 0.4 g/l. In contrast, treatment by 2.5 mM FeSO₄ and 150 mM H₂O₂ yielded a maximum ethanol concentration of 8.3 g/l. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Second Generation Ethanol Production from Brewers’ Spent Grain

    Directory of Open Access Journals (Sweden)

    Rossana Liguori

    2015-03-01

    Full Text Available Ethanol production from lignocellulosic biomasses raises a global interest because it represents a good alternative to petroleum-derived energies and reduces the food versus fuel conflict generated by first generation ethanol. In this study, alkaline-acid pretreated brewers’ spent grain (BSG was evaluated for ethanol production after enzymatic hydrolysis with commercial enzymes. The obtained hydrolysate containing a glucose concentration of 75 g/L was adopted, after dilution up to 50 g/L, for fermentation by the strain Saccharomyces cerevisiae NRRL YB 2293 selected as the best producer among five ethanologenic microorganims. When the hydrolysate was supplemented with yeast extract, 12.79 g/L of ethanol, corresponding to 0.28 g of ethanol per grams of glucose consumed (55% efficiency, was obtained within 24 h, while in the non-supplemented hydrolysate, a similar concentration was reached within 48 h. The volumetric productivity increased from 0.25 g/L·h in the un-supplemented hydrolysate to 0.53 g/L h in the yeast extract supplemented hydrolysate. In conclusion, the strain S. cerevisiae NRRL YB 2293 was shown able to produce ethanol from BSG. Although an equal amount of ethanol was reached in both BSG hydrolysate media, the nitrogen source supplementation reduced the ethanol fermentation time and promoted glucose uptake and cell growth.

  17. Protein Hydrolysates as Hypoallergenic, Flavors and Palatants for Companion Animals

    Science.gov (United States)

    Nagodawithana, Tilak W.; Nelles, Lynn; Trivedi, Nayan B.

    Early civilizations have relied upon their good sense and experience to develop and improve their food quality. The discovery of soy sauce centuries ago can now be considered one of the earliest protein hydrolysates made by man to improve palatability of foods. Now, it is well known that such savory systems are not just sources for enjoyment but complex semiotic systems that direct the humans to satisfy the body's protein need for their sustenance. Recent developments have resulted in a wide range of cost effective savory flavorings, the best known of which are autolyzed yeast extracts and hydrolyzed vegetable proteins. New technologies have helped researchers to improve the savory characteristics of yeast extracts through the application of Maillard reaction and by generating specific flavor enhancers through the use of enzymes. An interesting parallel exists in the pet food industry, where a similar approach is taken in using animal protein hydrolysates to create palatability enhancers via Maillard reaction scheme. Protein hydrolysates are also utilized extensively as a source of nutrition to the elderly, young children and immuno-compromised patient population. These hydrolysates have an added advantage in having peptides small enough to avoid any chance of an allergenic reaction which sometimes occur with the consumption of larger sized peptides or proteins. Accordingly, protein hydrolysates are required to have an average molecular weight distribution in the range 800-1,500 Da to make them non-allergenic. The technical challenge for scientists involved in food and feed manufacture is to use an appropriate combination of enzymes within the existing economic constraints and other physical factors/limitations, such as heat, pH, and time, to create highly palatable, yet still nutritious and hypoallergenic food formulations.

  18. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii.

    Science.gov (United States)

    Ra, Chae Hun; Jeong, Gwi-Taek; Shin, Myung Kyo; Kim, Sung-Koo

    2013-07-01

    The seaweed, Gelidium amansii, was fermented to produce bioethanol. Optimal pretreatment condition was determined as 94 mM H2SO4 and 10% (w/v) seaweed slurry at 121°C for 60 min. The mono sugars of 43.5 g/L with 57.4% of conversion from total carbohydrate of 75.8 g/L with G. amansii slurry 100g dcw/L were obtained by thermal acid hydrolysis pretreatment and enzymatic saccharification. G. amansii hydrolysate was used as the substrate for ethanol production by separate hydrolysis and fermentation (SHF). The ethanol concentration of 20.5 g/L was produced by Scheffersomyces stipitis KCTC 7228. The effect of HMF on ethanol production by S. stipitis KCTC 7228 was evaluated and 5-hydroxymethylfurfural (HMF) was converted to 2,5-bis-hydroxymethylfuran. The accumulated 2,5-bis-hydroxymethylfuran in the medium did not affect galactose and glucose uptakes and ethanol production. Biotransformation of HMF to less inhibitory compounds by S. stipitis KCTC 7228 could enhance overall fermentation yields of seaweed hydrolysates to ethanol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID.

    Science.gov (United States)

    Llano, Tamara; Quijorna, Natalia; Andrés, Ana; Coz, Alberto

    2017-09-01

    Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.

  20. Characteristic antioxidant activity and comprehensive flavor compound profile of scallop (Chlamys farreri) mantle hydrolysates-ribose Maillard reaction products.

    Science.gov (United States)

    Han, Jia-Run; Yan, Jia-Nan; Sun, Shi-Guang; Tang, Yue; Shang, Wen-Hui; Li, Ao-Ting; Guo, Xiao-Kun; Du, Yi-Nan; Wu, Hai-Tao; Zhu, Bei-Wei; Xiong, Youling L

    2018-09-30

    The objective of the present study was to improve the utilization of scallop (Chlamys farreri) byproducts by using Maillard reaction. Scallop mantle hydrolysates (SMHs) were prepared using neutrase then reacted with ribose. Thirty-four peptides were identified from SMHs by UPLC-Q-TOF-MS, and the abundance of Asp and Lys suggested the strong Maillard reactivity. The formation of Schiff's base as well as modification of amide I, II and III bands in Maillard reaction products (MRPs) was confirmed by ultraviolet-visible, fluorescence, and Fourier transform infrared spectroscopy. Thirty volatile compounds were produced by the reaction of SMHs with ribose. Moreover, MRPs with enhanced radical scavenging and anti-linoleic acid peroxidation activities over SMHs promoted the survival and reduced the DNA damage of HepG2 cells treated with hydrogen peroxide. These results suggest that SMHs-ribose MRPs can be potentially used as food antioxidant for suppressing of lipid oxidation or protecting of cell from oxidative damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. FTIR spectra of whey and casein hydrolysates in relation to their functional properties

    NARCIS (Netherlands)

    Ven, van der C.; Muresan, S.; Gruppen, H.; Bont, D.B.A.; Merck, K.B.; Voragen, A.G.J.

    2002-01-01

    Mid-infrared spectra of whey and casein hydrolysates were recorded using Fourier transform infrared (FTIR) spectroscopy. Multivariate data analysis techniques were used to investigate the capacity of FTIR spectra to classify hydrolysates and to study the ability of the spectra to predict bitterness,

  2. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    Science.gov (United States)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  3. The Cooperative Effect of Genistein and Protein Hydrolysates on the Proliferation and Survival of Osteoblastic Cells (hFOB 1.19

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2016-11-01

    Full Text Available Chum salmon skin gelatin, de-isoflavoned soy protein, and casein were hydrolyzed at two degrees of hydrolysis. Genistein, the prepared hydrolysates, and genistein-hydrolysate combinations were assessed for their proliferative and anti-apoptotic effects on human osteoblasts (hFOB 1.19 to clarify potential cooperative effects between genistein and these hydrolysates in these two activities. Genistein at 2.5 μg/L demonstrated the highest proliferative activity, while the higher dose of genistein inhibited cell growth. All hydrolysates promoted osteoblast proliferation by increasing cell viability to 102.9%–131.1%. Regarding etoposide- or NaF-induced osteoblast apoptosis, these hydrolysates at 0.05 g/L showed both preventive and therapeutic effects against apoptosis. In the mode of apoptotic prevention, the hydrolysates decreased apoptotic cells from 32.9% to 15.2%–23.7% (etoposide treatment or from 23.6% to 14.3%–19.6% (NaF treatment. In the mode of apoptotic rescue, the hydrolysates lessened the extent of apoptotic cells from 15.9% to 13.0%–15.3% (etoposide treatment or from 13.3% to 10.9%–12.7% (NaF treatment. Gelatin hydrolysates showed the highest activities among all hydrolysates in all cases. All investigated combinations (especially the genistein-gelatin hydrolysate combination had stronger proliferation, apoptotic prevention, and rescue than genistein itself or their counterpart hydrolysates alone, suggesting that genistein cooperated with these hydrolysates, rendering greater activities in osteoblast proliferation and anti-apoptosis.

  4. Preparation of antioxidant enzymatic hydrolysates from honeybee-collected pollen using plant enzymes.

    Science.gov (United States)

    Marinova, Margarita D; Tchorbanov, Bozhidar P

    2011-01-09

    Enzymatic hydrolysates of honeybee-collected pollen were prepared using food-grade proteinase and aminopeptidases entirely of plant origin. Bromelain from pineapple stem was applied (8 mAU/g substrate) in the first hydrolysis stage. Aminopeptidase (0.05 U/g substrate) and proline iminopeptidase (0.03 U/g substrate) from cabbage leaves (Brassica oleracea var. capitata), and aminopeptidase (0.2 U/g substrate) from chick-pea cotyledons (Cicer arietinum L.) were involved in the additional hydrolysis of the peptide mixtures. The degree of hydrolysis (DH), total phenolic contents, and protein contents of these hydrolysates were as follows: DH (about 20-28%), total phenolics (15.3-27.2 μg/mg sample powder), and proteins (162.7-242.8 μg/mg sample powder), respectively. The hydrolysates possessed high antiradical scavenging activity determined with DPPH (42-46% inhibition). The prepared hydrolysates of bee-collected flower pollen may be regarded as effective natural and functional dietary food supplements due to their remarkable content of polyphenol substances and significant radical-scavenging capacity with special regard to their nutritional-physiological implications.

  5. Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries.

    Science.gov (United States)

    Silva-Fernandes, T; Santos, J C; Hasmann, F; Rodrigues, R C L B; Izario Filho, H J; Felipe, M G A

    2017-11-01

    Among the major challenges for hemicellulosic hydrolysate application in fermentative processes, there is the presence of toxic compounds generated during the pretreatment of the biomass, which can inhibit microbial growth. Therefore, the development of efficient, biodegradable and cost-effective detoxification methods for lignocellulosic hydrolysates is crucial. In this work, two tannin-based biopolymers (called A and B) were tested in the detoxification of sugarcane bagasse hydrolysate for subsequent fermentation by Candida guilliermondii. The effects of biopolymer concentration, pH, temperature, and contact time were studied using a 2 4 experimental design for both biopolymers. Results revealed that the biopolymer concentration and the pH were the most significant factors in the detoxification step. Biopolymer A removed phenolics, 5-hydroxymethylfurfural, and nickel from the hydrolysate more efficiently than biopolymer B, while biopolymer B was efficient to remove chromium at 15% (v/v). Detoxification enhanced the fermentation of sugarcane bagasse hydrolysate, and the biopolymers showed different influences on the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate.

    Science.gov (United States)

    Yang, Chu-Fang; Huang, Ci-Ruei

    2016-08-01

    Thermal acid hydrolysis is often used to deal with lignocellulosic biomasses, but 5-hydroxy-methylfurfural (5-HMF) formed during hydrolysis deeply influences downstream fermentation. 2,5-Furan-dicarboxylic acid (FDCA), which is in the list of future important biomass platform molecules can be obtained using 5-HMF biotransformation. Based on the connection between 5-HMF removal in acid hydrolysate and FDCA production, the optimum thermal acid hydrolysis condition for macroalgae Chaetomorpha linum was established. Potential microbes capable of transforming 5-HMF into FDCA were isolated and characterized under various parameters and inoculated into algal hydrolysate to perform 5-HMF biotransformation. The optimum hydrolysis condition was to apply 0.5M HCl to treat 3% algal biomass under 121°C for 15min. Isolated Burkholderia cepacia H-2 could transform 2000mg/L 5-HMF at the initial pH of 7 at 28°C and 1276mg/L FDCA was received. Strain B. cepacia H-2 was suitable for treating the algal hydrolysate without dilution, receiving 989.5mg/L FDCA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition.

    Science.gov (United States)

    Zhang, Tian-Yuan; Wang, Xiao-Xiong; Wu, Yin-Hu; Wang, Jing-Han; Deantes-Espinosa, Victor M; Zhuang, Lin-Lan; Hu, Hong-Ying; Wu, Guang-Xue

    2017-11-01

    Heterotrophic cultivation of Chlorella pyrenoidosa based on straw substrate was proposed as a promising approach in this research. The straw pre-treated by ammonium sulfite method was enzymatically hydrolyzed for medium preparation. The highest intrinsic growth rate of C. pyrenoidosa reached to 0.097h -1 in hydrolysate medium, which was quicker than that in glucose medium. Rising nitrogen concentration could significantly increase protein content and decrease lipid content in biomass, meanwhile fatty acids composition kept stable. The highest protein and lipid content in microalgal biomass reached to 62% and 32% under nitrogen excessive and deficient conditions, respectively. Over 40% of amino acids and fatty acids in biomass belonged to essential amino acids (EAA) and essential fatty acids (EFA), which were qualified for high-value uses. This research revealed the rapid biomass accumulation property of C. pyrenoidosa in straw hydrolysate medium and the effectiveness of nitrogen regulation to biomass composition at heterotrophic condition. Copyright © 2017. Published by Elsevier Ltd.

  8. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum.

    Science.gov (United States)

    Linville, Jessica L; Rodriguez, Miguel; Mielenz, Jonathan R; Cox, Chris D

    2013-11-01

    The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C. thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (μmax=1.223 vs. 0.571 h(-1)) and less inhibition (KI,gen=0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (KI,gen=0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Production of antihypertensive peptides by enzymatic zein hydrolysate from maize-zea mays ssp. mexicana introgression line

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, X.; Qiao, Y.; Qu, M.

    2014-01-01

    Teosintes are essential gene reservoir for maize breeding improvement, among which Zea mays ssp. mexicana has many valuable traits deserved to be transferred into maize genetic background. In this study, one maize-teosinte introgression line SD00100 was selected from the population of Zea mays ssp. mexicana as wild parent. This introgression line manifested the outstanding agricultural traits similar to maize parent Ye 515 and alien genetic material was identified by genomic in situ hybridization (GISH). To produce bioactive peptides with potent angiotensin converting enzyme (ACE) inhibitory activity, zein extracted from endosperm meal was then undergone enzymatic hydrolysis with thermolysin and the hydrolysate was then filtered through a 3 kDa cut-off membrane. ACE inhibitory activity of permeate from Ye 515 and SD00100 was evaluated by RP-HPLC. The IC50 values of the peptides obtained from maize parent and the introgression line were 96.9 micro g/ml and 22.9 micro g/ml, respectively, with significant difference between them. Our results showed that an outstanding inbred maize line was obtained for production of antihypertensive peptides as well as for further development of functional food. (author)

  10. Hypocholesterolaemic and antioxidant activities of chickpea (Cicer arietinum L.) protein hydrolysates.

    Science.gov (United States)

    Yust, María del Mar; Millán-Linares, María del Carmen; Alcaide-Hidalgo, Juan María; Millán, Francisco; Pedroche, Justo

    2012-07-01

    Some dietary proteins possess biological properties which make them potential ingredients of functional or health-promoting foods. Many of these properties are attributed to bioactive peptides that can be released by controlled hydrolysis using exogenous proteases. The aim of this work was to test the improvement of hypocholesterolaemic and antioxidant activities of chickpea protein isolate by means of hydrolysis with alcalase and flavourzyme. All hydrolysates tested exhibited better hypocholesterolaemic activity when compared with chickpea protein isolate. The highest cholesterol micellar solubility inhibition (50%) was found after 60 min of treatment with alcalase followed by 30 min of hydrolysis with flavourzyme. To test antioxidant activity of chickpea proteins three methods were used: β-carotene bleaching method, reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging effect since antioxidant activity of protein hydrolysates may not be attributed to a single mechanism. Chickpea hydrolysates showed better antioxidant activity in all assays, especially reducing power and DPPH scavenging effect than chickpea protein isolate. The results of this study showed the good potential of chickpea protein hydrolysates as bioactive ingredients. The highest bioactive properties could be obtained by selecting the type of proteases and the hydrolysis time. Copyright © 2012 Society of Chemical Industry.

  11. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Ahring, Birgitte Kiær

    2007-01-01

    Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work...

  12. Soybean plant growth study conducted using purified protein hydrolysate-based fertilizer made from chrome-tanned leather waste.

    Science.gov (United States)

    Pati, Anupama; Chaudhary, Rubina

    2015-12-01

    Leather processing discharges enormous amount of chrome containing leather solid waste which creates a major disposal problem. Chrome-tanned leather solid waste is a complex of collagen and chromium. The presence of chromium limits protein application in fertilizer industry. The purified protein hydrolysate with zero chromium could be used as a nitrogen source for fertilizer formulation. In this study, an attempt has been made to employ purified protein hydrolysate derived from chrome-tanned leather shavings (CTLS) in formulation of fertilizer. The formulated fertilizer (1–3 t ha(-1)) is employed as nitrogen source in production of soybean. Plant growth study demonstrates that formulated fertilizer dosage 3 t ha(-1) produced similar effects of commercial fertilizer-treated plants. Application of formulated fertilizer yielded higher seed in plant than commercial fertilizer.

  13. Clostridium species strain BOH3 tolerates and transforms inhibitors from horticulture waste hydrolysates.

    Science.gov (United States)

    Yan, Yu; He, Jianzhong

    2017-08-01

    Conversion of lignocellulosic hydrolysate to biofuels is impeded by the toxic effects of inhibitors that are generated during pretreatment and hydrolysis processes. Here we describe a wild-type Clostridium sp. strain BOH3 with high tolerance to the lignocellulose-derived inhibitors and its capability to transform these inhibitors. Strain BOH3 is capable of tolerating over 60 mM furfural, 60 mM hydroxymethylfurfural, and 6.6 mM vanillin, respectively, and is able to convert 53.74 ± 0.37 mM furfural into furfuryl alcohol within 90 h. The high furfural tolerance and its biotransformation by strain BOH3, which is correlated to the high transcription levels of two short-chain dehydrogenase/reductases, enable strain BOH3 to produce 5.15 ± 0.52 g/L butanol from dilute sulfuric acid pretreated horticultural waste hydrolysate (HWH) that bypassed the detoxification step. The capability of strain BOH3 to produce butanol from un-detoxified HWH lays the foundation of cost-effective biofuel production from lignocellulosic materials.

  14. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions.

    Science.gov (United States)

    Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O

    2016-05-18

    In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (fractions were investigated for antioxidant activities. The membrane fractions showed that peptides with sizes 3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p fractions. However, for all the hydrolysates, the low molecular weight peptides were more effective diphenyl-1-picrylhydrazyl (DPPH) radical scavengers but not superoxide radicals when compared to the bigger peptides. In comparison with glutathione (GSH), BPHs and their membrane fractions had better (p fractions that did not show any metal chelating activity. However, the 5-10 kDa pepsin hydrolysate peptide fractions had greater (88%) hydroxyl scavenging activity than GSH, alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders.

  15. Uracil in formic acid hydrolysates of deoxyribonucleic acid

    Science.gov (United States)

    Schein, Arnold H.

    1966-01-01

    1. When DNA is hydrolysed with formic acid for 30min. at 175° and the hydrolysate is chromatographed on paper with propan-2-ol–2n-hydrochloric acid, in addition to expected ultraviolet-absorbing spots corresponding to guanine, adenine, cytosine and thymine, an ultraviolet-absorbing region with RF similar to that of uracil can be detected. Uracil was separated from this region and identified by its spectra in acid and alkali, and by its RF in several solvent systems. 2. Cytosine, deoxyribocytidine and deoxyribocytidylic acid similarly treated with formic acid all yielded uracil, as did a mixture of deoxyribonucleotides. 3. Approx. 4% of deoxyribonucleotide cytosine was converted into uracil by the formic acid treatment. ImagesFig. 1. PMID:5949371

  16. Radiation hydrolysate of tuna cooking juice with enhanced antioxidant properties

    International Nuclear Information System (INIS)

    Choi, Jong-il; Sung, Nak-Yun; Lee, Ju-Woon

    2012-01-01

    Tuna protein hydrolysates are of increasing interest because of their potential application as a source of bioactive peptides. Large amounts of tuna cooking juice with proteins and extracts are produced during the process of tuna canning, and these cooking juice wastes cause environmental problems. Therefore, in this study, cooking juice proteins were hydrolyzed by irradiation for their utilization as functional additives. The degree of hydrolysis of tuna cooking juice protein increased from 0% to 15.1% at the absorbed doses of 50 kGy. To investigate the antioxidant activity of the hydrolysate, it was performed the ferric reducing antioxidant power (FRAP) assay, and the lipid peroxidation inhibitory and superoxide radical scavenging activities were measured. The FRAP values increased from 1470 μM to 1930 μM and IC 50 on superoxide anion was decreased from 3.91 μg/mL to 1.29 μg/mL at 50 kGy. All of the antioxidant activities were increased in the hydrolysate, suggesting that radiation hydrolysis, which is a simple process that does not require an additive catalysts or an inactivation step, is a promising method for food and environmental industries. - Highlights: ► Radiation was applied for the hydrolysis of tuna cooking juice protein. ► The degree of hydrolysis were increased by irradiation and the antioxidant activity of hydrolysate was higher than protein. ► This result suggest that radiation is useful method for the hydrolysis of protein.

  17. Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis.

    Science.gov (United States)

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Young; Kang, Chang Han; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m(2)/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed.

  18. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats.

    Directory of Open Access Journals (Sweden)

    M Garcés-Rimón

    Full Text Available The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications.

  19. COMPARATIVE STUDY ON ANGIOTENSIN CONVERTING ENZYME INHIBITORY ACTIVITY OF HYDROLYSATE OF MEAT PROTEIN OF INDONESIAN LOCAL LIVESTOCKS

    Directory of Open Access Journals (Sweden)

    J. Jamhari

    2014-10-01

    Full Text Available The experiment was conducted to investigate the angiotensin converting enzyme (ACE inhibitoryactivity of hydrolysate in meat protein of Bali cattle, Kacang goat, native chicken, and local duck. Themeats of Bali cattle, Kacang goat, native chicken, and local duck were used in this study. The meatswere ground using food processor added with aquadest to obtain meat extract. The meat extracts werethen hydrolyzed using protease enzymes to obtain hydrolysate of meat protein. Protein concentration ofmeat extract and hydrolysate of meat protein were determined, and were confirmed by sodium dodecylsulfate - poly acrylamide gel electrophoresis (SDS-PAGE. ACE inhibitory activity of hydrolysate ofmeat protein derived from Bali cattle, Kacang goat, native chicken, and local duck was also determined.The results showed that protein concentration of hydrolysate of meat protein of Bali cattle, Kacang goat,native chicken, and local duck meat was significantly higher than their meat extracts. SDS-PAGEanalysis indicated that hydrolysate of meat protein of Bali cattle, Kacang goat, native chicken, and localduck had more peptides with lower molecular weight, compared to their meat extracts. Hydrolysate ofmeat protein of Bali cattle, Kacang goat, native chicken, and local duck had potencies in inhibiting ACEactivity, so it will potentially reduce blood pressure.

  20. The influence of brewers' yeast addition on lactic acid fermentation of brewers' spent grain hydrolysate by Lactobacillus rhamnosus

    OpenAIRE

    Pejin, Jelena; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Đukić-Vuković, Aleksandra; Mladenović, Dragana; Mojović, Ljiljana

    2015-01-01

    In this study brewers' spent grain (BSG) hydrolysate was produced using optimal conditions. Hydrolysates were used for lactic acid fermentation by Lactobacillus rhamnosus ATCC 7469. The aim of this study was to evaluate possibilities of the BSG hydrolysate utilization as a substrate for lactic acid fermentation as well as the effect of dry brewers' yeast (1.0, 3.0, and 5.0 %) addition in hydrolysate on lactic acid fermentation parameters (L-(+)-lactic acid and reducing sugars concentration an...

  1. Determination of Optimum Condition of Leucine Content in Beef Protein Hydrolysate using Response Surface Methodology

    International Nuclear Information System (INIS)

    Siti Roha Ab Mutalib; Zainal Samicho; Noriham Abdullah

    2016-01-01

    The aim of this study is to determine the optimum condition of leucine content in beef hydrolysate. Beef hydrolysate was prepared by enzymatic hydrolysis using bromelain enzyme produced from pineapple peel. Parameter conditions such as concentration of bromelain, hydrolysis temperature and hydrolysis time were assessed to obtain the optimum leucine content of beef hydrolysate according to experimental design which was recommended by response surface methodology (RSM). Leucine content in beef hydrolysate was determined using AccQ. Tag amino acid analysis method using high performance liquid chromatography (HPLC). The condition of optimum leucine content was at bromelain concentration of 1.38 %, hydrolysis temperature of 42.5 degree Celcius and hydrolysis time of 31.59 hours with the predicted leucine content of 26.57 %. The optimum condition was verified with the leucine value obtained was 26.25 %. Since there was no significant difference (p>0.05) between the predicted and verified leucine values, thus it indicates that the predicted optimum condition by RSM can be accepted to predict the optimum leucine content in beef hydrolysate. (author)

  2. Preparation of Antioxidant Enzymatic Hydrolysates from Honeybee-Collected Pollen Using Plant Enzymes

    Directory of Open Access Journals (Sweden)

    Margarita D. Marinova

    2010-01-01

    Full Text Available Enzymatic hydrolysates of honeybee-collected pollen were prepared using food-grade proteinase and aminopeptidases entirely of plant origin. Bromelain from pineapple stem was applied (8 mAU/g substrate in the first hydrolysis stage. Aminopeptidase (0.05 U/g substrate and proline iminopeptidase (0.03 U/g substrate from cabbage leaves (Brassica oleracea var. capitata, and aminopeptidase (0.2 U/g substrate from chick-pea cotyledons (Cicer arietinum L. were involved in the additional hydrolysis of the peptide mixtures. The degree of hydrolysis (DH, total phenolic contents, and protein contents of these hydrolysates were as follows: DH (about 20–28%, total phenolics (15.3–27.2 μg/mg sample powder, and proteins (162.7–242.8 μg/mg sample powder, respectively. The hydrolysates possessed high antiradical scavenging activity determined with DPPH (42–46% inhibition. The prepared hydrolysates of bee-collected flower pollen may be regarded as effective natural and functional dietary food supplements due to their remarkable content of polyphenol substances and significant radical-scavenging capacity with special regard to their nutritional-physiological implications.

  3. The relation between in vivo ethylene production and oxygen partial pressure

    NARCIS (Netherlands)

    Sanders, M.G.; Wild, de H.P.J.

    2003-01-01

    Modelling in vivo ethylene production rate in relation to O2 partial pressure was used to improve understanding of enzyme kinetics of 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase). Tomato fruit were stored in an extensive range of O2 partial pressures at 8, 13 and 18 °C. Ethylene

  4. Casein Hydrolysates by Lactobacillus brevis and Lactococcus lactis Proteases: Peptide Profile Discriminates Strain-Dependent Enzyme Specificity.

    Science.gov (United States)

    Bounouala, Fatima Zohra; Roudj, Salima; Karam, Nour-Eddine; Recio, Isidra; Miralles, Beatriz

    2017-10-25

    Casein from ovine and bovine milk were hydrolyzed with two extracellular protease preparations from Lactobacillus brevis and Lactococcus lactis. The hydrolysates were analyzed by HPLC-MS/MS for peptide identification. A strain-dependent peptide profile could be observed, regardless of the casein origin, and the specificity of these two proteases could be computationally ascribed. The cleavage pattern yielding phenylalanine, leucine, or tyrosine at C-terminal appeared both at L. lactis and Lb. brevis hydrolysates. However, the cleavage C-terminal to lysine was favored with Lb. brevis protease. The hydrolysates showed ACE-inhibitory activity with IC 50 in the 16-70 μg/mL range. Ovine casein hydrolysates yielded greater ACE-inhibitory activity. Previously described antihypertensive and opioid peptides were found in these ovine and bovine casein hydrolysates and prediction of the antihypertensive activity of the sequences based on quantitative structure and activity relationship (QSAR) was performed. This approach might represent a useful classification tool regarding health-related properties prior to further purification.

  5. Membrane capacitive deionization for biomass hydrolysate desalination

    NARCIS (Netherlands)

    Huyskens, Celine; Helsen, J.; Groot, W.J.; Haan, de A.B.

    2013-01-01

    Biomass hydrolysates are rapidly gaining interest as low-cost non-food renewable feedstocks for fermentation processes. However, since high concentrations of salt such as sodium and potassium can act toxic to microorganisms, there is a need to remove these salts to maintain high biochemical

  6. Angiotensin-converting enzyme-inhibitory activity in protein hydrolysates from normal and anthracnose disease-damaged Phaseolus vulgaris seeds.

    Science.gov (United States)

    Hernández-Álvarez, Alan Javier; Carrasco-Castilla, Janet; Dávila-Ortiz, Gloria; Alaiz, Manuel; Girón-Calle, Julio; Vioque-Peña, Javier; Jacinto-Hernández, Carmen; Jiménez-Martínez, Cristian

    2013-03-15

    Bean seeds are an inexpensive source of protein. Anthracnose disease caused by the fungus Colletotrichum lindemuthianum results in serious losses in common bean (Phaseolus vulgaris L.) crops worldwide, affecting any above-ground plant part, and protein dysfunction, inducing the synthesis of proteins that allow plants to improve their stress tolerance. The aim of this study was to evaluate the use of beans damaged by anthracnose disease as a source of peptides with angiotensin-converting enzyme (ACE-I)-inhibitory activity. Protein concentrates from beans spoiled by anthracnose disease and from regular beans as controls were prepared by alkaline extraction and precipitation at isolelectric pH and hydrolysed using Alcalase 2.4 L. The hydrolysates from spoiled beans had ACE-I-inhibitory activity (IC(50) 0.0191 mg protein mL(-1)) and were very similar to those from control beans in terms of ACE-I inhibition, peptide electrophoretic profile and kinetics of hydrolysis. Thus preparation of hydrolysates using beans affected by anthracnose disease would allow for revalorisation of this otherwise wasted product. The present results suggest the use of spoiled bean seeds, e.g. anthracnose-damaged beans, as an alternative for the isolation of ACE-I-inhibitory peptides to be further introduced as active ingredients in functional foods. © 2012 Society of Chemical Industry.

  7. Partial dissociative emission cross sections and product state distributions of the resulting photofragments

    Energy Technology Data Exchange (ETDEWEB)

    Picconi, David; Grebenshchikov, Sergy Yu., E-mail: Sergy.Grebenshchikov@ch.tum.de

    2016-12-20

    This paper relates the partial cross section of a continuous optical emission into a given scattering channel of the lower electronic state to the photofragment population. This allows one to infer partial emission cross sections ‘non-optically’ from product state distributions; in computations, explicit construction of exact scattering states is therefore avoided. Applications to the emission spectra of NaI, CO{sub 2}, and pyrrole are given. It is also demonstrated that a similar relationship holds between partial cross sections of dissociative photoionization and distributions of ionic fragments over final product channels.

  8. Cucurbitaceae Seed Protein Hydrolysates as a Potential Source of Bioactive Peptides with Functional Properties

    Directory of Open Access Journals (Sweden)

    César Ozuna

    2017-01-01

    Full Text Available Seeds from Cucurbitaceae plants (squashes, pumpkins, melons, etc. have been used both as protein-rich food ingredients and nutraceutical agents by many indigenous cultures for millennia. However, relatively little is known about the bioactive components (e.g., peptides of the Cucurbitaceae seed proteins (CSP and their specific effects on human health. Therefore, this paper aims to provide a comprehensive review of latest research on bioactive and functional properties of CSP isolates and hydrolysates. Enzymatic hydrolysis can introduce a series of changes to the CSP structure and improve its bioactive and functional properties, including the enhanced protein solubility over a wide range of pH values. Small-sized peptides in CSP hydrolysates seem to enhance their bioactive properties but adversely affect their functional properties. Therefore, medium degrees of hydrolysis seem to benefit the overall improvement of bioactive and functional properties of CSP hydrolysates. Among the reported bioactive properties of CSP isolates and hydrolysates, their antioxidant, antihypertensive, and antihyperglycaemic activities stand out. Therefore, they could potentially substitute synthetic antioxidants and drugs which might have adverse secondary effects on human health. CSP isolates and hydrolysates could also be implemented as functional food ingredients, thanks to their favorable amino acid composition and good emulsifying and foaming properties.

