WorldWideScience

Sample records for parietal neurons coding

  1. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech.

    Science.gov (United States)

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.

  2. Observing complex action sequences: The role of the fronto-parietal mirror neuron system.

    Science.gov (United States)

    Molnar-Szakacs, Istvan; Kaplan, Jonas; Greenfield, Patricia M; Iacoboni, Marco

    2006-11-15

    A fronto-parietal mirror neuron network in the human brain supports the ability to represent and understand observed actions allowing us to successfully interact with others and our environment. Using functional magnetic resonance imaging (fMRI), we wanted to investigate the response of this network in adults during observation of hierarchically organized action sequences of varying complexity that emerge at different developmental stages. We hypothesized that fronto-parietal systems may play a role in coding the hierarchical structure of object-directed actions. The observation of all action sequences recruited a common bilateral network including the fronto-parietal mirror neuron system and occipito-temporal visual motion areas. Activity in mirror neuron areas varied according to the motoric complexity of the observed actions, but not according to the developmental sequence of action structures, possibly due to the fact that our subjects were all adults. These results suggest that the mirror neuron system provides a fairly accurate simulation process of observed actions, mimicking internally the level of motoric complexity. We also discuss the results in terms of the links between mirror neurons, language development and evolution.

  3. Choline acetyltransferase-containing neurons in the human parietal neocortex

    Directory of Open Access Journals (Sweden)

    V Benagiano

    2009-06-01

    Full Text Available A number of immunocytochemical studies have indicated the presence of cholinergic neurons in the cerebral cortex of various species of mammals. Whether such cholinergic neurons in the human cerebral cortex are exclusively of subcortical origin is still debated. In this immunocytochemical study, the existence of cortical cholinergic neurons was investigated on surgical samples of human parietal association neocortex using a highly specific monoclonal antibody against choline acetyltransferase (ChAT, the acetylcholine biosynthesising enzyme. ChAT immunoreactivity was detected in a subpopulation of neurons located in layers II and III. These were small or medium-sized pyramidal neurons which showed cytoplasmic immunoreactivity in the perikarya and processes, often in close association to blood microvessels. This study, providing demonstration of ChAT neurons in the human parietal neocortex, strongly supports the existence of intrinsic cholinergic innervation of the human neocortex. It is likely that these neurons contribute to the cholinergic innervation of the intracortical microvessels.

  4. Predicting oculomotor behaviour from correlated populations of posterior parietal neurons.

    Science.gov (United States)

    Graf, Arnulf B A; Andersen, Richard A

    2015-01-23

    Oculomotor function critically depends on how signals representing saccade direction and eye position are combined across neurons in the lateral intraparietal (LIP) area of the posterior parietal cortex. Here we show that populations of parietal neurons exhibit correlated variability, and that using these interneuronal correlations yields oculomotor predictions that are more accurate and also less uncertain. The structure of LIP population responses is therefore essential for reliable read-out of oculomotor behaviour.

  5. Distinct timescales of population coding across cortex.

    Science.gov (United States)

    Runyan, Caroline A; Piasini, Eugenio; Panzeri, Stefano; Harvey, Christopher D

    2017-08-03

    The cortex represents information across widely varying timescales. For instance, sensory cortex encodes stimuli that fluctuate over few tens of milliseconds, whereas in association cortex behavioural choices can require the maintenance of information over seconds. However, it remains poorly understood whether diverse timescales result mostly from features intrinsic to individual neurons or from neuronal population activity. This question remains unanswered, because the timescales of coding in populations of neurons have not been studied extensively, and population codes have not been compared systematically across cortical regions. Here we show that population codes can be essential to achieve long coding timescales. Furthermore, we find that the properties of population codes differ between sensory and association cortices. We compared coding for sensory stimuli and behavioural choices in auditory cortex and posterior parietal cortex as mice performed a sound localization task. Auditory stimulus information was stronger in auditory cortex than in posterior parietal cortex, and both regions contained choice information. Although auditory cortex and posterior parietal cortex coded information by tiling in time neurons that were transiently informative for approximately 200 milliseconds, the areas had major differences in functional coupling between neurons, measured as activity correlations that could not be explained by task events. Coupling among posterior parietal cortex neurons was strong and extended over long time lags, whereas coupling among auditory cortex neurons was weak and short-lived. Stronger coupling in posterior parietal cortex led to a population code with long timescales and a representation of choice that remained consistent for approximately 1 second. In contrast, auditory cortex had a code with rapid fluctuations in stimulus and choice information over hundreds of milliseconds. Our results reveal that population codes differ across cortex

  6. Single-cell analysis of peptide expression and electrophysiology of right parietal neurons involved in male copulation behavior of a simultaneous hermaphrodite.

    Science.gov (United States)

    El Filali, Z; de Boer, P A C M; Pieneman, A W; de Lange, R P J; Jansen, R F; Ter Maat, A; van der Schors, R C; Li, K W; van Straalen, N M; Koene, J M

    2015-12-01

    Male copulation is a complex behavior that requires coordinated communication between the nervous system and the peripheral reproductive organs involved in mating. In hermaphroditic animals, such as the freshwater snail Lymnaea stagnalis, this complexity increases since the animal can behave both as male and female. The performance of the sexual role as a male is coordinated via a neuronal communication regulated by many peptidergic neurons, clustered in the cerebral and pedal ganglia and dispersed in the pleural and parietal ganglia. By combining single-cell matrix-assisted laser mass spectrometry with retrograde staining and electrophysiology, we analyzed neuropeptide expression of single neurons of the right parietal ganglion and their axonal projections into the penial nerve. Based on the neuropeptide profile of these neurons, we were able to reconstruct a chemical map of the right parietal ganglion revealing a striking correlation with the earlier electrophysiological and neuroanatomical studies. Neurons can be divided into two main groups: (i) neurons that express heptapeptides and (ii) neurons that do not. The neuronal projection of the different neurons into the penial nerve reveals a pattern where (spontaneous) activity is related to branching pattern. This heterogeneity in both neurochemical anatomy and branching pattern of the parietal neurons reflects the complexity of the peptidergic neurotransmission involved in the regulation of male mating behavior in this simultaneous hermaphrodite.

  7. Temporal structure in neuronal activity during working memory in Macaque parietal cortex

    CERN Document Server

    Pesaran, B; Sahami, M; Mitra, P; Andersen, R A

    2000-01-01

    A number of cortical structures are reported to have elevated single unit firing rates sustained throughout the memory period of a working memory task. How the nervous system forms and maintains these memories is unknown but reverberating neuronal network activity is thought to be important. We studied the temporal structure of single unit (SU) activity and simultaneously recorded local field potential (LFP) activity from area LIP in the inferior parietal lobe of two awake macaques during a memory-saccade task. Using multitaper techniques for spectral analysis, which play an important role in obtaining the present results, we find elevations in spectral power in a 50--90 Hz (gamma) frequency band during the memory period in both SU and LFP activity. The activity is tuned to the direction of the saccade providing evidence for temporal structure that codes for movement plans during working memory. We also find SU and LFP activity are coherent during the memory period in the 50--90 Hz gamma band and no consisten...

  8. Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition

    Science.gov (United States)

    Daitch, Amy L.; Foster, Brett L.; Schrouff, Jessica; Rangarajan, Vinitha; Kaşikçi, Itır; Gattas, Sandra; Parvizi, Josef

    2016-01-01

    Brain areas within the lateral parietal cortex (LPC) and ventral temporal cortex (VTC) have been shown to code for abstract quantity representations and for symbolic numerical representations, respectively. To explore the fast dynamics of activity within each region and the interaction between them, we used electrocorticography recordings from 16 neurosurgical subjects implanted with grids of electrodes over these two regions and tracked the activity within and between the regions as subjects performed three different numerical tasks. Although our results reconfirm the presence of math-selective hubs within the VTC and LPC, we report here a remarkable heterogeneity of neural responses within each region at both millimeter and millisecond scales. Moreover, we show that the heterogeneity of response profiles within each hub mirrors the distinct patterns of functional coupling between them. Our results support the existence of multiple bidirectional functional loops operating between discrete populations of neurons within the VTC and LPC during the visual processing of numerals and the performance of arithmetic functions. These findings reveal information about the dynamics of numerical processing in the brain and also provide insight into the fine-grained functional architecture and connectivity within the human brain. PMID:27821758

  9. Spike Code Flow in Cultured Neuronal Networks.

    Science.gov (United States)

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei

    2016-01-01

    We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  10. Spike Code Flow in Cultured Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Shinichi Tamura

    2016-01-01

    Full Text Available We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of “1101” and “1011,” which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the “maximum cross-correlations” among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  11. Population coding in sparsely connected networks of noisy neurons

    OpenAIRE

    Tripp, Bryan P.; Orchard, Jeff

    2012-01-01

    This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and be...

  12. Noise-enhanced coding in phasic neuron spike trains.

    Science.gov (United States)

    Ly, Cheng; Doiron, Brent

    2017-01-01

    The stochastic nature of neuronal response has lead to conjectures about the impact of input fluctuations on the neural coding. For the most part, low pass membrane integration and spike threshold dynamics have been the primary features assumed in the transfer from synaptic input to output spiking. Phasic neurons are a common, but understudied, neuron class that are characterized by a subthreshold negative feedback that suppresses spike train responses to low frequency signals. Past work has shown that when a low frequency signal is accompanied by moderate intensity broadband noise, phasic neurons spike trains are well locked to the signal. We extend these results with a simple, reduced model of phasic activity that demonstrates that a non-Markovian spike train structure caused by the negative feedback produces a noise-enhanced coding. Further, this enhancement is sensitive to the timescales, as opposed to the intensity, of a driving signal. Reduced hazard function models show that noise-enhanced phasic codes are both novel and separate from classical stochastic resonance reported in non-phasic neurons. The general features of our theory suggest that noise-enhanced codes in excitable systems with subthreshold negative feedback are a particularly rich framework to study.

  13. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.

    Science.gov (United States)

    Lobier, Muriel; Palva, J Matias; Palva, Satu

    2018-01-15

    Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Population coding in sparsely connected networks of noisy neurons.

    Science.gov (United States)

    Tripp, Bryan P; Orchard, Jeff

    2012-01-01

    This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.

  15. Population Coding in Sparsely Connected Networks of Noisy Neurons

    Directory of Open Access Journals (Sweden)

    Bryan Patrick Tripp

    2012-05-01

    Full Text Available This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behaviour. However, population coding theory has often ignored network structure, or assumed discrete, fully-connected populations (in contrast with the sparsely connected, continuous sheet of the cortex. In this study, we model a sheet of cortical neurons with sparse, primarily local connections, and find that a network with this structure can encode multiple internal state variables with high signal-to-noise ratio. However, in our model, although connection probability varies with the distance between neurons, we find that the connections cannot be instantiated at random according to these probabilities, but must have additional structure if information is to be encoded with high fidelity.

  16. High-Fidelity Coding with Correlated Neurons

    Science.gov (United States)

    da Silveira, Rava Azeredo; Berry, Michael J.

    2014-01-01

    Positive correlations in the activity of neurons are widely observed in the brain. Previous studies have shown these correlations to be detrimental to the fidelity of population codes, or at best marginally favorable compared to independent codes. Here, we show that positive correlations can enhance coding performance by astronomical factors. Specifically, the probability of discrimination error can be suppressed by many orders of magnitude. Likewise, the number of stimuli encoded—the capacity—can be enhanced more than tenfold. These effects do not necessitate unrealistic correlation values, and can occur for populations with a few tens of neurons. We further show that both effects benefit from heterogeneity commonly seen in population activity. Error suppression and capacity enhancement rest upon a pattern of correlation. Tuning of one or several effective parameters can yield a limit of perfect coding: the corresponding pattern of positive correlation leads to a ‘lock-in’ of response probabilities that eliminates variability in the subspace relevant for stimulus discrimination. We discuss the nature of this pattern and we suggest experimental tests to identify it. PMID:25412463

  17. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    Science.gov (United States)

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Spatio-temporal dynamics of the mirror neuron system during social intentions.

    Science.gov (United States)

    Cacioppo, Stephanie; Bolmont, Mylene; Monteleone, George

    2017-10-27

    Previous research has shown that specific goals and intentions influence a person's allocation of social attention. From a neural viewpoint, a growing body of evidence suggests that the inferior fronto-parietal network, including the mirror neuron system, plays a role in the planning and the understanding of motor intentions. However, it is unclear whether and when the mirror neuron system plays a role in social intentions. Combining a behavioral task with electrical neuroimaging in 22 healthy male participants, the current study investigates whether the temporal brain dynamic of the mirror neuron system differs during two types of social intentions i.e., lust vs. romantic intentions. Our results showed that 62% of the stimuli evoking lustful intentions also evoked romantic intentions, and both intentions were sustained by similar activations of the inferior frontal gyrus and the inferior parietal lobule/angular gyrus for the first 432 ms after stimulus onset. Intentions to not love or not lust, on the other hand, were characterized by earlier differential activations of the inferior fronto-parietal network i.e., as early as 244 ms after stimulus onset. These results suggest that the mirror neuron system may not only code for the motor correlates of intentions, but also for the social meaning of intentions and its valence at both early/automatic and later/more elaborative stages of information processing.

  19. Neuronal oscillations form parietal/frontal networks during contour integration.

    Science.gov (United States)

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  20. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  1. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-01-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it. PMID:26630202

  2. A memristive spiking neuron with firing rate coding

    Directory of Open Access Journals (Sweden)

    Marina eIgnatov

    2015-10-01

    Full Text Available Perception, decisions, and sensations are all encoded into trains of action potentials in the brain. The relation between stimulus strength and all-or-nothing spiking of neurons is widely believed to be the basis of this coding. This initiated the development of spiking neuron models; one of today's most powerful conceptual tool for the analysis and emulation of neural dynamics. The success of electronic circuit models and their physical realization within silicon field-effect transistor circuits lead to elegant technical approaches. Recently, the spectrum of electronic devices for neural computing has been extended by memristive devices, mainly used to emulate static synaptic functionality. Their capabilities for emulations of neural activity were recently demonstrated using a memristive neuristor circuit, while a memristive neuron circuit has so far been elusive. Here, a spiking neuron model is experimentally realized in a compact circuit comprising memristive and memcapacitive devices based on the strongly correlated electron material vanadium dioxide (VO2 and on the chemical electromigration cell Ag/TiO2-x/Al. The circuit can emulate dynamical spiking patterns in response to an external stimulus including adaptation, which is at the heart of firing rate coding as first observed by E.D. Adrian in 1926.

  3. Neuronal synchronization in human parietal cortex during saccade planning

    NARCIS (Netherlands)

    Werf, J. van der; Buchholz, V.N.; Jensen, O.; Medendorp, W.P.

    2009-01-01

    Neuropsychological and neuroimaging studies have implicated the human posterior parietal cortex (PPC) in sensorimotor integration and saccade planning However, the temporal dynamics of the underlying physiology and its relationship to observations in non-human primates have been difficult to pin

  4. Binding by asynchrony: the neuronal phase code

    Directory of Open Access Journals (Sweden)

    Zoltan Nadasdy

    2010-09-01

    Full Text Available Neurons display continuous subthreshold oscillations and discrete action potentials. When action potentials are phase-locked to the subthreshold oscillation, we hypothesize they represent two types of information: the presence/absence of a sensory feature and the phase of subthreshold oscillation. If subthreshold oscillation phases are neuron-specific, then the sources of action potentials can be recovered based on the action potential times. If the spatial information about the stimulus is converted to action potential phases, then action potentials from multiple neurons can be combined into a single axon and the spatial configuration reconstructed elsewhere. For the reconstruction to be successful, we introduce two assumptions: that a subthreshold oscillation field has a constant phase gradient and that coincidences between action potentials and intracellular subthreshold oscillations are neuron-specific as defined by the "interference principle." Under these assumptions, a phase coding model enables information transfer between structures and reproduces experimental phenomenons such as phase precession, grid cell architecture, and phase modulation of cortical spikes. This article reviews a recently proposed neuronal algorithm for information encoding and decoding from the phase of action potentials (Nadasdy 2009. The focus is given to the principles common across different systems instead of emphasizing system specific differences.

  5. Fronto-parietal coding of goal-directed actions performed by artificial agents.

    Science.gov (United States)

    Kupferberg, Aleksandra; Iacoboni, Marco; Flanagin, Virginia; Huber, Markus; Kasparbauer, Anna; Baumgartner, Thomas; Hasler, Gregor; Schmidt, Florian; Borst, Christoph; Glasauer, Stefan

    2018-03-01

    With advances in technology, artificial agents such as humanoid robots will soon become a part of our daily lives. For safe and intuitive collaboration, it is important to understand the goals behind their motor actions. In humans, this process is mediated by changes in activity in fronto-parietal brain areas. The extent to which these areas are activated when observing artificial agents indicates the naturalness and easiness of interaction. Previous studies indicated that fronto-parietal activity does not depend on whether the agent is human or artificial. However, it is unknown whether this activity is modulated by observing grasping (self-related action) and pointing actions (other-related action) performed by an artificial agent depending on the action goal. Therefore, we designed an experiment in which subjects observed human and artificial agents perform pointing and grasping actions aimed at two different object categories suggesting different goals. We found a signal increase in the bilateral inferior parietal lobule and the premotor cortex when tool versus food items were pointed to or grasped by both agents, probably reflecting the association of hand actions with the functional use of tools. Our results show that goal attribution engages the fronto-parietal network not only for observing a human but also a robotic agent for both self-related and social actions. The debriefing after the experiment has shown that actions of human-like artificial agents can be perceived as being goal-directed. Therefore, humans will be able to interact with service robots intuitively in various domains such as education, healthcare, public service, and entertainment. © 2017 Wiley Periodicals, Inc.

  6. Interlaminar differences in the pyramidal cell phenotype in parietal cortex of an Indian bat, cynopterus sphinx.

    Science.gov (United States)

    Srivastava, U C; Pathak, S V

    2010-10-30

    To study interlaminar phenotypic variations in the pyramidal neurons of parietal isocortex in bat (Cynopterus sphinx), Golgi and Nissl methods have been employed. The parietal isocortex is relatively thin in the bat as compared to prototheria with layer III, V and VI accounting for more than two—thirds of total cortical thickness. Thick cell free layer I and thinnest accentuated layer II are quite in connotation with other chiropterids. Poor demarcation of layer III/IV in the present study is also in connotation with primitive eutherian mammal (i.e. prototherian) and other chiropterids. Most of the pyramidal cells in the different layers of the parietal isocortex are of typical type as seen in other eutherians but differ significantly in terms of soma shape and size, extent of dendritic arbor, diameter of dendrites and spine density. Percentage of pyramidal neurons, diameter of apical dendrite and spine density on apical dendrite appear to follow an increasing trend from primitive to advanced mammals; but extent of dendrites are probably governed by the specific life patterns of these mammals. It is thus concluded that 'typical' pyramidal neurons in parietal isocortex are similar in therians but different from those in prototherians. It is possible that these cells might have arisen among early eutherians after divergence from prototherian stock.

  7. Mirror neuron system: basic findings and clinical applications.

    Science.gov (United States)

    Iacoboni, Marco; Mazziotta, John C

    2007-09-01

    In primates, ventral premotor and rostral inferior parietal neurons fire during the execution of hand and mouth actions. Some cells (called mirror neurons) also fire when hand and mouth actions are just observed. Mirror neurons provide a simple neural mechanism for understanding the actions of others. In humans, posterior inferior frontal and rostral inferior parietal areas have mirror properties. These human areas are relevant to imitative learning and social behavior. Indeed, the socially isolating condition of autism is associated with a deficit in mirror neuron areas. Strategies inspired by mirror neuron research recently have been used in the treatment of autism and in motor rehabilitation after stroke.

  8. Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology.

    Science.gov (United States)

    Schultz, Wolfram

    2004-04-01

    Neurons in a small number of brain structures detect rewards and reward-predicting stimuli and are active during the expectation of predictable food and liquid rewards. These neurons code the reward information according to basic terms of various behavioural theories that seek to explain reward-directed learning, approach behaviour and decision-making. The involved brain structures include groups of dopamine neurons, the striatum including the nucleus accumbens, the orbitofrontal cortex and the amygdala. The reward information is fed to brain structures involved in decision-making and organisation of behaviour, such as the dorsolateral prefrontal cortex and possibly the parietal cortex. The neural coding of basic reward terms derived from formal theories puts the neurophysiological investigation of reward mechanisms on firm conceptual grounds and provides neural correlates for the function of rewards in learning, approach behaviour and decision-making.

  9. Untuned But Not Irrelevant: The Role of Untuned Neurons In Sensory Information Coding

    OpenAIRE

    Zylberberg, Joel

    2017-01-01

    In the sensory systems, most neurons' firing rates are tuned to at least one aspect of the stimulus. Other neurons are appear to be untuned, meaning that their firing rates do not depend on the stimulus. Previous work on information coding in neural populations has ignored untuned neurons, based on the tacit assumption that they are unimportant. Recent experimental work has questioned this assumption, showing that in some circumstances, neurons with no apparent stimulus tuning can contribute ...

