WorldWideScience

Sample records for part extensive recycling

  1. 49 CFR Appendix E to Part 512 - Consumer Assistance to Recycle and Save (CARS) Class Determinations

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Consumer Assistance to Recycle and Save (CARS) Class Determinations E Appendix E to Part 512 Transportation Other Regulations Relating to... CONFIDENTIAL BUSINESS INFORMATION Pt. 512, App. E Appendix E to Part 512—Consumer Assistance to Recycle and...

  2. Studies on catalytic hydrotreating of recycled solvents from coal liquefaction process. Part 1. Characteristics changes of recycled solvents during hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Morimura, Y.; Nakata, S.; Yokota, Y.; Shirota, Y.; Nakamura, M. [Chiyoda Corp., Tokyo (Japan); Mitarai, Y. [Sumitomo Metal Mining Co. Ltd., Tokyo (Japan); Inoue, Y. [Nippon Ketjen Co. Ltd., Tokyo (Japan)

    1995-07-01

    A bituminous coal liquefaction process, called the NEDOL process, is under development by the New Energy and Industrial Technology Development Organization (NEDO). Important features of this process include the capacity to produce hydrogen-donatable solvents, obtained by hydrogenation of middle distillates of coal derived oils, and to recycle these solvents to a liquefaction stage as hydrogen donor solvents. These recycled solvents, obtained by liquefaction of Wandoan coal, and their catalytic hydrotreated oils, have been extensively characterized, using a variety of analytical methods. The following items have been examined and are discussed in this study: (1) Influence of chemical hydrogen consumption on the reactivities of hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodeoxygenation (HDO) and hydrogenation of aromatic-rings, during hydrotreating; (2) Changes in composition of hydrocarbon types, nitrogen- and oxygen-containing compounds, as a function of chemical hydrogen consumption; (3) Changes of average molecular weights; (4) Characteristics changes of oxygen- and nitrogen-containing compounds, and reactivities of HDO and HDN; (5) Characteristics changes of donatable hydrogen as a function of a degree of hydrogenation ({delta}fa). 14 refs., 14 figs., 3 tabs.

  3. Design of a sensitive aptasensor based on magnetic microbeads-assisted strand displacement amplification and target recycling.

    Science.gov (United States)

    Li, Ying; Ji, Xiaoting; Song, Weiling; Guo, Yingshu

    2013-04-03

    A cross-circular amplification system for sensitive detection of adenosine triphosphate (ATP) in cancer cells was developed based on aptamer-target interaction, magnetic microbeads (MBs)-assisted strand displacement amplification and target recycling. Here we described a new recognition probe possessing two parts, the ATP aptamer and the extension part. The recognition probe was firstly immobilized on the surface of MBs and hybridized with its complementary sequence to form a duplex. When combined with ATP, the probe changed its conformation, revealing the extension part in single-strand form, which further served as a toehold for subsequent target recycling. The released complementary sequence of the probe acted as the catalyst of the MB-assisted strand displacement reaction. Incorporated with target recycling, a large amount of biotin-tagged MB complexes were formed to stimulate the generation of chemiluminescence (CL) signal in the presence of luminol and H2O2 by incorporating with streptavidin-HRP, reaching a detection limit of ATP as low as 6.1×10(-10)M. Moreover, sample assays of ATP in Ramos Burkitt's lymphoma B cells were performed, which confirmed the reliability and practicality of the protocol. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Is Municipal Solid Waste Recycling Economically Efficient?

    Science.gov (United States)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  5. Unconventional recycling

    Energy Technology Data Exchange (ETDEWEB)

    White, K.M.

    1996-05-01

    Despite advances made in recycling technology and markets for materials over the past few years, recycling at convention centers, particularly on the show floor itself, can be a vexing problem. Part of the problem lies in the fact that recycling at convention centers has more to do with logistics than it does with these industry trends. However, given the varied nature of convention centers, and the shows they book, a rigid approach to recycling at convention centers is not always feasible. Like the numerous different curbside programs serving communities across the country, what works for one convention center--and one show--many not work for another. These difficulties notwithstanding, more convention centers are offering recycling programs today, and more groups booking conventions these days have begun requesting recycling services.

  6. Carambola optics for recycling of light.

    Science.gov (United States)

    Leutz, Ralf; Fu, Ling; Ries, Harald

    2006-04-20

    Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.

  7. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  8. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  9. Attributes to facilitate e-waste recycling behaviour

    Directory of Open Access Journals (Sweden)

    Senawi Nur Hidayah

    2016-01-01

    Full Text Available This study aims to identify the set of attributes to facilitate electronic waste (e-waste behaviour among the community. E-waste disposal is increasing from year to year in parallel with increasing of global population. The short lifespan of electronics and poor e-waste recycling behaviour is among the main contributors to the steadily increasing of e-waste generated. Current recycling rate among the nation is lacking behind, which is only 10.5%. A questionnaire survey has been conducted among the students in Universiti Teknologi Malaysia to evaluate the current e-waste recycling practice. The results showed that majority of the respondents did not recycle their e-waste on campus. Aggressive efforts is needed to realize the country’s target of 20% recycling rate in year 2020, one of the effective paths is to minimize e-waste generation via active e-waste recycling behaviour among the community. Extensive literatures have been reviewed to classify the attributes to facilitate effective e-waste recycling among the community. Total of five attributes that identified in this study which are Convenience of E- waste Recycling Infrastruture and Services, E-waste Recycling Information, Incentives For E-waste Recycling, Reminder to Recycle E-waste And E-waste Recycling Infrastructure and Services. The set of attributes identified in this study may serve as guideline for the management in designing program to foster e-waste recycling behaviour among the community.

  10. 78 FR 2256 - Extension of the Extended Missing Parts Pilot Program

    Science.gov (United States)

    2013-01-10

    ...] Extension of the Extended Missing Parts Pilot Program AGENCY: United States Patent and Trademark Office... pilot program (Extended Missing Parts Pilot Program) in which an applicant, under certain conditions... nonprovisional application. The Extended Missing Parts Pilot Program benefits applicants by permitting additional...

  11. A tale of five cities: Using recycling frameworks to analyse inclusive recycling performance.

    Science.gov (United States)

    Scheinberg, Anne; Simpson, Michael

    2015-11-01

    'Recycling' is a source of much confusion, particularly when comparing solid waste systems in high-income countries with those in low- and middle-income countries. Few analysts can explain why the performance and structure of recycling appears to be so different in rich countries from poor ones, nor why well-meaning efforts to implement recycling so often fail. The analysis of policy drivers, and the Integrated Sustainable Waste Management (ISWM) framework, come close to an explanation.This article builds on these earlier works, focusing in on five cities profiled in the 2010 UN-Habitat publication (Scheinberg A, Wilson DC and Rodic L (2010) Solid Waste Management in the World's Cities. UN-Habitat's Third Global Report on the State of Water and Sanitation in the World's Cities. Newcastle-on-Tyne, UK: Earthscan Publications). Data from these cities and others provides the basis for developing a new tool to analyse inclusive recycling performance. The points of departure are the institutional and economic relationships between the service chain, the public obligation to remove waste, pollution, and other forms of disvalue, and the value chain, a system of private enterprises trading valuable materials and providing markets for recyclables. The methodological innovation is to use flows of materials and money as indicators of institutional relationships, and is an extension of process flow diagramming.The authors are using the term 'recycling framework analysis' to describe this new form of institutional analysis. The diagrams increase our understanding of the factors that contribute to high-performance inclusive recycling. By focusing on institutional relationships, the article seeks to improve analysis, planning, and ultimately, outcomes, of recycling interventions. © The Author(s) 2015.

  12. Recycling industrial waste in brick manufacture. Part 1

    Directory of Open Access Journals (Sweden)

    Andreola, F.

    2005-12-01

    Full Text Available The ongoing accumulation of industrial waste speaks to the need to seek cost-effective disposal methods. Brick manufacture would appear to be particularly promising in this regard. The present study analyzes the possibility of recycling the sludge generated in porcelain tile polishing, as well as coal, steel and municipal incinerator ash to make a special type of facing brick whose properties readily accommodate a full analysis of all the problems deriving from the incorporation of residue in its manufacture. Physical-chemical, mechanical and structural analyses were performed on bricks made with varying percentages of the different types of waste considered. This first paper reports the results of the physical arid technological characterization of the products; the second part of the research will address their chemical, mechanical and structural properties.

    El continuo aumento de la cantidad de residuos (desechos que se generan en los procesos industriales induce a buscar nuevos métodos alternativos a la disposición final que sean altamente eficientes y a bajo costo. La industria manufac turera de ladrillos resulta muy prometedora desde este punto de vista. En este trabajo ha sido investigada la posibilidad de usar distintos residuos industriales, entre ellos barros de pulido del gres porcelánico. cenizas de carbón, cenizas de acerías y de incinerador municipal para la fabricación de ladrillos de exteriores. Fueron analizados los problemas que podrían derivar al introducir estos residuos en la pasta. En particular, en esta primera parte del trabajo se muestran los resultados derivados de la introducción de los residuos considerados, en distintos porcentajes, sobre las propiedades físicas y tecnológicas del producto final. En la segunda parte se desarrollarán los efectos causados sobre las propiedades químicas, mecánicas y microestructurales.

  13. Risk assessment by percolation leaching tests of extensive green roofs with fine fraction of mixed recycled aggregates from construction and demolition waste.

    Science.gov (United States)

    López-Uceda, Antonio; Galvín, Adela P; Ayuso, Jesús; Jiménez, José Ramón; Vanwalleghem, Tom; Peña, Adolfo

    2018-03-19

    Extensive green roofs are urban construction systems that provide thermal regulation and sound proofing for the buildings involved, in addition to providing an urban heat island mitigation or water retention. On the other hand, policies towards reduction of energy consumption, a circular economy and sustainability are core in the European Union. Motivated by this, an experimental study was carried out to evaluate the environmental risk assessment according to release levels of polluting elements on leachates of different green roof substrate mixtures based on recycled aggregates from construction and demolition waste through (i) the performance in laboratory of two procedures: compliance and percolation tests and (ii) an upscaled experimental leaching test for long-term on-site prediction. Four plots were built on a building roof and covered with autochthonous Mediterranean plants in Córdoba, South of Spain. As growing substrate, four mixtures were used of a commercial growing substrate with different proportions of a fine mixed recycled aggregate ranging from 0 to 75% by volume. The results show that these mixtures were classified as non-hazardous materials according to legal limits of the Landfill Directive 2003/33/CE. The release levels registered in extensive green roofs were lower compared to the laboratory test data. This shows how laboratory conditions can overestimate the potential pollutant effect of these materials compared to actual conditions.

  14. Recycling of used oil

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Ghurye, G.

    1992-01-01

    This paper reports on used oil which is a valuable resource that should be recycled. Recycling used oil saves energy and natural resources. Used oil can be reprocessed and used as fuel in industrial burners and boilers. Unfortunately, more than 400 million gallons/year of used oil is lost through widespread dumping, partly due to lack of effective recycling procedures. Although used oil is not currently a federally listed hazardous waste, the U.S. EPA has proposed to list it as a hazardous waste, which will make recycling of used oil even more attractive. Laboratory samples, representing used oil, were used for detailed parametric studies and to determine the limitation of extending some of the current physical separation techniques such as sedimentation and centrifuging developed for oil-water and solid-liquid separation

  15. Qualification of a Vitrified High Level Waste Product to Support Used Nuclear Fuel Recycling in the US

    International Nuclear Information System (INIS)

    Murray, P.; Bailly, F.; Strachan, D.; Senentz, G.; Veyer, C.

    2009-01-01

    As part of the Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP), AREVA formed the International Nuclear Recycling Alliance (INRA) consisting of recognized world-leading companies in the area of used nuclear fuel (UNF) recycling,. The INRA team, consisting of AREVA, Mitsubishi Heavy Industries (MHI), Japan Nuclear Fuel Ltd (JNFL), Batelle Memorial Institute (BMI), URS Washington Division and Babcock and Wilcox (B and W), prepared a pre-conceptual design for an upgradable engineering-scale recycling plant with a nominal through put of 800 tHM/y. The pre-conceptual design of this leading-edge facility was based upon the extensive experience of the INRA team in recycling plant design and real world 'lessons learned' from actually building, commissioning, and operating recycling facilities in both France and Japan. The conceptual flowsheet, based upon the COEX TM separations process, separates the useful products for recycling into new fuel and sentences all the remaining fission products and minor actinides (MA) to the high level waste, (HLW) for vitrification. The proposed vitrified waste product will be similar to that currently produced in recycling plants in France. This wasteform has been qualified in France by conducting extensive studies and demonstrations. In the US, the qualification of vitrified glass products has been conducted by the US National Laboratories for the Defence Waste Processing Facility (DWPF), the West Valley Demonstration Plant (WVDP), and the Waste Treatment Plant (WTP). The vitrified waste product produced by recycling is sufficiently different from these current waste forms to warrant additional trials and studies. In this paper we review the differences in the vitrified waste forms previously qualified in the US with that produced from recycling of UNF in France. The lessons learned from qualifying a vitrified waste form in Europe is compared to the current US process for vitrified waste qualification including waste

  16. Printability of papers recycled from toner and inkjet-printed papers after deinking and recycling processes.

    Science.gov (United States)

    Karademir, Arif; Aydemir, Cem; Tutak, Dogan; Aravamuthan, Raja

    2018-04-01

    In our contemporary world, while part of the fibers used in the paper industry is obtained from primary fibers such as wood and agricultural plants, the rest is obtained from secondary fibers from waste papers. To manufacture paper with high optical quality from fibers of recycled waste papers, these papers require deinking and bleaching of fibers at desired levels. High efficiency in removal of ink from paper mass during recycling, and hence deinkability, are especially crucial for the optical and printability quality of the ultimate manufactured paper. In the present study, deinkability and printability performance of digitally printed paper with toner or inkjet ink were compared for the postrecycling product. To that end, opaque 80 g/m 2 office paper was digitally printed under standard printing conditions with laser toner or inkjet ink; then these sheets of paper were deinked by a deinking process based on the INGEDE method 11 p. After the deinking operation, the optical properties of the obtained recycled handsheets were compared with unprinted (reference) paper. Then the recycled paper was printed on once again under the same conditions as before with inkjet and laser printers, to monitor and measure printing color change before and after recycling, and differences in color universe. Recycling and printing performances of water-based inkjet and toner-based laser printed paper were obtained. The outcomes for laser-printed recycled paper were better than those for inkjet-printed recycled paper. Compared for luminosity Y, brightness, CIE a* and CIE b* values, paper recycled from laser-printed paper exhibited higher value than paper recycled from inkjet-printed paper.

  17. Recycling ampersand incineration: Evaluating the choices

    International Nuclear Information System (INIS)

    Denison, R.A.; Ruston, J.

    1993-01-01

    Conflicts between proponents of municipal solid waste incineration and advocates of recycling have escalated with efforts to reduce the volume of waste that ends up in landfills. Central to this debate is competition for materials that are both combustible and recyclable. Environmental and economic concerns also play a major role. This book, produced by the Environmental Defense Fund, compares recycling and incineration. It is intended for 'citizens, government officials, and business people who want to help resolve the solid-waste crisis.' The book is divided into three parts: recycling and incineration; health and environmental risk of incineration; and planning, public participation, and environmental review requirements. The book does an excellent job of discussing the benefits of recycling and the pitfalls of incineration. It provides helpful information for identifying questions that should be raised about incineration, but it does not raise similar queries about recycling. There is much worthwhile information here, but the book would be more useful if it identified critical issues for all waste reduction and management options

  18. Planning logistics network for recyclables collection

    Directory of Open Access Journals (Sweden)

    Ratković Branislava

    2014-01-01

    Full Text Available Rapid urbanization, intensified industrialization, rise of income, and a more sophisticated form of consumerism are leading to an increase in the amount and toxicity of waste all over the world. Whether reused, recycled, incinerated or put into landfill sites, the management of household and industrial waste yield financial and environmental costs. This paper presents a modeling approach that can be used for designing one part of recycling logistics network through defining optimal locations of collection points, and possible optimal scheduling of vehicles for collecting recyclables. [Projekat Ministarstva nauke Republike Srbije, br. TR36005

  19. Physics of plutonium recycling: volume V. Plutonium recycling in fast reactors

    International Nuclear Information System (INIS)

    1996-01-01

    As part of a programme proposed by the OECD/NEA Working Party on Physics of Plutonium Recycling (WPPR) to evaluate different scenarios for the use of plutonium, fast reactor physics benchmarks were developed. In this report, the multi-recycle performance of the metal-fuelled benchmark is evaluated. Benchmark results assess the reactor performance and toxicity behaviour in a closed nuclear fuel cycle for a parametric variation of the conversion ratio between 0.5 and 1.0. Results indicate that a fast burner reactor closed fuel cycle can be utilised to significantly reduce the radiotoxicity originating in the LWR cycle which would otherwise be destined for burial. (Author). tabs., figs., refs

  20. Recycled sand in lime-based mortars.

    Science.gov (United States)

    Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K

    2014-12-01

    The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. FY1998 research report on the R and D on recycling technology. Part 1; 1998 nendo recycle nado kankyo gijutsu kekyu kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims to develop recycling technology for reduction of environmental burden caused by waste, and promotion of recycling of wastes. As for advanced recycling technology for PET bottles, the facility was improved for improvement of a facility operability and product quality. Study was made on the effect of a raw bale quality and recycled flake colors on a product quality, the forming test with PS or PET labels, and the concentration and effect of washing liquid circulated in flake washing process. As for recycling technology of hard-to-dispose waste plastics, facility improvement and demonstration test were made for continuous operation of dry-distillation/gasification of shredder dusts and separation of nonferrous metals and glass. Study was also made on pulverizing and recycling technologies of FRP bath tubs, and such pulverization costs were estimated. As for production technology of chemical feed and fuel from wastes, study was made on removal technology of non-flammable substances, development of alkaline additives, reacting condition, development of reactors, and use technology as chemical feed. (NEDO)

  2. Fish extinctions alter nutrient recycling in tropical freshwaters.

    Science.gov (United States)

    McIntyre, Peter B; Jones, Laura E; Flecker, Alexander S; Vanni, Michael J

    2007-03-13

    There is increasing evidence that species extinctions jeopardize the functioning of ecosystems. Overfishing and other human influences are reducing the diversity and abundance of fish worldwide, but the ecosystem-level consequences of these changes have not been assessed quantitatively. Recycling of nutrients is one important ecosystem process that is directly influenced by fish. Fish species vary widely in the rates at which they excrete nitrogen and phosphorus; thus, altering fish communities could affect nutrient recycling. Here, we use extensive field data on nutrient recycling rates and population sizes of fish species in a Neotropical river and Lake Tanganyika, Africa, to evaluate the effects of simulated extinctions on nutrient recycling. In both of these species-rich ecosystems, recycling was dominated by relatively few species, but contributions of individual species differed between nitrogen and phosphorus. Alternative extinction scenarios produced widely divergent patterns. Loss of the species targeted by fishermen led to faster declines in nutrient recycling than extinctions in order of rarity, body size, or trophic position. However, when surviving species were allowed to increase after extinctions, these compensatory responses had strong moderating effects even after losing many species. Our results underscore the complexity of predicting the consequences of extinctions from species-rich animal communities. Nevertheless, the importance of exploited species in nutrient recycling suggests that overfishing could have particularly detrimental effects on ecosystem functioning.

  3. Recycling of concrete generated from Nuclear Power Plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nawa, Toyoharu; Ishikura, Takeshi; Tanaka, Hiroaki

    2013-01-01

    Reactor decommissioning required various technologies such as dismantling of facilities, decontamination, radioactivity measurement and recycling of dismantling wastes. This article discussed recycling of demolished concrete wastes. Dismantling of reactor building of large one unit of nuclear power plants would generate about 500 K tons of concrete wastes, about 98% of which was non-radioactive and could be used as base course material or backfill material after crushed to specified particle size. Since later part of 1990s, high quality recycled aggregate with specified limit of bone-dry density, water absorptivity and amount of fine aggregate had been developed from demolished concrete with 'Heat and rubbing method', 'Eccentric rotor method' and 'Screw grinding method' so as to separate cements attached to aggregate. Recycled aggregates were made from concrete debris with 'Jaw crusher' to particle size less than 40 mm and then particle size control or grinded by various grinding machines. Recycled fine aggregates made from crushing would have fragile site with cracks, air voids and bubbles. The author proposed quality improvement method to selectively separate fragile defects from recycled aggregates using weak grinding force, leaving attached pastes much and preventing fine particle generation as byproducts. This article outlined experiments to improve quality of recycled fine aggregates and their experimental results confirmed improvement of flow ability and compressive strength of mortal using recycled fine aggregates using 'Particle size selector' and 'Ball mill' so as to remove their fragile parts less than 2%. Mortal made from recycled fine aggregate could also prevent permeation of chloride ion. Recycled aggregate could be used for concrete instead of natural aggregate. (T. Tanaka)

  4. Occurrence of emerging flame retardants from e-waste recycling activities in the northern part of Vietnam

    OpenAIRE

    Someya, Masayuki; Suzuki, Go; Ionas, Alin C.; Tue, Nguyen Minh; Xu, Fuchao; Matsukami, Hidenori; Covaci, Adrian; Tuyen, Le Huu; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke; Takigami, Hidetaka

    2016-01-01

    This study investigated the contamination status of 21 emerging flame retardants (FRs) in soils (n = 32) and river sediments (n = 8) from an e-waste recycling (EWR) site in the northern part of Vietnam. Among analyzed FRs, higher levels of decabromodiphenyl ethane (DBDPE) (ND–4200 ng/g dw), 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE) (ND–350 ng/g dw) and Dechlorane Plus isomers (DPs) (ND–65 ng/g dw) were found in soils near EWR workshops and open burning places. The highest concentrations o...

  5. Auditing an intensive care unit recycling program.

    Science.gov (United States)

    Kubicki, Mark A; McGain, Forbes; O'Shea, Catherine J; Bates, Samantha

    2015-06-01

    The provision of health care has significant direct environmental effects such as energy and water use and waste production, and indirect effects, including manufacturing and transport of drugs and equipment. Recycling of hospital waste is one strategy to reduce waste disposed of as landfill, preserve resources, reduce greenhouse gas emissions, and potentially remain fiscally responsible. We began an intensive care unit recycling program, because a significant proportion of ICU waste was known to be recyclable. To determine the weight and proportion of ICU waste recycled, the proportion of incorrect waste disposal (including infectious waste contamination), the opportunity for further recycling and the financial effects of the recycling program. We weighed all waste and recyclables from an 11-bed ICU in an Australian metropolitan hospital for 7 non-consecutive days. As part of routine care, ICU waste was separated into general, infectious and recycling streams. Recycling streams were paper and cardboard, three plastics streams (polypropylene, mixed plastics and polyvinylchloride [PVC]) and commingled waste (steel, aluminium and some plastics). ICU waste from the waste and recycling bins was sorted into those five recycling streams, general waste and infectious waste. After sorting, the waste was weighed and examined. Recycling was classified as achieved (actual), potential and total. Potential recycling was defined as being acceptable to hospital protocol and local recycling programs. Direct and indirect financial costs, excluding labour, were examined. During the 7-day period, the total ICU waste was 505 kg: general waste, 222 kg (44%); infectious waste, 138 kg (27%); potentially recyclable waste, 145 kg (28%). Of the potentially recyclable waste, 70 kg (49%) was actually recycled (14% of the total ICU waste). In the infectious waste bins, 82% was truly infectious. There was no infectious contamination of the recycling streams. The PVC waste was 37% contaminated

  6. Superior cold recycling : The score project

    OpenAIRE

    LESUEUR, D; POTTI, JJ; SOUTHWELL, C; WALTER, J; CRUZ, M; DELFOSSE, F; ECKMANN, B; FIEDLER, J; RACEK, I; SIMONSSON, B; PLACIN, F; SERRANO, J; RUIZ, A; KALAAJI, A; ATTANE, P

    2004-01-01

    In order to develop Environmentally Friendly Construction Technologies (EFCT) and as part of the 5th Framework Program of Research and Development, the European Community has decided to finance a research project on cold recycling, entitled SCORE "Superior COld REcycling based on benefits of bituminous microemulsions and foamed bitumen. A EFCT system for the rehabilitation and the maintenance of roads". This research project gathers organizations from all over Europe, from industrial partners...

  7. To reprocess to recycle. The nuclear safety

    International Nuclear Information System (INIS)

    1999-01-01

    After a summary of fundamental notions of radioactivity and nuclear safety, the first part of this work is devoted to the organisation in France to provide the nuclear facilities safety. The second part related to the fuel cycle describes the big steps of this cycle and particularly the stakes and objectives of the reprocessing -recycling as well as the valorization of reusable matters such plutonium and uranium. The risks identification, means to control them, in conception, realisation and operation are described in the third, fourth and fifth parts. In this last part the managements of accidental situations is treated. The sixth and last part is devoted to the environment protection, treats the control of waste release of reprocessing -recycling facilities, of these waste management that is to say every disposition made by Cogema to limit the impact of its installations on environment. In this last part are also described the safety of nuclear and radioactive matters transport, and the definitive breakdown of installations. (N.C.)

  8. Collection of Recyclables from Cubes

    DEFF Research Database (Denmark)

    Wøhlk, Sanne; Bogh, Morten Bie; Mikkelsen, Hardy

    2014-01-01

    Collection of recyclable materials is a major part of reverse logistics and an important issue in sustainable logistics. In this paper we consider a case study where paper and glass are collected from recycling cubes and transported to a treatment facility where it is processed for reuse. We...... analyze how outsourcing the planning and transportation of the service can result in conflicts of interest and as a consequence cause unsustainable solutions. Finally, we suggest an alternative payment structure which can lead to a common goal, overall economic sustainability, and an improved financial...

  9. Influence of recycled aggregate quality and proportioning criteria on recycled concrete properties.

    Science.gov (United States)

    López-Gayarre, F; Serna, P; Domingo-Cabo, A; Serrano-López, M A; López-Colina, C

    2009-12-01

    This paper presents the results of experimental research using concrete produced by substituting part of the natural coarse aggregates with recycled aggregates from concrete demolition. The influence of the quality of the recycled aggregate (amount of declassified and source of aggregate), the percentage of replacement on the targeted quality of the concrete to be produced (strength and workability) has been evaluated. The granular structure of concrete and replacement criteria were analyzed in this study, factors which have not been analyzed in other studies. The following properties of recycled concretes were analyzed: density, absorption, compressive strength, elastic modulus, amount of occluded air, penetration of water under pressure and splitting tensile strength. A simplified test program was designed to control the costs of the testing while still producing sufficient data to develop reliable conclusions in order to make the number of tests viable whilst guaranteeing the reliability of the conclusions. Several factors were analyzed including the type of aggregate, the percentage of replacement, the type of sieve curve, the declassified content, the strength of concrete and workability of concrete and the replacement criteria. The type of aggregate and the percentage of replacement were the only factors that showed a clear influence on most of the properties. Compressive strength is clearly affected by the quality of recycled aggregates. If the water-cement ratio is kept constant and the loss of workability due to the effect of using recycled aggregate is compensated for with additives, the percentage of replacement of the recycled aggregate will not affect the compressive strength. The elastic modulus is affected by the percentage of replacement. If the percentage of replacement does not exceed 50%, the elastic modulus will only change slightly.

  10. 40 CFR Appendix C to Subpart B of... - SAE J2788 Standard for Recovery/Recycle and Recovery/Recycle/Recharging Equipment for HFC-134a...

    Science.gov (United States)

    2010-07-01

    ... Part 82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Servicing of Motor Vehicle Air Conditioners Pt. 82, Subpt. B, App. C... reuse in, mobile air-conditioning systems and recovery/recycling and system recharging of recycled...

  11. FINDING WAYS OF RECYCLING DUST OF ARC STEEL FURNACES AT THE BELARUSIAN METALLURGIC PLANT

    Directory of Open Access Journals (Sweden)

    A. V. Demin

    2015-01-01

    Full Text Available The first part examines the theoretical possibility of recycling dust of arc steel furnaces. The different modes of dust disposal depending on the task of recycling are discussed: recycling at minimal cost; recycling with a maximum extraction of iron; recycling with maximum extraction of zinc. The results of laboratory studies providing information on the technical feasibility of recycling dust formed at the Belarusian metallurgic plant are provided.

  12. Secondary resources and recycling in developing economies

    International Nuclear Information System (INIS)

    Raghupathy, Lakshmi; Chaturvedi, Ashish

    2013-01-01

    Recycling of metals extends the efficient use of minerals and metals, reduces pressure on environment and results in major energy savings in comparison to primary production. In developing economies recycling had been an integral part of industrial activity and has become a major concern due to the handling of potentially hazardous material without any regard to the occupational health and safety (OH and S) needs. With rising awareness and interest from policy makers, the recycling scenario is changing and the large scale enterprises are entering the recycling sector. There is widespread expectation that these enterprises would use the Best Available Technologies (BAT) leading to better environment management and enhanced resource recovery. The major challenge is to enhance and integrate the activities of other stakeholders in the value chain to make recycling an economically viable and profitable enterprise. This paper is an attempt to propose a sustainable model for recycling in the developing economies through integration of the informal and formal sectors. The main objective is to augment the existing practices using a scientific approach and providing better technology without causing an economic imbalance to the present practices. In this paper studies on lead acid batteries and e-waste recycling in India are presented to evolve a model for “green economy”

  13. Environmental analysis of a construction and demolition waste recycling plant in Portugal--Part I: energy consumption and CO2 emissions.

    Science.gov (United States)

    Coelho, André; de Brito, Jorge

    2013-05-01

    This work is a part of a wider study involving the economic and environmental implications of managing construction and demolition waste (CDW), focused on the operation of a large scale CDW recycling plant. This plant, to be operated in the Lisbon Metropolitan Area (including the Setúbal peninsula), is analysed for a 60 year period, using primary energy consumption and CO2eq emission impact factors as environmental impact performance indicators. Simplified estimation methods are used to calculate industrial equipment incorporated, and the operation and transport related impacts. Material recycling--sorted materials sent to other industries, to act as input--is taken into account by discounting the impacts related to industrial processes no longer needed. This first part focuses on calculating the selected impact factors for a base case scenario (with a 350 tonnes/h installed capacity), while a sensitivity analysis is provided in part two. Overall, a 60 year global primary energy consumption of 71.4 thousand toe (tonne of oil equivalent) and a total CO2eq emission of 135.4 thousand tonnes are expected. Under this operating regime, around 563 thousand toe and 1465 thousand tonnes CO2eq could be prevented by replacing raw materials in several construction materials industries (e.g.: ferrous and non-ferrous metals, plastics, paper and cardboard). Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Membrane order in the plasma membrane and endocytic recycling compartment.

    Science.gov (United States)

    Iaea, David B; Maxfield, Frederick R

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

  15. Nuclear recycling, RECOD 98. Proceedings of the 5. international nuclear conference on recycling, conditioning and disposal

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of this conference is to study the reprocessing, industrial experience, technology development and advances make an important part. The plutonium recycling and the mixed oxide fuels are tackled. A part is devoted to the safety and environmental issues as decommissioning and site remediation. Waste management, interim storage and disposal are also studied. (N.C.)

  16. 50 CFR Figure 6 to Part 223 - TED Extension in Summer Flounder Trawl

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false TED Extension in Summer Flounder Trawl 6 Figure 6 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Pt. 223, Fig. 6 Figure 6 to Part 223—TED...

  17. Nutrient and media recycling in heterotrophic microalgae cultures.

    Science.gov (United States)

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-02-01

    In order for microalgae-based processes to reach commercial production for biofuels and high-value products such as omega-3 fatty acids, it is necessary that economic feasibility be demonstrated at the industrial scale. Therefore, process optimization is critical to ensure that the maximum yield can be achieved from the most efficient use of resources. This is particularly true for processes involving heterotrophic microalgae, which have not been studied as extensively as phototrophic microalgae. An area that has received significant conceptual praise, but little experimental validation, is that of nutrient recycling, where the waste materials from prior cultures and post-lipid extraction are reused for secondary fermentations. While the concept is very simple and could result in significant economic and environmental benefits, there are some underlying challenges that must be overcome before adoption of nutrient recycling is viable at commercial scale. Even more, adapting nutrient recycling for optimized heterotrophic cultures presents some added challenges that must be identified and addressed that have been largely unexplored to date. These challenges center on carbon and nitrogen recycling and the implications of using waste materials in conjunction with virgin nutrients for secondary cultures. The aim of this review is to provide a foundation for further understanding of nutrient recycling for microalgae cultivation. As such, we outline the current state of technology and practical challenges associated with nutrient recycling for heterotrophic microalgae on an industrial scale and give recommendations for future work.

  18. Case study: apparel industry waste management: a focus on recycling in South Africa.

    Science.gov (United States)

    Larney, M; van Aardt, A M

    2010-01-01

    The need for effective apparel waste management is motivated by the increasing cost and decreasing availability of landfill space and the dwindling of natural resources. The aim of this study was to identify the current solid waste disposal and recycling practices of the apparel industry in South Africa and to determine their attitude and willingness towards recycling, their perception of the feasibility thereof, barriers to recycling and marketing strategies that would be appropriate for products made from recycled materials. A structured questionnaire was mailed to apparel manufacturers in South Africa. The results indicated that most apparel manufacturers use landfills to dispose of their waste, while approximately half recycle some of the waste. They are fairly positive towards recycling, with consideration of economical feasibility. Phi-coefficients show no practically significant relationship between company size and the use of recycled materials. The most important barriers to recycling are lack of equipment and technology, lack of material to recycle and lack of consumer awareness. Marketing strategies for recycled products are recommended. It is concluded that consumer awareness and knowledge regarding recycled apparel products should be developed in order to ensure a market and that apparel manufacturers should be encouraged to recycle more extensively, in order to ensure that resources will not be exhausted unnecessarily and the environment will be preserved optimally.

  19. Thermal recycling and re-manufacturing of glass fibre thermosetting composites

    DEFF Research Database (Denmark)

    Fraisse, Anthony; Beauson, Justine; Brøndsted, Povl

    2016-01-01

    The impact of using thermally recycled glass fibre in re-manufactured composites was investigated. A unidirectional glass fibre thermosetting composite laminate was manufactured. The matrix in one part of the laminate was burnt off to recover the glass fibres. These recycled glass fibres were used...

  20. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia Mª; Guerra-Romero, M Ignacio

    2014-09-01

    The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique.

  1. Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis.

    Science.gov (United States)

    Reynolds, C K; Kristensen, N B

    2008-04-01

    The extensive development of the ruminant forestomach sets apart their N economy from that of nonruminants in a number of respects. Extensive pregastric fermentation alters the profile of protein reaching the small intestine, largely through the transformation of nitrogenous compounds into microbial protein. This process is fueled primarily by carbohydrate fermentation and includes extensive recycling of N between the body and gut lumen pools. Nitrogen recycling occurs via blood and gut lumen exchanges of urea and NH(3), as well as endogenous gut and secretory N entry into the gut lumen, and the subsequent digestion and absorption of microbial and endogenous protein. Factors controlling urea transfer to the gut from blood, including the contributions of urea transporters, remain equivocal. Ammonia produced by microbial degradation of urea and dietary and endogenous AA is utilized by microbial fermentation or absorbed and primarily converted to urea. Therefore, microbial growth and carbohydrate fermentation affect the extent of NH(3) absorption and urea N recycling and excretion. The extensive recycling of N to the rumen represents an evolutionary advantage of the ruminant in terms of absorbable protein supply during periods of dietary protein deficiency, or asynchronous carbohydrate and protein supply, but incurs a cost of greater N intakes, especially in terms of excess N excretion. Efforts to improve the efficiency of N utilization in ruminants by synchronizing fermentable energy and N availability have generally met with limited success with regards to production responses. In contrast, imposing asynchrony through oscillating dietary protein concentration, or infrequent supplementation, surprisingly has not negatively affected production responses unless the frequency of supplementation is less than once every 3 d. In some cases, oscillation of dietary protein concentration has improved N retention compared with animals fed an equal amount of dietary protein on

  2. Secondary resources and recycling in developing economies.

    Science.gov (United States)

    Raghupathy, Lakshmi; Chaturvedi, Ashish

    2013-09-01

    Recycling of metals extends the efficient use of minerals and metals, reduces pressure on environment and results in major energy savings in comparison to primary production. In developing economies recycling had been an integral part of industrial activity and has become a major concern due to the handling of potentially hazardous material without any regard to the occupational health and safety (OH&S) needs. With rising awareness and interest from policy makers, the recycling scenario is changing and the large scale enterprises are entering the recycling sector. There is widespread expectation that these enterprises would use the Best Available Technologies (BAT) leading to better environment management and enhanced resource recovery. The major challenge is to enhance and integrate the activities of other stakeholders in the value chain to make recycling an economically viable and profitable enterprise. This paper is an attempt to propose a sustainable model for recycling in the developing economies through integration of the informal and formal sectors. The main objective is to augment the existing practices using a scientific approach and providing better technology without causing an economic imbalance to the present practices. In this paper studies on lead acid batteries and e-waste recycling in India are presented to evolve a model for "green economy". Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The importance of recycling - Responsible recycling

    International Nuclear Information System (INIS)

    Svensson, Joens Petter

    2014-01-01

    7 times the total emissions from Sweden are saved each year by the recycling industry. It reduces CO 2 emissions and saves the environment. In fact it annually reduces global CO 2 emissions by 500 million tons, which is more than what is being emitted by the world wide aviation industry. Recycling of iron and steel saves 74% energy and reduces water and air pollution by respectively 76% and 86%, compared to primary production. It provides new raw materials and contributes to save energy. There's no sense in producing goods in a permanent material like plastics, that's supposed to be used only once. It's a huge waste of resources. Today the recycling industry provides half of the world's raw materials and this figure is set to increase. It's about environmentally sound management of resources. It's about plain common sense. There has to be a political willingness to facilitate recycling in every way. And from a corporate perspective social responsibility is becoming an increasingly important competitive edge. This is also a communication issue, it has to be a fact that is well known to the market when a company is doing valuable environmental work. We also need a well functioning global market with easy to understand regulations to facilitate global trade. The global demand for recycled materials should influence their collection and use. Fraud and theft has also to be kept at bay which calls for a close collaboration between organizations such as The International Chamber of Commerce, The International Trade Council and the International Maritime Bureau of the commercial crime services. Increasing recycling is the only way to go if we want to minimize our effect on the environment. We have to remember that recycling is essential for the environment. An increase would be a tremendous help to reduce the green house effect. Increasing recycling is not rocket science. We know how to do it, we just have to decide to go through with it

  4. Pilot beverage carton collection and recycling 2013: Concise technical report

    NARCIS (Netherlands)

    Thoden Van Velzen, E.U.; Brouwer, M.T.; Keijsers, E.R.P.; Pretz, Th.; Feil, A.; Jansen, M.

    2013-01-01

    This report gives a technological description of the four common collection and recycling schemes that have been tested in the Netherlands as part of the pilot beverage cartons in 2013. During this pilot the collection and recycling of beverage cartons was tested in 37 different municipalities, with

  5. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  6. Electronic waste and informal recycling in Kathmandu, Nepal

    DEFF Research Database (Denmark)

    Parajuly, Keshav; Thapa, Khim B.; Cimpan, Ciprian

    2018-01-01

    In the absence of relevant policies and supporting infrastructure, many developing countries are struggling to establish a resource-oriented waste management system. In countries like Nepal, where informal recycling practices are prevalent, the lack of understanding of the existing system hinders...... surveys, and site observations was conducted to understand the local recycling sector, the lifecycle of electronic products, and the relevant stakeholders. E-waste is found to be an integral part of the existing solid waste management chain and, therefore, needs to be addressed collectively. We identify...... any advancement in this sector. We characterize the informal recycling chain in Kathmandu, where a workforce of more than 10,000 people handles the recyclable items in various waste streams, including electronic waste (e-waste). A field study, supported by key informant interviews, questionnaire...

  7. Nuclear recycling

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1985-01-01

    This paper discusses two aspects of the economics of recycling nuclear fuel: the actual costs and savings of the recycling operation in terms of money spent, made, and saved; and the impact of the recycling on the future cost of uranium. The authors review the relevant physical and chemical processes involved in the recycling process. Recovery of uranium and plutonium is discussed. Fuel recycling in LWRs is examined and a table presents the costs of reprocessing and not reprocessing. The subject of plutonium in fast reactors is addressed. Safeguards and weapons proliferation are discussed

  8. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture †

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-del Pozo, Julia Mª; Guerra-Romero, M. Ignacio

    2014-01-01

    The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique. PMID:28788188

  9. Cement treated recycled crushed concrete and masonry aggregates for pavements

    NARCIS (Netherlands)

    Xuan, D.X.

    2012-01-01

    This research is focusing on the characterization of the mechanical and deformation properties of cement treated mixtures made of recycled concrete and masonry aggregates (CTMiGr) in relation to their mixture variables. An extensive laboratory investigation was carried out, in which the mechanical

  10. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    Hill, Amanda Louise; Leinikka Dall, Ole; Andersen, Frits M.

    2014-01-01

    Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22......% for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...... the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish municipalities...

  11. Influence of the recycled material percentage on the rheological behaviour of HDPE for injection moulding process.

    Science.gov (United States)

    Javierre, C; Clavería, I; Ponz, L; Aísa, J; Fernández, A

    2007-01-01

    The amount of polymer material wasted during thermoplastic injection moulding is very high. It comes from both the feed system of the part, and parts necessary to set up the mould, as well as the scrap generated along the process due to quality problems. The residues are managed through polymer recycling that allows reuse of the materials in the manufacturing injection process. Recycling mills convert the parts into small pieces that are used as feed material for injection, by mixing the recycled feedstock in different percentages with raw material. This mixture of both raw and recycled material modifies material properties according to the percentage of recycled material introduced. Some of the properties affected by this modification are those related to rheologic behaviour, which strongly conditions the future injection moulding process. This paper analyzes the rheologic behaviour of material with different percentages of recycled material by means of a capillary rheometer, and evaluates the influence of the corresponding viscosity curves obtained on the injection moulding process, where small variations of parameters related to rheological behaviour, such as pressure or clamping force, can be critical to the viability and cost of the parts manufactured by injection moulding.

  12. Recycling Lesson Plan

    Science.gov (United States)

    Okaz, Abeer Ali

    2013-01-01

    This lesson plan designed for grade 2 students has the goal of teaching students about the environmental practice of recycling. Children will learn language words related to recycling such as: "we can recycle"/"we can't recycle" and how to avoid littering with such words as: "recycle paper" and/or "don't throw…

  13. Recycling of quarry waste as part of sustainable aggregate production: Norwegian and Italian point of view

    Science.gov (United States)

    Antonella Dino, Giovanna; Willy Danielsen, Svein; Chiappino, Claudia; Primavori, Piero; Engelsen, Christian John

    2016-04-01

    Resource preservation is one of the main challenges in Europe, together with waste management and recycling; recently several researchers are interested in the recovering of critical raw materials and secondary raw materials from landfill. Aggregate supply, even if it is not "critical" sensus stricto (s.s.), is one of the European priorities (low value but high volume needs). On the other side, the management of quarry waste , mainly from dimension stones, but also as fines from aggregate crushing, is still a matter of concern. Such materials are managed in different ways both locally and nationwide, and often they are landfilled, because of an unclear legislation and a general lack of data. Most of time the local authorities adopt the maximum precaution principle or the enterprises find it little profitable to recover them, so that the sustainable recycling of such material is not valued. Several studies have shown, depending on the material specific characteristics, the viability of recycling quarry waste into new raw materials used in glass and ceramic industries, precast concrete production, infrastructures etc. (Loudes et al. 2012, Dino&Marian 2015, Bozzola et al 2012, Dino et al. 2012, etc.). Thus, aggregate production may be one of the profitable ways to use quarry waste and is falling under the priority of EU (aggregate supply). Positive economic and environmental effects are likely to be achieved by systematic recycling of quarry waste planned by industries (industrial planning) and public authorities (national and local planning of aggregate exploitation). Today, the recycling level varies to a great extent and systematic recovery is not common among European Countries. In Italy and Norway no significant incentives on recycling or systematic approaches for local aggregate exploitation exist. The environmental consequences can be overexploitation of the natural resources, land take for the landfills, environmental contamination and landscape alteration by

  14. Hydrogen recycling and wall equilibration in long-pulse operation

    International Nuclear Information System (INIS)

    Mioduszewski, P.

    2000-01-01

    Wall recycling of hydrogen isotopes effects fueling and plasma performance. In most present fusion devices with pulse lengths in the range of several seconds, recycling evolves during the discharge and, hence, fueling conditions are not stationary. In order to find out what is needed to provide stationary recycling conditions, this paper studies the particle balance between plasma, wall, and external exhaust. A crucial factor is the recycling coefficient which, on a given surface, depends on the particle flux and trapped fluence. For a typical fusion device, the particle flux to the wall surface can vary over four orders of magnitude and the recycling coefficient will change accordingly. As an example, we have studied the wall surface of the DIII-D tokamak and calculated the incident particle fluxes with the DEGAS code for 85 segments of the wall. For each of these segments we have calculated the trapped fluence and recycling coefficients for a typical discharge. The result shows that different parts of the vacuum vessel are important during different phases of the discharge. (author)

  15. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    systematically investigated. This PhD project provided detailed quantitative data following a consistent approach to assess potential limitations for the presence of chemicals in relation to material recycling. Paper and plastics were used as illustrative examples of materials with well-established recycling...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern...... detrimental to their recycling. Finally, a material flow analysis (MFA) approach revealed the potential for accumulation and spreading of contaminants in material recycling, on the example of the European paper cycle. Assessment of potential mitigation measures indicated that prevention of chemical use...

  16. 12 CFR Appendix to Part 215 - Section 5200 of the Revised Statutes Total Loans and Extensions of Credit

    Science.gov (United States)

    2010-01-01

    ... extensions of credit and not upon any full or partial recourse endorsement or guarantee by the transferor... Loans and Extensions of Credit Appendix to Part 215 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF... Statutes Total Loans and Extensions of Credit (a)(1) The total loans and extensions of credit by a national...