  9. Angiotensin-I Converting Enzyme (ACE Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora Hydrolysates

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2015-12-01

    Full Text Available In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8% after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH (56.00% and ferrous ion-chelating (FIC (59.00% methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.

  10. Alternate economical starchy substrates for the production of 70% sorbitol

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, C.M. (Sarabhai Research Centre, Baroda (India). Industrial Enzymes Dept.); Nehete, P.N. (Sarabhai Research Centre, Baroda (India). Industrial Fermentation Div.); Shah, D.N. (GSFC Research and Development Centre, Fertilizernagar (India). Biotechnology Dept.); Shah, N.K. (Armour Chemicals Pvt. Ltd., Ankleshwar (India)); Shankar, V. (National Chemical Lab., Pune (India). Biochemistry Div.); Kothari, R.M. (Thapar Corporate Research and Development Centre, Patiala (India). Biotechnology Div.)

    1991-03-01

    In view of the soaring prices of corn and tapioca starch, use of their hydrolysate in the production of 70% sorbitol became less remunerative. Therefore, an economical alternative is explored by using hydrolysates of cereal flours, namely, rice (Oryzae sativa), wheat (Triticum aestivum), jowar (Sorghum vulgare) and bajra (Pennisetum typhoideum). A protocol is devised to (a) prepare their high DE hydrolysates, (b) purify it after saccharification, (c) monitor the chemical chracteristics of concentrated hydrolysate, as feedstock for Raney nickel catalyzed pressure hydrogenation and (d) finally prepare 70% sorbital. Merits and demerits of hydrolysates of these cereal flours are discussed in terms of operational limitations and percentage recovery, the governing factors for their industrial acceptability. Rice flour hydrolysate appears to be an alternative substrate, operationally and economically. (orig.).

  11. 9 CFR 381.150 - Requirements for the production of fully cooked poultry products and partially cooked poultry...

    Science.gov (United States)

    2010-01-01

    ... fully cooked poultry products and partially cooked poultry breakfast strips. 381.150 Section 381.150... ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Entry of Articles Into Official Establishments; Processing...

  12. Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica.

    Science.gov (United States)

    Rahayu, Farida; Kawai, Yuto; Iwasaki, Yuki; Yoshida, Koichiro; Kita, Akihisa; Tajima, Takahisa; Kato, Junichi; Murakami, Katsuji; Hoshino, Tamotsu; Nakashimada, Yutaka

    2017-12-01

    A transformant of Moorella thermoacetica was constructed for thermophilic ethanol production from lignocellulosic biomass by deleting two phosphotransacetylase genes, pdul1 and pdul2, and introducing the native aldehyde dehydrogenase gene (aldh) controlled by the promoter from glyceraldehyde-3-phosphate dehydrogenase. The transformant showed tolerance to 540mM and fermented sugars including fructose, glucose, galactose and xylose to mainly ethanol. In a mixed-sugar medium of glucose and xylose, all of the sugars were consumed to produce ethanol at the yield of 1.9mol/mol-sugar. The transformant successfully fermented sugars in hydrolysate prepared through the acid hydrolysis of lignocellulose to ethanol, suggesting that this transformant can be used to ferment the sugars in lignocellulosic biomass for ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. POTENTIAL USE OF COLLAGEN HYDROLYSATES FROM CHAMOIS LEATHER WASTE AS INGREDIENT IN LEATHER FINISHING FORMULATIONS

    Directory of Open Access Journals (Sweden)

    POPA Emil

    2016-05-01

    Full Text Available The aim of this paper is the obtaining of value-added products from the dust resulted from chamois leather buffering, a solid waste that raises serious disposal problems, due to its physical state and complex chemical composition. Starting from leather waste, an alkaline hydrolysis was performed followed by the chemical modification of the polypeptyde hydrolysate by polycondensation with dispersions of copolymers of vinyl acetate with acrylic esters and reticulation with glutaraldehyde in order to improve its hydrophobicity. The resulted product can be used/was tested as an ingredient in leather finishing formulations, as binder or carrier agent. In this paper, new finishing mixtures were prepared using pigments and obtained polypeptide hydrolysates as a substitute for casein in pigment pastes. By this method, there were obtained two experimental variants of brown and black pigment pastes which were compared to the pigment pastes with casein binder. Natural grain Box bovine leather samples coated with such admixtures were subjected to physico-mechanical resistance tests, in accordance with the standardized methods. Specific tests carried on finished leather – tensile strength, tear resistance, resistance to grain cracking, dry and wet rubbing fastness, flexural fatigue strength test, etc – showed values of this characteristics comparable to those obtained with casein conventional finishing.

  14. Evaluation of hydrogen and methane production from sugarcane bagasse hemicellulose hydrolysates by two-stage anaerobic digestion process.

    Science.gov (United States)

    Baêta, Bruno Eduardo Lobo; Lima, Diego Roberto Sousa; Filho, José Gabriel Balena; Adarme, Oscar Fernando Herrera; Gurgel, Leandro Vinícius Alves; Aquino, Sérgio Francisco de

    2016-10-01

    This study aimed at optimizing the net energy recovery from hydrogen and methane production through anaerobic digestion of the hemicellulose hydrolysate (HH) obtained by desirable conditions (DC) of autohydrolysis pretreatment (AH) of sugarcane bagasse (SB). Anaerobic digestion was carried out in a two-stage (acidogenic-methanogenic) batch system where the acidogenic phase worked as a hydrolysis and biodetoxification step. This allowed the utilization of more severe AH pretreatment conditions, i.e. T=178.6°C and t=55min (DC3) and T=182.9°C and t=40.71min (DC4). Such severe conditions resulted in higher extraction of hemicelluloses from SB (DC1=68.07%, DC2=48.99%, DC3=77.40% and DC4=73.90%), which consequently improved the net energy balance of the proposed process. The estimated energy from the combustion of both biogases (H2 and CH4) accumulated during the two-stage anaerobic digestion of HH generated by DC4 condition was capable of producing a net energy of 3.15MJ·kgSB(-1)dry weight. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Microbial production host selection for converting second-generation feedstocks into bioproducts

    Directory of Open Access Journals (Sweden)

    van Groenestijn Johan W

    2009-12-01

    Full Text Available Abstract Background Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum, two yeasts (Saccharomyces cerevisiae and Pichia stipitis and two fungi (Aspergillus niger and Trichoderma reesei were compared for their (i ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii resistance against inhibitors present in lignocellulosic hydrolysates, (iii their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood. The feedstock hydrolysates were generated in two manners: (i thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated. Results Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks. Conclusion Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic

  16. Influence of protein and carbohydrate contents of soy protein hydrolysates on cell density and IgG production in animal cell cultures

    NARCIS (Netherlands)

    Gupta, A.J.; Wierenga, P.A.; Gruppen, H.; Boots, J.W.

    2015-01-01

    The variety of compounds present in chemically defined media as well as media supplements makes it difficult to use a mechanistic approach to study the effect of supplement composition on culture functionality. Typical supplements, such as soy protein hydrolysates contain peptides, amino acids,

  17. Bacterial laminarinase for application in ethanol production from brown algae Sargassum sp. using halotolerant yeast

    Directory of Open Access Journals (Sweden)

    C.M.T. Perez

    2018-03-01

    Full Text Available Macroalgae are known to have many industrial applications, with current research targeting the potential of macroalgal biomass as feedstock in production of biofuels. Marine algal biomass is rich in storage carbohydrates, laminarin, and cellulose, which can be converted to fermentable sugars using appropriate enzymes, for fermentation to ethanol. This study focused on ethanol production from macroalgae using only enzymatic treatment for saccharification of algal biomass. This involved the isolation and identification of cellulase and laminarinase-producing microorganisms from mangrove area in the Philippines and production of partially purified enzymes for algal biomass saccharification. Results showed that the partially purified laminarinase produced from Bacillus sp. was capable of hydrolyzing the laminarin present in the macroalage. Fermentation of the algal hydrolysate yielded only small amount of ethanol due to lack of other pre-treatment methods, however, it was observed that higher ethanol was produced in saccharification treatments using a combination of cellulase and laminarinase which implies a possible synergistic effect between the two enzymes.

  18. Experimental and simulation analysis of hydrogen production by partial oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Sikander, U. [National Univ. of Science and Technology, Islamabad (Pakistan)

    2014-10-15

    Partial oxidation of methanol is the only self-sustaining process for onboard production of hydrogen. For this a fixed bed catalytic reactor is designed, based on heterogeneous catalytic reaction. To develop an optimized process, simulation is carried out using ASPEN HYSYS v 7.1. Reaction kinetics is developed on the basis of Langmuir Hinshel wood model. 45:55:5 of CuO: ZnO: Al/sub 2/O/sub 3/ is used as a catalyst. Simulation results are studied in detail to understand the phenomenon of partial oxidation of methanol inside the reactor. An experimental rig is developed for hydrogen production through partial oxidation of methanol. Results obtained from process simulation and experimental work; are compared with each other. (author)

  19. Radiation hydrolysate of tuna cooking juice with enhanced antioxidant properties

    Science.gov (United States)

    Choi, Jong-il; Sung, Nak-Yun; Lee, Ju-Woon

    2012-08-01

    Tuna protein hydrolysates are of increasing interest because of their potential application as a source of bioactive peptides. Large amounts of tuna cooking juice with proteins and extracts are produced during the process of tuna canning, and these cooking juice wastes cause environmental problems. Therefore, in this study, cooking juice proteins were hydrolyzed by irradiation for their utilization as functional additives. The degree of hydrolysis of tuna cooking juice protein increased from 0% to 15.1% at the absorbed doses of 50 kGy. To investigate the antioxidant activity of the hydrolysate, it was performed the ferric reducing antioxidant power (FRAP) assay, and the lipid peroxidation inhibitory and superoxide radical scavenging activities were measured. The FRAP values increased from 1470 μM to 1930 μM and IC50 on superoxide anion was decreased from 3.91 μg/mL to 1.29 μg/mL at 50 kGy. All of the antioxidant activities were increased in the hydrolysate, suggesting that radiation hydrolysis, which is a simple process that does not require an additive catalysts or an inactivation step, is a promising method for food and environmental industries.

  20. Low serum biotin in Japanese children fed with hydrolysate formula.

    Science.gov (United States)

    Sato, Yasuhiro; Wakabayashi, Kenji; Ogawa, Eishin; Kodama, Hiroko; Mimaki, Masakazu

    2016-09-01

    Given that nutritional biotin deficiency in Japanese infants has been reported, a straightforward method for estimating biotin level is needed. The biotin content in infant formula, breast milk, and the sera of infants fed with various types of formula were measured using avidin-binding assay. A commercially available ELISA kit was used for the measurement of biotin in 54 types of formula, including hydrolysate formulas for milk allergy, as well as in breast milk and in the sera of 27 infants fed with these formulas. The biotin content reached the recommended value in only five formulas. All of the hydrolysate formulas and more than half of the special formulas contained biotin biotin was low in infants fed only with the hydrolysate formulas, and one of them had alopecia related to biotin deficiency. While many were asymptomatic, infants fed with formulas lacking biotin are at risk of developing symptomatic disease. The addition of biotin to breast milk substitutes was finally approved in the middle of 2014, however pediatricians in Japan should still be vigilant with regard to nutritional biotin deficiency in infants for the time being. © 2016 Japan Pediatric Society.

  1. Changes on antioxidant activity of microwave-treated protein hydrolysates after simulated gastrointestinal digestion: Purification and identification.

    Science.gov (United States)

    Ketnawa, Sunantha; Wickramathilaka, Malithi; Liceaga, Andrea M

    2018-07-15

    Two samples of trout frame protein hydrolysates were prepared by Microwave Pretreatment followed by Conventional Enzymatic hydrolysis (MPCE) and Non-Pretreated followed by Microwave-assisted Enzymatic hydrolysis (NPME), respectively, were subjected to simulated gastrointestinal digestion. Changes on degree of hydrolysis, antioxidant activity, molecular weight, and amino acid composition between undigested and after gastrointestinal digestion of peptides were investigated. Comparing to undigested peptides, a breakdown of MPCE and NPME into smaller molecules was observed. Degree of hydrolysis, ABTS + radical scavenging activity and reducing power increased (P digestion. A purified peptide from GI-MPCE had two possible sequences, NGRLGYSEGVM or GNRLGYSWDD (1182.65 Da). Whereas GI-NPME had two peptides IRGPEEHMHR or RVAPEEHMHR (1261.77 Da) and SAGVPRHK or SARPRHK (962.63 Da). These results indicate that digested hydrolysates can be a rich source of antioxidants. Isolated peptides extracted from trout frame by-products could be new food ingredients used as natural antioxidants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Comparison of physicochemical properties of suppositories containing starch hydrolysates

    Directory of Open Access Journals (Sweden)

    Piotr Belniak

    2017-03-01

    Full Text Available The purpose of this work was to determine the effect of starch hydrolysates (SH on the physicochemical properties of suppositories. The study was conducted with suppositories with acetaminophen (AAP a typical antipyretic analgesic, as model drug on lipophilic (cocoa butter and hydrophilic base (polyethylene glycol 1500 + 400. The suppositories with and without the addition of SH were examined for physicochemical tests according to European Pharmacopoeia 8th edition (Ph. Eur.: the uniformity of mass of single-dose preparation test, the softening time determination of lipophilic suppositories test, the disintegration of suppositories test, and dissolution test with flow-through apparatus. The results confirm the possibility of using starch hydrolysates as a cheap and safe addition to modify physicochemical properties of suppositories.

  3. Comparison of physicochemical properties of suppositories containing starch hydrolysates.

    Science.gov (United States)

    Belniak, Piotr; Świąder, Katarzyna; Szumiło, Michał; Hyla, Aleksandra; Poleszak, Ewa

    2017-03-01

    The purpose of this work was to determine the effect of starch hydrolysates (SH) on the physicochemical properties of suppositories. The study was conducted with suppositories with acetaminophen (AAP) a typical antipyretic analgesic, as model drug on lipophilic (cocoa butter) and hydrophilic base (polyethylene glycol 1500 + 400). The suppositories with and without the addition of SH were examined for physicochemical tests according to European Pharmacopoeia 8th edition (Ph. Eur.): the uniformity of mass of single-dose preparation test, the softening time determination of lipophilic suppositories test, the disintegration of suppositories test, and dissolution test with flow-through apparatus. The results confirm the possibility of using starch hydrolysates as a cheap and safe addition to modify physicochemical properties of suppositories.

  4. EFSA Panel on Dietetic Products, Nutrition and Allergies; Scientific Opinion on the substantiation of a health claim related to collagen hydrolysate and maintenance of joints pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following an application from Gelita AG, submitted via the Competent Authority of Germany, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver an opinion on the scientific substantiation of a health claim related to collagen hydrolysate and maintenance of joint health...... hydrolysate is sufficiently characterised. The claimed effect is “maintenance of joint health”. The target population as proposed by the applicant is physically active people. The Panel considers that the maintenance of joints is a beneficial physiological effect. The applicant provided one narrative review...... was not controlled and no scientific conclusions could be drawn from these studies for the substantiation of the claimed effect. One trial in 147 active student athletes evaluated a total of 15 parameters related to joint pain/discomfort. There were no significant differences between groups for any endpoint when...

  5. Preparation of Egg White Liquid Hydrolysate (ELH) and Its Radical-Scavenging Activity

    Science.gov (United States)

    Noh, Dong Ouk; Suh, Hyung Joo

    2015-01-01

    In the present study, an optimum protease was selected to hydrolyze the egg white liquid protein for the antioxidant peptides. Alcalase treatment yielded the highest amount of α-amino groups (15.27 mg/mL), while the control (no enzymatic hydrolysis) showed the lowest amount of α-amino groups (1.53 mg/mL). Alcalase also gave the highest degree of hydrolysis (DH) value (43.2%) and was more efficient for egg white liquid hydrolysis than the other enzymes. The Alcalase hydrolysate had the highest radical-scavenging activity (82.5%) at a concentration of 5.0 mg/mL. The conditions for enzymatic hydrolysis of egg white liquid with Alcalase were selected as substrate : water ratio of 2:1. Five percent Alacalse treatment did not show significant (P>0.05) increases of DH and α-amino nitrogen content after 24 h-hydrolysis. Thirty two hour-hydrolysis with 5% Alcalase is sufficient to make antioxidative egg white liquid hydrolysate from egg white liquid. DPPH and ABTS radical-scavenging activities were significantly (P<0.05) higher after enzymatic digestion. These results suggest that active peptides released from egg-white protein are effective radical-scavengers. Thus, this approach may be useful for the preparation of potent antioxidant products. PMID:26451355

  6. Industrial scale chromatographic separation of valuable compounds from biomass hydrolysates and side streams

    Energy Technology Data Exchange (ETDEWEB)

    Saari, P.

    2011-06-15

    Carbohydrates are composed of a number of various monosaccharides, glucose being the most abundant. Some of the monosaccharides are valuable compounds used in the food and pharmaceutical industries. They can be separated from biomass hydrolysates e.g. by chromatographic methods. In this thesis, chromatographic separation of valuable compounds using ion exchange resins was studied on an industrial scale. Of special interest were rare monosaccharides in biomass hydrolysates. A novel chromatographic separation process was developed for fucose, starting from pre-processed spent sulfite liquor. The core of the process consists of three chromatographic separations with different types of ion exchange resins. Chromatographic separation of galactose was tested with three biomass hydrolysates; lactose, gum arabic and hemicellulose hydrolysates. It was demonstrated that also galactose can be separated from complex carbohydrate mixtures. A recovery process for arabinose from citrus pectin liquid residual and for mannose from wood pulp hydrolysate were also developed and experimentally verified. In addition to monosaccharides, chromatographic separation of glycinebetaine from vinasse was examined with a hydrogen form weak acid cation exchange resin. The separation involves untypical peak formation depending, for example, on the pH and the cation composition. The retention mechanism was found to be hydrogen bonding between glycinebetaine and the resin. In the experimental part, all four resin types - strong acid cation, strong base anion, weak acid cation and weak base anion exchange resins - were used. In addition, adsorption equilibria data of seven monosaccharides and sucrose were measured with the resins in sodium and sulfate forms because such data have been lacking. It was found out that the isotherms of all sugars were linear under industrial conditions. A systematic method for conceptual process design and sequencing of chromatographic separation steps were developed

  7. Integration of first and second generation biofuels: Fermentative hydrogen production from wheat grain and straw

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2013-01-01

    Integrating of lignocellulose-based and starch-rich biomass-based hydrogen production was investigated by mixing wheat straw hydrolysate with a wheat grain hydrolysate for improved fermentation. Enzymatic pretreatment and hydrolysis of wheat grains led to a hydrolysate with a sugar concentration of

  8. A Label Correcting Algorithm for Partial Disassembly Sequences in the Production Planning for End-of-Life Products

    Directory of Open Access Journals (Sweden)

    Pei-Fang (Jennifer Tsai

    2012-01-01

    Full Text Available Remanufacturing of used products has become a strategic issue for cost-sensitive businesses. Due to the nature of uncertain supply of end-of-life (EoL products, the reverse logistic can only be sustainable with a dynamic production planning for disassembly process. This research investigates the sequencing of disassembly operations as a single-period partial disassembly optimization (SPPDO problem to minimize total disassembly cost. AND/OR graph representation is used to include all disassembly sequences of a returned product. A label correcting algorithm is proposed to find an optimal partial disassembly plan if a specific reusable subpart is retrieved from the original return. Then, a heuristic procedure that utilizes this polynomial-time algorithm is presented to solve the SPPDO problem. Numerical examples are used to demonstrate the effectiveness of this solution procedure.

  9. Scientific and technical guidance for the preparation and presentation of an application for authorisation of an infant and/or follow-on formula manufactured from protein hydrolysates

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2017-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to provide scientific and technical guidance for the preparation and presentation of applications for authorisation of infant and/or follow-on formula manufactured from...... protein hydrolysates. This guidance document addresses the information and data to be submitted to EFSA on infant and follow-on formulae manufactured from protein hydrolysates with respect to the safety and suitability of the specific formula and/or the formula’s efficacy in reducing the risk...

  10. Protein enrichment of an Opuntia ficus-indica cladode hydrolysate by cultivation of Candida utilis and Kluyveromyces marxianus.

    Science.gov (United States)

    Akanni, Gabriel B; du Preez, James C; Steyn, Laurinda; Kilian, Stephanus G

    2015-03-30

    The cladodes of Opuntia ficus-indica (prickly pear cactus) have a low protein content; for use as a balanced feed, supplementation with other protein sources is therefore desirable. We investigated protein enrichment by cultivation of the yeasts Candida utilis and Kluyveromyces marxianus in an enzymatic hydrolysate of the cladode biomass. Dilute acid pretreatment and enzymatic hydrolysis of sun-dried cladodes resulted in a hydrolysate containing (per litre) 45.5 g glucose, 6.3 g xylose, 9.1 g galactose, 10.8 g arabinose and 9.6 g fructose. Even though K. marxianus had a much higher growth rate and utilized l-arabinose and d-galactose more completely than C. utilis, its biomass yield coefficient was lower due to ethanol and ethyl acetate production despite aerobic cultivation. Yeast cultivation more than doubled the protein content of the hydrolysate, with an essential amino acid profile superior to sorghum and millet grains. This K. marxianus strain was weakly Crabtree positive. Despite its low biomass yield, its performance compared well with C. utilis. This is the first report showing that the protein content and quality of O. ficus-indica cladode biomass could substantially be improved by yeast cultivation, including a comparative evaluation of C. utilis and K. marxianus. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  11. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    Science.gov (United States)

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  12. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates.

    Science.gov (United States)

    Song, J J; Wang, Q; Du, M; Ji, X M; Mao, X Y

    2017-09-01

    Inhibition of dipeptidyl peptidase-IV (DPP-IV) activity is a promising strategy for treatment of type 2 diabetes. In the current study, DPP-IV inhibitory peptides were identified from mare whey protein hydrolysates obtained by papain. The results showed that all the mare whey protein hydrolysates obtained at various hydrolysis durations possessed more potent DPP-IV inhibitory activity compared with intact whey protein. The 4-h hydrolysates showed the greatest DPP-IV inhibitory activity with half-maximal inhibitory concentration of 0.18 mg/mL. The 2 novel peptides from 4-h hydrolysate fractions separated by successive chromatographic steps were characterized by liquid chromatography-electrospray ionization tandem mass spectrometry. The novel peptides Asn-Leu-Glu-Ile-Ile-Leu-Arg and Thr-Gln-Met-Val-Asp-Glu-Glu-Ile-Met-Glu-Lys-Phe-Arg, which corresponded to β-lactoglobulin 1 f(71-77) and β-lactoglobulin 1 f(143-155), demonstrated DPP-IV inhibitory activity with half-maximal inhibitory concentrations of 86.34 and 69.84 μM, respectively. The DPP-IV inhibitory activity of the 2 peptides was retained or even improved after simulated gastrointestinal digestion in vitro. Our findings indicate that mare whey protein-derived peptides may possess potential as functional food ingredients in the management of type 2 diabetes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guang-Li; Ren, Nan-Qi; Wang, Ai-Jie; Guo, Wan-Qian; Xu, Ji-Fei; Liu, Bing-Feng [State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    In the process of producing H{sub 2} from lignocellulosic materials, inhibitory compounds could be potentially formed during pre-treatment. This work experimentally investigated the effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Representative compounds presented in corn stover acid hydrolysate were added in various concentrations, individually or in various combinations and subsequently inhibitions on growth and H{sub 2} production were quantified. Acetate sodium was not inhibitory to T. thermosaccharolyticum W16, rather than it was stimulatory to the growth and H{sub 2} production. Alternatively, furfural, hydroxymethylfurfural (HMF), vanillin and syringaldehyde were potent inhibitors of growth and hydrogen production even though these compounds showed inhibitory effect depending on their concentrations. Synergistic inhibitory effects were exhibited in the introduction of combinations of inhibitors to the medium and in hydrolysate with concentrated inhibitors. Fermentation results from hydrolysates revealed that to increase the efficiency of this bioprocess from corn stover hydrolysate, the inhibitory compounds concentration must be reduced to the levels present in the raw hydrolysate. (author)

  14. Gross and true ileal digestible amino acid contents of several animal body proteins and their hydrolysates.

    Science.gov (United States)

    Cui, J; Chong, B; Rutherfurd, S M; Wilkinson, B; Singh, H; Moughan, P J

    2013-07-01

    Amino acid compositions of ovine muscle, ovine myofibrillar protein, ovine spleen, ovine liver, bovine blood plasma, bovine blood globulins and bovine serum albumin and the amino acid compositions and in vivo (laboratory rat) true ileal amino acid digestibilities of hydrolysates (sequential hydrolysis with Neutrase, Alcalase and Flavourzyme) of these protein sources were determined. True ileal amino acid digestibility differed (Pprotein hydrolysates. The ovine myofibrillar protein and liver hydrolysates were the most digestible, with a mean true ileal digestibility across all amino acids of 99%. The least digestible protein hydrolysate was bovine serum albumin with a comparable mean true ileal digestibility of 93%. When the digestible amino acid contents were expressed as proportions relative to lysine, considerable differences, across the diverse protein sources, were found in the pattern of predicted absorbed amino acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Production of amino acids by mucor geophillus using sugar cane waste as a substrate

    International Nuclear Information System (INIS)

    Almani, F.; Dahot, U.

    2006-01-01

    In this study Mucor geophillus was used for amino acid production from acid/base hydrolysates of sugar cane bagasse. The Effects of substrate as well as influence of hydrolyzing agent on amino acid production by Mucor geophillus were investigated. Result reveals that higher amount of amino acids were accumulated when acid hydrolysates of sugar cane bagasse were used as substrate in comparison to NH/sub 4/OH and H/sub 2/O/sub 2/ hydrolysates. (author)

  16. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    Science.gov (United States)

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  17. Peptides: Production, bioactivity, functionality, and applications

    DEFF Research Database (Denmark)

    Hajfathalian, Mona; Ghelichi, Sakhi; García Moreno, Pedro Jesús

    2017-01-01

    Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry...... by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties...... of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed....

  18. Hydrogen rich gas production by thermocatalytic decomposition of kenaf biomass

    Energy Technology Data Exchange (ETDEWEB)

    Irmak, Sibel; Oeztuerk, ilker [Department of Chemistry, Cukurova University, Arts and Sciences Faculty, Adana 01330 (Turkey)

    2010-06-15

    Kenaf (Hibiscus cannabinus L.), a well known energy crop and an annual herbaceous plant grows very fast with low lodging susceptibility was used as representative lignocellulosic biomass in the present work. Thermocatalytic conversions were performed by aqueous phase reforming (APR) of kenaf hydrolysates and direct gasification of solid biomass of kenaf using 5% Pt on activated carbon as catalyst. Hydrolysates used in APR experiments were prepared by solubilization of kenaf biomass in subcritical water under CO{sub 2} gas pressure. APR of kenaf hydrolysate with low molecular weight polysaccharides in the presence of the reforming catalyst produced more gas compared to the hydrolysate that had high molecular weight polysaccharides. APR experiments of kenaf biomass hydrolysates and glucose, which was used as a simplest biomass model compound, in the presence of catalyst produced various amounts of gas mixtures that consisted of H{sub 2}, CO, CO{sub 2}, CH{sub 4} and C{sub 2}H{sub 6}. The ratios of H{sub 2} to other gases produced were 0.98, 1.50 and 1.35 for 150 C and 250 C subcritical water-treated kenaf hydrolysates and glucose, respectively. These ratios indicated that more the degraded organic content of kenaf hydrolysate the better selectivity for hydrogen production. Although APR of 250 C-kenaf hydrolysate resulted in similar gas content and composition as glucose, the gas volume produced was three times higher in glucose feed. The use of solid kenaf biomass as starting feedstock in APR experiments resulted in less gas production since the activity of catalyst was lowered by solid biomass particles. (author)

  19. Post-exercise ingestion of a carbohydrate and casein hydrolysate ...

    African Journals Online (AJOL)

    casein hydrolysate) supplement on perceived muscle soreness and fatigue, in international level Sevens rugby players (n=23) during a pre-season training camp. Methods. A randomised, double-blind, placebo-controlled design was used. Players ...

  20. Cultivation of Scenedesmus obliquus in liquid hydrolysate from flash hydrolysis for nutrient recycling

    Science.gov (United States)

    Barbera, Elena; Sforza, Eleonora; Kumar, Sandeep; Morosinotto, Tomas; Bertucco, Alberto

    2016-01-01

    The production of biofuels from microalgae is associated with high demands of nutrients (nitrogen and phosphorus) required for growth. Recycling nutrients from the residual biomass is essential to obtain a sustainable production. In this work, the aqueous phase obtained from flash hydrolysis of Scenedesmus sp. was used as cultivation medium for a microalga of the same genus, to assess the feasibility of this technique for nutrient recycling purposes. Batch and continuous cultivations were carried out, to determine growth performances in this substrate compared to standard media, and verify if a stable biomass production could be obtained. In continuous experiments, the effect of hydrolysate inlet concentration and of residence time were assessed to optimize nutrient supply in relation to productivity. Results obtained show that nutrient recycling is feasible by treating biomass with flash hydrolysis, and Scenedesmus is capable of recycling large amounts of recovered nutrients. PMID:26868157

  1. Amino acid composition and functional properties of giant red sea cucumber ( Parastichopus californicus) collagen hydrolysates

    Science.gov (United States)

    Liu, Zunying; Su, Yicheng; Zeng, Mingyong

    2011-03-01

    Giant red sea cucumber ( Parastichopus californicus) is an under-utilized species due to its high tendency to autolysis. The aim of this study was to evaluate the functional properties of collagen hydrolysates from this species. The degree of hydrolysis (DH), amino acid composition, SDS-PAGE, emulsion activity index (EAI), emulsion stability index (ESI), foam expansion (FE), and foam stability (FS) of hydrolysates were investigated. The effects of pH on the EAI, ESI FE and FS of hydrolysates were also investigated. The results indicated that the β and α 1 chains of the collagen were effectively hydrolyzed by trypsin at 50°c with an Enzyme/Substrate (E/S) ration of 1:20 (w:w). The DH of collagen was up to 17.3% after 3 h hydrolysis with trypsin. The hydrolysates had a molecular weight distribution of 1.1-17 kDa, and were abundant in glycine (Gly), proline (Pro), glutamic acid (Glu), alanine (Ala) and hydroxyproline (Hyp) residues. The hydrolysates were fractionated into three fractions ( 10 kDa), and the fraction of 3-10 kDa exhibited a higher EAI value than the fraction of > 10 kDa ( P 10 kDa had higher FE and FS values than other fractions ( P 10 kDa showed higher FE value, respectively. They are hoped to be utilized as functional ingredients in food and nutraceutical industries.

  2. Production of succinic acid from oil palm empty fruit bunch cellulose using Actinobacillus succinogenes

    Science.gov (United States)

    Pasma, Satriani Aga; Daik, Rusli; Maskat, Mohamad Yusof

    2013-11-01

    Succinic acid is a common metabolite in plants, animals and microorganisms. It has been used widely in agricultural, food and pharmaceutical industries. Enzymatic hydrolysate glucose from oil palm empty fruit bunch (OPEFB) cellulose was used as a substrate for succinic acid production using Actinobacillus succinogenes. Using cellulose extraction from OPEFB can enhance the production of glucose as a main substrate for succinic acid production. The highest concentration of glucose produced from enzymatic hydrolysis is 167 mg/mL and the sugar recovery is 0.73 g/g of OPEFB. By optimizing the culture medium for succinic acid fermentation with enzymatic hydrolysate of OPEFB cellulose, the nitrogen sources could be reduced to just only 2.5 g yeast extract and 2.5 g corn step liquor. Batch fermentation was carried out using enzymatic hydrolysate of OPEFB cellulose with yeast extract, corn steep liquor and the salts mixture, 23.5 g/L succinic acid was obtained with consumption of 72 g/L glucose in enzymatic hydrolysate of OPEFB cellulose at 38 hours and 37°C. This study suggests that enzymatic hydrolysate of OPEFB cellulose maybe an alternative substrate for the efficient production of succinic acid by Actinobacillus succinogenes.