  10. Auditory information coding by modeled cochlear nucleus neurons.

    Science.gov (United States)

    Wang, Huan; Isik, Michael; Borst, Alexander; Hemmert, Werner

    2011-06-01

    In this paper we use information theory to quantify the information in the output spike trains of modeled cochlear nucleus globular bushy cells (GBCs). GBCs are part of the sound localization pathway. They are known for their precise temporal processing, and they code amplitude modulations with high fidelity. Here we investigated the information transmission for a natural sound, a recorded vowel. We conclude that the maximum information transmission rate for a single neuron was close to 1,050 bits/s, which corresponds to a value of approximately 5.8 bits per spike. For quasi-periodic signals like voiced speech, the transmitted information saturated as word duration increased. In general, approximately 80% of the available information from the spike trains was transmitted within about 20 ms. Transmitted information for speech signals concentrated around formant frequency regions. The efficiency of neural coding was above 60% up to the highest temporal resolution we investigated (20 μs). The increase in transmitted information to that precision indicates that these neurons are able to code information with extremely high fidelity, which is required for sound localization. On the other hand, only 20% of the information was captured when the temporal resolution was reduced to 4 ms. As the temporal resolution of most speech recognition systems is limited to less than 10 ms, this massive information loss might be one of the reasons which are responsible for the lack of noise robustness of these systems.

  11. Code-specific learning rules improve action selection by populations of spiking neurons.

    Science.gov (United States)

    Friedrich, Johannes; Urbanczik, Robert; Senn, Walter

    2014-08-01

    Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We previously introduced reinforcement learning for population-based decision making by spiking neurons. Here we generalize population reinforcement learning to spike-based plasticity rules that take account of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary decision making to multi-valued decision making and continuous-valued action selection. We show that code-specific learning rules speed up learning both for the discrete classification and the continuous regression tasks. The suggested learning rules also speed up with increasing population size as opposed to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforcement learning. Exploration in the action space greatly increases the speed of learning as compared to exploration in the neuron or weight space.

  12. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.

    Science.gov (United States)

    Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H

    1989-01-01

    In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.

  13. Synchronous spikes are necessary but not sufficient for a synchrony code in populations of spiking neurons.

    Science.gov (United States)

    Grewe, Jan; Kruscha, Alexandra; Lindner, Benjamin; Benda, Jan

    2017-03-07

    Synchronous activity in populations of neurons potentially encodes special stimulus features. Selective readout of either synchronous or asynchronous activity allows formation of two streams of information processing. Theoretical work predicts that such a synchrony code is a fundamental feature of populations of spiking neurons if they operate in specific noise and stimulus regimes. Here we experimentally test the theoretical predictions by quantifying and comparing neuronal response properties in tuberous and ampullary electroreceptor afferents of the weakly electric fish Apteronotus leptorhynchus These related systems show similar levels of synchronous activity, but only in the more irregularly firing tuberous afferents a synchrony code is established, whereas in the more regularly firing ampullary afferents it is not. The mere existence of synchronous activity is thus not sufficient for a synchrony code. Single-cell features such as the irregularity of spiking and the frequency dependence of the neuron's transfer function determine whether synchronous spikes possess a distinct meaning for the encoding of time-dependent signals.

  14. Deciphering neuronal population codes for acute thermal pain

    Science.gov (United States)

    Chen, Zhe; Zhang, Qiaosheng; Phuong Sieu Tong, Ai; Manders, Toby R.; Wang, Jing

    2017-06-01

    Objective. Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. Approach. We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. Main results. The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the ‘neuronal threshold’ for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. Significance. Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.

  15. Stochastic Nonlinear Evolutional Model of the Large-Scaled Neuronal Population and Dynamic Neural Coding Subject to Stimulation

    International Nuclear Information System (INIS)

    Wang Rubin; Yu Wei

    2005-01-01

    In this paper, we investigate how the population of neuronal oscillators deals with information and the dynamic evolution of neural coding when the external stimulation acts on it. Numerically computing method is used to describe the evolution process of neural coding in three-dimensioned space. The numerical result proves that only the suitable stimulation can change the coupling structure and plasticity of neurons

  16. Development of parietal bone surrogates for parietal graft lift training

    Directory of Open Access Journals (Sweden)

    Hollensteiner Marianne

    2016-09-01

    Full Text Available Currently the surgical training of parietal bone graft techniques is performed on patients or specimens. Commercially available bone models do not deliver realistic haptic feedback. Thus customized parietal skull surrogates were developed for surgical training purposes. Two human parietal bones were used as reference. Based on the measurement of insertion forces of drilling, milling and saw procedures suitable material compositions for molding cortical and cancellous calvarial layers were found. Artificial skull caps were manufactured and tested. Additionally microtomograpy images of human and artificial parietal bones were performed to analyze outer table and diploe thicknesses. Significant differences between human and artificial skulls were not detected with the mechanical procedures tested. Highly significant differences were found for the diploe thickness values. In conclusion, an artificial bone has been created, mimicking the properties of human parietal bone thus being suitable for tabula externa graft lift training.

  17. Spatial summation in macaque parietal area 7a follows a winner-take-all rule

    NARCIS (Netherlands)

    Oleksiak, Anna; Klink, P. Christiaan; Postma, Albert; van der Ham, Ineke J.M.; Lankheet, Martin J.M.; van Wezel, Richard Jack Anton

    2011-01-01

    While neurons in posterior parietal cortex have been found to signal the presence of a salient stimulus among multiple items in a display, spatial summation within their receptive field in the absence of an attentional bias has never been investigated. This information, however, is indispensable

  18. Temporal order processing of syllables in the left parietal lobe.

    Science.gov (United States)

    Moser, Dana; Baker, Julie M; Sanchez, Carmen E; Rorden, Chris; Fridriksson, Julius

    2009-10-07

    Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere.

  19. Neural representations of social status hierarchy in human inferior parietal cortex.

    Science.gov (United States)

    Chiao, Joan Y; Harada, Tokiko; Oby, Emily R; Li, Zhang; Parrish, Todd; Bridge, Donna J

    2009-01-01

    Mental representations of social status hierarchy share properties with that of numbers. Previous neuroimaging studies have shown that the neural representation of numerical magnitude lies within a network of regions within inferior parietal cortex. However the neural basis of social status hierarchy remains unknown. Using fMRI, we studied subjects while they compared social status magnitude of people, objects and symbols, as well as numerical magnitude. Both social status and number comparisons recruited bilateral intraparietal sulci. We also observed a semantic distance effect whereby neural activity within bilateral intraparietal sulci increased for semantically close relative to far numerical and social status comparisons. These results demonstrate that social status and number comparisons recruit distinct and overlapping neuronal representations within human inferior parietal cortex.

  20. Coding of vocalizations by single neurons in ventrolateral prefrontal cortex.

    Science.gov (United States)

    Plakke, Bethany; Diltz, Mark D; Romanski, Lizabeth M

    2013-11-01

    Neuronal activity in single prefrontal neurons has been correlated with behavioral responses, rules, task variables and stimulus features. In the non-human primate, neurons recorded in ventrolateral prefrontal cortex (VLPFC) have been found to respond to species-specific vocalizations. Previous studies have found multisensory neurons which respond to simultaneously presented faces and vocalizations in this region. Behavioral data suggests that face and vocal information are inextricably linked in animals and humans and therefore may also be tightly linked in the coding of communication calls in prefrontal neurons. In this study we therefore examined the role of VLPFC in encoding vocalization call type information. Specifically, we examined previously recorded single unit responses from the VLPFC in awake, behaving rhesus macaques in response to 3 types of species-specific vocalizations made by 3 individual callers. Analysis of responses by vocalization call type and caller identity showed that ∼19% of cells had a main effect of call type with fewer cells encoding caller. Classification performance of VLPFC neurons was ∼42% averaged across the population. When assessed at discrete time bins, classification performance reached 70 percent for coos in the first 300 ms and remained above chance for the duration of the response period, though performance was lower for other call types. In light of the sub-optimal classification performance of the majority of VLPFC neurons when only vocal information is present, and the recent evidence that most VLPFC neurons are multisensory, the potential enhancement of classification with the addition of accompanying face information is discussed and additional studies recommended. Behavioral and neuronal evidence has shown a considerable benefit in recognition and memory performance when faces and voices are presented simultaneously. In the natural environment both facial and vocalization information is present simultaneously and

  1. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code

    Directory of Open Access Journals (Sweden)

    Susanne Kunkel

    2017-06-01

    Full Text Available NEST is a simulator for spiking neuronal networks that commits to a general purpose approach: It allows for high flexibility in the design of network models, and its applications range from small-scale simulations on laptops to brain-scale simulations on supercomputers. Hence, developers need to test their code for various use cases and ensure that changes to code do not impair scalability. However, running a full set of benchmarks on a supercomputer takes up precious compute-time resources and can entail long queuing times. Here, we present the NEST dry-run mode, which enables comprehensive dynamic code analysis without requiring access to high-performance computing facilities. A dry-run simulation is carried out by a single process, which performs all simulation steps except communication as if it was part of a parallel environment with many processes. We show that measurements of memory usage and runtime of neuronal network simulations closely match the corresponding dry-run data. Furthermore, we demonstrate the successful application of the dry-run mode in the areas of profiling and performance modeling.

  2. Generalized rate-code model for neuron ensembles with finite populations

    International Nuclear Information System (INIS)

    Hasegawa, Hideo

    2007-01-01

    We have proposed a generalized Langevin-type rate-code model subjected to multiplicative noise, in order to study stationary and dynamical properties of an ensemble containing a finite number N of neurons. Calculations using the Fokker-Planck equation have shown that, owing to the multiplicative noise, our rate model yields various kinds of stationary non-Gaussian distributions such as Γ, inverse-Gaussian-like, and log-normal-like distributions, which have been experimentally observed. The dynamical properties of the rate model have been studied with the use of the augmented moment method (AMM), which was previously proposed by the author from a macroscopic point of view for finite-unit stochastic systems. In the AMM, the original N-dimensional stochastic differential equations (DEs) are transformed into three-dimensional deterministic DEs for the means and fluctuations of local and global variables. The dynamical responses of the neuron ensemble to pulse and sinusoidal inputs calculated by the AMM are in good agreement with those obtained by direct simulation. The synchronization in the neuronal ensemble is discussed. The variabilities of the firing rate and of the interspike interval are shown to increase with increasing magnitude of multiplicative noise, which may be a conceivable origin of the observed large variability in cortical neurons

  3. Modeling the Development of Goal-Specificity in Mirror Neurons.

    Science.gov (United States)

    Thill, Serge; Svensson, Henrik; Ziemke, Tom

    2011-12-01

    Neurophysiological studies have shown that parietal mirror neurons encode not only actions but also the goal of these actions. Although some mirror neurons will fire whenever a certain action is perceived (goal-independently), most will only fire if the motion is perceived as part of an action with a specific goal. This result is important for the action-understanding hypothesis as it provides a potential neurological basis for such a cognitive ability. It is also relevant for the design of artificial cognitive systems, in particular robotic systems that rely on computational models of the mirror system in their interaction with other agents. Yet, to date, no computational model has explicitly addressed the mechanisms that give rise to both goal-specific and goal-independent parietal mirror neurons. In the present paper, we present a computational model based on a self-organizing map, which receives artificial inputs representing information about both the observed or executed actions and the context in which they were executed. We show that the map develops a biologically plausible organization in which goal-specific mirror neurons emerge. We further show that the fundamental cause for both the appearance and the number of goal-specific neurons can be found in geometric relationships between the different inputs to the map. The results are important to the action-understanding hypothesis as they provide a mechanism for the emergence of goal-specific parietal mirror neurons and lead to a number of predictions: (1) Learning of new goals may mostly reassign existing goal-specific neurons rather than recruit new ones; (2) input differences between executed and observed actions can explain observed corresponding differences in the number of goal-specific neurons; and (3) the percentage of goal-specific neurons may differ between motion primitives.

  4. Distribution and chemical coding of neurons in intramural ganglia of the porcine urinary bladder trigone.

    Directory of Open Access Journals (Sweden)

    Zenon Pidsudko

    2004-03-01

    Full Text Available This study presents the distribution and chemical coding of neurons in the porcine intramural ganglia of the urinary bladder trigone (IG-UBT demonstrated using combined retrograde tracing and double-labelling immunohistochemistry. Retrograde fluorescent tracer Fast Blue (FB was injected into the wall of both the left and right side of the bladder trigone during laparotomy performed under pentobarbital anaesthesia. Ten-microm-thick cryostat sections were processed for double-labelling immunofluorescence with antibodies against tyrosine hydroxylase (TH, dopamine beta-hydroxylase (DBH, neuropeptide Y (NPY, somatostatin (SOM, galanin (GAL, vasoactive intestinal polypeptide (VIP, nitric oxide synthase (NOS, calcitonin gene-related peptide (CGRP, substance P (SP, Leu5-enkephalin (LENK and choline acetyltransferase (ChAT. IG-UBT neurons formed characteristic clusters (from a few to tens neuronal cells found under visceral peritoneum or in the outer muscular layer. Immunohistochemistry revealed four main populations of IG-UBT neurons: SOM- (ca. 35%, SP- (ca. 32%, ChAT- and NPY- immunoreactive (-IR (ca. 23% as well as non-adrenergic non-cholinergic nerve cells (ca. 6%. This study has demonstrated a relatively large population of differently coded IG-UBT neurons, which constitute an important element of the complex neuro-endocrine system involved in the regulation of the porcine urogenital organ function.

  5. Autoradiographic assessment of [3H]proline uptake by neurons of epileptogenic mirror focus

    International Nuclear Information System (INIS)

    Khudoerkov, R.M.

    1985-01-01

    Epileptogenic mirror focus was produced in the left parietal area of the rat brain by cobalt implantation into the contralateral hemisphere. On the 14th day after cobalt implantation [ 3 H]proline was injected into both experimental and control rats (without cobalt). The incorporation of [ 3 H]proline in neurons of layers III and V of the parietal brain cortex and neurons of the nucleus lateralis thalami was investigated by the autoradiography technique. A statistically reliable increase in [ 3 H]proline uptake was observed in neurons of layer III (31%) and in neurons of layer V (41%) of the epileptogenic mirror focus. The other neuronal types revealed no reliable changes. The morphological and functional aspects of the altered protein metabolism during epileptogenesis are discussed. (author)

  6. Body-centred map in parietal eye fields - functional MRI study

    International Nuclear Information System (INIS)

    Brotchie, P.; Chen, D.Y.; Bradley, W.G.

    2002-01-01

    Full text: In order for us to interact with our environment we need to know where objects are around us, relative to our body. In monkeys, a body-centred map of visual space is known to exist within the parietal eye fields. This map is formed by the modulation of neuronal activity by eye and head position (Brotchie et al, Nature 1995; Synder et al, Nature 1998). In humans no map of body centred space has been demonstrated. By using functional MRI we have localised a region along the intraparietal sulcus which has properties similar to the parietal eye fields of monkeys (Brotchie et al, ISMRM, 2000). The aim of this study was to determine if activity in this region is modulated by head position, consistent with a body centered representation of visual space. Functional MRI was performed on 6 subjects performing simple visually guided saccades using a 1.5 Tesla GE Echospeed scanner. 10 scans were performed on the 6 subjects at left and right body orientations. Regions of interest were selected around the intraparietal sulcus proper (IPSP) of both hemispheres and voxels with BOLD signal which correlated with the paradigm (r>0.35) were selected for further analysis. Comparisons of percentage signal change were made between the left and right IPSP using Student t test. Of the 10 MRI examinations, 6 demonstrated statistically significant differences in the amount of signal change between left and right IPSP. In each of these 6 cases, the signal change was greater within the IPSP contralateral to the direction of head position relative to the body. This indicates a modulation of activity within the IPSP related to head position, most likely reflecting modulation of the underlying neuronal activity and suggests the existence of a body-centred encoding of space within the parietal eye fields of humans. Copyright (2002) Blackwell Science Pty Ltd

  7. Efficient olfactory coding in the pheromone receptor neuron of a moth.

    Directory of Open Access Journals (Sweden)

    Lubomir Kostal

    2008-04-01

    Full Text Available The concept of coding efficiency holds that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical characteristics of their natural stimulus. Encouraged by the successful invocation of this principle to predict how neurons encode natural auditory and visual stimuli, we attempted its application to olfactory neurons. The pheromone receptor neuron of the male moth Antheraea polyphemus, for which quantitative properties of both the natural stimulus and the reception processes are available, was selected. We predicted several characteristics that the pheromone plume should possess under the hypothesis that the receptors perform optimally, i.e., transfer as much information on the stimulus per unit time as possible. Our results demonstrate that the statistical characteristics of the predicted stimulus, e.g., the probability distribution function of the stimulus concentration, the spectral density function of the stimulation course, and the intermittency, are in good agreement with those measured experimentally in the field. These results should stimulate further quantitative studies on the evolutionary adaptation of olfactory nervous systems to odorant plumes and on the plume characteristics that are most informative for the 'sniffer'. Both aspects are relevant to the design of olfactory sensors for odour-tracking robots.

  8. The concreteness effect: evidence for dual coding and context availability.

    Science.gov (United States)

    Jessen, F; Heun, R; Erb, M; Granath, D O; Klose, U; Papassotiropoulos, A; Grodd, W

    2000-08-01

    The term concreteness effect refers to the observation that concrete nouns are processed faster and more accurately than abstract nouns in a variety of cognitive tasks. Two models have been proposed to explain the neuronal basis of the concreteness effect. The dual-coding theory attributes the advantage to the access of a right hemisphere image based system in addition to a verbal system by concrete words. The context availability theory argues that concrete words activate a broader contextual verbal support, which results in faster processing, but do not access a distinct image based system. We used event-related fMRI to detect the brain regions that subserve to the concreteness effect. We found greater activation in the lower right and left parietal lobes, in the left inferior frontal lobe and in the precuneus during encoding of concrete compared to abstract nouns. This makes a single exclusive theory unlikely and rather suggests a combination of both models. Superior encoding of concrete words in the present study may result from (1) greater verbal context resources reflected by the activation of left parietal and frontal associative areas, and (2) the additional activation of a non-verbal, perhaps spatial imagery-based system, in the right parietal lobe. Copyright 2000 Academic Press.

  9. The effect of correlated neuronal firing and neuronal heterogeneity on population coding accuracy in guinea pig inferior colliculus.

    Directory of Open Access Journals (Sweden)

    Oran Zohar

    Full Text Available It has been suggested that the considerable noise in single-cell responses to a stimulus can be overcome by pooling information from a large population. Theoretical studies indicated that correlations in trial-to-trial fluctuations in the responses of different neurons may limit the improvement due to pooling. Subsequent theoretical studies have suggested that inherent neuronal diversity, i.e., the heterogeneity of tuning curves and other response properties of neurons preferentially tuned to the same stimulus, can provide a means to overcome this limit. Here we study the effect of spike-count correlations and the inherent neuronal heterogeneity on the ability to extract information from large neural populations. We use electrophysiological data from the guinea pig Inferior-Colliculus to capture inherent neuronal heterogeneity and single cell statistics, and introduce response correlations artificially. To this end, we generate pseudo-population responses, based on single-cell recording of neurons responding to auditory stimuli with varying binaural correlations. Typically, when pseudo-populations are generated from single cell data, the responses within the population are statistically independent. As a result, the information content of the population will increase indefinitely with its size. In contrast, here we apply a simple algorithm that enables us to generate pseudo-population responses with variable spike-count correlations. This enables us to study the effect of neuronal correlations on the accuracy of conventional rate codes. We show that in a homogenous population, in the presence of even low-level correlations, information content is bounded. In contrast, utilizing a simple linear readout, that takes into account the natural heterogeneity, even of neurons preferentially tuned to the same stimulus, within the neural population, one can overcome the correlated noise and obtain a readout whose accuracy grows linearly with the size of

  10. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    Science.gov (United States)

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

    Science.gov (United States)

    Jordan, Jakob; Ippen, Tammo; Helias, Moritz; Kitayama, Itaru; Sato, Mitsuhisa; Igarashi, Jun; Diesmann, Markus; Kunkel, Susanne

    2018-01-01

    State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems. PMID:29503613

  12. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers.

    Science.gov (United States)

    Jordan, Jakob; Ippen, Tammo; Helias, Moritz; Kitayama, Itaru; Sato, Mitsuhisa; Igarashi, Jun; Diesmann, Markus; Kunkel, Susanne

    2018-01-01

    State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.

  13. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

    Directory of Open Access Journals (Sweden)

    Jakob Jordan

    2018-02-01

    Full Text Available State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.

  14. A Model of Self-Organizing Head-Centered Visual Responses in Primate Parietal Areas

    Science.gov (United States)

    Mender, Bedeho M. W.; Stringer, Simon M.