  17. Occurrence of emerging flame retardants from e-waste recycling activities in the northern part of Vietnam

    Directory of Open Access Journals (Sweden)

    Masayuki Someya

    2016-06-01

    Full Text Available This study investigated the contamination status of 21 emerging flame retardants (FRs in soils (n = 32 and river sediments (n = 8 from an e-waste recycling (EWR site in the northern part of Vietnam. Among analyzed FRs, higher levels of decabromodiphenyl ethane (DBDPE (ND–4200 ng/g dw, 1,2-bis-(2,4,6-tribromophenoxyethane (BTBPE (ND–350 ng/g dw and Dechlorane Plus isomers (DPs (ND–65 ng/g dw were found in soils near EWR workshops and open burning places. The highest concentrations of DBDPE (20 ng/g dw, BTBPE (5.7 ng/g dw and DPs (6.7 ng/g dw were also detected in sediments collected from the middle of the EWR site. The levels decreased concomitantly with increasing distance from the EWR site. These results indicate that these FRs were released to the surrounding environment from improper recycling activities, such as manual dismantling of devices and open burning of e-wastes. Moreover, the estimated daily intakes of those FRs via soil ingestion were approximately ten times higher for children than adults. To our knowledge, this is a first comprehensive study on characterization of soil and sediment contamination by a series of emerging FRs at an EWR site in Vietnam.

  18. Recent progress on preparation and properties of nanocomposites from recycled polymers: A review

    International Nuclear Information System (INIS)

    Zare, Yasser

    2013-01-01

    Highlights: ► The article determines the current status of nanotechnology in polymer recycling. ► The addition of nanofillers to waste polymers, composites and blends is discussed. ► The future challenges in polymer recycling using nanoparticles are explained. - Abstract: Currently, the growing consumption of polymer products creates the large quantities of waste materials resulting in public concern in the environment and people life. Nanotechnology is assumed the important technology in the current century. Recently, many researchers have tried to develop this new science for polymer recycling. In this article, the application of different nanofillers in the recycled polymers such as PET, PP, HDPE, PVC, etc. and the attributed composites and blends is studied. The morphological, mechanical, rheological and thermal properties of prepared nanocomposites as well as the future challenges are extensively discussed. The present article determines the current status of nanotechnology in the polymer recycling which guide the future studies in this attractive field

  19. Recycling of Polymer-Based Multilayer Packaging: A Review

    Directory of Open Access Journals (Sweden)

    Katharina Kaiser

    2017-12-01

    Full Text Available Polymer-based multilayer packaging materials are commonly used in order to combine the respective performance of different polymers. By this approach, the tailored functionality of packaging concepts is created to sufficiently protect sensitive food products and thus obtain extended shelf life. However, because of their poor recyclability, most multilayers are usually incinerated or landfilled, counteracting the efforts towards a circular economy and crude oil independency. This review depicts the current state of the European multilayer packaging market and sketches the current end-of-life situation of postconsumer multilayer packaging waste in Germany. In the main section, a general overview of the state of research about material recycling of different multilayer packaging systems is provided. It is divided into two subsections, whereby one describes methods to achieve a separation of the different components, either by delamination or the selective dissolution–reprecipitation technique, and the other describes methods to achieve recycling by compatibilization of nonmiscible polymer types. While compatibilization methods and the technique of dissolution–reprecipitation are already extensively studied, the delamination of packaging has not been investigated systematically. All the presented options are able to recycle multilayer packaging, but also have drawbacks like a limited scope or a high expenditure of energy.

  20. Self-care in individuals who recycle garbage (recyclers of Medellín, Colombia, 2005

    Directory of Open Access Journals (Sweden)

    Yolanda L. López A

    2009-08-01

    Full Text Available Objective: to understand the conceptions, attitudes and practices about self-care among informal recyclers in Medellín. Methodology: a qualitative study from the perspective of recyclers not belonging to any guild in Medellín in 2005 was developed. A total amount of 52 interviews with previous informed consent were applied, plus non-participant observation and field diary. Results: self-care is understood as the constant protection of the body in order to avoid the occurrence of diseases. It includes aspects of hygiene, diet, medical consultation, proper use of leisure time and utilization of instruments for personal protection, such as gloves, face masks, caps, and ear plugs among other devices. Discussion: disease prevention goes beyond biological aspects and becomes part of a social dimension for people in which the most important features are the consequences for themselves, their labor team and their families. Recyclers have knowledge on prevention and practices that promote health and well-being, but the latter are not applied because they diminish their job performance, or they do not consider them to be necessary, do not feel like executing them nor they lack the economic resources to assume them. Autocare practices of recyclers are mainly supported by the primacy of the team history than by the scientific knowledge concerning it.

  1. Towards Better Understanding of Concrete Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2013-01-01

    Full Text Available The effect of using recycled concrete aggregates (RCA on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.

  2. Energy implications of recycling packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., Washington, DC (United States)

    1994-03-01

    In 1992, Congress sought to rewrite the United States comprehensive solid waste legislation -- the Resource Conservation and Recovery Act (RCRA). Commodity-specific recycling rates were proposed for consumer-goods packaging materials and newsprint We compare the impacts on energy, materials use, and landfill volume of recycling at those rates to the impacts for alternative methods of material disposition to determine the optimum for each material. After products have served their intended uses, there are several alternative paths for material disposition. These include reuse, recycling to the same product, recycling to a lower-valued product, combustion for energy recovery, incineration without energy recovery, and landfill. Only options considered to be environmentally sound are Included. Both houses of Congress specifically excluded combustion for energy recovery from counting towards the recovery goats, probably because combustion is viewed as a form of disposal and is therefore assumed to waste resources and have n environmental effects. However, co-combustion in coal-fired plants or combustion in appropriately pollution-controlled waste-to-energy plants Is safe, avoids landfill costs, and can displace fossil fuels. In some cases, more fossil fuels can be displaced by combustion than by recycling. We compare the alternative life-cycle energies to the energies for producing the products from virgin materials. Results depend on the material and on the objective to be achieved. There are trade-offs among possible goals. For instance, paper packaging recycling conserves trees but may require greater fossil-fuel input than virgin production. Therefore, the objectives for proposed legislation must be examined to see whether they can most effectively be achieved by mandated recycling rates or by other methods of disposition. The optimal choices for the United States may not necessarily be the same as those for Europe and other parts of the world.

  3. Material Flow and Stakeholder Analysis for a Transfer & Recycling Station in Gaborone, Botswana

    OpenAIRE

    Andersson, Emil

    2014-01-01

    Landfilling waste material is still one of the most common methods to take care of waste in a big part of the world. Gaborone, the capital of Botswana located in the southern part of Africa is no different in this way. The major part of all waste is landfilled in Gaborone and there is only a minor part of all collected material that is recycled. One solution that earlier studies suggest is to build a transfer and recycling station in the city of Gaborone that can contribute to a more sustaina...

  4. Protecting groundwater resources at biosolids recycling sites.

    Science.gov (United States)

    McFarland, Michael J; Kumarasamy, Karthik; Brobst, Robert B; Hais, Alan; Schmitz, Mark D

    2013-01-01

    In developing the national biosolids recycling rule (Title 40 of the Code of Federal Regulation Part 503 or Part 503), the USEPA conducted deterministic risk assessments whose results indicated that the probability of groundwater impairment associated with biosolids recycling was insignificant. Unfortunately, the computational capabilities available for performing risk assessments of pollutant fate and transport at that time were limited. Using recent advances in USEPA risk assessment methodology, the present study evaluates whether the current national biosolids pollutant limits remain protective of groundwater quality. To take advantage of new risk assessment approaches, a computer-based groundwater risk characterization screening tool (RCST) was developed using USEPA's Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment program. The RCST, which generates a noncarcinogenic human health risk estimate (i.e., hazard quotient [HQ] value), has the ability to conduct screening-level risk characterizations. The regulated heavy metals modeled in this study were As, Cd, Ni, Se, and Zn. Results from RCST application to biosolids recycling sites located in Yakima County, Washington, indicated that biosolids could be recycled at rates as high as 90 Mg ha, with no negative human health effects associated with groundwater consumption. Only under unrealistically high biosolids land application rates were public health risks characterized as significant (HQ ≥ 1.0). For example, by increasing the biosolids application rate and pollutant concentrations to 900 Mg ha and 10 times the regulatory limit, respectively, the HQ values varied from 1.4 (Zn) to 324.0 (Se). Since promulgation of Part 503, no verifiable cases of groundwater contamination by regulated biosolids pollutants have been reported. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Open-loop recycling: A LCA case study of PET bottle-to-fibre-recycling

    NARCIS (Netherlands)

    Shen, L.; Worrell, E.; Patel, M.K.

    2010-01-01

    This study assesses the environmental impact of polyethylene terephthalate (PET) bottle-to-fibre recycling using the methodology of life-cycle assessment (LCA). Four recycling cases, including mechanical recycling, semi-mechanical recycling, back-to-oligomer recycling and back-to-monomer recycling

  6. Recycling of concrete waste generated from nuclear power plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nagase, Takahiro; Tanaka, Hiroaki; Nawa, Toyoharu

    2012-01-01

    Non-radioactive concrete waste generated from dismantling of a standard large nuclear power plant is estimated to be about 500,000 tons in weight. Using such waste as recycled aggregate within the enclosure of the plant requires a new manufacturing technology that generates a minimal amount of by-product powder. Recycled aggregate has brittle parts with defects such as cracks, pores, and voids in residual paste from original concrete. This study presents a method of selectively removing the defective parts during manufacture to improve the quality of the recycled fine aggregate. With this selective removal method used, the amount of by-product powder can be reduced by half as compared to that by a conventional method. The influences of the characteristics of the recycled fine aggregate on the flowability and strength of the mortar using recycled fine aggregate were evaluated by multiple linear regression analysis. The results clearly showed that the flowability was primarily affected by the filling fraction of recycled fine aggregate, while the compressive strength of mortar was primarily affected by the fraction of defects in the aggregate. It was also found that grains produced by a granulator have more irregularities in the surfaces than those produced by a ball mill, providing an increased mortar strength. Using these findings from this study, efforts are also being made to develop a mechanical technology that enables simultaneous processing of decontamination and recycling. The granulator under consideration is capable of grinding the surfaces of irregularly shaped particles and may be used successfully, under optimal conditions, for the surface decontamination of concrete waste contaminated with radioactive materials. (author)

  7. Recycled Portland cement concrete pavements : Part II, state-of-the art summary.

    Science.gov (United States)

    1979-01-01

    This report constitutes a review of the literature concerning recycling of portland cement concrete pavements by crushing the old pavement and reusing the crushed material as aggregate in a number of applications. A summary of the major projects cond...

  8. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    Science.gov (United States)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  9. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z; Manchiraju, K [Southwire Co.

    2012-02-22

    This project is to develop and demonstrate the concept feasibility of a highly energy-efficient solid-state material synthesis process, friction stir extrusion (FSE) technology. Specifically, the project seeks to explore and demonstrate the feasibility to recycle metals, produce nano-particle dispersion strengthened bulk materials and/or nano-composite materials from powders, chips or other recyclable feedstock metals or scraps through mechanical alloying and thermo-mechanical processing in a single-step. In this study, we focused on metal recycling, producing nano-engineered wires and evaluating their potential use in future generation long-distance electric power delivery infrastructure. More comprehensive R&D on the technology fundamentals and system scale-up toward early-stage applications in two targeted “showcase” fields of use: nano engineered bulk materials and Al recycling will be considered and planned as part of Project Continuation Plan.

  10. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    International Nuclear Information System (INIS)

    Chae, Jae Ou; Knak, S P; Knak, A N; Koo, H J; Ravi, V

    2006-01-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases

  11. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    Science.gov (United States)

    Jae, Ou Chae; Knak, S. P.; Knak, A. N.; Koo, H. J.; Ravi, V.

    2006-11-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases.

  12. The recycling and disposal of electrical and electronic waste in China-legislative and market responses

    International Nuclear Information System (INIS)

    Hicks, C.; Dietmar, R.; Eugster, M.

    2005-01-01

    The development of new legislation on collection, recycling and disposal of waste electrical and electronic equipment (WEEE) as well as the scaling-up and privatisation of the WEEE processing industry, are indications of major changes for WEEE management in China. However, China's attempts to regulate the industry and establish a financially viable, environmentally benign and safe WEEE management system are facing significant challenges. The existence of an extensive informal sector, combined with a lack of environmental awareness among WEEE collectors, recyclers and consumers, are contributing to China's difficulties in developing a financially and environmentally sound recycling and disposal system. This paper discusses the current status of WEEE recycling and disposal in China, and its impacts on the environment, human health, and the economy. It also examines the legislative and market responses to the WEEE issue, and how these will be affected by Chinese attitudes and practices towards WEEE recycling

  13. Tritium control by water recycle in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hall, N.E.; Ward, G.N.

    1975-06-01

    A preliminary study was made of the use of water recycle within a reprocessing plant to control the escape of tritium and to consolidate it for disposal. Tritium distribution was evaluated in the leacher, high-level, and low-level systems for seven different flowsheet conditions. Tritium retention efficiency was also evaluated for these flowsheet conditions. Impact of tritiated water recycle on the plant design and operation is assessed. It is concluded that tritium control by water recycle is feasible. Achievement of satisfactory retention efficiencies and economic volumes of solidified tritium waste will require extension of existing technology and development of new technology. Evaluation of potential abnormal conditions indicate that releases from upsets need not be excessive. Some increase in occupational exposure will occur because of the pervasiveness, persistence, and ease of uptake of tritiated water vapor. Incentives for tritium control by water recycle may prove marginal if this increased exposure to plant personnel is significant compared to the small reduction in exposure to the general public. Recommendations are presented for further studies

  14. RPV in-situ segmentation combined with off-site treatment for volume reduction and recycling - Proven In-Situ Segmentation Combined with Off-Site Treatment for Volume Reduction and Recycling. RPV case study

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Segerud, Per; Hedin, Gunnar

    2014-01-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the large components and the dismantling waste are key success factors in a decommissioning project. A large component of major interest is, due to its size and its span in radioactivity content, the RVP, which can be disposed as is or be segmented, treated, partially free released for recycling and conditioned for disposal in licensed packages. To a certain extent the decommissioning program have to be led by the waste management process. The costs for the plant decommissioning can be reduced by the usage of off-site waste treatment facilities as the time needed for performing the decommissioning project will be reduced as well as the waste volumes for disposal. Long execution times and delays due to problems with on-site waste management processes are major cost drivers for decommissioning projects. This involves also the RPV. In Sweden, the extension of the geological repository SFR plans for a potential disposal of whole RPVs. Disposal of whole RPVs is currently the main alternative but other options are considered. The target is to avoid extensive on-site waste management of RPVs to reduce the risk for delays. This paper describes in-situ RPV segmentation followed by off-site treatment aiming for free release for recycling of a substantial amount of the material, and volume efficient conditioning of the remaining parts. Real data from existing LWR RPVs was used for this study. Proven segmentation methods are intended to be used for the in situ segmentation followed by proven methods for packaging, transportation, treatment, recycling and conditioning for disposal. The expected volume reduction for disposal can be about 90% compared to whole RPV disposal. In this respect the in-situ segmentation of the RVPs to large pieces followed by off-site treatment is an interesting alternative that fits very well with the objective

  15. Structure and function of the first full-length murein peptide ligase (Mpl) cell wall recycling protein.

    Science.gov (United States)

    Das, Debanu; Hervé, Mireille; Feuerhelm, Julie; Farr, Carol L; Chiu, Hsiu-Ju; Elsliger, Marc-André; Knuth, Mark W; Klock, Heath E; Miller, Mitchell D; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Mengin-Lecreulx, Dominique; Wilson, Ian A

    2011-03-18

    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  16. Structure and function of the first full-length murein peptide ligase (Mpl cell wall recycling protein.

    Directory of Open Access Journals (Sweden)

    Debanu Das

    2011-03-01

    Full Text Available Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc. MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl, which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl. Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters. Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.

  17. Battery recycling machine; Maquina recicladora de pilas

    Energy Technology Data Exchange (ETDEWEB)

    Higuera Gonzalez, R.M; Esquivel Montes, C.E; Perez Razo, E; Sanchez Guerrero, O.A. [Tecnologico de Estudios Superiores de Ixtapaluca, Ixtapaluca, Estado de Mexico (Mexico)

    2013-03-15

    Batteries pollute the environment and therefore require special treatment or confine recycling in appropriate places, Mexico only has places for confining the batteries and send them to other countries for recycling. The purpose of this project is to reduce the contamination of soil and create a culture for the recycling of batteries. The prototype performs the separation of metals and chemical residues, so that later they can be processed separately. The machine is divided into two parts, mechanics and electronics, the mechanical part was designed to disarm it for easy maintenance, another advantage in the field of electronics and security is to control the machine from a computer at a distance significantly reducing accidents. To automate the machine will use a PLC clock for easy programming. [Spanish] Las pilas contaminan el medio ambiente y por ello requieren un tratamiento especial de reciclaje o confinarlos en lugares adecuados, Mexico solo cuenta con lugares para confinar las pilas y mandarlas a otros paises para su reciclaje. El proposito de este proyecto es reducir la contaminacion del suelo y crear una cultura para el reciclaje de pilas. El prototipo realiza la separacion de metales y residuos quimicos, para que mas adelante se puedan procesar por separado. La maquina se divide en dos partes; la mecanica y la electronica, la parte mecanica fue disenada para desarmarse esto para su facil mantenimiento, otra de las ventajas en el campo de electronica y seguridad es poder controlar el prototipo desde una computadora, a una distancia considerable reduciendo asi los accidentes. Para automatizar la maquina se utilizo un reloj PLC por su facil programacion.

  18. Process for environmentally safe disposal of used fluorescent lamp potted ballast assemblies with component part reclamation and/or recycling

    Energy Technology Data Exchange (ETDEWEB)

    Nardella, A.; Norian, B.

    1993-07-27

    A process is described for the environmentally safe and economical disposal of used fluorescent lamp potted ballast housing assemblies comprising removing from the housing the potted assembly with its embedded electrical component assemblies including a component capacitor containing environmentally hazardous material PCB's; after or before such removing, immersing the potted assembly in a cryogenic bath and freezing the same to reader the potting sufficiently brittle to fragment into small pieces upon being impacted; impacting the potting thoroughly to crush and fragment the same into small pieces and to cleanly remove substantially all traces of the potting from all the electrical components and parts embedded therein and without imparting damage to the components and parts; disconnecting the component containing the environmentally hazardous material; and incinerating only the component containing the environmentally hazardous material, leaving all other components and parts including the housing and potting fragments for salvage, re-use and/or recycling.

  19. Tech Transfer Office discusses the finer points of tire recycling

    Science.gov (United States)

    1995-01-01

    NASA's Technology Transfer Office at Stennis worked with a tire recycling company in St. Francisville, La., to help the company make better use of the cryogenics, or supercold fluids, in its recycling process. The process separates the rubber from the steel belts and other particles. The rubber is broken down into a material called crumb. Other parts of the tire particle removed is called fluff.

  20. Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling.

    Science.gov (United States)

    Rademaker, Jelle H; Kleijn, René; Yang, Yongxiang

    2013-09-17

    End-of-life recycling is promoted by OECD countries as a promising strategy in the current global supply crisis surrounding rare earth elements (REEs) so that dependence on China, the dominant supplier, can be decreased. So far the feasibility and potential yield of REE recycling has not been systematically evaluated. This paper estimates the annual waste flows of neodymium and dysprosium from permanent magnets, the main deployment of these critical REEs, during the 2011-2030 period. The estimates focus on three key permanent magnet waste flows: wind turbines, hybrid and electric vehicles, and hard disk drives (HDDs) in personal computers (PCs). This is a good indication of the end-of-life recycling of neodymium and dysprosium maximum potential yield. Results show that for some time to come, waste flows from permanent magnets will remain small relative to the rapidly growing global REE demand. Policymakers therefore need to be aware that during the next decade recycling is unlikely to substantially contribute to global REE supply security. In the long term, waste flows will increase sharply and will meet a substantial part of the total demand for these metals. Future REE recycling efforts should, therefore, focus on the development of recycling technology and infrastructure.

  1. Trans-Americas leads the way into municipal textile recycling

    Energy Technology Data Exchange (ETDEWEB)

    Ridgley, H.

    1998-08-01

    Most textile waste in the US still goes to the landfill--an estimated 6.6 million tons each year. But thanks to the efforts of textile recycles--such as Trans-Americas Textile Recycling CO. (Brooklyn, NY)--another 1.25 million tons gets salvaged for reuse overseas or as a feedstock for the wiping and fiber industries, according to the Council for Textile Recycling. In an era where global population levels are increasing the demand for textile waste from the Western world and municipalities are struggling to reach their waste diversion goals, boosting textile recovery rates makes sense. And it`s a waste that can be easily incorporated into existing municipal curbside or drop-off recycling programs. Since 1942, when the company first opened its doors in Brooklyn, NY, it purchased textile discards from charities. While those discards still make up the majority of Trans-Americas` supply, in the last two years, the company also began purchasing post-consumer material from municipalities. Textiles are definitely going to be an increasingly important part of recycling, as states look to meet their mandates.

  2. Uranium oxide recycling to give more sustainable power generation

    International Nuclear Information System (INIS)

    Hagger, R.; Garner, D.S.J.; Beaumont, D.M.; Hesketh, K.

    2001-01-01

    In broad terms there are two routes for irradiated nuclear fuel, the closed cycle involving recycling and the open cycle culminating in direct disposal. The benefits of following the closed cycle are presented. The environmental burdens associated with open and closed cycles are compared using Life Cycle Assessment (LCA) for non-active burdens and human irradiation. Consideration is given to the extension of the nuclear fuel cycle to include a proportion of MOX fuel elements within a reactor core, and the impact in terms of total activity, waste volumes and Integrated Toxic Potential (ITP) discussed. The potential of moving to a fast reactor cycle is also raised in support of the recycling of spent nuclear fuel giving sustainable power generation. (author)

  3. A reciclagem de PVC no Brasil Recycling of PVC Brazil

    Directory of Open Access Journals (Sweden)

    Ana Magda Piva

    1999-12-01

    Full Text Available Esta pesquisa discute as possibilidades práticas da reciclagem de PVC. Na reciclagem de polímeros, a do PVC representa uma importante parcela. PVC é um polímero que é usado em uma ampla faixa de produtos: filmes, fios, cabos, em compostos para uma variedade de formas. A reciclagem é uma técnica vantajosa, capaz de reproduzir as propriedades do polímero original, no polímero reciclado e isto em condições razoavelmente econômicas. A tecnologia brasileira, em relação a produtos reciclados, apresenta algumas diferenças da reciclagem tradicional. Métodos alternativos de reciclagens são necessários se os processos não desvalorizam os resultados finais.This research discuss the practical possibilities of recycling PVC. PVC, plays an important part in the recycleability of polymers; PVC is a polymer which is used in a very wide range of products -films, wire, cabes, in compounds for a variety of forms. Recycling is only worthwile, one is able to reproduce the original polymer properties in the polymer being recycled, and this under reasonable economics conditions. The brasilian technology that produces recycled products is a little different from the tradicional recycling. Therefore alternative methods to recycle are needed if recycling is not to devalue the end results.

  4. Viscoelastic behaviour of cold recycled asphalt mixes

    Science.gov (United States)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  5. COGEMA's national advertising campaign concerning nuclear fuel recycling

    International Nuclear Information System (INIS)

    Gallot, Christine

    1999-01-01

    Goals of COGEMA's advertising campaign concerning nuclear fuel recycling are to: speak out in an area where COGEMA has legitimacy and is expected; and to take part in the discussion to support and defend an activity that is important for COGEMA. Targets are: back up opinion relays by reaching the general public; and back COGEMA personnel. The advertising strategy can be defined as follows: what is recommended for other industries (sorting and then recycling) is COGEMA's practice for spent fuel, with very significant advantages for the community in terms of economy and ecology

  6. Recyclability assessment of nano-reinforced plastic packaging.

    Science.gov (United States)

    Sánchez, C; Hortal, M; Aliaga, C; Devis, A; Cloquell-Ballester, V A

    2014-12-01

    Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO3), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE-Nanoclay1, PE-CaCO3, PP-Ag, PET-ZnO, PET-Ag, PET-Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET-Ag) could influence important properties of the recycled material, due to a slight degradation of the polymer, such as increasing pinholes, degradation fumes and elongation at break. Moreover, it should be noted that colour deviations were visible in most of the samples (PE, PP and PET) in levels higher than 0.3 units (limit perceivable by the human eye). The acceptance of these changes in the properties of recycled PE, PP and PET will depend on the specific applications considered (e.g. packaging applications are more

  7. Recovery of the secondary raw materials, recycling

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter the recovery and recycling of secondary raw materials is explained. This chapter consists of the following parts: Paper and tetrapaks; Car wrecks; Scrap metal; Plastics; Used tires; Electrical and electronic equipment; Glass; Accumulators and batteries; Spent oil; Low-and non-waste technology.

  8. Recycling-friendly planning and construction; Recyclinggerechtes Planen und Bauen

    Energy Technology Data Exchange (ETDEWEB)

    Willkomm, W. [Hannover Univ. (Germany). Fachbereich Architektur]|[Institut fuer Industrialisierung des Bauens GmbH, Hannover (Germany)

    1995-09-01

    Building materials recycling is part and parcel of any intelligent, resource-conserving materials recycling concept. Principally, however, it can never be more than the second best solution. This is because it must always come after all has been done to prevent building material residues from arising in the first place. The greatest potential for waste avoidance in the building industry lies in the planning phase. Planning nowadays is oriented more to production, utilisation, reutilisation, maintenance, and recycling processes, i.e. more to processes in general than to the design of any certain product. (orig./HW) [Deutsch] Baustoff-Recycling ist ein unverzichtbarer Beitrag zu intelligenten, resourcensparenden Materialkreislaeufen. Es stellt aber immer nur die zweitbeste Loesung dar. Denn zunaechst muessen alle Moeglichkeiten genutzt werden. Bauabfaelle gar nicht erst entstehen zu lassen. Die groessten Potentiale zur Abfallvermeidung in der Bauproduktion liegen in einer Bauplanung, die sich intensiver als bisher an Herstellungs-, Nutzungs-, Umnutzungs-, Instandhaltungs- und Recyclingprozessen orientiert, also eher prozessorientierte Planung als Produktgestaltung. (orig./HW)

  9. Rethink, Rework, Recycle.

    Science.gov (United States)

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  10. The QWERTY/EE concept, Quantifying Recyclability and Eco-Efficiency for End-of-Life Treatment of Consumer Electronic Products

    NARCIS (Netherlands)

    Huisman, J.

    2003-01-01

    The QWERTY/EE concept addresses recyclability and eco-efficiency of take-back and recycling of consumer electronic products, a topic currently receiving large international attention. Through the environmental part of the concept an alternative for usual weight based recycling percentages is

  11. Recycling at Penn State's Beaver Stadium. "Recycle on the Go" Success Story

    Science.gov (United States)

    US Environmental Protection Agency, 2009

    2009-01-01

    With a 13-year-old recycling program, The Pennsylvania State University's (Penn State) Beaver Stadium in the past diverted nearly 30 tons of recyclables per year from local landfills. A new initiative to promote recycling in the stadium's tailgating area has helped Penn State more than triple its old recycling record, collecting 112 tons in 2008.…

  12. The strategic role of recycling centres for environmental performance of waste management systems.

    Science.gov (United States)

    Krook, Joakim; Eklund, Mats

    2010-05-01

    This paper analyses how different actors influence the sorting quality of waste at recycling centres. Users (i.e. citizens) play an essential role since they conduct the actual sorting. They have difficulties sorting many of their discarded products, leading to decreased performance of the entire waste management system of which recycling centres are a part. Several measures addressing this problem are identified such as product design, improved terminology for labelling waste and increased manning at recycling centres. A fundamental task for managers and employees is to further develop information and guidance for users, both at home and at recycling centres. Several obstacles for improvements are also discussed, including working conditions and the economy of recycling centres, as well as the routines for communication and quality assurance among actors in the recycling business. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...

  14. Capacity training for the personnel of radiation monitoring in metal recycling

    International Nuclear Information System (INIS)

    Caveda Ramos, C.A.; Dominguez Ley, O.

    2013-01-01

    In this work it a course for training for the personnel involved in the radiation monitoring of metal recycling is presented. The contents were elaborated taken into account the IAEA recommendations for the development of capacity and training activities in radiological safety and in the Guide for the control of radioactive material in metal recycling. The program is divided in eleven parts and the duration time is two weeks. Among the main covered topics are the requirements for radiation monitoring in metal recycling; response to detection of radioactive material and effects of the ionizing radiation in man and environment

  15. Fermilab Recycler Collimation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. C. [Fermilab; Adamson, P. [Fermilab; Ainsworth, R. [Fermilab; Capista, D. [Fermilab; Hazelwood, K. [Fermilab; Kourbanis, I. [Fermilab; Mokhov, N. V. [Fermilab; Morris, D. K. [Fermilab; Murphy, M. [Fermilab; Sidorov, V. [Fermilab; Stern, E. [Fermilab; Tropin, I. [Fermilab; Yang, M-J. [Fermilab

    2016-10-04

    To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and briefly tested while extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin molybdenum scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.

  16. Recyclability assessment of nano-reinforced plastic packaging

    International Nuclear Information System (INIS)

    Sánchez, C.; Hortal, M.; Aliaga, C.; Devis, A.; Cloquell-Ballester, V.A.

    2014-01-01

    Highlights: • The study compares the recyclability of polymers with and without nanoparticles. • Visual appearance, material quality and mechanical properties are evaluated. • Minor variations in mechanical properties in R-PE and R-PP with nanoparticles. • Slight degradation of R-PET which affect mechanical properties. • Colour deviations in recycled PE, PP and PET in ranges higher that 0.3 units. - Abstract: Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO 3 ), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE–Nanoclay1, PE–CaCO 3 , PP–Ag, PET–ZnO, PET–Ag, PET–Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET–Ag) could influence important properties of the recycled material, due to a slight

  17. Recyclability assessment of nano-reinforced plastic packaging

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, C., E-mail: csanchez@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Hortal, M., E-mail: mhortal@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Aliaga, C., E-mail: caliaga@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Devis, A., E-mail: adevis@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Cloquell-Ballester, V.A., E-mail: cloquell@dpi.upv.es [Dpto. Proyectos de Ingeniería, Universitat Politècnica de València, Camino de Vera, 46022 Valencia (Spain)

    2014-12-15

    Highlights: • The study compares the recyclability of polymers with and without nanoparticles. • Visual appearance, material quality and mechanical properties are evaluated. • Minor variations in mechanical properties in R-PE and R-PP with nanoparticles. • Slight degradation of R-PET which affect mechanical properties. • Colour deviations in recycled PE, PP and PET in ranges higher that 0.3 units. - Abstract: Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO{sub 3}), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE–Nanoclay1, PE–CaCO{sub 3}, PP–Ag, PET–ZnO, PET–Ag, PET–Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET–Ag) could influence important properties of the recycled material, due to a

  18. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans.

    Directory of Open Access Journals (Sweden)

    Malene Hansen

    2008-02-01

    Full Text Available In many organisms, dietary restriction appears to extend lifespan, at least in part, by down-regulating the nutrient-sensor TOR (Target Of Rapamycin. TOR inhibition elicits autophagy, the large-scale recycling of cytoplasmic macromolecules and organelles. In this study, we asked whether autophagy might contribute to the lifespan extension induced by dietary restriction in C. elegans. We find that dietary restriction and TOR inhibition produce an autophagic phenotype and that inhibiting genes required for autophagy prevents dietary restriction and TOR inhibition from extending lifespan. The longevity response to dietary restriction in C. elegans requires the PHA-4 transcription factor. We find that the autophagic response to dietary restriction also requires PHA-4 activity, indicating that autophagy is a transcriptionally regulated response to food limitation. In spite of the rejuvenating effect that autophagy is predicted to have on cells, our findings suggest that autophagy is not sufficient to extend lifespan. Long-lived daf-2 insulin/IGF-1 receptor mutants require both autophagy and the transcription factor DAF-16/FOXO for their longevity, but we find that autophagy takes place in the absence of DAF-16. Perhaps autophagy is not sufficient for lifespan extension because although it provides raw material for new macromolecular synthesis, DAF-16/FOXO must program the cells to recycle this raw material into cell-protective longevity proteins.

  19. An albumin-oligonucleotide assembly for potential combinatorial drug delivery and half-life extension applications

    DEFF Research Database (Denmark)

    Kuhlmann, Matthias; Hamming, Jonas Bohn Refslund; Voldum, Anders

    2017-01-01

    The long blood circulatory property of human serum albumin, due to engagement with the cellular recycling neonatal Fc receptor (FcRn), is an attractive drug half-life extension enabling technology. This work describes a novel site-specific albumin double-stranded (ds) DNA assembly approach, in wh...... technology platform that offers potential combinatorial drug delivery and half-life extension applications.......The long blood circulatory property of human serum albumin, due to engagement with the cellular recycling neonatal Fc receptor (FcRn), is an attractive drug half-life extension enabling technology. This work describes a novel site-specific albumin double-stranded (ds) DNA assembly approach......, in which the 3' or 5' end maleimide-derivatized oligodeoxynucleotides are conjugated to albumin cysteine at position 34 (cys34) and annealed with complementary strands to allow single site-specific protein modification with functionalized ds oligodeoxynucleotides. Electrophoretic gel shift assays...

  20. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    hill, amanda; Leinikka Dall, Ole; Andersen, Frits Møller

    2014-01-01

    % for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...

  1. Recycling production designs: the value of coordination and flexibility in aluminum recycling operations

    Science.gov (United States)

    Brommer, Tracey H.

    The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an intermediate recycling facility that can reprocess the secondary materials into a liquid product Two downstream aluminum remelters will incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges persist because of the energy cost to maintain the liquid. Further coordination challenges result from the necessity to establish a long term recycling production plan in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses? A methodology is presented to calculate the optimal recycling center production parameters including 1) the number of recycled products, 2) the volume of recycled products, 3) allocation of recycled materials across recycled products, 4) allocation of recycled products across finished alloys, 4) the level of flexibility for the recycling center to operate. The methods implemented include, 1) an optimization model to describe the long term operations of the recycling center, 2) an uncertainty simulation tool, 3) a simulation optimization method, 4) a dynamic simulation tool with four embedded daily production optimization models of varying degrees of flexibility. This methodology is used to quantify the performance of several recycling center production designs of varying levels of coordination and flexibility. This analysis allowed the identification of the optimal recycling

  2. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  3. Tyre Recycling with Thermal Solvolysis Method Using Microwave Radiation

    OpenAIRE

    Korjakins, Aleksandrs; Holimenkovs, Aleksandrs

    2017-01-01

    Used tyres are one of the most widespread types of waste and one of the polymer materials which are most difficult to recycle. There are many different applications for used tyres today. Part of the tyres can be retreated and re-used, but most of the used tyres are recycled. By dissolving the tyres, it is possible to filter out various chemical substances. These substances coming from the used tyres can be used for creating a new material or improving an existing one. One of the technologies ...

  4. Green Science: Revisiting Recycling

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  5. 40 CFR Appendix B1 to Subpart F of... - Performance of Refrigerant Recovery, Recycling and/or Reclaim Equipment

    Science.gov (United States)

    2010-07-01

    ... Refrigeration Institute Standard 740-1993. Refrigerant Recovery/Recycling Equipment Section 1. Purpose 1..., Recycling and/or Reclaim Equipment B1 Appendix B1 to Subpart F of Part 82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Recycling...

  6. 77 FR 25136 - Hand Trucks and Certain Parts Thereof From the People's Republic of China; Extension of Time...

    Science.gov (United States)

    2012-04-27

    ... Parts Thereof From the People's Republic of China; Extension of Time Limit for Final Results of..., U.S. Department of Commerce, 14th Street and Constitution Avenue NW., Washington, DC 20230... certain parts thereof from the People's Republic of China. See Hand Trucks and Certain Parts Thereof from...

  7. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    Energy Technology Data Exchange (ETDEWEB)

    Jody, B. J.; Daniels, E. J.; Energy Systems

    2007-03-21

    Each year, more than 50 million vehicles reach the end of their service life throughout the world. More than 95% of these vehicles enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, about 75% of automotive materials are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobiles, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials (about 25% of the weight of the vehicle)--commonly called shredder residue--is disposed of in landfills. Over the past 10 to 15 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles (ELVs), including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has focused on developing technology to recover materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lighter-weight materials--primarily polymers and polymer composites--will be used in manufacturing these vehicles. These materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems at end-of-life. Argonne National Laboratory (Argonne), in cooperation

  8. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  9. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    International Nuclear Information System (INIS)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-01-01

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  10. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  11. Feasibility studies of actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    Beaman, S.L.; Aitken, E.A.

    1976-01-01

    Actinide recycle in LMFBRs offers an attractive alternative on long-term storage of the actinides. The concept will not significantly affect the performance of the LMFBR, but will affect other parts of the nuclear fuel cycle. Assuming that hands-on maintenance will be allowed for Pu-recycle fuel fabrication facilities, the transplutonium actinides should be kept separate from the PuO 2 --UO 2 fuel. Thus, the ''reference'' recycle scheme should be defined as a scheme in which the actinides are recycled in target assemblies. The target assemblies should be reprocessed either in batches separate from spent-fuel batches or in a separate, relatively small, special purpose reprocessing plant. The target assemblies should be fabricated in a special purpose, remotely maintained facility

  12. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells

    Science.gov (United States)

    Perez Bay, Andres E.; Schreiner, Ryan; Benedicto, Ignacio; Paz Marzolo, Maria; Banfelder, Jason; Weinstein, Alan M.; Rodriguez-Boulan, Enrique J.

    2016-01-01

    The basolateral recycling and transcytotic pathways of epithelial cells were previously defined using markers such as transferrin (TfR) and polymeric IgA (pIgR) receptors. In contrast, our knowledge of the apical recycling pathway remains fragmentary. Here we utilize quantitative live-imaging and mathematical modelling to outline the recycling pathway of Megalin (LRP-2), an apical receptor with key developmental and renal functions, in MDCK cells. We show that, like TfR, Megalin is a long-lived and fast-recycling receptor. Megalin enters polarized MDCK cells through segregated apical sorting endosomes and subsequently intersects the TfR and pIgR pathways at a perinuclear Rab11-negative compartment termed common recycling endosomes (CRE). Whereas TfR recycles to the basolateral membrane from CRE, Megalin, like pIgR, traffics to subapical Rab11-positive apical recycling endosomes (ARE) and reaches the apical membrane in a microtubule- and Rab11-dependent manner. Hence, Megalin defines the apical recycling pathway of epithelia, with CRE as its apical sorting station. PMID:27180806

  13. Pu recycling in a full Th-MOX PWR core. Part I: Steady state analysis

    International Nuclear Information System (INIS)

    Fridman, E.; Kliem, S.

    2011-01-01

    Research highlights: → Detailed 3D 100% Th-MOX PWR core design is developed. → Pu incineration increased by a factor of 2 as compared to a full MOX PWR core. → The core controllability under steady state conditions is demonstrated. - Abstract: Current practice of Pu recycling in existing Light Water Reactors (LWRs) in the form of U-Pu mixed oxide fuel (MOX) is not efficient due to continuous Pu production from U-238. The use of Th-Pu mixed oxide (TOX) fuel will considerably improve Pu consumption rates because virtually no new Pu is generated from thorium. In this study, the feasibility of Pu recycling in a typical pressurized water reactor (PWR) fully loaded with TOX fuel is investigated. Detailed 3-dimensional 100% TOX and 100% MOX PWR core designs are developed. The full MOX core is considered for comparison purposes. The design stages included determination of Pu loading required to achieve 18-month fuel cycle assuming three-batch fuel management scheme, selection of poison materials, development of the core loading pattern, optimization of burnable poison loadings, evaluation of critical boron concentration requirements, estimation of reactivity coefficients, core kinetic parameters, and shutdown margin. The performance of the MOX and TOX cores under steady-state condition and during selected reactivity initiated accidents (RIAs) is compared with that of the actual uranium oxide (UOX) PWR core. Part I of this paper describes the full TOX and MOX PWR core designs and reports the results of steady state analysis. The TOX core requires a slightly higher initial Pu loading than the MOX core to achieve the target fuel cycle length. However, the TOX core exhibits superior Pu incineration capabilities. The significantly degraded worth of control materials in Pu cores is partially addressed by the use of enriched soluble boron and B 4 C as a control rod absorbing material. Wet annular burnable absorber (WABA) rods are used to flatten radial power distribution

  14. Regulatory Aspects of Clearance and Recycling of Metallic Material forming Part of Buildings of Nuclear Facilities in Germany

    International Nuclear Information System (INIS)

    Thierfeldt, Stefan; Woerlen, Stefan; Harding, Philip

    2014-01-01

    Metallic materials as part of buildings of nuclear installations, like reinforcement in concrete, anchor slabs, pipework buried in concrete, but also steel liners of water basins or anchor rails that are welded to the reinforcement steel etc. require special considerations during decommissioning. It is the aim to release as much of this material as possible for recycling (either by melting in conventional foundries or by melting in a controlled recycling plant for reuse in the nuclear field). This poses problems as on the one hand these metallic materials cannot be removed from the buildings prior to their demolition, while on the other hand they would in principle require a specific clearance procedure for which they should be available separately. Besides aspects of radiological characterisation and measurements, this is also a regulatory issue, as the competent authority has to grant clearance of materials that may not be fully characterised by measurements, but for which a significant part of the information required for clearance is inferred from the operational history, from conclusions by analogy and from other sources. This issue has been resolved in different ways in various NPPs in Germany. Examples of materials that pose problems of the kind listed above (including relevant contamination pathways) are given, together with examples for solving these problems by specific considerations in the clearance procedure. The clearance regulations for metal scrap in Germany require adherence to both mass specific and surface related clearance levels in Bq/g and Bq/cm 2 , respectively, which are similar to those as laid down in the EU recommendations RP 89/101. Therefore, approaches had to be developed for inferring sufficiently comprehensive and conservative estimates of the mass and surface related activities for metallic materials forming an integral part of buildings from measurements that do not cover 100% of the material. The ways are outlined in which the

  15. Usage of Recycled Pet

    Directory of Open Access Journals (Sweden)

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  16. Efficient prepreg recycling at low temperatures

    Science.gov (United States)

    Pannkoke, Kord; Oethe, Marcus; Busse, Jürgen

    When manufacturing fibre reinforced plastics engineers are still confronted with a lack of experience concerning efficient recycling methods for prepreg cutting waste. Normally, the prepregs are cured and subsequently milled to use them as a filler material for polymers. However, this method is expensive and it is difficult to find applications for the milled FRP. An alternative method to recycle CFRP prepregs will be presented in this paper. Cutting the uncured prepreg waste was done by means of a saw mill which was cooled down to low temperatures. Working temperatures of -30°C are sufficient to harden the uncured resin and to achieve cuttable prepregs. Furthermore, post-curing during the cutting process is avoided with this technique. The result is a `cotton'-like matted structure with random fibre orientation and fibre length distribution. Subsequent curing was done by means of a press and an autoclave, respectively. It will be shown by means of tension and bending tests that low-temperature cutting of uncured prepregs is a way to partly conserve the high valuation of FRP during recycling. Furthermore, it offers possibilities for various applications.

  17. External costs of material recycling strategies for fusion power plants

    International Nuclear Information System (INIS)

    Hallberg, B.; Aquilonius, K.; Lechon, Y.; Cabal, H.; Saez, R.M.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R.

    2003-01-01

    This paper is based on studies performed within the framework of the project Socio-Economic Research on Fusion (SERF3). Several fusion power plant designs (SEAFP Models 1-6) were compared focusing on part of the plant's life cycle: environmental impact of recycling the materials. Recycling was considered for materials replaced during normal operation, as well as materials from decommissioning of the plant. Environmental impact was assessed and expressed as external cost normalised with the total electrical energy output during plant operation. The methodology used for this study has been developed by the Commission of the European Union within the frame of the ExternE project. External costs for recycling, normalised with the energy production during plant operation, are very low compared with those for other energy sources. Results indicate that a high degree of recycling is preferable, at least when considering external costs, because external costs of manufacturing of new materials and disposal costs are higher

  18. Assessing changes on poly(ethylene terephthalate) properties after recycling: Mechanical recycling in laboratory versus postconsumer recycled material

    Energy Technology Data Exchange (ETDEWEB)

    López, María del Mar Castro, E-mail: quimcl02@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); Ares Pernas, Ana Isabel, E-mail: aares@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); Abad López, Ma José, E-mail: mjabad@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); and others

    2014-10-15

    Keeping rheological, mechanical and thermal properties of virgin poly(ethylene terephthalate), PET, is necessary to assure the quality of second-market applications. A comparative study of these properties has been undertaken in virgin, mechanical recycled and commercial recycled PET samples. Viscoelastic characterization was carried out by rheological measurements. Mechanical properties were estimated by tensile and Charpy impact strength tests. Thermal properties and crystallinity were evaluated by differential scanning calorimetry and a deconvolution procedure was applied to study the population of the different crystals. Molecular conformational changes related to crystallinity values were studied by FTIR spectroscopy. Variations in average molecular weight were predicted from rheology. Besides, the presence-absence of linear and cyclic oligomeric species was measured by mass spectrometry techniques, as MALDI-TOF. Mechanical recycled PET undergoes a significant decline in rheological, mechanical and thermal properties upon increasing the number of reprocessing steps. This is due to the cleavage of the ester bonds with reduction in molar mass and raise in cyclic oligomeric species, in particular [GT{sub c}]{sub n} and [GT{sub c}]{sub n}-G type. Chain shortening plus enrichment in trans conformers favour the crystallization process which occurs earlier and faster with modification in crystal populations. Additional physicochemical steps are necessary to preserve the main benefits of PET. - Highlights: • Combination of multiple techniques to characterize the effects of recycling in PET. • Cleavage of ester bonds reduced viscosity, Mw, toughness in mechanical recycled PET. • Virgin, mechanical recycled and commercial recycled PET differ in crystal populations. • Cyclic oligomers [GT{sub c}]{sub n} and [GT{sub c}]{sub n}-G increase from the fourth extrusion cycle onwards.

  19. Dual recycling for GEO 600

    International Nuclear Information System (INIS)

    Grote, H; Freise, A; Malec, M; Heinzel, G; Willke, B; Lueck, H; Strain, K A; Hough, J; Danzmann, K

    2004-01-01

    Dual recycling is the combination of signal recycling and power recycling; both optical techniques improve the shot-noise-limited sensitivity of interferometric gravitational-wave detectors. In addition, signal recycling can reduce the loss of light power due to imperfect interference and allows us, in principle, to beat the standard quantum limit. The interferometric gravitational-wave detector GEO 600 is the first of the kilometre-scale detectors to use signal recycling. We have recently equipped the detector with a signal-recycling mirror with a transmittance of 1%. In this paper, we present details of the detector commissioning and the first locks of the dual-recycled interferometer

  20. Research on the recycling industry development model for typical exterior plastic components of end-of-life passenger vehicle based on the SWOT method.