  3. Dietary fish protein hydrolysates containing bioactive motifs affect serum and adipose tissue fatty acid compositions, serum lipids, postprandial glucose regulation and growth in obese Zucker fa/fa rats.

    Science.gov (United States)

    Drotningsvik, Aslaug; Mjøs, Svein A; Pampanin, Daniela M; Slizyte, Rasa; Carvajal, Ana; Remman, Tore; Høgøy, Ingmar; Gudbrandsen, Oddrun A

    2016-10-01

    The world's fisheries and aquaculture industries produce vast amounts of protein-containing by-products that can be enzymatically hydrolysed to smaller peptides and possibly be used as additives to functional foods and nutraceuticals targeted for patients with obesity-related metabolic disorders. To investigate the effects of fish protein hydrolysates on markers of metabolic disorders, obese Zucker fa/fa rats consumed diets with 75 % of protein from casein/whey (CAS) and 25 % from herring (HER) or salmon (SAL) protein hydrolysate from rest raw material, or 100 % protein from CAS for 4 weeks. The fatty acid compositions were similar in the experimental diets, and none of them contained any long-chain n-3 PUFA. Ratios of lysine:arginine and methionine:glycine were lower in HER and SAL diets when compared with CAS, and taurine was detected only in fish protein hydrolysate diets. Motifs with reported hypocholesterolemic or antidiabetic activities were identified in both fish protein hydrolysates. Rats fed HER diet had lower serum HDL-cholesterol and LDL-cholesterol, and higher serum TAG, MUFA and n-3:n-6 PUFA ratio compared with CAS-fed rats. SAL rats gained more weight and had better postprandial glucose regulation compared with CAS rats. Serum lipids and fatty acids were only marginally affected by SAL, but adipose tissue contained less total SFA and more total n-3 PUFA when compared with CAS. To conclude, diets containing hydrolysed rest raw material from herring or salmon proteins may affect growth, lipid metabolism, postprandial glucose regulation and fatty acid composition in serum and adipose tissue in obese Zucker rats.

  4. Use of collagen hydrolysate as a complex nitrogen source for the synthesis of penicillin by Penicillium chrysogenum.

    Science.gov (United States)

    Leonhartsberger, S; Lafferty, R M; Korneti, L

    1993-09-01

    Optimal conditions for both biomass formation and penicillin synthesis by a strain of Penicillium chrysogenum were determined when using a collagen-derived nitrogen source. Preliminary investigations were carried out in shaken flask cultures employing a planned experimental program termed the Graeco-Latin square technique (Auden et al., 1967). It was initially determined that up to 30% of a conventional complex nitrogen source such as cottonseed meal could be replaced by the collagen-derived nitrogen source without decreasing the productivity with respect to the penicillin yield. In the pilot scale experiments using a 30 l stirred tank type of bioreactor, higher penicillin yields were obtained when 70% of the conventional complex nitrogen source in the form of cottonseed meal was replaced by the collagen hydrolysate. Furthermore, the maximum rate of penicillin synthesis continued for over a longer period when using collagen hydrolysate as a complex nitrogen source. Penicillin synthesis rates were determined using a linear regression.

  5. Acidogenesis driven by hydrogen partial pressure towards bioethanol production through fatty acids reduction

    International Nuclear Information System (INIS)

    Sarkar, Omprakash; Butti, Sai Kishore; Venkata Mohan, S.

    2017-01-01

    H 2 partial pressure drives the reduction of carboxylic acid (short chain fatty acids) formed as primary metabolites in acidogenic fermentation to form bioalcohols. Microbial catalysis under the influence of H 2 partial pressure was evaluated in comparison with a reactor operated at atmospheric pressure under identical conditions. Carboxylic acid reduction gets regulated selectively by the influence of elevated pressures and redox conditions, resulting in the formation of alcohols. The non-equilibrium of the intra and extracellular H 2 ions causes the anaerobic bacteria to alter their pathways as a function of interspecies H 2 transfer. Ethanol production was quantified, as acetic acid was the major carboxylic acid synthesised during acidogenesis. H 2 pressure influenced the electrochemical activity which was reflected in the distinct variation of the electron transfer rates and the catalytic activity of redox mediators (NAD + /NADH, flavoproteins and iron-sulphur clusters). The bioprocess depicted in this communication depicted a non-genetic regulation of product formation, understanding the acidogenic metabolism and alternate route for alcohol production. - Highlights: • H 2 partial pressure in HPR aided in the reduction of carboxylic acids to alcohols. • Production and consumption rate of VFAs were correlating with alcohol formation. • Metabolic shift was evident with bioelectrochical analysis. • NADH/NAD + ratio and H 2 partial pressure coupled in enhanced solventogenesis.

  6. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.

    Directory of Open Access Journals (Sweden)

    Lucas S Parreiras

    Full Text Available The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX-pretreated corn stover hydrolysate (ACSH. We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.

  7. Potential of chicken by-products as sources of useful biological resources

    International Nuclear Information System (INIS)

    Lasekan, Adeseye; Abu Bakar, Fatimah; Hashim, Dzulkifly

    2013-01-01

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications

  8. Potential of chicken by-products as sources of useful biological resources

    Energy Technology Data Exchange (ETDEWEB)

    Lasekan, Adeseye [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abu Bakar, Fatimah, E-mail: fatim@putra.upm.edu.my [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hashim, Dzulkifly [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2013-03-15

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.

  9. Production of high docosahexaenoic acid by Schizochytrium sp. using low-cost raw materials from food industry.

    Science.gov (United States)

    Song, Xiaojin; Zang, Xiaonan; Zhang, Xuecheng

    2015-01-01

    The low-cost substrates from food industry, including maize starch hydrolysate and soybean meal hydrolysate, were used to produce docosahexaenoic acid (DHA) by Schizochytrium limacinum OUC88. Glucose derived from maize starch hydrolysate was used as the carbon source and soybean meal hydrolysate as the nitrogen sources. In 10L bioreactor fermentation, by using the soybean meal hydrolysate as the main nitrogen source, the biomass of Schizochytrium limacinum OUC88 reached 85.27 g L(-1), and the yields of DHA was 20.7g L(-1). As a comparison, when yeast extract was used as the main nitrogen source, the yields of biomass and DHA were 68.93 g L(-1) and 13.3 g L(-1), respectively. From the results of this study, these hydrolysates can provide all the nutrients required for high-density cultivation of S. limacinum OUC88 and DHA production, that will improve the economical and competitive efficiency of commercial DHA production.

  10. Fermentative hydrogen production from pretreated biomass: A comparative study

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Budde, M.A.W.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2009-01-01

    The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet

  11. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast Extract...

  12. Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Enzymatic Hydrolysates of Razor Clam Sinonovacula constricta

    Directory of Open Access Journals (Sweden)

    Yun Li

    2016-06-01

    Full Text Available Angiotensin I-converting enzyme (ACE inhibitory activity of razor clam hydrolysates produced using five proteases, namely, pepsin, trypsin, alcalase, flavourzyme and proteases from Actinomucor elegans T3 was investigated. Flavourzyme hydrolysate showed the highest level of degree of hydrolysis (DH (45.87% followed by A. elegans T3 proteases hydrolysate (37.84% and alcalase (30.55%. The A. elegans T3 proteases was observed to be more effective in generating small peptides with ACE-inhibitory activity. The 3 kDa membrane permeate of A. elegans T3 proteases hydrolysate showed the highest ACE-inhibitory activity with an IC50 of 0.79 mg/mL. After chromatographic separation by Sephadex G-15 gel filtration and reverse phase-high performance liquid chromatography, the potent fraction was subjected to MALDI/TOF-TOF MS/MS for identification. A novel ACE-inhibitory peptide (VQY was identified exhibiting an IC50 of 9.8 μM. The inhibitory kinetics investigation by Lineweaver-Burk plots demonstrated that the peptide acts as a competitive ACE inhibitor. The razor clam hydrolysate obtained by A. elegans T3 proteases could serve as a source of functional peptides with ACE-inhibitory activity for physiological benefits.

  13. Application of high rate, high temperature anaerobic digestion to fungal thermozyme hydrolysates from carbohydrate wastes.

    Science.gov (United States)

    Forbes, C; O'Reilly, C; McLaughlin, L; Gilleran, G; Tuohy, M; Colleran, E

    2009-05-01

    The objective of this study was to examine the feasibility of using a two-step, fully biological and sustainable strategy for the treatment of carbohydrate rich wastes. The primary step in this strategy involves the application of thermostable enzymes produced by the thermophilic, aerobic fungus, Talaromyces emersonii, to carbohydrate wastes producing a liquid hydrolysate discharged at elevated temperatures. To assess the potential of thermophilic treatment of this hydrolysate, a comparative study of thermophilic and mesophilic digestion of four sugar rich thermozyme hydrolysate waste streams was conducted by operating two high rate upflow anaerobic hybrid reactors (UAHR) at 37 degrees C (R1) and 55 degrees C (R2). The operational performance of both reactors was monitored from start-up by assessing COD removal efficiencies, volatile fatty acid (VFA) discharge and % methane of the biogas produced. Rapid start-up of both R1 and R2 was achieved on an influent composed of the typical sugar components of the organic fraction of municipal solid waste (OFMSW). Both reactors were subsequently challenged in terms of volumetric loading rate (VLR) and it was found that a VLR of 9 gCOD l(-1)d(-1) at a hydraulic retention time (HRT) of 1 day severely affected the thermophilic reactor with instability characterised by a build up of volatile fatty acid (VFA) intermediates in the effluent. The influent to both reactors was changed to a simple glucose and sucrose-based influent supplied at a VLR of 4.5 gCOD l(-1)d(-1) and HRT of 2 days prior to the introduction of thermozyme hydrolysates. Four unique thermozyme hydrolysates were subsequently supplied to the reactors, each for a period of 10 HRTs. The applied hydrolysates were derived from apple pulp, bread, carob powder and cardboard, all of which were successfully and comparably converted by both reactors. The % total carbohydrate removal by both reactors was monitored during the application of the sugar rich thermozyme

  14. Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings.

    Science.gov (United States)

    Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Domínguez, José Manuel

    2012-02-15

    This study develops a system for the efficient valorisation of hemicellulosic hydrolysates of vineshoot trimmings. By connecting two reactors of 2L and 10L, operational conditions were set up for the sequential production of lactic acid and xylitol in continuous fermentation, considering the dependence of the main metabolites and fermentation parameters on the dilution rate. In the first bioreactor, Lactobacillus rhamnosus consumed all the glucose to produce lactic acid at 31.5°C, with 150rpm and 1L of working volume as the optimal conditions. The residual sugars were employed for the xylose to xylitol bioconversion by Debaryomyces hansenii in the second bioreactor at 30°C, 250rpm and an air-flow rate of 2Lmin(-1). Several steady states were reached at flow rates (F) in the range of 0.54-5.33mLmin(-1), leading to dilution rates (D) ranging from 0.032 to 0.320h(-1) in Bioreactor 1 and from 0.006 to 0.064h(-1) in Bioreactor 2. The maximum volumetric lactic acid productivity (Q(P LA)=2.908gL(-1)h(-1)) was achieved under D=0.266h(-1) (F=4.44mLmin(-1)); meanwhile, the maximum production of xylitol (5.1gL(-1)), volumetric xylitol productivity (Q(P xylitol)=0.218gL(-1)h(-1)), volumetric rate of xylose consumption (Q(S xylose)=0.398gL(-1)h(-1)) and product yield (0.55gg(-1)) were achieved at an intermediate dilution rate of 0.043h(-1) (F=3.55mLmin(-1)). Under these conditions, ethanol, which was the main by-product of the fermentation, was produced in higher amounts (1.9gL(-1)). Finally, lactic acid and xylitol were effectively recovered by conventional procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. In Vitro Proliferation and Anti-Apoptosis of the Papain-Generated Casein and Soy Protein Hydrolysates towards Osteoblastic Cells (hFOB1.19).

    Science.gov (United States)

    Pan, Xiao-Wen; Zhao, Xin-Huai

    2015-06-17

    Casein and soy protein were digested by papain to three degrees of hydrolysis (DH) 7.3%-13.3%, to obtain respective six casein and soy protein hydrolysates, aiming to clarify their in vitro proliferation and anti-apoptosis towards a human osteoblastic cell line (hFOB1.19 cells). Six casein and soy protein hydrolysates at five levels (0.01-0.2 mg/mL) mostly showed proliferation as positive 17β-estradiol did, because they conferred the osteoblasts with cell viability of 100%-114% and 104%-123%, respectively. The hydrolysates of higher DH values had stronger proliferation. Casein and soy protein hydrolysates of the highest DH values altered cell cycle progression, and enhanced cell proportion of S-phase from 50.5% to 56.5% and 60.5%. The two also antagonized etoposide- and NaF-induced osteoblast apoptosis. In apoptotic prevention, apoptotic cells were decreased from 31.6% to 22.6% and 15.6% (etoposide treatment), or from 19.5% to 17.7% and 12.4% (NaF treatment), respectively. In apoptotic reversal, soy protein hydrolysate decreased apoptotic cells from 13.3% to 11.7% (etoposide treatment), or from 14.5% to 11.0% (NaF treatment), but casein hydrolysate showed no reversal effect. It is concluded that the hydrolysates of two kinds had estradiol-like action on the osteoblasts, and soy protein hydrolysates had stronger proliferation and anti-apoptosis on the osteoblasts than casein hydrolysates.

  16. Interfacial properties of whey protein and whey protein hydrolysates and their influence on O/W emulsion stability

    NARCIS (Netherlands)

    Schroder, A.J.; Berton-Carabin, C.C.; Venema, P.; Cornacchia, L.

    2017-01-01

    Protein hydrolysates are commonly used in high-tolerance or hypoallergenic formulae. The relation between the physicochemical properties of hydrolysed proteins (i.e., size, molecular weight distribution, charge, hydrophobicity), and their emulsifying properties is not fully understood. In this work,

  17. Fermented inulin hydrolysate by Bifidobacterium breve as cholesterol binder in functional food application

    Science.gov (United States)

    Melanie, Hakiki; Susilowati, Agustine; Maryati, Yati

    2017-01-01

    Inulin hydrolysate is a result of inulin hydrolysis by inulinase enzyme of Scopulariopsis sp.-CBS1 fungi isolated from dahlia tuber skin in the formation of fructooligosaccharides (FOS) as dietary fiber. Inulin hydrolysate fermented by Bifidobacterium breve has a potential as cholesterol binder in digestive system due to dietary fiber content in inulin. This study was conducted to evaluate the best cholesterol binding capacity by the variation of lactic acid bacteria (LAB) culture concentration of 10%, 20% and 30% (v/v), respectively. Fermentation process were conducted with inulin hydrolysate concentration of 25% (w/v), skim milk 7,5% (w/v) and various LAB culture concentration at 40 °C for 0, 12, 24, 36 and 48 hours. The results showed that the variation of LAB culture concentrations affect the cholesterol binding ability in fermented inulin hydrolysate. The fermentation process with 10% LAB culture concentration at 40°C for 48 hours resulted in the highest cholesterol binding capacity (CBC) of 13,69 mg/g at pH 7and 14,44 mg/g at pH 2 with composition of total acids of 0,787%, soluble dietary fiber of 0,396%, insoluble dietary fiber of 5,47%, total solids of 14,476%, total sugars of 472,484 mg/mL, reducing sugar of 92 mg/mL and total plate count (TPC) of 7,278 log CFU/mL, respectively.

  18. Microbial production host selection for converting second-generation feedstocks into bioproducts

    NARCIS (Netherlands)

    Rumbold, K.; Buijsen, H.J.J. van; Overkamp, K.M.; Groenestijn, J.W. van; Punt, P.J.; Werf, M.J.V.D.

    2009-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of

  19. Inhibition of α-Amylases by Condensed and Hydrolysable Tannins: Focus on Kinetics and Hypoglycemic Actions

    Directory of Open Access Journals (Sweden)

    Camila Gabriel Kato

    2017-01-01

    Full Text Available The aim of the present study was to compare the in vitro inhibitory effects on the salivary and pancreatic α-amylases and the in vivo hypoglycemic actions of the hydrolysable tannin from Chinese natural gall and the condensed tannin from Acacia mearnsii. The human salivary α-amylase was more strongly inhibited by the hydrolysable than by the condensed tannin, with the concentrations for 50% inhibition (IC50 being 47.0 and 285.4 μM, respectively. The inhibitory capacities of both tannins on the pancreatic α-amylase were also different, with IC50 values being 141.1 μM for the hydrolysable tannin and 248.1 μM for the condensed tannin. The kinetics of the inhibition presented complex patterns in that for both inhibitors more than one molecule can bind simultaneously to either the free enzyme of the substrate-complexed enzyme (parabolic mixed inhibition. Both tannins were able to inhibit the intestinal starch absorption. Inhibition by the hydrolysable tannin was concentration-dependent, with 53% inhibition at the dose of 58.8 μmol/kg and 88% inhibition at the dose of 294 μmol/kg. For the condensed tannin, inhibition was not substantially different for doses between 124.4 μmol/kg (49% and 620 μmol/kg (57%. It can be concluded that both tannins, but especially the hydrolysable one, could be useful in controlling the postprandial glycemic levels in diabetes.

  20. Production of bacterial cellulose and enzyme from waste fiber sludge

    Science.gov (United States)

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  1. Impact of thermal pretreatment and MSW origin on composition and hydrolysability in a sugar platform biorefinery

    Science.gov (United States)

    Vaurs, L. P.; Heaven, S.; Banks, C. J.

    2018-03-01

    Municipal solid waste (MSW) is a widely available large volume source of lignocellulosic material containing a waste paper/cardboard mixture which can be converted into fermentable sugars via cellulolytic enzyme hydrolysis in a sugar platform biorefinery. Thermal pretreatments are generally applied to MSW to facilitate the extraction of the lignocellulosic material from recyclable materials (plastics, metals etc.) and improve the paper pulp conversion to sugars. Applying high temperature might enhance food waste solubilisation but may collapse cellulose fibre decreasing its hydrolysability. Low temperature pre-treatment will reduce the energy demand but might result in highly contaminated pulp. Preliminary results showed that the enzymatic hydrolysis performances were dependent on the MSW origins. Using 8 different samples, the impact of thermal pretreatment and MSW origin on pulp composition and hydrolysability was assessed in this work. Low pre-treatment temperature produced pulp which contained less lignocellulosic material but which hydrolysed to a higher degree than MSW treated at high temperatures. High temperature pre-treatment could have exposed more of the inhibiting lignin to cellulase. This information would have a significant economic impact on a commercial plant as expensive autoclave could be advantageously replaced by a cheaper process. Glucan conversions were also found to vary depending on the region, the recycling rate possibly because of the lower recycling rate resulting in the use of less paper additive in the material or the difference in paper production technology (chemical VS mechanical pulping). This could also be explained by the differences in paper composition.

  2. Purification of Angiotensin Converting Enzyme Inhibitory Peptide Derived From Kacang Goat Meat Protein Hydrolysate

    OpenAIRE

    Jamhari, J; Yusiati, L.M; Suryanto, E; Cahyanto, M.N; Erwanto, Y; Muguruma, M

    2013-01-01

    The objective of this study was to identify the Angiotensin Converting Enzyme (ACE) inhibitorypeptide derived from Kacang goat meat protein hydrolysate. Kacang goat meat loin section washydrolyzed with pepsin, trypsin and chymotrypsin. Protein hydrolysate of Kacang goat meat was thentested the protein concentration and ACE inhibitory activity. ACE inhibitory peptide of the proteinhydrolysate was purified through several steps of purification by column SEP-PAK Plus C18 Cartridgeand RP-HPLC usi...

  3. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion.

    Science.gov (United States)

    Ketnawa, Sunantha; Martínez-Alvarez, Oscar; Benjakul, Soottawat; Rawdkuen, Saroat

    2016-02-01

    This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (Pfish skin, could serve as a potential source of functional food ingredients for health promotion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Antioxidant Activity of Fish Protein Hydrolysates in in vitro Assays and in Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Andersen, Lisa Lystbæk; Jacobsen, Charlotte

    The aim of this study was to screen different protein hydrolysates with respect to their antioxidative properties in order to select the most promising extracts for further evaluation in oil-in-water emulsions. Three fractions of protein hydrolysates (Crude, >5kDa and 5kDa, 3-5kDa and...

  5. Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate.

    Science.gov (United States)

    Kong, Yan; Yang, Xiao; Ding, Qi; Zhang, Yu-Yu; Sun, Bao-Guo; Chen, Hai-Tao; Sun, Ying

    2017-12-01

    Umami taste is an important part to the taste of chicken. To isolate and identify non-volatile umami compounds, fractions from chicken soup and hydrolysate were prepared and analyzed. Amino acids were analyzed by amino acid analyzer. Organic acids and nucleotides were determined by ultra-performance liquid chromatography. Separation procedures utilizing ultrafiltration, Sephadex G-15 and reversed-phase high-performance liquid chromatography were used to isolate umami taste peptides. Combined with sensory evaluation and LC-Q-TOF-MS, the amino acid sequences of 12 oligopeptides were determined. The amount of taste compounds was higher in chicken enzymatic hydrolysate than that of chicken soup. Eight oligopeptides from chicken enzymatic hydrolysate were identified, including Ala-Asp, Ala-Met, His-Ser, Val-Glu, Ala-Glu, Asp-Ala-Gly, Glu-Asp and Ala-Glu-Ala. Four oligopeptides from chicken soup were identified, including Val-Thr, Ala-His, Ala-Phe and Thr-Glu. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Catalytic conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic system with addition of sodium chloride.

    Science.gov (United States)

    Qing, Qing; Guo, Qi; Zhou, Linlin; Wan, Yilun; Xu, Youqing; Ji, Huilong; Gao, Xiaohang; Zhang, Yue

    2017-02-01

    Catalytic conversion of corncob pretreatment hydrolysate and raw corncob into furfural in a modified biphasic system by SO 4 2- /SnO 2 - MMT solid catalyst has been developed. The influence of the organic solvent type, organic to water phase ratio, sodium chloride concentration, reaction temperature and time on the furfural production were comparatively evaluated. The results showed that furfural yields of 81.7% and 66.1% were achieved at 190°C for 15mins and 190°C for 20mins, respectively, for corncob pretreatment hydrolysate and raw corncob by this solid catalyst. The solid catalyst used in this study exhibited good stability and high efficiency applied in the modified biphasic system in addition to excellent recyclability. The proposed catalytic system displayed high performance for catalytic conversion of lignocellulosic biomass into important platform chemicals and has great potential in industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of Abalone Hydrolysates Encapsulated by Double Emulsion on the Physicochemical and Sensorial Properties of Fresh Cheese.

    Science.gov (United States)

    Choi, HeeJeong; Kim, Soo-Jin; Lee, Sang-Yoon; Choi, Mi-Jung

    2017-01-01

    The intake of dietary salt through food now exceeds current nutritional recommendations and is thought to have negative effects on human health, such as the increasing prevalence of hypertension. This study was performed to investigate whether W 1 /O/W 2 double emulsions can be used to enhance the saltiness of cheese without increasing the salt content (W 1 is distilled water or 1% abalone hydrolysate, and W 2 is 1% NaCl or 1% abalone hydrolysate + 1% NaCl solution). We also investigated the effect of adding abalone hydrolysate to the double emulsion as a saltiness enhancer. The cheeses were physico-chemically evaluated to determine curd yield, pH value, moisture content, color, texture, salt release rate, and sensory properties. No significant differences were observed in curd yield, pH value, moisture content, lightness, or redness between the cheeses made with and without the double emulsion. However, in the evaluation of salt release rate, fresh cheese made with double emulsion (W 1 = distilled water, W 2 = 1% NaCl + 1% abalone hydrolysate) was detected earlier than the control or the other treatments. In the sensory evaluation, fresh cheese made with the double emulsion showed higher scores for saltiness and overall preference than the control or the other treatments. We concluded that abalone hydrolysate encapsulated in a double emulsion (W 1 is water and W 2 is abalone hydrolysate and NaCl solution) could enhance the saltiness of fresh cheese while maintaining the same salt concentration, without altering its physical properties.

  8. Preventive effect of feeding high-risk infants a casein hydrolysate formula or an ultrafiltrated whey hydrolysate formula. A prospective, randomized, comparative clinical study

    DEFF Research Database (Denmark)

    Halken, S; Høst, A; Hansen, L G

    1993-01-01

    In a prospective study of a 1-year birth cohort of 158 high-risk infants the effect of feeding breastmilk, a casein hydrolysate (Nutramigen) or a new ultrafiltrated whey hydrolysate (Profylac) on the development of cow milk protein allergy/intolerance (CMPA/CMPI) was assessed and compared. All...... the infants had biparental or severe single atopic predisposition, the latter combined with cord blood IgE > or = 0.5 kU/L. At birth all infants were randomized to Nutramigen or Profylac, which was used when breastfeeding was insufficient or not possible during the first 6 months of life. During the same...... period this regimen was combined with avoidance of solid foods and cow milk protein. All mothers had unrestricted diets and were encouraged to do breastfeeding only. Moreover, avoidance of daily exposure to tobacco smoking, furred pets and dust-collecting materials in the bedroom was advised. The infants...

  9. Effects of Hydrolysed Whey Proteins on the Techno-Functional Characteristics of Whey Protein-Based Films

    Directory of Open Access Journals (Sweden)

    Klaus Noller

    2013-03-01

    Full Text Available Pure whey protein isolate (WPI-based cast films are very brittle due to its strong formation of protein cross-linking of disulphide bonding, hydrogen bonding as well as hydrophobic and electrostatic interactions. However, this strong cross-linking is the reason for its final barrier performance. To overcome film brittleness of whey protein layers, plasticisers like glycerol are used. It reduces intermolecular interactions, increases the mobility of polymer chains and thus film flexibility can be achieved. The objective of this study was to investigate the influence of hydrolysed whey protein isolate (WPI in whey protein isolate-based cast films on their techno-functional properties. Due to the fact, that the addition of glycerol is necessary but at the same time increases the free volume in the film leading to higher oxygen and water vapour permeability, the glycerol concentration was kept constant. Cast films with different ratios of hydrolysed and not hydrolysed WPI were produced. They were characterised in order to determine the influence of the lower molecular weight caused by the addition of hydrolysed WPI on the techno-functional properties. This study showed that increasing hydrolysed WPI concentrations significantly change the mechanical properties while maintaining the oxygen and water vapour permeability. The tensile and elastic film properties decreased significantly by reducing the average molecular weight whereas the yellowish coloration and the surface tension considerably increased. This study provided new data which put researchers and material developers in a position to tailor the characteristics of whey protein based films according to their intended application and further processing.

  10. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates.

    Science.gov (United States)

    Guan, Haining; Diao, Xiaoqin; Jiang, Fan; Han, Jianchun; Kong, Baohua

    2018-04-15

    Enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure conditions was studied and the effects of hydrolysis on antioxidant and antihypertensive activities were investigated. As observed, high hydrostatic pressure (80-300MPa) enhanced the hydrolytic efficiency of Corolase PP and decreased the surface hydrophobicity of the hydrolysates. Hydrolysates obtained at 200MPa for 4h had higher bioactivities (reducing power, ABTS radical-scavenging and ACE inhibitory activities). The molecular weight (MW) determination indicated that hydrolysis at high hydrostatic pressure could increase the production of small peptides (hydrostatic pressure combined with Corolase PP treatments could be used as a potential technology to produce bioactive peptides from soy protein isolate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Corrected: The influence of brewers' yeast addition on lactic acid fermentation of brewers' spent grain hydrolysate by Lactobacillus rhamnosus

    OpenAIRE

    Pejin, Jelena; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Đukić-Vuković, Aleksandra; Mladenović, Dragana; Mojović, Ljiljana

    2016-01-01

    Brewers' spent grain (BSG) hydrolysates were used for lactic acid (LA) fermentation by Lactobacillus rhamnosus ATCC 7469. The aim of this study was to evaluate possibilities of the BSG hydrolysate utilization as a substrate for LA fermentation as well as the effect of dry brewers' yeast addition in hydrolysate on lactic acid fermentation parameters (L-(+)-LA and reducing sugar concentration and number of viable cell-viability). Very high L. rhamnosus ATCC 7469 cell viability was achieved in a...

  12. Antioxidant activity of pea protein hydrolysates produced by batch fermentation with lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Stanisavljević Nemanja S.

    2015-01-01

    Full Text Available Nine Lactobacillus strains known for surface proteinase activity were chosen from our collection and tested for their ability to grow in pea seed protein-based medium, and to hydrolyze purified pea proteins in order to produce peptides with antioxidant (AO activity. Two strains, Lactobacillus rhamnosus BGT10 and Lactobacillus zeae LMG17315, exhibited strong proteolytic activity against pea proteins. The AO activity of the pea hydrolysate fraction, MW <10 kDa, obtained by the fermentation of purified pea proteins with Lactobacillus rhamnosus BGT10, was tested by standard spectrophotometric assays (DPPH, ABTS, Fe3+-reducing capacity and the recently developed direct current (DC polarographic assay. The low molecular weight fraction of the obtained hydrolysate was separated using ion exchange chromatography, while the AO activity of eluted fractions was determined by means of a sensitive DC polarographic assay without previous concentration of samples. Results revealed that the fraction present in low abundance that contained basic peptides possessed the highest antioxidant activity. Based on the obtained results, it can be concluded that Lactobacillus rhamnosus BGT10 should be further investigated as a candidate strain for large-scale production of bioactive peptides from legume proteins. [Projekat Ministartsva nauke Republike Srbije, br. 173005 i br. 173026

  13. Économie d'un procédé d'hydrolyse enzymatique et fermentation de la paille de blé pour la production d'alcool carburant Economics of a Process for Producing Alcohol Fuels by Enzymatic Hydrolysis and Fermentation of Wheat Straw

    Directory of Open Access Journals (Sweden)

    Arlie J. P.

    2006-11-01

    Full Text Available Après définition des grandes lignes d'un procédé de base d'hydrolyse-fermentation de la paille de blé, l'analyse de sensibilité montre que le rendement de l'hydrolyse a une grande importance sur les bilans énergétique et économique. Des rendements de l'ordre de 85 % permettent d'obtenir des valeurs d'investissement par tonne de pétrole économisée tout à fait comparables à celles obtenues par d'autres techniques de valorisation de la biomasse en alcool, telle la synthèse du méthanol obtenu après gazéification du bois à l'oxygène. The basic features of a process for production from cereal straw of an acetone-butanol mixture for use as a gasoline substitute are described. They include pretreatment and enzymatic hydrolysis of the substrate followed by fermentation of the sugars produced. A cost evaluation based on the performances of a reference process is presented. Then, an analysis of the sensitivity of the cost price of the process to the variation of the important parameters such as production capacity, enzyme productivity, hydrolysis yield is carried out. The energy balance of the process is presented.

  14. Determination of Free-Form and Peptide Bound Pyrraline in the Commercial Drinks Enriched with Different Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Zhili Liang

    2016-07-01

    Full Text Available Pyrraline, a causative factor for the recent epidemics of diabetes and cardiovascular disease, is also employed as an indicator to evaluate heat damage and formation of advanced glycation end-products (AGEs in foods. Peptide-enriched drinks (PEDs are broadly consumed worldwide due to rapid rate of absorption and perceived health effects. It can be hypothesized that PED is an important source of pyrraline, especially peptide bound pyrraline (Pep-Pyr. In this study we determined free-form pyrraline (Free-Pyr and Pep-Pyr in drinks enriched with whey protein hydrolysate (WPH, soy protein hydrolysate (SPH and collagen protein hydrolysate (CPH. A detection method was developed using ultrahigh-performance liquid chromatography with UV-visible detector coupled with tandem mass spectrometry after solid-phase extraction (SPE. The SPE led to excellent recovery rates ranging between 93.2% and 98.5% and a high reproducibility with relative standard deviations (RSD of <5%. The limits of detection and quantification obtained were 30.4 and 70.3 ng/mL, respectively. Pep-Pyr was identified as the most abundant form (above 96 percent of total pyrraline, whereas Free-Pyr was present in a small proportion (less than four percent of total pyrraline. The results indicate that PED is an important extrinsic source of pyrraline, especially Pep-Pyr. As compared with CPH- and SPH-enriched drinks, WPH-enriched drinks contained high content of Pep-Pyr. The Pep-Pyr content is associated with the distribution of peptide lengths and the amino acid compositions of protein in PEDs.