    2013-01-01

    We present a hypothesis for how head-centered visual representations in primate parietal areas could self-organize through visually-guided learning, and test this hypothesis using a neural network model. The model consists of a competitive output layer of neurons that receives afferent synaptic connections from a population of input neurons with eye position gain modulated retinal receptive fields. The synaptic connections in the model are trained with an associative trace learning rule which has the effect of encouraging output neurons to learn to respond to subsets of input patterns that tend to occur close together in time. This network architecture and synaptic learning rule is hypothesized to promote the development of head-centered output neurons during periods of time when the head remains fixed while the eyes move. This hypothesis is demonstrated to be feasible, and each of the core model components described is tested and found to be individually necessary for successful self-organization. PMID:24349064

  15. Sign language processing and the mirror neuron system.

    Science.gov (United States)

    Corina, David P; Knapp, Heather

    2006-05-01

    In this paper we review evidence for frontal and parietal lobe involvement in sign language comprehension and production, and evaluate the extent to which these data can be interpreted within the context of a mirror neuron system for human action observation and execution. We present data from three literatures--aphasia, cortical stimulation, and functional neuroimaging. Generally, we find support for the idea that sign language comprehension and production can be viewed in the context of a broadly-construed frontal-parietal human action observation/execution system. However, sign language data cannot be fully accounted for under a strict interpretation of the mirror neuron system. Additionally, we raise a number of issues concerning the lack of specificity in current accounts of the human action observation/execution system.

  16. The utility of cerebral blood flow imaging in patients with the unique syndrome of progressive dementia with motor neuron disease

    International Nuclear Information System (INIS)

    Ohnishi, T.; Hoshi, H.; Jinnouchi, S.; Nagamachi, S.; Watanabe, K.; Mituyama, Y.

    1990-01-01

    Two patients presenting with progressive dementia coupled with motor neuron disease underwent brain SPECT using N-isopropyl-p iodine-123-iodoamphetamine [( 123 I]IMP). The characteristic clinical features of progressive dementia and motor neuron disease were noted. IMP SPECT also revealed reduced uptake in the bilateral frontal and temporal regions, with no reduction of uptake in the parietal, parietal-occipital regions. We conclude that IMP SPECT has potential for the evaluation of progressive dementia with motor neuron disease

  17. Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.

    Science.gov (United States)

    Louie, Kenway; LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W

    2014-11-26

    Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. Copyright © 2014 the authors 0270-6474/14/3416046-12$15.00/0.

  18. [Neuroanatomy of the Parietal Association Areas].

    Science.gov (United States)

    Kobayashi, Yasushi

    2016-11-01

    The parietal association cortex comprises the superior and inferior parietal lobules, the precuneus and the cortices in the intraparietal, parietooccipital and lunate sulci. By processing somatic, visual, acoustic and vestibular sensory information, the parietal association cortex plays a pivotal role in spatial cognition and motor control of the eyes and the extremities. Sensory information from the primary and secondary somatosensory areas enters the superior parietal lobule and is transferred to the inferior parietal lobule. Visual information is processed through the dorsal visual pathway and it reaches the inferior parietal lobule, the intraparietal sulcus and the precuneus. Acoustic information is transferred posteriorly from the primary acoustic area, and it reaches the posterior region of the inferior parietal lobule. The areas in the intraparietal sulcus project to the premotor area, the frontal eye fields, and the prefrontal area. These areas are involved in the control of ocular movements, reaching and grasping of the upper extremities, and spatial working memory. The posterior region of the inferior parietal lobule and the precuneus both project either directly, or indirectly via the posterior cingulate gyrus, to the parahippocampal and entorhinal cortices. Both these areas are strongly associated with hippocampal functions for long-term memory formation.

  19. Navigating actions through the rodent parietal cortex

    Directory of Open Access Journals (Sweden)

    Jonathan R. Whitlock

    2014-05-01

    Full Text Available The posterior parietal cortex (PPC participates in a manifold of cognitive functions, including visual attention, working memory, spatial processing and movement planning. Given the vast interconnectivity of PPC with sensory and motor areas, it is not surprising that neuronal recordings show that PPC often encodes mixtures of spatial information as well as the movements required to reach a goal. Recent work sought to discern the relative strength of spatial versus motor signaling in PPC by recording single unit activity in PPC of freely behaving rats during selective changes in either the spatial layout of the local environment or in the pattern of locomotor behaviors executed during navigational tasks. The results revealed unequivocally a predominant sensitivity of PPC neurons to locomotor action structure, with subsets of cells even encoding upcoming movements more than 1 second in advance. In light of these and other recent findings in the field, I propose that one of the key contributions of PPC to navigation is the synthesis of goal-directed behavioral sequences, and that the rodent PPC may serve as an apt system to investigate cellular mechanisms for spatial motor planning as traditionally studied in humans and monkeys.

  20. Reduced brain N-acetyl-aspartate in frontal lobes suggests neuronal loss in patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Giroud, M; Walker, P; Bernard, D; Lemesle, M; Martin, D; Baudouin, N; Brunotte, F; Dumas, R

    1996-06-01

    We performed proton magnetic resonance spectroscopy (1H-MRS) in three patients with amyotrophic lateral sclerosis (ALS) to evaluate the distribution and extent of cortical neuronal damage as demonstrated by decreased N-acetyl-aspartate (NAA) levels. We examined primary motor (precentral gyrus) and parietal neocortical (superior parietal gyrus) regions. ALS was defined with lower and upper motor neuron signs. Compared with matched healthy controls, ALS patients had a significant decrease in NAA levels in the primary motor cortex (p upper motor neuron signs present in the ALS, come from a neuronal loss within the primary motor cortex and may explain the frontal syndrome associated with ALS. Second clinical applications of 1H-MRS could include identification of extent of upper motor neuron involvement, aiding diagnosis of syndromes presenting with an ALS-like syndrome.

  1. Phasic and tonic neuron ensemble codes for stimulus-environment conjunctions in the lateral entorhinal cortex.

    Science.gov (United States)

    Pilkiw, Maryna; Insel, Nathan; Cui, Younghua; Finney, Caitlin; Morrissey, Mark D; Takehara-Nishiuchi, Kaori

    2017-07-06

    The lateral entorhinal cortex (LEC) is thought to bind sensory events with the environment where they took place. To compare the relative influence of transient events and temporally stable environmental stimuli on the firing of LEC cells, we recorded neuron spiking patterns in the region during blocks of a trace eyeblink conditioning paradigm performed in two environments and with different conditioning stimuli. Firing rates of some neurons were phasically selective for conditioned stimuli in a way that depended on which room the rat was in; nearly all neurons were tonically selective for environments in a way that depended on which stimuli had been presented in those environments. As rats moved from one environment to another, tonic neuron ensemble activity exhibited prospective information about the conditioned stimulus associated with the environment. Thus, the LEC formed phasic and tonic codes for event-environment associations, thereby accurately differentiating multiple experiences with overlapping features.

  2. Parietal podocytes in normal human glomeruli.

    Science.gov (United States)

    Bariety, Jean; Mandet, Chantal; Hill, Gary S; Bruneval, Patrick

    2006-10-01

    Although parietal podocytes along the Bowman's capsule have been described by electron microscopy in the normal human kidney, their molecular composition remains unknown. Ten human normal kidneys that were removed for cancer were assessed for the presence and the extent of parietal podocytes along the Bowman's capsule. The expression of podocyte-specific proteins (podocalyxin, glomerular epithelial protein-1, podocin, nephrin, synaptopodin, and alpha-actinin-4), podocyte synthesized proteins (vascular endothelial growth factor and novH), transcription factors (WT1 and PAX2), cyclin-dependent kinase inhibitor p57, and intermediate filaments (cytokeratins and vimentin) was tested. In addition, six normal fetal kidneys were studied to track the ontogeny of parietal podocytes. The podocyte protein labeling detected parietal podocytes in all of the kidneys, was found in 76.6% on average of Bowman's capsule sections, and was prominent at the vascular pole. WT1 and p57 were expressed in some parietal cells, whereas PAX2 was present in all or most of them, so some parietal cells coexpressed WT1 and PAX2. Furthermore, parietal podocytes coexpressed WT1 and podocyte proteins. Cytokeratin-positive cells covered a variable part of the capsule and did not express podocyte proteins. Tuft-capsular podocyte bridges were present in 15.5 +/- 3.7% of the glomerular sections. Parietal podocytes often covered the juxtaglomerular arterioles and were present within the extraglomerular mesangium. Parietal podocytes were present in fetal kidneys. Parietal podocytes that express the same epitopes as visceral podocytes do exist along Bowman's capsule in the normal adult kidney. They are a constitutive cell type of the Bowman's capsule. Therefore, their role in physiology and pathology should be investigated.

  3. Coding of information about tactile stimuli by neurones of the cuneate nucleus.

    Science.gov (United States)

    Douglas, P R; Ferrington, D G; Rowe, M

    1978-12-01

    1. The responses of cuneate neurones to controlled tactile stimulation of the foot pads were examined in unanaesthetized, decerebrate cats. The neurones were divided into three functional classes; one sensitive to steady tactile stimuli, and two dynamically sensitive classes which could be readily differentiated by their responsiveness to cutaneous vibration. Each class appeared to receive an exclusive input from only one of the three known groups of tactile receptors associated with the foot pads, namely the Pacinian corpuscles, the Merkel endings and the intradermal, encapsulated endings known as Krause or Meissner corpuscles. 2. Cuneate neurones responsive to steady indentation of the skin displayed approximately linear or sigmoidal stimulus-response relations over indentation ranges up to approximately 1.5--2 mm. Response variability at a fixed stimulus intensity was relatively low and showed little systematic change over the full range of the stimulus-response curves. 3. One class of dynamically sensitive cuneate neurones responded to cutaneous vibration over a range of approximately 5-80 Hz with maximal responsiveness around 30 Hz. The other class, the Pacinian neurones, responded over a range of approximately 80- greater than 600 Hz with maximal responsiveness at 200-400 Hz. The thresholds and combined band width of vibratory sensitivity of these populations were comparable with known subjective thresholds and range of cutaneous vibratory sensibility. 4. Responses of cuneate neurones were phase-locked to the vibratory stimulus suggesting that information about vibration frequency could be coded by the patterns of impulse activity. Quantitative measures indicated that maximal phase-locking occurred in responses to vibration frequencies of 10-50 Hz with a progressive decline at higher frequencies. Above 400 Hz, impulse activity occurred almost randomly throughout the vibratory stimulus cycle and therefore carried little further signal of vibratory frequency

  4. Visual Categorization and the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Jamie K Fitzgerald

    2012-05-01

    Full Text Available The primate brain is adept at rapidly grouping items and events into functional classes, or categories, in order to recognize the significance of stimuli and guide behavior. Higher cognitive functions have traditionally been considered the domain of frontal areas. However, increasing evidence suggests that parietal cortex is also involved in categorical and associative processes. Previous work showed that the parietal cortex is highly involved in spatial processing, attention and saccadic eye movement planning, and more recent studies have found decision-making signals in LIP. We recently found that a subdivision of parietal cortex, the lateral intraparietal area (LIP, reflects learned categories for multiple types of visual stimuli. Additionally, a comparison of categorization signals in parietal and frontal areas found stronger and earlier categorization signals in parietal cortex, arguing that parietal abstract association or category signals are unlikely to arise via feedback from prefrontal cortex (PFC.

  5. Characterization of neuronal damage by iomazenil binding and cerebral blood flow in an ischemic rat model

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Takeuchi, Akira; Koga, Sukehiko; Matsumura, Kaname; Nakashima, Hiromichi; Takeda, Kan; Yoshida, Toshimichi; Ichise, Masanori

    1998-01-01

    I-123-iomazenil is a SPECT probe for central benzodiazepine receptors (BZR) which may reflect intact cortical neuron density after ischemic insults. We evaluated whether neuronal damage in rats could be characterized by iomazenil as compared with cerebral blood flow (CBF). Serial changes in I-125-iomazenil for BZR and I-123-IMP for CBF were analyzed after the unilateral middle cerebral artery occlusion in rats by using an in vivo dualtracer technique. Uptake ratios of affected to contralateral regions were calculated. The iomazenil as well as IMP were decreased in all regions except for the cerebellum (remote area). Both iomazenil and IMP increased over time except in the temporal region (ischemic core). The iomazenil uptake was higher than IMP except in the ischemic core between 1 and 3-4 wk when iomazenil was lower than IMP. Iomazenil showed a moderate decrease in the proximal and middle parietal regions (peri-infarct areas) at 3-4 wk. The triphenyl-tetrazolium-chloride (TTC) stain at 1 wk demonstrated unstained tissue in the temporal region indicating tissue necrosis. With hematoxylin-eosin (HE) stain at 1 wk, widespread neuronal necrosis with occasional intact neurons were found in the proximal parietal region, and isolated necrotic neurons were represented in the distal parietal region. Iomazenil correlated well with the neuron distribution and the finding of a discrepancy between iomazenil and IMP might be useful in evaluating the neuronal damage. (author)

  6. A regulatory code for neuron-specific odor receptor expression.

    Directory of Open Access Journals (Sweden)

    Anandasankar Ray

    2008-05-01

    Full Text Available Olfactory receptor neurons (ORNs must select-from a large repertoire-which odor receptors to express. In Drosophila, most ORNs express one of 60 Or genes, and most Or genes are expressed in a single ORN class in a process that produces a stereotyped receptor-to-neuron map. The construction of this map poses a problem of receptor gene regulation that is remarkable in its dimension and about which little is known. By using a phylogenetic approach and the genome sequences of 12 Drosophila species, we systematically identified regulatory elements that are evolutionarily conserved and specific for individual Or genes of the maxillary palp. Genetic analysis of these elements supports a model in which each receptor gene contains a zip code, consisting of elements that act positively to promote expression in a subset of ORN classes, and elements that restrict expression to a single ORN class. We identified a transcription factor, Scalloped, that mediates repression. Some elements are used in other chemosensory organs, and some are conserved upstream of axon-guidance genes. Surprisingly, the odor response spectra and organization of maxillary palp ORNs have been extremely well-conserved for tens of millions of years, even though the amino acid sequences of the receptors are not highly conserved. These results, taken together, define the logic by which individual ORNs in the maxillary palp select which odor receptors to express.

  7. The mirror neuron system and the consequences of its dysfunction.

    Science.gov (United States)

    Iacoboni, Marco; Dapretto, Mirella

    2006-12-01

    The discovery of premotor and parietal cells known as mirror neurons in the macaque brain that fire not only when the animal is in action, but also when it observes others carrying out the same actions provides a plausible neurophysiological mechanism for a variety of important social behaviours, from imitation to empathy. Recent data also show that dysfunction of the mirror neuron system in humans might be a core deficit in autism, a socially isolating condition. Here, we review the neurophysiology of the mirror neuron system and its role in social cognition and discuss the clinical implications of mirror neuron dysfunction.

  8. Interactive Exploration for Continuously Expanding Neuron Databases.

    Science.gov (United States)

    Li, Zhongyu; Metaxas, Dimitris N; Lu, Aidong; Zhang, Shaoting

    2017-02-15

    This paper proposes a novel framework to help biologists explore and analyze neurons based on retrieval of data from neuron morphological databases. In recent years, the continuously expanding neuron databases provide a rich source of information to associate neuronal morphologies with their functional properties. We design a coarse-to-fine framework for efficient and effective data retrieval from large-scale neuron databases. In the coarse-level, for efficiency in large-scale, we employ a binary coding method to compress morphological features into binary codes of tens of bits. Short binary codes allow for real-time similarity searching in Hamming space. Because the neuron databases are continuously expanding, it is inefficient to re-train the binary coding model from scratch when adding new neurons. To solve this problem, we extend binary coding with online updating schemes, which only considers the newly added neurons and update the model on-the-fly, without accessing the whole neuron databases. In the fine-grained level, we introduce domain experts/users in the framework, which can give relevance feedback for the binary coding based retrieval results. This interactive strategy can improve the retrieval performance through re-ranking the above coarse results, where we design a new similarity measure and take the feedback into account. Our framework is validated on more than 17,000 neuron cells, showing promising retrieval accuracy and efficiency. Moreover, we demonstrate its use case in assisting biologists to identify and explore unknown neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Energy-efficient neural information processing in individual neurons and neuronal networks.

    Science.gov (United States)

    Yu, Lianchun; Yu, Yuguo

    2017-11-01

    Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low-probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram.

    Science.gov (United States)

    Naud, Richard; Gerstner, Wulfram

    2012-01-01

    The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a 'quasi-renewal equation' which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction.

  11. [Dynamics of the dominance of identified cardioregulatory neurons in the snail Achatina fulica] .

    Science.gov (United States)

    Zhuravlev, V L; Bugaĭ, V V; Safronova, T A

    2000-08-01

    9 cardioregulating neurones belonging to 5 different functional groups were studied in visceral and right parietal ganglia of the Giant African snail Achatina fulica. The neuronal network included multimodal and multifunctional cells exerting short- or long-lasting chronoionotropic effects on the cardiac electro- and mechanograms. Mechanisms of the differences in the cardioregulating effectiveness of these groups were discussed.

  12. Encefalomenigocele atrésico parietal Parietal atresic encephalomeningocele

    Directory of Open Access Journals (Sweden)

    Liliana Rivera Oliva

    2011-09-01

    Full Text Available El encefalocele es una anomalía congénita rara, en la que una porción del encéfalo protruye a través de un orificio craneal (evaginación, generalmente situado en la línea media. Clínicamente se caracteriza por una masa epicraneal, de consistencia blanda, muchas veces acompañada de trastornos psicomotores, convulsiones y trastornos de la visión. Se presenta el caso de un recién nacido con diagnóstico de encefalomeningocele atrésico parietal, intervenido quirúrgicamente y con evolución satisfactoria.The encephalocele is a uncommon congenital anomaly where a portion of encephalon protrudes through a cranial orifice (evagination, generally located in the middle line. Clinically, it is characterized by a soft epicranial mass often accompanied or psychomotor disorders, convulsions and vision disorders. This is the case of a newborn diagnosed with parietal atresic encephalomeningocele operated on with a satisfactory evolution.

  13. Mirror neurons: functions, mechanisms and models.

    Science.gov (United States)

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A

    2013-04-12

    Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Mingyan Lin

    Full Text Available Genome-wide expression analysis using next generation sequencing (RNA-Seq provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormalities in transcription factors, DNA methylation, and chromatin modifiers lie at the heart of some neuropsychiatric disorders. As a preliminary step towards applying next generation sequencing using neurons derived from patient-specific iPSCs, we have carried out an RNA-Seq analysis on control human neurons. Dramatic changes in the expression of coding genes, long non-coding RNAs (lncRNAs, pseudogenes, and splice isoforms were seen during the transition from pluripotent stem cells to early differentiating neurons. A number of genes that undergo radical changes in expression during this transition include candidates for schizophrenia (SZ, bipolar disorder (BD and autism spectrum disorders (ASD that function as transcription factors and chromatin modifiers, such as POU3F2 and ZNF804A, and genes coding for cell adhesion proteins implicated in these conditions including NRXN1 and NLGN1. In addition, a number of novel lncRNAs were found to undergo dramatic changes in expression, one of which is HOTAIRM1, a regulator of several HOXA genes during myelopoiesis. The increase we observed in differentiating neurons suggests a role in neurogenesis as well. Finally, several lncRNAs that map near SNPs associated with SZ in genome wide association studies also increase during neuronal differentiation, suggesting that these novel transcripts may be abnormally regulated in a subgroup of patients.

  15. Effects of Preweaning Polysensorial Enrichment upon Development of the Parietal Cortical Plate of Undernourished Rats: A Stereological Study

    OpenAIRE

    González, Héctor; Adaro, Luis; Hernández, Alejandro; Fernández, Víctor

    2014-01-01

    This investigation was undertaken in order to quantify the effects of early polysensorial enrichment on the development of cortical pyramids, located in the parietal cortex of rats simultaneously submitted to protein-energy undernutrition. A short period of stimulation during suckling significantly decreases the cellular density in the cortical plate (phylogenetic-ontogenetic evolutionary index). Results suggest that the cerebral cortex develops according to a sophisticated neuronal network, ...

  16. Decoupled choice-driven and stimulus-related activity in parietal neurons may be misrepresented by choice probabilities.

    Science.gov (United States)

    Zaidel, Adam; DeAngelis, Gregory C; Angelaki, Dora E

    2017-09-28

    Trial-by-trial correlations between neural responses and choices (choice probabilities) are often interpreted to reflect a causal contribution of neurons to task performance. However, choice probabilities may arise from top-down, rather than bottom-up, signals. We isolated distinct sensory and decision contributions to single-unit activity recorded from the dorsal medial superior temporal (MSTd) and ventral intraparietal (VIP) areas of monkeys during perception of self-motion. Superficially, neurons in both areas show similar tuning curves during task performance. However, tuning in MSTd neurons primarily reflects sensory inputs, whereas choice-related signals dominate tuning in VIP neurons. Importantly, the choice-related activity of VIP neurons is not predictable from their stimulus tuning, and these factors are often confounded in choice probability measurements. This finding was confirmed in a subset of neurons for which stimulus tuning was measured during passive fixation. Our findings reveal decoupled stimulus and choice signals in the VIP area, and challenge our understanding of choice signals in the brain.Choice-related signals in neuronal activity may reflect bottom-up sensory processes, top-down decision-related influences, or a combination of the two. Here the authors report that choice-related activity in VIP neurons is not predictable from their stimulus tuning, and that dominant choice signals can bias the standard metric of choice preference (choice probability).

  17. Bilateral front-parietal polymicrogyria accompanied by cobblestone lissencephaly: 3T MR imaging findings of a case

    International Nuclear Information System (INIS)

    Bozkurt, Y.; Battal, B.; Ozcan, E.; Kocaoglu, M.