    Science.gov (United States)

    Zhang, Hongshen; Chen, Ming

    2013-11-01

    In-depth studies on the recycling of typical automotive exterior plastic parts are significant and beneficial for environmental protection, energy conservation, and sustainable development of China. In the current study, several methods were used to analyze the recycling industry model for typical exterior parts of passenger vehicles in China. The strengths, weaknesses, opportunities, and challenges of the current recycling industry for typical exterior parts of passenger vehicles were analyzed comprehensively based on the SWOT method. The internal factor evaluation matrix and external factor evaluation matrix were used to evaluate the internal and external factors of the recycling industry. The recycling industry was found to respond well to all the factors and it was found to face good developing opportunities. Then, the cross-link strategies analysis for the typical exterior parts of the passenger car industry of China was conducted based on the SWOT analysis strategies and established SWOT matrix. Finally, based on the aforementioned research, the recycling industry model led by automobile manufacturers was promoted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Recycling Mentors: an intergenerational, service-learning program to promote recycling and environmental awareness.

    Science.gov (United States)

    D'abundo, Michelle L; Fugate-Whitlock, Elizabeth I; Fiala, Kelly A

    2011-01-01

    The purpose of Recycling Mentors was to implement an intergenerational, service-learning program focused on promoting recycling and environmental awareness among students enrolled in Community Health (HEA 301) and Current Issues in Gerontology (GRN 440/540) and adults older than 60 years. Recycling Mentors was conducted in New Hanover County (NHC), North Carolina, where a moderate climate and coastal location attracts many tourists, retirees, and college students. A community like NHC is a good place to implement service-learning that educates both students and older adults about the benefits of recycling to individual health and the environment. During the Fall 2009 semester, undergraduate and graduate students completed institutional review board training and then conducted the program with older adults. The education component of Recycling Mentors included a pre/post survey, brochure, and scheduled visits. Overall, Recycling Mentors was positive service-learning experience with students identifying salient outcomes such as learning about recycling and the environment and working with older adults. In addition, teaching the education component of Recycling Mentors was good practice for students who will be the future health professionals. While service-learning and environmentally themed projects are common, a program that combines the 2 like Recycling Mentors is unique and has the potential to motivate individual change while positively impacting the local community and the environment.

  2. Evolution of water recycling in Australian cities since 2003.

    Science.gov (United States)

    Radcliffe, J C

    2010-01-01

    The prolonged Australian drought which commenced in 2002, and the agreement between Australia's Commonwealth and States/Territories governments to progress water reform through the National Water Initiative, has resulted in many new recycling projects in Australia's capital cities. Dual reticulation systems are being advanced in new subdivision developments in Sydney, Melbourne and Adelaide. Brisbane has installed three large Advanced Water Treatment Plants that are designed to send indirect potable recycled water to the Wivenhoe Dam which is Brisbane's principal water reservoir. Numerous water recycling projects are serving industry and agriculture. Experimental managed aquifer recharge is being undertaken with wetland-treated stormwater in Adelaide and reverse osmosis treated wastewater in Perth. New National Water Quality Management Strategy recycled water guidelines have been developed for managing environmental risks, for augmentation of drinking water supplies, for managed aquifer recharge and for stormwater harvesting and reuse. Many recent investments are part-supported through Commonwealth government grants. Desalination plants are being established in Melbourne and Adelaide and a second one in Perth in addition to the newly-operational plants in Perth, South-East Queensland and Sydney. Despite there being numerous examples of unplanned indirect potable recycling, most governments remain reluctant about moving towards planned potable recycling. There is evidence of some policy bans still being maintained by governments but the National Water Commission continues to reinforce the necessity of an even-handed objective consideration of all water supply options.

  3. Recycle Alaska: Reduce, Reuse, Recycle. Activities Handbook, Teacher's Guide, and Student Worksheets.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau.

    Recycling is a very important aspect of conserving the environment for future generations. This guide addresses the topic of litter prevention for the Alaskan environment and contains 42 activities. Activity topics covered include Natural Cycles, Human Interruption of Natural Cycles, Reduce, Reuse, Recycle and Recycled Classroom. Grade level,…

  4. The Diffusion Effect of MSW Recycling

    Directory of Open Access Journals (Sweden)

    Yi-Tui Chen

    2017-12-01

    Full Text Available The purpose of this paper is to compare the recycling performance for some waste fractions selected including food waste, bulk waste, paper, metal products, plastics/rubber and glass products and then to develop some directions for the future improvements. The priority of each waste fraction for recycling is also analyzed by using an importance-performance analysis. Traditionally, the recycling rate that is calculated by the ratio of waste recycled to waste collected is used as an indicator to measure recycling performance. Due to a large variation among waste fractions in municipal solid waste (MSW, the recycling rate cannot reflect the actual recycling performance. The ceiling of recycling rate for each waste fraction estimated from the diffusion models is incorporated into a model to calculate recycling performance. The results show that (1 the diffusion effect exists significantly for the recycling of most recyclables but no evidence is found to support the diffusion effect for the recycling of food waste and bulk waste; (2 the recycling performance of waste metal products ranks the top, compared to waste paper, waste glass and other waste fractions; (3 furthermore, an importance-performance analysis (IPA is employed to analyze the priority of recycling programs and thus this paper suggests that the recycling of food waste should be seen as the most priority item to recycle.

  5. Recycling wastewater offers solution to scarcity | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The scheme hinged on developing a simple household treatment system that ... water to be circulated to drip irrigation systems that very sparingly irrigate fruit trees, ... construction can be approved if greywater recycling is not part of the design.

  6. The development and prospects of the end-of-life vehicle recycling system in Taiwan.

    Science.gov (United States)

    Chen, Kuan-chung; Huang, Shih-han; Lian, I-wei

    2010-01-01

    Automobiles usually contain toxic substances, such as lubricants, acid solutions and coolants. Therefore, inappropriate handling of end-of-life vehicles (ELVs) will result in environmental pollution. ELV parts, which include metallic and non-metallic substances, are increasingly gaining recycling value due to the recent global shortage of raw materials. Hence, the establishment of a proper recycling system for ELVs will not only reduce the impact on the environment during the recycling process, but it will also facilitate the effective reuse of recycled resources. Prior to 1994, the recycling of ELVs in Taiwan was performed by related operators in the industry. Since the publishing of the "End-of-life vehicle recycling guidelines" under the authority of the Waste Disposal Act by the Environmental Protection Administration (EPA) in 1994, the recycling of ELVs in Taiwan has gradually become systematic. Subsequently, the Recycling Fund Management Board (RFMB) of the EPA was established in 1998 to collect a Collection-Disposal-Treatment Fee (recycling fee) from responsible enterprises for recycling and related tasks. Since then, the recycling channels, processing equipment, and techniques for ELVs in Taiwan have gradually become established. This paper reviews the establishment of the ELV recycling system, analyzes the current system and its performance, and provides some recommendations for future development. The reduction of auto shredder residue (ASR) is a key factor in maximizing the resource recovery rate and recycling efficiency. The RFMB needs to provide strong economic incentives to further increase the recycling rate and to encourage the automobile industry to design and market greener cars. 2010 Elsevier Ltd. All rights reserved.

  7. Compression Molding of Composite of Recycled HDPE and Recycled Tire Particles

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.; Chen, Zhengyu; Li, Yanze; Peng, Linda

    1996-01-01

    Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.

  8. Certified Electronics Recyclers

    Science.gov (United States)

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  9. Status of electronic waste recycling techniques: a review.

    Science.gov (United States)

    Abdelbasir, Sabah M; Hassan, Saad S M; Kamel, Ayman H; El-Nasr, Rania Seif

    2018-05-08

    The increasing use of electrical and electronic equipment leads to a huge generation of electronic waste (e-waste). It is the fastest growing waste stream in the world. Almost all electrical and electronic equipment contain printed circuit boards as an essential part. Improper handling of these electronic wastes could bring serious risk to human health and the environment. On the other hand, proper handling of this waste requires a sound management strategy for awareness, collection, recycling, and reuse. Nowadays, the effective recycling of this type of waste has been considered as a main challenge for any society. Printed circuit boards (PCBs), which are the base of many electronic industries, are rich in valuable heavy metals and toxic halogenated organic substances. In this review, the composition of different PCBs and their harmful effects are discussed. Various techniques in common use for recycling the most important metals from the metallic fractions of e-waste are illustrated. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical, or biohydrometallurgical routes is also discussed, along with alternative uses of non-metallic fraction. The data are explained and compared with the current e-waste management efforts done in Egypt. Future perspectives and challenges facing Egypt for proper e-waste recycling are also discussed.

  10. Resource conservation through beverage container recycling

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L L; Wolsky, A M

    1983-01-01

    This paper compares resource use for new and recycled polyester soft drink bottles with the glass bottles they displace, to determine the alternatives with minimum resource burden. A mechanism is then suggested for encouraging one efficient alternative. Since the introduction of plastic soft-drink bottles in 1977, the 2 1. container has captured almost the entire U.S. market. The number of PET bottles used in 1981 was 2.4 billion, and could grow to 14 billion by 1990 if the penetration into the 0.5 1. market is as rapid as some experts predict (2). Consumers value the PET bottle's light weight and unbreakability. However, plastic bottles are made from oil and gas feedstocks which are imported and becoming more expensive. Recycling drastically reduces the oil and gas required to supply these bottles; recycling PET from bottles to other uses could save on the order of six million barrels of oil equivalent per year by 1990. A simple and economic technology is available for performing this recovery, yet only 5% of the bottles used in 1980 were returned. What is missing is an effective inducement for bottle return. The reverse-vending machines that we propose can provide part of that inducement by eliminating the inconvenience that now surrounds the sale of empty bottles to recyclers. These machines would dispense coins in return for empty PET bottles, and could be located in supermarkets or their parking lots. We believe the design, construction, and use of such machines is an opportunity that has been overlooked.

  11. Technological advances in (U,Pu)O2 CRO recycling using microwave heating

    International Nuclear Information System (INIS)

    Das, D.K.; Singh, G.; Khot, P.M; Kumar, S.; Mishra, A.K.; Behere, P.G.; Afzal, Mohd; Kumar, Arun

    2014-01-01

    A batch type wet recycling process viz. microwave direct de-nitration and calcination technique (MWDDC) has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, India. The process was developed for complete and multiple recycling of PFBR clean rejected (U,Pu)O 2 MOX fuel pellets (CRO) up to 30(wt%) of PuO 2 . The complete recycling of CRO containing higher Pu content with conventional dry recycling was difficult to achieve and certain amount of virgin powder is always needed to obtain the required product characteristics. The conditioned co-de-nitrated powder via MWDDC process have more or less similar characteristics to that of virgin powder with respect to particle size, apparent and tap density, surface area. This paper presents an insight into MWDDC process details and recent advancements made for improvement of powder and product characteristics. Low temperature microwave calcination (LTMC) was incorporated to improve the quality of co-de-nitrated powder with regard to volatile impurities and nitrate content. MWDDC powder and pellets were subjected to extensive chemical and physical characterization as per PFBR specification document. MOX pellets were fabricated from virgin and MWDDC powder via powder oxide pelletizing route and characterized. The homogeneity in the MOX pellets fabricated from MWDDC powder was found as good as that of virgin. Industrial microwave heating systems are indigenously developed and have advanced applicator and wave transmission designs to achieve high throughput, precise control of microwave power hence the temperature during the course of the process. It was demonstrated that MWDDC is a novel technique for (U,Pu)O 2 MOX rejects recycling in view of complete and multiple recycling. Key words: (U,Pu)O 2 MOX, CRO, Recycling, MWDDC. (authors)

  12. Cell phone recycling experiences in the United States and potential recycling options in Brazil.

    Science.gov (United States)

    Silveira, Geraldo T R; Chang, Shoou-Yuh

    2010-11-01

    This paper presents an overview of cell phone recycling programs currently available in the United States. At the same time, it also provides analyses of the current recycling situation and possible recycling alternatives for Brazil. Although there are several recycling options in the United States, collection rates are still only 10% of all potential devices because customers are not aware of these possibilities. The whole system is financially based on reselling refurbished cell phones and recycled materials to developing countries which represent an effective and strong market. Several recyclers offer funds to collection partners who are either charities or who work with charities while obtaining the materials that they need in order to run their operations. A mobile phone recycling system for Brazil considering the United States experience and the Extended Producer Responsibility (EPR) principle is suggested. A deposit/refund/advance-recycling fee is proposed which might be implemented as a voluntary industrial initiative managed by PRO Brazil, a producer responsibility organization. One widespread public-private agreement will integrate all mobile phone stakeholders, and environmental education actions and promotional events will promote citizen's participation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull. 2007; 6(4: 307-312

  14. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull 2007; 6(4.000: 307-312

  15. Reusing and recycling in Saskatchewan: Environmental benefits of reusing and recycling

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    After an introduction explaining the environmental benefits of reusing and recycling, as well as providing suggestions on minimizing waste and conserving energy, a directory of recyclers and handlers of various kinds of waste in Saskatchewan is presented. Names, addresses/telephone numbers, and types of materials accepted are given for recyclers of animal products, clothing or textiles, glass, compostable materials, industrial hardware, metals, office products, paper, plastic, and tires. Collection depots in the SARCAN recycling program for beverage containers are listed, giving town name, address, hours of operation, and telephone number. Receivers of waste dangerous goods are listed under the categories of ozone-depleting substances, waste batteries, solvents, lubricating oils and oil filters, paint, flammable liquids, antifreeze, drycleaning waste, and miscellaneous.

  16. Recycling of Paper and Cardboard

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    waste. Recycling of paper and cardboard production waste and postconsumer waste has a long history in the pulp and paper industry. The recycled material now makes up more than half of the raw material used in European pulp and paper industry (ERPC, 2004). This chapter describes briefly how paper...... and cardboard are produced and how waste paper is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of paper recycling....

  17. Use of recycled plastics in concrete: A critical review.

    Science.gov (United States)

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of PFC recycling conditions on JET pedestal density

    International Nuclear Information System (INIS)

    Wiesen, S.; Brezinsek, S.; Dittmar, T.; Matveev, D.; Harting, D.; De la Luna, E.; Schmid, K.

    2016-01-01

    There is experimental evidence that the pedestal dynamics in type-I ELMy H-mode discharges is significantly affected by a change in the recycling conditions at the tungsten plasma-facing components (W-PFCs) after an ELM event. The integrated code JINTRAC has been employed to assess the impact of recycling conditions during type-I ELMs in JET ITER-like wall H-mode discharges. By employing a heuristic approach, a model to mimic the physical processes leading to formation and release (i.e. outgassing) of finite near-surface fuel reservoirs in W-PFCs has been implemented into the EDGE2D-EIRENE plasma-wall interaction code being part of JINTRAC. As main result it is shown, that a delay in the density pedestal build-up after an ELM event can be provoked by reduced recycling induced by depleted W-PFC particle near-surface reservoirs. However the pedestal temperature evolution is barely affected by the change in recycling parameters suggesting that the presented model is incomplete. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  19. Strengthening education in human values - The Link between Recycling and Climate Change

    Science.gov (United States)

    Kastanidou, Sofia

    2014-05-01

    This work is an environmental education program of 50 hours- off curriculum, currently run by High school of Nikaia - Larissas. I as coordinator teacher, another two teachers and 24 students participate in this program. Intended learning outcomes: students will be able to define the importance of climate change, to evaluate the effect of human activities on climate, and to recognize the role of recycling in preventing global climate change. It is an environmental program with social goals. That means students have to understand the link between human and environment and learn how to combine environmental protection with human help. As a consequence collaboration has already begun between High school of Nikaia and the Paraplegic & Physically Disabled Association of Pella-Greece. This is a nonprofit association that collects plastic caps; with the contribution of a recycling company the Paraplegic Association converts plastic caps in wheelchairs and gives them to needy families. So, recycling caps becomes a meaningful form of environmental and social activism. Students are educated about the meaning of recycling and encouraged to collect all types of plastic caps; they are also educated in the meaning of helping people. Further, this environmental education program consists of two parts, a theoretical and a practical one: a) Theoretical part: education is an essential element of the global response to climate change, so students have to research on climate change; they visit the Center for Environmental Education in Florina and experience the aquatic ecosystem of Prespa lakes; specialists of the Centre inform students about the effects of climate change on wetlands; students have further to research how recycling can help fight global climate change as well as examine how recycling a key component of modern waste reduction is, as the third component of the "Reduce, Reuse, Recycle" waste hierarchy; they discover the interdependence of society, economy and the natural

  20. Water Recycling in Australia

    Directory of Open Access Journals (Sweden)

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  1. Recycling of concrete

    International Nuclear Information System (INIS)

    Halaszovich, S.

    1988-01-01

    The paper reviews potentials and problems of disposal or recycling of concrete removed from nuclear installations. Due to the difficulties in determining radioactivity limits that are compatible with utilization of recycled material in practice, a method is proposed that takes into account inhalation of dusts, as occurring during the reprocessing or recycling of the concrete, for instance in road building. This method is based on the maximum permissible radioactivity uptake by inhalation of a nuclide mixture of unknown composition. (RB) [de

  2. Flexural Behavior of Corroded Reinforced Recycled Aggregate Concrete Beams

    Directory of Open Access Journals (Sweden)

    Taoping Ye

    2018-01-01

    Full Text Available Recycling concrete not only reduces the use of virgin aggregate but also decreases the pressure on landfills. As a result, recycled coarse aggregate (RCA is extensively recommended for new construction projects. However, the flexural behavior of corroded reinforced recycled aggregate concrete (RAC beams is uncertain. The experimental research presented in this paper was performed to investigate the flexural behavior of corroded reinforced RAC beams compared to that of corroded reinforced natural aggregate concrete (NAC beams and consequently explore the possibility of using RAC beams in corrosive environments. Four different percentages of RCA in total mass of coarse aggregate in concrete mixtures (0%, 33%, 66%, and 100% and two different concrete strengths (C30, C60 were the governing parameters. The electrochemical method was adopted to accelerate steel corrosion. Full-scale tests were performed on eight simply supported beams until the failure load was reached. Comparison of load-deflection behavior, crack patterns, failure modes, ductility, and ultimate flexural capacity of corroded reinforced NAC and RAC beams was made based on the experimental results obtained. The comparison results show that the flexural behavior of corroded reinforced RAC beams with an appropriate percentage of RCA is satisfactory compared to the behavior of NAC beams.

  3. Methadone Recycling Sustains Drug Reservoir in Tissue.

    Science.gov (United States)

    Linares, Oscar A; Fudin, Jeffrey; Daly, Annemarie; Schiesser, William E; Boston, Raymond C

    2015-09-01

    We hypothesize that there is a tissue store of methadone content in humans that is not directly accessible, but is quantifiable. Further, we hypothesize the mechanism by which methadone content is sustained in tissue stores involves methadone uptake, storage, and release from tissue depots in the body (recycling). Accordingly, we hypothesize that such tissue stores, in part, determine plasma methadone levels. We studied a random sample of six opioid-naïve healthy subjects. We performed a clinical trial simulation in silico using pharmacokinetic modeling. We found a large tissue store of methadone content whose size was much larger than methadone's size in plasma in response to a single oral dose of methadone 10 mg. The tissue store measured 13-17 mg. This finding could only be explained by the contemporaneous storage of methadone in tissue with dose recycling. We found that methadone recycles 2-5 times through an inaccessible extravascular compartment (IAC), from an accessible plasma-containing compartment (AC), before exiting irreversibly. We estimate the rate of accumulation (or storage) of methadone in tissue was 0.029-7.29 mg/h. We predict 39 ± 13% to 83 ± 6% of methadone's tissue stores "spillover" into the circulation. Our results indicate that there exists a large quantifiable tissue store of methadone in humans. Our results support the notion that methadone in humans undergoes tissue uptake, storage, release into the circulation, reuptake from the circulation, and re-release into the circulation, and that spillover of methadone from tissue stores, in part, maintain plasma methadone levels in humans.

  4. Effect of Radiation Processing as an Integral Part of Safe Recycling Kitchen Waste for Poultry Feed

    International Nuclear Information System (INIS)

    Farag, M.; Diaa El-Din, H.

    2004-01-01

    Kitchen wastes are relevant as a source of organic matter (i.e. protein, carbohydrate, minerals, and vitamins). Several microorganisms break down organic matter into methane, carbon dioxide, and other organic compounds containing sulfur and halogens. Kitchen wastes are valuable whereas they are too hazardous to be rejected into the environment without any attempt to recover and recycle them in a valuable form. Recycling kitchen waste as a feedstuff could have a considerable effect on reducing costs and solving some disposal problems. Treated such wastes with ionizing radiation can make an important contribution to minimize the risk of pathogens and the emission of greenhouse gases. The study was undertaken with two hundred and thirty kitchen waste samples collected from different restaurants in Cairo, Egypt. Effect of radiation treatment at 10 kGy on crude protein, amino acids profile, available lysine and the in-vitro digestibility of kitchen waste protein have been studied. The results suggest that radiation pasteurization of dried kitchen waste has a beneficial effect on recycling of such waste and permits waste to be included in poultry ration without any health hazard and nutritional problem. (author)

  5. Resource and waste taxation in the theory of the firm with recycling activities

    International Nuclear Information System (INIS)

    Conrad, K.

    1999-01-01

    The management of solid waste has become an urgent problem in nations with a great population density. Accordingly, waste reduction through source reduction and recycling has become increasingly important. Our purpose is to show how prevention, recycling and disposal of waste could be part of a theory of the firm. We first derive efficient production functions from production processes with waste as a by-product. Waste obtained as new scrap can partially be recycled by using additional inputs in order to cut back the purchase of virgin material. Waste not completely recyclable will leave the firm as disposal which also entails cost to the firm. We use the dual cost function approach to develop a theory of the firm under solid residual management. Since the producer does not bear the full cost of disposal, there will be a bias toward virgin materials and away from recycling. The goal of the government is to stimulate the firms to recycle with respect to the preservation of exhaustible resources. An incentive to recycle is a tax on resources or on waste. In order to determine the tax levels the government maximizes welfare subject to the dynamic constraint for decumulation of land fill for waste deposits. This gives the user cost and its time profile for taxing waste disposal or virgin material. In a comparative statistics analysis we compare the effect of taxes on waste vs. virgin material on effort to produce in a resource saving manner, on the quantity of recycled material, on output, and on the reduction of waste. Since the impact of environmental regulation on employment is important, our model detects seven effects on labor demand as part of resource conservation policy. We finally carry out a comparative statistics analysis of waste intensive firms operating in different market structures. Of interest is the impact of a resource or waste taxation on market volume, on the number of firms, on resource saving effort, and on profit. 36 refs

  6. Lessons learned from the blue box recycling program

    Energy Technology Data Exchange (ETDEWEB)

    St Jacques, H. [Informa Market Research Co. Ltd., Toronto, ON (Canada)

    2000-06-01

    The success of the Ontario Blue Box recycling program was described. The program, which was initiated by municipalities, is seen as a strong act for the environment which helps connect public behaviour with values. Canada produces the most waste per capita and is the second largest producer of greenhouse gases per capita. The program began in Kitchener, Ontario in 1981 in response to local pressure to take action to reduce waste. By 1998, 3,850,000 of 4,238,000 households in Ontario had access to the program with a participation rate of 90 per cent. In that year alone, 1,841,000 tonnes of household materials were recycled and diverted from the waste stream. The core materials that were initially collected at household curb sides were newsprint, glass containers, steel and aluminium cans. Apartment recycling was introduced as the program evolved but it is still a challenge to achieve recycling efficiencies in multi-unit residential buildings. The success of the program has been attributed to the fact that it was introduced at the right time and tapped into the strong desire to reduce the visible impact of consumerism. It provided a way to do an environmentally good thing with a minimum of inconvenience. Initially, the system was overwhelmed with an excess of recycled material and the closed loop system of the early days was full of gaps. Materials were stockpiled and waiting market development which would finally result in remanufacturing the recycled goods into new products. This part developed more slowly since market values priced virgin materials at lower costs. It was cautioned that this economic reality still applies and will not be corrected until full cost accounting is introduced. 4 tabs.

  7. Aluminium beverage can recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lewinski, A von

    1985-08-01

    Canned beverages have become a controversial issue in this era of ecological sensitivity. METALL has already discussed the problem of can recycling. The present article discusses the technical aspects of aluminium can recycling. Two further articles will follow on aluminium can recycling in North America and on the results of European pilot projects.

  8. The Fernald Waste Recycling Program

    International Nuclear Information System (INIS)

    Motl, G.P.

    1993-01-01

    Recycling is considered a critical component of the waste disposition strategy at the Fernald Plant. It is estimated that 33 million cubic feet of waste will be generated during the Fernald cleanup. Recycling some portion of this waste will not only conserve natural resources and disposal volume but will, even more significantly, support the preservation of existing disposition options such as off-site disposal or on-site storage. Recognizing the strategic implications of recycling, this paper outlines the criteria used at Fernald to make recycle decisions and highlights several of Fernald's current recycling initiatives

  9. Recycling of photovoltaic end-of-life panels. International overview. Extended abstract

    International Nuclear Information System (INIS)

    Billard, Yannael; Bazin, F.; Lacroix, O.; Antonini, Gerard; Couffignal, Benedicte; Arnaud, Swellen; Binesti, Didier; Cimolino, Lauro; Fangeat, Erwann; Rance, Melanie; Soleille, Sebastien; Veronneau, Cyrille

    2012-10-01

    Since the early 2000's, the general awareness surrounding the importance of recycling by the users and producers of photovoltaic modules has contributed to the emergence of the end-of-life photovoltaic modules recycling activity. This awareness can be attributed to the growing concern on natural resource conservation; the natural shortage in some strategic metals used in photovoltaic; the reinforcement of regulatory framework on waste management in some countries; and the answer given to raising questions regarding the renewability of photovoltaic. In fact, the last ten years have been marked by significant research efforts, which have finally lifted the main technological barriers associated with the recycling of photovoltaic modules. Economically, the activity of recycling photovoltaic modules is not yet viable today, and is instead based on sources of compensation from the client, producer or organizations in charge of the modules collection, on top of the sale of recycled materials. Technology developers are now cautious of investment because the waste stream is still too weak and poorly controlled, the photovoltaic market is unstable, and high competitiveness is indicative of a recycling overcapacity, which could be increasingly significant by 2020. Following the definition of the study bases, the regulatory framework active in specific regions of the world is described, and an objective overview of the developing recycling sector is provided by analyzing all recycling processes, its organizational segmentation and the internal structure of relevant actors. The synthesis of this data provides a realistic guideline on the maturity of the industry and key strategies for the development of activities within this sector. Indeed, the success of this activity will rest partly on the ability of recycling actors to adapt their business model and administrative system to local regulatory framework, and adapt the size of their installation to the transitory volume

  10. Lead use and recycling at the INEL

    International Nuclear Information System (INIS)

    Losinski, S.J.; Thurmond, S.M.

    1995-08-01

    As part of DOE's efforts to develop a Department-wide management strategy for the use, reuse, and recycle of lead, DOE has requested that each site provide site-specific management and use practices for lead, specifically management and use information that responds to four specific questions of interest. This report provides the Idaho National Engineering Laboratory's response to those areas of interest

  11. Expansive development of a decommissioning program 'recycle simulator' in nuclear power station

    International Nuclear Information System (INIS)

    Nishiuchi, T.; Ozaki, S.; Hironaga, M.

    2004-01-01

    A decommissioning program 'Recycle Simulator' should be put into practice in careful consideration of both recycle of non-radioactive wastes and reduce of radioactive wastes in the coming circulatory social system. Nevertheless current support systems for decommissioning planning mainly deal with decontamination, safety storage and dismantlement, so-called the prior part of the total decommissioning process. Authors emphasize the necessity of total planning of decommissioning including recycle or reuse of a large amount of demolition materials and are propelling the development of the multi expert system named 'Recycle Simulator'. This paper presents an algorithm of the recycling and reusing scenario of demolition materials and a summarized configuration. 'Recycle Simulator' for the demolished concrete was developed in 2000 and presented at a previous International Conference on Nuclear Engineering. Construction of a supporting multi expert system for the totally planning of decommissioning projects is objected by expansive development of the previous version. 3 main conclusions obtained from this paper are the following. (1) The previously developed expert system was advanced in its estimation function toward the satisfaction of decommissioning planners. (2) The applicability of the system was enlarged to all the radioactive and non-radioactive wastes, demolished metal and concrete products, in a corresponding site of decommissioning. (3) Finally decommissioning recycle simulator was completed in a harmonized unification. (authors)

  12. The recycling is moving

    CERN Multimedia

    GS Department

    2011-01-01

    The recycling site currently situated near building 133 has been transferred to the car park of building 156. The site is identified by the sign “RECYCLING” and the above logo. In this new, more accessible site, you will find recycling bins for the following waste: PET (recyclable plastic bottles); Aluminium cans; Nespresso coffee capsules.  

  13. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  14. Utilization of cement treated recycled concrete aggregates as base or subbase layer in Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Ebrahim Abu El-Maaty Behiry

    2013-12-01

    Full Text Available Recently, environmental protection has a great concern in Egypt where recycling of increased demolition debris has become a viable option to be incorporated into roads applications. An extensive laboratory program is conducted to study the feasibility of using recycled concrete aggregate (RCA mixed with traditional limestone aggregate (LSA which is currently being used in base or subbase applications in Egypt. Moreover, the influence of mixture variables on the mechanical properties of cement treated recycled aggregate (CTRA is investigated. Models to predict the compressive and tensile strengths based on mixture parameters are established. The results show that the adding of RCA improves the mechanical properties of the mixture where the unconfined compressive strength (UCS is taken as an important quality indicator. Variables influencing the UCS such as cement content, curing time, dry density play important roles to determine the performance of CTRA.

  15. "We Was Regenerated Out": Regeneration, Recycling and Devaluing Communities

    Directory of Open Access Journals (Sweden)

    Luna Glucksberg

    2014-12-01

    Full Text Available This article looks at well documented processes of urban regeneration and community displacement in the inner-city through an innovative anthropological perspective focused on concepts of waste and value. Using the notion of symbolic devaluation of the working classes developed by Skeggs (1997; 2004, it traces their exclusion from recycling practices while at the same time the estates they live on are being regenerated. Raising questions about the parallels and contradictions between regeneration and recycling, it shows how symbolic devaluation of specifi c areas and their inhabitants are necessary precursors of the physical demolition and removal that characterize regeneration processes. Through an ethnographic approach, the deep connections between people and their waste, and people as waste, are exposed and questioned, showing how valuable middle class selves are produced through appropriate waste management procedures, i.e. individualized recycling, while inner-city, estate dwellers are remade into uncaring, unworthy citizens who cannot take part in this value-producing circuit.

  16. Comparative environmental assessment of natural and recycled aggregate concrete.

    Science.gov (United States)

    Marinković, S; Radonjanin, V; Malešev, M; Ignjatović, I

    2010-11-01

    Constant and rapid increase in construction and demolition (C&D) waste generation and consumption of natural aggregate for concrete production became one of the biggest environmental problems in the construction industry. Recycling of C&D waste represents one way to convert a waste product into a resource but the environment benefits through energy consumption, emissions and fallouts reductions are not certain. The main purpose of this study is to determine the potentials of recycled aggregate concrete (concrete made with recycled concrete aggregate) for structural applications and to compare the environmental impact of the production of two types of ready-mixed concrete: natural aggregate concrete (NAC) made entirely with river aggregate and recycled aggregate concrete (RAC) made with natural fine and recycled coarse aggregate. Based on the analysis of up-to-date experimental evidence, including own tests results, it is concluded that utilization of RAC for low-to-middle strength structural concrete and non-aggressive exposure conditions is technically feasible. The Life Cycle Assessment (LCA) is performed for raw material extraction and material production part of the concrete life cycle including transport. Assessment is based on local LCI data and on typical conditions in Serbia. Results of this specific case study show that impacts of aggregate and cement production phases are slightly larger for RAC than for NAC but the total environmental impacts depend on the natural and recycled aggregates transport distances and on transport types. Limit natural aggregate transport distances above which the environmental impacts of RAC can be equal or even lower than the impacts of NAC are calculated for the specific case study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Fundamentally Flawed: Extension Administrative Practice (Part 1).

    Science.gov (United States)

    Patterson, Thomas F., Jr.

    1997-01-01

    Extension's current administrative techniques are based on the assumptions of classical management from the early 20th century. They are fundamentally flawed and inappropriate for the contemporary workplace. (SK)

  18. Tire Recycling

    Science.gov (United States)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  19. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  20. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    International Nuclear Information System (INIS)

    Wäger, Patrick A.; Hischier, Roland

    2015-01-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses

  1. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    Energy Technology Data Exchange (ETDEWEB)

    Wäger, Patrick A., E-mail: patrick.waeger@empa.ch; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses.

  2. 40 CFR 261.6 - Requirements for recyclable materials.

    Science.gov (United States)

    2010-07-01

    ..., following its original use, for any purpose (including the purpose for which the oil was originally used...)) for purpose of recovery is subject to the requirements of 40 CFR part 262, subpart H, if it is subject... recycling process itself is exempt from regulation except as provided in § 261.6(d).) (2) Owners or...

  3. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  4. Nuclear reactor recyclation device

    International Nuclear Information System (INIS)

    Takigawa, Yukio; Chuma, Kazuto

    1987-01-01

    Purpose: To prevent the unevenness for the coolant flow rate even when abnormality occurs to one of recycling pumps. Constitution: A plurality of jet pumps disposed at an interval around the reactor core are divided circumferentially into two sets, and a pipeway is disposed to the outside of each pair including recycling pumps corresponding to each of the sets. The pipeway is connected to the recycling inlet of the jet pump by way of a manifold. The discharge portion of the recycling pumps of the loop pipeway are connected with each other by way of communication pipes, and a normally closed valve is disposed to the communication pipe and the normally closed valve of the communication pipe is opened upon detecting abnormality for one of the recycling pumps. Thus, if either one of the pair of recycling pumps shows abnormal state, coolants flows from the other of pipeway to the outside of the loop pipeway and coolants are supplied from all the jet pumps to the reactor core portion and, accordingly, the not-uniform flow rate can be prevented to eliminate undesired effect on the reactor core. (Kamimura, M.)

  5. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  6. Length sensing and control of a Michelson interferometer with power recycling and twin signal recycling cavities.

    Science.gov (United States)

    Gräf, Christian; Thüring, André; Vahlbruch, Henning; Danzmann, Karsten; Schnabel, Roman

    2013-03-11

    The techniques of power recycling and signal recycling have proven as key concepts to increase the sensitivity of large-scale gravitational wave detectors by independent resonant enhancement of light power and signal sidebands within the interferometer. Developing the latter concept further, twin signal recycling was proposed as an alternative to conventional detuned signal recycling. Twin signal recycling features the narrow-band sensitivity gain of conventional detuned signal recycling but furthermore facilitates the injection of squeezed states of light, increases the detector sensitivity over a wide frequency band and requires a less complex detection scheme for optimal signal readout. These benefits come at the expense of an additional recycling mirror, thus increasing the number of degrees of freedom in the interferometer which need to be controlled.In this article we describe the development of a length sensing and control scheme and its successful application to a tabletop-scale power recycled Michelson interferometer with twin signal recycling. We were able to lock the interferometer in all relevant longitudinal degrees of freedom and thus laid the foundation for further investigations of this interferometer configuration to evaluate its viability for the application in gravitational wave detectors.

  7. Nuclear recycling: costs, savings, and safeguards

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1985-01-01

    This chapter discusses the economics, physical and chemical processes, and safety of nuclear fuel recycling. The spent fuel must be chemically reprocessed in order to recover uranium and plutonium. Topics considered include indifference costs, recycling in light water reactors (LWRs), plutonium in fast reactors, the choice between recycling and storage, safeguards, and weapons proliferation. It is shown that the economics of recycling nuclear fuel involves the actual costs and savings of the recycling operation in terms of money spent, made, and saved, and the impact of the recycling on the future cost of uranium

  8. Benchmarking survey for recycling.

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  9. Waste collection systems for recyclables: An environmental and economic assessment for the municipality of Aarhus (Denmark)

    International Nuclear Information System (INIS)

    Larsen, A.W.; Merrild, H.; Moller, J.; Christensen, T.H.

    2010-01-01

    Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed by means of a life cycle assessment and an assessment of the municipality's costs. Kerbside collection would provide the highest recycling rate, 31% compared to 25% in the baseline scenario, but bring schemes with drop-off containers would also be a reasonable solution. Collection of recyclables at recycling centres was not recommendable because the recycling rate would decrease to 20%. In general, the results showed that enhancing recycling and avoiding incineration was recommendable because the environmental performance was improved in several impact categories. The municipal costs for collection and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought.

  10. Resource Efficient Metal and Material Recycling

    Science.gov (United States)

    Reuter, Markus A.; van Schaik, Antoinette

    Metals enable sustainability through their use and their recyclability. However, various factors can affect the Resource Efficiency of Metal Processing and Recycling. Some typical factors that enable Resource Efficiency include and arranged under the drivers of sustainability: Environment (Maximize Resource Efficiency — Energy, Recyclates, Materials, Water, Sludges, Emissions, Land); Economic Feasibility (BAT & Recycling Systems Simulation / Digitalization, Product vis-à-vis Material Centric Recycling); and Social — Licence to Operate (Legislation, consumer, policy, theft, manual labour.). In order to realize this primary production has to be linked systemically with typical actors in the recycling chain such as Original Equipment Manufacturers (OEMs), Recyclers & Collection, Physical separation specialists as well as process metallurgical operations that produce high value metals, compounds and products that recycle back to products. This is best done with deep knowledge of multi-physics, technology, product & system design, process control, market, life cycle management, policy, to name a few. The combination of these will be discussed as Design for Sustainability (DfS) and Design for Recycling (DfR) applications.

  11. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  12. Additive Manufacturing of Syntactic Foams: Part 1: Development, Properties, and Recycling Potential of Filaments

    Science.gov (United States)

    Singh, Ashish Kumar; Patil, Balu; Hoffmann, Niklas; Saltonstall, Brooks; Doddamani, Mrityunjay; Gupta, Nikhil

    2018-03-01

    This work focuses on developing filaments of high-density polyethylene (HDPE) and their hollow particle-filled syntactic foams for commercial three-dimensional (3D) printers based on fused filament fabrication technology. Hollow fly-ash cenospheres were blended by 40 wt.% in a HDPE matrix to produce syntactic foam (HDPE40) filaments. Further, the recycling potential was studied by pelletizing the filaments again to extrude twice (2×) and three times (3×). The filaments were tensile tested at 10-4 s-1, 10-3 s-1, and 10-2 s-1 strain rates. HDPE40 filaments show an increasing trend in modulus and strength with the strain rate. Higher density and modulus were noticed for 2× filaments compared to 1× filaments because of the crushing of some cenospheres in the extrusion cycle. However, 2× and 3× filament densities are nearly the same, showing potential for recycling them. The filaments show better properties than the same materials processed by conventional injection molding. Micro-CT scans show a uniform dispersion of cenospheres in all filaments.

  13. Study of plutonium multi-recycle in high moderation LWR cores

    International Nuclear Information System (INIS)

    Iwata, Yutaka; Yamamoto, Toru; Ueji, Masao; Hibi, Koki; Aoyama, Motoo; Sakurada, Koichi

    2000-01-01

    Nuclear Power Engineering Corporation (NUPEC) has been studying advanced cores that are dedicated to enhance the plutonium consumption per recycling for effective use of plutonium. In this study, a fissile plutonium consumption rate is adopted as an index of the effective use of plutonium, which is defined as a ratio of consumption to loading of fissile plutonium in a core. High moderation core concepts have been studied in order to increase this index based on full MOX cores in the latest designs of LWRs in Japan that are the Advanced Boiling Water Reactor (ABWR) and the Advanced Pressurized Water Reactor (APWR). As a part of this study, core performance in the case of plutonium multi-recycling has been surveyed with these higher moderation cores aiming further effective use of plutonium. The design and analyses for equilibrium cores show that nuclear and thermal hydraulics parameters satisfy design criteria, and a fissile plutonium consumption rate increases up to 20% for ABWRs and 30% for APWRs even in plutonium multi-recycling condition. It was confirmed that the high moderation cores are feasible from a viewpoint of nuclear and thermal hydraulics, safety and plutonium consumption in the condition of plutonium multi-recycling. (author)

  14. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Manchiraju

    2012-03-27

    Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

  15. Effect of recycling activities on the heating value of solid waste: case study of the Greater Vancouver Regional District (Metro Vancouver).

    Science.gov (United States)

    Abedini, Ali R; Atwater, James W; Fu, George Yuzhu

    2012-08-01

    Two main goals of the integrated solid waste management system (ISWMS) of Metro Vancouver (MV) include further recycling of waste and energy recovery via incineration of waste. These two very common goals, however, are not always compatible enough to fit in an ISWMS depending on waste characteristics and details of recycling programs. This study showed that recent recycling activities in MV have negatively affected the net heating value (NHV) of municipal solid waste (MSW) in this regional district. Results show that meeting MV's goal for additional recycling of MSW by 2015 will further reduce the NHV of waste, if additional recycling activities are solely focused on more extensive recycling of packaging materials (e.g. paper and plastic). It is concluded that 50% additional recycling of paper and plastic in MV will increase the overall recycling rate to 70% (as targeted by the MV for 2015) and result in more than 8% reduction in NHV of MSW. This reduction translates to up to 2.3 million Canadian dollar (CAD$) less revenue at a potential waste-to-energy (WTE) plant with 500 000 tonnes year(-1) capacity. Properly designed recycling programmes, however, can make this functional element of ISWMS compatible with green goals of energy recovery from waste. Herein an explanation of how communities can increase their recycling activities without affecting the feasibility of potential WTE projects is presented.

  16. You're a "What"? Recycling Coordinator

    Science.gov (United States)

    Torpey, Elka Maria

    2011-01-01

    Recycling coordinators supervise curbside and dropoff recycling programs for municipal governments or private firms. Today, recycling is mandatory in many communities. And advancements in collection and processing methods have helped to increase the quantity of materials for which the recycling coordinator is responsible. In some communities,…

  17. National plan for the radioactive and recyclable wastes management of the national inventory of the radioactive and recyclable wastes to an account and a prospective outlook of the pathways of long dated management of radioactive wastes in France

    International Nuclear Information System (INIS)

    2005-07-01

    The introduction recalls the context of the development of the national plan of radioactive and recyclable wastes management (PNGDR-MV), its objectives and its position in the today studies on radioactive wastes. The first part is devoted to the description of existing radioactive wastes management solutions, or engaged by today activities. The second part concerns the radioactive materials of the nuclear industry, which are not considered as wastes, but which can be recyclable because of their high energy potential as fuels for reactors of the future. The third part examines the pathways coherence. The last part is a synthesis of the evaluation, with more attention on the identifies problems. (A.L.B.)

  18. WATER RESISTANCE OF RECYCLED PAPER PANEL

    Directory of Open Access Journals (Sweden)

    Alexander Rani Suryandono

    2017-06-01

    Alice Wisler (2015 Facts about Recycling Paper. http://greenliving.lovetoknow.com/Facts_About_Recycling_Paper. Accessed 2 April 2016 Clay Miller (2011 5 Benefits of Recycling Paper. http://www.ways2gogreenblog.com/2011/09/28/5-benefits-of-recycling-paper/. Accessed 10 May 2016 Hari Goyal (2015 Grades of Paper. http://www.paperonweb.com/grade.htm. Accessed 2 April 2016 Hari Goyal (2015 Properties of Paper. http://www.paperonweb.com/paperpro.htm. Accessed 2 April 2016 Kathryn Sukalich (2016 Everything You Need to Know about Paper Recycling. http://earth911.com/business-policy/business/paper-recycling-details-basics/. Accessed 15 July 2016 [U1] Larry West (2015 Why Recycle Paper. http://environment.about.com/od/recycling/a/The-Benefits-Of-Paper-Recycling-Why-Recycle-Paper.htm. Accesed 15 June 2016 Marie-Luise Blue (2008 The Advantages of Recycling Paper. http://education.seattlepi.com/advantages-recycling-paper-3440.html. Accessed 15 June 2016 Nina Spitzer (2009 http://www.sheknows.com/home-and-gardening/articles/810025/the-impact-of-disposable-coffee-cups-on-the-environment. Accessed 15 June 2016 Radio New Zealand (2010 Iwi not Giving Up Fight against Tasman Mill Discharges. http://www.radionz.co.nz/news/regional/64521/iwi-not-giving-up-fight-against-tasman-mill-discharges. Accessed 15 July 2016 Rick LeBlanc (2016 Paper Recycling Facts, Figures and Information Sources. https://www.thebalance.com/paper-recycling-facts-figures-and-information-sources-2877868?_ga=1.192832942.544061388.1477446686. Accesed 2 April 2016 Robinson Meyer (2016 Will More Newspapers Go Nonprofit? http://www.theatlantic.com/technology/archive/2016/01/newspapers-philadelphia-inquirer-daily-news-nonprofit-lol-taxes/423960/. Accessed 3 August 2016 School of Engineering at Darthmouth (2010 Forest and Paper Industry. http://engineering.dartmouth.edu/~d30345d/courses/engs171/Paper.pdf. Accessed 2 April 2016 T. Subramani, V. Angappan. (2015. Experimental Investigation of Papercrete Concrete

  19. Technology options for future recycling

    International Nuclear Information System (INIS)

    Kikuchi, T.

    2001-01-01

    Recycling of nuclear material is indispensable, not only for using valuable resources but also for reducing the debt which we may leave to the next generations. Advanced reprocessing technologies have been developed in several countries to deal with the diversification of nuclear fuels. Also technologies derived from reprocessing or other fuel cycle areas have continued to be developed in terms of recycling. Cost effectiveness and waste-free processing are increasingly important factors in the applicable of an alternate recycling policy. This paper introduces an example of the studies in this field conducted in some countries including Japan and considers the establishment of effective recycling methodologies taking into account the uncertainty of future recycling policy. (author)

  20. The nonlinear relationship between paper recycling and primary pulp requirements : modeling paper production and recycling in Europe

    NARCIS (Netherlands)

    Schenk, Niels J.; Moll, Henri C.; Potting, Josepha

    Waste paper is suitable for recycling back into paper or for incineration for energy recovery. If waste paper is used for recycling, secondary pulp replaces virgin pulp. Fiber recycling is limited, however, because of physical constraints—particularly the breakage of fiber in the recycling

  1. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system

    Science.gov (United States)

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.