  15. Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering.

    Science.gov (United States)

    Zhao, Xinqing; Xiong, Liang; Zhang, Mingming; Bai, Fengwu

    2016-09-01

    Production of fuel ethanol from lignocellulosic feedstocks such as agricultural and forestry residues is receiving increasing attention due to the unsustainable supply of fossil fuels. Three key challenges include high cellulase production cost, toxicity of the cellulosic hydrolysate to microbial strains, and poor ability of fermenting microorganisms to utilize certain fermentable sugars in the hydrolysate. In this article, studies on searching of natural microbial strains for production of unique cellulase for biorefinery of agricultural and forestry wastes, as well as development of strains for improved cellulase production were reviewed. In addition, progress in the construction of yeast strains with improved stress tolerance and the capability to fully utilize xylose and glucose in the cellulosic hydrolysate was also summarized. With the superior microbial strains for high titer cellulase production and efficient utilization of all fermentable sugars in the hydrolysate, economic biofuels production from agricultural residues and forestry wastes can be realized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of collagen hydrolysate in articular pain: a 6-month randomized, double-blind, placebo controlled study.

    Science.gov (United States)

    Bruyère, O; Zegels, B; Leonori, L; Rabenda, V; Janssen, A; Bourges, C; Reginster, J-Y

    2012-06-01

    Evaluation of the efficacy and safety of a food supplement made of collagen hydrolysate 1200 mg/day versus placebo during 6 months, in subjects with joint pain at the lower or upper limbs or at the lumbar spine. Comparative double-blind randomized multicenter study in parallel groups. 200 patients of both genders of at least 50 years old with joint pain assessed as ≥30 mm on a visual analogical scale (VAS). Collagen hydrolysate 1200 mg/day or placebo during 6 months. Comparison of the percentage of clinical responder between the active collagen hydrolysate group and the placebo group after 6 months of study. A responder subject was defined as a subject experiencing a clinically significant improvement (i.e. by 20% or more) in the most painful joint using the VAS score. All analyses were performed using an intent-to-treat procedure. At 6 months, the proportion of clinical responders to the treatment, according to VAS scores, was significantly higher in the collagen hydrolysate (CH) group 51.6%, compared to the placebo group 36.5% (pvs. 39.6%, p=0.53). No significant difference in terms of security and tolerability was observed between the two groups. This study suggests that collagen hydrolysate 1200 mg/day could increase the number of clinical responders (i.e. improvement of at least 20% on the VAS) compared to placebo. More studies are needed to confirm the clinical interest of this food supplement. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Fumaric acid production using renewable resources from biodiesel and cane sugar production processes.

    Science.gov (United States)

    Papadaki, Aikaterini; Papapostolou, Harris; Alexandri, Maria; Kopsahelis, Nikolaos; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise M G; Koutinas, Apostolis A

    2018-04-13

    The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.

  18. Accelerated shelf-life testing of quality loss for a commercial hydrolysed hen egg white powder.

    Science.gov (United States)

    Rao, Qinchun; Rocca-Smith, Jeancarlo R; Schoenfuss, Tonya C; Labuza, Theodore P

    2012-11-15

    In recent years, due to the specific health benefits associated with bioactive peptides and the reduction of protein allergenicity by enzymatic hydrolysis, the utilisation of protein hydrolysates in functional foods and beverages for both protein supplementation and clinical use has significantly increased. However, few studies have explored the moisture-induced effects on food protein hydrolysates, and the resulting changes in the structure and texture of the food matrix as well as the loss in functional properties of bioactive peptides during storage. The main purpose of this study is to determine the influence of water activity (a(w)) on the storage quality of a commercial spray-dried hydrolysed hen egg white powder (HEW). During storage at 45 °C for two months at different a(w)s (0.05-0.79), the selected physicochemical properties of the HEW samples were analysed. Overall, the effect of a(w) on the colour change of HEW at 45 °C for one month was similar to that of HEW after four months at 23 °C due to the presence of a small amount of glucose in HEW. Several structural changes occurred at a(w)s from 0.43 to 0.79 including agglomeration, stickiness and collapse. Kinetic analysis showed a first-order hyperbolic model fit for the change in the L(∗) value, the total colour difference (ΔE(∗)) and the fluorescence intensity (FI). There was a high correlation between colour change and fluorescence, as expected for the Maillard reaction. The reduction in the remaining free amino groups was about 5% at a(w) 0.50 and 6% at a(w) 0.79 after one month storage. In summary, during storage, the Maillard reaction and/or its resulting products could decrease the nutritional value and the quality of HEW. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Biocatalytic conversion of wheat bran hydrolysate using an immobilized GH43 beta-xylosidase.

    Science.gov (United States)

    Smaali, Issam; Rémond, Caroline; Skhiri, Yousr; O'Donohue, Michael J

    2009-01-01

    To investigate the concept of a xylosidase-based process for the continuous production of xylose from arabinoxylan-containing feedstocks, a beta-xylosidase from Bacillus halodurans C-125 was immobilized and deployed in packed bed reactor (PBR). Among the several immobilization methods tested, glutaraldehyde-mediated immobilization on chitosan was the best both in terms of immobilization and activity yields (91% and 72.9%, respectively). In batch experiments the immobilized enzyme hydrolyzed wheat bran hydrolysates quite efficiently, consuming nearly all xylobiose and xylotriose after 6h. Its reusability showed only a 50% decrease of its activity after 92h. Using the chitosan-immobilized beta-xylosidase in a PBR, xylose productivity was 7.2g xylose l(-1)h(-1) and the conversion factor was 0.55 (derived from initial xylose in the substrate). The operational stability of the PBR was good, because only 25% of productivity was lost after the treatment of three batches of substrate over a 72-h period.

  20. Rheological and Functional Properties of Catfish Skin Protein Hydrolysates

    Science.gov (United States)

    Catfish skin is an abundant and underutilized resource that can be used as a unique protein source to make fish skin hydrolysates. The objectives of this study were to: isolating soluble and insoluble proteins from hydrolyzed catfish skin and study the chemical and functional properties of the prote...

  1. IMPACT OF ADULTERATION WITH GLUCOSE, FRUCTOSE AND HYDROLYSED INULIN SYRUP ON HONEY PHYSICO-CHEMICAL PROPERTIES

    OpenAIRE

    Sorina ROPCIUC; Mircea OROIAN; Vlad OLARIU

    2017-01-01

    The aim of this study is to evaluate the influence of the adulteration with glucose, fructose, hydrolysed inulin syrup on honey physico-chemical properties (pH, aw, electrical conductivity (EC), water activity and colour parameters (L*, a*, b*, chroma)) of three honey samples of different botanical origins (acacia, tilia and polyfloral). The honeys were adulterated in different percentages (10%, 20%, 30%, 40% and 50% respectively) with glucose, fructose and hydrolysed inulin syrup. The moistu...

  2. Sago Biomass as a Sustainable Source for Biohydrogen Production by Clostridium butyricum A1

    Directory of Open Access Journals (Sweden)

    Mohamad Faizal Ibrahim

    2013-12-01

    Full Text Available Biohydrogen production from biomass is attracting many researchers in developing a renewable, clean and environmental friendly biofuel. The biohydrogen producer, Clostridium butyricum A1, was successfully isolated from landfill soil. This strain produced a biohydrogen yield of 1.90 mol H2/mol glucose with productivity of 170 mL/L/h using pure glucose as substrate. The highest cumulative biohydrogen collected after 24 h of fermentation was 2468 mL/L-medium. Biohydrogen fermentation using sago hampas hydrolysate produced higher biohydrogen yield (2.65 mol H2/mol glucose than sago pith residue (SPR hydrolysate that produced 2.23 mol H2/mol glucose. A higher biohydrogen productivity of 1757 mL/L/h was obtained when using sago hampas hydrolysate compared to when using pure glucose that has the productivity of 170 mL/L/h. A comparable biohydrogen production was also obtained by C. butyricum A1 when compared to C. butyricum EB6 that produced a biohydrogen yield of 2.50 mol H2/mol glucose using sago hampas hydrolysate as substrate. This study shows that the new isolate C. butyricum A1 together with the use of sago biomass as substrate is a promising technology for future biohydrogen production.

  3. Potential Fish Production Impacts from Partial Removal of Decommissioned Oil and Gas Platforms off the Coast of California

    Science.gov (United States)

    Claisse, J.; Pondella, D.; Love, M.; Zahn, L.; Williams, C.; Bull, A. S.

    2016-02-01

    When oil and gas platforms become obsolete they go through a decommissioning process. This may include partial removal (from the surface to 26 m depth) or complete removal of the platform structure. While complete removal would likely eliminate most of the existing fish biomass and associated secondary production, we find that the potential impacts of partial removal would likely be limited on all but one platform off the coast of California. On average 80% of fish biomass and 86% of secondary fish production would be retained after partial removal, with above 90% retention expected for both metrics on many platforms. Partial removal would likely result in the loss of fish biomass and production for species typically found residing in the shallow portions of the platform structure. However, these fishes generally represent a small proportion of the fishes associated with these platforms. More characteristic of platform fauna are the primarily deeper-dwelling rockfishes (genus Sebastes). "Shell mounds" are biogenic reefs that surround some of these platforms resulting from an accumulation of mollusk shells that have fallen from the shallow areas of the platforms mostly above the depth of partial removal. We found that shell mounds are moderately productive fish habitats, similar to or greater than natural rocky reefs in the region at comparable depths. The complexity and areal extent of these biogenic habitats, and the associated fish biomass and production, will likely be reduced after either partial or complete platform removal. Habitat augmentation by placing the partially removed platform superstructure or some other additional habitat enrichment material (e.g., rock boulders) on the seafloor adjacent to the base of partially removed platforms provides additional options to enhance fish production, potentially mitigating reductions in shell mound habitat.

  4. Antioxidant activity of protein hydrolysates from raw and heat-treated yellow string beans (Phaseolus vulgaris L.).

    Science.gov (United States)

    Karaś, Monika; Jakubczyk, Anna; Szymanowska, Urszula; Materska, Małgorzata; Zielińska, Ewelina

    2014-01-01

    Nowadays, legume plants have been considered not only a source of valuable proteins necessary for the proper functioning and growth of the body but also a source of bioactive compounds such as bioactive peptides, that may be beneficial to human health and protect against negative change in food. The aim of this study was to investigate the effect of heat treatment on the release of antioxidant peptides obtained by hydrolysis of the yellow string beans protein. The antioxidant properties of the hydrolysates were evaluated through free radical scavenging activities (DPPH and ABTS) and inhibition of iron activities (chelation of Fe2+). The results show that the heat treatment had influence on both increased peptides content and antioxidant activity after pepsin hydrolysis of string bean protein. The peptides content after protein hydrolysis derived from raw and heat treated beans were noted 2.10 and 2.50 mg·ml-1, respectively. The hydrolysates obtained from raw (PHR) and heat treated (PHT) beans showed better antioxidant properties than protein isolates (PIR and PIT). Moreover, the hydrolysates obtained from heat treated beans showed the higher ability to scavenge DPPH• (46.12%) and ABTS+• (92.32%) than obtained from raw beans (38.02% and 88.24%, correspondingly). The IC50 value for Fe2+ chelating ability for pepsin hydrolysates obtained from raw and heat treatment beans were noted 0.81 and 0.19 mg·ml-1, respectively. In conclusion, the results of this study showed that the heat treatment string beans caused increase in the antioxidant activities of peptide-rich hydrolysates.

  5. Characterization of Peptides Found in Unprocessed and Extruded Amaranth (Amaranthus hypochondriacus Pepsin/Pancreatin Hydrolysates

    Directory of Open Access Journals (Sweden)

    Alvaro Montoya-Rodríguez

    2015-04-01

    Full Text Available The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH and extruded amaranth hydrolysates (EAH and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min for each enzyme. After 180 min of pepsin hydrolysis, aliquots were taken at each time during pancreatin hydrolysis to characterize the hydrolysates by MALDI-TOF/MS-MS. Molecular masses (MM (527, 567, 802, 984, 1295, 1545, 2034 and 2064 Da of peptides appeared consistently during hydrolysis, showing high intensity at 10 min (2064 Da, 120 min (802 Da and 180 min (567 Da in UAH. EAH showed high intensity at 10 min (2034 Da and 120 min (984, 1295 and 1545 Da. Extrusion produced more peptides with MM lower than 1000 Da immediately after 10 min of hydrolysis. Hydrolysis time impacted on the peptide profile, as longer the time lower the MM in both amaranth hydrolysates. Sequences obtained were analyzed for their biological activity at BIOPEP, showing important inhibitory activities related to chronic diseases. These peptides could be used as a food ingredient/supplement in a healthy diet to prevent the risk to develop chronic diseases.

  6. Ethanol fermentation by xylose-assimilating Saccharomyces cerevisiae using sugars in a rice straw liquid hydrolysate concentrated by nanofiltration.

    Science.gov (United States)

    Sasaki, Kengo; Sasaki, Daisuke; Sakihama, Yuri; Teramura, Hiroshi; Yamada, Ryosuke; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2013-11-01

    Concentrating sugars using membrane separation, followed by ethanol fermentation by recombinant xylose-assimilating Saccharomyces cerevisiae, is an attractive technology. Three nanofiltration membranes (NTR-729HF, NTR-7250, and ESNA3) were effective in concentrating glucose, fructose, and sucrose from dilute molasses solution and no permeation of sucrose. The separation factors of acetate, formate, furfural, and 5-hydroxymethyl furfural, which were produced by dilute acid pretreatment of rice straw, over glucose after passage through these three membranes were 3.37-11.22, 4.71-20.27, 4.32-16.45, and 4.05-16.84, respectively, at pH 5.0, an applied pressure of 1.5 or 2.0 MPa, and 25 °C. The separation factors of these fermentation inhibitors over xylose were infinite, as there was no permeation of xylose. Ethanol production from approximately two-times concentrated liquid hydrolysate using recombinant S. cerevisiae was double (5.34-6.44 g L(-1)) that compared with fermentation of liquid hydrolysate before membrane separation (2.75 g L(-1)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Changes in vascularization of internal organs in rabbits with experimental atherosclerosis, treated with protein hydrolysate

    International Nuclear Information System (INIS)

    Demireva, K.; Popdimitrov, I.

    1979-01-01

    The vascularization of the internal organs of rabbits with experimental atherosclerosis was studied by the method of Sapirstein with 86 rubidium. Experiments were carried out on male Chinchilla rabbits, fed cholesterol in a dose of 0,2 g/kg of body weight daily for a period of 90 days. Part of the animals were treated with protein hydrolysate in a dose of 5 ml/kg of body weight subcutaneously and the remaining - with physiologic saline. There was reduced vascularization in the heart, kidneys, intestines, liver, adrenals, pancreas and other internal organs in rabbits fed cholestrol and treated with physiologic saline. Administration of protein hydrolysate had protective effect on organ vascularization. Accumulation of 86 rubidium in a large part of the animals was greater than in control group. It is shown that protein hydrolysate amino acids stabilize the endothelial cells and stimulate the local vascularization. (author)

  8. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Nie, Qiulin; Zhao, Hongting; Tang, Junhong

    2016-12-01

    Waste pastry (6%, w/v) was hydrolyzed by the produced glucoamylase and protease to obtain the glucose (19.8g/L) and free amino nitrogen (179mg/L) solution. Then, the effect of organic loading rate (OLR) (8-40kgCOD/(m 3 d)) on dark fermentative hydrogen production in the continuous stirred tank reactor (CSTR) and continuous mixed immobilized sludge reactor (CMISR) from waste pastry hydrolysate was investigated and compared. The maximum hydrogen production rate of CSTR (277.76mL/(hL)) and CMISR (320.2mL/(hL)) were achieved at OLR of 24kgCOD/(m 3 d) and 32kgCOD/(m 3 d), respectively. Carbon recovery ranged from 75.2-84.1% in the CSTR and CMISR with the balance assumed to be converted to biomass. One gram waste pastry could produce 0.33g (1.83mmol) glucose which could be further converted to 79.24mL (3.54mmol) hydrogen in the CMISR or 91.66mL (4.09mmol) hydrogen in the CSTR. This is the first study which reports dark fermentative hydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Hydrolysates of Fish Skin Collagen: An Opportunity for Valorizing Fish Industry Byproducts.

    Science.gov (United States)

    Blanco, María; Vázquez, José Antonio; Pérez-Martín, Ricardo I; Sotelo, Carmen G

    2017-05-05

    During fish processing operations, such as skinning and filleting, the removal of collagen-containing materials can account for up to 30% of the total fish byproducts. Collagen is the main structural protein in skin, representing up to 70% of dry weight depending on the species, age and season. It has a wide range of applications including cosmetic, pharmaceutical, food industry, and medical. In the present work, collagen was obtained by pepsin extraction from the skin of two species of teleost and two species of chondrychtyes with yields varying between 14.16% and 61.17%. The storage conditions of the skins appear to influence these collagen extractions yields. Pepsin soluble collagen (PSC) was enzymatically hydrolyzed and the resultant hydrolysates were ultrafiltrated and characterized. Electrophoretic patterns showed the typical composition of type I collagen, with denaturation temperatures ranged between 23 °C and 33 °C. In terms of antioxidant capacity, results revealed significant intraspecific differences between hydrolysates, retentate, and permeate fractions when using β -Carotene and DPPH methods and also showed interspecies differences between those fractions when using DPPH and ABTS methods. Under controlled conditions, PSC hydrolysates from Prionace glauca , Scyliorhinus canicula , Xiphias gladius, and Thunnus albacares provide a valuable source of peptides with antioxidant capacities constituting a feasible way to efficiently upgrade fish skin biomass.

  10. Fermentative Polyhydroxybutyrate Production from a Novel Feedstock Derived from Bakery Waste

    Science.gov (United States)

    Lam, Wan Chi; Han, Wei; Lau, Kin Yan; Lei, Ho Man; Lo, Kin Yu; Ng, Wai Yee; Melikoglu, Mehmet

    2014-01-01

    In this study, Halomonas boliviensis was cultivated on bakery waste hydrolysate and seawater in batch and fed-batch cultures for polyhydroxybutyrate (PHB) production. Results demonstrated that bakery waste hydrolysate and seawater could be efficiently utilized by Halomonas boliviensis while PHB contents between 10 and 30% (w/w) were obtained. Furthermore, three methods for bakery waste hydrolysis were investigated for feedstock preparation. These include: (1) use of crude enzyme extracts from Aspergillus awamori, (2) Aspergillus awamori solid mashes, and (3) commercial glucoamylase. In the first method, the resultant free amino nitrogen (FAN) concentration in hydrolysates was 150 and 250 mg L−1 after 20 hours at enzyme-to-solid ratios of 6.9 and 13.1 U g−1, respectively. In both cases, the final glucose concentration was around 130–150 g L−1. In the second method, the resultant FAN and glucose concentrations were 250 mg L−1 and 150 g L−1, respectively. In the third method, highest glucose and lowest FAN concentrations of 170–200 g L−1 and 100 mg L−1, respectively, were obtained in hydrolysates after only 5 hours. The present work has generated promising information contributing to the sustainable production of bioplastic using bakery waste hydrolysate. PMID:25136626

  11. Fermentative Polyhydroxybutyrate Production from a Novel Feedstock Derived from Bakery Waste

    Directory of Open Access Journals (Sweden)

    Daniel Pleissner

    2014-01-01

    Full Text Available In this study, Halomonas boliviensis was cultivated on bakery waste hydrolysate and seawater in batch and fed-batch cultures for polyhydroxybutyrate (PHB production. Results demonstrated that bakery waste hydrolysate and seawater could be efficiently utilized by Halomonas boliviensis while PHB contents between 10 and 30% (w/w were obtained. Furthermore, three methods for bakery waste hydrolysis were investigated for feedstock preparation. These include: (1 use of crude enzyme extracts from Aspergillus awamori, (2 Aspergillus awamori solid mashes, and (3 commercial glucoamylase. In the first method, the resultant free amino nitrogen (FAN concentration in hydrolysates was 150 and 250 mg L−1 after 20 hours at enzyme-to-solid ratios of 6.9 and 13.1 U g−1, respectively. In both cases, the final glucose concentration was around 130–150 g L−1. In the second method, the resultant FAN and glucose concentrations were 250 mg L−1 and 150 g L−1, respectively. In the third method, highest glucose and lowest FAN concentrations of 170–200 g L−1 and 100 mg L−1, respectively, were obtained in hydrolysates after only 5 hours. The present work has generated promising information contributing to the sustainable production of bioplastic using bakery waste hydrolysate.

  12. Caracterização químico-nutricional de um isolado protéico de soro de leite, um hidrolisado de colágeno bovino e misturas dos dois produtos Chemical-nutritional characterization of a whey protein isolate, a bovine collagen hydrolysate and mixtures of the two products

    Directory of Open Access Journals (Sweden)

    Fabiane La Flor Ziegler

    2009-02-01

    Full Text Available OBJETIVO:Estudar química e nutricionalmente um isolado protéico de soro de leite bovino, um hidrolisado de colágeno bovino e misturas dos dois produtos visando elevado valor nutritivo e funcional. MÉTODOS: Realizaram-se análises da composição centesimal e do perfil de aminoácidos dos dois materiais protéicos, para cálculo da melhor adequação dos aminoácidos essenciais, com base no perfil recomendado pela Organização Mundial de Saúde. Os índices de valor nutritivo para o isolado de soro de leite, o hidrolisado de colágeno e as misturas foram determinados em ratos, a partir de ensaios de crescimento e de balanço de nitrogênio. Os resultados dos parâmetros nutricionais foram submetidos à análise de variância e ao teste de Tukey para a verificação de diferenças entre médias (pOBJECTIVE:The objective was the chemical and nutritional study of a bovine whey protein isolate, a bovine collagen hydrolysate and mixtures of the two products aiming at high nutritional and functional value. METHODS: Centesimal composition and amino acid analyses were performed on both proteinaceous materials for the calculation of an adequate amino acid profile based on the Food and Agriculture Organization/World Health Organization recommendation. The nutritive value indexes for the whey protein isolate, the collagen hydrolysate and mixtures of both proteins were determined in rats through growth assay and nitrogen balance. The experimental parameters from nutritional assays were submitted to analysis of variance and the Tukey test applied for differences among means (p<0.05. RESULTS: The whey protein isolate met all the requirements of the Food and Agriculture Organization/World Health Organization reference for essential amino acids while the collagen hydrolysate showed deficiency in all essential amino acids and complete absence of tryptophan. The casein showed higher efficiency than the whey isolate and mixtures of both proteins in promoting

  13. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach

    NARCIS (Netherlands)

    Zha, Y.; Westerhuis, J.A.; Muilwijk, B.; Overkamp, K.M.; Nijmeijer, B.M.; Coulier, L.; Smilde, A.K.; Punt, P.J.

    2014-01-01

    Background: Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates.Results: We studied the

  14. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach

    NARCIS (Netherlands)

    Zha, Y.; Westerhuis, J.A.; Muilwijk, B.; Overkamp, K.M.; Nijmeijer, B.M.; Coulier, L.; Smilde, A.K.; Punt, P.J.

    2014-01-01

    BACKGROUND: Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates. RESULTS: We studied the

  15. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste

    International Nuclear Information System (INIS)

    Banerjee, Pradipta; Madhu, S.; Chandra Babu, N.K.; Shanthi, C.

    2015-01-01

    Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10 mM of CaCl 2 , 5 mM of Na 2 HPO 4 , 100 mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal–protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth. - Highlights: • Collagen hydrolysate, extracted from leather industry waste is subjected to biomineralization. • Optimal conditions required for HA growth are identified. • FTIR studies reveal higher Ca−COO − and low C−N stretch with higher HA formation. • AFM and SEM studies reveal nanometer ranged HA crystals

  16. Combining catalytical and biological processes to transform cellulose into high value-added products

    Science.gov (United States)

    Gavilà, Lorenc; Güell, Edgar J.; Maru, Biniam T.; Medina, Francesc; Constantí, Magda

    2017-04-01

    Cellulose, the most abundant polymer of biomass, has an enormous potential as a source of chemicals and energy. However, its nature does not facilitate its exploitation in industry. As an entry point, here, two different strategies to hydrolyse cellulose are proposed. A solid and a liquid acid catalysts are tested. As a solid acid catalyst, zirconia and different zirconia-doped materials are proved, meanwhile liquid acid catalyst is carried out by sulfuric acid. Sulfuric acid proved to hydrolyse 78% of cellulose, while zirconia doped with sulfur converted 22% of cellulose. Both hydrolysates were used for fermentation with different microbial strains depending on the desired product: Citrobacter freundii H3 and Lactobacillus delbrueckii, for H2 or lactic acid production respectively. A measure of 2 mol H2/mol of glucose was obtained from the hydrolysate using zirconia with Citrobacter freundii; and Lactobacillus delbrueckii transformed all glucose into optically pure D-lactic acid.

  17. Impact of Power Ultrasound on Antihypertensive Activity, Functional Properties, and Thermal Stability of Rapeseed Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Asif Wali

    2017-01-01

    Full Text Available The effects of power ultrasound pretreatments on the degree of hydrolysis (DH, angiotensin-I-converting enzyme (ACE inhibitory activity, amino acid composition, surface hydrophobicity, protein solubility, and thermal stability of ACE inhibition of rapeseed protein hydrolysates were evaluated. Ultrasonic pretreatments before enzymolysis in terms of power and exposure time increased the DH and ACE inhibitory activities over the control (without sonication. In this study, maximum DH 22.07% and ACE inhibitory activity 72.13% were achieved at 600 W and 12 min pretreatment. Compared to the hydrolysates obtained without sonication, the amino acid profile of ultrasound pretreated hydrolysates showed significant changes particularly in the proline content and hydrophobic amino acids with an increased rate of 2.47% and 6.31%, respectively. Ultrasound pretreatment (600 watts, 12 min improved functional properties of protein hydrolysates over control by enhancing surface hydrophobicity and solubility index with an increased rate of 130.76% and 34.22%. Moreover, the stability test showed that the ACE inhibitory activity remains stable against heat treatments. However, extensive heat, prolonged heating time, and alkaline conditions were not in the favor of stability test, while under mild heat and acidic conditions their ACE inhibitory activities were not significantly different from unheated samples.

  18. PURIFICATION OF ANGIOTENSIN CONVERTING ENZYME INHIBITORY PEPTIDE DERIVED FROM KACANG GOAT MEAT PROTEIN HYDROLYSATE

    Directory of Open Access Journals (Sweden)

    J. Jamhari

    2014-10-01

    Full Text Available The objective of this study was to identify the Angiotensin Converting Enzyme (ACE inhibitorypeptide derived from Kacang goat meat protein hydrolysate. Kacang goat meat loin section washydrolyzed with pepsin, trypsin and chymotrypsin. Protein hydrolysate of Kacang goat meat was thentested the protein concentration and ACE inhibitory activity. ACE inhibitory peptide of the proteinhydrolysate was purified through several steps of purification by column SEP-PAK Plus C18 Cartridgeand RP-HPLC using a Cosmosil column 5PE-SM, 4.6 x 250 mm. The sequence of amino acid of ACEinhibitory peptide was identified by amino acid sequencer. The results showed that amino acidssequence of ACE inhibitory peptide derived from protein hydrolysate of Kacang goat meat was leu-thrglu-ala-pro-leu-asn-pro-lys-ala-arg- asn-glu-lys. It had a molecular weight (MW of 1581 and occurredat the position of 20th to 33rd residues of b-actin of goat meat protein (Capra hircus. The ACE inhibitoryactivity (IC50 of the peptide was 190 mg/mL or 120 mM.

  19. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability.

    Science.gov (United States)

    Ketnawa, Sunantha; Benjakul, Soottawat; Martínez-Alvarez, Oscar; Rawdkuen, Saroat

    2017-01-15

    The peptidase from the viscera of farmed giant catfish was used for producing gelatin hydrolysates (HG) and compared with those produced from commercial bovine trypsin (HB). The degree of hydrolysis (DH) observed suggests that proteolytic cleavage rapidly occurred within the first 120min of incubation, and there was higher DH in HG than in HB. HG demonstrated the highest ACE-inhibitory activity, DPPH, ABTS radical scavenging activity, and FRAP. HB showed the highest FRAP activity. The DPPH radical scavenging activity of HG was quite stable over the pH range of 1-11, but it increased slightly when the heating duration time reached 240min at 100°C. The ACE-inhibitory activity of HG showed the highest stability at a pH of 7, and it remained very stable at 100°C for over 15-240min. The visceral peptidase from farmed giant catfish could be an alternative protease for generating protein hydrolysates with desirable bioactivities. The resulting hydrolysates showed good stability, making them potential functional ingredients for food formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. An interlaboratory comparison of the performance of ethanol-producing micro-organisms in a xylose-rich acid hydrolysate

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B. (Dept. of Applied Microbiology, Lund Inst. of Technology/Univ. of Lund (Sweden)); Jeppsson, H. (Dept. of Applied Microbiology, Lund Inst. of Technology/Univ. of Lund (Sweden)); Olsson, L. (Dept. of Applied Microbiology, Lund Inst. of Technology/Univ. of Lund (Sweden)); Mohagheghi, A. (Bioprocess and Fuels Engineering Research Branch, National Renewable Energy Lab., Golden, CO (United States))

    1994-03-01

    A xylose-rich, dilute-acid-pretreated corn-cob hydrolysate was fermented by Escherichia coli ATCC 11303, recombinant (rec) E. coli B (pLOI 297 and KO11), Pichia stipitis (CBS 5773, 6054 and R), Saccharomyces cerevisiae isolate 3 in combination with xylose isomerase, rec S. cerevisiae (TJ1, H550 and H477) and Fusarium oxysporum VTT-D-80134 in an interlaboratory comparison. The micro-organisms were studied according to three different options: (A) fermentation under consistent conditions. (B) fermentation under optimal conditions for the organism, and (C) fermentation under optimal conditions for the organism with detoxification of the hydrolysate. The highest yields of ethanol, 0.24 g/g (A), 0.36 g/g (B) and 0.54 g/g (C), were obtained from rec E. coli B, KO11. P. stipitis and F. oxysporum were sensitive to the inhibitors present in the hydrolysate and produced a maximum yield of 0.34 g/g (C) and 0.04 g/g (B), respectively. The analysis of the corn-cob hydrolysate and aspects of process economy of the different fermentation options (pH, sterilization, nutrient supplementation, adaptation, detoxification) are discussed. (orig.)

  1. Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans

    DEFF Research Database (Denmark)

    Calbet, Jose A L; Holst, Jens Juul

    2004-01-01

    peptide hydrolysate (WHY) or casein hydrolysate (CAHY). All solutions were matched for volume (600 mL), nitrogen content (9.3 g/L), energy density (1069-1092 kJ/L), osmolality (288-306 mosmol/kg), pH (6.9-7.0) and temperature (37 degrees C). RESULTS: Solutions were emptied at similar rates, with mean half...

  2. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.

    Science.gov (United States)

    Liu, Zi-Yong; Yao, Xiu-Qing; Zhang, Quan; Liu, Zhen; Wang, Ze-Jie; Zhang, Yong-Yu; Li, Fu-Li

    2017-04-01

    Producing biobutanol from lignocellulosic biomass has shown promise to ultimately reduce greenhouse gases and alleviate the global energy crisis. However, because of the recalcitrance of a lignocellulosic biomass, a pretreatment of the substrate is needed which in many cases releases soluble lignin compounds (SLCs), which inhibit growth of butanol-producing clostridia. In this study, we found that SLCs changed the acetone/butanol ratio (A/B ratio) during butanol fermentation. The typical A/B molar ratio during Clostridium beijerinckii NCIMB 8052 batch fermentation with glucose as the carbon source is about 0.5. In the present study, the A/B molar ratio during batch fermentation with a lignocellulosic hydrolysate as the carbon source was 0.95 at the end of fermentation. Structural and redox potential changes of the SLCs were characterized before and after fermentation by using gas chromatography/mass spectrometry and electrochemical analyses, which indicated that some exogenous SLCs were involved in distributing electron flow to C. beijerinckii , leading to modulation of the redox balance. This was further demonstrated by the NADH/NAD + ratio and trxB gene expression profile assays at the onset of solventogenic growth. As a result, the A/B ratio of end products changed significantly during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source compared to glucose as the carbon source. These results revealed that SLCs not only inhibited cell growth but also modulated the A/B ratio during C. beijerinckii butanol fermentation. IMPORTANCE Bioconversion of lignocellulosic feedstocks to butanol involves pretreatment, during which hundreds of soluble lignin compounds (SLCs) form. Most of these SLCs inhibit growth of solvent-producing clostridia. However, the mechanism by which these compounds modulate electron flow in clostridia remains elusive. In this study, the results revealed that SLCs changed redox balance by producing oxidative

  3. Removal and recovery of acetic acid and two furans during sugar purification of simulated phenols-free biomass hydrolysates.