    2012-01-01

    Full text: Background: The cerebral cortex develops in three overlapping stages: cell proliferation, neuronal migration, and cortical organization. Lissencephaly (smooth brain) is a severe malformation of the cerebral cortex that results from impaired neuronal migration. Polymicrogyria is a disorder of late migration or cortical organization, and supposed to reflect a disruption of normal neuronal migration with subsequent disordered cortical organization. A combination of cobblestone lissencephaly and polymicrogyria is very rare in the same patient's brain. Objective: To present clinical and 3T magnetic resonance (MR) imaging findings of a 17-year-old male with bilateral fronto-parietal polimicrogyria accompanied by cobblestone lissencaphaly. Materials and methods: A 17-year-old male who had seizures and involuntary muscular spasm from birth, was referred to our Hospital. The patient was evaluated by a complete history, physical examination, a laboratory work-up, and cranial MR examination for evaluate the central nervous system. Results: A sharp wave paroxysm in the left temporal area was observed in the electroencephalogram (EEG). The neurological examination of our patient was normal. A slight increase have seen in the aspartate aminotransferase (SGOT) levels. The other biochemical tests were found to be normal. Cranial MR imaging showed an irregular nodular cortex with hypomyelination of the white matter at the lateral and posterior part of the right occipital lobe. We also observed the changes compatible with polymicrogyria in a large area of the medial parts of the bilateral temporal and parietal lobes. Conclusion: The role of radiological modalities for diagnosis of cortical formation disorders are very important. MR imaging are fairly useful for evaluation of these anomalies

  18. Maturation profile of inferior olivary neurons expressing ionotropic glutamate receptors in rats: role in coding linear accelerations.

    Science.gov (United States)

    Li, Chuan; Han, Lei; Ma, Chun-Wai; Lai, Suk-King; Lai, Chun-Hong; Shum, Daisy Kwok Yan; Chan, Ying-Shing

    2013-07-01

    Using sinusoidal oscillations of linear acceleration along both the horizontal and vertical planes to stimulate otolith organs in the inner ear, we charted the postnatal time at which responsive neurons in the rat inferior olive (IO) first showed Fos expression, an indicator of neuronal recruitment into the otolith circuit. Neurons in subnucleus dorsomedial cell column (DMCC) were activated by vertical stimulation as early as P9 and by horizontal (interaural) stimulation as early as P11. By P13, neurons in the β subnucleus of IO (IOβ) became responsive to horizontal stimulation along the interaural and antero-posterior directions. By P21, neurons in the rostral IOβ became also responsive to vertical stimulation, but those in the caudal IOβ remained responsive only to horizontal stimulation. Nearly all functionally activated neurons in DMCC and IOβ were immunopositive for the NR1 subunit of the NMDA receptor and the GluR2/3 subunit of the AMPA receptor. In situ hybridization studies further indicated abundant mRNA signals of the glutamate receptor subunits by the end of the second postnatal week. This is reinforced by whole-cell patch-clamp data in which glutamate receptor-mediated miniature excitatory postsynaptic currents of rostral IOβ neurons showed postnatal increase in amplitude, reaching the adult level by P14. Further, these neurons exhibited subthreshold oscillations in membrane potential as from P14. Taken together, our results support that ionotropic glutamate receptors in the IO enable postnatal coding of gravity-related information and that the rostral IOβ is the only IO subnucleus that encodes spatial orientations in 3-D.

  19. Neural sources of visual working memory maintenance in human parietal and ventral extrastriate visual cortex.

    Science.gov (United States)

    Becke, Andreas; Müller, Notger; Vellage, Anne; Schoenfeld, Mircea Ariel; Hopf, Jens-Max

    2015-04-15

    Maintaining information in visual working memory is reliably indexed by the contralateral delay activity (CDA) - a sustained modulation of the event-related potential (ERP) with a topographical maximum over posterior scalp regions contralateral to the memorized input. Based on scalp topography, it is hypothesized that the CDA reflects neural activity in the parietal cortex, but the precise cortical origin of underlying electric activity was never determined. Here we combine ERP recordings with magnetoencephalography based source localization to characterize the cortical current sources generating the CDA. Observers performed a cued delayed match to sample task where either the color or the relative position of colored dots had to be maintained in memory. A detailed source-localization analysis of the magnetic activity in the retention interval revealed that the magnetic analog of the CDA (mCDA) is generated by current sources in the parietal cortex. Importantly, we find that the mCDA also receives contribution from current sources in the ventral extrastriate cortex that display a time-course similar to the parietal sources. On the basis of the magnetic responses, forward modeling of ERP data reveals that the ventral sources have non-optimal projections and that these sources are therefore concealed in the ERP by overlapping fields with parietal projections. The present observations indicate that visual working memory maintenance, as indexed by the CDA, involves the parietal cortical regions as well as the ventral extrastriate regions, which code the sensory representation of the memorized content. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mirror Neurons in Humans: Consisting or Confounding Evidence?

    Science.gov (United States)

    Turella, Luca; Pierno, Andrea C.; Tubaldi, Federico; Castiello, Umberto

    2009-01-01

    The widely known discovery of mirror neurons in macaques shows that premotor and parietal cortical areas are not only involved in executing one's own movement, but are also active when observing the action of others. The goal of this essay is to critically evaluate the substance of functional magnetic resonance imaging (fMRI) and positron emission…

  1. [Neuroeffector connections of multimodal neurons in the African snail (Achatina fulica)].

    Science.gov (United States)

    Bugaĭ, V V; Zhuravlev, V L; Safonova, T A

    2004-02-01

    Using a new method of animal preparation, the efferent connections of giant paired neurons on the dorsal surface of visceral and right parietal ganglia of snail, Achatina fulica, were examined. It was found that spikes in giant neurons d-VLN and d-RPLN evoke postjunctional potentials in different points of the snail body and viscerae (in the heart, in pericardium, in lung cavity and kidney walls, in mantle and body wall muscles, in tentacle retractors and in cephalic artery). The preliminary analysis of synaptic latency and facilitation suggests a direct connections between giant neurons and investigated efferents.

  2. Excitatory Neuronal Hubs Configure Multisensory Integration of Slow Waves in Association Cortex

    Directory of Open Access Journals (Sweden)

    Satoshi Kuroki

    2018-03-01

    Full Text Available Summary: Multisensory integration (MSI is a fundamental emergent property of the mammalian brain. During MSI, perceptual information encoded in patterned activity is processed in multimodal association cortex. The systems-level neuronal dynamics that coordinate MSI, however, are unknown. Here, we demonstrate intrinsic hub-like network activity in the association cortex that regulates MSI. We engineered calcium reporter mouse lines based on the fluorescence resonance energy transfer sensor yellow cameleon (YC2.60 expressed in excitatory or inhibitory neurons. In medial and parietal association cortex, we observed spontaneous slow waves that self-organized into hubs defined by long-range excitatory and local inhibitory circuits. Unlike directional source/sink-like flows in sensory areas, medial/parietal excitatory and inhibitory hubs had net-zero balanced inputs. Remarkably, multisensory stimulation triggered rapid phase-locking mainly of excitatory hub activity persisting for seconds after the stimulus offset. Therefore, association cortex tends to form balanced excitatory networks that configure slow-wave phase-locking for MSI. Video Abstract: : Kuroki et al. performed cell-type-specific, wide-field FRET-based calcium imaging to visualize cortical network activity induced by multisensory inputs. They observed phase-locking of cortical slow waves in excitatory neuronal hubs in association cortical areas that may underlie multisensory integration. Keywords: wide-field calcium imaging, multisensory integration, cortical slow waves, association cortex, phase locking, fluorescence resonance energy transfer, spontaneous activity, excitatory neuron, inhibitory neuron, mouse

  3. Facial expressions : What the mirror neuron system can and cannot tell us

    NARCIS (Netherlands)

    van der Gaag, Christiaan; Minderaa, Ruud B.; Keysers, Christian

    2007-01-01

    Facial expressions contain both motor and emotional components. The inferior frontal gyrus (IFG) and posterior parietal cortex have been considered to compose a mirror neuron system (MNS) for the motor components of facial expressions, while the amygdala and insula may represent an "additional" MNS

  4. Development of rostral inferior parietal lobule area functional connectivity from late childhood to early adulthood.

    Science.gov (United States)

    Wang, Mengxing; Zhang, Jilei; Dong, Guangheng; Zhang, Hui; Lu, Haifeng; Du, Xiaoxia

    2017-06-01

    Although the mirror neuron system (MNS) has been extensively studied in monkeys and adult humans, very little is known about its development. Previous studies suggest that the MNS is present by infancy and that the brain and MNS-related cognitive abilities (such as language, empathy, and imitation learning) continue to develop after childhood. In humans, the PFt area of the inferior parietal lobule (IPL) seems to particularly correlate with the functional properties of the PF area in primates, which contains mirror neurons. However, little is known about the functional connectivity (FC) of the PFt area with other brain areas and whether these networks change over time. Here, we investigated the FC development of the PFt area-based network in 59 healthy subjects aged 7-26 years at resting-state to study brain development from late childhood through adolescence to early adulthood. The bilateral PFt showed similar core FC networks, which included the frontal lobe, the cingulate gyri, the insula, the somatosensory cortex, the precuneus, the superior and inferior parietal lobules, the temporal lobe, and the cerebellum posterior lobes. Furthermore, the FC between the left PFt and the left IPL exhibited a significantly positive correlation with age, and the FC between the left PFt and the right postcentral gyrus exhibited a significantly negative correlation with age. In addition, the FC between the right PFt and the right putamen exhibited a significantly negative correlation with age. Our findings suggest that the PFt area-based network develops and is reorganized with age. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  5. Haptically guided grasping. FMRI shows right-hemisphere parietal stimulus encoding, and bilateral dorso-ventral parietal gradients of object- and action-related processing during grasp execution

    Directory of Open Access Journals (Sweden)

    Mattia eMarangon

    2016-01-01

    Full Text Available The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks. None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.

  6. Sylvian Fissure and Parietal Anatomy in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Tracey A. Knaus

    2012-01-01

    Full Text Available Autism spectrum disorder (ASD is characterized by deficits in social functioning and language and communication, with restricted interests or stereotyped behaviors. Anatomical differences have been found in the parietal cortex in children with ASD, but parietal subregions and associations between Sylvian fissure (SF and parietal anatomy have not been explored. In this study, SF length and anterior and posterior parietal volumes were measured on MRI in 30 right-handed boys with ASD and 30 right-handed typically developing boys (7–14 years, matched on age and non-verbal IQ. There was leftward SF and anterior parietal asymmetry, and rightward posterior parietal asymmetry, across groups. There were associations between SF and parietal asymmetries, with slight group differences. Typical SF asymmetry was associated with typical anterior and posterior parietal asymmetry, in both groups. In the atypical SF asymmetry group, controls had atypical parietal asymmetry, whereas in ASD there were more equal numbers of individuals with typical as atypical anterior parietal asymmetry. We did not find significant anatomical-behavioral associations. Our findings of more individuals in the ASD group having a dissociation between cortical asymmetries warrants further investigation of these subgroups and emphasizes the importance of investigating anatomical relationships in addition to group differences in individual regions.

  7. Use of explicit memory cues following parietal lobe lesions.

    Science.gov (United States)

    Dobbins, Ian G; Jaeger, Antonio; Studer, Bettina; Simons, Jon S

    2012-11-01

    The putative role of the lateral parietal lobe in episodic memory has recently become a topic of considerable debate, owing primarily to its consistent activation for studied materials during functional magnetic resonance imaging studies of recognition. Here we examined the performance of patients with parietal lobe lesions using an explicit memory cueing task in which probabilistic cues ("Likely Old" or "Likely New"; 75% validity) preceded the majority of verbal recognition memory probes. Without cues, patients and control participants did not differ in accuracy. However, group differences emerged during the "Likely New" cue condition with controls responding more accurately than parietal patients when these cues were valid (preceding new materials) and trending towards less accuracy when these cues were invalid (preceding old materials). Both effects suggest insufficient integration of external cues into memory judgments on the part of the parietal patients whose cued performance largely resembled performance in the complete absence of cues. Comparison of the parietal patients to a patient group with frontal lobe lesions suggested the pattern was specific to parietal and adjacent area lesions. Overall, the data indicate that parietal lobe patients fail to appropriately incorporate external cues of novelty into recognition attributions. This finding supports a role for the lateral parietal lobe in the adaptive biasing of memory judgments through the integration of external cues and internal memory evidence. We outline the importance of such adaptive biasing through consideration of basic signal detection predictions regarding maximum possible accuracy with and without informative environmental cues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system.

    Science.gov (United States)

    Oh, Hyuk; Gentili, Rodolphe J; Reggia, James A; Contreras-Vidal, José L

    2011-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator's frontal mirror neuron system can be trained to provide the motor plans for the imitated actions.

  9. Parietal cortex and representation of the mental Self

    DEFF Research Database (Denmark)

    Lou, Hans C; Luber, Bruce; Crupain, Michael

    2004-01-01

    For a coherent and meaningful life, conscious self-representation is mandatory. Such explicit "autonoetic consciousness" is thought to emerge by retrieval of memory of personally experienced events ("episodic memory"). During episodic retrieval, functional imaging studies consistently show....... The medial parietal region may, then, be conceived of as a nodal structure in self-representation, functionally connected to both the right parietal and the medial prefrontal cortices. To determine whether medial parietal cortex in this network is essential for episodic memory retrieval with self...

  10. PRENATAL HYPOXIA IN DIFFERENT PERIODS OF EMBRYOGENESIS DIFFERENTIALLY AFFECTS CELL MIGRATION, NEURONAL PLASTICITY AND RAT BEHAVIOR IN POSTNATAL ONTOGENESIS

    Directory of Open Access Journals (Sweden)

    Dmitrii S Vasilev

    2016-03-01

    Full Text Available Long-term effects of prenatal hypoxia on embryonic days E14 or E18 on the number, type and localization of cortical neurons, density of labile synaptopodin-positive dendritic spines and parietal cortex-dependent behavioral tasks were examined in the postnatal ontogenesis of rats. An injection of 5’ethynyl-2’deoxyuridine to pregnant rats was used to label neurons generated on E14 or E18 in the fetuses. In control rat pups a majority of cells labeled on E14 were localized in the lower cortical layers V-VI while the cells labeled on E18 were mainly found in the superficial cortical layers II-III. It was shown that hypoxia both on E14 and E18 results in disruption of neuroblast generation and migration but affects different cell populations. In rat pups subjected to hypoxia on E14, the total number of labeled cells in the parietal cortex was decreased while the number of labeled neurons scattered within the superficial cortical layers was increased. In rat pups subjected to hypoxia on E18, the total number of labeled cells in the parietal cortex was also decreased but the number of scattered labeled neurons was higher in the lower cortical layers. It can be suggested that prenatal hypoxia both on E14 and E18 causes a disruption in neuroblast migration but with a different outcome. Only in rats subjected to hypoxia on E14 did we observe a reduction in the total number of pyramidal cortical neurons and the density of labile synaptopodin-positive dendritic spines in the molecular cortical layer during the first month after birth which affected development of the cortical functions. As a result, rats subjected to hypoxia on E14, but not on E18, had impaired development of the whisker-placing reaction and reduced ability to learn reaching by a forepaw. The data obtained suggest that hypoxia on E14 in the period of generation of the cells, which later differentiate into the pyramidal cortical neurons of the V-VI layers and form cortical minicolumns

  11. Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution.

    Science.gov (United States)

    Marangon, Mattia; Kubiak, Agnieszka; Króliczak, Gregory

    2015-01-01

    The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI) to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation, and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC) of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks). None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial) parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.

  12. Emotion unfolded by motion: a role for parietal lobe in decoding dynamic facial expressions.

    Science.gov (United States)

    Sarkheil, Pegah; Goebel, Rainer; Schneider, Frank; Mathiak, Klaus

    2013-12-01

    Facial expressions convey important emotional and social information and are frequently applied in investigations of human affective processing. Dynamic faces may provide higher ecological validity to examine perceptual and cognitive processing of facial expressions. Higher order processing of emotional faces was addressed by varying the task and virtual face models systematically. Blood oxygenation level-dependent activation was assessed using functional magnetic resonance imaging in 20 healthy volunteers while viewing and evaluating either emotion or gender intensity of dynamic face stimuli. A general linear model analysis revealed that high valence activated a network of motion-responsive areas, indicating that visual motion areas support perceptual coding for the motion-based intensity of facial expressions. The comparison of emotion with gender discrimination task revealed increased activation of inferior parietal lobule, which highlights the involvement of parietal areas in processing of high level features of faces. Dynamic emotional stimuli may help to emphasize functions of the hypothesized 'extended' over the 'core' system for face processing.

  13. Different Stimuli, Different Spatial Codes: A Visual Map and an Auditory Rate Code for Oculomotor Space in the Primate Superior Colliculus

    Science.gov (United States)

    Lee, Jungah; Groh, Jennifer M.

    2014-01-01

    Maps are a mainstay of visual, somatosensory, and motor coding in many species. However, auditory maps of space have not been reported in the primate brain. Instead, recent studies have suggested that sound location may be encoded via broadly responsive neurons whose firing rates vary roughly proportionately with sound azimuth. Within frontal space, maps and such rate codes involve different response patterns at the level of individual neurons. Maps consist of neurons exhibiting circumscribed receptive fields, whereas rate codes involve open-ended response patterns that peak in the periphery. This coding format discrepancy therefore poses a potential problem for brain regions responsible for representing both visual and auditory information. Here, we investigated the coding of auditory space in the primate superior colliculus(SC), a structure known to contain visual and oculomotor maps for guiding saccades. We report that, for visual stimuli, neurons showed circumscribed receptive fields consistent with a map, but for auditory stimuli, they had open-ended response patterns consistent with a rate or level-of-activity code for location. The discrepant response patterns were not segregated into different neural populations but occurred in the same neurons. We show that a read-out algorithm in which the site and level of SC activity both contribute to the computation of stimulus location is successful at evaluating the discrepant visual and auditory codes, and can account for subtle but systematic differences in the accuracy of auditory compared to visual saccades. This suggests that a given population of neurons can use different codes to support appropriate multimodal behavior. PMID:24454779

  14. Learning of Spatial Relationships between Observed and Imitated Actions allows Invariant Inverse Computation in the Frontal Mirror Neuron System

    Science.gov (United States)

    Oh, Hyuk; Gentili, Rodolphe J.; Reggia, James A.; Contreras-Vidal, José L.

    2014-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator’s frontal mirror neuron system can be trained to provide the motor plans for the imitated actions. PMID:22255261

  15. The Influence of Tetrodotoxin (TTX on the Distribution and Chemical Coding of Caudal Mesenteric Ganglion (CaMG Neurons Supplying the Porcine Urinary Bladder

    Directory of Open Access Journals (Sweden)

    Ewa Lepiarczyk

    2017-03-01

    Full Text Available The treatment of micturition disorders creates a serious problem for urologists. Recently, new therapeutic agents, such as neurotoxins, are being considered for the therapy of urological patients. The present study investigated the chemical coding of caudal mesenteric ganglion (CaMG neurons supplying the porcine urinary bladder after intravesical instillation of tetrodotoxin (TTX. The CaMG neurons were visualized with retrograde tracer Fast blue (FB and their chemical profile was disclosed with double-labeling immunohistochemistry using antibodies against tyrosine hydroxylase (TH, neuropeptide Y (NPY, vasoactive intestinal polypeptide (VIP, somatostatin (SOM, calbindin (CB, galanin (GAL and neuronal nitric oxide synthase (nNOS. It was found that in both the control (n = 6 and TTX-treated pigs (n = 6, the vast majority (92.6% ± 3.4% and 88.8% ± 2%, respectively of FB-positive (FB+ nerve cells were TH+. TTX instillation caused a decrease in the number of FB+/TH+ neurons immunopositive to NPY (88.9% ± 5.3% in the control animals vs. 10.6% ± 5.3% in TTX-treated pigs or VIP (1.7% ± 0.6% vs. 0%, and an increase in the number of FB+/TH+ neurons immunoreactive to SOM (8.8% ± 1.6% vs. 39% ± 12.8%, CB (1.8% ± 0.7% vs. 12.6% ± 2.7%, GAL (1.7% ± 0.8% vs. 10.9% ± 2.6% or nNOS (0% vs. 1.1% ± 0.3%. The present study is the first to suggest that TTX modifies the chemical coding of CaMG neurons supplying the porcine urinary bladder.