    2014-01-01

    ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435

  2. The Three Rs: Reduce, Reuse, Recycle.

    Science.gov (United States)

    Science Activities, 1991

    1991-01-01

    A student hand-out for a recycling unit defines the terms reduce, recycle, and reuse as they relate to solid waste management. Presents the characteristics of recyclable items such as yard wastes, metals, glass, and paper. Lists organizations through which more information about recycling can be obtained. (MCO)

  3. Japanese status-quo and our activities in the field of nuclear fuel recycle

    International Nuclear Information System (INIS)

    Sada, Masao; Imai, Osamu

    1983-01-01

    Nuclear energy is expected to take the place of current petroleum-base-energy in the near future. In order to effectively utilize the nuclear energy, nuclear fuel recycle system has to be established. The technology for reprocessing the spent fuel, which is a part of this recycle system, is very similar to the ones in chemical industry. Our company has been keeping its eyes on the field of such nuclear energy as one of the future promising businesses and recentrly established Nuclear Energy Department as a center for further expanding the business opportunity in the field of such spent fuel reprocessing as well as other fields of nuclear fuel recycle system. (author)

  4. Reuse, Reduce, Recycle.

    Science.gov (United States)

    Briscoe, Georgia

    1991-01-01

    Discussion of recycling paper in law libraries is also applicable to other types of libraries. Results of surveys of law libraries that investigated recycling practices in 1987 and again in 1990 are reported, and suggestions for reducing the amount of paper used and reusing as much as possible are offered. (LRW)

  5. Cellulase recycling in biorefineries--is it possible?

    Science.gov (United States)

    Gomes, Daniel; Rodrigues, Ana Cristina; Domingues, Lucília; Gama, Miguel

    2015-05-01

    On a near future, bio-based economy will assume a key role in our lives. Lignocellulosic materials (e.g., agroforestry residues, industrial/solid wastes) represent a cheaper and environmentally friendly option to fossil fuels. Indeed, following suitable processing, they can be metabolized by different microorganisms to produce a wide range of compounds currently obtained by chemical synthesis. However, due to the recalcitrant nature of these materials, they cannot be directly used by microorganisms, the conversion of polysaccharides into simpler sugars being thus required. This conversion, which is usually undertaken enzymatically, represents a significant part on the final cost of the process. This fact has driven intense efforts on the reduction of the enzyme cost following different strategies. Here, we describe the fundamentals of the enzyme recycling technology, more specifically, cellulase recycling. We focus on the main strategies available for the recovery of both the liquid- and solid-bound enzyme fractions and discuss the relevant operational parameters (e.g., composition, temperature, additives, and pH). Although the efforts from the industry and enzyme suppliers are primarily oriented toward the development of enzyme cocktails able to quickly and effectively process biomass, it seems clear by now that enzyme recycling is technically possible.

  6. What can recycling in thermal reactors accomplish?

    International Nuclear Information System (INIS)

    Piet, Steven J.; Matthern, Gretchen E.; Jacobson, Jacob J.

    2007-01-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives. (authors)

  7. What can Recycling in Thermal Reactors Accomplish?

    International Nuclear Information System (INIS)

    Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

    2007-01-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives

  8. Acid resistance of quaternary blended recycled aggregate concrete

    Directory of Open Access Journals (Sweden)

    K Jagannadha Rao

    2018-06-01

    Full Text Available The possibility of reusing the aggregate from demolished structures in fresh concrete, in order to reduce the CO2 impact on the environment [23] and to preserve natural resources, was explored worldwide and it is established that recycled aggregates can be used as a partial replacement of natural aggregates. Due to its potential to be used in eco-friendly structures and shortage of supply of natural aggregates in some parts of the world, there is an increasing interest in using the recycled aggregate. The durability aspects are also of equal concern along with the strength and economy of any material to be used in the construction. Studies reveal that the behaviour of ternary and quaternary blended concretes is superior from durability point of view compared to conventional concrete. Therefore a study is conducted to assess the acid resistance of recycled aggregate based Quaternary Blended Cement Concrete (QBCC of two grades M40 and M60. Fly ash and silica fume are fixed at 20% and 10% respectively from the previous studies while two percentages of Nano silica (2 and 3% were used along with the cement to obtain QBCC. Three percentages of recycled aggregates as partial replacement of conventional aggregate (0%, 50% and 75% were used in this study. Two different acids (HCL and H2SO4 with different concentrations (3 and 5% were used in this study. Acid resistance of QBCC with Recycled Concrete Aggregate (RCA is assessed in terms of visual appearance, weight loss, and compressive strength loss by destructive and non-destructive tests at regular intervals for a period of 56 days. The test results showed marginal weight loss and strength loss in both M40 and M60 grades of concretes. The Ultrasonic Pulse Velocity (UPV results show that the quality of QBCC is good even after being subjected to acid exposure. Keywords: Recycled concrete aggregate (RCA, Quaternary blended cement concrete (QBCC, Acid resistance, Ultrasonic pulse velocity (UPV, Mineral

  9. Implementing a campus wide recycling program

    International Nuclear Information System (INIS)

    Alvarez, L.

    2002-01-01

    'Full text:' The University of Windsor is currently expanding its recycling program to include all buildings on campus, but faces two challenges: 1) uncertainty about the current waste composition and distribution on campus; and 2) uncertainty about the effectiveness of increased recycling. This project assesses the current waste composition and the attitudes of the students towards recycling, and evaluates the effectiveness of proposed recycling activities. At present, paper is the only material that is collected throughout the entire campus. Except for two buildings, all other potentially recyclable materials within buildings, such as metal, glass, and plastic beverage containers, are discarded. The main focus of this research is on beverage containers as they represent clearly identifiable materials, but other materials were examined as well. To quantify the waste, different buildings on campus were classified according to their function: academic,operational and administrative. The waste composition study indicated that approximately 33% of the campus waste which is landfilled is composed of potentially recyclable material. A survey was then conducted to gauge the campus population's views on recycling issues that could affect the design of a recycling program. Interestingly, 97% of the respondents indicated a high willingness to recycle, but were uncertain as to how and where to recycle on campus. The project is currently assessing potential diversion rates using new, clearly identifiable recycling receptacles placed within selected classrooms for all major materials. There is a significant tradeoff however because the cost for new receptacles is considerable: multiple materials containers are often placed in high pedestrian traffic locations (e.g., hallways) and not always in classrooms,of which there are often many. This project will evaluate the basic benefits and costs of implementing a more comprehensive recycling program, and recommend how other

  10. Lamps recycling aiming at the environment preservation

    International Nuclear Information System (INIS)

    Yamachita, Roberto Akira; Gama, Paulo Henrique R. Pereira; Haddad, Jamil; Santos, Afonso H. Moreira; Guardia, Eduardo C.

    1999-01-01

    The article discusses the following issues of lamps recycling in Brazil: mercury lamps recycling, recycling potential, energy conservation and environmental impacts, enterprises lamps recycling, and incentives policy

  11. An industry response to recycle 2000

    International Nuclear Information System (INIS)

    Motl, G.P.; Loiselle, V.

    1996-01-01

    The US DOE is expected to issue a policy early this year articulating DOE's position on the recycle of DOE radioactive scrap metal. In anticipation of this 'Recycle 2000' initiative, the nuclear industry has formed a new trade association called the Association of Radioactive Metal Recyclers (ARMR). This article describes the Recycle 2000 initiative, provides some background on the ARMR and its membership, and identifies industry views on the actions to be taken and issues to be resolved in Recycle 2000 is to become a reality

  12. Cost benefit analysis of recycling nuclear fuel cycle in Korea

    International Nuclear Information System (INIS)

    Lee, Jewhan; Chang, Soonheung

    2012-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. The importance if nuclear waste management has been the main issue since the beginning of nuclear history. The recycling nuclear fuel cycle includes the fast reactor, which can burn the nuclear wastes, and the pyro-processing technology, which can reprocess the spent nuclear fuel. In this study, a methodology using Linear Programming (LP) is employed to evaluate the cost and benefits of introducing the recycling strategy and thus, to see the competitiveness of recycling fuel cycle. The LP optimization involves tradeoffs between the fast reactor capital cost with pyro-processing cost premiums and the total system uranium price with spent nuclear fuel management cost premiums. With the help of LP and sensitivity analysis, the effect of important parameters is presented as well as the target values for each cost and price of key factors

  13. Initial research on recycled tyre bales for road infrastructure applications

    Science.gov (United States)

    Duda, Aleksander; Sobala, Dariusz

    2017-12-01

    The paper reviews selected surveys carried out within the R&D project, co-financed with the European Regional Development Fund, called "ReUse - Innovative Recycling Materials, Enhancing the Sustainability of Bridge Facilities" (Innotech No. K3 / IN3 / 38/228116 / NCBiR / 15). The aim of the project and conducted research is to develop and implement innovative, cheap and environmentally-friendly recycled construction material in the form of tyre bales made from compressed used car tyres. This material is likely to be applied in civil engineering, especially in transport infrastructure, geotechnical and hydraulic engineering. New material is cheap and has unique properties such as low weight, high water permeability, high vibration and noise-damping capacity, low pressure coefficient values and other parameters that technically and economically allow it to replace natural aggregates. The extensive practical application of new material will facilitate the replacement of waste management methods with the environmentally friendly ones.

  14. Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites

    International Nuclear Information System (INIS)

    Bahlouli, Nadia; Pessey, Daniel; Raveyre, Claude; Guillet, Jacques; Ahzi, Said; Dahoun, Abdessalam; Hiver, Jean Marie

    2012-01-01

    recycled polymer-based composites will help in optimizing the recycling process for obtaining the desired properties needed to correctly design recycled structural part.

  15. Recycling Behavior: A Multidimensional Approach

    Science.gov (United States)

    Meneses, Gonzalo Diaz; Palacio, Asuncion Beerli

    2005-01-01

    This work centers on the study of consumer recycling roles to examine the sociodemographic and psychographic profile of the distribution of recycling tasks and roles within the household. With this aim in mind, an empirical work was carried out, the results of which suggest that recycling behavior is multidimensional and comprises the undertaking…

  16. FY 1999 project on the development of new industry support type international standards. Standardization of a method to calculate recycling rates of automobile products; 1999 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Jidosha seihin no recycle ritsu no santei hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose not only of solving the environmental problem but also of making effective use of resources and contributing to the appropriate treatment in the stage of the used resource, study was conducted of the standardization of a method to calculate recycle rates of automobile products. The FY 1999 results were summarized. In this fiscal year, to give definition of the recycle potentiality and thermal recycle, the following were proceeded with: trial evaluation of recycle potentiality, survey of the actual state of recycling of rubber/plastic parts, study of the requirements to realize the recycle potentiality, study of the requirements to realize the thermal recycle, and approaches to the international standardization. As to the trial evaluation of the recycle potentiality, tests to dismantle automobiles were made to assess the dismantlement, separation and recognition. The requirements to realize the recycle potentiality were studied. It was found out that few non-metallic materials are not recycled in the present situation. The paper studied what the requirements to realize the recycle potentiality and thermal recycle should be like basically since there is no recognition internationally unified. (NEDO)

  17. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  18. Chemical and microstructural characterization of recycled zircaloy

    International Nuclear Information System (INIS)

    Martinez, Luis G.; Pereira, Luiz A.T.; Rossi, Jesualdo L.; Takiishi, Hidetoshi; Sato, Ivone M.; Scapin, Marcos A.; Orlando, Marcos T.D.

    2011-01-01

    PWR reactors employ as nuclear fuel UO 2 pellets with Zircaloy clad. Brazil is autonomous in the nuclear fuel cycle, from uranium mining to enrichment and nuclear fuel manufacture. However, the industrial production of nuclear zirconium alloys does not meet the demand, leading to importation of Zircaloy for fuel manufacturing. In the fabrication of fuel elements parts, machining chips of alloys are generated. As the Zircaloy chips cannot be discarded as ordinary metallic waste, the recycling of this material is strategic in economical and environmental aspects. In this work are described two methods that are being developed to recycle Zircaloy chips. The first method the Zircaloy machining chips are melted using an electric arc furnace to obtain small laboratory ingots. The second method uses powder metallurgy technique. By this later method, the Zircaloy chips are submitted to a hydriding process and the resulting material is milled in a high-energy ball mill. The powder is cold isostatically pressed and vacuum sintered. The elemental composition of the materials obtained using both methods is being determined using X-ray fluorescence techniques and compared to the specifications of nuclear grade Zircaloy and to the composition of the starting chips. The phase composition of the laboratory ingots was determined using X-ray diffraction. The ingots were vacuum annealed and the microstructures resulting from both processing methods before and after heat treatments were characterized using optical and scanning electron microscopy. The hardness of the materials was evaluated. A methodology of chemical analysis using X-ray fluorescence spectrometry, for composition certification, was established and tested. The results showed that recycled Zircaloy presented adequate microstructure for nuclear use. The good results of the powder metallurgy method suggest the possibility of producing small parts, like cladding cap-ends, using near net shape sintering. (author)

  19. Studies on recycled aggregates-based concrete.

    Science.gov (United States)

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  20. Management and recycling of electronic waste

    International Nuclear Information System (INIS)

    Tanskanen, Pia

    2013-01-01

    Waste electrical and electronic equipment (WEEE) is one of the largest growing waste streams globally. Hence, for a sustainable environment and the economic recovery of valuable material for reuse, the efficient recycling of electronic scrap has been rendered indispensable, and must still be regarded as a major challenge for today’s society. In contrast to the well-established recycling of metallic scrap, it is much more complicated to recycle electronics products which have reached the end of their life as they contain many different types of material types integrated into each other. As illustrated primarily for the recycling of mobile phones, the efficient recycling of WEEE is not only a challenge for the recycling industry; it is also often a question of as-yet insufficient collection infrastructures and poor collection efficiencies, and a considerable lack of the consumer’s awareness for the potential of recycling electronics for the benefit of the environment, as well as for savings in energy and raw materials

  1. The Compressor Recycle System

    OpenAIRE

    Barstad, Bjørn Ove

    2010-01-01

    The compressor recycle system is the main focus of this thesis. When the mass flow through a compressor becomes too low, the compressor can plunge into surge. Surge is a term that is used for axisymmetric oscillation through a compressor and is highly unwanted. The recycle system feeds compressed gas back to the intake when the mass flow becomes too low, and thereby act as a safety system.A mathematical model of the recycle system is extended and simulated in SIMULINK. The mathematical model ...

  2. Nonlinear Effects at the Fermilab Recycler e-Cloud Instability

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-06-10

    Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from bunch to bunch along the batch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role of the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.

  3. MOX recycling-an industrial reality

    International Nuclear Information System (INIS)

    Shallo, G.D.F.

    1996-01-01

    Reprocessing and plutonium recycling have now attained industrial maturity in France and Europe. Specifically, mixed-oxide (MOX) fuel is fabricated and used in light water reactors (LWRs) in satisfactory operating conditions. The utilities and the fuel cycle industry experience no technical difficulties, and European recycling programs are growing steadily, from 18 reactors in operation today up to 50 expected around the year 2000, putting the system reprocessing-recycling in coherence: 25 t of plutonium will then be used each year to produce the electricity equivalence of 25 millions tons of oil. Plutonium recycling in MOX fuel in current LWRs proves to be technically safe and economically competitive and meets natural resource savings and environmental protection objectives. And recycling responds properly to the nonproliferation concerns. Such an industrial experience gives a unique reference for weapons plutonium disposition through MOX use in reactors

  4. ZZ WPPR, Pu Recycling Benchmark Results

    International Nuclear Information System (INIS)

    Lutz, D.; Mattes, M.; Delpech, Marc; Juanola, Marc

    2002-01-01

    Description of program or function: The NEA NSC Working Party on Physics of Plutonium Recycling has commissioned a series of benchmarks covering: - Plutonium recycling in pressurized-water reactors; - Void reactivity effect in pressurized-water reactors; - Fast Plutonium-burner reactors: beginning of life; - Plutonium recycling in fast reactors; - Multiple recycling in advanced pressurized-water reactors. The results have been published (see references). ZZ-WPPR-1-A/B contains graphs and tables relative to the PWR Mox pin cell benchmark, representing typical fuel for plutonium recycling, one corresponding to a first cycle, the second for a fifth cycle. These computer readable files contain the complete set of results, while the printed report contains only a subset. ZZ-WPPR-2-CYC1 are the results from cycle 1 of the multiple recycling benchmarks

  5. Demonstration and comparison of tuned and detuned signal recycling in a large-scale gravitational wave detector

    International Nuclear Information System (INIS)

    Hild, S; Grote, H; Hewtison, M; Lueck, H; Smith, J R; Strain, K A; Willke, B; Danzmann, K

    2007-01-01

    The British/German gravitational wave detector GEO 600 located near Hannover in Germany is the first large-scale gravitational-wave detector using the advanced technique of signal recycling. Currently the instrument operates in detuned signal recycling mode. Several problems arise due to the fact that the signal recycling cavity changes amplitude and phase of all light fields (carrier and sidebands) present at the dark-port. In addition, in the case of detuned signal recycling this leads to unbalanced sideband fields at the detector output. The large amplitude modulation caused by this asymmetry does not carry any gravitational wave information, but might be the cause of saturation and nonlinearities on the main photodiode. We developed and demonstrated a new control method to realize tuned signal recycling operation in a large-scale gravitational wave detector. A detailed comparison of tuned and detuned signal recycling operation is given. The response function of the system (optical gain) was measured and compared, as was the size of amplitude modulation on the main photodiode. Some important noise couplings were measured and partly found to be strongly reduced in the case of tuned signal recycling operation

  6. Development of methane conversion improvement method by recycling of residual methane for steam reforming as a part of R and D of HTGR-hydrogen production system

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Haga, Katsuhiro; Aita, Hideki; Sekita, Kenji; Hino, Ryutaro; Koiso, Hiroshi.

    1998-01-01

    The purpose of the present study is to improve methane conversion for an HTGR-steam reforming system by recycling of residual methane. The residual methane in a product gas after steam reforming was recycled with a gas separator of polyimide membrane. Gas separation characteristics of the separator were investigated experimentally and numerically, and an experimental study on recycling system was carried out. The results showed that the recycling system improves apparent methane conversion, ratio of methane conversion to methane supply from a cylinder, from 20 to 32% compared with those without recycling. (author)

  7. Frequent Questions on Recycling

    Science.gov (United States)

    This is a list of frequent questions on recycling, broken down into five categories. These are answers to common questions that EPA has received from press and web inquiries. This list is located on the Reduce, Reuse, Recycle website.

  8. Recycled concrete with coarse recycled aggregate. An overview and analysis

    Directory of Open Access Journals (Sweden)

    B. González-Fonteboa

    2018-04-01

    Full Text Available The construction field has contributed to environmental degradation, producing a high amount of construction and demolition waste (C&D waste and consuming large volumes of natural resources. In this context, recycled concrete (RC has been recognised as a means to preserve natural resources and reduce space for waste storage. During the last decades, many researchers have developed works studying different recycled concrete properties. This review focuses on structural RC made with coarse recycled aggregate from concrete waste. The main objective is to provide a state of the art report on RC’s properties and an analysis on how to predict them taking into account relevant research works. Moreover, the study tries to collect and update RC findings, proposing equations to define RC’s performance, in terms of mechanical strength, modulus of elasticity, stress-strain, creep and shrinkage.

  9. Pentachlorophenol (PCP) sludge recycling unit

    International Nuclear Information System (INIS)

    1994-08-01

    The Guelph Utility Pole Company treats utility poles by immersion in pentachlorophenol (PCP) or by pressure treatment with chromated copper arsenate (CCA). The PCP treatment process involves a number of steps, each producing a certain amount of sludge and other wastes. In a plant upgrading program to improve processing and treatment of poles and to reduce and recycle waste, a PCP recovery unit was developed, first as an experimental pilot-scale unit and then as a full-scale unit. The PCP recovery unit is modular in design and can be modified to suit different requirements. In a recycling operation, the sludge is pumped through a preheat system (preheated by waste heat) and suspended solids are removed by a strainer. The sludge is then heated in a tank and at a predetermined temperature it begins to separate into its component parts: oil, steam, and solids. The steam condenses to water containing low amounts of light oil, and this water is pumped through an oil/water separator. The recovered oil is reused in the wood treatment process and the water is used in the CCA plant. The oil remaining in the tank is reused in PCP treatment and the solid waste, which includes small stones and wood particles, is removed and stored. By the third quarter of operation, the recovery unit was operating as designed, processing ca 10,000 gal of sludge. This sludge yielded 6,500 gal of water, 3,500 gal of oil, and ca 30 gal of solids. Introduction of the PCP sludge recycling system has eliminated long-term storage of PCP sludge and minimized costs of hazardous waste disposal. 4 figs

  10. Expanding worldwide urban solid waste recycling: The Brazilian social technology in waste pickers inclusion.

    Science.gov (United States)

    Rutkowski, Jacqueline E; Rutkowski, Emília W

    2015-12-01

    'If an integrated urban waste management system includes the informal recycling sector (IRS), there is a good chance that more solid waste is recycled' is common sense. However, informal integration brings additional social, environmental, and economic benefits, such as reduction of operational costs and environmental impacts of landfilling. Brazil is a global best practice example in terms of waste picker inclusion, and has received international recognition for its recycling levels. In addition to analysing the results of inclusive recycling approaches, this article evaluates a selection of the best Brazilian inclusive recycling practices and summaries and presents the resulting knowledge. The objective is to identify processes that enable the replication of the inclusion of the informal recycling sector model as part of municipal solid waste management. Qualitative and quantitative data have been collected in 25 Brazilian cities that have contracted waste pickers co-operatives for door-to-door selective collection of recyclables. Field data was collected in action research projects that worked with waste pickers co-operatives between 2006 and 2013. The Brazilian informal recycling sector integration model improves municipal solid waste recycling indicators: it shows an increase in the net tonness recycled, from 140 to 208 t month(-1), at a much lower cost per tonne than conventional selective collection systems. Inclusive systems show costs of US$35 per tonne of recyclables collected, well below the national average of US$195.26. This inclusive model improves the quality of collected material and the efficiency of municipal selective collection. It also diminishes the negative impacts of informal recycling, by reducing child labour, and by improving the conditions of work, occupational health and safety, and uncontrolled pollution. Although treating the Brazilian experience as a blueprint for transfer of experience in every case is unrealistic, the results

  11. Solid waste recycling in Rajshahi city of Bangladesh.

    Science.gov (United States)

    Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul

    2012-11-01

    Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Text recycling: acceptable or misconduct?

    Science.gov (United States)

    Harriman, Stephanie; Patel, Jigisha

    2014-08-16

    Text recycling, also referred to as self-plagiarism, is the reproduction of an author's own text from a previous publication in a new publication. Opinions on the acceptability of this practice vary, with some viewing it as acceptable and efficient, and others as misleading and unacceptable. In light of the lack of consensus, journal editors often have difficulty deciding how to act upon the discovery of text recycling. In response to these difficulties, we have created a set of guidelines for journal editors on how to deal with text recycling. In this editorial, we discuss some of the challenges of developing these guidelines, and how authors can avoid undisclosed text recycling.

  13. Effect of Fe-Content on the Mechanical Properties of Recycled Al Alloys during Hot Compression

    Directory of Open Access Journals (Sweden)

    Hongzhou Lu

    2017-07-01

    Full Text Available It is unavoidable that Fe impurities will be mixed into Al alloys during recycling of automotive aluminum parts, and the Fe content has a significant effect on the mechanical properties of the recycled Al alloys. In this work, hot compression tests of two Fe-containing Al alloys were carried out at elevated temperatures within a wide strain rate range from 0.01 s−1 to 10 s−1. The effect of Fe content on the peak stress of the stress vs. strain curves, strain rate sensitivity and activation energy for dynamic recrystallization are analyzed. Results show that the recycled Al alloy containing 0.5 wt % Fe exhibits higher peak stresses and larger activation energy than the recycled Al alloy containing 0.1 wt % Fe, which results from the fact that there are more dispersed AlMgFeSi and/or AlFeSi precipitates in the recycled Al alloy containing 0.5 wt % Fe as confirmed by SEM observation and energy spectrum analysis. It is also shown that the Fe content has little effect on the strain rate sensitivity of the recycled Al alloys.

  14. Structural recycled concrete: utilization of recycled aggregate from construction and demolition wastes

    International Nuclear Information System (INIS)

    Alaejos Gutierrez, P.; Sanchez de Juan, M.

    2015-01-01

    This paper aims to present the main results of CEDEX research works concerning the use of recycled aggregates for structural concretes. By way of conclusion, recommendations on the requirements of the recycled aggregates have been established, providing information about the influence of these aggregates on the properties of structural concrete. (Author)

  15. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  16. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  17. Recycling in the 90's - a shared responsibility

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Recycling means different things to different people. To consumers, recycling can mean putting out bottles and cans for curbside collection. To a product maker - a manufacturer of raw materials, fabricator of goods or products, or brand owner - recycling can mean reformulating goods to include recycled materials. To recycling service providers, recycling can mean providing cost-efficient collection services. To public policy makers in all levels of government recycling can mean establishing collection and utilization regulations. For recycling to work successfully, these diverse groups must work together and share responsibility for its success. Also, if recycling is to succeed on a large scale and over the long term, three critical points must be first addressed: These points are: approach, economics, and markets. These points are discussed

  18. Attitudes, norms, identity and environmental behaviour: using an expanded theory of planned behaviour to predict participation in a kerbside recycling programme.

    Science.gov (United States)

    Nigbur, Dennis; Lyons, Evanthia; Uzzell, David

    2010-06-01

    In an effort to contribute to greater understanding of norms and identity in the theory of planned behaviour, an extended model was used to predict residential kerbside recycling, with self-identity, personal norms, neighbourhood identification, and injunctive and descriptive social norms as additional predictors. Data from a field study (N=527) using questionnaire measures of predictor variables and an observational measure of recycling behaviour supported the theory. Intentions predicted behaviour, while attitudes, perceived control, and the personal norm predicted intention to recycle. The interaction between neighbourhood identification and injunctive social norms in turn predicted personal norms. Self-identity and the descriptive social norm significantly added to the original theory in predicting intentions as well as behaviour directly. A replication survey on the self-reported recycling behaviours of a random residential sample (N=264) supported the model obtained previously. These findings offer a useful extension of the theory of planned behaviour and some practicable suggestions for pro-recycling interventions. It may be productive to appeal to self-identity by making people feel like recyclers, and to stimulate both injunctive and descriptive norms in the neighbourhood.

  19. Compressive strength improvement for recycled concrete aggregate

    Directory of Open Access Journals (Sweden)

    Mohammed Dhiyaa

    2018-01-01

    Full Text Available Increasing amount of construction waste and, concrete remnants, in particular pose a serious problem. Concrete waste exist in large amounts, do not decay and need long time for disintegration. Therefore, in this work old demolished concrete is crashed and recycled to produce recycled concrete aggregate which can be reused in new concrete production. The effect of using recycled aggregate on concrete compressive strength has been experimentally investigated; silica fume admixture also is used to improve recycled concrete aggregate compressive strength. The main parameters in this study are recycled aggregate and silica fume admixture. The percent of recycled aggregate ranged from (0-100 %. While the silica fume ranged from (0-10 %. The experimental results show that the average concrete compressive strength decreases from 30.85 MPa to 17.58 MPa when the recycled aggregate percentage increased from 0% to 100%. While, when silica fume is used the concrete compressive strength increase again to 29.2 MPa for samples with 100% of recycled aggregate.

  20. Cost effectiveness of recycling: A systems model

    Energy Technology Data Exchange (ETDEWEB)

    Tonjes, David J., E-mail: david.tonjes@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States); Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044 (United States); Mallikarjun, Sreekanth, E-mail: sreekanth.mallikarjun@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States)

    2013-11-15

    Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.

  1. Reusing recycled aggregates in structural concrete

    Science.gov (United States)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  2. The Diffusion Effect of MSW Recycling

    OpenAIRE

    Yi-Tui Chen; Fu-Chiang Yang; Shih-Heng Yu

    2017-01-01

    The purpose of this paper is to compare the recycling performance for some waste fractions selected including food waste, bulk waste, paper, metal products, plastics/rubber and glass products and then to develop some directions for the future improvements. The priority of each waste fraction for recycling is also analyzed by using an importance-performance analysis. Traditionally, the recycling rate that is calculated by the ratio of waste recycled to waste collected is used as an indicator t...

  3. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  4. Coolant clean-up and recycle systems

    International Nuclear Information System (INIS)

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  5. Japan's fuel recycling policy

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Atomic Energy Commission (AEC) has formulated Japanese nuclear fuel recycling plan for the next 20 years, based on the idea that the supply and demand of plutonium should be balanced mainly through the utilization of plutonium for LWRs. The plan was approved by AEC, and is to be incorporated in the 'Long term program for development and utilization of nuclear energy' up for revision next year. The report on 'Nuclear fuel recycling in Japan' by the committee is characterized by Japanese nuclear fuel recycling plan and the supply-demand situation for plutonium, the principle of the possession of plutonium not more than the demand in conformity with nuclear nonproliferation attitude, and the establishment of a domestic fabrication system of uranium-plutonium mixed oxide fuel. The total plutonium supply up to 2010 is estimated to be about 85 t, on the other hand, the demand will be 80-90 t. The treatment of plutonium is the key to the recycling and utilization of nuclear fuel. By around 2000, the private sector will commercialize the fabrication of the MOX fuel for LWRs at the annual rate of about 100 t. Commitment to nuclear nonproliferation, future nuclear fuel recycling program in Japan, MOX fuel fabrication system in Japan and so on are reported. (K.I.)

  6. Design study of advanced nuclear fuel recycle system. Conceptual study of recycle system using molten salt

    International Nuclear Information System (INIS)

    Kakehi, I.; Shirai, N.; Hatano, M.; Kajitani, M.; Yonezawa, S.; Kawai, T.; Kawamura, F.; Tobe, K.; Takahashi, K.

    1996-12-01

    For the purpose of developing the future nuclear fuel recycle system, the design study of the advanced nuclear fuel recycle system is being conducted. This report describes intermediate accomplishments in the conceptual system study of the advanced nuclear fuel recycle system. Fundamental concepts of this system is the recycle system using molten salt which intend to break through the conventional concepts of purex and pellet fuel system. Contents of studies in this period are as follows, 1)feasibility study of the process by Cd-cathode for nitride fuel, 2)application study for the molten salt of low melting point (AlCl3+organic salt), 3)research for decladding (advantage of decladding by heat treatment), 4)behavior of FPs in electrorefining (behavior of iodine and volatile FP chlorides, FPs behavior in chlorination), 5)criticality analysis in electrorefiner, 6)drawing of off-gas flow diagram, 7)drawing of process machinery concept (cathode processor, vibration packing), 8)evaluation for the amounts of the high level radioactive wastes, 9)quality of the recycle fuels (FPs contamination of recycle fuel), 10)conceptual study of in-cell handling system, 11)meaning of the advanced nuclear fuel recycle system. The conceptual system study will be completed in describing concepts of the system and discussing issues for the developments. (author)

  7. Electrochemical EDTA recycling with sacrificial Al anode for remediation of Pb contaminated soil

    International Nuclear Information System (INIS)

    Pociecha, Maja; Lestan, Domen

    2010-01-01

    Recycling chelant is a precondition for cost-effective EDTA-based soil remediation. Extraction with EDTA removed 67.5% of Pb from the contaminated soil and yielded washing solution with 1535 mg L -1 Pb and 33.4 mM EDTA. Electrochemical treatment of the washing solution using Al anode, current density 96 mA cm -2 and pH 10 removed 90% of Pb from the solution (by electrodeposition on the stainless steel cathode) while the concentration of EDTA in the treated solution remained the same. The obtained data indicate that the Pb in the EDTA complex was replaced by electro-corroded Al after electro-reduction of the EDTA and subsequently removed from the solution. Additional soil extraction with the treated washing solution resulted in total removal of 87% of Pb from the contaminated soil. The recycled EDTA retained the Pb extraction potential through several steps of soil extraction and washing solution treatment, although part of the EDTA was lost by soil absorption. - Aluminium anode at alkaline pH in conventional electrolytic cell enables efficient recycling of EDTA as a part of soil washing remediation technology.

  8. Proceedings of the waste recycling workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

  9. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  10. 40 CFR 141.76 - Recycle provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Recycle provisions. 141.76 Section 141...) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.76 Recycle provisions. (a... recycle spent filter backwash water, thickener supernatant, or liquids from dewatering processes must meet...

  11. Auditing Operating Room Recycling: A Management Case Report.

    Science.gov (United States)

    McGain, Forbes; Jarosz, Katherine Maria; Nguyen, Martin Ngoc Hoai Huong; Bates, Samantha; O'Shea, Catherine Jane

    2015-08-01

    Much waste arises from operating rooms (ORs). We estimated the practical and financial feasibility of an OR recycling program, weighing all waste from 6 ORs in Melbourne, Australia. Over 1 week, 237 operations produced 1265 kg in total: general waste 570 kg (45%), infectious waste 410 kg (32%), and recyclables 285 kg (23%). The achieved recycling had no infectious contamination. The achieved recycling/potential recycling rate was 285 kg/517 kg (55%). The average waste disposal costs were similar for general waste and recycling. OR recycling rates of 20%-25% total waste were achievable without compromising infection control or financial constraints.

  12. Electric vehicle recycling 2020: Key component power electronics.

    Science.gov (United States)

    Bulach, Winfried; Schüler, Doris; Sellin, Guido; Elwert, Tobias; Schmid, Dieter; Goldmann, Daniel; Buchert, Matthias; Kammer, Ulrich

    2018-04-01

    Electromobility will play a key role in order to reach the specified ambitious greenhouse gas reduction targets in the German transport sector of 42% between 1990 and 2030. Subsequently, a significant rise in the sale of electric vehicles (EVs) is to be anticipated in future. The amount of EVs to be recycled will rise correspondingly after a delay. This includes the recyclable power electronics modules which are incorporated in every EV as an important component for energy management. Current recycling methods using car shredders and subsequent post shredder technologies show high recycling rates for the bulk metals but are still associated with high losses of precious and strategic metals such as gold, silver, platinum, palladium and tantalum. For this reason, the project 'Electric vehicle recycling 2020 - key component power electronics' developed an optimised recycling route for recycling power electronics modules from EVs which is also practicable in series production and can be implemented using standardised technology. This 'WEEE recycling route' involves the disassembly of the power electronics from the vehicle and a subsequent recycling in an electronic end-of-life equipment recycling plant. The developed recycling process is economical under the current conditions and raw material prices, even though it involves considerably higher costs than recycling using the car shredder. The life cycle assessment shows basically good results, both for the traditional car shredder route and the developed WEEE recycling route: the latter provides additional benefits from some higher recovery rates and corresponding credits.

  13. Extensions of the Standard Model

    CERN Document Server

    Zwirner, Fabio

    1996-01-01

    Rapporteur talk at the International Europhysics Conference on High Energy Physics, Brussels (Belgium), July 27-August 2, 1995. This talk begins with a brief general introduction to the extensions of the Standard Model, reviewing the ideology of effective field theories and its practical implications. The central part deals with candidate extensions near the Fermi scale, focusing on some phenomenological aspects of the Minimal Supersymmetric Standard Model. The final part discusses some possible low-energy implications of further extensions near the Planck scale, namely superstring theories.

  14. 77 FR 16537 - Ball Bearings and Parts Thereof from France, Germany, and Italy: Extension of Time Limit for...

    Science.gov (United States)

    2012-03-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-427-801, A-428-801, A-475-801] Ball Bearings and Parts Thereof from France, Germany, and Italy: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative Reviews AGENCY: Import Administration, International Trade Administration, Department of Commerce. DATES:...

  15. 77 FR 2511 - Ball Bearings and Parts Thereof From France, Germany, and Italy: Extension of Time Limit for...

    Science.gov (United States)

    2012-01-18

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-427-801, A-428-801, A-475-801] Ball Bearings and Parts Thereof From France, Germany, and Italy: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative Reviews AGENCY: Import Administration, International Trade Administration, Department of Commerce. DATES:...

  16. Effect of laser surface treatment on the quality of microstructure in recycled Al-Zn-Si cast alloy

    Directory of Open Access Journals (Sweden)

    Eva Tillová

    2014-06-01

    Full Text Available Recycled Al-Zn-Si casting alloys can often be used in new cast products for mechanical engineering, in hydraulic castings, textile machinery parts, cable car components or big parts without heat treatment. Improved mechanical properties and favourable of recycled microstructure of Al-alloys can often significantly increase the lifetime of casting and reduce costs for fuel and reduction of environmental loading. The paper is focused on using one of possible technologies that provide increased mechanical properties of recycled aluminium cast alloys for automotive industry, and that is laser surface hardening. For study was used recycled AlZn10Si8Mg cast alloy. The effect of laser beam Nd: YAG lasers BLS 720 was evaluated with the laser power 50 W and 80 W on the surface of samples. The final microstructure of aluminium alloys depend on the laser process parameters. The changes of microstructure as a grain refinement of the microstructure after laser surface hardening was observed by using classical techniques of etching and deep etching with concentrated HCl. Microstructure was evaluated on an optical microscope Neophot 32 and SEM

  17. Feedwater recycling system in BWR type reactor

    International Nuclear Information System (INIS)

    Shimamoto, Yoshiharu.

    1980-01-01

    Purpose: To improve the reactor safety by preventing thermal stresses and cracks generated in structural materials due to the fluctuations in the temperature for high temperature water - low temperature water mixture near the feedwater nozzle. Method: Feedwater pipes are connected to a pressure vessel not directly but by way of a flow control valve. While the recycled water is circulated from an inlet nozzle to an outlet nozzle through a recycle pump, flow control valve and recycling pipeways, feedwater is fed from the feedwater pipes to the recycling pipeways by way of the flow control valve. More specifically, since the high temperature recycle water and the low temperature recycle water are mixed within the pipeways, the temperature fluctuations resulted from the temperature difference between the recycle water and the feedwater is reduced to prevent thermal fatigue and generation of cracks thereby securing the reactor safety. (Furukawa, Y.)

  18. Technology options for future recycling

    International Nuclear Information System (INIS)

    Kikuchi, T.

    2000-01-01

    It goes without saying that recycling of nuclear material is indispensable, not only for the effective use of valuable resources but also to reduce the debt which we may leave to the next generations. Many developments in advanced reprocessing technologies have been carried out in several countries to deal with the diversification of nuclear fuels. Also technologies derived from reprocessing or other fuel cycle areas have continued to be developed in terms of recycling. Cost effectiveness and waste-free processing are increasingly important factors in the applicable of an alternate recycling policy. This paper introduces an example of the studies in this field, which has been conducted in Japan and considers the establishment of effective recycling methodologies taking into account the uncertainty of future policy. (authors)

  19. Management options for recycling radioactive scrap metals

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are three basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.

  20. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  1. Characterization of quality recycled gypsum and plasterboard with maximized recycled content

    International Nuclear Information System (INIS)

    Jiménez-Rivero, J.; García-Navarro, J.

    2017-01-01

    The quality of secondary materials is imperative to promote a circular economy. In order to improve the way in which the quality of recycled gypsum is assessed, European guidelines on recycled gypsum (RG) quality criteria have been outlined in the framework of the Life+ Gypsum to Gypsum (GtoG) project. Such GtoG guidelines, along with the European Standard on gypsum plasterboard EN 520, provided the basis for this study. During the GtoG project, gypsum recycling and plasterboard manufacturing processes were monitored by testing the gypsum feedstock and the plasterboard produced. The aim of this paper is to discuss the results obtained on relevant parameters that characterize gypsum as a secondary raw material, as well as the resulting product. The minimum requirements were fulfilled by 56% of the RG samples and 86% of the plasterboard with increased RG. [es

  2. Synthesis and chemical recycling of high polymers using C1 compounds; C1 kagobutsu ni yoru kobunshi no chemical recycle

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, T. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1997-09-01

    The paper outlined a study of the synthesis of high polymers using C1 compounds which are continuously usable chemical materials and the related compounds such as the derivatives, and also the chemical recycle. In the case of waste plastics mixed in urban refuse, effective is the chemical recycle where C1 compounds obtained by gasifying the mixed waste are used as high polymer material. For the synthesis and recycle of high polymers using C1 compounds, there are three routes: Route A (recycle via high polymer materials), Route B (recycle via C1 compounds and high polymer materials), and Route C including global-scale carbon recycle (recycle via carbon dioxide from biodegradable plastics using microorganism). Among high polymers, those that can be synthesized from C1 compounds, for example, polymethylene, polyacetal and polyketone can be chemically recycled by Route B. 30 refs., 2 figs., 1 tab.

  3. A UK perspective on recycling

    International Nuclear Information System (INIS)

    Williams, T.

    1991-01-01

    The United Kingdom, through the recycling of depleted uranium from Magnox reactors into Advanced Gas-cooled Reactor (AGR) fuel, has already recycled significant quantities of reprocessed material in reactors owned by Nuclear Electric plc and Scottish Nuclear Limited. This AGR fuel has been satisfactorily irradiated and discharged over a decade or more, and will be reprocessed in the new Thermal Oxide Reprocessing Plant (THORP), currently under construction in the UK. British Nuclear Fuels plc (BNFL) and the UK Atomic Energy Authority (UKAEA) have also been exploiting the potential of plutonium recycled in mixed oxide (MOX) fuel, which they have been making since 1963. All of the UK nuclear companies are committed to further recycling of Magnox depleted uranium during the 1990s, and it is anticipated that oxide recycling will also become firmly established during the next decade. British Nuclear Fuels and Urenco Ltd, as the providers of fuel cycle services, are developing an infrastructure to close the fuel cycle for oxide nuclear fuel, using both the uranium and plutonium arising from reprocessing. (author)

  4. Chain Extension and Thermal Behavior of Recycled Poly(Ethylene Terephthalate Modified by Reactive Extrusion with Triphenyl Phosphite

    Directory of Open Access Journals (Sweden)

    Qin Dan

    2016-01-01

    Full Text Available Reactive extrusion experiments of recycled PET fabrics (R-PET were carried out in a Haake torque rheometer with triphenyl phosphite (TPP and thermal behavior of modified R-PET was investigated by differential scanning calorimetry (DSC. The reaction mechanism which TPP acts as a cross-linker is verified by the experiment of phosphorus elemental analysis. DSC results show the presence of reaction residues may not modify melting temperature Tm and crystallization temperature Tc is controlled by the combined effect of molecular weight and reaction residues.

  5. Recycling Pressure-Sensitive Products

    Science.gov (United States)

    Jihui Guo; Larry Gwin; Carl Houtman; Mark Kroll; Steven J. Severtson

    2012-01-01

    The efficient control of contaminants such as metals, plastics, inks and adhesives during the processing of recovered paper products determines the profitability of recycling mills. In fact, it is arguably the most important technical obstacle in expanding the use of recycled paper.1-4 An especially challenging category of contaminants to manage...

  6. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  7. ERDA activities related to reprocessing and plutonium recycle

    International Nuclear Information System (INIS)

    Spurgeon, D.R.

    1977-01-01

    ERDA has redirected its program in support of the LWR fuel cycle from one emphasizing the commercialization of existing fuel cycle technology to a broader based assessment of alternative fuel cycle concepts with the emphasis on safeguardability and avoidance of proliferation risks. As part of this program, ERDA will evaluate a number of possible technical and institutional options to reduce proliferation risks. ERDA will continue its current program of LWR fuel reprocessing R and D with added emphasis on improved safeguards capability as well as the applicability of conventional reprocessing technology to large multinational plants. These activities and supporting design studies will provide the basis for a decision regarding the design of an optimized system for the management of spent LWR fuel. Such a system would provide a model for the development of future domestic and foreign facilities and programs. A recently completed ERDA study of the benefits of LWR reprocessing and recycle would also be expected to be factored into such a decision. The study concluded that based on currently available data, recycle of uranium and plutonium in LWR's is attractive from the standpoint of economics and resource utilization relative to the discarding of spent fuel. The LWR reprocessing/recycle picture today is clouded by several unresolved policy issues. These include the need for adequate spent fuel storage capacity for both domestic and foreign reactors; the possibility of foreign reprocessing of U.S. produced fuel; the possibility of the disposal of foreign fuel in the U.S.; the possible need to dispose of wastes generated by multinational reprocessing plants; and finally, determination of the optimum balance between recycling recovered plutonium and saving it for the breeder

  8. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    Science.gov (United States)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  9. Impact on geologic repository usage from limited actinide recycle in pressurized light water reactors

    International Nuclear Information System (INIS)

    Wigeland, Roald A.; Bauer, Theodore H.; Hill, Robert N.; Stillman, John A.

    2007-01-01

    A project has been conducted as part of the U.S. Department of Energy Advanced Fuel Cycle Initiative to evaluate the impact of limited actinide recycling in light water reactors on the utilization of a geologic repository where loading of the repository is constrained by the decay heat of the emplaced materials. In this study, it was assumed that spent PWR fuel was processed, removing the uranium, plutonium, americium, and neptunium, along with the fission products cesium and strontium. Previous work had demonstrated that these elements were responsible for limiting loading in the repository based on thermal constraints. The plutonium, americium, and neptunium were recycled in a PWR, with process waste and spent recycled fuel being sent to the repository. The cesium and strontium were placed in separate storage for 100-300 years to allow for decay prior to disposal. The study examined the effect of single and multiple recycles of the recovered plutonium, americium, and neptunium, as well as different processing delay times. The potential benefit to the repository was measured by the increase in utilization of repository space as indicated by the allowable linear loading in the repository drifts (tunnels). The results showed that limited recycling would provide only a small fraction of the benefit that could be achieved with repeated processing and recycling, as is possible in fast neutron reactors. (author)

  10. Recycling Pricing and Coordination of WEEE Dual-Channel Closed-Loop Supply Chain Considering Consumers' Bargaining.

    Science.gov (United States)

    Zhu, Xiaodong; Wang, Jing; Tang, Juan

    2017-12-15

    Environmentally friendly handling and efficient recycling of waste electrical on Waste Electrical and Electronic Equipment (WEEE) have grown to be a global social problem. As holders of WEEE, consumers have a significant effect on the recycling process. A consideration of and attention to the influence of consumer behavior in the recycling process can help achieve more effective recycling of WEEE. In this paper, we built a dual-channel closed-loop supply chain model composed of manufacturers, retailers, and network recycling platforms. Based on the influence of customer bargaining behavior, we studied several different scenarios of centralized decision-making, decentralized decision-making, and contract coordination, using the Stackelberg game theory. The results show that retailers and network recycling platforms will reduce the direct recovery prices to maintain their own profit when considering the impact of consumer bargaining behavior, while remanufacturers will improve the transfer payment price for surrendering part of the profit under revenue and the expense sharing contract. Using this contract, we can achieve supply chain coordination and eliminate the effect of consumer bargaining behavior on supply chain performance. It can be viewed from the parameter sensitivity analysis that when we select the appropriate sharing coefficient, the closed-loop supply chain can achieve the same system performance under a centralized decision.