    Science.gov (United States)

    Lee, Sang Cheol

    2017-12-01

    A cost-effective five-step sugar purification process involving simultaneous removal and recovery of fermentation inhibitors from biomass hydrolysates was first proposed here. Only the three separation steps (PB, PC and PD) in the process were investigated here. Furfural was selectively removed up to 98.4% from a simulated five-component hydrolysate in a cross-current three-stage extraction system with n-hexane. Most of acetic acid in a simulated four-component hydrolysate was selectively removed by emulsion liquid membrane, and it could be concentrated in the stripping solution up to 4.5 times its initial concentration in the feed solution. 5-Hydroxymethylfurfural was selectively removed from a simulated three-component hydrolysate in batch and continuous fixed-bed column adsorption systems with L-493 adsorbent. Also, 5-hydroxymethylfurfural could be concentrated to about 9 times its feed concentration in the continuous adsorption system through a fixed-bed column desorption experiment with aqueous ethanol solution. These results have shown that the proposed purification process was valid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

    Science.gov (United States)

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  5. Characteristic of nitrous oxide production in partial denitrification process with high nitrite accumulation.

    Science.gov (United States)

    Du, Rui; Peng, Yongzhen; Cao, Shenbin; Wang, Shuying; Niu, Meng

    2016-03-01

    Nitrous oxide (N2O) production during the partial denitrification process with nitrate (NO3(-)-N) to nitrite (NO2(-)-N) transformation ratio of 80% was investigated in this study. Results showed that N2O was seldom observed before complete depletion of NO3(-)-N, but it was closely related to the reduction of NO2(-)-N rather than NO3(-)-N. High COD/NO3(-)-N was in favor of N2O production in partial denitrification with high NO2(-)-N accumulation. It was seriously enhanced at constant acidic pH due to the free nitrous acid (FNA) inhibition. However, the N2O production was much lower at initial pH of 5.5 and 6.5 due to the pH increase during denitrification process. Significantly, the pH turning point could be chosen as a controlled parameter to denote the end of NO3(-)-N reduction, which could not only achieve high NO2(-)-N accumulation but also decrease the N2O production significantly for practical application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glycoprotein.

    Science.gov (United States)

    Kim, Mi Kyoung; Kim, Yunyoung; Choo, Hyunah; Chong, Youhoon

    2017-02-01

    Previously, we have reported remarkable effect of a quercetin-glutamic acid conjugate to reverse multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer agents through inhibition of P-glycoprotein (Pgp)-mediated drug efflux. Due to the hydrolysable nature, MDR-reversal activity of the quercetin conjugate was attributed to its hydrolysis product, quercetin. However, several lines of evidence demonstrated that the intact quercetin-glutamic acid conjugate has stronger MDR-reversal activity than quercetin. In order to evaluate this hypothesis and to identify a novel scaffold for MDR-reversal agents, we prepared quercetin conjugates with a glutamic acid attached at the 7-O position via a non-hydrolysable linker. Pgp inhibition assay, Pgp ATPase assay, and MDR-reversal activity assay were performed, and the non-hydrolysable quercetin conjugates showed significantly higher activities compared with those of quercetin. Unfortunately, the quercetin conjugates were not as effective as verapamil in Pgp-inhibition and thereby reversing MDR, but it is worth to note that the structurally modified quercetin conjugates with a non-cleavable linker showed significantly improved MDR-reversal activity compared with quercetin. Taken together, the quercetin conjugates with appropriate structural modifications were shown to have a potential to serve as a scaffold for the design of novel MDR-reversal agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Nonfeed application of rendered animal proteins for microbial production of eicosapentaenoic acid by the fungus Pythium irregulare.

    Science.gov (United States)

    Liang, Yi; Garcia, Rafael A; Piazza, George J; Wen, Zhiyou

    2011-11-23

    Rendered animal proteins are well suited for animal nutrition applications, but the market is maturing, and there is a need to develop new uses for these products. The objective of this study is to explore the possibility of using animal proteins as a nutrient source for microbial production of omega-3 polyunsaturated fatty acids by the microalga Schizochytrium limacinum and the fungus Pythium irregulare. To be absorbed by the microorganisms, the proteins needed to be hydrolyzed into small peptides and free amino acids. The utility of the protein hydrolysates for microorganisms depended on the hydrolysis method used and the type of microorganism. The enzymatic hydrolysates supported better cell growth performance than the alkali hydrolysates did. P. irregulare displayed better overall growth performance on the experimental hydrolysates compared to S. limacinum. When P. irregulare was grown in medium containing 10 g/L enzymatic hydrolysate derived from meat and bone meal or feather meal, the performance of cell growth, lipid synthesis, and omega-3 fatty acid production was comparable to the that of culture using commercial yeast extract. The fungal biomass derived from the animal proteins had 26-29% lipid, 32-34% protein, 34-39% carbohydrate, and industrial microorganisms which can produce omega-3 fatty acids for making omega-3-fortified foods or feeds.

  8. Evaluation of the influence of CO2 on hydrogen production by Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Willquist, K.; Claassen, P.A.M.; Niel, van E.W.J.

    2009-01-01

    Stripping gas is generally used to improve hydrogen yields in fermentations. Since CO2 is relatively easy to separate from hydrogen it could be an interesting stripping gas. However, a higher partial CO2 pressure is accompanied with an increased CO2 uptake in the liquid, where it hydrolyses and

  9. Molecular characterization of gluten hydrolysing Bacillus sp. and their efficacy and biotherapeutic potential as probiotics using Caco-2 cell line.

    Science.gov (United States)

    Rashmi, B S; Gayathri, D

    2017-09-01

    To isolate and characterize indigenous gluten hydrolysing bacteria from wheat sourdough and curd samples and further evaluation of their probiotic potentiality. Indigenous gluten hydrolysing isolates GS 33, GS 143, GS 181 and GS 188 were identified as Bacillus sp. by molecular-typing methods and studied extensively for their functional and probiotic attributes. All the tested isolates could survive at pH 2 and toxicity of 0·3% bile and also exhibited cell surface hydrophobicity and autoaggregation phenotype. The isolates were adhered strongly to Caco-2 cells and coaggregated with Escherichia coli MTCC 433 and Listeria monocytogenes MTCC 1143 preventing pathogen invasion into Caco-2 cells in vitro. In addition, the minimum inhibitory concentration of selected antibiotics for all the investigated gluten hydrolysing isolates was within the breakpoint values as recommended by the European Food Safety Authority. The indigenous high intensity gluten hydrolysing bacteria exhibited high resistance to gastric and pancreatic stress and possessed antibacterial, aggregation, adhesion and pathogen exclusion properties, and as a potential probiotics, either alone or in consortium would be useful in the development of gluten-free wheat foods. Exploring new indigenous gluten hydrolysing bacteria from wheat sourdough and curd samples would be beneficial in developing gluten-free wheat foods using potential indigenous probiotics. © 2017 The Society for Applied Microbiology.

  10. Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects.

    Science.gov (United States)

    Zielińska, Ewelina; Baraniak, Barbara; Karaś, Monika

    2017-09-02

    This study investigated the effect of heat treatment of edible insects on antioxidant and anti-inflammatory activities of peptides obtained by in vitro gastrointestinal digestion and absorption process thereof. The antioxidant potential of edible insect hydrolysates was determined as free radical-scavenging activity, ion chelating activity, and reducing power, whereas the anti-inflammatory activity was expressed as lipoxygenase and cyclooxygenase-2 inhibitory activity. The highest antiradical activity against DPPH • (2,2-diphenyl-1-picrylhydrazyl radical) was noted for a peptide fraction from baked cricket Gryllodes sigillatus hydrolysate (IC 50 value 10.9 µg/mL) and that against ABTS •+ (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical) was the highest for raw mealworm Tenebrio molitor hydrolysate (inhibitory concentration (IC 50 value) 5.3 µg/mL). The peptides obtained from boiled locust Schistocerca gregaria hydrolysate showed the highest Fe 2+ chelation ability (IC 50 value 2.57 µg/mL); furthermore, the highest reducing power was observed for raw G. sigillatus hydrolysate (0.771). The peptide fraction from a protein preparation from the locust S. gregaria exhibited the most significant lipoxygenase and cyclooxygenase-2 inhibitory activity (IC 50 value 3.13 µg/mL and 5.05 µg/mL, respectively).

  11. Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties.

    Science.gov (United States)

    Picot, Laurent; Ravallec, Rozenn; Fouchereau-Péron, Martine; Vandanjon, Laurent; Jaouen, Pascal; Chaplain-Derouiniot, Maryse; Guérard, Fabienne; Chabeaud, Aurélie; Legal, Yves; Alvarez, Oscar Martinez; Bergé, Jean-Pascal; Piot, Jean-Marie; Batista, Irineu; Pires, Carla; Thorkelsson, Gudjon; Delannoy, Charles; Jakobsen, Greta; Johansson, Inez; Bourseau, Patrick

    2010-08-30

    Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides. The starting fish protein hydrolysate exhibited a balanced amino acid composition, a reproducible molecular weight (MW) profile, and a low sodium chloride content, allowing the study of its biological activity. Successive fractionation on UF and NF membranes allowed concentration of peptides of selected sizes, without, however, carrying out sharp separations, some MW classes being found in several fractions. Peptides containing Pro, Hyp, Asp and Glu were concentrated in the UF and NF retentates compared to the unfractionated hydrolysate and UF permeate, respectively. Gastrin/cholecystokinin-like peptides were present in the starting FPH, UF and NF fractions, but fractionation did not increase their concentration. In contrast, quantification of calcitonin gene-related peptide (CGRP)-like peptides demonstrated an increase in CGRP-like activities in the UF permeate, relative to the starting FPH. The starting hydrolysate also showed a potent antioxidant and radical scavenging activity, and a moderate angiotensin-converting enzyme (ACE)-1 inhibitory activity, which were not increased by UF and NF fractionation. Fractionation of an FPH using membrane separation, with a molecular weight cut-off adapted to the peptide composition, may provide an effective means to concentrate CGRP-like peptides and peptides enriched in selected amino acids. The peptide size distribution observed after UF and NF fractionation

  12. Palm H-FAME Production through Partially Hydrogenation using Nickel/Carbon Catalyst to Increase Oxidation Stability

    Directory of Open Access Journals (Sweden)

    Ramayeni Elsa

    2018-01-01

    Full Text Available One of the methods to improve the oxidation stability of palm biodiesel is through partially hydrogenation. The production using Nickel/Carbon catalyst to speed up the reaction rate. Product is called Palm H-FAME (Hydrogenated FAME. Partial hydrogenation breaks the unsaturated bond on FAME (Fatty Acid Methyl Ester, which is a key component of the determination of oxidative properties. Changes in FAME composition by partial hydrogenation are predicted to change the oxidation stability so it does not cause deposits that can damage the injection system of diesel engine, pump system, and storage tank. Partial hydrogenation is carried out under operating conditions of 120 °C and 6 bar with 100:1, 100:3, 100:5, 100:10 % wt catalyst in the stirred batch autoclave reactor. H-FAME synthesis with 100:5 % wt Ni/C catalyst can decrease the iodine number which is the empirical measure of the number of unsaturated bonds from 91.78 to 82.38 (g-I2/100 g with an increase of oxidation stability from 585 to 602 minutes.

  13. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    OpenAIRE

    Wei Han; Yingting Yan; Yiwen Shi; Jingjing Gu; Junhong Tang; Hongting Zhao

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35?g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen prod...

  14. The effect of wool hydrolysates on squamous cell carcinoma cells in vitro. Possible implications for cancer treatment.

    Directory of Open Access Journals (Sweden)

    Tatsiana Damps

    Full Text Available Squamous cell carcinoma of the skin is the second most common cutaneous malignancy. Despite various available treatment methods and advances in noninvasive diagnostic techniques, the incidence of metastatic cutaneous squamous cell carcinoma is rising. Deficiency in effective preventive or treatment methods of transformed keratinocytes leads to necessity of searching for new anticancer agents. The present study aims to evaluate the possibility of using wool hydrolysates as such agents. Commercially available compounds such as 5-fluorouracil, ingenol mebutate, diclofenac sodium salt were also used in this study. The process of wool degradation was based on chemical pre-activation and enzymatic digestion of wool. The effect of mentioned compounds on cell viability of squamous carcinoma cell line and healthy keratinocytes was evaluated. The obtained data show a significantly stronger effect of selected wool hydrolysates compared to commercial compounds (p<0.05 on viability of cells. The wool hydrolysates decreased squamous cell carcinoma cells viability by up to 67% comparing to untreated cells. These results indicate bioactive properties of wool hydrolysates, which affect the viability of squamous carcinoma cells and decrease their number. We hypothesize that these agents may be used topically for treatment of transformed keratinocytes in actinic keratosis and invasive squamous skin cancer in humans.

  15. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Saibo Huang

    2015-12-01

    Full Text Available The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl2 treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE, longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone.

  16. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    Science.gov (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  17. Efficient Absorption of X-Hydroxyproline (Hyp)-Gly after Oral Administration of a Novel Gelatin Hydrolysate Prepared Using Ginger Protease.

    Science.gov (United States)

    Taga, Yuki; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2016-04-13

    Recent studies have reported that oral intake of gelatin hydrolysate has various beneficial effects, such as reduction of joint pain and lowering of blood sugar levels. In this study, we produced a novel gelatin hydrolysate using a cysteine-type ginger protease having unique substrate specificity with preferential peptide cleavage with Pro at the P2 position. Substantial amounts of X-hydroxyproline (Hyp)-Gly-type tripeptides were generated up to 2.5% (w/w) concomitantly with Gly-Pro-Y-type tripeptides (5%; w/w) using ginger powder. The in vivo absorption of the ginger-degraded gelatin hydrolysate was estimated using mice. The plasma levels of collagen-derived oligopeptides, especially X-Hyp-Gly, were significantly high (e.g., 2.3-fold for Glu-Hyp-Gly, p < 0.05) compared with those of the control gelatin hydrolysate, which was prepared using gastrointestinal proteases and did not contain detectable X-Hyp-Gly. This study demonstrated that orally administered X-Hyp-Gly was effectively absorbed into the blood, probably due to the high protease resistance of this type of tripeptide.

  18. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2014-07-01

    Full Text Available Microalgae contain valuable compounds that can be harnessed for industrial applications. Lignocellulose biomass is a plant material containing in abundance organic substances such as carbohydrates, phenolics, organic acids and other secondary compounds. As growth of microalgae on organic substances was confirmed during heterotrophic and mixotrophic cultivation, lignocellulose derived compounds can become a feedstock to cultivate microalgae and produce target compounds. In this review, different treatment methods to hydrolyse lignocellulose into organic substrates are presented first. Secondly, the effect of lignocellulosic hydrolysates, organic substances typically present in lignocellulosic hydrolysates, as well as minor co-products, on growth and accumulation of target compounds in microalgae cultures is described. Finally, the possibilities of using lignocellulose hydrolysates as a common feedstock for microalgae cultures are evaluated.

  19. Quantized fields and operators on a partial inner product space

    International Nuclear Information System (INIS)

    Shabani, J.

    1985-11-01

    We investigate the connection between the space OpV of all operators on a partial inner product space V and the weak sequential completion of the * algebra L + (Vsup(no.)) of all operators X such that Vsup(no.) is contained in D(X) intersection D(X*) and both X and its adjoint X* leave Vsup(no.) invariant. This connection gives a mathematical description of quantized fields in terms of elements of OpV. (author)

  20. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates.

    Science.gov (United States)

    Mudgil, Priti; Kamal, Hina; Yuen, Gan Chee; Maqsood, Sajid

    2018-09-01

    In-vitro inhibitory properties of peptides released from camel milk proteins against dipeptidyl peptidase-IV (DPP-IV), porcine pancreatic α-amylase (PPA), and porcine pancreatic lipase (PPL) were studied. Results revealed that upon hydrolysis by different enzymes, camel milk proteins displayed dramatic increase in inhibition of DPP-IV and PPL, but slight improvement in PPA inhibition was noticed. Peptide sequencing revealed a total of 20 and 3 peptides for A9 and B9 hydrolysates respectively, obtained the score of 0.8 or more on peptide ranker and were categorized as potential DPP-IV inhibitory peptides. KDLWDDFKGL in A9 and MPSKPPLL in B9 were identified as most potent PPA inhibitory peptide. For PPL inhibition only 7 and 2 peptides qualified as PPL inhibitory peptides from hydrolysates A9 and B9, respectively. The present study report for the first time PPA and PPL inhibitory and only second for DPP-IV inhibitory potential of protein hydrolysates from camel milk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Hydrogen production from paper sludge hydrolysate

    NARCIS (Netherlands)

    Kádár, Z.; Vrije, de G.J.; Budde, M.A.W.; Szengyel, Z.; Reczey, K.; Claassen, P.A.M.

    2003-01-01

    The main objective of this study was to develop a system for the production of 'renewable' hydrogen. Paper sludge is a solid industrial waste yielding mainly cellulose, which can be used, after hydrolysis, as a feedstock in anaerobic fermentation by (hyper)thermophilic organisms, such as Thermotoga

  2. Protective effects against H2O2-induced damage by enzymatic hydrolysates of an edible brown seaweed, sea tangle (Laminaria japonica).

    Science.gov (United States)

    Park, Pyo-Jam; Kim, Eun-Kyung; Lee, Seung-Jae; Park, Sun-Young; Kang, Dong-Soo; Jung, Bok-Mi; Kim, Kui-Shik; Je, Jae-Young; Ahn, Chang-Bum

    2009-02-01

    Enzymatic hydrolysates of Laminaria japonica were evaluated for antioxidative activities using hydroxyl radical scavenging activity and protective effects against H(2)O(2)-induced DNA and cell damage. In addition, activities of antioxidative enzymes, including catalase, glutathione peroxidase, and glutathione S-transferase, of the enzymatic hydrolysates from L. japonica were also estimated. L. japonica was first enzymatically hydrolyzed by seven carbohydrases (Dextrozyme, AMG, Promozyme, Maltogenase, Termamyl, Viscozyme, and Celluclast [all from Novo Co., Novozyme Nordisk, Bagsvaerd, Denmark]) and five proteinases (Flavourzyme, Neutrase, Protamex, Alcalase [all from Novo Co.], and pancreatic trypsin). The hydroxyl radical scavenging activities of Promozyme and pancreatic trypsin hydrolysates from L. japonica were the highest as compared to those of the other carbohydrases and proteinases, and their 50% inhibitory concentration values were 1.67 and 317.49 mug/mL, respectively. The pancreatic trypsin hydrolysates of L. japonica exerted a protective effect on H(2)O(2)-induced DNA damage. We also evaluated the protective effect on hydroxyl radical-induced oxidative damage in PC12 cells via propidium iodide staining using a flow cytometer. The AMG and pancreatic trypsin hydrolysates of L. japonica dose-dependently protected PC12 cells against cell death caused by hydroxyl radical-induced oxidative damage. Additionally, we analyzed the activity of antioxidative enzymes such as catalase, glutathione peroxidase, and the phase II biotransformation enzyme glutathione S-transferase in L. japonica-treated cells. The activity of all antioxidative enzymes was higher in L. japonica-treated cells compared with the nontreated cells. These results indicate that enzymatic hydrolysates of L. japonica possess antioxidative activity.

  3. Conversion of oligomeric starch, cellulose, hydrolysates or sugars to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Silks, Louis A; Sutton, Andrew; Kim, Jin Kyung; Gordon, John Cameron; Wu, Ruilian; Kimball, David B.

    2017-09-05

    Embodiments of the present invention are directed to the conversion of a source material (e.g., a depolymerized oligosaccharide mixture, a monomeric sugar, a hydrolysate, or a mixture of monomeric sugars) to intermediate molecules containing 7 to 26 contiguous carbon atoms. These intermediates may also be converted to saturated hydrocarbons. Such saturated hydrocarbons are useful as, for example, fuels.

  4. Chemical composition and biological value of spray dried porcine blood by-products and bone protein hydrolysate for young chickens.

    Science.gov (United States)

    Jamroz, D; Wiliczkiewicz, A; Orda, J; Skorupińska, J; Słupczyńska, M; Kuryszko, J

    2011-10-01

    The chemical composition of spray dried porcine blood by-products is characterised by wide variation in crude protein contents. In spray dried porcine blood plasma (SDBP) it varied between 670-780 g/kg, in spray dried blood cells (SDBC) between 830-930 g/kg, and in bone protein hydrolysate (BPH) in a range of 740-780 g/kg. Compared with fish meal, these feeds are poor in Met and Lys. Moreover, in BPH deep deficits of Met, Cys, Thr and other amino acids were found. The experiment comprised 7 dietary treatments: SDBP, SDBC, and BPH, each at an inclusion rate of 20 or 40 g/kg diet, plus a control. The addition of 20 or 40 g/kg of the analysed meals into feeds for very young chickens (1-28 d post hatch) significantly decreased the body weight (BW) of birds. Only the treatments with 40 g/kg of SDBP and SDBC showed no significant difference in BW as compared with the control. There were no significant differences between treatments and type of meal for feed intake, haematocrit and haemoglobin concentrations in blood. Addition of bone protein and blood cell meals to feed decreased the IgG concentration in blood and caused shortening of the femur and tibia bones. However, changes in the mineral composition of bones were not significantly affected by the type of meal used. The blood by-products, which are rich in microelements, improved retention of Ca and Cu only. In comparison to control chickens, significantly better accretion of these minerals was found in treatments containing 20 g/kg of SDBP or 40 g/kg of SDBC. Great variability in apparent ileal amino acid digestibility in chickens was determined. In this respect, some significant differences related to the type of meal fed were confirmed for Asp, Pro, Val, Tyr and His. In general, the apparent ileal digestibility of amino acids was about 2-3 percentage units better in chickens fed on diets containing the animal by products than in control birds.

  5. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Olsson, Lisbeth; Thomsen, A.B.

    2003-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/L sodium carbonate and 12 bar oxygen at 195degreesC) was used as pretreatment method for wheat straw (60 g/L), resulting in a hydrolysate and a cellulosic solid fraction. The hydrolysate consisted of soluble hemicellulose (8 g/L), low......-molecular-weight carboxylic acids (3.9 g/L), phenols (0.27 g/L = 1.7 mM) and 2-furoic acid (0.007 g/L). The wet oxidized wheat straw hydrolysate caused no inhibition of ethanol production by Saccharomyces cerevisiae ATCC 96581. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested...

  6. Comparison of the aggregation behavior of soy and bovine whey protein hydrolysates

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Alting, A.C.; Gruppen, H.

    2007-01-01

    Abstract Soy-derived proteins (soy protein isolate, glycinin, and ß-conglycinin) and bovine whey-derived proteins (whey protein isolate, ¿-lactalbumin, ß-lactoglobulin) were hydrolyzed using subtilisin Carlsberg, chymotrypsin, trypsin, bromelain, and papain. The (in)solubility of the hydrolysates

  7. KAJIAN SIFAT FISIKOKIMIA DAN ORGANOLEPTIK HIDROLISAT TEMPE HASIL HIDROLISIS PROTEASE [Study on physicochemical and organoleptic properties of tempeh hydrolysate produced by protease

    Directory of Open Access Journals (Sweden)

    Bambang Herry

    2002-12-01

    Full Text Available Physicochemical and organoleptic properties of tempeh hydrolysate produced by protease were studied. The tempeh hydrolysate had different properties comparing with those of the unhydrolyzed tempeh powder. Hydrolysis of the tempeh protein could lower the antioxidant activity. Accordingly, the TBA value increased significantly when the tempeh was hydrolyzed by protease. This process also promoted Maillard reaction, resulting in a more brown color than that of the unhydrolyzed tempeh powder. Moreover, the tempeh hydrolysate had a better protein solubility, and a higher index of umami taste by organoleptic evaluation.

  8. Evaluation of Hypotensive and Antihypertensive Effects of Velvet Bean (Mucuna pruriens L.) Hydrolysates.

    Science.gov (United States)

    Chel-Guerrero, Luis; Galicia-Martínez, Saulo; Acevedo-Fernández, Juan José; Santaolalla-Tapia, Jesus; Betancur-Ancona, David

    2017-01-01

    Hypertension could cause significant worldwide health problems that affect 15-20% of all adults; according to National Health and Nutrition Examination Survey, about 29% of the adult population in the United States are hypertensive. Recent research has shown that peptides derived from the hydrolysis of food proteins can decrease blood pressure. This study was carried out to evaluate the hypotensive and antihypertensive potential of Mucuna pruriens protein hydrolysates in in vitro and in vivo models. M. pruriens protein concentrate was prepared by wet fractionation and enzymatically hydrolyzed using Alcalase ® , Flavourzyme ® , and the sequential system Alcalase-Flavourzyme at different times (5-120 min). The biological potential was measured in vitro based on the IC 50 value as well as in vivo effect, measuring the systolic (SBP) and diastolic (DBP) blood pressure in normotensive and antihypertensive Wistar-Kyoto rats by the tail-cuff method. Hydrolysis of M. pruriens protein concentrates with commercial enzymes generated extensive hydrolysates with angiotensin-converting enzyme (ACE-I) inhibitory activity (IC 50 : 0.589-0.993 mg/mL) and hypotensive (SBP: 0.6-47.43%, DBP: 1.94-43.47%) and antihypertensive (SBP: 8.84-27.29% DBP: 16.1-29.37%) effect. These results indicate that Mucuna pruriens protein hydrolysate (MPPH) could be used as a functional ingredient to prevent blood pressure increase.

  9. Correlation of sensory bitterness in dairy protein hydrolysates: Comparison of prediction models built using sensory, chromatographic and electronic tongue data.

    Science.gov (United States)

    Newman, J; Egan, T; Harbourne, N; O'Riordan, D; Jacquier, J C; O'Sullivan, M

    2014-08-01

    Sensory evaluation can be problematic for ingredients with a bitter taste during research and development phase of new food products. In this study, 19 dairy protein hydrolysates (DPH) were analysed by an electronic tongue and their physicochemical characteristics, the data obtained from these methods were correlated with their bitterness intensity as scored by a trained sensory panel and each model was also assessed by its predictive capabilities. The physiochemical characteristics of the DPHs investigated were degree of hydrolysis (DH%), and data relating to peptide size and relative hydrophobicity from size exclusion chromatography (SEC) and reverse phase (RP) HPLC. Partial least square regression (PLS) was used to construct the prediction models. All PLS regressions had good correlations (0.78 to 0.93) with the strongest being the combination of data obtained from SEC and RP HPLC. However, the PLS with the strongest predictive power was based on the e-tongue which had the PLS regression with the lowest root mean predicted residual error sum of squares (PRESS) in the study. The results show that the PLS models constructed with the e-tongue and the combination of SEC and RP-HPLC has potential to be used for prediction of bitterness and thus reducing the reliance on sensory analysis in DPHs for future food research. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effects of Different Working Modes of Ultrasound on Structural Characteristics of Zein and ACE Inhibitory Activity of Hydrolysates

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ren

    2017-01-01

    Full Text Available Ultrasound was used as a new technology to pretreat protein prior to proteolysis to improve enzymolysis efficiency. The effects of different working modes of ultrasound on the angiotensin I-converting enzyme (ACE inhibitory activity of zein hydrolysates and the structural characteristics of zein were investigated. The solubility, surface hydrophobicity (H0, ultraviolet-visible (UV-Vis spectra, intrinsic fluorescence spectra, and circular dichroism (CD spectra of zein pretreated with ultrasound were determined. All ultrasound pretreatments significantly improved the ACE inhibitory activity of zein hydrolysates (p<0.05. The highest ACE inhibitory activity, representing an increase of 99.21% over the control, was obtained with dual sweeping frequency ultrasound of 33±2 and 68±2 kHz. The effects of single sweeping frequency and dual fixed frequency ultrasound were stronger than those of single fixed frequency ultrasound for improving the ACE inhibitory activity of zein. Structural changes in zein were induced by ultrasound, as confirmed by changes in the solubility, H0, UV-Vis spectra, intrinsic fluorescence spectra, and CD spectra of zein, and these were consistent with the corresponding ACE inhibitory activities of zein hydrolysates. Thus, ultrasound working mode and frequency have significant effects on the structure of zein and the ACE inhibitory activity of zein hydrolysates.

  11. Green coconut mesocarp pretreated by an alkaline process as raw material for bioethanol production.

    Science.gov (United States)

    Soares, Jimmy; Demeke, Mekonnen M; Foulquié-Moreno, Maria R; Van de Velde, Miet; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2016-09-01

    Cocos nucifera L., coconut, is a palm of high importance in the food industry, but a considerable part of the biomass is inedible. In this study, the pretreatment and saccharification parameters NaOH solution, pretreatment duration and enzyme load were evaluated for the production of hydrolysates from green coconut mesocarp using 18% (w/v) total solids (TS). Hydrolysates were not detoxified in order to preserve sugars solubilized during the pretreatment. Reduction of enzyme load from 15 to 7.5 filter paper cellulase unit (FPU)/g of biomass has little effect on the final ethanol titer. With optimized pretreatment and saccharification, hydrolysates with more than 7% (w/v) sugars were produced in 48h. Fermentation of the hydrolysate using industrial Saccharomyces cerevisiae strains produced 3.73% (v/v) ethanol. Our results showed a simple pretreatment condition with a high-solid load of biomass followed by saccharification and fermentation of undetoxified coconut mesocarp hydrolysates to produce ethanol with high titer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF

    Directory of Open Access Journals (Sweden)

    Röder Anja

    2008-06-01

    Full Text Available Abstract Background Pichia stipitis xylose reductase (Ps-XR has been used to design Saccharomyces cerevisiae strains that are able to ferment xylose. One example is the industrial S. cerevisiae xylose-consuming strain TMB3400, which was constructed by expression of P. stipitis xylose reductase and xylitol dehydrogenase and overexpression of endogenous xylulose kinase in the industrial S. cerevisiae strain USM21. Results In this study, we demonstrate that strain TMB3400 not only converts xylose, but also displays higher tolerance to lignocellulosic hydrolysate during anaerobic batch fermentation as well as 3 times higher in vitro HMF and furfural reduction activity than the control strain USM21. Using laboratory strains producing various levels of Ps-XR, we confirm that Ps-XR is able to reduce HMF both in vitro and in vivo. Ps-XR overexpression increases the in vivo HMF conversion rate by approximately 20%, thereby improving yeast tolerance towards HMF. Further purification of Ps-XR shows that HMF is a substrate inhibitor of the enzyme. Conclusion We demonstrate for the first time that xylose reductase is also able to reduce the furaldehyde compounds that are present in undetoxified lignocellulosic hydrolysates. Possible implications of this newly characterized activity of Ps-XR on lignocellulosic hydrolysate fermentation are discussed.

  13. Hydrolysed fumonisin B1 and N-(deoxy-D-fructos-1-yl)-fumonisin B1: stability and catabolic fate under simulated human gastrointestinal conditions.

    Science.gov (United States)

    Cirlini, Martina; Hahn, Irene; Varga, Elisabeth; Dall'Asta, Margherita; Falavigna, Claudia; Calani, Luca; Berthiller, Franz; Del Rio, Daniele; Dall'Asta, Chiara

    2015-02-01

    Food processing may induce thermal degradation of fumonisins in corn via Maillard-type reactions, or alkaline hydrolysis via loss of the two tricarballylic acid moieties. In the former case, N-(1-deoxy-D-fructos-1-yl)-fumonisin B(1) (NDF) can be formed, while the latter derivative is called hydrolysed fumonisin B(1) (HFB(1)). The aim of this study was to deepen the knowledge about the gastrointestinal stability of HFB(1) and NDF in humans. Due to the lack of standard, NDF was chemically synthesised and cleaned up in high purity to be used for further experiments. While NDF is already partially cleaved (about 41%) during simulated digestion, it remained rather stable towards human colon microflora. In contrast to this, HFB(1) is partially metabolised by the colon microflora to unknown compounds after 24 h of fermentation, as seen by a loss of about 22%. Concluding, the cleavage of NDF during digestion as well as the likely metabolisation of HFB(1) emphasise the need for animal trials to ascertain their toxicity in vivo.