  16. The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study

    Science.gov (United States)

    Ferri, Stefania; Rizzolatti, Giacomo

    2015-01-01

    Abstract The present fMRI study examined whether upper‐limb action classes differing in their motor goal are encoded by different PPC sectors. Action observation was used as a proxy for action execution. Subjects viewed actors performing object‐related (e.g., grasping), skin‐displacing (e.g., rubbing the skin), and interpersonal upper limb actions (e.g., pushing someone). Observation of the three action classes activated a three‐level network including occipito‐temporal, parietal, and premotor cortex. The parietal region common to observing all three action classes was located dorsally to the left intraparietal sulcus (DIPSM/DIPSA border). Regions specific for observing an action class were obtained by combining the interaction between observing action classes and stimulus types with exclusive masking for observing the other classes, while for regions considered preferentially active for a class the interaction was exclusively masked with the regions common to all observed actions. Left putative human anterior intraparietal was specific for observing manipulative actions, and left parietal operculum including putative human SII region, specific for observing skin‐displacing actions. Control experiments demonstrated that this latter activation depended on seeing the skin being moved and not simply on seeing touch. Psychophysiological interactions showed that the two specific parietal regions had similar connectivities. Finally, observing interpersonal actions preferentially activated a dorsal sector of left DIPSA, possibly the homologue of ventral intraparietal coding the impingement of the target person's body into the peripersonal space of the actor. These results support the importance of segregation according to the action class as principle of posterior parietal cortex organization for action observation and by implication for action execution. Hum Brain Mapp 36:3845–3866, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley

  17. An ancient neurotrophin receptor code; a single Runx/Cbfβ complex determines somatosensory neuron fate specification in zebrafish.

    Science.gov (United States)

    Gau, Philia; Curtright, Andrew; Condon, Logan; Raible, David W; Dhaka, Ajay

    2017-07-01

    In terrestrial vertebrates such as birds and mammals, neurotrophin receptor expression is considered fundamental for the specification of distinct somatosensory neuron types where TrkA, TrkB and TrkC specify nociceptors, mechanoceptors and proprioceptors/mechanoceptors, respectively. In turn, Runx transcription factors promote neuronal fate specification by regulating neurotrophin receptor and sensory receptor expression where Runx1 mediates TrkA+ nociceptor diversification while Runx3 promotes a TrkC+ proprioceptive/mechanoceptive fate. Here, we report in zebrafish larvae that orthologs of the neurotrophin receptors in contrast to terrestrial vertebrates mark overlapping and distinct subsets of nociceptors suggesting that TrkA, TrkB and TrkC do not intrinsically promote nociceptor, mechanoceptor and proprioceptor/mechanoceptor neuronal fates, respectively. While we find that zebrafish Runx3 regulates nociceptors in contrast to terrestrial vertebrates, it shares a conserved regulatory mechanism found in terrestrial vertebrate proprioceptors/mechanoceptors in which it promotes TrkC expression and suppresses TrkB expression. We find that Cbfβ, which enhances Runx protein stability and affinity for DNA, serves as an obligate cofactor for Runx in neuronal fate determination. High levels of Runx can compensate for the loss of Cbfβ, indicating that in this context Cbfβ serves solely as a signal amplifier of Runx activity. Our data suggests an alteration/expansion of the neurotrophin receptor code of sensory neurons between larval teleost fish and terrestrial vertebrates, while the essential roles of Runx/Cbfβ in sensory neuron cell fate determination while also expanded are conserved.

  18. Interleukin-17A Promotes Parietal Cell Atrophy by Inducing ApoptosisSummary

    Directory of Open Access Journals (Sweden)

    Kevin A. Bockerstett

    Full Text Available Background & Aims: Atrophic gastritis caused by chronic inflammation in the gastric mucosa leads to the loss of gastric glandular cells, including acid-secreting parietal cells. Parietal cell atrophy in a setting of chronic inflammation induces spasmolytic polypeptide expressing metaplasia, a critical step in gastric carcinogenesis. However, the mechanisms by which inflammation causes parietal cell atrophy and spasmolytic polypeptide expressing metaplasia are not well defined. We investigated the role of interleukin-17A (IL-17A in causing parietal cell atrophy. Methods: A mouse model of autoimmune atrophic gastritis was used to examine IL-17A production during early and late stages of disease. Organoids derived from corpus glands were used to determine the direct effects of IL-17A on gastric epithelial cells. Immunofluorescent staining was used to examine IL-17A receptors and the direct effect of signaling on parietal cells. Mice were infected with an IL-17A-producing adenovirus to determine the effects of IL-17A on parietal cells in vivo. Finally, IL-17A neutralizing antibodies were administered to mice with active atrophic gastritis to evaluate the effects on parietal cell atrophy and metaplasia. Results: Increased IL-17A correlated with disease severity in mice with chronic atrophic gastritis. IL-17A caused caspase-dependent gastric organoid degeneration, which could not be rescued with a necroptosis inhibitor. Parietal cells expressed IL-17A receptors and IL-17A treatment induced apoptosis in parietal cells. Overexpressing IL-17A in vivo induced caspase-3 activation and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling staining in parietal cells. Finally, IL-17A neutralizing antibody decreased parietal cell atrophy and metaplasia in mice with chronic atrophic gastritis. Conclusions: These data identify IL-17A as a cytokine that promotes parietal cell apoptosis during atrophic gastritis, a

  19. Xenomelia: a new right parietal lobe syndrome.

    Science.gov (United States)

    McGeoch, Paul D; Brang, David; Song, Tao; Lee, Roland R; Huang, Mingxiong; Ramachandran, V S

    2011-12-01

    Damage to the right parietal lobe has long been associated with various disorders of body image. The authors have recently suggested that an unusual behavioural condition in which otherwise rational individuals desire the amputation of a healthy limb might also arise from right parietal dysfunction. Four subjects who desired the amputation of healthy legs (two right, one left and one, at first, bilateral and then left only) were recruited and underwent magnetoencephalography (MEG) scans during tactile stimulation of sites above and below the desired amputation line. Regions of interest (ROIs) in each hemisphere (superior parietal lobule (SPL), inferior parietal lobule, S1, M1, insula, premotor cortex and precuneus) were defined using FreeSurfer software. Analysis of average MEG activity across the 40-140 ms post-stimulation timeframe was carried out using an unpaired t test. This revealed significantly reduced activation only in the right SPL ROI for the subjects' affected legs when compared with both subjects' unaffected legs and that of controls. The right SPL is a cortical area that appears ideally placed to unify disparate sensory inputs to create a coherent sense of having a body. The authors propose that inadequate activation of the right SPL leads to the unnatural situation in which the sufferers can feel the limb in question being touched without it actually incorporating into their body image, with a resulting desire for amputation. The authors introduce the term 'xenomelia' as a more appropriate name than apotemnophilia or body integrity identity disorder, for what appears to be an unrecognised right parietal lobe syndrome.

  20. Cell-assembly coding in several memory processes.

    Science.gov (United States)

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  1. Reduced parietal activation in cervical dystonia after parietal TMS interleaved with fMRI

    NARCIS (Netherlands)

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Hinson, Vanessa K.; George, Mark S.; Leenders, Klaus L.

    Objective: Clinically normal hand movement with altered cerebral activation patterns in cervical dystonia (CD) may imply cerebral adaptation. Since impaired sensorimotor integration appears to play a role in dystonia, left superior parietal cortex modulation with repetitive transcranial magnetic

  2. Functional segregation and integration within fronto-parietal networks.

    Science.gov (United States)

    Parlatini, Valeria; Radua, Joaquim; Dell'Acqua, Flavio; Leslie, Anoushka; Simmons, Andy; Murphy, Declan G; Catani, Marco; Thiebaut de Schotten, Michel

    2017-02-01

    Experimental data on monkeys and functional studies in humans support the existence of a complex fronto-parietal system activating for cognitive and motor tasks, which may be anatomically supported by the superior longitudinal fasciculus (SLF). Advanced tractography methods have recently allowed the separation of the three branches of the SLF but are not suitable for their functional investigation. In order to gather comprehensive information about the functional organisation of these fronto-parietal connections, we used an innovative method, which combined tractography of the SLF in the largest dataset so far (129 participants) with 14 meta-analyses of functional magnetic resonance imaging (fMRI) studies. We found that frontal and parietal functions can be clustered into a dorsal spatial/motor network associated with the SLF I, and a ventral non-spatial/motor network associated with the SLF III. Further, all the investigated functions activated a middle network mostly associated with the SLF II. Our findings suggest that dorsal and ventral fronto-parietal networks are segregated but also share regions of activation, which may support flexible response properties or conscious processing. In sum, our novel combined approach provided novel findings on the functional organisation of fronto-parietal networks, and may be successfully applied to other brain connections. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Motor role of parietal cortex in a monkey model of hemispatial neglect.

    Science.gov (United States)

    Kubanek, Jan; Li, Jingfeng M; Snyder, Lawrence H

    2015-04-21

    Parietal cortex is central to spatial cognition. Lesions of parietal cortex often lead to hemispatial neglect, an impairment of choices of targets in space. It has been unclear whether parietal cortex implements target choice at the general cognitive level, or whether parietal cortex subserves the choice of targets of particular actions. To address this question, monkeys engaged in choice tasks in two distinct action contexts--eye movements and arm movements. We placed focused reversible lesions into specific parietal circuits using the GABAA receptor agonist muscimol and validated the lesion placement using MRI. We found that lesions on the lateral bank of the intraparietal sulcus [lateral intraparietal area (LIP)] specifically biased choices made using eye movements, whereas lesions on the medial bank of the intraparietal sulcus [parietal reach region (PRR)] specifically biased choices made using arm movements. This double dissociation suggests that target choice is implemented in dedicated parietal circuits in the context of specific actions. This finding emphasizes a motor role of parietal cortex in spatial choice making and contributes to our understanding of hemispatial neglect.

  4. Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia).

    Science.gov (United States)

    Johnston, Melissa; Anderson, Catrona; Colombo, Michael

    2017-01-15

    We recorded neuronal activity from the nidopallium caudolaterale, the avian equivalent of mammalian prefrontal cortex, and the entopallium, the avian equivalent of the mammalian visual cortex, in four birds trained on a differential outcomes delayed matching-to-sample procedure in which one sample stimulus was followed by reward and the other was not. Despite similar incidence of reward-specific and reward-unspecific delay cell types across the two areas, overall entopallium delay activity occurred following both rewarded and non-rewarded stimuli, whereas nidopallium caudolaterale delay activity tended to occur following the rewarded stimulus but not the non-rewarded stimulus. These findings are consistent with the view that delay activity in entopallium represents a code of the sample stimulus whereas delay activity in nidopallium caudolaterale represents a code of the possibility of an upcoming reward. However, based on the types of delay cells encountered, cells in NCL also code the sample stimulus and cells in ENTO are influenced by reward. We conclude that both areas support the retention of information, but that the activity in each area is differentially modulated by factors such as reward and attentional mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Coding of Velocity Storage in the Vestibular Nuclei

    Directory of Open Access Journals (Sweden)

    Sergei B. Yakushin

    2017-08-01

    Full Text Available Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO and vestibular-pause-saccade (VPS neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46% code horizontal component of velocity in head coordinates, while the other half (54% changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral, providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing

  6. The Languages of Neurons: An Analysis of Coding Mechanisms by Which Neurons Communicate, Learn and Store Information

    Directory of Open Access Journals (Sweden)

    Morris H. Baslow

    2009-11-01

    Full Text Available In this paper evidence is provided that individual neurons possess language, and that the basic unit for communication consists of two neurons and their entire field of interacting dendritic and synaptic connections. While information processing in the brain is highly complex, each neuron uses a simple mechanism for transmitting information. This is in the form of temporal electrophysiological action potentials or spikes (S operating on a millisecond timescale that, along with pauses (P between spikes constitute a two letter “alphabet” that generates meaningful frequency-encoded signals or neuronal S/P “words” in a primary language. However, when a word from an afferent neuron enters the dendritic-synaptic-dendritic field between two neurons, it is translated into a new frequency-encoded word with the same meaning, but in a different spike-pause language, that is delivered to and understood by the efferent neuron. It is suggested that this unidirectional inter-neuronal language-based word translation step is of utmost importance to brain function in that it allows for variations in meaning to occur. Thus, structural or biochemical changes in dendrites or synapses can produce novel words in the second language that have changed meanings, allowing for a specific signaling experience, either external or internal, to modify the meaning of an original word (learning, and store the learned information of that experience (memory in the form of an altered dendritic-synaptic-dendritic field.

  7. Observational learning of new movement sequences is reflected in fronto-parietal coherence.

    Directory of Open Access Journals (Sweden)

    Jurjen van der Helden

    Full Text Available Mankind is unique in her ability for observational learning, i.e. the transmission of acquired knowledge and behavioral repertoire through observation of others' actions. In the present study we used electrophysiological measures to investigate brain mechanisms of observational learning. Analysis investigated the possible functional coupling between occipital (alpha and motor (mu rhythms operating in the 10 Hz frequency range for translating "seeing" into "doing". Subjects observed movement sequences consisting of six consecutive left or right hand button presses directed at one of two target-buttons for subsequent imitation. Each movement sequence was presented four times, intervened by short pause intervals for sequence rehearsal. During a control task subjects observed the same movement sequences without a requirement for subsequent reproduction. Although both alpha and mu rhythms desynchronized during the imitation task relative to the control task, modulations in alpha and mu power were found to be largely independent from each other over time, arguing against a functional coupling of alpha and mu generators during observational learning. This independence was furthermore reflected in the absence of coherence between occipital and motor electrodes overlaying alpha and mu generators. Instead, coherence analysis revealed a pair of symmetric fronto-parietal networks, one over the left and one over the right hemisphere, reflecting stronger coherence during observation of movements than during pauses. Individual differences in fronto-parietal coherence were furthermore found to predict imitation accuracy. The properties of these networks, i.e. their fronto-parietal distribution, their ipsilateral organization and their sensitivity to the observation of movements, match closely with the known properties of the mirror neuron system (MNS as studied in the macaque brain. These results indicate a functional dissociation between higher order areas for

  8. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey

    International Nuclear Information System (INIS)

    Pandya, D.N.; Seltzer, B.

    1982-01-01

    By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2) and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer

  9. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding.

    Science.gov (United States)

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.

  10. Hearing sounds, understanding actions: action representation in mirror neurons.

    Science.gov (United States)

    Kohler, Evelyne; Keysers, Christian; Umiltà, M Alessandra; Fogassi, Leonardo; Gallese, Vittorio; Rizzolatti, Giacomo

    2002-08-02

    Many object-related actions can be recognized by their sound. We found neurons in monkey premotor cortex that discharge when the animal performs a specific action and when it hears the related sound. Most of the neurons also discharge when the monkey observes the same action. These audiovisual mirror neurons code actions independently of whether these actions are performed, heard, or seen. This discovery in the monkey homolog of Broca's area might shed light on the origin of language: audiovisual mirror neurons code abstract contents-the meaning of actions-and have the auditory access typical of human language to these contents.

  11. Parietal lesion effects on cued recall following pair associate learning.

    Science.gov (United States)

    Ben-Zvi, Shir; Soroker, Nachum; Levy, Daniel A

    2015-07-01

    We investigated the involvement of the posterior parietal cortex in episodic memory in a lesion-effects study of cued recall following pair-associate learning. Groups of patients who had experienced first-incident stroke, generally in middle cerebral artery territory, and exhibited damage that included lateral posterior parietal regions, were tested within an early post-stroke time window. In three experiments, patients and matched healthy comparison groups executed repeated study and cued recall test blocks of pairs of words (Experiment 1), pairs of object pictures (Experiment 2), or pairs of object pictures and environmental sounds (Experiment 3). Patients' brain CT scans were subjected to quantitative analysis of lesion volumes. Behavioral and lesion data were used to compute correlations between area lesion extent and memory deficits, and to conduct voxel-based lesion-symptom mapping. These analyses implicated lateral ventral parietal cortex, especially the angular gyrus, in cued recall deficits, most pronouncedly in the cross-modal picture-sound pairs task, though significant parietal lesion effects were also found in the unimodal word pairs and picture pairs tasks. In contrast to an earlier study in which comparable parietal lesions did not cause deficits in item recognition, these results indicate that lateral posterior parietal areas make a substantive contribution to demanding forms of recollective retrieval as represented by cued recall, especially for complex associative representations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Bilateral, posterior parietal polymicrogyria as part of speech therapy ...

    African Journals Online (AJOL)

    SA Journal of Radiology ... Magnetic resonance imaging (MRI) has been associated with either diffuse polymicrogyria around the entire extent of the sylvian fissure or in the posterior aspects of the parietal regions, in which case it is called posterior parietal ... This article discusses the possible embryological origin of these

  13. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    International Nuclear Information System (INIS)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van

    2008-01-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain ∼60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H + /K + ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H + /K + ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H + /K + ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in ∼30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H + /K + ATPase which underpin the regulation of acid secretion

  14. Dopamine reward prediction error coding.

    Science.gov (United States)

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  15. Spike Timing Matters in Novel Neuronal Code Involved in Vibrotactile Frequency Perception.

    Science.gov (United States)

    Birznieks, Ingvars; Vickery, Richard M

    2017-05-22

    Skin vibrations sensed by tactile receptors contribute significantly to the perception of object properties during tactile exploration [1-4] and to sensorimotor control during object manipulation [5]. Sustained low-frequency skin vibration (perception of frequency is still unknown. Measures based on mean spike rates of neurons in the primary somatosensory cortex are sufficient to explain performance in some frequency discrimination tasks [7-11]; however, there is emerging evidence that stimuli can be distinguished based also on temporal features of neural activity [12, 13]. Our study's advance is to demonstrate that temporal features are fundamental for vibrotactile frequency perception. Pulsatile mechanical stimuli were used to elicit specified temporal spike train patterns in tactile afferents, and subsequently psychophysical methods were employed to characterize human frequency perception. Remarkably, the most salient temporal feature determining vibrotactile frequency was not the underlying periodicity but, rather, the duration of the silent gap between successive bursts of neural activity. This burst gap code for frequency represents a previously unknown form of neural coding in the tactile sensory system, which parallels auditory pitch perception mechanisms based on purely temporal information where longer inter-pulse intervals receive higher perceptual weights than short intervals [14]. Our study also demonstrates that human perception of stimuli can be determined exclusively by temporal features of spike trains independent of the mean spike rate and without contribution from population response factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey.

    Science.gov (United States)

    Chen, Jessie; Reitzen, Shari D; Kohlenstein, Jane B; Gardner, Esther P

    2009-12-01

    Studies of hand manipulation neurons in posterior parietal cortex of monkeys suggest that their spike trains represent objects by the hand postures needed for grasping or by the underlying patterns of muscle activation. To analyze the role of hand kinematics and object properties in a trained prehension task, we correlated the firing rates of neurons in anterior area 5 with hand behaviors as monkeys grasped and lifted knobs of different shapes and locations in the workspace. Trials were divided into four classes depending on the approach trajectory: forward, lateral, and local approaches, and regrasps. The task factors controlled by the animal-how and when he used the hand-appeared to play the principal roles in modulating firing rates of area 5 neurons. In all, 77% of neurons studied (58/75) showed significant effects of approach style on firing rates; 80% of the population responded at higher rates and for longer durations on forward or lateral approaches that included reaching, wrist rotation, and hand preshaping prior to contact, but only 13% distinguished the direction of reach. The higher firing rates in reach trials reflected not only the arm movements needed to direct the hand to the target before contact, but persisted through the contact, grasp, and lift stages. Moreover, the approach style exerted a stronger effect on firing rates than object features, such as shape and location, which were distinguished by half of the population. Forty-three percent of the neurons signaled both the object properties and the hand actions used to acquire them. However, the spread in firing rates evoked by each knob on reach and no-reach trials was greater than distinctions between different objects grasped with the same approach style. Our data provide clear evidence for synergies between reaching and grasping that may facilitate smooth, coordinated actions of the arm and hand.

  17. Origin of parietal podocytes in atubular glomeruli mapped by lineage tracing.

    Science.gov (United States)

    Schulte, Kevin; Berger, Katja; Boor, Peter; Jirak, Peggy; Gelman, Irwin H; Arkill, Kenton P; Neal, Christopher R; Kriz, Wilhelm; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2014-01-01

    Parietal podocytes are fully differentiated podocytes lining Bowman's capsule where normally only parietal epithelial cells (PECs) are found. Parietal podocytes form throughout life and are regularly observed in human biopsies, particularly in atubular glomeruli of diseased kidneys; however, the origin of parietal podocytes is unresolved. To assess the capacity of PECs to transdifferentiate into parietal podocytes, we developed and characterized a novel method for creating atubular glomeruli by electrocoagulation of the renal cortex in mice. Electrocoagulation produced multiple atubular glomeruli containing PECs as well as parietal podocytes that projected from the vascular pole and lined Bowman's capsule. Notably, induction of cell death was evident in some PECs. In contrast, Bowman's capsules of control animals and normal glomeruli of electrocoagulated kidneys rarely contained podocytes. PECs and podocytes were traced by inducible and irreversible genetic tagging using triple transgenic mice (PEC- or Pod-rtTA/LC1/R26R). Examination of serial cryosections indicated that visceral podocytes migrated onto Bowman's capsule via the vascular stalk; direct transdifferentiation from PECs to podocytes was not observed. Similar results were obtained in a unilateral ureter obstruction model and in human diseased kidney biopsies, in which overlap of PEC- or podocyte-specific antibody staining indicative of gradual differentiation did not occur. These results suggest that induction of atubular glomeruli leads to ablation of PECs and subsequent migration of visceral podocytes onto Bowman's capsule, rather than transdifferentiation from PECs to parietal podocytes.