  11. Recycling Pricing and Coordination of WEEE Dual-Channel Closed-Loop Supply Chain Considering Consumers’ Bargaining

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhu

    2017-12-01

    Full Text Available Environmentally friendly handling and efficient recycling of waste electrical on Waste Electrical and Electronic Equipment (WEEE have grown to be a global social problem. As holders of WEEE, consumers have a significant effect on the recycling process. A consideration of and attention to the influence of consumer behavior in the recycling process can help achieve more effective recycling of WEEE. In this paper, we built a dual-channel closed-loop supply chain model composed of manufacturers, retailers, and network recycling platforms. Based on the influence of customer bargaining behavior, we studied several different scenarios of centralized decision-making, decentralized decision-making, and contract coordination, using the Stackelberg game theory. The results show that retailers and network recycling platforms will reduce the direct recovery prices to maintain their own profit when considering the impact of consumer bargaining behavior, while remanufacturers will improve the transfer payment price for surrendering part of the profit under revenue and the expense sharing contract. Using this contract, we can achieve supply chain coordination and eliminate the effect of consumer bargaining behavior on supply chain performance. It can be viewed from the parameter sensitivity analysis that when we select the appropriate sharing coefficient, the closed-loop supply chain can achieve the same system performance under a centralized decision.

  12. Recycling Pricing and Coordination of WEEE Dual-Channel Closed-Loop Supply Chain Considering Consumers’ Bargaining

    Science.gov (United States)

    Zhu, Xiaodong; Wang, Jing; Tang, Juan

    2017-01-01

    Environmentally friendly handling and efficient recycling of waste electrical on Waste Electrical and Electronic Equipment (WEEE) have grown to be a global social problem. As holders of WEEE, consumers have a significant effect on the recycling process. A consideration of and attention to the influence of consumer behavior in the recycling process can help achieve more effective recycling of WEEE. In this paper, we built a dual-channel closed-loop supply chain model composed of manufacturers, retailers, and network recycling platforms. Based on the influence of customer bargaining behavior, we studied several different scenarios of centralized decision-making, decentralized decision-making, and contract coordination, using the Stackelberg game theory. The results show that retailers and network recycling platforms will reduce the direct recovery prices to maintain their own profit when considering the impact of consumer bargaining behavior, while remanufacturers will improve the transfer payment price for surrendering part of the profit under revenue and the expense sharing contract. Using this contract, we can achieve supply chain coordination and eliminate the effect of consumer bargaining behavior on supply chain performance. It can be viewed from the parameter sensitivity analysis that when we select the appropriate sharing coefficient, the closed-loop supply chain can achieve the same system performance under a centralized decision. PMID:29244778

  13. Stainless steel recycle FY94 progress report

    International Nuclear Information System (INIS)

    Imrich, K.J.

    1994-01-01

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft 3 ) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program

  14. Metal recycling technology and related issues in the United States, a BNFL perspective

    International Nuclear Information System (INIS)

    Bradbury, P.; Dam, S.; Starke, W.

    1995-01-01

    Radioactively contaminated metallic materials comprise a large part of the potential waste products which result from nuclear facility repair, refurbishment, and decommissioning. United States Government (Departments of Energy and Defense) facilities, U.S. nuclear power plants, and other commercial nuclear fuel cycle facilities have large inventories of radioactive scrap metal which could be decontaminated and recycled into useful radioactive and non-radioactive products. Residual radioactivity and recycling criteria is needed to avoid the high cost of disposal and the waste of natural resources. In the United Kingdom, BNFL has decommissioned the gaseous diffusion plant at Capenhurst and has recycled a large fraction of the metallic scrap into the metals market. Other structural materials have also been released as uncontaminated scrap. U.K. release criteria for residual radionuclide contamination have been applied to these operations. A variety of techniques were utilized to size reduce large components, to remove radioactivity, and to survey and release these materials. These methods and the application of release criteria has a direct relationship to methods which would be applicable in the U.S. and in other countries. This paper will describe the specific U.K. technology and experience in the decontamination, recycle, and release of scrap metal. It will also describe the U.S. environment for metal recycle, including the volumes and levels of contamination, and the current and proposed release criteria. Comparisons will be presented between the U.S. and U.K., both in technology and methodology for recycle and in regulatory criteria for residual radioactivity and material release and for ultimate decommissioning. The paper will then provide suggested approaches and criteria for U.S. recycling and decommissioning. (author)

  15. Encouraging Vietnamese Household Recycling Behavior: Insights and Implications

    Directory of Open Access Journals (Sweden)

    The Ninh Nguyen

    2017-01-01

    Full Text Available This research aims to provide new insights into various determinants affecting household recycling. By focusing on Vietnam, this research also extends knowledge about sustainable behavior in emerging markets, which are the major culprits in terms of greenhouse gas emissions. Hypotheses were developed as a result of the critical review of relevant studies in the fields of marketing, psychology, and economics, and then tested using a quantitative survey data. Structured questionnaires were administered to Vietnamese respondents which yielded 486 usable responses. Multivariate statistics reveal that all the determinants influenced their recycling behavior except for moral norms. Attitude towards the importance of recycling exerted the strongest influence, followed by subjective norms and warm glow respectively. On the other hand, attitude towards the inconvenience of recycling significantly reduced recycling behavior. The research findings have important implications for strategies aimed at promoting recycling behavior. Communication and education programs should emphasize how household recycling contributes to environmental protection, as well as stress intrinsic rewards when recycling. Public media campaigns should feature opinion leaders and attractive communicators, who can effectively apply social pressure to perform recycling behavior. Organizations should also make every effort to make recycling more convenient.

  16. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    Energy Technology Data Exchange (ETDEWEB)

    Jody, B. J.; Daniels, E. J.; Duranceau, C. M.; Pomykala, J. A.; Spangenberger, J. S. (Energy Systems)

    2011-02-22

    Each year, more than 25 million vehicles reach the end of their service life throughout the world, and this number is rising rapidly because the number of vehicles on the roads is rapidly increasing. In the United States, more than 95% of the 10-15 million scrapped vehicles annually enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, over 75% of automotive materials, primarily the metals, are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobile hulks, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials - commonly called shredder residue - constitutes about 25% of the weight of the vehicle, and it is disposed of in landfills. This practice is not environmentally friendly, wastes valuable resources, and may become uneconomical. Therefore, it is not sustainable. Over the past 15-20 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles, including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has been focused on developing technology to separate and recover non-metallic materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lightweighting materials - primarily polymers, polymer composites, high-strength steels, and aluminum - will be used in manufacturing these

  17. Antimony recycling in the United States in 2000

    Science.gov (United States)

    Carlin, James F.

    2006-01-01

    The importance of recycling has become more obvious as concerns about the environment and import dependence have grown in recent years. When materials are recycled, fewer natural resources are consumed, and less waste products go to landfills or pollute the water and air. This study, one of a series of reports on metals recycling in 2000, discusses the flow of antimony from mining through its uses and disposal with emphasis on recycling. In 2000, the recycling efficiency for antimony was estimated to be 89 percent, and the recycling rate was about 20 percent.

  18. Design study on advanced nuclear fuel recycle system. Conceptual design study of recycle system using molten salt

    International Nuclear Information System (INIS)

    Kasai, Y.; Kakehi, I.; Moro, T.; Higashi, T.; Tobe, K.; Kawamura, F.; Yonezawa, S.; Yoshiuji, T.

    1998-10-01

    Advanced recycle system engineering group of OEC (Oarai Engineering Center) has being carried out a design study of the advanced nuclear fuel recycle system using molten salt (electro-metallurgical process). This system is aiming for improvements of fuel cycle economy and reduction of environmental burden (MA recycles, Minimum of radioactive waste disposal), and also improvement of safety and nuclear non-proliferation. This report describes results of the design study that has been continued since December 1996. (1) A design concept of the advanced nuclear fuel recycle system, that is a module type recycles system of pyrochemical reprocessing and fuel re-fabrication was studied. The module system has advantage in balance of Pu recycle where modules are constructed in coincidence with the construction plan of nuclear power plants, and also has flexibility for technology progress. A demonstration system, minimum size of the above module, was studies. This system has capacity of 10 tHM/y and is able to demonstrate recycle technology of MOX fuel, metal fuel and nitride fuel. (2) Each process of the system, which are pyrochemical electrorefining system, cathode processor, de-cladding system, waste disposal system, etc., were studied. In this study, capacity of an electrorefiner was discussed, and vitrification experiment of molten salt using lead-boric acid glass was conducted. (3) A hot cell system and material handling system of the demonstration system was studied. A robot driven by linear motor was studied for the handling system, and an arrangement plan of the cell system was made. Criticality analysis in the cell system and investigation of material accountancy system of the recycle plant were also made. This design study will be continued in coincidence with design study of reactor and fuel, aiming to establish the concept of FBR recycle system. (author)

  19. Mechanical and chemical recycling of solid plastic waste.

    Science.gov (United States)

    Ragaert, Kim; Delva, Laurens; Van Geem, Kevin

    2017-11-01

    This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling. The principles of these recycling pathways are framed against current-day industrial reality, by discussing predominant industrial technologies, design strategies and recycling examples of specific waste streams. Starting with an overview on types of solid plastic waste (SPW) and their origins, the manuscript continues with a discussion on the different valorisation options for SPW. The section on mechanical recycling contains an overview of current sorting technologies, specific challenges for mechanical recycling such as thermo-mechanical or lifetime degradation and the immiscibility of polymer blends. It also includes some industrial examples such as polyethylene terephthalate (PET) recycling, and SPW from post-consumer packaging, end-of-life vehicles or electr(on)ic devices. A separate section is dedicated to the relationship between design and recycling, emphasizing the role of concepts such as Design from Recycling. The section on chemical recycling collects a state-of-the-art on techniques such as chemolysis, pyrolysis, fluid catalytic cracking, hydrogen techniques and gasification. Additionally, this review discusses the main challenges (and some potential remedies) to these recycling strategies and ground them in the relevant polymer science, thus providing an academic angle as well as an applied one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Filter Backwash Recycling Rule Documents

    Science.gov (United States)

    The purpose of the FBRR is to require (PWSs) to review their recycle practices and, where appropriate, work with the state Primacy Agency to make any necessary changes to recycle practices that may compromise microbial control.

  1. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  2. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  3. Overview of HTGR fuel recycle

    International Nuclear Information System (INIS)

    Notz, K.J.

    1976-01-01

    An overview of HTGR fuel recycle is presented, with emphasis placed on reprocessing and fuel kernel refabrication. Overall recycle operations include (1) shipment and storage, (2) reprocessing, (3) refabrication, (4) waste handling, and (5) accountability and safeguards

  4. Sustaining the environment through recycling: an empirical study.

    Science.gov (United States)

    Ramayah, T; Lee, Jason Wai Chow; Lim, Shuwen

    2012-07-15

    This paper examines the determinants of recycling behaviour among 200 university students from the perspective of the theory of planned behaviour (TPB). Data was analysed using Structural Equation Modelling technique. Findings indicate that environmental awareness was significantly related to attitude towards recycling, whilst attitude and social norms had significant impact on recycling behaviour. However, convenience and cost of recycling were not significant reasons for recycling. The study has enhanced the understanding of the determinants of recycling behaviour and has implications for schools and governmental agencies in educating and encouraging positive recycling behaviour. It also confirms the appropriateness of the TPB in examining studies of this nature. Further suggestions for future research are offered. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Field Performance of Recycled Plastic Foundation for Pipeline

    Science.gov (United States)

    Kim, Seongkyum; Lee, Kwanho

    2015-01-01

    The incidence of failure of embedded pipelines has increased in Korea due to the increasing applied load and the improper compaction of bedding and backfill materials. To overcome these problems, a prefabricated lightweight plastic foundation using recycled plastic was developed for sewer pipelines. A small scale laboratory chamber test and two field tests were conducted to verify its construction workability and performance. From the small scale laboratory chamber test, the applied loads at 2.5% and 5.0% of deformation were 3.45 kgf/cm2 and 5.85 kgf/cm2 for Case S1, and 4.42 kgf/cm2 and 6.43 kgf/cm2 for Case S2, respectively. From the first field test, the vertical deformation of the recycled plastic foundation (Case A2) was very small. According to the analysis based on the PE pipe deformation at the connection (CN) and at the center (CT), the pipe deformation at each part for Case A1 was larger than that for Case A2, which adopted the recycled lightweight plastic foundation. From the second field test, the measured maximum settlements of Case B1 and Case B2 were 1.05 cm and 0.54 cm, respectively. The use of a plastic foundation can reduce the settlement of an embedded pipeline and be an alternative construction method.

  6. Field Performance of Recycled Plastic Foundation for Pipeline

    Directory of Open Access Journals (Sweden)

    Seongkyum Kim

    2015-05-01

    Full Text Available The incidence of failure of embedded pipelines has increased in Korea due to the increasing applied load and the improper compaction of bedding and backfill materials. To overcome these problems, a prefabricated lightweight plastic foundation using recycled plastic was developed for sewer pipelines. A small scale laboratory chamber test and two field tests were conducted to verify its construction workability and performance. From the small scale laboratory chamber test, the applied loads at 2.5% and 5.0% of deformation were 3.45 kgf/cm2 and 5.85 kgf/cm2 for Case S1, and 4.42 kgf/cm2 and 6.43 kgf/cm2 for Case S2, respectively. From the first field test, the vertical deformation of the recycled plastic foundation (Case A2 was very small. According to the analysis based on the PE pipe deformation at the connection (CN and at the center (CT, the pipe deformation at each part for Case A1 was larger than that for Case A2, which adopted the recycled lightweight plastic foundation. From the second field test, the measured maximum settlements of Case B1 and Case B2 were 1.05 cm and 0.54 cm, respectively. The use of a plastic foundation can reduce the settlement of an embedded pipeline and be an alternative construction method.

  7. Recycling fusion materials

    International Nuclear Information System (INIS)

    Ooms, L.

    2005-01-01

    The inherent safety and environmental advantages of fusion power in comparison with other energy sources play an important role in the public acceptance. No waste burden for future generations is therefore one of the main arguments to decide for fusion power. The waste issue has thus been studied in several documents and the final conclusion of which it is stated that there is no permanent disposal waste needed if recycling is applied. But recycling of fusion reactor materials is far to be obvious regarding mostly the very high specific activity of the materials to be handled, the types of materials and the presence of tritium. The main objective of research performed by SCK-CEN is to study the possible ways of recycling fusion materials and analyse the challenges of the materials management from fusion reactors, based on current practices used in fission reactors and the requirements for the manufacture of fusion equipment

  8. Recycling of rare metals from the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Charlier, Frank; Dabruck, Jan Philipp

    2014-01-01

    The German Government decided in 2011 to phase out nuclear power. Thus, 17 power reactors will be shut down within the next 11 years and to be decommissioned. An interesting question is, in which extent rare metals of strategic economic importance can be recycled within the scope of decommissioning. To be named are valuable bulk metals like copper, aluminium and lead, but also rare metals like indium, niobium, vanadium, cobalt, or tin and rare earth metals. Due to high requirements in terms of material technology, materials found in nuclear reactor components are of particular importance when it comes to recycling. These include components of the primary cooling system (RPV-internals, control rods and grid-structures) components for process control systems and components from the non-nuclear part of reactors (pumps, valves, heat exchangers or boilers). Especially the radiologically controlled melt-down of metals is used as an alternative to free release or disposal. This process has some serious disadvantages, thus it seems to be appropriate optimizing the decommissioning process regarding recycling of valuable metals. The work schedule for pre-investigation is outlined for 18 months and can be summarized as follows: - Requesting design, operational and material data, - Data from a sample facility: detailed specification of used components, substances contained and data from related activation calculations, fluence-values and contamination, - Setting up a database to assign non-ferrous metals and components with additional data like activation and decay time possibly needed, concentration, distribution, total mass, aggregate state, state of chemical bonding and recyclability, - Determining the activation distribution to evaluate if a components is recyclable at all, thus: preparation of an MCNP-model, simulation of n-fluence and application of variance-reduction methods to optimize activation calculations, - Classification of recyclability considering the following

  9. Recycling of polymers: a review.

    Science.gov (United States)

    Ignatyev, Igor A; Thielemans, Wim; Vander Beke, Bob

    2014-06-01

    Plastics are inexpensive, easy to mold, and lightweight. These and many other advantages make them very promising candidates for commercial applications. In many areas, they have substantially suppressed traditional materials. However, the problem of recycling still is a major challenge. There are both technological and economic issues that restrain the progress in this field. Herein, a state-of-art overview of recycling is provided together with an outlook for the future by using popular polymers such as polyolefins, poly(vinyl chloride), polyurethane, and poly(ethylene terephthalate) as examples. Different types of recycling, primary, secondary, tertiary, quaternary, and biological recycling, are discussed together with related issues, such as compatibilization and cross-linking. There are various projects in the European Union on research and application of these recycling approaches; selected examples are provided in this article. Their progress is mirrored by granted patents, most of which have a very limited scope and narrowly cover certain technologies. Global introduction of waste utilization techniques to the polymer market is currently not fully developed, but has an enormous potential. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Long-term aging of recycled binders : [summary].

    Science.gov (United States)

    2015-10-01

    At 80 million tons a year representing more than 80% of all milled asphalt pavement : asphalt paving is Americas most recycled material. Asphalt can be recycled in place, which is : very cost effective; however, aging of recycled binder ca...

  11. Enhancement of the recycling of waste Ni-Cd and Ni-MH batteries by mechanical treatment.

    Science.gov (United States)

    Huang, Kui; Li, Jia; Xu, Zhenming

    2011-06-01

    A serious environmental problem was presented by waste batteries resulting from lack of relevant regulations and effective recycling technologies in China. The present work considered the enhancement of waste Ni-Cd and Ni-MH batteries recycling by mechanical treatment. In the process of characterization, two types of waste batteries (Ni-Cd and Ni-MH batteries) were selected and their components were characterized in relation to their elemental chemical compositions. In the process of mechanical separation and recycling, waste Ni-Cd and Ni-MH batteries were processed by a recycling technology without a negative impact on the environment. The technology contained mechanical crushing, size classification, gravity separation, and magnetic separation. The results obtained demonstrated that: (1) Mechanical crushing was an effective process to strip the metallic parts from separators and pastes. High liberation efficiency of the metallic parts from separators and pastes was attained in the crushing process until the fractions reached particle sizes smaller than 2mm. (2) The classified materials mainly consisted of the fractions with the size of particles between 0.5 and 2mm after size classification. (3) The metallic concentrates of the samples were improved from around 75% to 90% by gravity separation. More than 90% of the metallic materials were separated into heavy fractions when the particle sizes were larger than 0.5mm. (4) The size of particles between 0.5 and 2mm and the rotational speed of the separator between 30 and 60 rpm were suitable for magnetic separation during industrial application, with the recycling efficiency exceeding 95%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Waste management considerations in HTGR recycle operations

    International Nuclear Information System (INIS)

    Pence, D.T.; Shefcik, J.J.; Heath, C.A.

    1975-01-01

    Waste management considerations in the recycle of HTGR fuel are different from those encountered in the recycle of LWR fuel. The types of waste associated with HTGR recycle operations are discussed, and treatment methods for some of the wastes are described

  13. Study of Aramid Fiber/Polychloroprene Recycling Process by Thermal Degradation

    Directory of Open Access Journals (Sweden)

    Igor Dabkiewicz

    2016-07-01

    Full Text Available Aramid fiber is an important polymer applied as reinforcement in high-performance composites, which, due its exceptional properties, becomes an excellent impact absorption material. It has been broadly utilized in aeronautic industry and ballistic protection. In aircrafts, it is mainly used in secondary structures, such as fairings, floor panels, and bullet proof structures in helicopters, whereas, in ballistic protection industry, it is applied in automotive armor and bullet proof vest. Under environmental perspective, it is worrying the development and application of composites, which generate proportional discards of these materials, whether originated from manufacturing process, spare parts or end of life cycle. High-performance composite materials like those using aramid fiber are generally difficult to recycle due to their properties and the difficulty for the separation of the components, making their recycling economically unviable. From the characteristics of composite materials and environmental viewpoint, this paper presents a new aramid fiber recycling process. The main objective of this research was to study different recycling methods in aramid fibers/Neoprene® composites. To promote the Neoprene® degradation, it was used a pyrolysis oven with controlled atmosphere and CO 2 injection. For the degraded separation, it was designed a mechanical washing machine in which the most degraded separation occurred. To complete the materials separation, it was employed a manual cleaning process, and, at least to prove the efficacy of the process, it was applied a tensile test in the yarns.

  14. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    Science.gov (United States)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    International Nuclear Information System (INIS)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-01-01

    Highlights: ► A new eco-efficient recycling route for post-consumer waste glass was implemented. ► Integrated waste management and industrial production are crucial to green products. ► Most of the waste glass rejects are sent back to the glass industry. ► Recovered co-products give more environmental gains than does avoided landfill. ► Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  16. Concrete Waste Recycling Process for High Quality Aggregate

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-01

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  17. Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates

    Directory of Open Access Journals (Sweden)

    Bilal S. Hamad

    2017-12-01

    Full Text Available The paper reports on a research program that was designed at the American University of Beirut (AUB to investigate the fresh and hardened mechanical properties of a high performance concrete mix produced with partial or full substitution of crushed natural lime-stone aggregates with recycled aggregates from crushed tested cylinders in batching plants. Choosing crushed cylinders as source of recycling would result in reusing portion of the waste products of the concrete production industry. An extensive concrete batching and testing program was conducted to achieve two optimum normal and high strength concrete mixes. The variables were the nominal concrete strength (28 or 60 MPa and the percentage replacement of natural coarse aggregates with recycled aggregates from crushed tested cylinders (0, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests on the trial batches included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength.

  18. What do we know about metal recycling rates?

    Science.gov (United States)

    Graedel, T.E.; Allwood, J.; Birat, J.-P.; Buchert, M.; Hageluken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G.

    2011-01-01

    The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end-of-life recycling rates (EOL-RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in-use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low-cost (which thereby keeps down the price of scrap), many EOL-RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL-RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors. ?? 2011 by Yale University.

  19. Energetic conditions of effective recycling of composite castings

    OpenAIRE

    J. Jackowski

    2009-01-01

    The most reasonable way of recycling the metal composite materials consists in separation of the components. In case of the composites with saturated reinforcement it is the only recycling method. The process of separation of the components always undergoes in the presence of an additional liquid phase called a recycling medium. In a three-phase system including the material of composite reinforcement – liquid composite matrix – liquid recycling medium, an important role for the recycling pro...

  20. Brand Extension: a Case Study of Starbucks

    OpenAIRE

    Bokii, Artem

    2017-01-01

    The thesis investigates the topic of brand extension and its importance in the business practice of companies. The theoretical part of the research outlines the key theoretical aspects related to brand and brand extension. The practical part investigates the case study of Starbucks brand extension and compares it with other famous brand extension cases. The paper illustrates how Starbucks brand extension from coffee onto the ice cream market had been successful on the initial stage, and how i...

  1. India's ship recycling trade-off

    NARCIS (Netherlands)

    Worrell, E.; Athanasopoulou, V.

    2014-01-01

    The special nature of India's steel industry lends particular importance to ship recycling as a source of scrap. Ship recycling in upgraded 'green' facilities can substitute other 'dirty' ironmaking processes, resulting in energy savings and air pollutant emission reductions for the Indian steel

  2. A proposal for an international program to develop dry recycle of spent nuclear fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    1999-01-01

    The dry oxidation-reduction process (called OREOX for Oxidation Reduction of Oxide Fuel) being developed by Korea and Canada, in cooperation with IAEA and the US State Department, is limited to recycle of spent LWR fuel into CANDU reactors (DUPIC). When first conceived and demonstrated via irradiation of test elements by Atomics International in 1965, (the process was called AIROX at that time) a wider range of applications was intended, including recycle of spent LWR fuel into LWRs. Studies sponsored by DOE's Idaho Office in 1992 confirmed the applicability of this technology to regions containing LWR's only, and described the potential advantages of such recycle from an environmental, waste management and economic point of view, as compared to the direct disposal option. Recent analyses conducted by the author indicates that such dry recycle may be one of the few acceptable paths remaining for resolution of the US spent fuel storage dilemma that remains consistent with US non-proliferation policy. It is proposed that a new US program be established to develop AIROX dry recycle for use in the US, and this become part of an international cooperative program, including the current Canadian - Korean program, and possibly including participation of other countries wishing to pursue alternatives to the once through cycle, and wet reprocessing. With shared funding of major project elements, such international cooperation would accelerate the demonstration and commercial deployment of dry recycle technology, as compared to separate and independent programs in each country. (author)

  3. Mox fuels recycling

    International Nuclear Information System (INIS)

    Gay, A.

    1998-01-01

    This paper will firstly emphasis that the first recycling of plutonium is already an industrial reality in France thanks to the high degree of performance of La Hague and MELOX COGEMA's plants. Secondly, recycling of spent Mixed OXide fuel, as a complete MOX fuel cycle, will be demonstrated through the ability of the existing plants and services which have been designed to proceed with such fuels. Each step of the MOX fuel cycle concept will be presented: transportation, reception and storage at La Hague and steps of spent MOX fuel reprocessing. (author)

  4. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  5. 76 FR 71861 - America Recycles Day, 2011

    Science.gov (United States)

    2011-11-18

    ... electronics annually, and without following proper recycling and management practices, the disposal of our old..., and prevent the recovery and reuse of valuable resources. For the well- being of our people and our..., management, and recycling that will accelerate our burgeoning electronics recycling market and create jobs...

  6. On the logistics of recycling : an introduction

    NARCIS (Netherlands)

    Flapper, S.D.P.

    1993-01-01

    An overview is given of the different logistic aspects of recycling, where recycling denotes "All the activities required for the reuse of materials and (semi-)finished products after they are no longer used by their last user." Special attention is paid to the forced recycling of durable

  7. Hydrogen recycle modeling in transport codes

    International Nuclear Information System (INIS)

    Howe, H.C.

    1979-01-01

    The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes

  8. Assessing Worker and Environmental Chemical Exposure Risks at an e-Waste Recycling and Disposal Site in Accra, Ghana

    Directory of Open Access Journals (Sweden)

    Jack Caravanos

    2011-01-01

    Conclusions. The Agbogbloshie e-waste recycling/disposal site in Accra, Ghana revealed an area with extensive lead contamination in both ambient air and topsoil. Given the urban nature of this site e as well as the large adjacent food distribution market, the potential for human health impact is substantial both to workers and local residents.

  9. Evaluation of a Zirconium Recycle Scrubber System

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from a synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.

  10. Recycling of nonferrous metals from waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, A

    1982-02-01

    Recycling of metals was one of the 9 central subjects of the international symposium on 'Materials and Energy from Refuse', held in Antwerpen on October 20 to 22, 1981. Six of 65 poster sessions papers were on metal recycling; four of them discussed the recycling of nonferrous metals.

  11. Recycling behaviour in healthcare: waste handling at work.

    Science.gov (United States)

    Vogt, Joachim; Nunes, Katia R A

    2014-01-01

    This article reviews the motivational factors for environmental behaviour in general, presenting a case study on recycling disposable plastics in hospitals. Results show that 90% of over 600 employees from six analysed hospitals in Germany reported that the recycling of disposable plastics on the wards makes sense from an environmental and economic point of view. The case study reports an assessment of recycling attitudes and problems of hospital staff, mainly nurses. Employees in eco-certified hospitals were much more satisfied and reported fewer problems with the recycling system. The gender effect was significant only for saving energy, while age correlated with nearly all reported pro-environmental behaviour at home. At work, the mere introduction of a recycling system was insufficient to achieve good recycling results. Based on the study findings, recommendations are given aimed at improving the safety and sustainability of the recycling system.

  12. Development of processes for zircaloy chips recycling by electric arc furnace remelting and powder metallurgy

    International Nuclear Information System (INIS)

    Pereira, Luiz Alberto Tavares

    2014-01-01

    PWR reactors employ, as nuclear fuel, UO 2 pellets with Zircaloy clad. In the fabrication of fuel element parts, machining chips from the alloys are generated. As the Zircaloy chips cannot be discarded as ordinary metallic waste, the recycling of this material is important for the Brazilian Nuclear Policy, which targets the reprocess of Zircaloy residues for economic and environmental aspects. This work presents two methods developed in order to recycle Zircaloy chips. In one of the methods, Zircaloy machining chips were refused using an electric-arc furnace to obtain small laboratory ingots. The second one uses powder metallurgy techniques, where the chips were submitted to hydriding process and the resulting material was milled, isostatically pressed and vacuum sintered. The ingots were heat-treated by vacuum annealing. The microstructures resulting from both processing methods were characterized using optical and scanning electron microscopy. Chemical composition, crystal phases and hardness were also determined. The results showed that the composition of recycled Zircaloy comply with the chemical specifications and presented adequate microstructure for nuclear use. The good results of the powder metallurgy method suggest the possibility of producing small parts, like cladding end-caps, using near net shape sintering. (author)

  13. Space Plastic Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Techshot's proposed Space Plastic Recycler (SPR) is an automated closed loop plastic recycling system that allows the automated conversion of disposable ISS...

  14. Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete

    Science.gov (United States)

    Broukalová, I.; Šeps, K.

    2017-09-01

    The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.

  15. Bottle & Can Recycling in Denmark: addressing issues and optimizing the recycling rate

    OpenAIRE

    Carnevale, Alessandro; Larsen, Lucas; Tetens, Simon W.

    2015-01-01

    The research is conducted in the landscape of environmental care and consumer behaviour. This paper explores the different dynamics revolving around the recycling of plastic bottles and aluminium cans in Denmark. The aim is to shed light on the possible impediments people might encounter when attempting to hand back their deposit marked bottle to the allocated facilities as well as illuminating what the main forces involved in encouraging or inhibiting people from recycling are. The ultimate ...

  16. Economics and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Butlin, J A

    1977-06-01

    The current state of recycling technology could appear to be a question of supply and demand, first for storage, disposal, and reclamation facilities, and secondly, for reclaimed materials. If supply and demand are to be relied upon as an environmental policy tool, several conditions need to exist within the economy: supply data for storage and disposal facilities should reflect the full social cost of their use for this purpose relative to any other; demand data for the use of storage facilities must reflect the full social benefit of having waste go through one channel rather than some other; demand for and supply of reclaimed materials for recycling must reflect the full costs and benefits of rechanneling them back into production or consumption; and the markets for products competitive to recycled raw materials (mainly virgin raw materials) should reflect full social costs and benefits, as should the markets for the alternative uses of storage and disposal facilities. If these conditions are met (in addition to a few technical ones), then the problem of waste management will not arise. (MCW)

  17. FINDING WAYS OF RECYCLING DUST OF ARC STEEL FURNACES AT THE BELARUSIAN METALLURGIC PLANT. PART 3. EXPERIMENTS ON BRIQUETTING OF DUST OFARC STEEL FURNACES

    Directory of Open Access Journals (Sweden)

    A. I. Rozhkov

    2015-01-01

    Full Text Available The article gives an overview of the global experience of recycling dust by briquetting. The advantages and disadvantages of recycling dust with its preliminary briquetting are described. Information about experiments on briquetting of dust generated in different organizations of the Belarusian metallurgy plant with various binders is given. Economic calculations were performed on the basis of technical data obtained during the manufacture of prototypes of briquettes. The results of the calculations showedinexpediency of recycling dust briquetting method because of the low iron content in the dust, high cost of binder and a relatively small rate of ecological tax.

  18. The Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-19

    The Recycler Electron cooler was the first (and so far, the only) cooler working at a relativistic energy (γ = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. This paper describes the cooler, difficulties in achieving the required electron beam parameters and the ways to overcome them, cooling measurements, and details of operation.

  19. Tire recycling technologies: What is the future?

    NARCIS (Netherlands)

    Saiwari, Sitisaiyidah; van Hoek, Johannes Wilhelmus; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Blume, Anke; Heideman, G.

    2016-01-01

    Recycling is a heavily discussed topic nowadays, and recycled tire material to be re-used for the same application is one of the spear points of current R&D activities. Regarding the immense amount of used tires, more than just one outlet for the recycled material is needed. Besides the commonly

  20. Fluorescent lamp recycling initiatives in the United States and a recycling proposal based on extended producer responsibility and product stewardship concepts.

    Science.gov (United States)

    Silveira, Geraldo Tr; Chang, Shoou-Yuh

    2011-06-01

    This paper presents an overview of mercury-containing lamp (MCL) recycling initiatives currently available in the world, especially in the United States. The majority of MCLs contain mercury which is a neurotoxin, a persistent pollutant in the environment, and can bioaccumulate in the food chain. Although there are some recycling options in the United States, collection rates are still at 23% of all potential used MCLs. This shows that citizens are either indifferent to or unaware of the recycling alternatives. On the other hand, MCL recycling seems not to be a cost-effective process and, for this reason, in the United States, take-back programmes are still sponsored only by consumers or municipalities. A few retailers have recently initiated limited take-back alternatives and manufacturers have not yet supported financially any consistent recycling alternative in the country. Considering successful experiences, this paper makes a suggestion for an MCL recycling system based on the concepts of extended producer responsibility and product stewardship. A manufacturer-importer advance recycling fee is proposed to finance the collection and recycling system while a MCL-energy recycling fee supported by the energy sector creates a lamp refund process. 'PRO Lamp', a producer responsibility organization, will manage the entire system through a widespread public-private agreement.

  1. Quantify the energy and environmental effects of using recycled asphalt and recycled concrete for pavement construction phase I : final report.

    Science.gov (United States)

    2009-08-01

    The objective of this study is to quantify the energy and environment impacts from using recycled materials : for highway construction. Specifically, when recycled asphalt pavement is re-used for producing hot mix : asphalt or when recycled concrete ...

  2. Collaboration of Extension and Grape Industry Members to Create a New Extension Publication

    Science.gov (United States)

    Stafne, Eric T.; Ingels, George; Ingels, Jane; Carroll, Becky

    2016-01-01

    Collaboration is an important part of the interaction between Extension and industry. Successful sharing of workload can provide benefits for both parties. A project to create a workbook to address vineyard sustainability was initiated by members of the Oklahoma grape industry with assistance from land-grant university Extension. Productive…

  3. Development of building blocks using vegetable oil and recycled aggregate

    Directory of Open Access Journals (Sweden)

    Attia Mohamed I.

    2017-01-01

    Full Text Available The primary objective of this research was to contribute towards greater sustainability of the construction industry in the Qatar by proposing methods to reduce its dependency on primary imported materials. In this investigation, recycled and secondary aggregates (RSA were combined with non-traditional binders to develop a unique method of manufacturing construction and building blocks. Following an extensive phase of laboratory trials and experimentation, it was realised that many types of graded mineral aggregates, when mixed with vegetable oils (virgin or waste at optimal proportions, then compacted and thermally cured at elevated temperatures can readily generate hardened composites that have the mechanical characteristics of conventional building blocks. The resultant blocks have been named “Vegeblocks” and are viewed as viable alternatives to conventional concrete blocks. Furthermore, the research has demonstrated the feasibility of producing Vegeblocks composed of 100% recycled aggregate and discarded waste cooking oil. Based on physical and mineralogical properties, each type of aggregate has an optimum oil content for maximum compressive strength, beyond which, any additional oil will result in reduction in mechanical properties. Acceptable compressive strength values were achieved by thermally curing Vegeblocks at of 170 °C for 24 hours.

  4. Recycling of plastic materials collected by `Duales System Deutschland (DSD)`; Werkstoffliches Recycling von Kunststoffen aus DSD-Sammlungen

    Energy Technology Data Exchange (ETDEWEB)

    Baumgaertner, D. [Lech-Elektrizitaetswerke AG, Augsburg (Germany); Heinz, H. [Lech-Elektrizitaetswerke AG, Augsburg (Germany); Hiller, W. [Lech-Elektrizitaetswerke AG, Augsburg (Germany)

    1996-01-01

    The article deals with the importance, problems and technology of plastics recycling. It gives an overview of the specific demands of plastics recyclates, the necessary process technology, and the characteristic values of materials. (orig.) [Deutsch] Es wird die Bedeutung, die Problematik und Technik des werkstofflichen Recyclings von Kunststoffen dargestellt. Dabei sind sowohl die spezifischen Anforderungen des Einsatzstoffes als Recyclingmaterial, die notwendige Verfahrenstechnik als auch die werkstofflichen Kennwerte in einer Uebersicht dargestellt. (orig.)

  5. Multi-Fluid Modeling of Low-Recycling Divertor Regimes

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Pigarov, A.Y.; Krasheninnikov, S.I.; Rognlien, T.D.; Soukhanovskii, V.A.; Rensink, M.E.; Maingi, R.; Skinner, C.H.; Stotler, D.P.; Bell, R.E.; Kugel, H.W.

    2010-01-01

    The low-recycling regimes of divertor operation in a single-null NSTX magnetic configuration are studied using computer simulations with the edge plasma transport code UEDGE. The edge plasma transport properties pertinent to the low-recycling regimes are demonstrated. These include the flux-limited character of the parallel heat transport and the high plasma temperatures with the flattened profiles in the scrape-off-layer. It is shown that to maintain the balance of particle fluxes at the core interface the deuterium gas puffing rate should increase as the divertor recycling coefficient decreases. The radial profiles of the heat load to the outer divertor plate, the upstream radial plasma profiles, and the effects of the cross-field plasma transport in the low-recycling regimes are discussed. It is also shown that recycling of lithium impurities evaporating from the divertor plate at high surface temperatures can reverse the low-recycling divertor operational regime to the high-recycling one and may cause thermal instability of the divertor plate.

  6. School Recycling Programs: A Handbook for Educators.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This brochure describes some of the many recycling program options that schools can implement in their communities. It focuses on implementing actual recycling projects as a way of teaching the importance and benefits of recycling. The text examines the solid waste crisis and why Americans cannot continue to possess a disposable mentality. It…

  7. Requirements for the recycling of hazardous waste

    International Nuclear Information System (INIS)

    Petts, M.

    1990-09-01

    The regulatory status of materials destined to be recycled is not always clear. There have been numerous questions from DOE Field Elements regarding the applicability of the Resource Conservation and Recovery Act (RCRA) to certain materials that can be recycled. The Office of Environmental Guidance, RCRA/CERCLA Division, has responded to questions relating to the RCRA regulations as they apply to materials that are recycled or are destined for recycling. Additional regulatory requirements for these materials may be promulgated upon the reauthorization of RCRA (e.g., regulation of used oil). Additional EH-23 information Briefs will be issued as these regulations develop. The Office of Environment, Safety and Health has convened a workshop to establish DOE's position on a number of issues associated with mixed waste and materials management, several relative to recycling

  8. Software recycling at the Hanford Site

    International Nuclear Information System (INIS)

    HINKELMAN, K.C.

    1999-01-01

    The Hanford Site was the first Department of Energy (DOE) complex to recycle excess software rather than dispose of it in the landfill. This plan, which took over a year to complete, was reviewed for potential legal conflicts, which could arise from recycling rather than disposal of software. It was determined that recycling was an approved method of destruction and therefore did not conflict with any of the licensing agreements that Hanford had with the software manufacturers. The Hanford Recycling Program Coordinator combined efforts with Pacific Northwest National Laboratory (PNNL) to recycle all Hanford software through a single contract, which went out for bid in January 1995. It was awarded to GreenDisk, Inc. located in Woodinville Washington and implemented in March 1995. The contract was later re-bid and awarded to EcoDisWGreenDisk in December 1998. The new contract included materials such as; software manuals, diskettes, tyvek wrapping, cardboard and paperboard packaging, compact disks (CDs), videotapes, reel-to-reel tapes, magnetic tapes, audio tapes, and many other types of media

  9. Model institutional infrastructures for recycling of photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

  10. Platinum recycling in the United States in 1998

    Science.gov (United States)

    Hilliard, Henry E.

    2001-01-01

    In the United States, catalytic converters are the major source of secondary platinum for recycling. Other sources of platinum scrap include reforming and chemical process catalysts. The glass industry is a small but significant source of platinum scrap. In North America, it has been estimated that in 1998 more than 20,000 kilograms per year of platinum-group metals from automobile catalysts were available for recycling. In 1998, an estimated 7,690 kilograms of platinum were recycled in the United States. U.S. recycling efficiency was calculated to have been 76 percent in 1998; the recycling rate was estimated at 16 percent.

  11. Radioactive materials in recycled metals.

    Science.gov (United States)

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  12. Going for increased recycling. A social cost-benefit analysis; Inzetten op meer recycling. Een maatschappelijke kosten-batenanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Warringa, G.E.A.; De Bruyn, M.; Bijleveld, M.M.

    2013-05-15

    While the environmental benefits of scenarios geared to increased recycling have been convincingly demonstrated by previous studies, the question arises whether such scenarios bring economic benefits, too. This study therefore assesses the main economic effects of increased recycling in the Netherlands, providing data that can be used to advance policy development in this area. To address the main issue we performed a social cost-benefit analysis (SCBA), a welfare-theory-based tool that can be used to chart the full range of economic impacts ('welfare impacts') of a project or policy intervention. In doing so, a broad definition of welfare is adopted, encompassing not only financial and economic consequences, but also environmental and employment impacts and so on. Using SimaPro, all the environmental interventions inventoried (including energy consumption, transport and recycling process emissions) were assessed for each individual material flow, with impacts being expressed as far as possible in monetary terms to enable comparison. The main social costs of increased recycling are the higher costs for local authorities associated with separate waste collection. There is also reduced revenue for waste incinerators, because more waste will need to be imported from abroad. Finally, there are the policy costs of incentives for increased recycling and extra efforts to induce citizens to separate their waste. The latter costs were not quantified. Over and against these costs are positive welfare impacts. The main benefits are environmental, expressed monetarily in the present study in terms of avoided damage costs for society as a whole and avoided measures for securing government reduction targets. In addition, the separated waste has a value, reflected in lower processing costs. Increased recycling also creates new jobs, while recycling firms generate more profit than waste incinerators. Finally, there are the benefits accruing from greater innovation and

  13. Reprocessing-recycling, or the application of the selective sorting and recycling policy to nuclear activities

    International Nuclear Information System (INIS)

    1998-12-01

    In France, the reprocessing of spent fuels is the solution that has been retained for the management of the end-of-cycle. The sorting of the different components of spent fuels allows the recycling of uranium and plutonium for the further production of enriched uranium and mixed oxide fuels. This paper presents Cogema's advances in this domain (facilities and plants), the transfer of Cogema's reprocessing and recycling technologies in other countries (Japan, USA, Russia), the economical and environmental advantages of the recycling of spent fuels, the economical resources provided by this activity, and the cooperation with foreign countries for the reprocessing of their spent fuels at Cogema-La Hague. (J.S.)

  14. Extension and comparison of neoclassical models for poloidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Stacey, W. M.

    2008-01-01

    Several neoclassical models for the calculation of poloidal rotation in tokamaks were rederived within a common framework, extended to include additional physics and numerically compared. The importance of new physics phenomena not usually included in poloidal rotation calculations (e.g., poloidal electric field, VxB force resulting from enhanced radial particle flow arising from the ionization of recycling neutrals) was examined. Extensions of the Hirshman-Sigmar, Kim-Diamond-Groebner, and Stacey-Sigmar poloidal rotation models are presented

  15. Integration of Demilitarization Contractors and Recyclers - Collateral Benefits of On-Site Training of Recyclers

    Science.gov (United States)

    2010-07-01

    item Spherical? Wedge Shaped? Cylindrical? These items are potentially very dangerous 29 Spherical = Not Good If found in a recycling yard, don’t...touch! Call 9-1-1 BLU-63 30 Wedge Shape = Not Good If found in a recycling yard, don’t touch! Call 9-1-1 M72M43 31 Cylindrical = Not Good If found in a

  16. Suppression of atmospheric recycling of planets embedded in a protoplanetary disc by buoyancy barrier

    Science.gov (United States)

    Kurokawa, Hiroyuki; Tanigawa, Takayuki

    2018-06-01

    The ubiquity of super-Earths poses a problem for planet formation theory to explain how they avoided becoming gas giants. Rapid recycling of the envelope gas of planets embedded in a protoplanetary disc has been proposed to delay the cooling and following accretion of disc gas. We compare isothermal and non-isothermal 3D hydrodynamical simulations of the gas flow past a planet to investigate the influence on the feasibility of the recycling mechanism. Radiative cooling is implemented by using the β cooling model. We find that, in either case, gas enters the Bondi sphere at high latitudes and leaves through the midplane regions, or vice versa when disc gas rotates sub-Keplerian. However, in contrast to the isothermal case where the recycling flow reaches the deeper part of the envelope, the inflow is inhibited from reaching the deep envelope in the non-isothermal case. Once the atmosphere starts cooling, buoyant force prevents the high-entropy disc gas from intruding the low-entropy atmosphere. We suggest that the buoyancy barrier isolates the lower envelope from the recycling and allows further cooling, which may lead runaway gas accretion onto the core.

  17. Measures for recycling plastic wastes in France

    Energy Technology Data Exchange (ETDEWEB)

    Cossais, J C [Ministere de l' Industrie et de la Recherche, 75 - Paris (France). Delegation aux Economies de Matieres Premieres

    1978-05-01

    Raw materials crisis and environmental awareness have lead to the question of intensively dealing with the recycling of plastics. Although plastic wastes (residues) industrially occuring have been recycled for a long time, this is certainly not always the case in the subsequent stages. One must particularly give thought to the considerable quantities of agricultural and municipal wastes. Besides the problem of collecting the waste which can only be satisfactorily solved by separate collection or setting up sorting places, it is necessary for the recycling plastic wastes on a large scale to find or develop sellable products. The product for sale is limited by economical aspects and prejudices against recycled materials. The public have taken to a series of measures in France to simplify recycling plastic wastes. Private industry is also beginning to take interest in this new sources of raw materials.

  18. Durable Recycled Superpave Mixes in Kansas

    Science.gov (United States)

    2018-04-01

    The use of economical and environment-friendly recycled asphalt materials has become increasingly popular for asphalt pavement construction. In general, reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) are used in hot-mix asphalt ...