  14. The use of protein hydrolysate improves the protein intestinal absorption in undernourished mice infected with Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Coutinho Eridan M.

    2002-01-01

    Full Text Available Patients residing in endemic areas for schistosomiasis in Brazil are usually undernourished and when they develop the hepatosplenic clinical form of the disease should usually receive hospital care, many of them being in need of nutritional rehabilitation before specific treatment can be undertaken. In the mouse model, investigations carried out in our laboratory detected a reduced aminoacid uptake in undernourished animals which is aggravated by a superimposed infection with Schistosoma mansoni. However, in well-nourished infected mice no dysfunction occurs. In this study, we tried to improve the absorptive intestinal performance of undernourished mice infected with S. mansoni by feeding them with hydrolysed casein instead of whole casein. The values obtained for the coefficient of protein intestinal absorption (cpia among well-nourished mice were above 90% (either hydrolysed or whole protein. In undernourished infected mice, however, the cpia improved significantly after feeding them with hydrolysed casein, animals reaching values close to those obtained in well-nourished infected mice.

  15. In vitro anti-thrombotic and anti-coagulant properties of blacklip abalone (Haliotis rubra) viscera hydrolysate.

    Science.gov (United States)

    Suleria, Hafiz Ansar Rasul; Masci, Paul P; Addepalli, Rama; Chen, Wei; Gobe, Glenda C; Osborne, Simone A

    2017-07-01

    Abalone viscera contain sulphated polysaccharides with anti-thrombotic and anti-coagulant activities. In this study, a hydrolysate was prepared from blacklip abalone (Haliotis rubra) viscera using papain and bromelain and fractionated using ion exchange and size exclusion chromatography. Hydrolysates and fractions were investigated for in vitro thrombin inhibition mediated through heparin cofactor II (HCII) as well as anti-coagulant activity in plasma and whole blood. On the basis of sulphated polysaccharide concentration, the hydrolysate inhibited thrombin through HCII with an inhibitor concentration at 50% (IC50) of 16.5 μg/mL compared with 2.1 μg/mL for standard heparin. Fractionation concentrated HCII-mediated thrombin inhibition down to an IC50 of 1.8 μg/mL and improved anti-coagulant activities by significantly delaying clotting time. This study confirmed the presence of anti-thrombotic and anti-coagulant molecules in blacklip abalone viscera and demonstrated that these activities can be enriched with a simple chromatography regime. Blacklip abalone viscera warrant further investigation as a source of nutraceutical or functional food ingredients. Graphical abstract Schematic showing preparation of bioactive extracts and fractions from blacklip abalone.

  16. Development of β-lactoglobulin-specific chimeric human IgEκ monoclonal antibodies for in vitro safety assessment of whey hydrolysates.

    Science.gov (United States)

    Knipping, Karen; Simons, Peter J; Buelens-Sleumer, Laura S; Cox, Linda; den Hartog, Marcel; de Jong, Niels; Teshima, Reiko; Garssen, Johan; Boon, Louis; Knippels, Léon M J

    2014-01-01

    Cow's milk-derived whey hydrolysates are nutritional substitutes for allergic infants. Safety or residual allergenicity assessment of these whey hydrolysates is crucial. Currently, rat basophilic leukemia RBL-2H3 cells expressing the human IgE receptor α-chain (huFcεRIα-RBL-2H3), sensitized with serum IgE from cow's milk allergic children, are being employed to assess in vitro residual allergenicity of these whey hydrolysates. However, limited availability and inter-lot variation of these allergic sera impede standardization of whey hydrolysate safety testing in degranulation assays. An oligoclonal pool of chimeric human (chu)IgE antibodies against bovine β-lactoglobulin (a major allergen in whey) was generated to increase sensitivity, specificity, and reproducibility of existing degranulation assays. Mice were immunized with bovine β-lactoglobulin, and subsequently the variable domains of dissimilar anti-β-lactoglobulin mouse IgG antibodies were cloned and sequenced. Six chimeric antibodies were generated comprising mouse variable domains and human constant IgE/κ domains. After sensitization with this pool of anti-β-lactoglobulin chuIgEs, huFcεRIα-expressing RBL-2H3 cells demonstrated degranulation upon cross-linking with whey, native 18 kDa β-lactoglobulin, and 5-10 kDa whey hydrolysates, whereas a 3 kDa whey hydrolysate and cow's milk powder (mainly casein) showed no degranulation. In parallel, allergic serum IgEs were less sensitive. In addition, our pool anti-β-lactoglobulin chuIgEs recognized multiple allergenic immunodominant regions on β-lactoglobulin, which were also recognized by serum IgEs from cow's milk allergic children. Usage of our 'unlimited' source and well-defined pool of β-lactoglobulin-specific recombinant chuIgEs to sensitize huFcεRIα on RBL-2H3 cells showed to be a relevant and sensitive alternative for serum IgEs from cow's milk allergic patients to assess safety of whey-based non-allergic hydrolyzed formula.

  17. Comparison of physicochemical properties of suppositories containing starch hydrolysates

    OpenAIRE

    Piotr Belniak; Katarzyna Świąder; Michał Szumiło; Aleksandra Hyla; Ewa Poleszak

    2017-01-01

    The purpose of this work was to determine the effect of starch hydrolysates (SH) on the physicochemical properties of suppositories. The study was conducted with suppositories with acetaminophen (AAP) a typical antipyretic analgesic, as model drug on lipophilic (cocoa butter) and hydrophilic base (polyethylene glycol 1500?+?400). The suppositories with and without the addition of SH were examined for physicochemical tests according to European Pharmacopoeia 8th edition (Ph. Eur.): the uniform...

  18. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification.

    Science.gov (United States)

    Tian, S; Luo, X L; Yang, X S; Zhu, J Y

    2010-11-01

    This study reports an ethanol yield of 270L/ton wood from lodgepole pine pretreated with sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) using an adapted strain, Saccharomyces cerevisiae Y5, without detoxification. The enzymatic hydrolysate produced from pretreated cellulosic solids substrate was combined with pretreatment hydrolysate before fermentation. Detoxification of the pretreatment hydrolysate using overliming or XAD-4 resin before being combined with enzymatic hydrolysate improved ethanol productivity in the first 4h of fermentation and overall fermentation efficiency. However, detoxification did not improve final ethanol yield because of sugar losses. The Y5 strain showed excellent ethanol productivities of 2.0 and 0.8g/L/h averaged over a period of 4 and 24h, respectively, in the undetoxified run. The furan metabolization rates of the Y5 strain were significantly higher for the undetoxified run than those for the detoxidfied runs, suggesting it can tolerate even higher furan concentrations than those studied. Preliminary mass and energy balances were conducted. SPORL produced an excellent monomeric sugar recovery value of about 85% theoretical and a net energy output of 4.05GJ/ton wood with an ethanol energy production efficiency of 178% before distillation.

  19. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.

    Science.gov (United States)

    Guadalupe Medina, Víctor; Almering, Marinka J H; van Maris, Antonius J A; Pronk, Jack T

    2010-01-01

    In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study investigates the possibility of completely eliminating glycerol production by engineering S. cerevisiae such that it can reoxidize NADH by the reduction of acetic acid to ethanol via NADH-dependent reactions. Acetic acid is available at significant amounts in lignocellulosic hydrolysates of agricultural residues. Consistent with earlier studies, deletion of the two genes encoding NAD-dependent glycerol-3-phosphate dehydrogenase (GPD1 and GPD2) led to elimination of glycerol production and an inability to grow anaerobically. However, when the E. coli mhpF gene, encoding the acetylating NAD-dependent acetaldehyde dehydrogenase (EC 1.2.1.10; acetaldehyde+NAD++coenzyme Aacetyl coenzyme A+NADH+H+), was expressed in the gpd1Delta gpd2Delta strain, anaerobic growth was restored by supplementation with 2.0 g liter(-1) acetic acid. The stoichiometry of acetate consumption and growth was consistent with the complete replacement of glycerol formation by acetate reduction to ethanol as the mechanism for NADH reoxidation. This study provides a proof of principle for the potential of this metabolic engineering strategy to improve ethanol yields, eliminate glycerol production, and partially convert acetate, which is a well-known inhibitor of yeast performance in lignocellulosic hydrolysates, to ethanol. Further research should address the kinetic aspects of acetate reduction and the effect of the elimination of glycerol production on cellular robustness (e.g., osmotolerance).

  20. Synthesis and Characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes

    Directory of Open Access Journals (Sweden)

    Bernd M. Liebeck

    2017-03-01

    Full Text Available It is known that aqueous keratin hydrolysate solutions can be produced from feathers using superheated water as solvent. This method is optimized in this study by varying the time and temperature of the heat treatment in order to obtain a high solute content in the solution. With the dissolved polypeptides, films are produced using methyl cellulose as supporting material. Thereby, novel composite membranes are produced from bio-waste. It is expected that these materials exhibit both protein and polysaccharide properties. The influence of the embedded keratin hydrolysates on the methyl cellulose structure is investigated using Fourier transform infrared spectroscopy (FTIR and wide angle X-ray diffraction (WAXD. Adsorption peaks of both components are present in the spectra of the membranes, while the X-ray analysis shows that the polypeptides are incorporated into the semi-crystalline methyl cellulose structure. This behavior significantly influences the mechanical properties of the composite films as is shown by tensile tests. Since further processing steps, e.g., crosslinking, may involve a heat treatment, thermogravimetric analysis (TGA is applied to obtain information on the thermal stability of the composite materials.

  1. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    Directory of Open Access Journals (Sweden)

    Małgorzata Darewicz

    2014-08-01

    Full Text Available The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes and ex vivo digestion (with human gastrointestinal enzymes. Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50% of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  2. Partial sums of lagged cross-products of AR residuals and a test for white noise

    NARCIS (Netherlands)

    de Gooijer, J.G.

    2008-01-01

    Partial sums of lagged cross-products of AR residuals are defined. By studying the sample paths of these statistics, changes in residual dependence can be detected that might be missed by statistics using only the total sum of cross-products. Also, a test statistic for white noise is proposed. It is

  3. Replacement of mechanically deboned chicken meat with its protein hydrolysate in mortadella-type sausages

    Directory of Open Access Journals (Sweden)

    Carlos Pasqualin Cavalheiro

    2014-09-01

    Full Text Available Mortadella-type sausage manufactured using mechanically deboned chicken meat were reformulated replacing MDCM with increasing amounts of MDCM protein hydrolysates (10%, 20%, and 30%, and their physicochemical, microbiological, and sensorial characteristics were evaluated for 60 days of storage at 4 °C. The higher substitutions resulted in sausages more susceptible to lipid oxidation with higher TBARS values during storage; however, these values were lower than the organoleptic perception threshold. The sausages were darker and less red, with lower lightness (L* and redness (a* values than those of the control treatment. They had soft texture, which was evidenced by both the instrumental and sensory analysis. Therefore, the formulation containing 10% of MDCM protein hydrolysates proved to be the most suitable for mortadella-type sausage elaboration.

  4. Anti-Inflammatory and Antioxidant Properties of Casein Hydrolysate Produced Using High Hydrostatic Pressure Combined with Proteolytic Enzymes.

    Science.gov (United States)

    Bamdad, Fatemeh; Shin, Seulki Hazel; Suh, Joo-Won; Nimalaratne, Chamila; Sunwoo, Hoon

    2017-04-10

    Casein-derived peptides are shown to possess radical scavenging and metal chelating properties. The objective of this study was to evaluate novel anti-inflammatory properties of casein hydrolysates (CH) produced by an eco-friendly process that combines high hydrostatic pressure with enzymatic hydrolysis (HHP-EH). Casein was hydrolysed by different proteases, including flavourzyme (Fla), savinase (Sav), thermolysin (Ther), trypsin (Try), and elastase (Ela) at 0.1, 50, 100, and 200 MPa pressure levels under various enzyme-to-substrate ratios and incubation times. Casein hydrolysates were evaluated for the degree of hydrolysis (DH), molecular weight distribution patterns, and anti-inflammatory properties in chemical and cellular models. Hydrolysates produced using HHP-EH exhibited higher DH values and proportions of smaller peptides compared to atmospheric pressure-enzymatic hydrolysis (AP-EH). Among five enzymes, Fla-digested HHP-EH-CH (HHP-Fla-CH) showed significantly higher antioxidant properties than AP-Fla-CH. The anti-inflammatory properties of HHP-Fla-CH were also observed by significantly reduced nitric oxide and by the suppression of the synthesis of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) revealed that 59% of the amino acids of the peptides in HHP-Fla-CH were composed of proline, valine, and leucine, indicating the potential anti-inflammatory properties. In conclusion, the HHP-EH method provides a promising technology to produce bioactive peptides from casein in an eco-friendly process.

  5. Isolation of prolyl endopeptidase inhibitory peptides from a sodium caseinate hydrolysate.

    Science.gov (United States)

    Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Hsieh, You-Liang; Hsu, Kuo-Chiang

    2016-01-01

    Prolyl endopeptidase (PEP) has been associated with neurodegenerative disorders, and the PEP inhibitors can restore the memory loss caused by amnesic compounds. In this study, we investigated the PEP inhibitory activity of the enzymatic hydrolysates from various food protein sources, and isolated and identified the PEP inhibitory peptides. The hydrolysate obtained from sodium caseinate using bromelain (SC/BML) displayed the highest inhibitory activity of 86.8% at 5 mg mL(-1) in the present study, and its IC50 value against PEP was 0.77 mg mL(-1). The F-5 fraction by RP-HPLC (reversed-phase high performance liquid chromatography) from SC/BML showed the highest PEP inhibition rate of 88.4%, and 9 peptide sequences were identified. The synthetic peptides (1245.63-1787.94 Da) showed dose-dependent inhibition effects on PEP as competitive inhibitors with IC50 values between 29.8 and 650.5 μM. The results suggest that the peptides derived from sodium caseinate have the potential to be PEP inhibitors.

  6. Enzymatic saccharification and fermentation of paper and pulp industry effluent for biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmidevi, Rajendran; Muthukumar, Karuppan [Department of Chemical Engineering, Alagappa College of Technology Campus, Anna University Chennai, Chennai 600 025 (India)

    2010-04-15

    Paper and pulp industry effluent was enzymatically hydrolysed using crude cellulase enzyme (0.8-2.2FPU/ml) obtained from Trichoderma reesei and from the hydrolysate biohydrogen was produced using Enterobacter aerogenes. The influence of temperature and incubation time on enzyme production was studied. The optimum temperature for the growth of T. reesei was found to be around 29 C. The enzyme activity of 2.5 FPU/ml was found to produce about 22 g/l of total sugars consisting mainly of glucose, xylose and arabinose. Relevant kinetic parameters with respect to sugars production were estimated using two fraction model. The enzymatic hydrolysate was used for the biohydrogen production using E. aerogenes. The growth data obtained for E. aerogenes were fitted well with Monod and Logistic equations. The maximum hydrogen yield of 2.03 mol H{sub 2}/mol sugar and specific hydrogen production rate of 225 mmol of H{sub 2}/g cell/h were obtained with an initial concentration of 22 g/l of total sugars. The colour and COD of effluent was also decreased significantly during the production of hydrogen. The results showed that the paper and pulp industry effluent can be used as a substrate for biohydrogen production. (author)

  7. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity.

    Science.gov (United States)

    Ma, Qingyu; Liu, Qiuming; Yuan, Ling; Zhuang, Yongliang

    2018-03-28

    A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced mouse embryonic fibroblasts (MEFs). UVB irradiation significantly increased the intercellular reactive oxygen species (ROS) production and matrix metalloproteinases (MMPs) activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD) activity and the increase of malondiaidehyde (MDA) content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.

  8. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity

    Directory of Open Access Journals (Sweden)

    Qingyu Ma

    2018-03-01

    Full Text Available A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB-induced mouse embryonic fibroblasts (MEFs. UVB irradiation significantly increased the intercellular reactive oxygen species (ROS production and matrix metalloproteinases (MMPs activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD activity and the increase of malondiaidehyde (MDA content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.

  9. Pyrochars from bioenergy residue as novel bio-adsorbents for lignocellulosic hydrolysate detoxification.

    Science.gov (United States)

    Monlau, F; Sambusiti, C; Antoniou, N; Zabaniotou, A; Solhy, A; Barakat, A

    2015-01-01

    The robust supramolecular structure of biomass often requires severe pretreatments conditions to produce soluble sugars. Nonetheless, these processes generate some inhibitory compounds (i.e. furans compounds and aliphatic acids) deriving mainly from sugars degradation. To avoid the inhibition of the biological process and to obtain satisfactory sugars conversion level into biofuels, a detoxification step is required. This study investigates the use of two pyrochars derived from solid anaerobic digestates for the detoxification of lignocellulosic hydrolysates. At a pyrochar concentration of 40gL(-1), more than 94% of 5-HMF and 99% of furfural were removed in the synthetic medium after 24h of contact time, whereas sugars concentration remained unchanged. Furfural was adsorbed faster than 5-HMF by both pyrochars and totally removed after 3h of contact. Finally, the two pyrochars were found efficient in the detoxification of corn stalks and Douglas fir wood chips hydrolysates without affecting the soluble sugars concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. [Structural characterization of Astragalus polysaccharides using partial acid hydrolysis-hydrophilic interaction liquid chromatography-mass spectrometry].

    Science.gov (United States)

    Liang, Tu; Fu, Qing; Xin, Huaxia; Li, Fangbing; Jin, Yu; Liang, Xinmiao

    2014-12-01

    Water-soluble polysaccharides from traditional Chinese medicine (TCM) have properties of broad-spectrum treatment and low toxicity, making them as important components in natural medicines and health products. In order to solve the problem of polysaccharides characterization caused by their complex structures, a "bottom-up" approach was developed to complete the characterization of polysaccharides from Astragalus. Firstly, Astragalus pieces were extracted with hot water and then were precipitated by ethanol to obtain Astragalus polysaccharides. Secondly, a partial acid hydrolysis method was carried out and the effects of time, acid concentration and temperature on hydrolysis were investigated. The degree of hydrolysis increased along with the increase of hydrolysis time and acid concentration. The temperature played a great role in the hydrolysis process. No hydrolysis of the polysaccharides occurred at low temperature, while the polysaccharides were almost hydrolyzed to monosaccharide at high temperature. Under the optimum hydrolysis conditions (4 h, 1.5 mol/L trifluoroacetic acid, and 80 °C), Astragalus polysaccharides were hydrolyzed to characteristic oligosaccharide fragments. At last, a hydrophilic liquid chromatography-mass spectrometry method was used for the separation and structural characterization of the polysaccharide hydrolysates. The results showed that the resulting polysaccharides were mainly 1--> 4 linear glucan, and gluco-oligosaccharides with the degrees of polymerization (DP) of 4 - 11 were obtained after partial acid hydrolysis. The significance of this study is that it is the guidance for the characterization of other TCM polysaccharides.

  11. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    Science.gov (United States)

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  12. Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysate

    Science.gov (United States)

    Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo; Gao, Li-Zhen

    2017-12-01

    The interfacial compatibility between compact TiO2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO2 surface, form a perfect CH3NH3PbI3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO2/perovskite interface that can be greatly beneficial for developing high-performance PSCs.

  13. Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol

    Science.gov (United States)

    Jae-Won Lee; Carl J. Houtman; Hye-Yun Kim; In-Gyu Choi; Thomas W. Jeffries

    2011-01-01

    Building on our laboratory-scale optimization, oxalic acid was used to pretreat corncobs on the pilotscale. The hydrolysate obtained after washing the pretreated biomass contained 32.55 g/l of xylose, 2.74 g/l of glucose and low concentrations of inhibitors. Ethanol production, using Scheffersomyces stipitis, from this hydrolysate was 10.3 g/l, which approached the...

  14. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut.

    Science.gov (United States)

    Liu, Songling; Ren, Fazheng; Zhao, Liang; Jiang, Lu; Hao, Yanling; Jin, Junhua; Zhang, Ming; Guo, Huiyuan; Lei, Xingen; Sun, Erna; Liu, Hongna

    2015-03-01

    Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian's faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these

  15. Effect of enzymatic hydrolysis of pancreatin and alcalase enzyme on some properties of edible bird's nest hydrolysate

    Science.gov (United States)

    Khushairay, Etty Syarmila Ibrahim; Ayub, Mohd Khan; Babji, Abdul Salam

    2014-09-01

    Edible bird nest (EBN) is a dried glutinous secretion from the salivary glands of several different swiftlet species. It is widely consumed as a health food due to its high beneficial effects to human health and has been considered to be one of the most precious food items by the Chinese for thousands of years. The aim of this study was to evaluate the effect of enzymatic hydrolysis on protein solubility (μg/g), the degree of hydrolysis (DH%), and peptide content (μg/g) of edible bird's nest hydrolysate. Initial protein solubility of boiled EBN was 25.5mg/g EBN. Treating the solubilized EBN with pancreatin 4NF for 1.0 - 1.5hours increased EBN protein solubility to 163.9mg/g and produced hydrolysate with DH% of 86.5% and 109.5mg/g peptide. EBN hydrolyzed with alcalase for 1.5 hours produced hydrolysate with protein solubility of 86.7mg/g, 82.7 DH% and had 104.1mg/g peptide content.

  16. Identification of ace inhibitory cryptides in Tilapia protein hydrolysate by UPLC-MS/MS coupled to database analysis.

    Science.gov (United States)

    Yesmine, Ben Henda; Antoine, Bonnet; da Silva Ortência Leocádia, Nunes Gonzalez; Rogério, Boscolo Wilson; Ingrid, Arnaudin; Nicolas, Bridiau; Thierry, Maugard; Jean-Marie, Piot; Frédéric, Sannier; Stéphanie, Bordenave-Juchereau

    2017-05-01

    An ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry method was developed and applied to identify short angiotensin-I-converting enzyme (ACE) inhibitory cryptides in Tilapia (Oreochromis Niloticus) protein hydrolyzate. A database was created with previously identified ACE-inhibitory di- and tripeptides and the lowest molecular weight fraction of Tilapia hydrolysate was analysed for coincidences. Only VW and VY were identified. Further analysis of collected fractions conducted to the identification of 51 different peptides in major fractions. 19 peptides selected were synthesised and tested for their ACE inhibitory potential. TL, TI, IK, LR, LD, IQ, DI, AILE, ALLE, ALIE and AIIE were identified as new ACE inhibitors. The findings from this study point UPLC-MS/MS combined with the creation of a database as an efficient technique to identify specific short peptides within a complex hydrolysate, in addition with de novo sequencing. This efficient characterisation of bioactive factors like cryptides in protein hydrolysates will extend their use as functional foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Evaluation of hardboard manufacturing process wastewater as a feedstream for ethanol production.

    Science.gov (United States)

    Groves, Stephanie; Liu, Jifei; Shonnard, David; Bagley, Susan

    2013-07-01

    Waste streams from the wood processing industry can serve as feedstream for ethanol production from biomass residues. Hardboard manufacturing process wastewater (HPW) was evaluated on the basis of monomeric sugar recovery and fermentability as a novel feedstream for ethanol production. Dilute acid hydrolysis, coupled with concentration of the wastewater resulted in a hydrolysate with 66 g/l total fermentable sugars. As xylose accounted for 53 % of the total sugars, native xylose-fermenting yeasts were evaluated for their ability to produce ethanol from the hydrolysate. The strains selected were, in decreasing order by ethanol yields from xylose (Y p/s, based on consumed sugars), Scheffersomyces stipitis ATCC 58785 (CBS 6054), Pachysolen tannophilus ATCC 60393, and Kluyveromyces marxianus ATCC 46537. The yeasts were compared on the basis of substrate utilization and ethanol yield during fermentations of the hydrolysate, measured using an HPLC. S. stipitis, P. tannophilus, and K. marxianus produced 0.34, 0.31, and 0.36 g/g, respectively. The yeasts were able to utilize between 58 and 75 % of the available substrate. S. stipitis outperformed the other yeast during the fermentation of the hydrolysate; consuming the highest concentration of available substrate and producing the highest ethanol concentration in 72 h. Due to its high sugar content and low inhibitor levels after hydrolysis, it was concluded that HPW is a suitable feedstream for ethanol production by S. stipitis.

  18. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes.

    Science.gov (United States)

    He, Rong; Girgih, Abraham T; Rozoy, Elodie; Bazinet, Laurent; Ju, Xing-Rong; Aluko, Rotimi E

    2016-04-15

    Rapeseed protein isolate was subjected to alcalase digestion to obtain a protein hydrolysate that was separated into peptide fractions using electrodialysis with ultrafiltration membrane (EDUF) technology. The EDUF process (6h duration) led to isolation of three peptide fractions: anionic (recovered in KCl-1 compartment), cationic (recovered in KCl-2 compartment), and those that remained in the feed compartment, which was labeled final rapeseed protein hydrolysate (FRPH). As expected the KCl-1 peptides were enriched in negatively-charged (43.57%) while KCl-2 contained high contents of positively-charged (28.35%) amino acids. All the samples inhibited angiotensin converting enzyme (ACE) and renin activities in dose-dependent manner with original rapeseed protein hydrolysate having the least ACE-inhibitory IC50 value of 0.0932±0.0037 mg/mL while FRPH and KCl-2 had least renin-inhibitory IC50 values of 0.47±0.05 and 0.55±0.06 mg/mL, respectively. Six hours after oral administration (100 mg/kg body weight) to spontaneously hypertensive rats, the FRPH produced the maximum systolic blood pressure reduction of -51 mmHg. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Whey protein hydrolysate and branched-chain amino acids downregulate inflammation-related genes in vascular endothelial cells.

    Science.gov (United States)

    Da Silva, Marine S; Bigo, Cyril; Barbier, Olivier; Rudkowska, Iwona

    2017-02-01

    A recent review of clinical studies reports that dairy products may improve inflammation, a key etiologic cardiovascular disease risk factor. Yet the impact of dairy proteins on inflammatory markers is controversial and could be mediated by a differential impact of whey proteins and caseins. In this study, we hypothesized that whey proteins may have a greater anti-inflammatory effect than caseins. A model of human umbilical vein endothelial cells, with or without TNF-α stimulation, was used to investigate the effect of several dairy protein compounds on inflammation. Specifically, the impact of whey proteins either isolate or hydrolysate, caseins, and their amino acids on expression of TNF, VCAM-1, SOD2, and eNOS was examined. After a 24-hour incubation period, whey protein hydrolysate, leucine, isoleucine, and valine attenuated the TNF-α-induced endothelial inflammation by normalizing TNF and eNOS gene expression. This effect was not observed in unstimulated cells. Oppositely, caseins, a whey protein/casein mixture (1:4 w/w), and glutamine aggravated the TNF-α-induced TNF and SOD2 gene expression. Yet caseins and whey protein/casein mixture decreased VCAM-1 expression in both unstimulated and stimulated human umbilical vein endothelial cells. Measurement of TNF-α in cell supernatants by immunoassay substantiates gene expression data without reaching statistical significance. Taken together, this study showed that whey proteins and their major amino acids normalize TNF-α-induced proinflammatory gene expression in endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca.

    Science.gov (United States)

    van der Wal, Hetty; Sperber, Bram L H M; Houweling-Tan, Bwee; Bakker, Robert R C; Brandenburg, Willem; López-Contreras, Ana M

    2013-01-01

    Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Optimization of Two-Step Acid-Catalyzed Hydrolysis of Oil Palm Empty Fruit Bunch for High Sugar Concentration in Hydrolysate

    Directory of Open Access Journals (Sweden)

    Dongxu Zhang

    2014-01-01

    Full Text Available Getting high sugar concentrations in lignocellulosic biomass hydrolysate with reasonable yields of sugars is commercially attractive but very challenging. Two-step acid-catalyzed hydrolysis of oil palm empty fruit bunch (EFB was conducted to get high sugar concentrations in the hydrolysate. The biphasic kinetic model was used to guide the optimization of the first step dilute acid-catalyzed hydrolysis of EFB. A total sugar concentration of 83.0 g/L with a xylose concentration of 69.5 g/L and a xylose yield of 84.0% was experimentally achieved, which is in well agreement with the model predictions under optimal conditions (3% H2SO4 and 1.2% H3PO4, w/v, liquid to solid ratio 3 mL/g, 130°C, and 36 min. To further increase total sugar and xylose concentrations in hydrolysate, a second step hydrolysis was performed by adding fresh EFB to the hydrolysate at 130°C for 30 min, giving a total sugar concentration of 114.4 g/L with a xylose concentration of 93.5 g/L and a xylose yield of 56.5%. To the best of our knowledge, the total sugar and xylose concentrations are the highest among those ever reported for acid-catalyzed hydrolysis of lignocellulose.

  2. Trypsin from unicorn leatherjacket (Aluterus monoceros) pyloric caeca: purification and its use for preparation of fish protein hydrolysate with antioxidative activity.

    Science.gov (United States)

    Zamani, Abbas; Benjakul, Soottawat

    2016-02-01

    Fish proteases, especially trypsin, could be used to prepare fish protein hydrolysates with antioxidative activities. In this study, trypsin from the pyloric caeca of unicorn leatherjacket was purified by ammonium sulfate precipitation and soybean trypsin inhibitor (SBTI)-Sepharose 4B affinity chromatography. Hydrolysate from Indian mackerel protein isolate with different degrees of hydrolysis (20, 30 and 40% DH) was prepared using the purified trypsin, and antioxidative activities (1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activities, ferric-reducing antioxidant power and ferrous-chelating activity) of the hydrolysate were determined. Trypsin was purified 26.43-fold with a yield of 13.43%. The purified trypsin had a molecular weight (MW) of 23.5 kDa and optimal activity at pH 8.0 and 55 °C. It displayed high stability in the pH range of 6.0-11.0 and was thermally stable up to 50 °C. Both SBTI (0.05 mmol L(-1)) and N-p-tosyl-L-lysine-chloromethylketone (5 mmol L(-1)) completely inhibited trypsin activity. Antioxidative activities of the hydrolysate from Indian mackerel protein isolate increased with increasing DH up to 40% (P unicorn leatherjacket pyloric caeca was identified as trypsin based on its ability to hydrolyze a specific synthetic substrate and the response to specific trypsin inhibitors. The purified trypsin could hydrolyze Indian mackerel protein isolate, and the resulting hydrolysate exhibited antioxidative activity depending on its DH. © 2015 Society of Chemical Industry.

  3. Using LC-MS to examine the fermented food products vinegar and soy sauce for the presence of gluten.

    Science.gov (United States)

    Li, Haili; Byrne, Keren; Galiamov, Renata; Mendoza-Porras, Omar; Bose, Utpal; Howitt, Crispin A; Colgrave, Michelle L

    2018-07-15

    A strict, lifelong gluten-free (GF) diet is currently the only treatment for coeliac disease (CD). Vinegar and soy sauce are fermented condiments that often include wheat and/or barley. During fermentation cereal proteins are partially degraded by enzymes to yield peptide fragments and amino acids. Whether these fermented products contain intact or degraded gluten proteins and if they are safe for people with CD remains in question. LC-MS offers the benefit of being able to detect hydrolysed gluten that might be present in commercial vinegar and soy sauce products. LC-MS revealed the presence of gluten in malt vinegar, wherein the identified peptides derived from B-, D- and γ-hordein from barley, as well as γ-gliadin, and HMW- and LMW-glutenins from wheat that are known to contain immunopathogenic epitopes. No gluten was detected in the soy sauces examined despite wheat being a labelled ingredient indicating extensive hydrolysis of gluten during soy sauce production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Improvement of Emulsifying Properties of Wheat Gluten Hydrolysate λ-Carrageenan Conjugates

    Directory of Open Access Journals (Sweden)

    Jin-Shui Wang

    2006-01-01

    Full Text Available Gluten hydrolysate was prepared through limited enzymatic hydrolysis of wheat gluten resulting from the byproducts of wheat starch. The enzyme applied in the present study was Protamex. Response surface methodology was used to investigate the effects of pH, gluten hydrolysate (GHPλ-carrageenan (C ratio and reaction time on emulsifying properties of the GHP-C conjugate. The regression model for emulsion activity index (EAI was significant at p=0.001, while reaction time had a significant effect on EAI of the conjugate with regression coefficient of 4.25. The interactions of pH and GHP/ C ratio, and GHP/C ratio and reaction time significantly affected the EAI of the conjugate. Both the emulsifying property and nitrogen solubility index (NSI of GHP-C conjugate prepared under the optimal conditions increased more remarkably, compared to the control. The denaturation temperature of GHP-C conjugate obviously increased compared to wheat gluten. The addition of GHP-C conjugate had different effects on dough characteristics. Moreover, this conjugate can delay the increase in the bread crumb firmness during storage. It demonstrated that this conjugate couldimprove the dough characteristics and had anti-staling properties of bread.