  18. Neuronal codes for visual perception and memory.

    Science.gov (United States)

    Quian Quiroga, Rodrigo

    2016-03-01

    In this review, I describe and contrast the representation of stimuli in visual cortical areas and in the medial temporal lobe (MTL). While cortex is characterized by a distributed and implicit coding that is optimal for recognition and storage of semantic information, the MTL shows a much sparser and explicit coding of specific concepts that is ideal for episodic memory. I will describe the main characteristics of the coding in the MTL by the so-called concept cells and will then propose a model of the formation and recall of episodic memory based on partially overlapping assemblies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Functional Clustering of the Human Inferior Parietal Lobule by Whole-Brain Connectivity Mapping of Resting-State Functional Magnetic Resonance Imaging Signals

    Science.gov (United States)

    Li, Chiang-Shan R.

    2014-01-01

    Abstract The human inferior parietal lobule (IPL) comprised the lateral bank of the intraparietal sulcus, angular gyrus, and supramarginal gyrus, defined on the basis of anatomical landmarks and cytoarchitectural organization of neurons. However, it is not clear as to whether the three areas represent functional subregions within the IPL. For instance, imaging studies frequently identified clusters of activities that cut across areal boundaries. Here, we used resting-state functional magnetic resonance imaging (fMRI) data to examine how individual voxels within the IPL are best clustered according to their connectivity to the whole brain. The results identified a best estimate of seven clusters that are hierarchically arranged as the anterior, middle, and posterior subregions. The anterior, middle, and posterior IPL are each significantly connected to the somatomotor areas, superior/middle/inferior frontal gyri, and regions of the default mode network. This functional segregation is supported by recent cytoarchitechtonics and tractography studies. IPL showed hemispheric differences in connectivity that accord with a predominantly left parietal role in tool use and language processing and a right parietal role in spatial attention and mathematical cognition. The functional clusters may also provide a more parsimonious and perhaps even accurate account of regional activations of the IPL during a variety of cognitive challenges, as reported in earlier fMRI studies. PMID:24308753

  20. Intradiploic encephalocele of the left parietal bone: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Sock; Huh, Choon Woong; Kim, Dal Soo; Mok, Jin Ho; Kim, In Soo; Yang, Geun Seok [Myongji St. Mary' s Hospital, Seoul (Korea, Republic of)

    2015-06-15

    Encephaloceles are generally regarded as midline abnormalities. A 50-year-old man presented with a parietal intradiploic encephalocele manifesting as intermittent headache for the past 6 months. Computed tomography (CT) showed bone destruction associated with a left parietal lesion. Magnetic resonance imaging (MRI) demonstrated brain herniation within the intradiploic space. Cerebral angiographic imaging showed a normal cerebral vessel pattern within the herniated brain lesion. In this case, surgical treatment may not be necessary in the absence of concurrent symptoms and neurologic deficit. We report the CT, MRI, and angiographic findings of an extremely rare case of parietal intradiploic encephalocele in adulthood.

  1. Intradiploic encephalocele of the left parietal bone: A case report

    International Nuclear Information System (INIS)

    Kim, Hyung Sock; Huh, Choon Woong; Kim, Dal Soo; Mok, Jin Ho; Kim, In Soo; Yang, Geun Seok

    2015-01-01

    Encephaloceles are generally regarded as midline abnormalities. A 50-year-old man presented with a parietal intradiploic encephalocele manifesting as intermittent headache for the past 6 months. Computed tomography (CT) showed bone destruction associated with a left parietal lesion. Magnetic resonance imaging (MRI) demonstrated brain herniation within the intradiploic space. Cerebral angiographic imaging showed a normal cerebral vessel pattern within the herniated brain lesion. In this case, surgical treatment may not be necessary in the absence of concurrent symptoms and neurologic deficit. We report the CT, MRI, and angiographic findings of an extremely rare case of parietal intradiploic encephalocele in adulthood

  2. Thalamic neuron models encode stimulus information by burst-size modulation

    Directory of Open Access Journals (Sweden)

    Daniel Henry Elijah

    2015-09-01

    Full Text Available Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of

  3. Thalamic neuron models encode stimulus information by burst-size modulation.

    Science.gov (United States)

    Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.

  4. Aspirin induces morphological transformation to the secretory state in isolated rabbit parietal cells.

    Science.gov (United States)

    Murthy, U K; Levine, R A

    1991-08-01

    The morphological response of rabbit parietal cells to aspirin was evaluated by grading several ultra-structural features including the extent of the tubulovesicular system, intracellular secretory canaliculi, and microvilli. After exposure of isolated parietal cells and gastric glands to aspirin or histamine, there was an approximately twofold increase in the ratio of secretory to nonsecretory parietal cells, and depletion of extracellular Ca2+ abolished the aspirin-induced morphological changes. Morphometry in parietal cells showed that aspirin induced a sixfold increase in secretory canalicular membrane elaboration. Aspirin potentiated histamine-induced parietal cell respiration and aminopyrine uptake ratio but did not increase basal respiration or aminopyrine uptake, suggesting an apparent dissociation from aspirin-induced morphological changes.

  5. Parietal epithelial cells: their role in health and disease.

    Science.gov (United States)

    Romagnani, Paola

    2011-01-01

    Parietal epithelial cells of Bowman's capsules were first described by Sir William Bowman in 1842 in his paper On the Structure and Use of the Malpighian Bodies of the Kidney [London, Taylor, 1842], but since then their functions have remained poorly understood. A large body of evidence has recently suggested that parietal epithelial cells represent a reservoir of renal progenitors in adult human kidney which generate novel podocytes during childhood and adolescence, and can regenerate injured podocytes. The discovery that parietal epithelial cells represent a potential source for podocyte regeneration suggests that podocyte injury can be repaired. However, recent results also suggest that an abnormal proliferative response of renal progenitors to podocyte injury can generate hyperplastic glomerular lesions that are observed in crescentic glomerulonephritis and other types of glomerular disorders. Taken together, these results establish an entirely novel view that changes the way of thinking about renal physiology and pathophysiology, and suggest that understanding how self-renewal and fate decision of parietal epithelial cells in response to podocyte injury may be perturbed or modulated will be crucial for obtaining novel tools for prevention and treatment of glomerulosclerosis. Copyright © 2011 S. Karger AG, Basel.

  6. Spatial distribution of human neocortical neurons and glial cells according to sex and age measured by the saucer method

    DEFF Research Database (Denmark)

    Stark, Anette Kirstine; Petersen, A O; Gardi, Jonathan Eyal

    2007-01-01

    primary neurons in the human neocortex (divided into frontal-, temporal-, parietal- and occipital cortex) of young and old subjects free of neurological or psychological disease to test if age and gender has any influence on the cell distribution in human neocortex. Plots of the spatial distribution...

  7. Inconsistent Effects of Parietal α-tACS on Pseudoneglect across Two Experiments: A Failed Internal Replication

    Directory of Open Access Journals (Sweden)

    Domenica Veniero

    2017-06-01

    Full Text Available Transcranial electrical stimulation (tES is being investigated as an experimental and clinical interventional technique in human participants. While promising, important limitations have been identified, including weak effect sizes and high inter- and intra-individual variability of outcomes. Here, we compared two “inhibitory” tES-techniques with supposedly different mechanisms of action as to their effects on performance in a visuospatial attention task, and report on a direct replication attempt. In two experiments, 2 × 20 healthy participants underwent tES in three separate sessions testing different protocols (10 min stimulation each with a montage targeting right parietal cortex (right parietal–left frontal, electrode-sizes: 3cm × 3cm–7 cm × 5 cm, while performing a perceptual line bisection (landmark task. The tES-protocols were compared as to their ability to modulate pseudoneglect (thought to be under right hemispheric control. In experiment 1, sham-tES was compared to transcranial alternating current stimulation at alpha frequency (10 Hz; α-tACS (expected to entrain “inhibitory” alpha oscillations and to cathodal transcranial direct current stimulation (c-tDCS (shown to suppress neuronal spiking activity. In experiment 2, we attempted to replicate the findings of experiment 1, and establish frequency-specificity by adding a 45 Hz-tACS condition to α-tACS and sham. In experiment 1, right parietal α-tACS led to the expected changes in spatial attention bias, namely a rightward shift in subjective midpoint estimation (relative to sham. However, this was not confirmed in experiment 2 and in the complete sample. Right parietal c-tDCS and 45 Hz-tACS had no effect. These results highlight the importance of replication studies, adequate statistical power and optimizing tES-interventions for establishing the robustness and reliability of electrical stimulation effects, and best practice.

  8. Neuronal effects of nicotine during auditory selective attention.

    Science.gov (United States)

    Smucny, Jason; Olincy, Ann; Eichman, Lindsay S; Tregellas, Jason R

    2015-06-01

    Although the attention-enhancing effects of nicotine have been behaviorally and neurophysiologically well-documented, its localized functional effects during selective attention are poorly understood. In this study, we examined the neuronal effects of nicotine during auditory selective attention in healthy human nonsmokers. We hypothesized to observe significant effects of nicotine in attention-associated brain areas, driven by nicotine-induced increases in activity as a function of increasing task demands. A single-blind, prospective, randomized crossover design was used to examine neuronal response associated with a go/no-go task after 7 mg nicotine or placebo patch administration in 20 individuals who underwent functional magnetic resonance imaging at 3T. The task design included two levels of difficulty (ordered vs. random stimuli) and two levels of auditory distraction (silence vs. noise). Significant treatment × difficulty × distraction interaction effects on neuronal response were observed in the hippocampus, ventral parietal cortex, and anterior cingulate. In contrast to our hypothesis, U and inverted U-shaped dependencies were observed between the effects of nicotine on response and task demands, depending on the brain area. These results suggest that nicotine may differentially affect neuronal response depending on task conditions. These results have important theoretical implications for understanding how cholinergic tone may influence the neurobiology of selective attention.

  9. Multiplexed coding in the human basal ganglia

    Science.gov (United States)

    Andres, D. S.; Cerquetti, D.; Merello, M.

    2016-04-01

    A classic controversy in neuroscience is whether information carried by spike trains is encoded by a time averaged measure (e.g. a rate code), or by complex time patterns (i.e. a time code). Here we apply a tool to quantitatively analyze the neural code. We make use of an algorithm based on the calculation of the temporal structure function, which permits to distinguish what scales of a signal are dominated by a complex temporal organization or a randomly generated process. In terms of the neural code, this kind of analysis makes it possible to detect temporal scales at which a time patterns coding scheme or alternatively a rate code are present. Additionally, finding the temporal scale at which the correlation between interspike intervals fades, the length of the basic information unit of the code can be established, and hence the word length of the code can be found. We apply this algorithm to neuronal recordings obtained from the Globus Pallidus pars interna from a human patient with Parkinson’s disease, and show that a time pattern coding and a rate coding scheme co-exist at different temporal scales, offering a new example of multiplexed neuronal coding.

  10. Visuo-spatial construction in patients with frontal and parietal lobe lesions

    Directory of Open Access Journals (Sweden)

    Himani Kashyap

    2011-04-01

    Full Text Available Visuospatial construction, traditionally viewed as a putative parietal function, also requires sustained attention, planning, organization strategies and error correction, and hence frontal lobe mediation. The relative contributions of the frontal and parietal lobes are poorly understood. To examine the contributions of parietal, frontal lobes, as well as right and left cerebral hemispheres to visuospatial construction. The Stick Construction Test for two-dimensional construction and the Block Construction Test for three-dimensional construction were administered pre-surgically to patients with lesions in the parietal lobe (n =9 and the frontal lobe (n=11, along with normal control subjects (n =20 matched to the patients on age (+/- 3 years, gender, education (+/- 3 years and handedness. The patients were significantly slower than the controls on both two-dimensional and three-dimensional tests. Patients with parietal lesions were slower than those with frontal lesions on the test of three-dimensional construction. Within each lobe patients with right and left sided lesions did not differ significantly. It appears that tests of three-dimensional construction might be most sensitive to visuospatial construction deficits. Visuospatial construction involves the mediation of both frontal and parietal lobes. The function does not appear to be lateralized. The networks arising from the parieto-occipital areas and projecting to the frontal cortices (e.g., occipito-frontal fasciculus may be the basis of the mediation of both lobes in visuospatial construction. The present findings need replication from studies with larger sample sizes.

  11. Hierarchical differences in population coding within auditory cortex.

    Science.gov (United States)

    Downer, Joshua D; Niwa, Mamiko; Sutter, Mitchell L

    2017-08-01

    Most models of auditory cortical (AC) population coding have focused on primary auditory cortex (A1). Thus our understanding of how neural coding for sounds progresses along the cortical hierarchy remains obscure. To illuminate this, we recorded from two AC fields: A1 and middle lateral belt (ML) of rhesus macaques. We presented amplitude-modulated (AM) noise during both passive listening and while the animals performed an AM detection task ("active" condition). In both fields, neurons exhibit monotonic AM-depth tuning, with A1 neurons mostly exhibiting increasing rate-depth functions and ML neurons approximately evenly distributed between increasing and decreasing functions. We measured noise correlation ( r noise ) between simultaneously recorded neurons and found that whereas engagement decreased average r noise in A1, engagement increased average r noise in ML. This finding surprised us, because attentive states are commonly reported to decrease average r noise We analyzed the effect of r noise on AM coding in both A1 and ML and found that whereas engagement-related shifts in r noise in A1 enhance AM coding, r noise shifts in ML have little effect. These results imply that the effect of r noise differs between sensory areas, based on the distribution of tuning properties among the neurons within each population. A possible explanation of this is that higher areas need to encode nonsensory variables (e.g., attention, choice, and motor preparation), which impart common noise, thus increasing r noise Therefore, the hierarchical emergence of r noise -robust population coding (e.g., as we observed in ML) enhances the ability of sensory cortex to integrate cognitive and sensory information without a loss of sensory fidelity. NEW & NOTEWORTHY Prevailing models of population coding of sensory information are based on a limited subset of neural structures. An important and under-explored question in neuroscience is how distinct areas of sensory cortex differ in their

  12. Functional connectivity of parietal cortex during temporal selective attention.

    Science.gov (United States)

    Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D

    2015-04-01

    Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Temporal characteristics of gustatory responses in rat parabrachial neurons vary by stimulus and chemosensitive neuron type.

    Science.gov (United States)

    Geran, Laura; Travers, Susan

    2013-01-01

    It has been demonstrated that temporal features of spike trains can increase the amount of information available for gustatory processing. However, the nature of these temporal characteristics and their relationship to different taste qualities and neuron types are not well-defined. The present study analyzed the time course of taste responses from parabrachial (PBN) neurons elicited by multiple applications of "sweet" (sucrose), "salty" (NaCl), "sour" (citric acid), and "bitter" (quinine and cycloheximide) stimuli in an acute preparation. Time course varied significantly by taste stimulus and best-stimulus classification. Across neurons, the ensemble code for the three electrolytes was similar initially but quinine diverged from NaCl and acid during the second 500 ms of stimulation and all four qualities became distinct just after 1s. This temporal evolution was reflected in significantly broader tuning during the initial response. Metric space analyses of quality discrimination by individual neurons showed that increases in information (H) afforded by temporal factors was usually explained by differences in rate envelope, which had a greater impact during the initial 2s (22.5% increase in H) compared to the later response (9.5%). Moreover, timing had a differential impact according to cell type, with between-quality discrimination in neurons activated maximally by NaCl or citric acid most affected. Timing was also found to dramatically improve within-quality discrimination (80% increase in H) in neurons that responded optimally to bitter stimuli (B-best). Spikes from B-best neurons were also more likely to occur in bursts. These findings suggest that among PBN taste neurons, time-dependent increases in mutual information can arise from stimulus- and neuron-specific differences in response envelope during the initial dynamic period. A stable rate code predominates in later epochs.

  14. Social interaction in robotic agents emulating the mirror neuron function

    NARCIS (Netherlands)

    Barakova, E.I.; Mira, J.; Álvarez, J.R.

    2007-01-01

    Emergent interactions that are expressed by the movements of two agents are discussed in this paper. The common coding principle is used to show how the mirror neuron system may facilitate interaction behaviour. Synchronization between neuron groups in different structures of the mirror neuron

  15. Information processing by neuronal populations

    National Research Council Canada - National Science Library

    Hölscher, Christian; Munk, Matthias

    2009-01-01

    ... simultaneously recorded spike trains 120 Mark Laubach, Nandakumar S. Narayanan, and Eyal Y. Kimchi Part III Neuronal population information coding and plasticity in specific brain areas 149 7 F...

  16. Mirror neuron framework yields representations for robot interaction

    NARCIS (Netherlands)

    Barakova, E.I.; Lourens, T.

    2009-01-01

    Common coding is a functional principle that underlies the mirror neuron paradigm. It insures actual parity between perception and action, since the perceived and performed actions are equivalently and simultaneously represented within the mirror neuron system. Based on the parity of this

  17. [Mirror neurons: from anatomy to pathophysiological and therapeutic implications].

    Science.gov (United States)

    Mathon, B

    2013-04-01

    Mirror neurons are a special class of neurons discovered in the 1990s. They respond when we perform an action and also when we see someone else perform that action. They play a role in the pathophysiology of some neuropsychiatric diseases. Mirror neurons have been identified in humans: in Broca's area and the inferior parietal cortex. Their responses are qualitative and selective depending on the observed action. Emotions (including disgust) and empathy seem to operate according to a mirror mechanism. Indeed, the mirror system allows us to encode the sensory experience and to simulate the emotional state of others. This results in our improved identification of the emotions in others. Additionally, mirror neurons can encode an observed action in motor stimuli and allow its reproduction; thus, they are involved in imitation and learning. Current studies are assessing the role of mirror neurons in the pathopysiology of social-behavior disorders, including autism and schizophrenia. Understanding this mirror system will allow us to develop psychotherapy practices based on empathic resonance between the patient and the therapist. Also, some authors report that a passive rehabilitation technique, based on stimulation of the mirror-neuron system, has a beneficial effect in the treatment of patients with post-stroke motor deficits. Mirror neurons are an anatomical entity that enables improved understanding of behavior and emotions, and serves as a base for developing new cognitive therapies. Additional studies are needed to clarify the exact role of this neuronal system in social cognition and its role in the development of some neuropsychiatric diseases. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex.

    Science.gov (United States)

    Samaha, Jason; Gosseries, Olivia; Postle, Bradley R

    2017-03-15

    Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability. SIGNIFICANCE STATEMENT Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time

  19. Frontal lobe atrophy in motor neuron diseases.

    Science.gov (United States)

    Kiernan, J A; Hudson, A J

    1994-08-01

    Neuronal degeneration in the precentral gyrus alone cannot account for the occurrence of spastic paresis in motor neuron diseases. To look for more extensive cortical atrophy we measured MRIs of the upper parts of the frontal and parietal lobes in 11 sporadic cases of classical amyotrophic lateral sclerosis (ALS), eight patients with primary lateral sclerosis (PLS) and an age- and sex-matched group of 49 neurologically normal people. None of the patients had overt dementia or other mental diseases. In PLS there is progressive spastic paresis but in contrast to ALS there is no lower motor neuron degeneration. The surface area of the precentral gyri and the amount of underlying white matter in PLS were consistently approximately 75% of the normal size. By contrast, there was some shrinkage of the precentral gyri in some of the ALS patients but the mean measurements for the group did not differ significantly from the controls. Anterior to the precentral sulci, the cortical surface area in PLS was approximately 85% of that of the controls, with correspondingly reduced white matter. In ALS the cortical surface areas of the anterior frontal lobes did not differ from those of the controls, but the amount of underlying white matter was reduced almost as much in ALS as it was in PLS. The measured changes in the frontal lobes suggest that in PLS there is simultaneous atrophy of the primary, premotor and supplementary motor areas of the cortex, with consequent degeneration of corticospinal and corticoreticular axons descending through the underlying white matter. These changes could account for the progressive upper motor neuron syndrome. In ALS, with no significant frontal cortical atrophy, the shrinkage of the white matter may be due to degeneration of axons projecting to the frontal cortex from elsewhere. Deprivation of afferents could explain the diminution of motor functions of the frontal lobes in ALS and also the changes in word fluency, judgement and attention that

  20. Large-scale Exploration of Neuronal Morphologies Using Deep Learning and Augmented Reality.

    Science.gov (United States)

    Li, Zhongyu; Butler, Erik; Li, Kang; Lu, Aidong; Ji, Shuiwang; Zhang, Shaoting

    2018-02-12

    Recently released large-scale neuron morphological data has greatly facilitated the research in neuroinformatics. However, the sheer volume and complexity of these data pose significant challenges for efficient and accurate neuron exploration. In this paper, we propose an effective retrieval framework to address these problems, based on frontier techniques of deep learning and binary coding. For the first time, we develop a deep learning based feature representation method for the neuron morphological data, where the 3D neurons are first projected into binary images and then learned features using an unsupervised deep neural network, i.e., stacked convolutional autoencoders (SCAEs). The deep features are subsequently fused with the hand-crafted features for more accurate representation. Considering the exhaustive search is usually very time-consuming in large-scale databases, we employ a novel binary coding method to compress feature vectors into short binary codes. Our framework is validated on a public data set including 58,000 neurons, showing promising retrieval precision and efficiency compared with state-of-the-art methods. In addition, we develop a novel neuron visualization program based on the techniques of augmented reality (AR), which can help users take a deep exploration of neuron morphologies in an interactive and immersive manner.