  19. Linking Informal and Formal Electronics Recycling via an Interface Organization

    Directory of Open Access Journals (Sweden)

    Yoshiaki Totoki

    2013-07-01

    Full Text Available Informal recycling of electronics in the developing world has emerged as a new global environmental concern. The primary approach to address this problem has been command-and-control policies that ban informal recycling and international trade in electronic scrap. These bans are difficult to enforce and also have negative effects by reducing reuse of electronics, and employment for people in poverty. An alternate approach is to link informal and formal sectors so as to maintain economic activity while mitigating environmental damages. This article explores the idea of an interface organization that purchases components and waste from informal dismantlers and passes them on to formal processors. Environmental, economic and social implications of interface organizations are discussed. The main environmental questions to resolve are what e-scrap components should be targeted by the interface organization, i.e., circuit boards, wires, and/or plastic parts. Economically, when formal recycling is more profitable (e.g., for circuit boards, the interface organization is revenue positive. However, price subsidies are needed for copper wires and residual waste to incentivize informal dismantlers to turn in for formal processing. Socially, the potential for corruption and gaming of the system is critical and needs to be addressed.

  20. Advanced Recyclable Media System reg-sign. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory East's (ANL) Chicago Pile-5 (CP-5) Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved deactivation and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. This report describes a demonstration of the Advanced Recyclable Media System reg-sign technology which was employed by Surface Technology Systems, Inc. to remove coatings from a concrete floor. This demonstration is part of the CP-5 LSDP sponsored by the US Department of Energy (DOE) Office of Science and Technology Deactivation and Decommissioning Focus Area (DDFA). The Advanced Recyclable Media System reg-sign (ARMS) technology is an open blast technology which uses a soft recyclable media. The patented ARMS Engineered Blast Media consists of a fiber-reinforced polymer matrix which can be manufactured in various grades of abrasiveness. The fiber media can be remade and/or reused up to 20 times and can clean almost any surface (e.g., metal, wood, concrete, lead) and geometry including corners and the inside of air ducts

  1. Sustainability and training materials for in-place recycling.

    Science.gov (United States)

    2016-04-22

    Hot and cold in-place recycling techniques recycle 100 percent of a hot mix asphalt (HMA) pavement, in place, during the maintenance/rehabilitation process. Numerous studies have shown in-place recycling to be a sustainable, cost-effective procedure ...

  2. The Dynamic Earth: Recycling Naturally!

    Science.gov (United States)

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  3. Multi-fluid modeling of low-recycling divertor regimes

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Pigarov, A.Yu.; Krasheninnikov, S.I.; Rognlien, T.D.; Soukhanovskii, V.A.; Rensink, M.E.; Maingi, R.; Skinner, C.H.; Stotler, D.P.; Bell, R.E.; Kugel, H.W.

    2010-01-01

    The low-recycling regimes of divertor operation in a single-null NSTX magnetic configuration are studied using computer simulations with the edge plasma transport code UEDGE. The edge plasma transport properties pertinent to the low-recycling regimes are demonstrated. These include the flux-limited character of the parallel heat transport and the high plasma temperatures with the flattened profiles in the scrape-off-layer. It is shown that to maintain the balance of particle fluxes at the core interface the deuterium gas puffing rate should increase as the divertor recycling coefficient decreases. The radial profiles of the heat load to the outer divertor plate, the upstream radial plasma profiles, and the effects of the cross-field plasma transport in the low-recycling regimes are discussed. It is also shown that recycling of lithium impurities evaporating from the divertor plate at high surface temperatures can reverse the low-recycling divertor operational regime to the high-recycling one and may cause thermal instability of the divertor plate (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    Mădălina Elena Grigore

    2017-11-01

    Full Text Available This study aims to provide an updated survey of the main thermoplastic polymers in order to obtain recyclable materials for various industrial and indoor applications. The synthesis approach significantly impacts the properties of such materials and these properties in turn have a significant impact on their applications. Due to the ideal properties of the thermoplastic polymers such as corrosion resistance, low density or user-friendly design, the production of plastics has increased markedly over the last 60 years, becoming more used than aluminum or other metals. Also, recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today.

  5. Influence of recycling rate increase of aseptic carton for long-life milk on GWP reduction

    International Nuclear Information System (INIS)

    Mourad, Anna Lucia; Garcia, Eloisa E.C.; Vilela, Gustavo Braz; Von Zuben, Fernando

    2008-01-01

    Tetra Pak, through intensive cooperation with its supply chain, increased the post-consumer recycling rate of the aseptic packaging for long-life milk in the last 10 years. In continuation of a previous study that presented a superior overall performance in terms of reduction of the consumption of natural resources, air emissions and most of the water emissions, the objective of the present work was to apply life cycle assessment (LCA) to measure the global warming potential (GWP). The system was assessed using as functional unit 1000 liters of milk packaged in Tetra Pak Aseptic containers. The reduction of greenhouse gas emissions was calculated for recycling rates of 2%, 22%, 30%, 40% and 70% of the post-consumer residues in Scenarios I (only cardboard recycling) and II (total aseptic laminate recycling). Scenario I showed a 14% reduction in GWP, representing 26 kg of avoided CO 2 equiv. emitted due to the efforts of Tetra Pak to increase the recycling rate from 2% (2000) to 22% (2004). If it will be possible to increase the recycling rate to 70% of post-consumer packages in the future, a 48% reduction of GWP could be attained. Methane exhibited the greatest mass reduction among the greenhouse emissions, since it is emitted during the production of cardboard and also as a result of anaerobic degradation in landfills. The total reduction of the energy requirements of the system due to the increase of the recycling rate (from 2% to 22%) is 154 MJ/1000 liters, a saving of 7%. Scenario II (which considers additional polyethylene and aluminum recycling) has a smaller effect on GWP reduction than Scenario I, since PE/AL represent only 25% of the total mass of the container. The major benefit of the recycling of aseptic cartons is the reduction of the amounts of virgin materials required and the consequent reduction of air emissions. The results of this study can be used to encourage the collection of post-consumer milk cartons as part of environmental education

  6. The chemical recycle of cotton

    Directory of Open Access Journals (Sweden)

    Alice Beyer Schuch

    2016-08-01

    Full Text Available The chemical recycle of cotton textiles and/or other cellulosic materials for the purpose of manufacturing regenerated high quality textiles fibres is a novel process. The objective of related research is based on the forecast of population growth, on resource scarcity predictions, and on the negative environmental impact of the textile industry. These facts lead the need of broadening the scope for long-term textile-to-textile recycle - as the mechanical recycle of natural fibres serve for limited number of cycles, still depends on input of virgin material, and offer a reduced-in-quality output. Critical analysis of scientific papers, relevant related reports, and personal interviews were the base of this study, which shows viable results in laboratorial scale of using low-quality cellulosic materials as input for the development of high-quality regenerated textile fibres though ecological chemical process. Nevertheless, to scale up and implement this innovative recycle method, other peripheral structures are requested, such as recover schemes or appropriate sort, for instance. Further researches should also be considered in regards to colours and impurities.

  7. Recycled materials in Portland cement concrete

    Science.gov (United States)

    2000-06-01

    This report pertains to a comprehensive study involving the use of recycled materials in Portland cement concrete. Three different materials were studied including crushed glass (CG), street sweepings (SS), and recycled concrete (RC). Blast furnace s...

  8. Flow studies for recycling metal commodities in the United States

    Science.gov (United States)

    Sibley, Scott F.

    2011-01-01

    As world population increases and the world economy expands, so does the demand for natural resources. An accurate assessment of the Nation's mineral resources must include not only the resources available in the ground but also those that become available through recycling. Supplying this information to decisionmakers is an essential part of the USGS commitment to providing the science that society needs to meet natural resource and environmental challenges.

  9. Case studies in rural recycling. Public service report series

    Energy Technology Data Exchange (ETDEWEB)

    Cosper, S.D.; Hallenbeck, W.H.; Brenniman, G.R.

    1994-02-01

    Due to state planning requirements and federal landfill regulations, solid waste management in rural areas (particularly recycling) has received much attention in recent years. The growth of recycling during the 1980s occurred mainly in urban and suburban areas. Therefore, rural recycling is still a relatively new enterprise. This report presents several rural recycling case studies from Colorado, Illinois, Indiana, Iowa, Minnesota, Tennessee, and Ontario, Canada to provide examples of successes and problems. This report also discusses the current issues of cooperative marketing of recyclables and municipal solid waste flow control. With respect to recycling, a rural region does not have ready access to markets for collected materials and has difficulty in generating easily marketable quantities of recyclables. (Copyright (c) 1994 The Board of Trustees of the University of Illinois.)

  10. Recycling retention functions

    International Nuclear Information System (INIS)

    Skrable, K.W.; Chabot, G.E.; Johnson, M.H.

    1981-01-01

    Beginning with the concept of any number of physiologically meaningful compartments that recycle material with a central extracellular fluid compartment and considering various excretion pathways, we solve the differential equations describing the kinetics by the method of Laplace to obtain concise algebraic expressions for the retentions. These expressions contain both fundamental and eigenvalue rate constants; the eigenvalue rate constants are obtained from the solution of a polynomial incorporating the fundamental rate constants. Mathematically exact expressions that predict the biodistribution resulting from continuous uptakes are used to obtain very simple mathematically exact steady state expressions as well as approximate expressions applicable to any time. These steady state and approximate expressions contain only the fundamental rate constants; also, they include a recycling factor that describes the increase in the biodistributions because of recycling. To obtain the values of the fundamental rate constants, short term kinetics studies along with data on the long term distributions are suggested. Retention functions obtained in this way predict both the short term and long term distributions; they therefore are useful in the interpretation of bioassay data and in the estimation of internal doses

  11. Low to high performance recycled cementitious materials: case studies

    OpenAIRE

    Etxeberria Larrañaga, Miren

    2015-01-01

    In this work, four real case studies using concrete produced with recycled aggregates are described. The four real cases carried out in Barcelona are: 1) Pavement filling with control low strength material (CLSM) employing fine recycled aggregates, 2) pervious recycled aggregate concrete employing coarse mixed recycled aggregates in the works undertaken at Cervantes park; 3) Concrete blocks produced employing recycled and slag aggregates as well as sea water for a new breakwater dyke and 4) R...

  12. Recycling of plastics in Germany

    International Nuclear Information System (INIS)

    Thienen, N. von; Patel, M.

    1999-01-01

    This article deals with the waste management of post-consumer plastics in Germany and its potential to save fossil fuels and reduce CO 2 emissions. Since most experience is available for packaging, the paper first gives an overview of the legislative background and the material flows for this sector. Then recycling and recovery processes for plastics waste from all sectors are assessed in terms of their contribution to energy saving and CO 2 abatement. Practically all the options studied show a better performance than waste treatment in an average incinerator which has been chosen as the reference case. High ecological benefits can be achieved by mechanical recycling if virgin polymers are substituted. The paper then presents different scenarios for managing plastic waste in Germany in 1995: considerable savings can be made by strongly enhancing the efficiency of waste incinerators. Under these conditions the distribution of plastics waste among mechanical recycling, feedstock recycling and energy recovery has a comparatively mall impact on the overall results. The maximum savings amount to 74 PJ of energy, i.e, 9% of the chemical sector energy demand in 1995 and 7.0 Mt CO 2 , representing 13% of the sector's emissions. The assessment does not support a general recommendation of energy recovery due to the large difference between the German average and the best available municipal waste-to-energy facilities and also due to new technological developments in the field of mechanical recycling

  13. Effect of Recycling in Post-Consumer Polystyrene Cups

    OpenAIRE

    Ahmed, Mehnaz

    2016-01-01

    The aim of the thesis was to recycle post-consumer polystyrene cups and to analyze the changes in mechanical and rheological properties of the recycled polystyrene. The me-chanical properties were tensile strength, Young’s modulus and the rheological proper-ties was melt flow index. In order to analyze the changes in properties, material testing results of pristine polystyrene were compared with the recycled polystyrene. The same polystyrene material was recycled and tested twice in order to ...

  14. Planning of Eka Hospital Pekanbaru wastewater recycling facility

    Science.gov (United States)

    Jecky, A.; Andrio, D.; Sasmita, A.

    2018-04-01

    The Ministry of Public Works No. 06 2011 required the large scale of water to conserve the water resource, Eka Hospital Pekanbaru have to improve the sewage treatment plant through the wastewater recycling. The effluent from the plant can be used to landscape gardening and non-potable activities. The wastewater recycling design was done by analyzing the existing condition of thesewage treatment plant, determine the effluent quality standards for wastewater recycling, selected of alternative technology and processing, design the treatment unit and analyze the economic aspects. The design of recycling facility by using of combination cartridge filters processing, ultrafiltration membranes, and desinfection by chlorination. The wastewater recycling capacity approximately of 75 m3/day or 75% of the STP effluent. The estimated costs for installation of wastewater recycling and operation and maintenance per month are Rp 111,708,000 and Rp 2,498,000 respectively.

  15. Long-term aging of recycled binders.

    Science.gov (United States)

    2015-07-01

    Asphalt pavement is Americas most recycled material. Eighty million tons of asphalt, nearly 80% of all milled asphalt pavement, : is recycled every year [1]. To effectively maintain its 40,000 miles of paved roads, the Florida Department of Transp...

  16. Impacts of policy and market incentives for solid waste recycling in Dhaka, Bangladesh

    International Nuclear Information System (INIS)

    Matter, Anne; Ahsan, Mehedi; Marbach, Michelle; Zurbrügg, Christian

    2015-01-01

    Highlights: • Bangladesh’s industry and population are growing rapidly, producing more urban waste. • Recycling reduces the solid waste management burden of Municipalities. • A wide array of informal and formal actors is involved in collection and recycling. • Demand for recycled materials and renewable energy creates market incentives. • Policy incentives exist, but they only reach the formal industry. - Abstract: Solid waste mismanagement in Dhaka, Bangladesh, illustrates a well-known market failure which can be summarized as: waste is a resource in the wrong place. Inorganic materials such as plastic or paper can be used to feed the demand for recycled materials in the industrial sector. Organic materials can be converted and used in the nutrient-starved agricultural sector which is currently heavily depending on chemical fertilizers. They are also a feedstock to generate renewable energy in the form of biogas for this energy-starved country relying on diminishing natural gas reserves and increasing import of coal. Reality however does not capitalize on this potential; instead the waste is a burden for municipal authorities who spend large portions of their budgets attempting to transport it out of the city for discharge into landfills. The major part of these materials still remains uncollected in the residential areas and is discarded indiscriminately in open spaces, polluting the residents’ living environment including water, soil and air resources, in the city and beyond. Bangladeshi authorities have, to some extent, recognized this market failure and have developed policies to encourage the development of waste recycling activities. It is also important to note that this market failure is only partial: a large, mostly informal recycling sector has developed in Bangladesh, focusing on inorganic recyclables of market value. The fact that this sector remains largely informal means that these actors perceive significant barriers to formalization

  17. Impacts of policy and market incentives for solid waste recycling in Dhaka, Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Matter, Anne [Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec), Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf (Switzerland); Swisscontact: Swiss Foundation for Technical Cooperation, South Asian Regional Office, House No. 19, Road No. 11, Baridhara, Dhaka 1212 (Bangladesh); Ahsan, Mehedi [KfW: Development Bank for Germany, Bangladesh Office, House 10/C, Road 90, Gulshan 2, Dhaka 1212 (Bangladesh); Marbach, Michelle [NADEL: Center for Development and Cooperation, Swiss Federal Institute of Technology Zurich, Clausiusstrasse 37, 8092 Zürich (Switzerland); Zurbrügg, Christian [Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec), Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf (Switzerland)

    2015-05-15

    Highlights: • Bangladesh’s industry and population are growing rapidly, producing more urban waste. • Recycling reduces the solid waste management burden of Municipalities. • A wide array of informal and formal actors is involved in collection and recycling. • Demand for recycled materials and renewable energy creates market incentives. • Policy incentives exist, but they only reach the formal industry. - Abstract: Solid waste mismanagement in Dhaka, Bangladesh, illustrates a well-known market failure which can be summarized as: waste is a resource in the wrong place. Inorganic materials such as plastic or paper can be used to feed the demand for recycled materials in the industrial sector. Organic materials can be converted and used in the nutrient-starved agricultural sector which is currently heavily depending on chemical fertilizers. They are also a feedstock to generate renewable energy in the form of biogas for this energy-starved country relying on diminishing natural gas reserves and increasing import of coal. Reality however does not capitalize on this potential; instead the waste is a burden for municipal authorities who spend large portions of their budgets attempting to transport it out of the city for discharge into landfills. The major part of these materials still remains uncollected in the residential areas and is discarded indiscriminately in open spaces, polluting the residents’ living environment including water, soil and air resources, in the city and beyond. Bangladeshi authorities have, to some extent, recognized this market failure and have developed policies to encourage the development of waste recycling activities. It is also important to note that this market failure is only partial: a large, mostly informal recycling sector has developed in Bangladesh, focusing on inorganic recyclables of market value. The fact that this sector remains largely informal means that these actors perceive significant barriers to formalization

  18. Sustainability issues in circuit board recycling

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech; Alting, Leo; Baldo, Gian Luca

    1995-01-01

    The resource recovery and environmental impact issues of printed circuit board recycling by secondary copper smelters are discussed. Guidelines concerning material selection for circuit board manufacture and concerning the recycling processes are given to enhance recovery efficiency and to lower...

  19. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    Science.gov (United States)

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  20. Attitudes toward text recycling in academic writing across disciplines.

    Science.gov (United States)

    Hall, Susanne; Moskovitz, Cary; Pemberton, Michael A

    2018-01-01

    Text recycling, the reuse of material from one's own previously published writing in a new text without attribution, is a common academic writing practice that is not yet well understood. While some studies of text recycling in academic writing have been published, no previous study has focused on scholars' attitudes toward text recycling. This article presents results from a survey of over 300 journal editors and editorial board members from 86 top English-language journals in 16 different academic fields regarding text recycling in scholarly articles. Responses indicate that a large majority of academic gatekeepers believe text recycling is allowable in some circumstances; however, there is a lack of clear consensus about when text recycling is or is not appropriate. Opinions varied according to the source of the recycled material, its structural location and rhetorical purpose, and conditions of authorship conditions-as well as by the level of experience as a journal editor. Our study suggests the need for further research on text recycling utilizing focus groups and interviews.

  1. Socio-Spatial Factors Affecting Household Recycling in Townhouses in Pretoria, South Africa

    Directory of Open Access Journals (Sweden)

    Jacques du Toit

    2017-11-01

    Full Text Available Although social factors affecting recycling have been widely researched, the effect of spatial and physical factors posed by medium-density housing, such as townhouses, is less understood. Using the Theory of Planned Behaviour, the relative effect of three sets of factors on household recycling in townhouses are examined, including ‘attitude’ (about recycling, ‘subjective norm’ (social pressure, and ‘perceived behaviour control’ (ability to recycle. A questionnaire survey of 300 households was conducted in Equestria, an enclosed middle-income residential estate consisting of several townhouse complexes. Confirmatory factor analysis verified the three factor measurement model for recycling participation. Both recyclers and non-recyclers showed positive attitudes toward recycling and felt social pressure to recycle. Non-recyclers, however, felt significantly less able to recycle. Most recyclers as well as non-recyclers indicated that certain proposals for increasing recycling may cause them to recycle more, in particular a system through which the management agency arranges access for a recycling company to collect recyclables from strategically located collection points inside the complex. Urban planning and design recommendations for facilitating recycling in townhouses are discussed.

  2. Development of melting facilities and techniques for decontamination and recycling of radioactively contaminated material

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1998-01-01

    One decade after the accident at unit 4 of the Chernobyl nuclear power station a melting plant for radioactively contaminated metallic materials, the so-called SURF facility is being planned and licensed for erection in the direct neighbourhood of the NPP area. Main goal is the recycling of the material, largely decontaminated by the melting process, by means of manufacturing of casks and containers for waste disposal and of shielding equipment. The melting plant will be placed as part of the Ukrainian waste handling centre (CPPRO). The technology is based on the long-term experience gained at Siempelkamp's CARLA plant in Krefeld. In 1995-1997 the licensing conditions were defined, the licensing documents prepared and the formal procedure initiated. For completion of the recycling technique and to broaden the application fields for the re-usable material a granules production method has been developed and formally qualified. The essential is the substitution of the hematite portion in concrete structures providing an alternative sink for recycling material. (author)

  3. Recycling of beverage containers in the Northwest Territories

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    This study researched existing recycling systems, presented pertinent data on the beverage and transportation industries, and evaluated the potential of recycling beverage bottles and cans in the Northwest Territories. The study first describes the history and existing concepts of recycling, provides a general description of recycling methods with advantages and disadvantages, and highlights particular approaches taken by other provinces. Markets for the Northwest Territories are also discussed, including the potential of recoverable material, anticipated recovery rates, transportation to markets, and present recycling operations. Three strategies are identified for the southwest, northwest, and the eastern Region. Recycling is preferred for aluminium cans, glass beer bottles, plastic bottles, and glass wine and liquor bottles in that order. The report recommends a limited program for aluminium cans and beer bottles to begin immediately. Beer bottles should be refilled either in Alberta or the Northwestern Territories and aluminium cans should be compacted and shipped to recycling markets in southern Canada or the United States. The program should first be implemented in areas serviced by Alberta and accessible by truck or barge from Hay River. A program implementation plan is also included. 8 refs., 2 figs., 14 tabs.

  4. Comparative analysis of old, recycled and new PV modules

    Directory of Open Access Journals (Sweden)

    Haroon Ashfaq

    2017-01-01

    Full Text Available This paper presents comparative analysis of old, recycled and new PV modules. It is possible to recycle even very old products by modern standard processes in a value-conserving manner. About 90% of the materials recovered from solar panels can be recycled into useful products. Carbon emission and energy cost are low in manufacturing recycled SPV. Modules can be manufactured with recycled materials and reinstalled in systems as a full quality product with today’s technology good for another 25–30 years. Analysis of all the models of PV module is done with the help of MATLAB. This helps in comparison and proves the effectiveness of the recycled PV module based systems.

  5. Investigation of limiter recycling in the divertor tokamak ASDEX

    International Nuclear Information System (INIS)

    Wagner, F.

    1981-08-01

    A divertor experiment like the ASDEX tokamak is especially suited for studying ion recycling at a material limiter, because the plasma can alternatively be limited by a magnetic limiter (separatrix) or by a material limiter. The role of the material limiter in ion recycling is documented by observing the increase in charge exchange flux emitted at the limiter position, and the decrease in external gas input necessary to keep the plasma line density invariant, when the material limiter is moved to the plasma. Ion recycling occurs predominantly at the outside section of a ring limiter. The limiter material saturates shortly after the start of the discharge. About 60% of the total recycling occurs at the limiter, which is nearly 100% of the ion recycling. The remaining 40% of the total recycling is carried by charge exchange neutrals. Due to saturation, the recycling coefficient at the limiter is 1; the recycling coefficient of the charge exchange neutrals at the wall is approximately 0.5 giving rise to a total recycling coefficient of limiter discharges of 0.8-0.9. It is observed that the plasma resistivity increases when the material limiter is moved toward the separatrix. The increase in Zsub(eff) can tentatively be explained by proton sputtering. (orig.)

  6. Blue Box Plus Quinte regional recycling demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    The Blue Box Plus recycling program was established in September 1990 in the Quinte region of Ontario. The program was intended to develop the necessary operational information so that the existing program could expand to include mixed plastics, corrugated cardboard, and boxboard. Over 33,000 recycling boxes were distributed over an area covering 15 municipalities with a population base of 95,000. The program showed the willingness of the public to participate in recycling, but advertising and promotion of the program were critical for success. Separation of the recycled materials on the collection trucks was found to be a viable approach and more efficient than sorting at the recycling plant. Adding new materials to be recycled could be done efficiently, and operating costs were in line with those for other programs collecting fewer materials. A cooperative market development with industrial players opened up a new and expanding market for boxboard. 6 figs., 9 tabs.

  7. 17. Meeting municipal waste Magdeburg. Residual waste - recycling - resource; 17. Tagung Siedlungsabfallwirtschaft Magdeburg. Restabfall - Recycling - Ressource

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Hartwig (ed.)

    2012-11-01

    Within the 17th meeting Waste Management at Residential Areas from 12th o 13th September, 2012 in Magdeburg (Federal Republic of Germany), the following lectures were held: (1) Opening Session - Waste management in Saxony-Anhalt (O. Aeikens); (2) World with future - the eco-social perspective (F.J. Radermacher); (3) Global commodity markets - rare earths and their recycling (I. Fahimi); (4) The further development of nearhousehold capture of recyclable materials (J. Seitel); (5) On the future of the disposal management (J. Balg); (6) Options for action for the future of the municipal waste management (A. Gosten); (7) Current models of the capture of recyclable materials in Germany (M. Kerkhoff); (8) The recycling bin as a pilot test in Hanover (R. Middendorf); (9) Position of BellandVision on the implementation of a unified recycling bin (J. Soelling); (10) What will change with the new Recycle Economy Law according to the material flows and waste treatment capacities? (H. Alwast); (11) Waste management plan Saxony-Anhalt - Current developments (S. Hagel); (12) Wastes from the thermal waste treatment - Risk potential and disposal (G.-R. Behr); (13) Landfill Mining - Contribution of the waste management to the securing of resources (K. Fricke); (14) Logistic process design and system design in the transport of wastes in developing countries using Serbia as an example (Z. Jovanovic); (15) Example of good practices in the subsequent use of landfills - Solar park Cracauer Anger (M. Harnack); (16) Ecoloop - energy efficient gasification in the limestone moving-bed (R. Moeller); (17) Utilization of waste and biomass as a resource? Only by means of an intelligent logistics. (S. Trojahn); (18) Renewable energy resources - Experiences of a network provider (J. Kempmann).

  8. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) stabilizes high level radioactive waste (HLW) by vitrification of the waste slurries. DWPF currently produces approximately five gallons of dilute recycle for each gallon of waste vitrified. This recycle stream is currently sent to the HLW tank farm at SRS where it is processed through the HLW evaporators with the concentrate eventually sent back to the DWPF for stabilization. Limitations of the HLW evaporators and storage space constraints in the tank farm have the potential to impact the operation of the DWPF and could limit the rate that HLW is stabilized. After an evaluation of various alternatives, installation of a dedicated evaporator for the DWPF recycle stream was selected for further evaluation. The recycle stream consists primarily of process condensates from the pretreatment and vitrification processes. Other recycle streams consist of process samples, sample line flushes, sump flushes, and cleaning solutions from the decontamination and filter dissolution processes. The condensate from the vitrification process contains some species, such as sulfate, that are not appreciably volatile at low temperature and could accumulate in the system if 100% of the evaporator concentrate was returned to DWPF. These species are currently removed as required by solids washing in the tank farm. The cleaning solutions are much higher in solids content than the other streams and are generated 5-6 times per year. The proposed evaporator would be required to concentrate the recycle stream by a factor of 30 to allow the concentrate to be recycled directly to the DWPF process, with a purge stream sent to the tank farm as required to prevent buildup of sulfate and similar species in the process. The overheads are required to meet stringent constraints to allow the condensate to be sent directly to an effluent treatment plant. The proposed evaporator would nearly de-couple the DWPF process from the

  9. Evaluation of radioactive scrap metal recycling

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information

  10. The feasibility of recycling contaminated concrete

    International Nuclear Information System (INIS)

    Ayers, K.W.; Corroon, W.; Parker, F.L.

    1999-01-01

    The changing mission of the Department of Energy along with the aging of many of its facilities has resulted in renewed emphasis on decontaminating and decommissioning surplus structures. Currently DOE is decontaminating some concrete and sending the clean material to C and D disposal facilities. In other instance, DOE is sending contaminated concrete to LLW disposal facilities. This paper examines the economic feasibility of decontaminating the concrete and recycling the rubble as clean aggregate. A probabilistic cost model was used to examine six potential recycling and disposal scenarios. The model predicted potential costs saving across the DOE complex of nearly one billion dollars. The ability of local markets to assimilate the recycled material was estimated for Washington, Idaho, Tennessee, New Mexico, and South Carolina. The relationships between a number of the economic model's variables were examined to develop operating ranges for initial managerial evaluation of recycling

  11. Evaluation of radioactive scrap metal recycling

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  12. The level of recycling operations in Botswana | Ketlogetswe ...

    African Journals Online (AJOL)

    This paper describes a case study that evaluated the level of recycling operations in Botswana. Recycling operations are now recommended as effective waste management strategies for reducing the amount of municipal solid waste disposed at landfill sites. In assessing the level of recycling operations in Botswana, two ...

  13. Recycling-Oriented Product Characterization for Electric and Electronic Equipment as a Tool to Enable Recycling of Critical Metals

    Science.gov (United States)

    Rotter, Vera Susanne; Chancerel, Perrine; Ueberschaar, Maximilian

    To establish a knowledge base for new recycling processes of critical elements, recycling-orientated product characterization for Electric and Electronic Equipment (EEE) can be used as a tool. This paper focuses on necessary data and procedures for a successful characterization and provides information about existing scientific work. The usage of this tool is illustrated for two application: Hard Disk Drives (HDD) and Liquid Crystal Display (LCD) panels. In the first case it could be shown that Neodymium and other Rare Earth Elements are concentrated in magnets (25% by weight) and contribute largely to the end demand of Neodymium. Nevertheless, recycling is limited by the difficult liberation and competing other target metals contained in HDD. In the second case it could be shown that also for this application the usage of Indium is concentrated in LCDs, but unlike in magnets the concentration is lower (200 ppm). The design of LCDs with two glued glass layers and the Indium-Tin-Oxide layer in between make the Indium inaccessible for hydro-metallurgical recovery, the glass content puts energetic limitations on pyro-metallurgical processes. For the future technical development of recycling infrastructure we need an in depth understanding of product design and recycling relevant parameters for product characterization focusing on new target metals. This product-centered approach allows also re-think traditional "design for recycling" approaches.

  14. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant.

    Science.gov (United States)

    Wäger, Patrick A; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6-10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Graphite Recycling from Spent Lithium-Ion Batteries.

    Science.gov (United States)

    Rothermel, Sergej; Evertz, Marco; Kasnatscheew, Johannes; Qi, Xin; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2016-12-20

    The present work reports on challenges in utilization of spent lithium-ion batteries (LIBs)-an increasingly important aspect associated with a significantly rising demand for electric vehicles (EVs). In this context, the feasibility of anode recycling in combination with three different electrolyte extraction concepts is investigated. The first method is based on a thermal treatment of graphite without electrolyte recovery. The second method additionally utilizes a subcritical carbon-dioxide (subcritical CO 2 )-assisted electrolyte extraction prior to thermal treatment. And the final investigated approach uses supercritical carbon dioxide (scCO 2 ) as extractant, subsequently followed by the thermal treatment. It is demonstrated that the best performance of recycled graphite anodes can be achieved when electrolyte extraction is performed using subcritical CO 2 . Comparative studies reveal that, in the best case, the electrochemical performance of recycled graphite exceeds the benchmark consisting of a newly synthesized graphite anode. As essential efforts towards electrolyte extraction and cathode recycling have been made in the past, the electrochemical behavior of recycled graphite, demonstrating the best performance, is investigated in combination with a recycled LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels

    International Nuclear Information System (INIS)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M.

    1997-01-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  17. Rubber Recycling: Chemistry, Processing, and Applications

    NARCIS (Netherlands)

    Myhre, M.; Saiwari, Sitisaiyidah; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.

    2012-01-01

    For both environmental and economic reasons, there is broad interest in recycling rubber and in the continued development of recycling technologies. The use of postindustrial materials is a fairly well-established and documented business. Much effort over the past decade has been put into dealing

  18. The unrivalled expertise for Pu recycling

    International Nuclear Information System (INIS)

    Fournier, W.; Pouilloux, M.

    1997-01-01

    Relying on the outstanding performances of the reprocessing facilities and the growing fabrication facilities, the in-reactor Pu recycling program in France and in other European countries is steadily implemented and has reached full-scale industrial operation. The RCR strategy -Reprocessing, Conditioning and Recycling- developed by COGEMA is now a well proven industrial reality. In 1997, plutonium recycling through MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants. In this field, COGEMA is the main actor, on operating simultaneously three complete multidesign fuel production plants: MELOX plant (in Marcoule), CADARACHE plant and DESSEL plant (in Belgium). Present MOX production capacity available to COGEMA fits 175 tHM per year and will be extended to reach about 325 tHM in the year 2000, that will represent 75% of the total MOX fabrication capacity in Europe. The industrial mastery and the high production level in MOX production assured by high technology processes confers COGEMA an unrivalled expertise for Pu recycling. This allows COGEMA to be a major actor in Pu-based fuels in the coming second nuclear era with advanced fuel cycles. The paper depicts the steps of the progressive advance of COGEMA to reach the Pu recycling expertise. (author)

  19. Research methodology in used oil recycling

    International Nuclear Information System (INIS)

    Becker, D.A.

    1982-01-01

    Legislation and activities in the United States on the subject of used oil recycling have increased dramatically in the past several years. However, a substantial portion of both industry and government have some concerns about the lack of scientific and technical research and data on certain aspects of the quality and consistence of recycled petroleum oils, particularly re-refined engine oils. Further, there are some significant environmental concerns about pollution aspects of used oils and their recycling by-products and wastes. Since 1976, the (U.S.) National Bureau of Standards (NBS) has had a legislatively mandated program to''... develop test procedures for the determination of substantial equivalency of re-refined or otherwise processed used oil . . . with new oil for a particular end use'' (42 U.S. Code 6363c). The NBS research includes identification of problem areas in the characterization of used and recycled oils, research into new measurement methods for determination of novel constituents in these materials, and the development and evaluation of appropriate test procedures and standards for recycled oil products. Aspects of this research discussed in this paper include analysis of total elemental content and speciation studies on lead and on the halogens (chlorine and bromine) and hydrocarbon type characterization studies on lubricating oil fractions

  20. Recycling and Networking

    Directory of Open Access Journals (Sweden)

    T. Bányai

    2004-01-01

    Full Text Available In recent years, the notion that for environmental and legislative reasons improvements The national environmental policies and practice, including recycling strategies, are desirable and in many cases might be economically beneficial has been gaining ground. Although according to recent surveys the state of the environment in Hungary is in line with average values of the European Union, the main challenge for the country is to achieve sustainability in economic, environmental and technological terms. With a view to accession to the European Union, a harmonisation strategy must be worked out and implemented. This harmonisation strategy includes not only legislative aspects, but also social, technological, financial and logistic considerations.Because of the high logistic costs of achieving closed loop recycling systems, the author focuses on logistic aspects and tasks of the improvement phases and concentrates on the possibilities of networking and co-operation. The paper describes some possible alternative solutions for co-operative recycling processes, to improve the following logistic parameters: delivery times, accuracy of supply, running times, utilization of capacities, stock quantities, flexibility, transparency of the system, high forwarding capability, quality of product. The logistic aspects of co-operation will be analysed from the viewpoint of a closed loop economy.

  1. Considerations in recycling contaminated scrap metal and rubble

    International Nuclear Information System (INIS)

    Kluk, A.F.; Hocking, E.K.

    1992-01-01

    Management options for the Department of Energy's increasing amounts of contaminated scrap metal and rubble include reuse as is, disposal, and recycling. Recycling, with its promise of resource recovery, virgin materials conservation, and land disposal minimization, emerges as a preferred management technique. Implementing a cost effective recycling program requires resolution of several issues including: establishing release limits for contaminants, controlling use of recycled materials creating effective public communication programs; developing economical, reliable assay technologies; managing secondary waste streams, expanding availability of unrestricted markets; and solving conflicting legal considerations

  2. Technological, Economic, and Environmental Optimization of Aluminum Recycling

    Science.gov (United States)

    Ioana, Adrian; Semenescu, Augustin

    2013-08-01

    The four strategic directions (referring to the entire life cycle of aluminum) are as follows: production, primary use, recycling, and reuse. Thus, in this work, the following are analyzed and optimized: reducing greenhouse gas emissions from aluminum production, increasing energy efficiency in aluminum production, maximizing used-product collection, recycling, and reusing. According to the energetic balance at the gaseous environment level, the conductive transfer model is also analyzed through the finished elements method. Several principles of modeling and optimization are presented and analyzed: the principle of analogy, the principle of concepts, and the principle of hierarchization. Based on these principles, an original diagram model is designed together with the corresponding logic diagram. This article also presents and analyzes the main benefits of aluminum recycling and reuse. Recycling and reuse of aluminum have the main advantage that it requires only about 5% of energy consumed to produce it from bauxite. The aluminum recycling and production process causes the emission of pollutants such as dioxides and furans, hydrogen chloride, and particulate matter. To control these emissions, aluminum recyclers are required to comply with the National Emission Standards for Hazardous Air Pollutants for Secondary Aluminum Production. The results of technological, economic, and ecological optimization of aluminum recycling are based on the criteria function's evaluation in the modeling system.

  3. Childhood Lead Exposure from Battery Recycling in Vietnam.

    Science.gov (United States)

    Daniell, William E; Van Tung, Lo; Wallace, Ryan M; Havens, Deborah J; Karr, Catherine J; Bich Diep, Nguyen; Croteau, Gerry A; Beaudet, Nancy J; Duy Bao, Nguyen

    2015-01-01

    Battery recycling facilities in developing countries can cause community lead exposure. To evaluate child lead exposure in a Vietnam battery recycling craft village after efforts to shift home-based recycling outside the village. This cross-sectional study evaluated 109 children in Dong Mai village, using blood lead level (BLL) measurement, parent interview, and household observation. Blood samples were analyzed with a LeadCare II field instrument; highest BLLs (≥45 μg/dL) were retested by laboratory analysis. Surface and soil lead were measured at 11 households and a school with X-ray fluorescence analyzer. All children had high BLLs; 28% had BLL ≥45 μg/dL. Younger age, family recycling, and outside brick surfaces were associated with higher BLL. Surface and soil lead levels were high at all tested homes, even with no recycling history. Laboratory BLLs were lower than LeadCare BLLs, in 24 retested children. In spite of improvements, lead exposure was still substantial and probably associated with continued home-based recycling, legacy contamination, and workplace take-home exposure pathways. There is a need for effective strategies to manage lead exposure from battery recycling in craft villages. These reported BLL values should be interpreted cautiously, although the observed field-laboratory discordance may reflect bias in laboratory results.

  4. FLY ASH RECYCLE IN DRY SCRUBBING

    Science.gov (United States)

    The paper describes the effects of fly ash recycle in dry scrubbing. (Previous workers have shown that the recycle of product solids improves the utilization of slaked lime--Ca(OH)2--for sulfur dioxide (SO2) removal by spray dryers with bag filters.) In laboratory-scale experimen...

  5. Linguistic Recycling and the Open Community.

    Science.gov (United States)

    Dasgupta, Probal

    2001-01-01

    Examines linguistic recycling in the context of domestic Esperanto use. Argues that word-meaning recycling reflects the same fundamental principles as sentential recursion, and that a linguistics theoretically sensitive to these principles strengthens practical efforts towards the social goal of an open speech community. (Author/VWL)

  6. Integrated Nuclear Recycle Plant

    International Nuclear Information System (INIS)

    Patodi, Anuj; Parashar, Abhishek; Samadhiya, Akshay K.; Ray, Saheli; Dey, Mitun; Singh, K.K.

    2017-01-01

    Nuclear Recycle Board (NRB), Tarapur proposes to set up an 'Integrated Nuclear Recycle Plant' at Tarapur. This will be located in the premises of BARC facilities. The project location is at coastal town of Tarapur, 130 Km north of Mumbai. Project area cover of INRP is around 80 hectares. The plant will be designed to process spent fuel received from Pressurized Heavy Water Reactors (PHWRs). This is the first large scale integrated plant of the country. INRP will process spent fuel obtained from indigenous nuclear power plants and perform left over nuclear waste disposal

  7. Metallic mercury recycling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M.A.

    1994-07-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made.

  8. Metallic mercury recycling. Final report

    International Nuclear Information System (INIS)

    Beck, M.A.

    1994-01-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made

  9. Organic household waste - incineration or recycling

    International Nuclear Information System (INIS)

    2003-01-01

    The Danish Environmental Protection Agency has carried out a cost benefit analysis of the consequences of increasing recycling of organic household waste. In the cost benefit analysis both the economic consequences for the affected parties and the welfare-economic consequences for the society as a whole have been investigated. In the welfare-economic analysis the value of the environmental effects has been included. The analysis shows that it is more expensive for the society to recycle organic household waste by anaerobic digestion or central composting than by incineration. Incineration is the cheapest solution for the society, while central composting is the most expensive. Furthermore, technical studies have shown that there are only small environmental benefits connected with anaerobic digestion of organic waste compared with incineration of the waste. The primary reason for recycling being more expensive than incineration is the necessary, but cost-intensive, dual collection of the household waste. Treatment itself is cheaper for recycling compared to incinerating. (BA)

  10. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    Science.gov (United States)

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  11. Potential GTCC LLW sealed radiation source recycle initiatives

    International Nuclear Information System (INIS)

    Fischer, D.

    1992-04-01

    This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities

  12. 40 CFR Appendix E to Subpart B of... - The Standard for Automotive Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and...

    Science.gov (United States)

    2010-07-01

    ... Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and HFC-134a E Appendix E to Subpart B of... Appendix E to Subpart B of Part 82—The Standard for Automotive Refrigerant Recycling Equipment Intended for... Intended for Use With Both CFC-12 and HFC-134a Foreword The purpose of this standard is to establish...

  13. A slow start at the beginning of the recycling chain : How to make consumers recycle their mobile phones?

    OpenAIRE

    Pietikäinen, Johanna

    2007-01-01

    The aim of this research is to find out why people recycle their old mobile phones lazily. The interest to recycle electronic equipment has enlarged in past few years; the reason for this is the aim of the European Union (EU) to increase recycling as a whole. In the background, there is the objective of the EU to reduce waste by delegating the responsibility of the products-waste handling to producers. The European Parliament and the Council have passed a directive on Waste Electrical and Ele...

  14. Utility of Recycled Bedding for Laboratory Rodents

    OpenAIRE

    Miyamoto, Toru; Li, Zhixia; Kibushi, Tomomi; Okano, Shinya; Yamasaki, Nakamichi; Kasai, Noriyuki

    2009-01-01

    Animal facilities generate a large amount of used bedding containing excrement as medical waste. We developed a recycling system for used bedding that involves soft hydrothermal processing. In this study, we examined the effects of bedding type on growth, hematologic and serum biochemical values, and organ weights of female and male mice reared on either recycled or fresh bedding from 3 to 33 wk of age. Neither growth nor physiology differed between mice housed on recycled bedding compared wi...

  15. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  16. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, A.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2001-01-01

    The feasibility of phosphate recycling in the white phosphorus production process is discussed. Several types of materials may be recycled, provided they are dry inorganic materials, low in iron, copper and zinc. Sewage sludge ash may be used if no iron is used for phosphate precipitation in the

  17. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B [ORNL; Bruffey, Stephanie H [ORNL; DelCul, Guillermo Daniel [ORNL; Walker, Trenton Baird [ORNL

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  18. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H [ORNL; Spencer, Barry B [ORNL; DelCul, Guillermo Daniel [ORNL

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  19. Multiple recycling of plutonium in advanced PWRs

    International Nuclear Information System (INIS)

    Kloosterman, J.L.

    1998-04-01

    The influence of the moderator-to-fuel ratio in MOX fueled PWRs on the moderator void coefficient, the fuel temperature coefficient, the moderator temperature coefficient, the boron reactivity worth, the critical boron concentration, the mean neutron generation time and the effective delayed neutron fraction has been assessed. Increasing the moderator-to-fuel ratio to values larger than three, gives a moderator void coefficient sufficiently large to recycle the plutonium at least four times. Scenario studies show that four times recycling of plutonium in PWRs reduces the plutonium mass produced with a factor of three compared with a reference once-through reactor park, but that the americium and curium production triple. If the minor actinides and the remaining plutonium after four times recycling are disposed of, the reduction of the radiotoxicity reaches only a factor of two. This factor increases to five at the maximum when the plutonium is further recycled. Recycling of americium and curium is needed to further reduce the radiotoxicity of the spent fuel. 4 refs

  20. INEL metal recycle annual report, FY-94

    International Nuclear Information System (INIS)

    Bechtold, T.E.

    1994-09-01

    In 1992, the mission of the Idaho Chemical Processing Plant was changed from reprocessing of spent nuclear fuels to development of technologies for conditioning of spent nuclear fuels and other high-level wastes for disposal in a geologic repository. In addition, the Department of Energy (DOE) directed Idaho National Engineering Laboratory (INEL) to develop a program plan addressing the management of radioactive contaminated scrap metal (RSM) within the DOE complex. Based on discussions with the EM-30 organization, the INEL Metal Recycle program plan was developed to address all issues of RSM management. Major options considered for RSM management were engineered interim storage, land disposal as low-level waste, and beneficial reuse/recycle. From its inception, the Metal Recycle program has emphasized avoidance of storage and disposal costs through beneficial reuse of RSM. The Metal Recycle program plan includes three major activities: Site-by-site inventory of RSM resources; validation of technologies for conversion of RSM to usable products; and identification of parties prepared to participate in development of a RSM recycle business

  1. A recycling molecular beam reactor

    International Nuclear Information System (INIS)

    Prada-Silva, G.; Haller, G.L.; Fenn, J.B.

    1974-01-01

    In a Recycling Molecular Beam Reactor, RMBR, a beam of reactant gas molecules is formed from a supersonic free jet. After collision with a target the molecules pass through the vacuum pumps and are returned to the nozzle source. Continuous recycling permits the integration of very small reaction probabilities into measurable conversions which can be analyzed by gas chromatography. Some preliminary experiments have been carried out on the isomerization of cyclopropane

  2. Logistics Mode and Network Planning for Recycle of Crop Straw Resources

    OpenAIRE

    Zhou, Lingyun; Gu, Weidong; Zhang, Qing

    2013-01-01

    To realize the straw biomass industrialized development, it should speed up building crop straw resource recycle logistics network, increasing straw recycle efficiency, and reducing straw utilization cost. On the basis of studying straw recycle process, this paper presents innovative concept and property of straw recycle logistics network, analyses design thinking of straw recycle logistics network, and works out straw recycle logistics mode and network topological structure. Finally, it come...