  5. Nanotubes from Partially Hydrolysed α-Lactalbumin

    DEFF Research Database (Denmark)

    Geng, Xiaolu

    on the hydrolysis pattern. Increasing calcium level enhanced the effect of pH on self-assembly process, whereas the low level of a-La concentration (10 gL-1) was shown to limit the self-assembly. By tuning the rate of hydrolysis or self-assembly, via altering these three factors, one can control the formation of a......-La nanotubes and gels. In addition, by using small and wide angle X-ray scattering techniques, the structure of the a- La derived nanotubes was characterized. The results showed that the nanotubes formed under most of the conditions have a similar size with an outer diameter of 19 nm, inner diameter of 6.6 nm...

  6. Ethanol production from lignocellulosic materials. Fermentation and on-line analysis

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, L.

    1994-04-01

    The fermentation performance of bacteria, yeast and fungi was investigated in lignocellulosic hydrolysates with the aim of finding microorganisms which both withstand the inhibitors and that have the ability to ferment pentoses. Firstly, the performance of Saccharomyces cidri, Saccharomyces cerevisiae, Lactobacillus brevis, Lactococcus lactis ssp lactis, Escherichia coli and Zymomonas mobilis was investigated in spent sulphite liquor and enzymatic hydrolysate of steam-pretreated willow. Secondly, the performance of natural and recombinant E. coli, Pichia stipitis, recombinant S. cerevisiae, S. cerevisiae in combination with xylose isomerase and Fusarium oxysporum was investigated in a xylose-rich acid hydrolysate of corn cob. Recombinant E. coli was the best alternative for fermentation of lignocellulosic hydrolysates, giving both high yields and productivities. The main drawback was that detoxification was necessary. The kinetics of the fermentation with recombinant E. coli KO11 was investigated in the condensate of steam-pretreated willow. A cost analysis of the ethanol production from willow was made, which predicted an ethanol production cost of 3.9 SEK/l for the pentose fermentation. The detoxification cost constituted 22% of this cost. The monitoring of three monosaccharides and ethanol in lignocellulosic hydro lysates is described. The monosaccharides were determined using immobilized pyranose oxidase in an on-line amperometric analyser. Immobilization and characterization of pyranose oxidase from Phanerochaete chrysosporium is also described. The ethanol was monitored on-line using a micro dialysis probe as an in situ sampling device. The dialysate components were then separated in a column liquid chromatographic system and the ethanol was selectively detected by an amperometric alcohol bio sensor. The determinations with on-line analysis methods agreed well with off-line methods. 248 refs, 4 figs, 12 tabs

  7. Purification and Identification of Antioxidant Peptides from Enzymatic Hydrolysate of Spirulina platensis.

    Science.gov (United States)

    Yu, Jie; Hu, Yuanliang; Xue, Mingxiong; Dun, Yaohao; Li, Shenao; Peng, Nan; Liang, Yunxiang; Zhao, Shumao

    2016-07-28

    The aim of this study was to isolate antioxidant peptides from an enzymatic hydrolysate of Spirulina platensis. A novel antioxidant peptide was obtained by ultrafiltration, gel filtration chromatography, and reverse-phase high-performance liquid chromatography, with the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay used to measure the antioxidant activity, and the sequence was determined to be Pro-Asn-Asn (343.15 Da) by electrospray ionization tandem mass spectrometry. This peptide was synthesized to confirm its antioxidant properties, and it exhibited 81.44 ± 0.43% DPPH scavenging activity at 100 µg/ml, which was similar to that of glutathione (82.63 ± 0.56%). Furthermore, the superoxide anion and hydroxyl free-radical scavenging activities and the SOD activity of the peptide were 47.84 ± 0.49%, 54.01 ± 0.82%, and 12.55 ± 0.75%, respectively, at 10 mg/ml. These results indicate that S. platensis is a good source of antioxidant peptides, and that its hydrolysate may have important applications in the pharmaceutical and food industries.

  8. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Directory of Open Access Journals (Sweden)

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  9. Bio-ethanol production from waste biomass of Pogonatherum crinitum phytoremediator: an eco-friendly strategy for renewable energy.

    Science.gov (United States)

    Waghmare, Pankajkumar R; Watharkar, Anuprita D; Jeon, Byong-Hun; Govindwar, Sanjay P

    2018-03-01

    In this study, we have described three steps to produce ethanol from Pogonatherum crinitum , which was derived after the treatment of textile wastewater. (a) Production of biomass: biomass samples collected from a hydroponic P. crinitum phytoreactor treating dye textile effluents and augmented with Ca-alginate immobilized growth-promoting bacterium, Bacillus pumilus strain PgJ (consortium phytoreactor), and waste sorghum husks were collected and dried. Compositional analysis of biomass (consortium phytoreactor) showed that the concentration of cellulose, hemicelluloses and lignin was 42, 30 and 17%, respectively, whereas the biomass samples without the growth-promoting bacterium (normal phytoreactor) was slightly lower, 40, 29 and 16%, respectively. (b) Hydrolysate (sugar) production: a crude sample of the fungus, Phanerochaete chrysosporium containing hydrolytic enzymes such as endoglucanase (53.25 U/ml), exoglucanase (8.38 U/ml), glucoamylase (115.04 U/ml), xylanase (83.88 U/ml), LiP (0.972 U/ml) and MnP (0.459 U/ml) was obtained, and added to consortium, normal and control phytoreactor derived biomass supplemented with Tween-20 (0.2% v/v). The hydrolysate of biomass from consortium phytoreactor produced maximum reducing sugar (0.93 g/l) than hydrolysates of normal phytoreactor biomass (0.82 g/l) and control phytoreactor biomass (0.79 g/l). FTIR and XRD analysis confirmed structural changes in treated biomass. (c) Ethanol production: the bioethanol produced from enzymatic hydrolysates of waste biomass of consortium and normal phytoreactor using Saccharomyces cerevisiae (KCTC 7296) was 42.2 and 39.4 g/l, respectively, while control phytoreactor biomass hydrolysate showed only 25.5 g/l. Thus, the amalgamation of phytoremediation and bioethanol production can be the truly environment-friendly way to eliminate the problem of textile dye along with bioenergy generation.

  10. Production and Partial Purification of a Neutral Metalloprotease by Fungal Mixed Substrate Fermentation

    Directory of Open Access Journals (Sweden)

    Alagarsamy Sumantha

    2005-01-01

    Full Text Available Five strains of fungi belonging to Aspergillus sp. were evaluated by casein agar plate assay and a wheat bran-based solid-state fermentation for selecting a neutral protease-producing culture. Based on the results, A. oryzae NRRL 2217 was selected for further studies. Sixteen different agro-industrial residues were evaluated for their potential to serve as a substrate for neutral protease production by this fungal strain. Results showed that a combination of coconut oil cake and wheat bran in the mass ratio of 1:3 was the best substrate for enzyme production. Various process parameters influencing protease production including fermentation time, initial moisture content, and fermentation temperature were optimised. The medium was supplemented with different nutrients in the form of organic and inorganic nitrogen and carbon sources. Supplementation of chitin increased the enzyme production significantly. Ammonium nitrate as inorganic nitrogen supplement slightly enhanced enzyme production. No organic nitrogen supplement was effective enhancer of enzyme production. Fermentation was performed under optimised conditions (initial moisture content V/m = 50 %, temperature 30 °C, 48 h. Partial purification of the enzyme resulted in a 3-fold increase in the specific activity of the enzyme. The partially purified enzyme was characterised by various features that govern the enzyme activity such as assay temperature, assay pH and substrate concentration. The effect of various metal ions and known protease inhibitors on the enzyme activity was also studied. The enzyme was found to be stable in pH range 7.0–7.5, and at temperature of 50 °C for 35 min. By the activating effect of divalent cations (Mg2+, Ca2+, Fe2+ and inhibiting effect of certain chelating agents (EGTA, EDTA, the enzyme was found to be a metalloprotease.

  11. Extraction of unsaturated fatty acid-rich oil from common carp (Cyprinus carpio) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties.

    Science.gov (United States)

    Ghelichi, Sakhi; Shabanpour, Bahareh; Pourashouri, Parastoo; Hajfathalian, Mona; Jacobsen, Charlotte

    2018-03-01

    Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees of hydrolysis (DH). Gas chromatography of fatty acid methyl esters revealed that common carp roe oil contained high levels of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry indicated that enzymatic hydrolysis of defatted roe yielded higher content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited antioxidant activity both in vitro and in 5% roe oil-in-water emulsions and inhibited the growth of certain bacterial strains. Common carp roe could be a promising source of unsaturated fatty acids and functional bioactive agents. Unsaturated fatty acid-rich oil extracted from common carp roe can be delivered into food systems by roe oil-in-water emulsions fortified by functional, antioxidant, and antibacterial hydrolysates from the defatted roe. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Low-rank extremal positive-partial-transpose states and unextendible product bases

    International Nuclear Information System (INIS)

    Leinaas, Jon Magne; Sollid, Per Oyvind; Myrheim, Jan

    2010-01-01

    It is known how to construct, in a bipartite quantum system, a unique low-rank entangled mixed state with positive partial transpose (a PPT state) from an unextendible product basis (UPB), defined as an unextendible set of orthogonal product vectors. We point out that a state constructed in this way belongs to a continuous family of entangled PPT states of the same rank, all related by nonsingular unitary or nonunitary product transformations. The characteristic property of a state ρ in such a family is that its kernel Ker ρ has a generalized UPB, a basis of product vectors, not necessarily orthogonal, with no product vector in Im ρ, the orthogonal complement of Ker ρ. The generalized UPB in Ker ρ has the special property that it can be transformed to orthogonal form by a product transformation. In the case of a system of dimension 3x3, we give a complete parametrization of orthogonal UPBs. This is then a parametrization of families of rank 4 entangled (and extremal) PPT states, and we present strong numerical evidence that it is a complete classification of such states. We speculate that the lowest rank entangled and extremal PPT states also in higher dimensions are related to generalized, nonorthogonal UPBs in similar ways.

  13. Partial processing

    International Nuclear Information System (INIS)

    1978-11-01

    This discussion paper considers the possibility of applying to the recycle of plutonium in thermal reactors a particular method of partial processing based on the PUREX process but named CIVEX to emphasise the differences. The CIVEX process is based primarily on the retention of short-lived fission products. The paper suggests: (1) the recycle of fission products with uranium and plutonium in thermal reactor fuel would be technically feasible; (2) it would, however, take ten years or more to develop the CIVEX process to the point where it could be launched on a commercial scale; (3) since the majority of spent fuel to be reprocessed this century will have been in storage for ten years or more, the recycling of short-lived fission products with the U-Pu would not provide an effective means of making refabrication fuel ''inaccessible'' because the radioactivity associated with the fission products would have decayed. There would therefore be no advantage in partial processing

  14. Effect of agitation rate on ethanol production from sugar maple hemicellulosic hydrolysate by Pichia stipitis.

    Science.gov (United States)

    Shupe, Alan M; Liu, Shijie

    2012-09-01

    Concentrated dilute acid hydrolysate was obtained from hot water extracts of Acer saccharum (sugar maple) and was fermented to ethanol by Pichia stipitis in a 1.3-L-benchtop bioreactor. The conditions under which the highest ethanol yield was achieved were when the air flow rate was set to 100 cm(3) and the agitation rate was set to 150 rpm resulting in an overall mass transfer coefficient (K(L)a) of 0.108 min(-1). A maximum ethanol concentration of 29.7 g/L was achieved after 120 h of fermentation; however, after 90 h of fermentation, the ethanol concentration was only slightly lower at 29.1 g/L with a yield of 0.39 g ethanol per gram of sugar consumed. Using the same air flow rate and adjusting the agitation rate resulted in lower ethanol yields of 0.25 g/g at 50 rpm and 0.30 g/g at 300 rpm. The time it takes to reach the maximum ethanol concentration was also affected by the agitation rate. The ethanol concentration continued to increase even after 130 h of fermentation when the agitation rate was set at 50 rpm, whereas the maximum ethanol concentration was reached after only 68.5 h at 300 rpm.

  15. Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Vrije, Truus de; Budde, Miriam A.W.; Lips, Steef J.; Bakker, Robert R.; Mars, Astrid E.; Claassen, Pieternel A.M. [Wageningen UR, Food and Biobased Research, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2010-12-15

    Hydrogen was produced from carrot pulp hydrolysate, untreated carrot pulp and (mixtures of) glucose and fructose by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana in pH-controlled bioreactors. Carrot pulp hydrolysate was obtained after enzymatic hydrolysis of the polysaccharide fraction in carrot pulp. The main sugars in the hydrolysate were glucose, fructose, and sucrose. In fermentations with glucose hydrogen yields and productivities were similar for both strains. With fructose the hydrogen yield of C. saccharolyticus was reduced which might be related to uptake of glucose and fructose by different types of transport systems. With T. neapolitana the fructose consumption rate and consequently the hydrogen productivity were low. The hydrogen yields of both thermophiles were 2.7-2.8 mol H{sub 2}/mol hexose with 10 g/L sugars from carrot pulp hydrolysate. With 20 g/L sugars the yield of T. neapolitana was 2.4 mol H{sub 2}/mol hexose while the yield of C. saccharolyticus was reduced to 1.3 mol H{sub 2}/mol hexose due to high lactate production in the stationary growth phase. C. saccharolyticus was able to grow on carrot pulp and utilized soluble sugars and, after adaptation, pectin and some (hemi)cellulose. No growth was observed with T. neapolitana when using carrot pulp in agitated fermentations. Enzymatic hydrolysis of the polysaccharide fraction prior to fermentation increased the hydrogen yield with almost 10% to 2.3 g/kg of hydrolyzed carrot pulp. (author)

  16. Evaluation of jumbo squid (Dosidicus gigas byproduct hydrolysates obtained by acid-enzymatic hydrolysis and by autohydrolysis in practical diets for Pacific white shrimp (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Mayra Lizett González-Félix

    2014-09-01

    Full Text Available The marine bioprocessing industry offers great potential to utilize byproducts for fish meal replacement in aquafeeds. Jumbo squid is an important fishery commodity in Mexico, but only the mantle is marketed. Head, fins, guts and tentacles are discarded in spite of being protein-rich byproducts. This study evaluated the use of two jumbo squid byproduct hydrolysates obtained by acid-enzymatic hydrolysis (AEH and by autohydrolysis (AH as ingredients in practical diets for shrimp. The hydrolysates were included at levels of 2.5 and 5.0% of the diet dry weight in four practical diets, including a control diet without hydrolysate. Shrimp growth and survival were not significantly affected by the dietary treatments. Postharvest quality of abdominal muscle was evaluated in terms of proximate composition and sensory evaluation. Significantly higher crude protein was observed in the muscle of shrimp fed the highest hydrolysate levels, AH 5% (204.8 g kg- 1 or AEH 5% (201.3 g kg- 1. Sensory analysis of cooked muscle showed significant differences for all variables evaluated: color, odor, flavor, and firmness. It was concluded that Jumbo squid byproducts can be successfully processed by autohydrolysis or acid-enzymatic hydrolysis, and that up to 5.0% of the hydrolysates can be incorporated into shrimp diets without affecting growth or survival.

  17. The potential of bacteria isolated from ruminal contents of seaweed-eating North Ronaldsay sheep to hydrolyse seaweed components and produce methane by anaerobic digestion in vitro.

    Science.gov (United States)

    Williams, Allan G; Withers, Susan; Sutherland, Alastair D

    2013-01-01

    The production of methane biofuel from seaweeds is limited by the hydrolysis of polysaccharides. The rumen microbiota of seaweed-eating North Ronaldsay sheep was studied for polysaccharidic bacterial isolates degrading brown-seaweed polysaccharides. Only nine isolates out of 65 utilized >90% of the polysaccharide they were isolated on. The nine isolates (eight Prevotella spp. and one Clostridium butyricum) utilized whole Laminaria hyperborea extract and a range of seaweed polysaccharides, including alginate (seven out of nine isolates), laminarin and carboxymethylcellulose (eight out of nine isolates); while two out of nine isolates additionally hydrolysed fucoidan to some extent. Crude enzyme extracts from three of the isolates studied further had diverse glycosidases and polysaccharidase activities; particularly against laminarin and alginate (two isolates were shown to have alginate lyase activity) and notably fucoidan and carageenan (one isolate). In serial culture rumen microbiota hydrolysed a range of seaweed polysaccharides (fucoidan to a notably lesser degree) and homogenates of L. hyperborea, mixed Fucus spp. and Ascophyllum nodosum to produce methane and acetate. The rumen microbiota and isolates represent potential adjunct organisms or enzymes which may improve hydrolysis of seaweed components and thus improve the efficiency of seaweed anaerobic digestion for methane biofuel production. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    Directory of Open Access Journals (Sweden)

    Erdei Borbála

    2012-03-01

    Full Text Available Abstract Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS, resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and

  19. Recovery of fermented inulin fiber by lactic acid bacteria (LAB) from inulin hydrolysate using fungi inulinase enzymes of Scopulariopsis sp.-CBS1 and class of Deuteromycetes-CBS4 as cholesterol binder

    Science.gov (United States)

    Susilowati, Agustine; Melanie, Hakiki; Maryati, Yati; Aspiyanto

    2017-01-01

    Fermentation of Lactobacillus Acid Bacteria (LAB) which are mixtures of Lactobacillus acidophilus, Bifidobacteriumbifidum, Lactobacillus bulgaricus and Streptococcus thermophillus on hydrolysate as a result of inulin hydrolysis using inulinase enzymes obtained from endophytic fungi ofScopulariopsis sp.-CBS1 (inulin hydrolysate of S) and Class of Deuteromycetes-CBS4 (inulin hydrolysate of D) generate potential fermented inulin fiber as cholesterol binder. Fermentation process was conducted under concentrations of inulin hydrolysate 50% (w/v), LAB 15% (v/v) and skim milk 12.5% (w/v) at room temperature and 40°C for 0, 12, 24, 36 and 48 hours, respectively. Result of experimental work showed that longer time of LAB fermentation increased total acids, TPC and CBC at pH 2, but decreased total sugar, reducing, IDF, SDF, CBC pH 2 and CBC pH 7. Based on Cholesterol Binding Capacity (CBC), optimization of fermentation process on inulin hydrolysate of S was achieved by combining treatment at 40°C for 24 hours resulted in CBC pH 2 of 19.11 mg/g TDF and inulin hydrolysate of D was achieved by fermentation at 40 °C for 48 hours resulted in CBC pH 2 of 24.28 mg/g TDF. Inulin hydrolysate of class of Deutrymecetes CBS4 fermented by LAB had better functional property as cholesterol binder than that inulin hydrolysate of S fermented by LAB. This is due to cholesterol binder and cholesterol derivatives as a result of degradation of LAB on digestive system (stomach) when compared to higher colon under optimal process condition.

  20. Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry

    Directory of Open Access Journals (Sweden)

    Smart Katherine A

    2011-09-01

    Full Text Available Abstract Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS offers advantages as a rapid analytical technique for the quantification of three biomass degradation products (acetic acid, formic acid and furfural within pretreated wheat straw hydrolysates and the analysis of ethanol during fermentation. The data we obtained using APCI-MS correlated significantly with high-performance liquid chromatography analysis whilst offering the analyst minimal sample preparation and faster sample throughput.

  1. Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes.

    Science.gov (United States)

    Kumar, Prasun; Ray, Subhasree; Kalia, Vipin C

    2016-01-01

    Production of polyhydroxyalkanoate (PHA) co-polymers by Bacillus spp. was studied by feeding defined volatile fatty acids (VFAs) obtained through controlled hydrolysis of various wastes. Eleven mixed hydrolytic cultures (MHCs) each containing 6 strains could generate VFA from slurries of (2% total solids): pea-shells (PS), potato peels (PP), apple pomace (AP) and onion peels (OP). PS hydrolysates (obtained with MHC2 and MHC5) inoculated with Bacillus cereus EGU43 and Bacillus thuringiensis EGU45 produced co-polymers of PHA at the rate of 15-60mg/L with a 3HV content of 1%w/w. An enhancement in PHA yield of 3.66-fold, i.e. 205-550mg/L with 3HV content up to 7.5%(w/w) was observed upon addition of OP hydrolysate and 1% glucose (w/v) to PS hydrolysates. This is the first demonstration, where PHA co-polymer composition, under non-axenic conditions, could be controlled by customizing VFA profile of the hydrolysate by the addition of different biowastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to casein protein hydrolysates and growth or maintenance of muscle mass (ID 1498), increase in endurance performance (ID 660, 1497) and faster recovery from muscle

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to provide a scientific opinion on a list of health claims pursuant to Article 13 of Regulation (EC) No 1924/2006. This opinion addresses the scientific substantiation of health...... claims in relation to casein protein hydrolysates and growth or maintenance of muscle mass, increase in endurance performance and faster recovery from muscle fatigue after exercise. The scientific substantiation is based on the information provided by the Member States in the consolidated list of Article...

  3. Improved 64-bit Radix-16 Booth Multiplier Based on Partial Product Array Height Reduction

    DEFF Research Database (Denmark)

    Antelo, Elisardo; Montuschi, Paolo; Nannarelli, Alberto

    2016-01-01

    , a reduction of one unit in the maximum height is achieved. This reduction may add flexibility during the design of the pipelined multiplier to meet the design goals, it may allow further optimizations of the partial product array reduction stage in terms of area/delay/power and/or may allow additional addends...

  4. Bio-production of a polyalcohol (xylitol) from lignocellulosic resources : a review

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani, M.; Tabil, L.; Panigrahi, S. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Agricultural and Bioresource Engineering

    2006-07-01

    Lignocellulosic materials that are supplied from several sources at a low price can be utilized as feedstock for chemicals and bio-products. Xylitol is a high value polyalcohol produced by the reduction of D-xylose. It has many advantageous properties, such as low-calorie sweetening power. Due to its higher yield and because downstream processing is expected to be less costly, biotechnological production of xylitol is often more attractive than the chemical method of catalytic hydrogenation. Studies about the bio-production of xylitol, have been mostly focused on establishing the operational parameters and the process options that maximize its yield and productivity in free cell systems. However, some gaps in knowledge exist regarding this bioconversion process in immobilized cell systems and choosing an appropriate carrier for biocatalysts in a fermentation medium. This paper reviewed the metabolism of xylose by microorganisms, variables and process parameters affecting bioconversion of xylose to xylitol in defined media and complex media of lignocellulosic hydrolysates using free and immobilized cell systems. It discussed the natural occurrence, chemical structure, and physical properties of xylitol. Methods of production were discussed, including solid-liquid extraction; chemical production of xylitol; microbial production of xylitol; production of xylitol by bacteria; production of xylitol by molds; and production of xylitol by yeasts. The paper also discussed the parameters of fermentation, including xylose concentration; carbon source; nitrogen source; inoculum age and concentration; aeration rate; and temperature and pH. The production of xylitol from hemicellulose hydrolysate was also discussed along with immobilized-cell fermentation and xylitol recovery from fermented hydrolysate. It was concluded that purification and recovery of xylitol are the primary challenges related to this process, and a successful fermentation using immobilized cell system could

  5. Antioxidative, DPP-IV and ACE inhibiting peptides from fish protein hydrolysed with intestinal proteases

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Stagsted, Jan; Nielsen, Henrik Hauch

    amino groups, antioxidative capacity by ABTS (2,2-azinobis(3-ethylbenzothiazoline-6-sulfonicacid)), DPP-IV and ACE inhibiting activity. Degree of hydrolysis (DH) of hydrolysates was approximately 13% and 10% for belly flap and skin respectively. No clear difference was observed in DH between pancreatin...

  6. Impacts from Partial Removal of Decommissioned Oil and Gas Platforms on Fish Biomass and Production on the Remaining Platform Structure and Surrounding Shell Mounds.

    Science.gov (United States)

    Claisse, Jeremy T; Pondella, Daniel J; Love, Milton; Zahn, Laurel A; Williams, Chelsea M; Bull, Ann S

    2015-01-01

    When oil and gas platforms become obsolete they go through a decommissioning process. This may include partial removal (from the surface to 26 m depth) or complete removal of the platform structure. While complete removal would likely eliminate most of the existing fish biomass and associated secondary production, we find that the potential impacts of partial removal would likely be limited on all but one platform off the coast of California. On average 80% of fish biomass and 86% of secondary fish production would be retained after partial removal, with above 90% retention expected for both metrics on many platforms. Partial removal would likely result in the loss of fish biomass and production for species typically found residing in the shallow portions of the platform structure. However, these fishes generally represent a small proportion of the fishes associated with these platforms. More characteristic of platform fauna are the primarily deeper-dwelling rockfishes (genus Sebastes). "Shell mounds" are biogenic reefs that surround some of these platforms resulting from an accumulation of mollusk shells that have fallen from the shallow areas of the platforms mostly above the depth of partial removal. We found that shell mounds are moderately productive fish habitats, similar to or greater than natural rocky reefs in the region at comparable depths. The complexity and areal extent of these biogenic habitats, and the associated fish biomass and production, will likely be reduced after either partial or complete platform removal. Habitat augmentation by placing the partially removed platform superstructure or some other additional habitat enrichment material (e.g., rock boulders) on the seafloor adjacent to the base of partially removed platforms provides additional options to enhance fish production, potentially mitigating reductions in shell mound habitat.

  7. Impacts from Partial Removal of Decommissioned Oil and Gas Platforms on Fish Biomass and Production on the Remaining Platform Structure and Surrounding Shell Mounds.

    Directory of Open Access Journals (Sweden)

    Jeremy T Claisse

    Full Text Available When oil and gas platforms become obsolete they go through a decommissioning process. This may include partial removal (from the surface to 26 m depth or complete removal of the platform structure. While complete removal would likely eliminate most of the existing fish biomass and associated secondary production, we find that the potential impacts of partial removal would likely be limited on all but one platform off the coast of California. On average 80% of fish biomass and 86% of secondary fish production would be retained after partial removal, with above 90% retention expected for both metrics on many platforms. Partial removal would likely result in the loss of fish biomass and production for species typically found residing in the shallow portions of the platform structure. However, these fishes generally represent a small proportion of the fishes associated with these platforms. More characteristic of platform fauna are the primarily deeper-dwelling rockfishes (genus Sebastes. "Shell mounds" are biogenic reefs that surround some of these platforms resulting from an accumulation of mollusk shells that have fallen from the shallow areas of the platforms mostly above the depth of partial removal. We found that shell mounds are moderately productive fish habitats, similar to or greater than natural rocky reefs in the region at comparable depths. The complexity and areal extent of these biogenic habitats, and the associated fish biomass and production, will likely be reduced after either partial or complete platform removal. Habitat augmentation by placing the partially removed platform superstructure or some other additional habitat enrichment material (e.g., rock boulders on the seafloor adjacent to the base of partially removed platforms provides additional options to enhance fish production, potentially mitigating reductions in shell mound habitat.

  8. Optimization of renewable pinene production from the conversion of macroalgae Saccharina latissima

    Energy Technology Data Exchange (ETDEWEB)

    Scullin, Chessa [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stavila, Vitalie [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Skarstad, Anita [Statoil Research Center, Trondheim (Norway); Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Simmons, Blake A. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Singh, Seema [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-05-01

    The enzymatic hydrolysis of Saccharina latissima with laminarinase was compared to hydrolysis with different combinations of cellulase and hemicellulase enzyme mixtures. The hemicellulase mixture resulted in similar release of glucose, while the cellulase mixture released 40% more glucose than laminarinase alone. The combination of a laminarinase augmented with a cellulase mixture resulted in a 53% increase of glucose release from S. latissima than laminarinase. Increasing biomass loading above 4% (w/v) reduced the sugar yield. Resulting macroalgae hydrolysates were used as a carbon source for the production of pinene, making use of a novel two plasmid Escherichia coli system. The macroalgal hydrolysates were suitable for the novel microbial production of pinene with no further treatment and/or purification.

  9. Identification of New Anti-inflammatory Peptides from Zein Hydrolysate after Simulated Gastrointestinal Digestion and Transport in Caco-2 Cells.

    Science.gov (United States)

    Liang, Qiufang; Chalamaiah, Meram; Ren, Xiaofeng; Ma, Haile; Wu, Jianping

    2018-02-07

    Chronic inflammation is an underlying contributor to various chronic diseases. The objectives of this study were to investigate the anti-inflammatory activity of zein hydrolysate after simulated gastrointestinal digestion and Caco-2 cell absorption and to identify novel anti-inflammatory peptides after transport across Caco-2 cells. Three zein hydrolysates were prepared and further digested using gastrointestinal proteases; their transports were studied in Caco-2 cells. Anti-inflammatory activity was studied in endothelial EA.hy926 cells. Three zein hydrolysates and their digests significantly decreased the expression of tumor necrosis factor-α (TNF-α) induced pro-inflammatory vascular cell adhesion molecule-1 (VCAM-1) by 37.3-66.0%. Eleven novel peptides with 5-9 amino acid residues were sequenced; three peptides showed strong anti-inflammatory activity by inhibiting the VCAM-1 by 54-38.9% and intercellular cell adhesion molecule-1 (ICAM-1) by 36.5-28.6% at 0.2 mM. A new approach to identify novel anti-inflammatory peptides that could survive gastrointestinal digestion and absorption was developed.

  10. The use of cerebroprotein hydrolysate in dementia: A case series of 25 cases seen in a tertiary general hospital

    Directory of Open Access Journals (Sweden)

    Mosam Phirke

    2014-01-01

    Full Text Available Background: Cerebroprotein hydrolysate (Cerebrolysin is a pharmacological and neurotrophic agent that has been used widely in the management of various forms of dementia. Purpose: The present paper presents a retrospective chart review of 25 patients with dementia visiting a tertiary general hospital psychiatry unit who received cerebroprotein hydrolysate as an add on treatment for dementia. Materials and Methods: Twenty-five patients were administered 20 doses of cerebroprotein hydrolysate intravenously at a dose of 60 mg in 250 ml normal saline over 1-2 h after a test dose on 20 consecutive days. The cognitive assessment was done before the first injection and after the last dose using the Adenbrook′s Cognitive Examination-Revised (ACER and the Mini Mental Status Examination (MMSE. Results: There was significant improvement in scores on the ACER and MMSE, although the final scores remained in the dementia range. None of the patients experienced any major side effects. Conclusions: Cerebroprotein thus is a useful pharmacological option in the management of dementia and warrants further study and exploration.

  11. Production of porous titanate microspheres by spray-drying of sols

    International Nuclear Information System (INIS)

    Sizgek, E.; Bartlett, J.R.; Woolfrey, J.L.

    1992-01-01

    Porous, multi-component titanate microspheres (20 to 50 μm in diameter) have been produced on a 10 kg scale by spray-drying a precursor sol containing titania, zirconia and alumina, and calcining the resulting powders at 723 K. The mixed TiO 2 /ZrO 2 sols were produced by hydrolysing tetraisopropyltitanate and peptising the hydrolysate slurry with zirconyl nitrate solution. TiO 2 /ZrO 2 sols with oxide concentrations in excess of 900 g dm -3 were produced. These sols were subsequently mixed with dispersible δ-Al 2 O 3 to produce well-dispersed TiO 2 /ZrO 2 /Al 2 O 3 (TZA) sols. The rheology and degree of aggregation of the multi-component sols were controlled by the addition of Al(NO 3 ) 3 solution. At relatively low electrolyte concentrations, the sols exhibited Newtonian behaviour, and the viscosity increased with increasing addition of electrolyte. However, at higher electrolyte concentrations, the colloidal dispersions exhibited shear-thinning behaviour. Hollow spheres were produced by spray-drying well-dispersed sols. In contrast, 'solid' spheres were produced by using dilute Al(NO 3 ) 3 to produce partially-aggregated TZA sols, prior to spray-drying. Calcined microspheres produced from partially-aggregated sols had total porosities of ∼ 50 %, with average pore diameters of ∼ 8 nm. These particles exhibited a high sorption capacity for simulated High Level Nuclear Waste

  12. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12.