  1. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains...... and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres...... and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans....

  2. Modulation of fronto-parietal connections during the rubber hand illusion

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Ritterband-Rosenbaum, Anina; Christensen, Mark Schram

    2017-01-01

    Accumulating evidence suggests that parieto-frontal connections play a role in adjusting body ownership during the Rubber Hand Illusion (RHI). Using a motor version of the rubber hand illusion paradigm, we applied single-site and dual-site transcranial magnetic stimulation (TMS) to investigate...... and during three RHI conditions: a) agency and ownership, b) agency but no ownership and c) neither agency nor ownership. Parietal-motor communication differed among experimental conditions. The induction of action ownership was associated with an inhibitory parietal-to-motor connectivity, which...... cortico-spinal and parietal-frontal connectivity during perceived rubber hand ownership. Healthy volunteers received a conditioning TMS pulse over left anterior intraparietal sulcus (aIPS) and a test TMS pulse over left primary motor cortex (M1). Motor Evoked Potentials (MEPs) were recorded at rest...

  3. Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model

    Science.gov (United States)

    Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris

    2011-01-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval…

  4. Attending to and remembering tactile stimuli: a review of brain imaging data and single-neuron responses.

    Science.gov (United States)

    Burton, H; Sinclair, R J

    2000-11-01

    Clinical and neuroimaging observations of the cortical network implicated in tactile attention have identified foci in parietal somatosensory, posterior parietal, and superior frontal locations. Tasks involving intentional hand-arm movements activate similar or nearby parietal and frontal foci. Visual spatial attention tasks and deliberate visuomotor behavior also activate overlapping posterior parietal and frontal foci. Studies in the visual and somatosensory systems thus support a proposal that attention to the spatial location of an object engages cortical regions responsible for the same coordinate referents used for guiding purposeful motor behavior. Tactile attention also biases processing in the somatosensory cortex through amplification of responses to relevant features of selected stimuli. Psychophysical studies demonstrate retention gradients for tactile stimuli like those reported for visual and auditory stimuli, and suggest analogous neural mechanisms for working memory across modalities. Neuroimaging studies in humans using memory tasks, and anatomic studies in monkeys support the idea that tactile information relayed from the somatosensory cortex is directed ventrally through the insula to the frontal cortex for short-term retention and to structures of the medial temporal lobe for long-term encoding. At the level of single neurons, tactile (such as visual and auditory) short-term memory appears as a persistent response during delay intervals between sampled stimuli.

  5. Neural noise and movement-related codes in the macaque supplementary motor area.

    Science.gov (United States)

    Averbeck, Bruno B; Lee, Daeyeol

    2003-08-20

    We analyzed the variability of spike counts and the coding capacity of simultaneously recorded pairs of neurons in the macaque supplementary motor area (SMA). We analyzed the mean-variance functions for single neurons, as well as signal and noise correlations between pairs of neurons. All three statistics showed a strong dependence on the bin width chosen for analysis. Changes in the correlation structure of single neuron spike trains over different bin sizes affected the mean-variance function, and signal and noise correlations between pairs of neurons were much smaller at small bin widths, increasing monotonically with the width of the bin. Analyses in the frequency domain showed that the noise between pairs of neurons, on average, was most strongly correlated at low frequencies, which explained the increase in noise correlation with increasing bin width. The coding performance was analyzed to determine whether the temporal precision of spike arrival times and the interactions within and between neurons could improve the prediction of the upcoming movement. We found that in approximately 62% of neuron pairs, the arrival times of spikes at a resolution between 66 and 40 msec carried more information than spike counts in a 200 msec bin. In addition, in 19% of neuron pairs, inclusion of within (11%)- or between-neuron (8%) correlations in spike trains improved decoding accuracy. These results suggest that in some SMA neurons elements of the spatiotemporal pattern of activity may be relevant for neural coding.

  6. Differentiated parietal connectivity of frontal regions for "what" and "where" memory.

    Science.gov (United States)

    Rottschy, C; Caspers, S; Roski, C; Reetz, K; Dogan, I; Schulz, J B; Zilles, K; Laird, A R; Fox, P T; Eickhoff, S B

    2013-11-01

    In a previous meta-analysis across almost 200 neuroimaging experiments, working memory for object location showed significantly stronger convergence on the posterior superior frontal gyrus, whereas working memory for identity showed stronger convergence on the posterior inferior frontal gyrus (dorsal to, but overlapping with Brodmann's area BA 44). As similar locations have been discussed as part of a dorsal frontal-superior parietal reach system and an inferior frontal grasp system, the aim of the present study was to test whether the regions of working-memory related "what" and "where" processing show a similar distinction in parietal connectivity. The regions that were found in the previous meta-analysis were used as seeds for functional connectivity analyses using task-based meta-analytic connectivity modelling and task-independent resting state correlations. While the ventral seed showed significantly stronger connectivity with the bilateral intraparietal sulcus (IPS), the dorsal seed showed stronger connectivity with the bilateral posterior inferior parietal and the medial superior parietal lobule. The observed connections of regions involved in memory for object location and identity thus clearly demonstrate a distinction into separate pathways that resemble the parietal connectivity patterns of the dorsal and ventral premotor cortex in non-human primates and humans. It may hence be speculated that memory for a particular location and reaching towards it as well as object memory and finger positioning for manipulation may rely on shared neural systems. Moreover, the ensuing regions, in turn, featured differential connectivity with the bilateral ventral and dorsal extrastriate cortex, suggesting largely segregated bilateral connectivity pathways from the dorsal visual cortex via the superior and inferior parietal lobules to the dorsal posterior frontal cortex and from the ventral visual cortex via the IPS to the ventral posterior frontal cortex that may

  7. Significance of parietal projection in radiosotope scintigraphy of the brain

    International Nuclear Information System (INIS)

    Fomchenkov, E.P.

    1978-01-01

    The diagnostic value of the isotope scintigraphy of the brain in the parieal projection with the change of the dip angle of the gamma-chamber detector to the plane of the physiological horizontal was revealed. The observation was made on 100 patients with suspected presence of the volumetric process of the brain. Three variants of placing were studied: the parietal projection - standard (collimator plane parallel to the plane of physiological horizontal and strictly perpendicular to the sagittal plane); the placing with an angle of 30 deg between the detector plane and the physiological horizontal, opened at the front (posterio-parietal); placing with an angle of 30 deg between the detector plane and the physiological horizontal opened at the back (anterio-parietal). A comparative analysis of scintigrams with focal processes of the brain showed the largest informativeness of the proposed modification of the parietal projection in the form of a change of the dip angle of the gamma-chamber detector plane to the plane of the physiological horizontal opened at the back; this makes it possible to reveal more thoroughly the focus of the increased, pathological accumulation of the isotope in different parts of the skull, where the use of as standard placing is of small informativeness

  8. Exploiting the gain-modulation mechanism in parieto-motor neurons: application to visuomotor transformations and embodied simulation.

    Science.gov (United States)

    Mahé, Sylvain; Braud, Raphaël; Gaussier, Philippe; Quoy, Mathias; Pitti, Alexandre

    2015-02-01

    The so-called self-other correspondence problem in imitation demands to find the transformation that maps the motor dynamics of one partner to our own. This requires a general purpose sensorimotor mechanism that transforms an external fixation-point (partner's shoulder) reference frame to one's own body-centered reference frame. We propose that the mechanism of gain-modulation observed in parietal neurons may generally serve these types of transformations by binding the sensory signals across the modalities with radial basis functions (tensor products) on the one hand and by permitting the learning of contextual reference frames on the other hand. In a shoulder-elbow robotic experiment, gain-field neurons (GF) intertwine the visuo-motor variables so that their amplitude depends on them all. In situations of modification of the body-centered reference frame, the error detected in the visuo-motor mapping can serve then to learn the transformation between the robot's current sensorimotor space and the new one. These situations occur for instance when we turn the head on its axis (visual transformation), when we use a tool (body modification), or when we interact with a partner (embodied simulation). Our results defend the idea that the biologically-inspired mechanism of gain modulation found in parietal neurons can serve as a basic structure for achieving nonlinear mapping in spatial tasks as well as in cooperative and social functions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The structure of the parietal pleura and its relationship to pleural liquid dynamics in sheep.

    Science.gov (United States)

    Albertine, K H; Wiener-Kronish, J P; Staub, N C

    1984-03-01

    We studied the parietal pleura of six sheep to obtain information on pleural structure, blood supply, and lymphatic drainage. In the strict sense, the parietal pleura is composed of a single layer of mesothelial cells and a uniform layer of loose, irregular connective tissue (about 23 micron in width) subjacent to the mesothelial cells. The parietal pleural blood vessels are 10-15 micron from the pleural space. Tracer substances put in the pleural space are removed at specific locations. Colloidal carbon and chick red blood cells are cleared by the parietal pleural lymphatics located over the intercostal spaces at the caudal end of the thoracic wall and over the lateral sides of the pericardial sac. In these areas the mesothelial cells have specialized openings, the stomata, that directly communicate with the underlying lymphatic lacunae. Cells and particulate matter in the pleural space are cleared only by the parietal pleural lymphatics. Compared to the visceral pleura, we believe the thinness of the parietal pleura, the closeness of its blood vessels to the pleural space, and its specialized lymphatic clearance pathways, together indicate that the parietal pleura plays a major role in pleural liquid and protein dynamics in sheep.

  10. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions.

    Science.gov (United States)

    Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka

    2016-08-04

    Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution.

  11. Automatic fitting of spiking neuron models to electrophysiological recordings

    Directory of Open Access Journals (Sweden)

    Cyrille Rossant

    2010-03-01

    Full Text Available Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains that can run in parallel on graphics processing units (GPUs. The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models.

  12. Integration of Visual and Proprioceptive Limb Position Information in Human Posterior Parietal, Premotor, and Extrastriate Cortex.

    Science.gov (United States)

    Limanowski, Jakub; Blankenburg, Felix

    2016-03-02

    The brain constructs a flexible representation of the body from multisensory information. Previous work on monkeys suggests that the posterior parietal cortex (PPC) and ventral premotor cortex (PMv) represent the position of the upper limbs based on visual and proprioceptive information. Human experiments on the rubber hand illusion implicate similar regions, but since such experiments rely on additional visuo-tactile interactions, they cannot isolate visuo-proprioceptive integration. Here, we independently manipulated the position (palm or back facing) of passive human participants' unseen arm and of a photorealistic virtual 3D arm. Functional magnetic resonance imaging (fMRI) revealed that matching visual and proprioceptive information about arm position engaged the PPC, PMv, and the body-selective extrastriate body area (EBA); activity in the PMv moreover reflected interindividual differences in congruent arm ownership. Further, the PPC, PMv, and EBA increased their coupling with the primary visual cortex during congruent visuo-proprioceptive position information. These results suggest that human PPC, PMv, and EBA evaluate visual and proprioceptive position information and, under sufficient cross-modal congruence, integrate it into a multisensory representation of the upper limb in space. The position of our limbs in space constantly changes, yet the brain manages to represent limb position accurately by combining information from vision and proprioception. Electrophysiological recordings in monkeys have revealed neurons in the posterior parietal and premotor cortices that seem to implement and update such a multisensory limb representation, but this has been difficult to demonstrate in humans. Our fMRI experiment shows that human posterior parietal, premotor, and body-selective visual brain areas respond preferentially to a virtual arm seen in a position corresponding to one's unseen hidden arm, while increasing their communication with regions conveying visual

  13. Object integration requires attention: Visual search for Kanizsa figures in parietal extinction.

    Science.gov (United States)

    Gögler, Nadine; Finke, Kathrin; Keller, Ingo; Müller, Hermann J; Conci, Markus

    2016-11-01

    The contribution of selective attention to object integration is a topic of debate: integration of parts into coherent wholes, such as in Kanizsa figures, is thought to arise either from pre-attentive, automatic coding processes or from higher-order processes involving selective attention. Previous studies have attempted to examine the role of selective attention in object integration either by employing visual search paradigms or by studying patients with unilateral deficits in selective attention. Here, we combined these two approaches to investigate object integration in visual search in a group of five patients with left-sided parietal extinction. Our search paradigm was designed to assess the effect of left- and right-grouped nontargets on detecting a Kanizsa target square. The results revealed comparable reaction time (RT) performance in patients and controls when they were presented with displays consisting of a single to-be-grouped item that had to be classified as target vs. nontarget. However, when display size increased to two items, patients showed an extinction-specific pattern of enhanced RT costs for nontargets that induced a partial shape grouping on the right, i.e., in the attended hemifield (relative to the ungrouped baseline). Together, these findings demonstrate a competitive advantage for right-grouped objects, which in turn indicates that in parietal extinction, attentional competition between objects particularly limits integration processes in the contralesional, i.e., left hemifield. These findings imply a crucial contribution of selective attentional resources to visual object integration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Abstract Representations of Object-Directed Action in the Left Inferior Parietal Lobule.

    Science.gov (United States)

    Chen, Quanjing; Garcea, Frank E; Jacobs, Robert A; Mahon, Bradford Z

    2018-06-01

    Prior neuroimaging and neuropsychological research indicates that the left inferior parietal lobule in the human brain is a critical substrate for representing object manipulation knowledge. In the present functional MRI study we used multivoxel pattern analyses to test whether action similarity among objects can be decoded in the inferior parietal lobule independent of the task applied to objects (identification or pantomime) and stimulus format in which stimuli are presented (pictures or printed words). Participants pantomimed the use of objects, cued by printed words, or identified pictures of objects. Classifiers were trained and tested across task (e.g., training data: pantomime; testing data: identification), stimulus format (e.g., training data: word format; testing format: picture) and specific objects (e.g., training data: scissors vs. corkscrew; testing data: pliers vs. screwdriver). The only brain region in which action relations among objects could be decoded across task, stimulus format and objects was the inferior parietal lobule. By contrast, medial aspects of the ventral surface of the left temporal lobe represented object function, albeit not at the same level of abstractness as actions in the inferior parietal lobule. These results suggest compulsory access to abstract action information in the inferior parietal lobe even when simply identifying objects.

  15. Patterns of morphological integration between parietal and temporal areas in the human skull.

    Science.gov (United States)

    Bruner, Emiliano; Pereira-Pedro, Ana Sofia; Bastir, Markus

    2017-10-01

    Modern humans have evolved bulging parietal areas and large, projecting temporal lobes. Both changes, largely due to a longitudinal expansion of these cranial and cerebral elements, were hypothesized to be the result of brain evolution and cognitive variations. Nonetheless, the independence of these two morphological characters has not been evaluated. Because of structural and functional integration among cranial elements, changes in the position of the temporal poles can be a secondary consequence of parietal bulging and reorientation of the head axis. In this study, we use geometric morphometrics to test the correlation between parietal shape and the morphology of the endocranial base in a sample of adult modern humans. Our results suggest that parietal proportions show no correlation with the relative position of the temporal poles within the spatial organization of the endocranial base. The vault and endocranial base are likely to be involved in distinct morphogenetic processes, with scarce or no integration between these two districts. Therefore, the current evidence rejects the hypothesis of reciprocal morphological influences between parietal and temporal morphology, suggesting that evolutionary spatial changes in these two areas may have been independent. However, parietal bulging exerts a visible effect on the rotation of the cranial base, influencing head position and orientation. This change can have had a major relevance in the reorganization of the head functional axis. © 2017 Wiley Periodicals, Inc.

  16. Sex-dependent age modulation of frontostriatal and temporo-parietal activation during cognitive control.

    Science.gov (United States)

    Christakou, Anastasia; Halari, Rozmin; Smith, Anna B; Ifkovits, Eve; Brammer, Mick; Rubia, Katya

    2009-10-15

    Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.

  17. Dissociation of Subtraction and Multiplication in the Right Parietal Cortex: Evidence from Intraoperative Cortical Electrostimulation

    Science.gov (United States)

    Yu, Xiaodan; Chen, Chuansheng; Pu, Song; Wu, Chenxing; Li, Yongnian; Jiang, Tao; Zhou, Xinlin

    2011-01-01

    Previous research has consistently shown that the left parietal cortex is critical for numerical processing, but the role of the right parietal lobe has been much less clear. This study used the intraoperative cortical electrical stimulation approach to investigate neural dissociation in the right parietal cortex for subtraction and…

  18. Attenuating illusory binding with TMS of the right parietal cortex

    OpenAIRE

    Esterman, Michael; Verstynen, Timothy; Robertson, Lynn C.

    2007-01-01

    A number of neuroimaging and neuropsychology studies have implicated various regions of parietal cortex as playing a critical role in the binding of color and form into conjunctions. The current study investigates the role of two such regions by examining how parietal transcranial magnetic stimulation (TMS) influences binding errors known as ‘illusory conjunctions.’ Participants made fewer binding errors after 1 Hz rTMS of the right intraparietal sulcus (IPS), while basic perception of featur...

  19. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates

    Science.gov (United States)

    Wessberg, Johan; Stambaugh, Christopher R.; Kralik, Jerald D.; Beck, Pamela D.; Laubach, Mark; Chapin, John K.; Kim, Jung; Biggs, S. James; Srinivasan, Mandayam A.; Nicolelis, Miguel A. L.

    2000-11-01

    Signals derived from the rat motor cortex can be used for controlling one-dimensional movements of a robot arm. It remains unknown, however, whether real-time processing of cortical signals can be employed to reproduce, in a robotic device, the kind of complex arm movements used by primates to reach objects in space. Here we recorded the simultaneous activity of large populations of neurons, distributed in the premotor, primary motor and posterior parietal cortical areas, as non-human primates performed two distinct motor tasks. Accurate real-time predictions of one- and three-dimensional arm movement trajectories were obtained by applying both linear and nonlinear algorithms to cortical neuronal ensemble activity recorded from each animal. In addition, cortically derived signals were successfully used for real-time control of robotic devices, both locally and through the Internet. These results suggest that long-term control of complex prosthetic robot arm movements can be achieved by simple real-time transformations of neuronal population signals derived from multiple cortical areas in primates.

  20. The role of human parietal area 7A as a link between sequencing in hand actions and in overt speech production

    Directory of Open Access Journals (Sweden)

    Stefan eHeim

    2012-12-01

    Full Text Available Research on the evolutionary basis of the human language faculty has proposed the mirror neuron system as a link between motor processing and speech development. Consequently, most work has focussed on the left inferior frontal cortex, in particular Broca's region, and the left inferior parietal cortex. However, the direct link between planning of hand motor and speech actions remains to be elucidated. Thus, the present study investigated whether sequencing of hand motor actions vs. speech motor actions has a common neural denominator. For the hand motor task, 25 subjects performed single, repeated, or sequenced button presses with either the left or right hand. The speech task was in analogy; the same subjects produced the syllable "po" once or repeatedly, or a sequence of different syllables (po-pi-po. Speech motor vs. hand motor effectors resulted in increased perisylvian activation including Broca's region (left area 44 and areas medially adjacent to left area 45. In contrast, common activation for sequenced vs. repeated production of button presses and syllables revealed the effector-independent involvement of left area 7A in the superior parietal lobule (SPL in sequencing. These data demonstrate that sequencing of vocal gestures, an important precondition for ordered utterances and ultimately human speech, shares area 7A, rather than inferior parietal regions, as a common cortical module with hand motor sequencing. Interestingly, area 7A has previously also been shown to be involved in the observation of hand and non-hand actions. In combination with the literature, the present data thus suggest a distinction between area 44, which is specifically recruited for (cognitive aspects of speech, and SPL area 7A for general aspects of motor sequencing. In sum, the study demonstrates a yet little considered role of the superior parietal lobule in the origins of speech, and may be discussed in the light of embodiment of speech and language in the

  1. Efficiency of rate and latency coding with respect to metabolic cost and time.

    Science.gov (United States)

    Levakova, Marie

    2017-11-01

    Recent studies on the theoretical performance of latency and rate code in single neurons have revealed that the ultimate accuracy is affected in a nontrivial way by aspects such as the level of spontaneous activity of presynaptic neurons, amount of neuronal noise or the duration of the time window used to determine the firing rate. This study explores how the optimal decoding performance and the corresponding conditions change when the energy expenditure of a neuron in order to spike and maintain the resting membrane potential is accounted for. It is shown that a nonzero amount of spontaneous activity remains essential for both the latency and the rate coding. Moreover, the optimal level of spontaneous activity does not change so much with respect to the intensity of the applied stimulus. Furthermore, the efficiency of the temporal and the rate code converge to an identical finite value if the neuronal activity is observed for an unlimited period of time. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Efficient Coding and Energy Efficiency Are Promoted by Balanced Excitatory and Inhibitory Synaptic Currents in Neuronal Network.