  3. Optical absorption in recycled waste plastic polyethylene

    Science.gov (United States)

    Aji, M. P.; Rahmawati, I.; Priyanto, A.; Karunawan, J.; Wati, A. L.; Aryani, N. P.; Susanto; Wibowo, E.; Sulhadi

    2018-03-01

    We investigated the optical properties of UV spectrum absorption in recycled waste plastic from polyethylene polymer type. Waste plastic polyethylene showed an optical spectrum absorption after it’s recycling process. Spectrum absorption is determined using spectrophotometer UV-Nir Ocean Optics type USB 4000. Recycling method has been processed using heating treatment around the melting point temperature of the polyethylene polymer that are 200°C, 220°C, 240°C, 260°C, and 280°C. In addition, the recycling process was carried out with time variations as well, which are 1h, 1.5h, 2h, and 2.5h. The result of this experiment shows that recycled waste plastic polyethylene has a spectrum absorption in the ∼ 340-550 nm wavelength range. The absorbance spectrum obtained from UV light which is absorbed in the orbital n → π* and the orbital π → π*. This process indicates the existence of electron transition phenomena. This mechanism is affected by the temperature and the heating time where the intensity of absorption increases and widens with the increase of temperature and heating time. Furthermore this study resulted that the higher temperature affected the enhancement of the band gap energy of waste plastic polyethylene. These results show that recycled waste plastic polyethylene has a huge potential to be absorber materials for solar cell.

  4. Paper recycling framework, the "Wheel of Fiber".

    Science.gov (United States)

    Ervasti, Ilpo; Miranda, Ruben; Kauranen, Ilkka

    2016-06-01

    At present, there is no reliable method in use that unequivocally describes paper industry material flows and makes it possible to compare geographical regions with each other. A functioning paper industry Material Flow Account (MFA) that uses uniform terminology and standard definitions for terms and structures is necessary. Many of the presently used general level MFAs, which are called frameworks in this article, stress the importance of input and output flows but do not provide a uniform picture of material recycling. Paper industry is an example of a field in which recycling plays a key role. Additionally, terms related to paper industry recycling, such as collection rate, recycling rate, and utilization rate, are not defined uniformly across regions and time. Thus, reliably comparing material recycling activity between geographical regions or calculating any regional summaries is difficult or even impossible. The objective of this study is to give a partial solution to the problem of not having a reliable method in use that unequivocally describes paper industry material flows. This is done by introducing a new material flow framework for paper industry in which the flow and stage structure supports the use of uniform definitions for terms related to paper recycling. This new framework is termed the Detailed Wheel of Fiber. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Recycling systems for BWR type reactors

    International Nuclear Information System (INIS)

    Takagi, Akio; Yamamoto, Fumiaki; Fukumoto, Ryuji.

    1986-01-01

    Purpose: To stabilize the coolant flowing characteristics and reactor core reactivity. Constitution: The recycling system in a BWR type reactor comprises a recycling pump disposed to the outside of a reactor pressure vessel, a ring header connected to the recycling pump through main pipe ways, and a plurality of pipes branched from and connected with the ring header and connected to a plurality of jet pumps within the pressure vessel. Then, by making the diameter for the pipeways of each of the branched pipes different from each other, the effective cross-sectional area is varied to thereby average the coolant flow rate supplied to each of the jet pumps. (Seki, T.)

  6. Development of recycling processes for clean rejected MOX fuel pellets

    International Nuclear Information System (INIS)

    Khot, P.M.; Singh, G.; Shelke, B.K.; Surendra, B.; Yadav, M.K.; Mishra, A.K.; Afzal, Mohd.; Panakkal, J.P.

    2014-01-01

    Highlights: • Dry and wet (MWDD) methods were developed for 100% recycling of CRO (0.4–44% PuO 2 ). • Dry method showed higher productivity and comparable powder/product characteristics. • MWDD batches demonstrated improved powder/product characteristics to that of virgin. • Second/multiple recycling is possible with MWDD with better powder/product characteristics. • MWDD batches prepared by little milling showed better macroscopic homogeneity to that of virgin. - Abstract: The dry and wet recycling processes have been developed for 100% recycling of Clean Reject Oxide (CRO) generated during the fabrication of MOX fuel, as CRO contains significant amount of plutonium. Plutonium being strategic material need to be circumvented from its proliferation issues related to its storage for long period. It was difficult to recycle CRO containing higher Pu content even with multiple oxidation and reduction steps. The mechanical recycling comprising of jaw crushing and sieving has been coupled with thermal pulverization for recycling CRO with higher Pu content in dry recycling technique. In wet recycling, MicroWave Direct Denitration (MWDD) technique has been developed for 100% recycling of CRO. The powder prepared by dry and wet (MWDD) recycling techniques was characterized by XRD and BET techniques and their effects on the pellets were evaluated. (U,21%Pu)O 2 pellets fabricated from virgin powder and MWDD were characterized using optical microscopy and α-autoradiography and the results obtained were compared

  7. Sustainable recycling technologies for Solar PV off-grid system

    Science.gov (United States)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  8. A Study on the Future Issues Regarding the Small Home Appliance Recycling Law -Based on Comparison with the Other Recycling-Related Laws-

    OpenAIRE

    小林, 寛

    2014-01-01

    The Small Home Appliance Recycling Law was enacted in August 2012 and took effect in April 2013 for the purpose of collecting and recycling valuable metals included in used small home appliances such as mobile phones. This Law serves as a promotion scheme, which encourages parties concerned to join the system on a voluntary basis and implements recycling based on the current situation in each region under the cooperation among parties, unlike the Home Appliance Recycling Law enacted in 1998 t...

  9. Recycling carbon revenues: transforming costs into opportunities

    International Nuclear Information System (INIS)

    Vaidyula, Manasvini; Alberola, Emilie

    2016-01-01

    Governments worldwide generated $26 billion in 2015 in carbon pricing revenues. The benefits and co-benefits of carbon pricing can be enhanced by recycling carbon revenues. Revenue allocation decisions made by governments are vital as these revenues can help shift the narrative on carbon pricing from 'burden to benefit'. Existing carbon pricing schemes can provide useful feedback on revenue recycling. A well-positioned decision-making and governing framework is required to ensure the efficient recycling of carbon revenues

  10. Supporting Sustainability through Recycling on Office Premises

    OpenAIRE

    Sierra Quiros, Maria

    2016-01-01

    This thesis is about recycling at the Deloitte office. Recycling of office material can be considered as a rather easy way to influence aspects of sustainability. The starting point for this thesis was to give support to Deloitte´s Green Agenda team, who’s aim is to consider recycling and sustainability from business perspectives. One of the main objectives in this thesis is to provide Deloitte with a frame of solutions for them to establish clear rules, policies and norms that encourage...

  11. Recovering valuable metals from recycled photovoltaic modules.

    Science.gov (United States)

    Yi, Youn Kyu; Kim, Hyun Soo; Tran, Tam; Hong, Sung Kil; Kim, Myong Jun

    2014-07-01

    Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (> 99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be -$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply > 88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a > 99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520 degrees C using CaO-CaF2-SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce > 99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules. Implications: The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its "green" image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future.

  12. Major issues associated with DOE commercial recycling initiatives

    International Nuclear Information System (INIS)

    Motl, G.P.; Burns, D.D.; Rast, D.M.

    1994-01-01

    Major initiatives are underway within DOE to recycle large volumes of scrap material generated during cleanup of the DOE Weapons Complex. These recycling initiatives are driven not only by the desire to conserve natural resources, but also by the recognition that shallow level burial is not a politically acceptable option. The Fernald facility is in the vanguard of a number of major DOE recycling efforts. These early efforts have brought issues to light that can have a major impact on the ability of Fernald and other major DOE sites to expand recycling efforts in the future. Some of these issues are; secondary waste deposition, title to material and radioactive contaminants, mixed waste generated during recycling, special nuclear material possession limits, cost benefit, transportation of waste to processing facilities, release criteria, and uses for beneficially reused products

  13. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    International Nuclear Information System (INIS)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel open-quotes scrapclose quotes metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques

  14. Relationship between the Compressive and Tensile Strength of Recycled Concrete

    International Nuclear Information System (INIS)

    El Dalati, R.; Haddad, S.; Matar, P.; Chehade, F.H

    2011-01-01

    Concrete recycling consists of crushing the concrete provided by demolishing the old constructions, and of using the resulted small pieces as aggregates in the new concrete compositions. The resulted aggregates are called recycled aggregates and the new mix of concrete containing a percentage of recycled aggregates is called recycled concrete. Our previous researches have indicated the optimal percentages of recycled aggregates to be used for different cases of recycled concrete related to the original aggregates nature. All results have shown that the concrete compressive strength is significantly reduced when using recycled aggregates. In order to obtain realistic values of compressive strength, some tests have been carried out by adding water-reducer plasticizer and a specified additional quantity of cement. The results have shown that for a limited range of plasticizer percentage, and a fixed value of additional cement, the compressive strength has reached reasonable value. This paper treats of the effect of using recycled aggregates on the tensile strength of concrete, where concrete results from the special composition defined by our previous work. The aim is to determine the relationship between the compressive and tensile strength of recycled concrete. (author)

  15. Childhood Lead Exposure from Battery Recycling in Vietnam

    Directory of Open Access Journals (Sweden)

    William E. Daniell

    2015-01-01

    Full Text Available Background. Battery recycling facilities in developing countries can cause community lead exposure. Objective. To evaluate child lead exposure in a Vietnam battery recycling craft village after efforts to shift home-based recycling outside the village. Methods. This cross-sectional study evaluated 109 children in Dong Mai village, using blood lead level (BLL measurement, parent interview, and household observation. Blood samples were analyzed with a LeadCare II field instrument; highest BLLs (≥45 μg/dL were retested by laboratory analysis. Surface and soil lead were measured at 11 households and a school with X-ray fluorescence analyzer. Results. All children had high BLLs; 28% had BLL ≥45 μg/dL. Younger age, family recycling, and outside brick surfaces were associated with higher BLL. Surface and soil lead levels were high at all tested homes, even with no recycling history. Laboratory BLLs were lower than LeadCare BLLs, in 24 retested children. Discussion. In spite of improvements, lead exposure was still substantial and probably associated with continued home-based recycling, legacy contamination, and workplace take-home exposure pathways. There is a need for effective strategies to manage lead exposure from battery recycling in craft villages. These reported BLL values should be interpreted cautiously, although the observed field-laboratory discordance may reflect bias in laboratory results.

  16. UREP: gateway to uranium recycling

    International Nuclear Information System (INIS)

    Rougeau, J.P.; Durret, L.F.

    1988-01-01

    The industrial experience accumulated in France on recycling makes their conversion service fully reliable technically and economically. Problems associated with chemical and radiochemical behavior have been solved satisfactorily in order to offer customers flexible options for their personal optimization. Economically, a price reduction by a significant factor (up to two) has been proposed by UREP as a firm commitment for the coming years. This is the result of technical experience coupled with favorable scaling effect for the large conversion plant proposed. It is believed that such a positive approach greatly helps customers in managing recycling of their material and generating savings in their fuel cycle economics. This flow of recycled uranium, on top of the 40000 t of natural uranium consumed each year, is a valuable asset available to those utilities which have selected the reprocessing route. 2 figs

  17. Conclusions of the DIRECT-MAT project: Dismantling and recycling techniques for road materials; Conclusiones del proyecto DIRECT-MAT: Tecnicas de demolicion y reciclado de materiales para la carretera

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Abadias, A. I.; Ruiz-Aucar Berlinches, E.; Sinis Fernandez, F.

    2012-07-01

    DIRECT-MAT (Dismantling and Recycling Techniques for road Materials) is a research project included in the 7{sup t}h Framework Programme of the EU, which counted with the participation of 20 partners from 15 different European countries. The Transport Research Centre of CEDEX (Spain) has been part of this project that began in January 2009. The aim of the DIRECT-MAT project has been to enable that national experience in the field of demolition and recycling of materials related to roads can be shared and disseminated among European countries for the benefit of all of them. In 2011 the paper the Direct-Mat Project: Dismantling and recycling techniques for road materials. Sharing knowledge and practices was published in the number 161 of Ingenieria Civil magazine. That paper consisted of an extensive description of the project, explaining in detail its structure, the status of the work in early 2011 and the conclusions drawn from the milestones (review of existing national documents). This paper is a continuation of the one previously published. This this article describes the work carried out since then and the collisions of the project. During this time, the main activities have been the compilation of several case studies and the developing of best practice guides. Regarding the results of the project, it is important to mention the database in which all the information gathered during the project is being uploads. Soon, it will have free online access. This database in perhaps the most remarkable results of the project, as it represents an invaluable reference tool for all the stake holders interested in the wide variety of recycling techniques that are being carried out today in Europe. (Author) 8 refs.

  18. Consumer recycling: An ethical decision-making process

    DEFF Research Database (Denmark)

    Culiberg, Barbara; Bajde, Domen

    2013-01-01

    Although recycling is often experienced as a moral dilemma, studies that systematically approach this issue from an ethical perspective are scarce. Moreover, previous studies have explored recycling by mainly using single ethical constructs, such as moral norms, values or obligations, rarely...... approaching it as an ethical decision-making process. Our study takes a more holistic approach and integrates the recycling literature with business ethics theory in order to develop a conceptual model of ethical decision making involved in recycling. The model is based on Jones' issue-contingent model...... using structural equation modelling. The results of our study confirmed the relationships between three key facets of ethical decision making: moral recognition, moral judgment and moral intention. Higher levels of moral recognition were found to lead to more positive moral judgments, which in turn...

  19. Heterogeneous recycling in SFR core periphery

    International Nuclear Information System (INIS)

    Varaine, Frederic; Buiron, Laurent; Boucher, Lionel; Chabert, Christine

    2008-01-01

    In the framework of next generation fast reactor design, the management of minor actinides (MA) is one of the key issues. The Transmutation of MA can be achieving with various modes of transmutation and waste management. Two ways for transmutation: - The homogeneous mode where the minor actinides to be transmuted are directly mixed with 'standard' fuel of the reactor, - The heterogeneous way for which the actinides to be transmuted are separated from the fuel itself, in limited number of S/A (targets) devoted to actinides transmutation. Associated with two ways for actinides management: - The multiple recycling: in this case whole or part of minor actinides and plutonium at the end of each reactor cycle is sent back in the following cycle. In that way, only reprocessing losses go to the waste, - The once-through way: in this case the minor actinides are transmuted in targets where very high burn up is reached. Fast reactors offer the best performances to transmute the minor actinides in homogeneous or heterogeneous way at industrial scale. The safety criteria are acceptable for all solutions if the MA content is not over 2.5% of the total heavy nuclides. In this context, the last results obtained for minor actinides transmutation in sodium fast reactor depleted uranium radial blankets are presented. This concept is based on a heterogeneous multiple recycling model. The use of the oxide matrix allows to reprocess such S/A in the spent fuel standard flow. For the study, we use a preliminary design of a 3600 MWth sodium Fast Reactor in progress at CEA. We investigate the transmutation performances of (U+Np+Am+Cm)O 2 fuel in radial blankets assemblies. We focus on two upper and lower assumptions in order to investigate the feasibility domain for this concept: one with a minor actinides (MA) content of 10%, and the second one with an enrichment of MA close to 40%. The CEA is studying scenarios of principle for the French case through a dynamic vision of the nuclear

  20. Aspects Concerning the Use of Recycled Concrete Aggregates

    Science.gov (United States)

    Robu, I.; Mazilu, C.; Deju, R.

    2016-11-01

    Natural aggregates (gravel and crushed) are essential non-renewable resources which are used for infrastructure works and civil engineering. Using recycled concrete aggregates (RCA) is a matter of high priority in the construction industry worldwide. This paper presents a study on the use of recycled aggregates, from a concrete of specified class, to acquire new cement concrete with different percentages of recycled aggregates.

  1. The Resource Benefits Evaluation Model on Remanufacturing Processes of End-of-Life Construction Machinery under the Uncertainty in Recycling Price

    Directory of Open Access Journals (Sweden)

    Qian-wang Deng

    2017-02-01

    Full Text Available In the process of end-of-life construction machinery remanufacturing, the existence of uncertainties in all aspects of the remanufacturing process increase the difficulty and complexity of resource benefits evaluation for them. To quantify the effects of those uncertainty factors, this paper makes a mathematical analysis of the recycling and remanufacturing processes, building a resource benefits evaluation model for the end-of-life construction machinery. The recycling price and the profits of remanufacturers can thereby be obtained with a maximum remanufacturing resource benefit. The study investigates the change regularity of the resource benefits, recycling price, and profits of remanufacturers when the recycling price, quality fluctuation coefficient, demand coefficient, and the reusing ratio of products or parts are varying. In the numerical experiment, we explore the effects of uncertainties on the remanufacturing decisions and the total expected costs. The simulated analysis shows when the quality fluctuation coefficient is approaching to 1, the values of the profits of remanufacturer, the maximal resource benefits and recycling price grade into constants.

  2. 76 FR 46290 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Science.gov (United States)

    2011-08-02

    ... States'' as part of a broader discussion about sustainable materials management. This information will be..., as well as its transparency. There is also a growing need for a more holistic assessment of how... sustainable management of these materials through safe recycling and source reduction. The Agency will...

  3. Recycling of americium

    International Nuclear Information System (INIS)

    Hagstroem, Ingela

    1999-12-01

    Separation of actinides from spent nuclear fuel is a part of the process of recycling fissile material. Extracting agents for partitioning the high level liquid waste (HLLW) from conventional PUREX reprocessing is studied. The CTH-process is based on three consecutive extraction cycles. In the first cycle protactinium, uranium, neptunium and plutonium are removed by extraction with di-2-ethylhexyl-phosphoric acid (HDEHP) from a 6 M nitric acid HLLW solution. Distribution ratios for actinides, fission products and corrosion products between HLLW and 1 M HDEHP in an aliphatic diluent have been investigated. To avoid addition of chemicals the acidity is reduced by a tributylphosphate (TBP) extraction cycle. The distribution ratios of elements present in HLLW have been measured between 50 % TBP in an aliphatic diluent and synthetic HLLW in range 0.1-6 M nitric acid. In the third extraction cycle americium and curium are extracted. To separate trivalent actinides from lanthanides a method based on selective stripping of the actinides from 1 M HDEHP is proposed. The aqueous phase containing ammonia, diethylenetriaminepentaacetic acid (DTPA) and lactic acid is recycled in a closed loop after reextraction of the actinides into a second organic phase also containing 1 M HDEHP. Distribution ratios for americium and neodymium have been measured at varying DTPA and lactic acid concentrations and at varying pH. Nitrogen-donor reagents have been shown to have a potential to separate trivalent actinides from lanthanides. 2,2':6,2''-terpyridine as extractant follows the CHON-principle and can in synergy with 2-bromodecanoic acid separate americium from europium. Distribution ratios for americium and europium, in the range of 0.02-0.12 M nitric acid, between nitric acid and 0.02 M terpyridine with 1 M 2-bromodecanoic acid in tert-butylbenzene (TBB) was investigated. Comparison with other nitrogen-donor reagents show that increasing lipophilicity of the molecule, by substitution of

  4. Developing improved opportunities for the recycle and reuse of materials in road, bridge and construction projects : [summary].

    Science.gov (United States)

    2014-01-01

    Reducing waste and reusing materials is now : a part of the everyday fabric of life. Recycling : glass, paper, and plastic is an activity in many : households and businesses. Similarly, the : transportation sector generates huge quantities : of concr...

  5. Exoplanet recycling in massive white-dwarf debris discs

    Science.gov (United States)

    van Lieshout, R.; Kral, Q.; Charnoz, S.; Wyatt, M. C.; Shannon, A.

    2018-05-01

    Several tens of white dwarfs are known to host circumstellar discs of dusty debris, thought to arise from the tidal disruption of rocky bodies originating in the star's remnant planetary system. This paper investigates the evolution of such discs if they are very massive, as may be the case if their progenitor was a terrestrial planet, moon, or dwarf planet. Assuming the discs are physically thin and flat, like Saturn's rings, their evolution is governed by Poynting-Robertson drag or viscous spreading, where the disc's effective viscosity is due to self-gravity wakes. For discs with masses ≳ 1026 g, located in the outer parts of the tidal disruption zone, viscous spreading dominates the evolution, and mass is transported both in- and outwards. When outwards-spreading material flows beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of moonlets at the outer edge of Saturn's rings. The newly formed bodies migrate outwards by exchanging angular momentum with the disc and coalesce into larger objects through mutual collisions. Eventually, the disc's Roche-limit overflow recycles tens of percent of the original disc mass; most ends up in a single large body near 2:1 mean-motion resonance with the disc's outer edge. Hence, the recycling of a tidally disrupted super-Earth, for example, could yield an Earth-mass planet on a ˜10-h orbit, located in the habitable zone for 2-to-10-Gyr-old white dwarfs. The recycling process also creates a population of smaller bodies just outside the Roche limit, which may explain the minor planets recently postulated to orbit WD 1145+017.

  6. Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

    Science.gov (United States)

    for Solar Power Yellowstone Park Recycles Vehicle Batteries for Solar Power to someone by E -mail Share Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Facebook Tweet about Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

  7. Feasibility of Target Material Recycling as Waste Management Alternative

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Wilson, P.; Henderson, D.; Varuttamaseni, A.

    2004-01-01

    The issue of waste management has been studied simultaneously along with the development of the ARIES heavy-ion-driven inertial fusion energy (IFE) concept. Options for waste management include disposal in repositories, recycling, or clearance from regulatory control, following a reasonable cooling period. This paper concerns the feasibility of recycling the heavy-ion-beam targets, in particular the hohlraum wall materials that include, for example, Au/Gd, Au, W, Pb, Hg, Ta, Pb/Ta/Cs, Hg/W/Cs, Pb/Hf, Hf, solid Kr, and solid Xe. The choice between target material disposal and recycling depends on the amount of waste generated relative to the nuclear island, the strategy to solve the recycling problem, and the impact of the additional cost and complexity of the recycling process on the overall machine. A detailed flow diagram for the elements of the recycling process was developed to analyze two extreme activation cases: (a) one-shot use and then disposal in a repository and (b) recycling continuously during plant life without removal of transmutation products. Metrics for comparing the two scenarios included waste level, dose to recycling equipment, additional cost, and design complexity. Comparing the two approaches indicated a preference for the one-shot scenario as it generates 1 m 3 /yr of extremely low-level waste (Class A) and offers attractive design and economics features. Recycling reduces the target waste stream by a factor of 10 or more but introduces additional issues. It may produce high-level waste, requires remote handling, adds radioactive storage facilities, and increases the cost and complexity of the plant. The inventory analysis indicated that the heavy-ion-beam (HIB) target materials represent a very small waste stream compared to that of the nuclear island (<1% of the total waste). This means recycling is not a 'must' requirement for IFE-HIB power plants unless the target materials have cost and/or resource problems (e.g., Au and Gd). In this

  8. Effect of Aqueous Phase Recycling in Continuous Hydrothermal Liquefaction

    DEFF Research Database (Denmark)

    Klemmer, Maika; Madsen, René Bjerregaard; Houlberg, Kasper

    2016-01-01

    was observed with a maximum increase in the first recycle experiment. However, the recycling of the aqueous phase also resulted in lower heating values and higher water contents in the oil fraction. Based on these findings, recycling the aqueous phase is a trade-off between improved yields and reduced burn...... qualities of the biocrude. That said, recycling also lowers carbon discharge to the aqueous fraction, which may contribute significantly to reducing the environmental footprint of an industrial HTL plant....

  9. An investigation of TRU recycling with various neutron spectrums

    International Nuclear Information System (INIS)

    Yong-Nam, Kim; Hong-Chul, Kim; Chi-Young, Han; Jong-Kyung, Kim; Won-Seok Park

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single batch fuel loading, the burn-up calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analysed in terms of burn-up reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behaviour between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction. (author)

  10. Sustainable recycling technologies for Solar PV off-grid system

    Directory of Open Access Journals (Sweden)

    Uppal Bhavesh

    2017-01-01

    Full Text Available Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  11. Strategies for plutonium recycle in a system of pressurized water reactors

    International Nuclear Information System (INIS)

    Leaver, D.E.W.

    1976-01-01

    A methodology is developed to allow a utility fuel manager to determine economic strategies for recycling plutonium in a system of light water reactors. One possible plutonium recycle strategy would be self-generated recycle, in which plutonium discharged from a reactor is recycled back to that same reactor as soon as possible. Another possible strategy is to recycle all the plutonium discharged from several reactors into one reactor. Such a strategy might be advantageous if the reactor receiving the plutonium were of a type that utilized plutonium more effectively than other reactors in the system. There are several considerations which affect the economics of recycling a batch of plutonium to one reactor or cycle vs. another, or which would favor a special recycling strategy. Among these are cycle energy, length of time that plutonium is stored prior to recycle, and isotopes of the plutonium. The methodology developed is used to quantitatively illustrate the effect on recycle strategy of these parameters. The problem of choosing the plutonium recycle strategy which results in the minimum fuel cost is formulated as a mathematical programming problem. The objective function for this problem is the total discounted fuel cost for the reactor system over a specified planning period. The savings of an optimal recycle strategy over self-generated recycle would be typically one million dollars per year for a utility with several large PWRs

  12. Sustainability and the Recycling of Words

    Science.gov (United States)

    Miller, Donna L.; Nilsen, Alleen Pace

    2011-01-01

    With the mention of "sustainability" and "recycling," most people think about reusing paper, plastic, metal, and glass, but what the authors discovered when they embarked on a word-study unit is that the sustainability movement has also brought about the recycling of words. The authors were team-teaching a language awareness class taken by…

  13. Centralized consolidation/recycling center

    International Nuclear Information System (INIS)

    St. Georges, L.T.; Poor, A.D.

    1995-05-01

    There are approximately 175 separate locations on the Hanford Site where dangerous waste is accumulated in hundreds of containers according to compatibility. Materials that are designated as waste could be kept from entering the waste stream by establishing collection points for these materials and wastes and then transporting them to a centralized consolidation/recycling center (hereinafter referred to as the consolidation center). Once there the materials would be prepared for offsite recycling. This document discusses the removal of batteries, partially full aerosol cans, and DOP light ballasts from the traditional waste management approach, which eliminates 89 satellite accumulation areas from the Hanford Site (43 for batteries, 33 for aerosols, and 13 for DOP ballasts). Eliminating these 89 satellite accumulation areas would reduce by hundreds the total number of containers shipped offsite as hazardous waste (due to the increase in containers when the wastes that are accumulated are segregated according to compatibility for final shipment). This new approach is in line with the U.S. Environmental Protection Agency's (EPA) draft Universal Waste Rules for these open-quotes nuisanceclose quotes and common waste streams. Additionally, future reviews of other types of wastes that can be handled in this less restrictive and more cost-effective manner will occur as part of daily operations at the consolidation center. The Hanford Site has been identified as a laboratory for reinventing government by the Secretary of the U.S. Department of Energy (DOE), Hazel O'Leary, and as a demonstration zone where open-quotes innovative ideas, processes and technologies can be created, tested and demonstrated.close quotes Additionally, DOE, EPA, and the Washington State Department of Ecology (Ecology) have agreed to cut Hanford cleanup costs by $1 billion over a 5-year period

  14. Solid waste characterization and recycling potential for a university campus

    International Nuclear Information System (INIS)

    Armijo de Vega, Carolina; Ojeda Benitez, Sara; Ramirez Barreto, Ma. Elizabeth

    2008-01-01

    Integrated waste management systems are one of the greatest challenges for sustainable development. For these systems to be successful, the first step is to carry out waste characterization studies. In this paper are reported the results of a waste characterization study performed in the Campus Mexicali I of the Autonomous University of Baja California (UABC). The aim of this study was to set the basis for implementation of a recovery, reduction and recycling waste management program at the campus. It was found that the campus Mexicali I produces 1 ton of solid wastes per day; more than 65% of these wastes are recyclable or potentially recyclable. These results showed that a program for segregation and recycling is feasible on a University Campus. The study also showed that the local market for recyclable waste, under present conditions - number of recycling companies and amounts of recyclables accepted - can absorb all of these wastes. Some alternatives for the potentially recyclables wastes are discussed. Finally some strategies that could be used to reduce waste at the source are discussed as well

  15. Entropy, recycling and macroeconomics of water resources

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  16. Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel

    Science.gov (United States)

    Vehicles in Vermont Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont to someone by E -mail Share Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont on Facebook Tweet about Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in

  17. Recycled Coarse Aggregate Produced by Pulsed Discharge in Water

    Science.gov (United States)

    Namihira, Takao; Shigeishi, Mitsuhiro; Nakashima, Kazuyuki; Murakami, Akira; Kuroki, Kaori; Kiyan, Tsuyoshi; Tomoda, Yuichi; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Ohtsu, Masayasu

    In Japan, the recycling ratio of concrete scraps has been kept over 98 % after the Law for the Recycling of Construction Materials was enforced in 2000. In the present, most of concrete scraps were recycled as the Lower Subbase Course Material. On the other hand, it is predicted to be difficult to keep this higher recycling ratio in the near future because concrete scraps increase rapidly and would reach to over 3 times of present situation in 2010. In addition, the demand of concrete scraps as the Lower Subbase Course Material has been decreased. Therefore, new way to reuse concrete scraps must be developed. Concrete scraps normally consist of 70 % of coarse aggregate, 19 % of water and 11 % of cement. To obtain the higher recycling ratio, the higher recycling ratio of coarse aggregate is desired. In this paper, a new method for recycling coarse aggregate from concrete scraps has been developed and demonstrated. The system includes a Marx generator and a point to hemisphere mesh electrode immersed in water. In the demonstration, the test piece of concrete scrap was located between the electrodes and was treated by the pulsed discharge. After discharge treatment of test piece, the recycling coarse aggregates were evaluated under JIS and TS and had enough quality for utilization as the coarse aggregate.

  18. The effects of recycling loops in food waste management in Japan: based on the environmental and economic evaluation of food recycling.

    Science.gov (United States)

    Takata, Miki; Fukushima, Kazuyo; Kino-Kimata, Noriko; Nagao, Norio; Niwa, Chiaki; Toda, Tatsuki

    2012-08-15

    In Japan, a revised Food Recycling Law went into effect in 2007 to promote a "recycling loop" that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of -126 and -49 kg-CO(2)/t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of -15,648 and -18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic effectiveness. This

  19. The effects of recycling loops in food waste management in Japan: Based on the environmental and economic evaluation of food recycling

    International Nuclear Information System (INIS)

    Takata, Miki; Fukushima, Kazuyo; Kino-Kimata, Noriko; Nagao, Norio; Niwa, Chiaki; Toda, Tatsuki

    2012-01-01

    In Japan, a revised Food Recycling Law went into effect in 2007 to promote a “recycling loop” that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of − 126 and − 49 kg-CO 2 /t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of − 15,648 and − 18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic

  20. The effects of recycling loops in food waste management in Japan: Based on the environmental and economic evaluation of food recycling

    Energy Technology Data Exchange (ETDEWEB)

    Takata, Miki [Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577 (Japan); Fukushima, Kazuyo [Watanabe Oyster Laboratory Co., Ltd, Hachioji, Tokyo 192-0154 (Japan); Kino-Kimata, Noriko [Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577 (Japan); Nagao, Norio [Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Niwa, Chiaki [Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577 (Japan); Toda, Tatsuki, E-mail: toda@soka.ac.jp [Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577 (Japan)

    2012-08-15

    In Japan, a revised Food Recycling Law went into effect in 2007 to promote a 'recycling loop' that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of - 126 and - 49 kg-CO{sub 2}/t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of - 15,648 and - 18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic

  1. Industry-led program recycles used oil materials

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The Alberta Used Oil Management Association (AUOMA) is running an industry-led program for recycling used oil filters, containers and used oil. The objective of the program is to help develop an infrastructure that will make recycling simple and convenient for consumers of oil materials. It was estimated that millions of litres of used oil are improperly discarded into the Alberta environment. The program is also aimed at increasing public awareness of the importance of recycling used oil materials, particularly to those consumers who change their own motor oil. By the end of 1997 AUOMA expects to open about 50 recycling centres called EcoCentres. An environmental handling charge (EHC) will be paid to AUOMA by wholesale suppliers on the first sale of oil materials in Alberta. The EHC will be the only funds used to support the program

  2. Irradiation performance of HTGR recycle fissile fuel

    International Nuclear Information System (INIS)

    Homan, F.J.; Long, E.L. Jr.

    1976-08-01

    The irradiation performance of candidate HTGR recycle fissile fuel under accelerated testing conditions is reviewed. Failure modes for coated-particle fuels are described, and the performance of candidate recycle fissile fuels is discussed in terms of these failure modes. The bases on which UO 2 and (Th,U)O 2 were rejected as candidate recycle fissile fuels are outlined, along with the bases on which the weak-acid resin (WAR)-derived fissile fuel was selected as the reference recycle kernel. Comparisons are made relative to the irradiation behavior of WAR-derived fuels of varying stoichiometry and conclusions are drawn about the optimum stoichiometry and the range of acceptable values. Plans for future testing in support of specification development, confirmation of the results of accelerated testing by real-time experiments, and improvement in fuel performance and reliability are described

  3. Radioactive contamination of recycled metals

    International Nuclear Information System (INIS)

    Lubenau, J.O.; Cool, D.A.; Yusko, J.G.

    1996-01-01

    Radioactive sources commingled with metal scrap have become a major problem for the metals recycling industry worldwide. Worldwide there have been 38 confirmed reports of radioactive sources accidentally smelted with recycled metal. In some instances, contaminated metal products were subsequently distributed. The metal mills, their products and byproducts from the metal making process such as slags, crosses and dusts from furnaces can become contaminated. In the U.S., imported ferrous metal products such as reinforcement bars, pipe flanges, table legs and fencing components have been found contaminated with taco. U.S. steel mills have unintentionally smelted radioactive sources on 16 occasions. The resulting cost for decontamination waste disposal and temporary closure of the steel mill is typically USD 10,000,000 and has been as much as USD 23,000,000. Other metal recycling industries that have been affected by this problem include aluminum, copper, zinc, gold, lead and vanadium. (author)

  4. Hot Mix Asphalt Recycling: Practices and Principles

    OpenAIRE

    Mohajeri, M.

    2015-01-01

    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a high RA content are produced in a batch plant to which a parallel drum is attached. In this drum RA is pre-heated to approximately 130°C. Since 2007 another hot mix recycling techniques became availa...

  5. Economic feasibility of radioactive scrap steel recycling

    International Nuclear Information System (INIS)

    Balhiser, R.; Rosholt, D.; Nichols, F.

    1995-01-01

    The goal of MSE's Radioactive Scrap Steel (RSS) Recycle Program is to develop practical methods for recycling RSS into useful product. This paper provides interim information about ongoing feasibility investigations that are scheduled for completion by September 1995. The project approach, major issues, and cost projections are outlined. Current information indicates that a cost effective RSS Recycling Facility can be designed, built, and in operation by 1999. The RSS team believes that high quality steel plate can be made from RSS at a conversion cost of $1500 per ton or less

  6. Length and time scales of atmospheric moisture recycling

    Directory of Open Access Journals (Sweden)

    R. J. van der Ent

    2011-03-01

    Full Text Available It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to quantify the spatial and temporal scale of moisture recycling, independent of the size and shape of the region under study. In contrast to previous studies, which essentially used curve fitting, the scaling laws presented by us follow directly from the process equation. thus allowing a fair comparison between regions and seasons. The calculation is based on ERA-Interim reanalysis data for the period 1999 to 2008. It is shown that in the tropics or in mountainous terrain the length scale of recycling can be as low as 500 to 2000 km. In temperate climates the length scale is typically between 3000 to 5000 km whereas it amounts to more than 7000 km in desert areas. The time scale of recycling ranges from 3 to 20 days, with the exception of deserts, where it is much longer. The most distinct seasonal differences can be observed over the Northern Hemisphere: in winter, moisture recycling is insignificant, whereas in summer it plays a major role in the climate. The length and time scales of atmospheric moisture recycling can be useful metrics to quantify local climatic effects of land use change.

  7. HOUSEHOLD PARTICIPATION IN RECYCLING PROGRAMS: A CASE STUDY FROM MALAYSIA

    Directory of Open Access Journals (Sweden)

    Azilah M Akil

    2015-05-01

    Full Text Available The increase in per capita income and rapid urbanization, have contributed significantly to changes in consumption behaviour leading to increased waste generation.  Waste disposed to landfill sites is fast becoming unfeasible thus requiring a more effective management of waste material involving waste reduction, reuse and recycling. The success of recycling program, however, is largely dependent on household participation activities which are essentially behaviour driven. The recycling performance of Malaysian households is still low as it stands at 5.5% compared to Singapore and Vietnam which are 56% and 22% respectively. This study examines recycling behaviour among households and the influence of socioeconomic, demographic and behavioural characteristics on households’ participation in recycling program in Malaysia.  A sample of 300 randomly selected household were surveyed.  The findings revealed that most of the households (70% claim that they are practicing recycling particularly types of paper and old clothes. The factors of participation in recycling show equal results both for environmental concerns and economic benefits. Those who did not participate in recycling, listed household issues or behaviour, namely lack of time and materials to recycle, inconvenient, lack of space, lack of facilities and information as well as laziness, as barriers. The paper finally highlights the factors which can encourage household to be involved in recycling and give recommendations to the authorities in terms of facilities and infrastructures to facilitate the program.

  8. Recycling of wood products. Final report of the preliminary study project partly financed by the Finnish Wood Research Oy; Puutuotteiden kierraetys. Finnish Wood Research Oy:n osarahoittaman esiselvityshankkeen loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Pirhonen, I.; Heraejaervi, H.; Saukkola, P.; Raety, T.; Verkasalo, E., Email: henrik.herajarvi@metla.fi

    2011-07-01

    The objective of this preliminary study was to clarify the present state of recycling of wood in Finland and Europe. In the work the control measures of recycling were examined. In Finland there will be a total amount of 850 000 tons of waste wood per year. Of this amount 670 000 tons is from construction and demolishing of buildings. Burning the wood to energy is technically and economically the most reasonable use of waste wood in Finland and in several other European countries where there is a long heating season. A lot of work has been done to find new ways of utilization. The objective of the European Union to increase the use of renewable natural resources in the energy production creates an additional demand to all kinds of wood, including waste wood. The waste legislation of Finland and EU is directing to recycling, not restricting it. Furthermore, the systems to try to create markets for products containing recycled materials are under development. In the future it is expected that the legislation is tightening and the burning of waste wood is no longer calculated as acceptable recycling. Other ways to utilize wood waste should then already be developed. Furthermore, the development and introduction of new recycling methods are of important significance also when marketing wood and wood products. The recycling should be taken into consideration already at the planning stage of the building

  9. Recycling issues facing target and RTL materials of inertial fusion designs

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Wilson, P.; Sawan, M.; Henderson, D.; Varuttamaseni, A.

    2005-01-01

    Designers of heavy ion (HI) and Z-pinch inertial fusion power plants have explored the potential of recycling the target and recyclable transmission line (RTL) materials as an alternate option to disposal in a geological repository. This work represents the first time a comprehensive recycling assessment was performed on both machines with an exact pulse history. Our results offer two divergent conclusions on the recycling issue. For the HI concept, target recycling is not a 'must' requirement and the preferred option is the one-shot use scenario as target materials represent a small waste stream, less than 1% of the total nuclear island waste. We recommend using low-cost hohlraum materials once-through and then disposing of them instead of recycling expensive materials such as Au and Gd. On the contrary, RTL recycling is a 'must' requirement for the Z-pinch concept in order to minimize the RTL inventory and enhance the economics. The RTLs meet the low level waste and recycling dose requirements with a wide margin when recycled for the entire plant life even without a cooling period. While recycling offers advantages to the Z-pinch system, it adds complexity and cost to the HI designs

  10. Experience with thermal recycle of plutonium and uranium

    International Nuclear Information System (INIS)

    Beer, O.; Schlosser, G.; Spielvogel, F.

    1985-01-01

    The Federal Republic of Germany (FRG) decided to close the fuel cycle by erecting the reprocessing plant WA350 at Wackersdorf. As long as the plutonium supply from reprocessing plants exceeds the plutonium demand of fast breeder reactors, recycling of plutonium in LWR's is a convenient solution by which a significant advanced uranium utilization is achieved. The demonstration of plutonium recycling performed to date in the FRG in BWR's and PWR's shows that thermal plutonium recycling on an industrial scale is feasible and that the usual levels of reliability and safety can be achieved in reactor operation. The recycling of reprocessed uranium is presently demonstrated in the FRG, too. As regards fuel cycle economy thermal recycling allows savings in natural uranium and separative work. Already under present cost conditions the fuel cycle costs for mixed oxide or enriched reprocessed uranium fuel assemblies are equal or even lower than for usual uranium fuel assemblies

  11. DEVELOPMENT OF A SUSTAINABLE CONCRETE WASTE RECYCLING SYSTEM

    OpenAIRE

    Truptimala Patanaik*; Niharika Patel; Shilpika Panda; Subhasmita Prusty

    2016-01-01

    Construction solid waste has caused serious environmental problems. Reuse, recycling and reduction of construction materials have been advocated for many years, and various methods have been investigated. There may be six type of building materials: plastic, paper, timber, metal, glass and concrete which can be reused and recycled. This paper examines the rate of reusable & recyclable concrete waste. On the other hand, the reuse of construction waste is highly essential ...

  12. Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis

    Directory of Open Access Journals (Sweden)

    González-Taboada, I.

    2016-09-01

    Full Text Available This work studies the physical and mechanical properties of recycled concrete aggregate (recycled aggregate from concrete waste and their influence in structural recycled concrete compressive strength. For said purpose, a database has been developed with the experimental results of 152 works selected from over 250 international references. The processed database results indicate that the most sensitive properties of recycled aggregate quality are density and absorption. Moreover, the study analyses how the recycled aggregate (both percentage and quality and the mixing procedure (pre-soaking or adding extra water influence the recycled concrete strength of different categories (high or low water to cement ratios. When recycled aggregate absorption is low (under 5%, pre-soaking or adding extra water to avoid loss in workability will negatively affect concrete strength (due to the bleeding effect, whereas with high water absorption this does not occur and both of the aforementioned correcting methods can be accurately employed.El estudio analiza las propiedades físico-mecánicas de los áridos reciclados de hormigón (procedentes de residuos de hormigón y su influencia en la resistencia a compresión del hormigón reciclado estructural. Para ello se ha desarrollado una base de datos con resultados de 152 trabajos seleccionados a partir de más de 250 referencias internacionales. Los resultados del tratamiento de la base indican que densidad y absorción son las propiedades más sensibles a la calidad del árido reciclado. Además, este estudio analiza cómo el árido reciclado (porcentaje y calidad y el procedimiento de mezcla (presaturación o adición de agua extra influyen en la resistencia del hormigón reciclado de diferentes categorías (alta o baja relación agua-cemento. Cuando la absorción es baja (inferior al 5% presaturar o añadir agua para evitar pérdidas de trabajabilidad afectan negativamente a la resistencia (debido al bleeding

  13. Experimental research on durability of recycled aggregate concrete under freeze- thaw cycles

    Science.gov (United States)

    Cheng, Yanqiu; Shang, Xiaoyu; Zhang, Youjia

    2017-07-01

    The freeze-thaw durability of recycled aggregate concrete has significance for the concrete buildings in the cold region. In this paper, the rapid freezing and thawing cycles experience on recycle aggregate concrete was conducted to study on the effects of recycle aggregate amount, water-binder ratio and fly ash on freeze-thaw durability of recycle aggregate concrete. The results indicates that recycle aggregate amount makes the significant influence on the freeze-thaw durability. With the increase of recycled aggregates amount, the freeze-thaw resistance for recycled aggregate concrete decreases. Recycled aggregate concrete with lower water cement ratio demonstrates better performance of freeze-thaw durability. It is advised that the amount of fly ash is less than 30% for admixture of recycled aggregates in the cold region.

  14. Addressing Criticality in Rare Earth Elements via Permanent Magnets Recycling

    Science.gov (United States)

    Nlebedim, I. C.; King, A. H.

    2018-02-01

    Rare earth elements (REEs) are critical for many advanced technologies and are faced with potential supply disruptions. Recycling of permanent magnets (PMs) can be good sources for REEs which can help minimize global dependence on freshly mined REEs, but PMs are rarely recycled. Recycling of PMs has been discussed with respect to improving REEs resource sustainability. Some challenges to be addressed in order to establish industrially deployable technologies for PMs recycling have also been discussed, including profitability, energy efficiency and environmental impacts. Key considerations for promoting circular economy via PMs recycling is proposed with the focus on deciding the target points in the supply chain at which the recycled products will be inserted. Important technical considerations for recycling different forms of waste PMs, including swarfs, slags, shredded and intact hard disk drives magnets, have been presented. The aspects of circular economy considered include reusing magnets, remanufacturing magnets and recovering of REEs from waste PMs.

  15. Recycling of sewage in Swedish municipalities - Policy implications

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, H

    1998-12-31

    The construction of sewage treatment plants, which increased dramatically during the sixties in Sweden, was based on the idea that sewage is a waste, despite the fact that it contains considerable amounts of nourishment. Environmental research today, focuses more and more on recycling and on the potential resource inherent in sewage. This chapter deals with how to manage a change from problem elimination to recycling of resources, and discuss such from an institutional perspective. A shift towards recycling implies a shift of techniques, decision-makers and process strategies. Implementation of recycling will need strategic principles, and thereby results from research focusing common property resource management can be used in the policy process 32 refs, 5 figs

  16. Recycling of sewage in Swedish municipalities - Policy implications

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, H.

    1997-12-31

    The construction of sewage treatment plants, which increased dramatically during the sixties in Sweden, was based on the idea that sewage is a waste, despite the fact that it contains considerable amounts of nourishment. Environmental research today, focuses more and more on recycling and on the potential resource inherent in sewage. This chapter deals with how to manage a change from problem elimination to recycling of resources, and discuss such from an institutional perspective. A shift towards recycling implies a shift of techniques, decision-makers and process strategies. Implementation of recycling will need strategic principles, and thereby results from research focusing common property resource management can be used in the policy process 32 refs, 5 figs

  17. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.

    Science.gov (United States)

    Sim, Jongsung; Park, Cheolwoo

    2011-11-01

    Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The Life Cycle Cost (LCC) of Life Support Recycling and Resupply

    Science.gov (United States)

    Jones, Harry W.

    2015-01-01

    Brief human space missions supply all the crew's water and oxygen from Earth. The multiyear International Space Station (ISS) program instead uses physicochemical life support systems to recycle water and oxygen. This paper compares the Life Cycle Cost (LCC) of recycling to the LCC of resupply for potential future long duration human space missions. Recycling systems have high initial development costs but relatively low durationdependent support costs. This means that recycling is more cost effective for longer missions. Resupplying all the water and oxygen requires little initial development cost but has a much higher launch mass and launch cost. The cost of resupply increases as the mission duration increases. Resupply is therefore more cost effective than recycling for shorter missions. A recycling system pays for itself when the resupply LCC grows greater over time than the recycling LCC. The time when this occurs is called the recycling breakeven date. Recycling will cost very much less than resupply for long duration missions within the Earth-Moon system, such as a future space station or Moon base. But recycling would cost about the same as resupply for long duration deep space missions, such as a Mars trip. Because it is not possible to provide emergency supplies or quick return options on the way to Mars, more expensive redundant recycling systems will be needed.