    Science.gov (United States)

    Juturu, Veeresh; Wu, Jin Chuan

    2018-03-01

    Thermophilic Bacillus coagulans JI12 was used to ferment hemicellulose hydrolysate obtained by acid hydrolysis of oil palm empty fruit bunch at 50 °C and pH 6, producing 105.4 g/L of l-lactic acid with a productivity of 9.3 g/L/H by fed-batch fermentation under unsterilized conditions. Simultaneous saccharification and fermentation (SSF) was performed at pH 5.5 and 50 °C to convert both hemicellulose hydrolysate and cellulose-lignin complex in the presence of Cellic Ctec2 cellulases using yeast extract (20 g/L) as the nitrogen source, giving 114.0 g/L of l-lactic acid with a productivity of 5.7 g/L/H. The SSF was also conducted by replacing yeast extract with equal amount of dry Bakers' yeast, achieving 120.0 g/L of l-lactic acid with a productivity of 4.3 g/L/H. To the best of our knowledge, these lactic acid titers and productivities are the highest ever reported from lignocellulose hydrolysates. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  13. Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol.

    Science.gov (United States)

    Jennings, Edward W; Schell, Daniel J

    2011-01-01

    Dilute-acid pretreatment of lignocellulosic biomass enhances the ability of enzymes to hydrolyze cellulose to glucose, but produces many toxic compounds that inhibit fermentation of sugars to ethanol. The objective of this study was to compare the effectiveness of treating hydrolysate liquor with Ca(OH)2 and NH4OH for improving ethanol yields. Corn stover was pretreated in a pilot-scale reactor and then the liquor fraction (hydrolysate) was extracted and treated with various amounts of Ca(OH)2 or NH4OH at several temperatures. Glucose and xylose in the treated liquor were fermented to ethanol using a glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. Sugar losses up to 10% occurred during treatment with Ca(OH)2, but these losses were two to fourfold lower with NH4OH treatment. Ethanol yields for NH4OH-treated hydrolysate were 33% greater than those achieved in Ca(OH)2-treated hydrolysate and pH adjustment to either 6.0 or 8.5 with NH4OH prior to fermentation produced equivalent ethanol yields. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity.

    Science.gov (United States)

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-09-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe(2+) chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods.

  15. A long-term intake of a protein hydrolysate seems to increase the risk of encephalopathy in mice infected with Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Haroldo S Ferreira

    1998-01-01

    Full Text Available Previous investigations showed that Schistosoma mansoni infection aggravates protein malabsorption in undernourished mice and this can be reverted by administration of casein hydrolysate. The present study was undertaken to evaluate the effects of ingestion of casein hydrolysate for long periods. Albino Swiss mice were divided into eight groups. Diets contained 5% (undernourished or 20% (controls casein levels. For each group there were sub-groups ingesting whole or hydrolysed casein for 12 weeks. Infection with S. mansoni developed in half of the animals under each diet. All undernourished mice developed malabsorption. Low albuminemia was detected in infected animals independently of the protein level in the diet. However, albuminemia was lower in infected controls than in undernourished non-infected mice, suggesting a deficient liver protein synthesis. Infected mice fed on a 20% protein hydrolysed diet exhibited low weight gain and high mortality rates. On the other hand, non-infected mice ingesting the same diet had the highest body weights. We are investigating the hypothesis that infected mice, even when fed normal diets, are unable to metabolise large amounts of amino acids due to the liver lesions related to schistosomiasis and as a result die of hepatic coma. In some of them, the excessive accumulation of ammonia in the blood enhances the outcome of an encephalopathy.

  16. Production of amylolytic enzymes by bacillus spp

    International Nuclear Information System (INIS)

    Dawood, Elham Shareif

    1997-12-01

    Sixty six bacteria and twenty fungi were isolated from various sources. These varied from rotten fruites to local drinks and soil samples from different parts of Sudan. On the basis of index of amylolytic activity, forty one bacteria and twelve fungi were found to hydrolyse strach. The best ten strach hydrolysing isolates were identified all as bacilli (Bacillus licheniformis SUD-K 1 , SUD-K 2 , SUD-K 4 , SUD-O, SUD-SRW, SUD-BRW, SUD-By, Bacillus subtilis SUD-K 3 , and Bacillus circulans SUD-D and SUD-K 7 ). Their amylase productivity was studied with respect to temperature and time. Amylolytic activity was measured by spectrophotometer, the highest activity was produced in around 24 hours of growth in all; six of which gave the highest amylase activity at 50 deg C and the rest at 45C. Based on the thermal production six isolates were chosen for further investigation. These were Bacillus licheniformis SUD-K 1 , SUD-K 2 , SUD-K 4 , SUD-O, Bacillus subtilis SUD-K 3 and Bacillus circulans SUD-K 7 . The inclusion of strach and Mg ++ ions in the culture medium gave the highest enzyme yield. The Ph 9.0 was found to be the optimum for amylase production for all isolates except Bacillus subtilis SUD-K 3 which had an optimum at pH 7.0. Three isolates (Bacillus licheniformis SUD-K 1 , SUD-K 4 and SUD-O recorded highestamylase production in a medium supplemented with peptone while the rest (Bacillus licheniformis SUD-K 2 , Bacillus subtilis SUD-K 3 and Bacillus circulans SUD-K 7 ) gave highest amylase productivity in a medium supplemented with malt extract. Four isolates (Bacillus licheniformis SUD-K 1 and Bacillus subtilis SUD-K 3 gave maximum amylase production in a medium containing 0.5% soluble strach while the rest (gave maximum amylase production at 2%. Soluble strach was found to be best substrate among the different carbon sources tested. The maximum temperature for amylase activity ranged from 60-70 deg C and 1% strach concentration was optimum for all isolates

  17. De hydrolyse van vet bij de kaasrijping in verband met de smaak van kaas

    NARCIS (Netherlands)

    Stadhouders, J.J.

    1956-01-01

    Fatty acids are important as constituents of cheese flavour. In cheese made from raw milk, milk lipase probably hydrolyses cheese fat to some extent, but cheese made from aseptically drawn milk shows no piquant flavour.
    It was established that during ripening no active lipase was formed inside

  18. Fumonisins B, A and C profile and masking in Fusarium verticillioides strains on fumonisin-inducing and maize-based media.

    Science.gov (United States)

    Lazzaro, Irene; Falavigna, Claudia; Dall'asta, Chiara; Proctor, Robert H; Galaverna, Gianni; Battilani, Paola

    2012-10-01

    The production of fumonisin B, A and C and hidden and partially hydrolysed fumonisin occurrence was investigated in 3 strains of Fusarium verticillioides isolated from maize, cultured for 21-45days on malt extract medium at 25°C and 0.955-0.990 water activity (a(w)). Fumonisin A-B and C series were produced by all the strains in all conditions studied, with B-fumonisin≫C-fumonisin>A-fumonisin following a similar trend. The dynamic of fumonisin production was significantly influenced by factors considered and their interaction, with a(w)=0.990 as favourable condition in ITEM 10026 and ITEM 10027. All fumonisins were maximised at 30days incubation in ITEM 10027 and ITEM 1744 and at 45days incubation in ITEM 10026. Partially hydrolysed fumonisins were detected only for the B-group. Hidden fumonisins were never observed in Fusarium cultures grown on malt extract medium but were detected in the additional trial on maize-based medium, suggesting that the masking phenomenon can occur only in a complex matrix. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Centrifugal partition chromatography in a biorefinery context: Separation of monosaccharides from hydrolysed sugar beet pulp.

    Science.gov (United States)

    Ward, David P; Cárdenas-Fernández, Max; Hewitson, Peter; Ignatova, Svetlana; Lye, Gary J

    2015-09-11

    A critical step in the bioprocessing of sustainable biomass feedstocks, such as sugar beet pulp (SBP), is the isolation of the component sugars from the hydrolysed polysaccharides. This facilitates their subsequent conversion into higher value chemicals and pharmaceutical intermediates. Separation methodologies such as centrifugal partition chromatography (CPC) offer an alternative to traditional resin-based chromatographic techniques for multicomponent sugar separations. Highly polar two-phase systems containing ethanol and aqueous ammonium sulphate are examined here for the separation of monosaccharides present in hydrolysed SBP pectin: l-rhamnose, l-arabinose, d-galactose and d-galacturonic acid. Dimethyl sulfoxide (DMSO) was selected as an effective phase system modifier improving monosaccharide separation. The best phase system identified was ethanol:DMSO:aqueous ammonium sulphate (300gL(-1)) (0.8:0.1:1.8, v:v:v) which enabled separation of the SBP monosaccharides by CPC (200mL column) in ascending mode (upper phase as mobile phase) with a mobile phase flow rate of 8mLmin(-1). A mixture containing all four monosaccharides (1.08g total sugars) in the proportions found in hydrolysed SBP was separated into three main fractions; a pure l-rhamnose fraction (>90%), a mixed l-arabinose/d-galactose fraction and a pure d-galacturonic acid fraction (>90%). The separation took less than 2h demonstrating that CPC is a promising technique for the separation of these sugars with potential for application within an integrated, whole crop biorefinery. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Analysis and Evaluation of the Inhibitory Mechanism of a Novel Angiotensin-I-Converting Enzyme Inhibitory Peptide Derived from Casein Hydrolysate.

    Science.gov (United States)

    Tu, Maolin; Liu, Hanxiong; Zhang, Ruyi; Chen, Hui; Mao, Fengjiao; Cheng, Shuzhen; Lu, Weihong; Du, Ming

    2018-04-25

    Casein hydrolysates exert various biological activities, and the responsible functional peptides are being identified from them continuously. In this study, the tryptic casein hydrolysate was fractionated by an ultrafiltration membrane (3 kDa), and the peptides were identified by capillary electrophoresis-quadrupole-time-of-flight-tandem mass spectrometry. Meanwhile, in silico methods were used to analyze the toxicity, solubility, stability, and affinity between the peptides and angiotensin-I-converting enzyme (ACE). Finally, a new angiotensin-I-converting enzyme inhibitory (ACEI) peptide, EKVNELSK, derived from α s1 -casein (fragment 35-42) was screened. The half maximal inhibitory concentration value of the peptide is 5.998 mM, which was determined by a high-performance liquid chromatography method. The Lineweaver-Burk plot indicated that this peptide is a mixed-type inhibitor against ACE. Moreover, Discovery Studio 2017 R2 software was adopted to perform molecular docking to propose the potential mechanisms underlying the ACEI activity of the peptide. These results indicated that EKVNELSK is a new ACEI peptide identified from casein hydrolysate.

  1. Angiotensin I converting enzyme inhibitory activity and antihypertensive effect in spontaneously hypertensive rats of cobia (Rachycentron canadum) head papain hydrolysate.

    Science.gov (United States)

    Yang, Ping; Jiang, Yuchuan; Hong, Pengzhi; Cao, Wenhong

    2013-06-01

    Cobia head protein hydrolysate (CHPH) with angiotensin I converting enzyme (ACE) inhibitory activity was prepared with papain. The 3 kDa ultrafiltration filtrate CHPH-IV of the hydrolysate exerted a potent ACE inhibitory activity with IC50 being 0.24 mg/mL. The fractions with molecular weight located between 1749 Da and 173 Da represented up 66.96% of CHPH-IV, and those between 494 Da and 173 Da represented up 31.37% of CHPH-IV. It was found that the ACE inhibitory activity of CHPH-IV was intensified from IC50 0.24 mg/mL to 0.17 mg/mL after incubation with gastrointestinal proteases. The CHPH-IV significantly decreased the systolic blood pressure in a dose-dependent manner after oral administration to spontaneously hypertensive rats (SHR) at dose of 150 mg/kg, 600 mg/kg and 1200 mg/kg body weight. These results suggested that CHPH-IV from cobia head protein hydrolysate by papain could serve as a source of peptides with antihypertensive activity in functional food industry.

  2. Optimization of renewable pinene production from the conversion of macroalgae Saccharina latissima.

    Science.gov (United States)

    Scullin, Chessa; Stavila, Vitalie; Skarstad, Anita; Keasling, Jay D; Simmons, Blake A; Singh, Seema

    2015-05-01

    Enzymatic hydrolysis of Saccharina latissima with laminarinase was compared to hydrolysis with different combinations of cellulase and hemicellulase enzyme mixtures. The hemicellulase mixture resulted in similar release of glucose, while the cellulase mixture released 40% more glucose than laminarinase alone. The combination of a laminarinase augmented with a cellulase mixture resulted in a 53% increase of glucose release from S. latissima than laminarinase. Increasing biomass loading above 4% (w/v) reduced the sugar yield. Resulting macroalgae hydrolysates were used as a carbon source for the production of pinene, making use of a novel two plasmid Escherichia coli system. The macroalgal hydrolysates were suitable for the novel microbial production of pinene with no further treatment and/or purification. Copyright © 2015. Published by Elsevier Ltd.

  3. Ingestion of guar gum hydrolysate, a soluble fiber, increases calcium absorption in totally gastrectomized rats.

    Science.gov (United States)

    Hara, H; Suzuki, T; Kasai, T; Aoyama, Y; Ohta, A

    1999-01-01

    Gastrectomy induces osteopenia. We examined the effects of feeding a diet containing soluble dietary fiber, guar gum hydrolysate (GGH, 50 g/kg diet), on intestinal calcium absorption and bone mineralization in totally gastrectomized (Roux-en-Y esophagojejunostomy) rats by comparing them with those in two control groups (laparotomized and bypassed rats). In the bypassed rats, chyme bypassed the duodenum and upper jejunum without gastrectomy. In a second separate experiment, we compared calcium absorption and bone mineralization in the gastrectomized rats fed diets containing soluble and insoluble calcium salts and in bypassed rats fed insoluble calcium. In Experiment 1, apparent absorption of calcium supplied as a water-insoluble salt was more than 50% lower in gastrectomized rats than in the intact (laparotomized) or bypassed rats 3 wk after the start of feeding the test diets (P Calcium absorption was higher (P Experiment 2, absorption of soluble calcium in the gastrectomized rats did not differ from the absorption of calcium from calcium carbonate by bypassed rats. The soluble calcium pool in the cecal contents was significantly lower in gastrectomized rats (Experiment 1) than in intact or bypassed control rats, and was higher (P calcium absorption correlated most closely (r = 0.787, P calcium content was significantly lower in gastrectomized rats fed insoluble calcium than in bypassed rats fed the same diet, but was partially restored in the rats fed soluble calcium (Experiment 2). Bone calcium was not increased by feeding GGH in gastrectomized rats (Experiment 1). We conclude that the severely diminished calcium absorption following total gastrectomy is totally due to a decrease in calcium solubilization, and feeding GGH partially restores calcium absorption. The decrease in bone calcium that occurs as a result of gastrectomy is mainly due to diminished intestinal calcium absorption.

  4. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Anna Dąbrowska

    2017-11-01

    Full Text Available The effect of whey protein hydrolysate (WPH addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP, WPH-SMP (ratio 1:1, WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  5. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage.

    Science.gov (United States)

    Dąbrowska, Anna; Babij, Konrad; Szołtysik, Marek; Chrzanowska, Józefa

    2017-11-22

    The effect of whey protein hydrolysate (WPH) addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP), WPH-SMP (ratio 1:1), WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  6. Effects of canola proteins and hydrolysates on adipogenic differentiation of C3H10T/2 mesenchymal stem cells.

    Science.gov (United States)

    Alashi, Adeola M; Blanchard, Christopher L; Mailer, Rodney J; Agboola, Samson O; Mawson, A John; Aluko, Rotimi E; Strappe, Padraig

    2015-10-15

    This study assessed the ability of canola protein isolate (CPI) and enzymatic hydrolysates (CPHs) to inhibit adipogenic differentiation of C3H10T1/2 murine mesenchymal stem cells in vitro. Cell viability was maintained at concentrations of 60 μg/ml of sample. Cells treated with Alcalase hydrolysate demonstrated a higher reduction in anti-adipogenic differentiation through quantitation by oil-red O staining. qPCR analysis showed that CPI and CPH-treated cells significantly inhibited PPARγ expression, a key transcription factor involved in adipocyte differentiation, as evident in an ∼ 60-80% fold reduction of PPARγ mRNA. Immunofluorescence staining for PPARγ protein also showed a reduced expression in some treated cells when compared to differentiated untreated cells. The 50% inhibition concentration (IC50) of CPI, CPHs and their membrane ultrafiltration fractions on pancreatic lipase (PL) activity ranged between 0.75 and 2.5 mg/ml, (p < 0.05) for the hydrolysed and unhydrolysed samples. These findings demonstrate that CPI and CPHs contain bioactive components which can modulate in vitro adipocyte differentiation. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. Fish protein hydrolysates: application in deep-fried food and food safety analysis.

    Science.gov (United States)

    He, Shan; Franco, Christopher; Zhang, Wei

    2015-01-01

    Four different processes (enzymatic, microwave-intensified enzymatic, chemical, and microwave-intensified chemical) were used to produce fish protein hydrolysates (FPH) from Yellowtail Kingfish for food applications. In this study, the production yield and oil-binding capacity of FPH produced from different processes were evaluated. Microwave intensification significantly increased the production yields of enzymatic process from 42% to 63%. It also increased the production yields of chemical process from 87% to 98%. The chemical process and microwave-intensified chemical process produced the FPH with low oil-binding capacity (8.66 g oil/g FPH and 6.25 g oil/g FPH), whereas the microwave-intensified enzymatic process produced FPH with the highest oil-binding capacity (16.4 g oil/g FPH). The FPH from the 4 processes were applied in the formulation of deep-fried battered fish and deep-fried fish cakes. The fat uptake of deep-fried battered fish can be reduced significantly from about 7% to about 4.5% by replacing 1% (w/w) batter powder with FPH, and the fat uptake of deep-fried fish cakes can be significantly reduced from about 11% to about 1% by replacing 1% (w/w) fish mince with FPH. Food safety tests of the FPH produced by these processes demonstrated that the maximum proportion of FPH that can be safely used in food formulation is 10%, due to its high content of histamine. This study demonstrates the value of FPH to the food industry and bridges the theoretical studies with the commercial applications of FPH. © 2015 Institute of Food Technologists®

  8. Antihypertensive Properties of a Pea Protein Hydrolysate during Short- and Long-Term Oral Administration to Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Girgih, Abraham T; Nwachukwu, Ifeanyi D; Onuh, John O; Malomo, Sunday A; Aluko, Rotimi E

    2016-05-01

    This study investigated short-term (24 h) and long-term (5 wk) systolic blood pressure (SBP)-lowering effects in spontaneously hypertensive rats (SHR) of a 5 kDa membrane pea protein hydrolysate permeate (PPH-5) produced through thermoase hydrolysis of pea protein isolate (PPI). Amino acid analysis showed that the PPH-5 had lower contents of sulfur-containing amino acids than the PPI. Size-exclusion chromatography indicated mainly low molecular weight (pea products decreased in the 4th and 5th wk, though SBP values of the treated rats were still lower than the untreated control. We conclude that the antihypertensive potency of PPH-5 may have been due to the presence of easily absorbed hydrophilic peptides. © 2016 Institute of Food Technologists®

  9. Production, Partial Purification and Characterization of Protease From Irradiated Streptomyces Spp

    International Nuclear Information System (INIS)

    Botros, H.W.; Ahmed, A.S.

    2011-01-01

    Production and partial purification of protease by the irradiated Streptomyces spp. was the aim of this study. Streptomyces spp. was allowed to grow in culture broth of 4% shrimp shells for purpose of inducing protease enzymes. Optimal conditions for protease production were 30 degree C, 0.3 kGy, ph 7, 5x10 4 /ml inoculum size and 7 days incubation period. Protease was purified by 80% ammonium sulphate saturation which exhibited 8.7 U/ml enzyme activity. Column chromatography using sephadex G-200 exerted 23.3 U/ml enzyme activity from pooled fraction (13-16). The molecular mass of protease was determined to be 39 kDa by SDS-PAGE. The enzyme was more stable over a wide range of ph 6-8 and temperature up to 40 degree C. The produced protease was activated by Ca, Mn and FeCl 2 and completely inhibited by ethylene-diamin tetraacetic acid (EDTA) at concentration of 1000 μg/ml

  10. Molecular characterization of whey protein hydrolysate fractions with ferrous chelating and enhanced iron solubility capabilities.

    Science.gov (United States)

    O'Loughlin, Ian B; Kelly, Phil M; Murray, Brian A; FitzGerald, Richard J; Brodkorb, Andre

    2015-03-18

    The ferrous (Fe2+) chelating capabilities of WPI hydrolysate fractions produced via cascade membrane filtration were investigated, specifically 1 kDa permeate (P) and 30 kDa retentate (R) fractions. The 1 kDa-P possessed a Fe2+ chelating capability at 1 g L(-1) equivalent to 84.4 μM EDTA (for 30 kDa-R the value was 8.7 μM EDTA). Fourier transformed infrared (FTIR) spectroscopy was utilized to investigate the structural characteristics of hydrolysates and molecular interactions with Fe2+. Solid-phase extraction was employed to enrich for chelating activity; the most potent chelating fraction was enriched in histidine and lysine. The solubility of ferrous sulfate solutions (10 mM) over a range of pH values was significantly (Piron solubility was improved by 72% in the presence of the 1 kDa-P fraction following simulated gastrointestinal digestion (SGID) compared to control FeSO4·7H2O solutions.

  11. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    de Vrije Truus

    2009-06-01

    Full Text Available Abstract Background The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Results Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75°C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained. Conclusion Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.

  12. Use of fractional factorial design for selection of nutrients for culturing Paecilomyces variotii in eucalyptus hemicellulosic hydrolysate

    Directory of Open Access Journals (Sweden)

    J.B. Almeida e Silva

    1998-09-01

    Full Text Available A eucalyptus hemicellulose fraction was hydrolysed by treating eucalyptus wood chips with sulfuric acid. The hydrolysate was used as the substrate to grow Paecilomyces variotii IOC-3764 cultured for 72 or 96 hours. The influence of the inhibitors, nutrients and fermentation time was verified by a 28-4 and, subsequently, a 25-1 fractional factorial design. The effects of the inhibitors (acetic acid and furfural, nutrients (rice bran, urea, potassium nitrate, ammonium sulfate, magnesium sulfate and sodium phosphate and fermentation time were investigated. The highest yield (10.59 g/L of biomass was obtained when the microorganisms were cultivated for 72 hours in a medium composed of 30 g/L rice bran, 9.4 g/L ammonium sulfate (2 g/L nitrogen and 2 g/L sodium phosphate.

  13. 2-Formyl-komarovicine promotes adiponectin production in human mesenchymal stem cells through PPARγ partial agonism.

    Science.gov (United States)

    Ahn, Sungjin; Lee, Moonyoung; An, Seungchan; Hyun, Sooyeol; Hwang, Jiho; Lee, Jongkook; Noh, Minsoo

    2018-03-01

    Adiponectin is a major adipocytokine secreted from mammalian adipocytes. Relatively low expression of adiponectin is associated with various human metabolic diseases and some cancers. Adiponectin-secreting compounds have therapeutic potential for these diseases. Adipogenesis of human bone marrow-mesenchymal stem cells (hBM-MSCs) has been used as a phenotypic assay to find adiponectin secreting compounds. In a phytochemical library screen, 2-formyl-komarovicine, 1-(quinolin-8-yl)-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indole-2-carbaldehyde, isolated from Nitraria komarovii was identified as a potential adiponectin-secreting compound. To validate the results of the impure phytochemical, we synthesized 2-formyl-komarovicine. The synthetic 2-formyl-komarovicine significantly promoted adiponectin production during adipogenesis in hBM-MSCs. In a target identification experiment, 2-formyl-komarovicine bound to peroxisome proliferator-activated receptor γ (PPARγ) in a concentration-dependent manner. Notably, 2-formyl-komarovicine competitively inhibited the adiponectin-promoting activity of a full PPARγ agonist, troglitazone, in hBM-MSCs, which is a pharmacological feature of a partial agonist. The ligand-docking model showed that 2-formyl-komarovicine interacted with the hydrophobic pocket of the PPARγ ligand-binding domain, but lacked an interaction to stabilize helix H12, which is one of the major binding themes of PPARγ partial agonists. We concluded that 2-formyl-komarovicine provides a novel pharmacophore for PPARγ partial agonists to increase adiponectin production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Evaluation of harmful heavy metal (Hg, Pb and Cd reduction using Halomonas elongata and Tetragenococcus halophilusfor protein hydrolysate product

    Directory of Open Access Journals (Sweden)

    Ruttiya Asksonthon

    2016-04-01

    Full Text Available Background: Many health claims surrounding antioxidative, antihypertensive and anti-inflammatory properties have been addressed in natural protein hydrolysates, including fermented fish. Besides being sold as animal feed, tuna viscera is used for the production of fermented products like fish sauce and Tai pla, fermented viscera. However, toxic heavy metals including Hg, Pb and Cd have been found in various food items, particularly within the internal organs of tuna. Therefore, the consumption of fermented tuna viscera containing heavy metal involves health risks. Consequently, the detoxification and reduction of these toxic elements are relevant and important issues, particularly with the use of their bacterial cells and metabolic products. Halomonas elongatais a moderately halophilic bacterium which has the ability to remove heavy metal, and is normally found in hypersaline environments. Tetragenococcus halophilusis a moderately halophilic lactic acid bacterium and probiotic which is found in fermented food products, such as fish sauce, shrimp paste, and fermented fish. Some scientific studies have reported using T. halophilus improves amino acid profiles and desirable volatile compounds, in addition to reducing biogenic amine content in fish sauce product. Therefore, it was hypothesized that using H.elongata and T. halophilus could reduce heavy metal content and improve the organoleptic quality of fermented fish viscera product (Tai pla. Objective: This present work attempted to determine the growth characteristic of H. elongataand T. halophilus reared at various NaCl concentrations:10, 15, 20 and 25%. Consequently, heavy metal reduction using these microorganisms reared at optimum NaCl concentration was evaluated. Methods: H. elongate and T. halophilus were reared in saline nutrient broth (SNB and de Man, Rogosa and Sharpe (MRS-broth added with NaCl at concentration 10, 15, 20 and 25%, respectively. Cultures at each NaCl content were added

  15. Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex*

    OpenAIRE

    Sindayikengera, Séverin; Xia, Wen-shui

    2006-01-01

    Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and evaluated for their nutritional qualities. Their chemical composition, protein solubility, amino acid composition, essential amino acid index (EAA index), biological value (BV), nutritional index (NI), chemical score, enzymic protein efficiency ratio (E-PER) and in vitro protein d...

  16. Effect of foliar application of a protein hydrolysate in the productivity of broccoli cultivars. = Efeito da aplicação foliar de hidrolisado protéico sob a produtividade de cultivares de brócolis.

    Directory of Open Access Journals (Sweden)

    Marcelle Michelotti Bettoni

    2013-08-01

    Full Text Available - The broccoli (Brassica oleracea var. Italica is a Brassica vegetable grown in various regions of the world and is characteristic of small properties with potential for organic crops. However, surveys that provide products that meet organic legislation, biofertilizers as the basis of protein hydrolysates are necessary for legal purposes. The objective of this study was to evaluate the effect of protein hydrolysate containing amino acids on the production of two cultivars of broccoli grown in organic cropping system. The treatments were arranged in a completely randomized factorial 2 x 4 with four replicates, two cultivars (Belstar and Fiesta and four treatments: control and foliar application of solutions with the following concentrations of protein hydrolysate: 2 mL L -1, 4 mL L-1, 8 mL L-1. The applications were made weekly beginning and ending at 7 to 63 days after transplant (DAT and evaluated the following characteristics at harvest (75 DAT: fresh mass per head (FMH, dry mass per head (DMH, head diameter (HD and estimated average production (EAP. The use of hydrolyzed in 8 mL L-1dose resulted in higher fresh and dry mass, head diameter and yield of broccoli in organic cropping system. = - O brócolis (Brassica oleracea var. italica é uma hortaliça da família das Brássicas cultivado em diversas regiões do mundo, característico de pequenas propriedades, com potencial para cultivos orgânicos, porém é necessário que sejam realizadas pesquisas que disponibilizem produtos que atendam a legislação orgânica, como biofertilizantes a base de hidrolisados protéicos. Objetivou-se com este trabalho avaliar o efeito da aplicação de hidrolisado protéico contendo aminoácidos na produção de duas cultivares de brócolis, em sistema de cultivo orgânico. Os tratamentos foram dispostos em delineamento inteiramente casualizado, em esquema fatorial 2 x 4, com quatro repetições, sendo duas cultivares (Belstar e Fiesta e quatro tratamentos

  17. Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov.

    Science.gov (United States)

    Guamán-Burneo, Maria C; Dussán, Kelly J; Cadete, Raquel M; Cheab, Monaliza A M; Portero, Patricia; Carvajal-Barriga, Enrique J; da Silva, Sílvio S; Rosa, Carlos A

    2015-10-01

    This study evaluated D-xylose-assimilating yeasts that are associated with rotting wood from the Galápagos Archipelago, Ecuador, for xylitol production from hemicellulose hydrolysates. A total of 140 yeast strains were isolated. Yeasts related to the clades Yamadazyma, Kazachstania, Kurtzmaniella, Lodderomyces, Metschnikowia and Saturnispora were predominant. In culture assays using sugarcane bagasse hemicellulose hydrolysate, Candida tropicalis CLQCA-24SC-125 showed the highest xylitol production, yield and productivity (27.1 g L(-1) xylitol, Y p/s (xyl) = 0.67 g g(-1), Qp = 0.38 g L(-1). A new species of Cyberlindnera, strain CLQCA-24SC-025, was responsible for the second highest xylitol production (24 g L(-1), Y p/s (xyl) = 0.64 g g(-1), Qp = 0.33 g L(-1) h(-1)) on sugarcane hydrolysate. The new xylitol-producing species Cyberlindnera galapagoensis f.a., sp. nov., is proposed to accommodate the strain CLQCA-24SC-025(T) (=UFMG-CM-Y517(T); CBS 13997(T)). The MycoBank number is MB 812171.

  18. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread

    Science.gov (United States)

    Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-01-01

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). PMID:25862230

  19. Monitoring of Growth and Production Characteristics of Red Yeasts Cultivated on Hydrothermally Pretreated Lignocellulosic Pine Material

    Directory of Open Access Journals (Sweden)

    A. Haronikova

    2018-01-01

    Full Text Available The aim of this work was to compare the production of carotenes and ergosterol by red yeasts grown on pine lignocellulose substrates. The yeast strains Rhodotorula aurantiaca and Sporobolomyces shibatanus were grown on the liquid fraction of steam pretreated pine (210 °C, catalyst SO2. Biomass production on a pine hydrolysate was lower than on glucose. The highest content of carotenoids and ergosterol in the cells of R. aurantiaca grown on pine hydrolysate was about 1.7 mg g–1 and 0.8 mg g–1 (dwt, respectively, and in S. shibatanus about 0.9 mg g–1 and 0.1 mg g–1, respectively. Hemicellulose hydrolysates may contain many compounds that have inhibitory effects on microorganisms. In this work, the influences of some inhibitors were assessed by cultivating yeasts on media with a representative addition of the selected compounds. From these tests, furfural appears to be the most critical inhibitor, whereas acetic acid and 5-hydroxymethyl furfural (HMF do not affect the growth so much.

  20. Rapid determination of acetic acid, furfural and 5-hydroxymethylfurfural in biomass hydrolysate using near-infrared spectroscopy

    Science.gov (United States)

    Near infrared spectroscopy (NIR) is a rapid detection technique that has been used to characterize biomass. The objective of this study was to develop suitable NIR models to predict the acetic acid, furfural, and 5-hydroxymethylfurfural (HMF) contents in biomass hydrolysates. Using a uniform distrib...