  19. Ionizing radiation effect study by electron beam on ultra high molecular weight polyethylene virgin and recycled industrial

    International Nuclear Information System (INIS)

    Rosario, Salmo Cordeiro do

    2006-01-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) is an engineering plastic which has several applications, chiefly, in specific areas of the industry and medicine. UHMWPE can be even for other applications such as: port fenders, current guide, bucket coating, silos and gutters, plugs, pulleys and surgical prosthesis. This range of applications is due to the excellent technical characteristics that this material owns, such as; high resistance to wear, high resistance to impact, anti-adherence, non toxic, excellent chemical resistance, low specific weight, easy mill processing, and high resistance to fatigue. The UHMWPE type used in this work were UTEC 3041 and UTEC 6541 of the Braskem. The recycling process of UHMWPE raised much interest, because the utilization of this raw material grew over 600% in the last decade, becoming one of the most used engineering plastics for attainment of mill processed parts after polyamide. As the utilization of this polymer in the manufacturing of parts for machinery has grown, its waste is very big, because the rest of this material is thrown out, usually not being reused. The goal of this work is to recycle the UHMWPE UTEC 3041 and study the properties of this recycled and virgin material and compare the results between both with these materials submitted to different radiation dose. (author)

  20. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  1. Microstructural characterization of concrete prepared with recycled aggregates.

    Science.gov (United States)

    Guedes, Mafalda; Evangelista, Luís; de Brito, Jorge; Ferro, Alberto C

    2013-10-01

    Several authors have reported the workability, mechanical properties, and durability of concrete produced with construction waste replacing the natural aggregate. However, a systematic microstructural characterization of recycled aggregate concrete has not been reported. This work studies the use of fine recycled aggregate to replace fine natural aggregate in the production of concrete and reports the resulting microstructures. The used raw materials were natural aggregate, recycled aggregate obtained from a standard concrete, and Portland cement. The substitution extent was 0, 10, 50, and 100 vol%; hydration was stopped at 9, 24, and 96 h and 28 days. Microscopy was focused on the cement/aggregate interfacial transition zone, enlightening the effect of incorporating recycled aggregate on the formation and morphology of the different concrete hydration products. The results show that concretes with recycled aggregates exhibit typical microstructural features of the transition zone in normal strength concrete. Although overall porosity increases with increasing replacement, the interfacial bond is apparently stronger when recycled aggregates are used. An addition of 10 vol% results in a decrease in porosity at the interface with a corresponding increase of the material hardness. This provides an opportunity for development of increased strength Portland cement concretes using controlled amounts of concrete waste.

  2. Workplace Waste Recycling Behaviour: A Meta-Analytical Review

    Directory of Open Access Journals (Sweden)

    Adekunle Oke

    2015-06-01

    Full Text Available In order to increase waste recycling, many studies have been conducted to understand factors that may influence waste recycling behaviour. However, these studies have focused on household contexts rather than other waste generation contexts. As a result, this paper seeks to provide a detailed analysis of previous studies on workplace waste recycling behaviour. Drawing from different databases, 51 relevant studies on workplace waste recycling attitudes and behaviour were meta-analysed. Findings showed that the highest percentage of the existing studies were conducted in the USA, focused on a single waste stream, were often conducted within academic contexts, adopted (or modified an existing theoretical framework and were based on questionnaires which elicited self-reported behaviour. Some of the factors identified include demographics, situational variables, past behaviour, incentives, prompts and/or information, attitudes and identity. The findings highlighted the scale of challenges confronting waste management practitioners in understanding the factors that may affect waste recycling behaviour due to the complexity and heterogeneity of human behaviours. However, the results from the reviewed studies in this research suggest that a combination of different factors may be required to influence workplace waste recycling behaviour. This may provide effective incentives to develop a framework that may assist waste management stakeholders when addressing workplace waste management.

  3. Composition of waste materials and recyclables

    DEFF Research Database (Denmark)

    Götze, Ramona

    involves several steps to prepare the samples mechanically and/or chemically for final analysis. Not all sample preparation methods are equally well suited for specific waste characterization purposes. The correctness of results and practical feasibility of sample preparation was strongly affected...... for future modelling and assessment of waste management systems. The analyzed fractions were selected based on material properties with relevance for potential recycling processes. The physico-chemical analysis revealed chemical differences between residual and source-segregated samples for several fractions....... The results for parameters associated with organic matter confirmed the idea of cross-contaminated recyclables in residual waste, whereas the results for heavy metals and trace elements were more complex. For many fractions rather high metal contents were found to be intrinsic properties of the recyclables...

  4. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Science.gov (United States)

    2013-01-01

    Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied) increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application. PMID:23336604

  5. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Directory of Open Access Journals (Sweden)

    Weiss Noah

    2013-01-01

    Full Text Available Abstract Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

  6. Flows of engineered nanomaterials through the recycling process in Switzerland

    International Nuclear Information System (INIS)

    Caballero-Guzman, Alejandro; Sun, Tianyin; Nowack, Bernd

    2015-01-01

    Highlights: • Recycling is one of the likely end-of-life fates of nanoproducts. • We assessed the material flows of four nanomaterials in the Swiss recycling system. • After recycling, most nanomaterials will flow to landfills or incineration plants. • Recycled construction waste, plastics and textiles may contain nanomaterials. - Abstract: The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, for example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO 2 , nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs

  7. Recycling experience in the UK - past, present and future

    International Nuclear Information System (INIS)

    Williams, T.

    1991-01-01

    The United Kingdom (UK) has been commercially recycling uranium and developing the technology for the recycle of plutonium from reprocessing of spent fuel for more than two decades. In this article, a spokesman from British Nuclear Fuels plc (BNFL) describes the current experience of recycling in the UK and identifies the remaining technical and strategic elements being implemented to develop fully the recycle of all the products of reprocessing. He also discusses the economic and commercial benefits of using mixed oxide fuels now and in the future. (author)

  8. Marine shale and the Hazwaste recycling debate

    International Nuclear Information System (INIS)

    Bishop, J.

    1988-01-01

    This paper reports that Marine Shale Processors, Inc. (St. Rose, La.), and the Hazardous Waste Treatment Council (Washington, D.C.), an industry trade association, are at the focus of a controversy whose resolution has significant implications for the respective definitions, concepts and legal statuses of hazardous-waste incineration and recycling. Marine Shale Processors (MSP) claims it recycles hazardous wastes from a variety of government and commercial sources by blending it and treating it thermally in a large rotary kiln to produce non-hazardous aggregate material, which is sold for construction, road-building or other purposes. The Hazardous Waste Treatment Council (HWTC) and others allege that, under the provisions of the Resource Conservation and Recovery Act (RCRA), MSP is operating an unpermitted hazardous-waste incinerator. According to HWTC officials, MSP's identification as a recycler is inappropriate and has allowed the company unfairly to avoid permitting costs and formal compliance with RCRA standards and regulations. Recently, the Louisiana legislature passed laws declaring that hazardous-waste recyclers in the state must meet the same standards as permitted hazardous-waste incinerators. At press time, a hearing before the Louisiana Department of Environmental Quality to determine MSP's status as a recycler under the new laws was set for Sept. 29. Since all parties in the debate over Marine Shale's industry role appear to agree that the controversy is central to the emerging issue of establishing clear distinctions between recycling and hazardous-waste destruction, this article describes the arguments on both sides as these stood in mid-September

  9. An eco-friendly self-compacting concrete with recycled coarse aggregates

    Directory of Open Access Journals (Sweden)

    Pereira-de Oliveira, L. A.

    2013-09-01

    Full Text Available The potential uses of coarse recycled aggregates in the composition of SCC increases the ecological value and partly solve the issues of waste disposal sites generated by construction and demolition of structures. Thus, this paper present an experimental study of SCC properties where the normal coarse aggregates were replaced by different percentages of recycled aggregates, i.e., 0% (SCC, 10% (SCCR10, 20% (SCCR20, 30% (SCCR30 and 40% (SCCR40. The results from fresh concrete (rheological properties and self-compactability as the hardened concrete properties (compressive strength, density and dynamic modulus of elasticity, show only minor discrepancies. From the standpoint of mechanical behaviour, the results confirm the viability to incorporate coarse recycled aggregates in the SCC demonstrating the conservative character of the currently recommended limits.Los usos potenciales de áridos gruesos reciclados en la composición del hormigón autocompactante (SCC aumenta el valor ecológico y en parte resuelve los problemas de los sitios de disposición de residuos generados por la construcción y la demolición de las estructuras. Por lo tanto, este trabajo presenta un estudio experimental de las propiedades de SCC en el cual los áridos gruesos naturales fueron reemplazados por distintos porcentajes de áridos reciclados, es decir, 0% (SCC, el 10% (SCCR10, el 20% (SCCR20, el 30% (SCCR30 y el 40% (SCCR40. Los resultados del hormigón fresco (propiedades reológicas y la auto-compactación, como las propiedades de hormigón endurecido (resistencia a la compresión, densidad y módulo de elasticidad dinámico, muestran sólo pequeñas discrepancias. Desde el punto de vista del comportamiento mecánico, los resultados confirman la viabilidad de incorporar áridos gruesos reciclados en los SCC demostrando el carácter conservador de los límites actualmente recomendados.

  10. Impacts of policy and market incentives for solid waste recycling in Dhaka, Bangladesh.

    Science.gov (United States)

    Matter, Anne; Ahsan, Mehedi; Marbach, Michelle; Zurbrügg, Christian

    2015-05-01

    Solid waste mismanagement in Dhaka, Bangladesh, illustrates a well-known market failure which can be summarized as: waste is a resource in the wrong place. Inorganic materials such as plastic or paper can be used to feed the demand for recycled materials in the industrial sector. Organic materials can be converted and used in the nutrient-starved agricultural sector which is currently heavily depending on chemical fertilizers. They are also a feedstock to generate renewable energy in the form of biogas for this energy-starved country relying on diminishing natural gas reserves and increasing import of coal. Reality however does not capitalize on this potential; instead the waste is a burden for municipal authorities who spend large portions of their budgets attempting to transport it out of the city for discharge into landfills. The major part of these materials still remains uncollected in the residential areas and is discarded indiscriminately in open spaces, polluting the residents' living environment including water, soil and air resources, in the city and beyond. Bangladeshi authorities have, to some extent, recognized this market failure and have developed policies to encourage the development of waste recycling activities. It is also important to note that this market failure is only partial: a large, mostly informal recycling sector has developed in Bangladesh, focusing on inorganic recyclables of market value. The fact that this sector remains largely informal means that these actors perceive significant barriers to formalization. Comparatively, the organic waste recycling sector is less driven by market mechanisms. Competition from chemical fertilizers and fossil fuels is fierce and hinders the development of market opportunities for compost and renewable energy. Nevertheless commercial production of compost and biogas from organic municipal waste is formalized and benefiting from policy incentives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Optimization of the Development of a Plastic Recycling Machine ...

    African Journals Online (AJOL)

    Nigerian Journal of Technology ... The performance test analysis carried out defines the characteristics of the machine and shows that at a speed of 268 rpm the machine functions effectively and efficiently in performing its task producing a high finishing recycling efficiency or recyclability of 97%, takes 2 minutes to recycle a ...

  12. Plutonium recycle in PWR reactors (Brazilian Nuclear Program)

    International Nuclear Information System (INIS)

    Rubini, L.A.

    1978-02-01

    An evaluation is made of the material requirements of the nuclear fuel cycle with plutonium recycle. It starts from the calculation of a reference reactor and allows the evaluation of demand under two alternatives of nuclear fuel cycle for Pressurized Water Reactors (PWR): without plutonium recycle; and with plutonium recycle. Calculations of the reference reactor have been carried out with the CELL-CORE codes. For plutonium recycle, the concept of uranium and plutonium homogeneous mixture has been adopted, using self-produced plutonium at equilibrium, in order to get minimum neutronic perturbations in the reactor core. The refueling model studied in the reference reactor was the 'out-in' scheme with a constant number of changed fuel elements (approximately 1/3 of the core). Variations in the material requirements were studied considering changes in the installed nuclear capacity of PWR reactors, the capacity factor of these reactors, and the introduction of fast breeders. Recycling plutonium produced inside the system can reach economies of about 5%U 3 O 8 and 6% separative work units if recycle is assumed only after the 5th operation cycle of the thermal reactors. The cumulative amount of fissile plutonium obtained by the Brazilian Nuclear Program of PWR reactors by 1991 should be sufficient for a fast breeder with the same capacity as Angra 2. For the proposed fast breeder programs, the fissile plutonium produced by thermal reactors is sufficient to supply fast breeder initial necessities. Howewer, U 3 O 8 and SWU economy with recycle is not significant when the proposed fast breeder program is considered. (Author) [pt

  13. 75 FR 71003 - America Recycles Day, 2010

    Science.gov (United States)

    2010-11-19

    ... help create green jobs, support a vibrant American recycling and refurbishing industry, and advance our..., including the recycling of electronic products. The increased use of electronics and technology in our homes... harmful effects of the improper handling and disposal of these products. Currently, most discarded...

  14. Recycling light metals : Optimal thermal de-coating

    NARCIS (Netherlands)

    Kvithyld, A.; Meskers, C.E.M.; Gaal, S.; Reuter, M.

    2008-01-01

    Thermal de-coating of painted and lacquered scrap is one of the new innovations developed for aluminum recycling. If implemented in all recycling and optimized as suggested in this article, recovery would be improved with considerable economic impact. Generally, contaminated scrap is difficult to

  15. Impact of minor actinide recycling on sustainable fuel cycle options

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    2017-11-01

    The recent Evaluation and Screening study chartered by the U.S. Department of Energy, Office of Nuclear Energy, has identified four fuel cycle options as being the most promising. Among these four options, the two single-stage fuel cycles rely on a fast reactor and are differing in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The two other fuel cycles are two-stage and rely on both fast and thermal reactors. They also differ in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The current study assesses the impact of recycling minor actinides on the reactor core design, its performance characteristics, and the characteristics of the recycled material and waste material. The recycling of minor actinides is found not to affect the reactor core performance, as long as the same cycle length, core layout and specific power are being used. One notable difference is that the required transuranics (TRU) content is slightly increased when minor actinides are recycled. The mass flows are mostly unchanged given a same specific power and cycle length. Although the material mass flows and reactor performance characteristics are hardly affected by recycling minor actinides, some differences are observed in the waste characteristics between the two fuel cycles considered. The absence of minor actinides in the waste results in a different buildup of decay products, and in somewhat different behaviors depending on the characteristic and time frame considered. Recycling of minor actinides is found to result in a reduction of the waste characteristics ranging from 10% to 90%. These results are consistent with previous studies in this domain and depending on the time frame considered, packaging conditions, repository site, repository strategy, the differences observed in the waste characteristics could be beneficial and help improve

  16. Ethanol fermentation characteristics of recycled water by Saccharomyces cerevisiae in an integrated ethanol-methane fermentation process.

    Science.gov (United States)

    Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui

    2016-11-01

    An process of integrated ethanol-methane fermentation with improved economics has been studied extensively in recent years, where the process water used for a subsequent fermentation of carbohydrate biomass is recycled. This paper presents a systematic study of the ethanol fermentation characteristics of recycled process water. Compared with tap water, fermentation time was shortened by 40% when mixed water was employed. However, while the maximal ethanol production rate increased from 1.07g/L/h to 2.01g/L/h, ethanol production was not enhanced. Cell number rose from 0.6×10(8) per mL in tap water to 1.6×10(8) per mL in mixed water but although biomass increased, cell morphology was not affected. Furthermore, the use of mixed water increased the glycerol yield but decreased that of acetic acid, and the final pH with mixed water was higher than when using tap water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Prospects for neutron star equation of state constraints using ''recycled'' millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko [Columbia University, Columbia Astrophysics Laboratory, New York, NY (United States)

    2016-02-15

    ''Recycled'' millisecond pulsars are a variety of rapidly spinning neutron stars that typically show thermal X-ray radiation due to the heated surface of their magnetic polar caps. Detailed numerical modeling of the rotation-induced thermal X-ray pulsations observed from recycled millisecond pulsars, including all relevant relativistic and stellar atmospheric effects, has been identified as a promising approach towards an astrophysical determination of the true neutron star mass-radius relation, and by extension the state of cold matter at densities exceeding those of atomic nuclei. Herein, I review the basic model and methodology commonly used to extract information regarding neutron star structure from the pulsed X-ray radiation observed from millisecond pulsars. I also summarize the results of past X-ray observations of these objects and the prospects for precision neutron star mass-radius measurements with the upcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission. (orig.)

  18. Application of TCF bleaching in mixtures of chemical and mechanics fibers recycled: alternative for the paper industry

    International Nuclear Information System (INIS)

    Fuentes L, Jhonattan; Uribe R, Gabriel H

    2009-01-01

    In this paper we study the technical feasibility of using mixtures composed by mechanical and chemical fibers recycled in the production of tissue paper, using TCF bleaching sequences that improve the optical properties of this raw material. At present, chemical fibers recycled are used, but their limited availability and high cost,stimulate the search for raw materials which replace them partially. Bleaching stages were carried out at atmospheric pressure, with the oxidative process made with hydrogen peroxide at 80 celsius degrade in 1.5 hours and the reductive stage with FAS, VBrite, Thiourea Dioxide in situ or Chromaclear at 60 celsius degrade for 1 hour. The obtained results allow to deduce that the addition of mechanical recycled fiber significantly affects the optical properties of mixtures. However, some of the bleaching sequences applied manage to compensate, at least partly, the effect of adding this raw material of lower quality and cost.

  19. The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes.

    Science.gov (United States)

    Nowak, Sascha; Winter, Martin

    2017-03-06

    Quantitative electrolyte extraction from lithium ion batteries (LIB) is of great interest for recycling processes. Following the generally valid EU legal guidelines for the recycling of batteries, 50 wt % of a LIB cell has to be recovered, which cannot be achieved without the electrolyte; hence, the electrolyte represents a target component for the recycling of LIBs. Additionally, fluoride or fluorinated compounds, as inevitably present in LIB electrolytes, can hamper or even damage recycling processes in industry and have to be removed from the solid LIB parts, as well. Finally, extraction is a necessary tool for LIB electrolyte aging analysis as well as for post-mortem investigations in general, because a qualitative overview can already be achieved after a few minutes of extraction for well-aged, apparently "dry" LIB cells, where the electrolyte is deeply penetrated or even gellified in the solid battery materials.

  20. Compatibilization of recycled polypropylene and recycled poly (ethylene terephthalate blends with SEBS-g-MA

    Directory of Open Access Journals (Sweden)

    Luciana Maria Guadagnini Araujo

    2018-03-01

    Full Text Available Abstract The compatibilization of recycled PP/PET blend with high and low concentration (20 and 5 phr of elastomer functionalized by maleic anhydride (SEBS-g-MA was achieved. Recycled polypropylene from plastic industry and recycled PET from post-consumer bottles was used. PP/PET blends: 80:20 w/w, 50:50 w/w and 20:80 w/w were prepared in an internal mixer for mechanical properties, thermal properties, morphology and rheological properties. SEBS-g-MA promoted compatibilization of the PP/PET blends and improved their properties. With an increasing compatibilization level, the refinement of morphology was observed in the PET rich blend. Compatibilized blends showed negative deviation in the PET glass transition temperature related to neat PET, demonstrating that compatibilization was very successful. PET crystallization was accelerated in the blends due to PP presence that enhanced nucleation. It was found that the 50/50/20 blend showed huge potential for textile fiber application and that of 80/20/20 showed more intermediary properties than neat polymers.

  1. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed...... and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought. (C) 2009 Elsevier Ltd. All rights reserved....

  2. Current organic waste recycling and the potential for local recycling through urban agriculture in Metro Manila.

    Science.gov (United States)

    Hara, Yuji; Furutani, Takashi; Murakami, Akinobu; Palijon, Armando M; Yokohari, Makoto

    2011-11-01

    Using the solid waste management programmes of three barangays (the smallest unit of local government in the Philippines) in Quezon City, Metro Manila, as a case study, this research aimed to further the development of efficient organic waste recycling systems through the promotion of urban agricultural activities on green and vacant spaces. First, the quantity of organic waste and compost produced through ongoing barangay projects was measured. The amount of compost that could potentially be utilized on farmland and vacant land within the barangays was then identified to determine the possibility of a local recycling system. The results indicate that, at present, securing buyers for compost is difficult and, therefore, most compost is distributed to large neighbouring farm villages. However, the present analysis of potential compost use within the barangay demonstrates that a more local compost recycling system is indeed feasible.

  3. Recycling of WEEE by magnetic density separation

    NARCIS (Netherlands)

    Hu, B.; Giacometti, L.; Di Maio, F.; Rem, P.C.

    2011-01-01

    The paper introduces a new recycling method of WEEE: Magnetic Density Separation. By using this technology, both grade and recovery rate of recycled products are over 90%. Good separations are not only observed in relatively big WEEE samples, but also in samples with smaller sizes or electrical

  4. Recycled Concrete as Aggregate for Structural Concrete Production

    OpenAIRE

    Mirjana Malešev; Vlastimir Radonjanin; Snežana Marinković

    2010-01-01

    A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC) as a control concrete and two types of concrete made with natural fine and recycle...

  5. Recycled aggregates in concrete production: engineering properties and environmental impact

    Directory of Open Access Journals (Sweden)

    Seddik Meddah Mohammed

    2017-01-01

    Full Text Available Recycled concrete aggregate is considered as the most abundant and used secondary aggregate in concrete production, other types of solid waste are also being used in concrete for specific purposes and to achieve some desired properties. Recycled aggregates and particularly, recycled concrete aggregate substantially affect the properties and mix design of concrete both at fresh and hardened states since it is known by high porosity due to the adhered layer of old mortar on the aggregate which results in a high water absorption of the recycled secondary aggregate. This leads to lower density and strength, and other durability related properties. The use of most recycled aggregate in concrete structures is still limited to low strength and non-structural applications due to important drop in strength and durability performances generated. Embedding recycled aggregates in concrete is now a current practice in many countries to enhance sustainability of concrete industry and reduce its environmental impacts. The present paper discusses the various possible recycled aggregates used in concrete production, their effect on both fresh and hardened properties as well as durability performances. The economic and environmental impacts of partially or fully substituting natural aggregates by secondary recycled aggregates are also discussed.

  6. Recent trends in automobile recycling: An energy and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

    1994-03-01

    Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

  7. Recycling of radioactive mineral waste by activity separation

    International Nuclear Information System (INIS)

    Schartmann, F.; Cramer, T.; Meier-Kortwig, J.; Diedenhofen, S.; Wotruba, H.

    2005-01-01

    The AST process is a device for the recycling of building rubble originating from the dismantling of nuclear installations. Due to the activity separation in the process, a major part of rubble which would have otherwise been radioactive waste can now be cleared. The AST process has been developed in the course of the combined research project ''Aufbereitung radioaktiver mineralischer Rueckstaede durch Aktivitaetsseparation (Recycling of radioactive mineral waste by activity separation)'' which was sponsored by the BMBF (Federal Ministry for Education and Research). The first step was to investigate the activity distribution between the various constituents of activated heavy concrete (additions: hematite, magnetite, iron cuttings), of contaminated heavy and normal concrete, as well as of composition floor. Heavy concrete with metal additions showed a selective activation of the various constituents. Contaminated rubble often exhibits a selective enrichment of the activity in the cement in contrast to the aggregate. The AST facility for activity separation was designed on the basis of these results. Trial operation with various types of building rubble was carried out using three methods for sorting, screening according to grain size, magnetic separation and radiometric sorting. The use of these three methods was adapted to the material. (orig.)

  8. Constrained recycling: a framework to reduce landfilling in developing countries.

    Science.gov (United States)

    Diaz, Ricardo; Otoma, Suehiro

    2013-01-01

    This article presents a model that integrates three branches of research: (i) economics of solid waste that assesses consumer's willingness to recycle and to pay for disposal; (ii) economics of solid waste that compares private and social costs of final disposal and recycling; and (iii) theories on personal attitudes and social influence. The model identifies two arenas where decisions are made: upstream arena, where residents are decision-makers, and downstream arena, where municipal authorities are decision-makers, and graphically proposes interactions between disposal and recycling, as well as the concept of 'constrained recycling' (an alternative to optimal recycling) to guide policy design. It finally concludes that formative instruments, such as environmental education and benchmarks, should be combined with economic instruments, such as subsidies, to move constraints on source separation and recycling in the context of developing countries.

  9. The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China

    International Nuclear Information System (INIS)

    Chen Xudong; Xi Fengming; Geng Yong; Fujita, Tsuyoshi

    2011-01-01

    Research highlights: → Urban symbiosis creates compatibility of industrial development and waste management. → Mechanical technology leads to more CO 2 emission reduction. → Energy recovery technology leads to more fossil fuel saving. → Clean energy makes recycling technologies cleaner. → Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO 2 e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

  10. Positrusion Filament Recycling System for ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Positrusion ISS Recycler enables recycling of scrap and waste plastics into high-quality filament for 3D printers to enable sustainable in-situ manufacturing on...

  11. Paper waste - Recycling, incineration or landfilling?

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik

    2007-01-01

    comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location....... Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made...... and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover...

  12. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  13. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  14. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    Directory of Open Access Journals (Sweden)

    Salahuddin Asif

    2013-01-01

    Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.

  15. Recycling of chlorobutyl rubber compounds subjected of gamma radiation

    International Nuclear Information System (INIS)

    Scagliusi, Sandra R.; Cardoso, Elizabeth C.L.; Santos, Renato G. dos; Lugao, Ademar B.

    2015-01-01

    In Brazil, as in the world, the correct destination of solid waste and its impacts on the environment are so worrying that have been treated as public policy of the State, leading to behavioral change on the part of business and society. Polymeric materials (plastics and rubbers) comprise a growing proportion of urban and industrial waste sent to landfills. Development of technologies for reducing polymeric residues that are acceptable from an environmental point of view, and which are effective in terms of cost, has proven a difficult challenge due to the inherent complexities of all reuse polymers. To establish more efficient processes for reuse / recycling of polymeric materials remains a challenge throughout the world. Due to ionizing radiation ability to alter the structure and properties of materials and the fact that it is applicable to all types of polymers, irradiation is promising and effective for the management of solid waste which can be used as raw materials or additives chemicals. Halogenated polymers have been used on a large scale in a broad variety of applications, such as tires, spare parts (tubes, tire liners, etc.) and various artifacts (covers, gaskets, etc.). Due to the low unsaturation of chlorobutyl rubber (about 3%), shows significant levels of degradation upon exposure to radiation. The main effect of gamma rays on butyl polymers is the formation of free radicals and the chain scission. This paper aims to introduce a rubber recovery technique chlorobutyl rubber the characterization of non-irradiated and irradiated samples based on the following properties: tensile strength and elongation at break, hardness, and rheological properties. The radiation doses used in the study were degradation range: 0 kGy, 25 kGy, 50 kGy, 100 kGy, 150 kGy and 200 kGy, in order to confirm the feasibility of recycling chlorobutyl rubber. It was observed that doses greater than 100 kGy, the material exhibits a high degree of degradation. Research on rubber

  16. [Research on resources chemistry of Chinese medicinal materials and resources recycling utilization ways and goals and tasks].

    Science.gov (United States)

    Duan, Jin-ao; Su, Shu-lan; Guo, Sheng; Jiang, Shu; Liu, Pei; Yan, Hui; Qian, Da-wei; Zhu, Hua-xu; Tang, Yu-ping; Wu, Qi-nan

    2015-09-01

    The objects of research on the resources chemistry of Chinese medicinal materials (RCCMM) are promotion of efficient production, rational utilization and improving quality of CMM and natural products. The development of TCM cause depends on the efficient utilization and sustainable development of CMM, hinges on the technologies and methods for using and discovering medicinal biological resources, stand or fall on the extension of industy chains, detailed utilizaion of resource chemical components by multi-way, multi-level. All of these may help to the recycling utilization and sound development of RCMM. In this article, five respects were discussed to the RCCMM researches and resources recycling utilization ways and goals and tasks. First, based on the principle of resource scarcity, discovering or replacing CMM resources, protecting the rare or endangered species or resources. Second, based on the multifunctionality of CMM, realizing the value-added and value compensation, and promoting the utilization efficiency through systermatic and detailed exploitation and utilization. Third, based on the resource conservation and environment-friendly, reducing raw material consumption, lowering cost, promoting recycling utilization and elevating utilization efficiency. Fourth, based on the stratege of turning harm into good, using the invasive alien biological resources by multi-ways and enriching the medicial resources. Fifth, based on the method of structure modification of chemical components, exploring and enhancing the utility value of resouces chemical substances. These data should provide references and attention for improving the utilization efficiency, promoting the development of recycling economy, and changing the mode of economic growth of agriculture and industry of CMM fundamentally.

  17. An Efficient approach for selective collection made by scavengers for transportation logistics of recyclable materials

    Directory of Open Access Journals (Sweden)

    Adelino Carlos Maccarini

    2014-01-01

    Full Text Available The advance of technology, associated to the increase in the production of recyclable waste due to the increase of consumption and population, has been led to a search for alternatives of management and minimization of this waste. A part of this recyclable material is collected by scavengers, who do it to guarantee their livelihood. Many of them face logistical difficulties in transportation, mainly when they have to walk long distances and the streets have high slopes. Therefore, to minimize these efforts, the purpose of this paper is to settle mobile warehouses to receive recyclable items, with trucks that receive in bulk all materials collected by the collectors, who will deliver them to someone who will be in the truck for weighing and subsequent payment to the collector. With the help of the Analysis of Variance – ANOVA, studies were made so that this receipt is a quick operation, with the historical record of each sampling in a spreadsheet and value calculations based on this description, thus minimizing errors in weighing in bulk and improving, in every collection, the system reliability.

  18. Recycling of fresh concrete exceeding and wash water in concrete mixing plants

    Directory of Open Access Journals (Sweden)

    Férriz Papí, J. A.

    2014-03-01

    Full Text Available The exceeding concrete and washing equipment water are a matter to solve in concrete production. This paper explains several possibilities for recycling and analyses the products obtained with one recycling equipment. The objective of this work is to study the possibility to increase the percentage of recycling in new mixes. The developed study relates wash water density and fine particles content. Besides, mortar and concrete samples were tested introducing different quantities of these fine particles, substituting cement, sand or only as an addition. Consistency, compressive strength, setting time, absorption, and capillarity were tested. The results indicated an improvement of the studied properties in some percentages when substituting sand. It confirms the possibility to introduce larger quantities of wash water in new concrete mixes, with corrections in sand quantity depending on water density.Los hormigones frescos sobrantes y aguas procedentes de la limpieza de equipos son un inconveniente a resolver en las plantas de hormigón. Este artículo explica varias posibilidades de reciclado y analiza los productos obtenidos en un equipo reciclador concreto, con el objetivo de estudiar el incremento del porcentaje de reciclaje en nuevas amasadas. El estudio realizado relaciona la densidad del agua de lavado y el contenido de partículas finas. Además, ensaya muestras de mortero y hormigón realizando sustituciones de estas partículas finas por cemento, arena o simplemente como adición. Determina consistencia, resistencia a compresión, principio y fin de fraguado, absorción y capilaridad. Los resultados indicaron un incremento general de las propiedades estudiadas en algunos porcentajes de sustitución por arena. Ello confirma la posibilidad de introducir mayores cantidades de agua de lavado en nuevas amasadas de hormigón, mediante correcciones en la dosificación de arena en función de la densidad del agua.

  19. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    International Nuclear Information System (INIS)

    Hsu, P.C.

    1997-01-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment

  20. Global status of recycling waste solar panels: A review.

    Science.gov (United States)

    Xu, Yan; Li, Jinhui; Tan, Quanyin; Peters, Anesia Lauren; Yang, Congren

    2018-05-01

    With the enormous growth in the development and utilization of solar-energy resources, the proliferation of waste solar panels has become problematic. While current research into solar panels has focused on how to improve the efficiency of the production capacity, the dismantling and recycling of end-of-life (EOL) panels are seldom considered, as can be seen, for instance, in the lack of dedicated solar-panel recycling plants. EOL solar-panel recycling can effectively save natural resources and reduce the cost of production. To address the environmental conservation and resource recycling issues posed by the huge amount of waste solar panels regarding environmental conservation and resource recycling, the status of the management and recycling technologies for waste solar panels are systemically reviewed and discussed in this article. This review can provide a quantitative basis to support the recycling of PV panels, and suggests future directions for public policy makers. At present, from the technical aspect, the research on solar panel recovery is facing many problems, and we need to further develop an economically feasible and non-toxic technology. The research on solar photovoltaic panels' management at the end of life is just beginning in many countries, and there is a need for further improvement and expansion of producer responsibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Lannegrace, J.-P.

    1991-01-01

    The 1990 update to the Uranium Institute's report ''Uranium Market Issues'', presented to this Symposium last year (1990) stated that the impact of recycled reprocessing products on uranium demand would be limited in the near future to that due to MOX fuel fabrication. The report stated that the recycling of reprocessed uranium was still at an early discussion stage, rather than being a short-term prospect. This paper will set out to challenge this assertion, on the basis both of facts and of economic and environmental incentives. (author)

  2. Integrated wastewater management by reuse and recycling in a textile industry: a case study in Thailand

    International Nuclear Information System (INIS)

    Javed, M.R.; Trankler, J.

    2005-01-01

    Increasing stringent environmental legislation, scarcity of resources and development of treatment and management techniques for wastewater, have made recycling and reuse feasible and economical in many industrial processes. Wastewater management by integrating all available techniques was studied for reuse and recycling in a textile industry. Cotton and silk fabrics were main products of the selected industry. Approach was divided in to five parts, to achieve the objectives of reuse and recycling: in-house water consumption evaluation, segregation study, optimizing existing WWTP, treatability study and advanced treatment for final effluent to fulfill reuse criteria. Water consumption evaluation was done by in-house survey. Segregation study was performed by analyzing different wastewater streams. Efficiency of existing WWTP for COD and BOD removal was assessed and optimized. Treatability of dye wastewater by ozonation, chemical and nanofiltration was studied. Treatment study of final effluent for TDS and color removal by nanofiltration and chemical treatment was performed. Analyses show the possibilities to conserve and optimize water consumption up to 30% in the production processes by in-house improvement. Segregation study shows that up to 15% wastewater from less polluted streams can be recycled back. Adopting separate efficient treatment techniques could fulfill reuse criteria for remaining wastewater streams (50%). (author)

  3. Plutonium recycle. In-core fuel management

    International Nuclear Information System (INIS)

    Vincent, F.; Berthet, A.; Le Bars, M.

    1985-01-01

    Plutonium recycle in France will concern a dozen of PWR 900 MWe controlled in gray mode till 1995. This paper presents the main characteristics of fuel management with plutonium recycle. The organization of management studies will be copied from this developed for classical management studies. Up these studies, a ''feasibility report'' aims at establishing at each stage of the fuel cycle, the impact of the utilization of fuel containing plutonium [fr

  4. Plastic Recycling Experiments in Materials Education

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  5. Idea Notebook: Recycling with an Educational Purpose.

    Science.gov (United States)

    Gerth, Tom; Wilson, David A.

    1986-01-01

    Four students at St. Louis University High School developed a project to clean up the environment while saving energy and natural resources. Aluminum and steel cans were recycled and the money was used to buy and plant trees. Students learned about recycling, organization, money management, and improving the environment. (JMM)

  6. Flows of engineered nanomaterials through the recycling process in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Guzman, Alejandro; Sun, Tianyin; Nowack, Bernd, E-mail: nowack@empa.ch

    2015-02-15

    Highlights: • Recycling is one of the likely end-of-life fates of nanoproducts. • We assessed the material flows of four nanomaterials in the Swiss recycling system. • After recycling, most nanomaterials will flow to landfills or incineration plants. • Recycled construction waste, plastics and textiles may contain nanomaterials. - Abstract: The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, for example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO{sub 2}, nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs.

  7. Deep water recycling through time.

    Science.gov (United States)

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2014-11-01

    We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity ( v s ), slab age ( a ) and mantle temperature (T m ). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×10 5 kg/m 2 ), as a function of v s (cm/yr), a (Myrs), and T m (°C):[Formula: see text]. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×10 5 kg/m 2 of H 2 O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×10 8 Tg/Myr of H 2 O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5-3.7 × 10 8 Tg/Myr of H 2 O could still be recycled in the mantle at 2.8 Ga. Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H 2 O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern.

  8. Dismantling of asphalt and recycling road materials in asphalt layers

    OpenAIRE

    Antunes, M. L.; Batista, F. A.

    2009-01-01

    Este registo pertence ao Repositório Científico do LNEC The interest of recycling of asphalt and other road materials for pavement construction and rehabilitation has been generally growing in Portugal, for the last 15 years. After some occasional demonstration projects dealing with hot and cold in situ recycling of asphalt layers, the first significant experiences with cold in situ recycling and hot mix plant recycling of asphalt applied in full scale rehabilitation projects, ...

  9. PROPERTIES AND MICROSTRUCTURE OF CEMENT PASTE INCLUDING RECYCLED CONCRETE POWDER

    Directory of Open Access Journals (Sweden)

    Jaroslav Topič

    2017-02-01

    Full Text Available The disposal and further recycling of concrete is being investigated worldwide, because the issue of complete recycling has not yet been fully resolved. A fundamental difficulty faced by researchers is the reuse of the recycled concrete fines which are very small (< 1 mm. Currently, full recycling of such waste fine fractions is highly energy intensive and resulting in production of CO2. Because of this, the only recycling methods that can be considered as sustainable and environmentally friendly are those which involve recycled concrete powder (RCP in its raw form. This article investigates the performance of RCP with the grain size < 0.25 mm as a potential binder replacement, and also as a microfiller in cement-based composites. Here, the RCP properties are assessed, including how mechanical properties and the microstructure are influenced by increasing the amount of the RCP in a cement paste (≤ 25 wt%.

  10. Informal electronic waste recycling: A sector review with special focus on China

    International Nuclear Information System (INIS)

    Chi Xinwen; Streicher-Porte, Martin; Wang, Mark Y.L.; Reuter, Markus A.

    2011-01-01

    Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and health impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China's e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector.

  11. Aircraft de-icer: Recycling can cut carbon emissions in half

    International Nuclear Information System (INIS)

    Johnson, Eric P.

    2012-01-01

    Flight-safety regulations in most countries require aircraft to be ice-free upon takeoff. In icy weather, this means that the aircraft usually must be de-iced (existing ice is removed) and sometimes anti-iced (to protect against ice-reformation). For both processes, aircraft typically are sprayed with an ‘antifreeze’ solution, consisting mainly of glycol diluted with water. This de/anti-icing creates an impact on the environment, of which environmental regulators have grown increasingly conscious. The US Environmental Protection Agency (EPA), for example, recently introduced stricter rules that require airports above minimum size to collect de-icing effluents and send them to wastewater treatment. De-icer collection and treatment is already done at most major airports, but a few have gone one step further: rather than putting the effluent to wastewater, they recycle it. This study examines the carbon savings that can be achieved by recycling de-icer. There are two key findings. One, recycling, as opposed to not recycling, cuts the footprint of aircraft de-icing by 40–50% — and even more, in regions where electricity-generation is cleaner. Two, recycling petrochemical-based de-icer generates a 15–30% lower footprint than using ‘bio’ de-icer without recycling. - Highlights: ► Carbon footprint of aircraft de-icing can be measured. ► Recycling aircraft de-icer cuts the footprint of aircraft de-icing by 40–50%. ► Recycling ‘fossil’ de-icer is lower carbon than not recycling ‘bio’ de-icer.

  12. Benefit/cost analysis of plutonium recycle options in the United States

    International Nuclear Information System (INIS)

    Lowenberg, H.; Burnham, J.B.; Fisher, F.; Ray, W.H.

    1977-01-01

    Predictable effects of the recycle of plutonium and uranium recovered from spent LWR fuels were assessed in a final environmental statement (GESMO). Five alternative dispositions of LWR-produced plutonium ranging from prompt recycle of recovered plutonium and uranium to no recovery and no recycle are compared. The assessments consider cumulative effects for the period 1975 through 2000, and are centered on a conservative low growth rate resulting in about 500 LWR's in the U.S. in 2000. A more optimistic growth projection resulting in about 800 LWR's in 2000 is also analyzed in order to assess the effects of industry size upon the impacts. Demands for fuel cycle services were calculated with an ERDA program, NUFUEL, which was modified to include penalties for 236 U and 242 Pu. Unit cost data, including a simulation of market place reaction to supply-demand functions for uranium costs, were combined with the NUFUEL demand data in an economics code, NUCOST. Environmental impacts were also based upon NUFUEL demand data and were developed using a model plant industry concept. Using the most likely unit costs with a 10% discount rate, present worth incentives for prompt recycle over no recycle of $3.2 billion for the lower growth and about $6 billion for the higher growth were indicated. Present worth costs of delays in recycle of up to 5 years were less than $1 billion. Sensitivity of the economic assessments to unit cost variations and discount rates were also evaluated. Environmental impacts other than radiological were lowest for prompt Pu recycle and highest for no recycle. Radiological impacts for the total world wide total body exposure from U.S. industry for the 26 year period were estimated to be: - No recycle-8.2 million person-rem; U only recycle-9.5 million person-rem; Pu and U recycle-8.8 million person-rem. Comparison of the decreased radiological impact of the no recycle option with its increased costs relative to prompt plutonium recycle resulted in a

  13. Strength of masonry blocks made with recycled concrete aggregates

    Science.gov (United States)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  14. PRN 94-2: Recycling Empty Aerosol Pesticide Containers

    Science.gov (United States)

    This notice offers registrants use of an optional label statement permitting recycling as an alternative to instructions to dispose of aerosol pesticide containers. Registrants may add a label reference to recycling the empty aerosol pesticide container.

  15. Performance evaluation of subgrade stabilization with recycled materials.

    Science.gov (United States)

    2016-02-29

    Due to rising costs of good quality acceptable materials for remove/replace options and traditional : subgrade stabilization materials, MDOT is in need to identify potential recycled materials to treat : unacceptable subgrade soils. Use of recycled m...

  16. Plutonium recycle concept for RCC - type PWRs

    International Nuclear Information System (INIS)

    Bonet, H.; Charlier, A.; Deramaix, P.; Vanderberg, C.

    1975-01-01

    Self-generated Pu recycling schemes in RCC-type PWRs have been defined. The main results of survey studies performed to compare the relative merits of various Pu recycle strategies and the merits of alternative solutions of the assembly design such as the Pu-island assembly or the all-Pu assembly are presented [fr

  17. Recyclable zein-coated kraft paper and linerboard

    Science.gov (United States)

    Nicholas Parris; Marguerite Sykes; Leland C. Dickey; Jack L. Wiles; Thomas J. Urbanik; Peter H. Cooke

    2002-01-01

    Recyclability of kraft paper and linerboard coated with commercial zein and paraffin wax or a zein-lipid mixture was evaluated using conventional recycling processes. Zein, an alcohol-soluble protein from corn, exhibits both grease and water vapor barrier properties. Strength properties, grease resistance, and water vapor barrier proper-ties were measured on handsheets...

  18. Recycling of chemical hydrogen storage materials

    International Nuclear Information System (INIS)

    Lo, C.F.; Davis, B.R.; Karan, K.

    2004-01-01

    'Full text:' Light weight chemical hydrides such as sodium borohydride (NaBH4) and lithium borohydride (LiBH4) are promising hydrogen storage materials. They offer several advantages including high volumetric storage density, safe storage, practical storage and operating condition, controlled and rapid hydrogen release kinetics in alkaline aqueous media in the presence of catalysts. In addition, borate or borax, the reaction by-product, is environmentally friendly and can be directly disposed or recycled. One technical barrier for utilizing borohydrides as hydrogen storage material is their high production cost. Sodium borohydride currently costs $90 per kg while lithium borohydride costs $8000 per kg. For commercialization, new and improved technology to manufacture borohydrides must be developed - preferably by recycling borates. We are investigating different inorganic recycling routes for regenerating borohydrides from borates. In this paper, the results of a chlorination-based recycling route, incorporating multi-step reactions, will be discussed. Experiments were conducted to establish the efficiency of various steps of the selected regeneration process. The yields of desired products as a function of reaction temperature and composition were obtained from multi-phase batch reactor. Separation efficiency of desired product was also determined. The results obtained so far appear to be promising. (author)

  19. Determination of enrichment of recycle uranium fuels for different burnup values

    International Nuclear Information System (INIS)

    Zabunoglu, Okan H.

    2008-01-01

    Uranium (U) recovered from spent LWR fuels by reprocessing, which contains small amounts of U-236, is to be enriched before being re-irradiated as the recycle U. During the enrichment of recovered U in U-235, the mass fraction of U-236 also increases. Since the existence of U-236 in the recycle U has a negative effect on neutron economy, a greater enrichment of U-235 in the recycle U is required for reaching the same burnup as can be reached by the fresh U fuel. Two burnup values play the most important role in determining the enrichment of recycle U: (1) discharge burnup of spent fuel from which the recycle U is obtained and (2) desired discharge burnup of the recycle U fuel. A step-by-step procedure for calculating the enrichment of the recycle U as a function of these two burnup values is introduced. The computer codes MONTEBURNS and ORIGEN-S are made use of and a three-component (U-235, U-236, U-238) enrichment scheme is applied for calculating the amount of U-236 in producing the recycle U from the recovered U. As was aimed, the resulting expression is simple enough for quick/hand calculations of the enrichment of the recycle U for any given discharge burnup of spent fuel and for any desired discharge burnup of the recycle U fuel, most accurately within the range of 33,000-50,000 MWd/tonU

  20. Recycle and reduction of waste water in ISL operation

    International Nuclear Information System (INIS)

    Du Zhiming; Liu Naizhong; Su Xuebin; Li Jianhua; Zou Maoqing; Xing Yongguo

    2014-01-01

    Sandstone type uranium resources will be promote the main force of natural uranium production in China. The wastewater produced in the process of in-situ leaching mining need to be studied specially, so as to meet the requirements of green mining and realize the recycling of wastewater and decrement. We have researched and adopted including nature groundwater environmental recycling, liquor of precipitation recycling, optimization of elution process, the transformation waste water reduction, water evaporation reduction and a series of technological measures. The field application results show that the wastewater recycling and reduction in the process of production achieved a good environmental protection effect. (authors)