    Science.gov (United States)

    Yu, Lianchun; Shen, Zhou; Wang, Chen; Yu, Yuguo

    2018-01-01

    Selective pressure may drive neural systems to process as much information as possible with the lowest energy cost. Recent experiment evidence revealed that the ratio between synaptic excitation and inhibition (E/I) in local cortex is generally maintained at a certain value which may influence the efficiency of energy consumption and information transmission of neural networks. To understand this issue deeply, we constructed a typical recurrent Hodgkin-Huxley network model and studied the general principles that governs the relationship among the E/I synaptic current ratio, the energy cost and total amount of information transmission. We observed in such a network that there exists an optimal E/I synaptic current ratio in the network by which the information transmission achieves the maximum with relatively low energy cost. The coding energy efficiency which is defined as the mutual information divided by the energy cost, achieved the maximum with the balanced synaptic current. Although background noise degrades information transmission and imposes an additional energy cost, we find an optimal noise intensity that yields the largest information transmission and energy efficiency at this optimal E/I synaptic transmission ratio. The maximization of energy efficiency also requires a certain part of energy cost associated with spontaneous spiking and synaptic activities. We further proved this finding with analytical solution based on the response function of bistable neurons, and demonstrated that optimal net synaptic currents are capable of maximizing both the mutual information and energy efficiency. These results revealed that the development of E/I synaptic current balance could lead a cortical network to operate at a highly efficient information transmission rate at a relatively low energy cost. The generality of neuronal models and the recurrent network configuration used here suggest that the existence of an optimal E/I cell ratio for highly efficient energy

  3. Functional differentiation of macaque visual temporal cortical neurons using a parametric action space.

    Science.gov (United States)

    Vangeneugden, Joris; Pollick, Frank; Vogels, Rufin

    2009-03-01

    Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.

  4. Investigating the effects of nitrous oxide sedation on frontal-parietal interactions.

    Science.gov (United States)

    Ryu, Ji-Ho; Kim, Pil-Jong; Kim, Hong-Gee; Koo, Yong-Seo; Shin, Teo Jeon

    2017-06-09

    Although functional connectivity has received considerable attention in the study of consciousness, few studies have investigated functional connectivity limited to the sedated state where consciousness is maintained but impaired. The aim of the present study was to investigate changes in functional connectivity of the parietal-frontal network resulting from nitrous oxide-induced sedation, and to determine the neural correlates of cognitive impairment during consciousness transition states. Electroencephalography was acquired from healthy adult patients who underwent nitrous oxide inhalation to induce cognitive impairment, and was analyzed using Granger causality (GC). Periods of awake, sedation and recovery for GC between frontal and parietal areas in the delta, theta, alpha, beta, gamma and total frequency bands were obtained. The Friedman test with post-hoc analysis was conducted for GC values of each period for comparison. As a sedated state was induced by nitrous oxide inhalation, power in the low frequency band showed increased activity in frontal regions that was reversed with discontinuation of nitrous oxide. Feedback and feedforward connections analyzed in spectral GC were changed differently in accordance with EEG frequency bands in the sedated state by nitrous oxide administration. Calculated spectral GC of the theta, alpha, and beta frequency regions in the parietal-to-frontal direction was significantly decreased in the sedated state while spectral GC in the reverse direction did not show significant change. Frontal-parietal functional connectivity is significantly affected by nitrous oxide inhalation. Significantly decreased parietal-to-frontal interaction may induce a sedated state. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The mirror mechanism in the parietal lobe.

    Science.gov (United States)

    Rizzolatti, Giacomo; Rozzi, Stefano

    2018-01-01

    The mirror mechanism is a basic mechanism that transforms sensory representations of others' actions into motor representations of the same actions in the brain of the observer. The mirror mechanism plays an important role in understanding actions of others. In the present chapter we discuss first the basic organization of the posterior parietal lobe in the monkey, stressing that it is best characterized as a motor scaffold, on the top of which sensory information is organized. We then describe the location of the mirror mechanism in the posterior parietal cortex of the monkey, and its functional role in areas PFG, and anterior, ventral, and lateral intraparietal areas. We will then present evidence that a similar functional organization is present in humans. We will conclude by discussing the role of the mirror mechanism in the recognition of action performed with tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Spike rate and spike timing contributions to coding taste quality information in rat periphery

    Directory of Open Access Journals (Sweden)

    Vernon eLawhern

    2011-05-01

    Full Text Available There is emerging evidence that individual sensory neurons in the rodent brain rely on temporal features of the discharge pattern to code differences in taste quality information. In contrast, in-vestigations of individual sensory neurons in the periphery have focused on analysis of spike rate and mostly disregarded spike timing as a taste quality coding mechanism. The purpose of this work was to determine the contribution of spike timing to taste quality coding by rat geniculate ganglion neurons using computational methods that have been applied successfully in other sys-tems. We recorded the discharge patterns of narrowly-tuned and broadly-tuned neurons in the rat geniculate ganglion to representatives of the five basic taste qualities. We used mutual in-formation to determine significant responses and the van Rossum metric to characterize their temporal features. While our findings show that spike timing contributes a significant part of the message, spike rate contributes the largest portion of the message relayed by afferent neurons from rat fungiform taste buds to the brain. Thus, spike rate and spike timing together are more effective than spike rate alone in coding stimulus quality information to a single basic taste in the periphery for both narrowly-tuned specialist and broadly-tuned generalist neurons.

  7. The contribution of the human posterior parietal cortex to episodic memory

    OpenAIRE

    Sestieri, Carlo; Shulman, Gordon L.; Corbetta, Maurizio

    2017-01-01

    The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional–anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push–pull relationship, poten...

  8. Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2014-06-01

    Full Text Available As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60Hz synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain, and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more connector bridges between the frontal and parietal cortices and less connector hubs in the sensorimotor cortex. The time-domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.

  9. The Oft-Neglected Role of Parietal EEG Asymmetry and Risk for Major Depressive Disorder

    Science.gov (United States)

    Stewart, Jennifer L.; Towers, David N.; Coan, James A.; Allen, John J.B.

    2010-01-01

    Relatively less right parietal activity may reflect reduced arousal and signify risk for major depressive disorder (MDD). Inconsistent findings with parietal electroencephalographic (EEG) asymmetry, however, suggest issues such as anxiety comorbidity and sex differences have yet to be resolved. Resting parietal EEG asymmetry was assessed in 306 individuals (31% male) with (n = 143) and without (n = 163) a DSM-IV diagnosis of lifetime MDD and no comorbid anxiety disorders. Past MDD+ women displayed relatively less right parietal activity than current MDD+ and MDD- women, replicating prior work. Recent caffeine intake, an index of arousal, moderated the relationship between depression and EEG asymmetry for women and men. Findings suggest that sex differences and arousal should be examined in studies of depression and regional brain activity. PMID:20525011

  10. Phosphene-guided transcranial magnetic stimulation of occipital but not parietal cortex suppresses stimulus visibility

    Science.gov (United States)

    Tapia, Evelina; Mazzi, Chiara; Savazzi, Silvia; Beck, Diane M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) applied over the occipital lobe approximately 100 ms after the onset of a stimulus decreases its visibility if it appears in the location of the phosphene. Because phosphenes can also be elicited by stimulation of the parietal regions, we asked if the same procedure that is used to reduce visibility of stimuli with occipital TMS will lead to decreased stimulus visibility when TMS is applied to parietal regions. TMS was randomly applied at 0 to 130 ms after the onset of the stimulus (SOA) in steps of 10 ms in occipital and parietal regions. Participants responded to the orientation of the line stimulus and rated its visibility. We replicate previous reports of phosphenes from both occipital and parietal TMS. As previously reported, we also observed visual suppression around the classical 100 ms window both in the objective line orientation and subjective visibility responses with occipital TMS. Parietal stimulation, on the other hand, did not consistently reduce stimulus visibility in any time window. PMID:24584900

  11. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation?

    Science.gov (United States)

    Parker, Lindsay M; Le, Sheng; Wearne, Travis A; Hardwick, Kate; Kumar, Natasha N; Robinson, Katherine J; McMullan, Simon; Goodchild, Ann K

    2017-06-15

    Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed. © 2017 Wiley Periodicals, Inc.

  12. Parietal cells-new perspectives in glomerular disease

    NARCIS (Netherlands)

    Miesen, L.; Steenbergen, E.; Smeets, B.

    2017-01-01

    In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman's capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and

  13. Visual perception is dependent on visuospatial working memory and thus on the posterior parietal cortex.

    Science.gov (United States)

    Pisella, Laure

    2017-06-01

    Visual perception involves complex and active processes. We will start by explaining why visual perception is dependent on visuospatial working memory, especially the spatiotemporal integration of the perceived elements through the ocular exploration of visual scenes. Then we will present neuropsychology, transcranial magnetic stimulation and neuroimaging data yielding information on the specific role of the posterior parietal cortex of the right hemisphere in visuospatial working memory. Within the posterior parietal cortex, neuropsychology data also suggest that there might be dissociated neural substrates for deployment of attention (superior parietal lobules) and spatiotemporal integration (right inferior parietal lobule). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    Science.gov (United States)

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.

  15. Design of time-pulse coded optoelectronic neuronal elements for nonlinear transformation and integration

    Science.gov (United States)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lazareva, Maria V.

    2008-03-01

    In the paper the actuality of neurophysiologically motivated neuron arrays with flexibly programmable functions and operations with possibility to select required accuracy and type of nonlinear transformation and learning are shown. We consider neurons design and simulation results of multichannel spatio-time algebraic accumulation - integration of optical signals. Advantages for nonlinear transformation and summation - integration are shown. The offered circuits are simple and can have intellectual properties such as learning and adaptation. The integrator-neuron is based on CMOS current mirrors and comparators. The performance: consumable power - 100...500 μW, signal period- 0.1...1ms, input optical signals power - 0.2...20 μW time delays - less 1μs, the number of optical signals - 2...10, integration time - 10...100 of signal periods, accuracy or integration error - about 1%. Various modifications of the neuron-integrators with improved performance and for different applications are considered in the paper.

  16. Nuclear Glycogen Inclusions in Canine Parietal Cells.

    Science.gov (United States)

    Silvestri, S; Lepri, E; Dall'Aglio, C; Marchesi, M C; Vitellozzi, G

    2017-05-01

    Nuclear glycogen inclusions occur infrequently in pathologic conditions but also in normal human and animal tissues. Their function or significance is unclear. To the best of the authors' knowledge, no reports of nuclear glycogen inclusions in canine parietal cells exist. After initial observations of nuclear inclusions/pseudoinclusions during routine histopathology, the authors retrospectively examined samples of gastric mucosa from dogs presenting with gastrointestinal signs for the presence of intranuclear inclusions/pseudoinclusions and determined their composition using histologic and electron-microscopic methods. In 24 of 108 cases (22%), the authors observed various numbers of intranuclear inclusions/pseudoinclusions within scattered parietal cells. Nuclei were characterized by marked karyomegaly and chromatin margination around a central optically empty or slightly eosinophilic area. The intranuclear inclusions/pseudoinclusions stained positive with periodic acid-Schiff (PAS) and were diastase sensitive, consistent with glycogen. Several PAS-positive/diastase-sensitive sections were further examined by transmission electron microscopy, also using periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining to identify polysaccharides. Ultrastructurally, the nuclear inclusions were composed of electron-dense particles that were not membrane bound, without evidence of nuclear membrane invaginations or cytoplasmic organelles in the nuclei, and positive staining with PA-TCH-SP, confirming a glycogen composition. No cytoplasmic glycogen deposits were observed, suggesting that the intranuclear glycogen inclusions were probably synthesized in loco. Nuclear glycogen inclusions were not associated with gastritis or colonization by Helicobacter-like organisms ( P > .05). Our findings suggest that nuclear glycogen inclusions in canine parietal cells could be an incidental finding. Nevertheless, since nuclear glycogen is present in several pathologic

  17. Function and coding in the blowfly H1 neuron during naturalistic optic flow

    NARCIS (Netherlands)

    Hateren, J.H. van; Kern, R.; Schwerdtfeger, G.; Egelhaaf, M.

    2005-01-01

    Naturalistic stimuli, reconstructed from measured eye movements of flying blowflies, were replayed on a panoramic stimulus device. The directional movement-sensitive H1 neuron was recorded from blowflies watching these stimuli. The response of the H1 neuron is dominated by the response to fast

  18. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation

    Directory of Open Access Journals (Sweden)

    Katrin Hanken

    2016-09-01

    Full Text Available Background: Fatigue in multiple sclerosis (MS patients appears to correlate with vigilance decrement as reflected in an increase in reaction time and errors with prolonged time-on-task. Objectives: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. Methods: In study I, a randomized double-blind placebo-controlled study, anodal tDCS (1,5mA was delivered to the right parietal cortex or the right frontal cortex of 52 healthy participants during the first 20min of a 40min lasting visual vigilance task. Study II, also a randomized double-blind placebo-controlled study, investigated the effect of anodal tDCS (1.5mA over the right parietal cortex in 46 MS patients experiencing cognitive fatigue. TDCS was delivered for 20min before patients performed a 20min lasting visual vigilance task.Results: Study I showed that right parietal stimulation, but not right frontal stimulation, counteracts the increase in reaction time associated with vigilance decrement. Hence, only right parietal stimulation was applied to the MS patients in study II. Stimulation had a significant effect on vigilance decrement in mildly to moderately cognitively fatigued MS patients. Vigilance testing significantly increased the feeling of fatigue independent of stimulation.Conclusions: Anodal tDCS over the right parietal cortex can counteract the increase in reaction times during vigilance performance but not the increase in subjective fatigue. This finding is compatible with our model of fatigue in MS, suggesting a dissociation between the feeling and the behavioral characteristics of fatigue.

  19. Counteracting Fatigue in Multiple Sclerosis with Right Parietal Anodal Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Hanken, Katrin; Bosse, Mona; Möhrke, Kim; Eling, Paul; Kastrup, Andreas; Antal, Andrea; Hildebrandt, Helmut

    2016-01-01

    Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time (RT) and errors with prolonged time-on-task. The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS) over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. In study I, a randomized double-blind placebo-controlled study, anodal tDCS (1.5 mA) was delivered to the right parietal cortex or the right frontal cortex of 52 healthy participants during the first 20 min of a 40-min lasting visual vigilance task. Study II, also a randomized double-blind placebo-controlled study, investigated the effect of anodal tDCS (1.5 mA) over the right parietal cortex in 46 MS patients experiencing cognitive fatigue. tDCS was delivered for 20 min before patients performed a 20-min lasting visual vigilance task. Study I showed that right parietal stimulation, but not right frontal stimulation, counteracts the increase in RT associated with vigilance decrement. Hence, only right parietal stimulation was applied to the MS patients in study II. Stimulation had a significant effect on vigilance decrement in mildly to moderately cognitively fatigued MS patients. Vigilance testing significantly increased the feeling of fatigue independent of stimulation. Anodal tDCS over the right parietal cortex can counteract the increase in RTs during vigilance performance, but not the increase in subjective fatigue. This finding is compatible with our model of fatigue in MS, suggesting a dissociation between the feeling and the behavioral characteristics of fatigue.

  20. Muscarinic responses of gastric parietal cells

    International Nuclear Information System (INIS)

    Wilkes, J.M.; Kajimura, M.; Scott, D.R.; Hersey, S.J.; Sachs, G.

    1991-01-01

    Isolated rabbit gastric glands were used to study the nature of the muscarinic cholinergic responses of parietal cells. Carbachol stimulation of acid secretion, as measured by the accumulation of aminopyrine, was inhibited by the M1 antagonist, pirenzepine, with an IC50 of 13 microM; by the M2 antagonist, 11,2-(diethylamino)methyl-1 piperidinyl acetyl-5,11-dihydro-6H-pyrido 2,3-b 1,4 benzodiazepin-6-one (AF-DX 116), with an IC50 of 110 microM; and by the M1/M3 antagonist, diphenyl-acetoxy-4-methylpiperidinemethiodide, with an IC50 of 35 nM. The three antagonists displayed equivalent IC50 values for the inhibition of carbachol-stimulated production of 14CO2 from radiolabeled glucose, which is a measure of the turnover of the H,K-ATPase, the final step of acid secretion. Intracellular calcium levels were measured in gastric glands loaded with FURA 2. Carbachol was shown to both release calcium from an intracellular pool and to promote calcium entry across the plasma membrane. The calcium entry was inhibitable by 20 microM La3+. The relative potency of the three muscarinic antagonists for inhibition of calcium entry was essentially the same as for inhibition of acid secretion or pump related glucose oxidation. Image analysis of the glands showed the effects of carbachol, and of the antagonists, on intracellular calcium were occurring largely in the parietal cell. The rise in cell calcium due to release of calcium from intracellular stores was inhibited by 4-DAMP with an IC50 of 1.7 nM, suggesting that the release pathway was regulated by a low affinity M3 muscarinic receptor or state; Ca entry and acid secretion are regulated by a high affinity M3 muscarinic receptor or state, inhibited by higher 4-DAMP concentrations, suggesting that it is the steady-state elevation of Ca that is related to parietal cell function rather than the [Ca]i transient

  1. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    Science.gov (United States)

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  2. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.

    Science.gov (United States)

    Sheremata, Summer L; Somers, David C; Shomstein, Sarah

    2018-02-07

    Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information. SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and

  3. Encoding of Spatial Attention by Primate Prefrontal Cortex Neuronal Ensembles

    Science.gov (United States)

    Treue, Stefan

    2018-01-01

    Abstract Single neurons in the primate lateral prefrontal cortex (LPFC) encode information about the allocation of visual attention and the features of visual stimuli. However, how this compares to the performance of neuronal ensembles at encoding the same information is poorly understood. Here, we recorded the responses of neuronal ensembles in the LPFC of two macaque monkeys while they performed a task that required attending to one of two moving random dot patterns positioned in different hemifields and ignoring the other pattern. We found single units selective for the location of the attended stimulus as well as for its motion direction. To determine the coding of both variables in the population of recorded units, we used a linear classifier and progressively built neuronal ensembles by iteratively adding units according to their individual performance (best single units), or by iteratively adding units based on their contribution to the ensemble performance (best ensemble). For both methods, ensembles of relatively small sizes (n decoding performance relative to individual single units. However, the decoder reached similar performance using fewer neurons with the best ensemble building method compared with the best single units method. Our results indicate that neuronal ensembles within the LPFC encode more information about the attended spatial and nonspatial features of visual stimuli than individual neurons. They further suggest that efficient coding of attention can be achieved by relatively small neuronal ensembles characterized by a certain relationship between signal and noise correlation structures. PMID:29568798

  4. Differential frontal-parietal phase synchrony during hypnosis as a function of hypnotic suggestibility.

    Science.gov (United States)

    Terhune, Devin Blair; Cardeña, Etzel; Lindgren, Magnus

    2011-10-01

    Spontaneous dissociative alterations in awareness and perception among highly suggestible individuals following a hypnotic induction may result from disruptions in the functional coordination of the frontal-parietal network. We recorded EEG and self-reported state dissociation in control and hypnosis conditions in two sessions with low and highly suggestible participants. Highly suggestible participants reliably experienced greater state dissociation and exhibited lower frontal-parietal phase synchrony in the alpha2 frequency band during hypnosis than low suggestible participants. These findings suggest that highly suggestible individuals exhibit a disruption of the frontal-parietal network that is only observable following a hypnotic induction. Copyright © 2011 Society for Psychophysiological Research.

  5. Are mirror neurons the basis of speech perception? Evidence from five cases with damage to the purported human mirror system

    Science.gov (United States)

    Rogalsky, Corianne; Love, Tracy; Driscoll, David; Anderson, Steven W.; Hickok, Gregory

    2013-01-01

    The discovery of mirror neurons in macaque has led to a resurrection of motor theories of speech perception. Although the majority of lesion and functional imaging studies have associated perception with the temporal lobes, it has also been proposed that the ‘human mirror system’, which prominently includes Broca’s area, is the neurophysiological substrate of speech perception. Although numerous studies have demonstrated a tight link between sensory and motor speech processes, few have directly assessed the critical prediction of mirror neuron theories of speech perception, namely that damage to the human mirror system should cause severe deficits in speech perception. The present study measured speech perception abilities of patients with lesions involving motor regions in the left posterior frontal lobe and/or inferior parietal lobule (i.e., the proposed human ‘mirror system’). Performance was at or near ceiling in patients with fronto-parietal lesions. It is only when the lesion encroaches on auditory regions in the temporal lobe that perceptual deficits are evident. This suggests that ‘mirror system’ damage does not disrupt speech perception, but rather that auditory systems are the primary substrate for speech perception. PMID:21207313

  6. The inferior parietal lobule and recognition memory : expectancy violation or successful retrieval?

    OpenAIRE

    O'Connor, Akira R.; Han, Sanghoon; Dobbins, Ian G.

    2010-01-01

    Functional neuroimaging studies of episodic recognition demonstrate an increased lateral parietal response for studied versus new materials, often termed a retrieval success effect. Using a novel memory analog of attentional cueing, we manipulated the correspondence between anticipated and actual recognition evidence by presenting valid or invalid anticipatory cues (e. g., "likely old") before recognition judgments. Although a superior parietal region demonstrated the retrieval success patter...

  7. A mixture of sparse coding models explaining properties of face neurons related to holistic and parts-based processing.

    Directory of Open Access Journals (Sweden)

    Haruo Hosoya

    2017-07-01

    Full Text Available Experimental studies have revealed evidence of both parts-based and holistic representations of objects and faces in the primate visual system. However, it is still a mystery how such seemingly contradictory types of processing can coexist within a single system. Here, we propose a novel theory called mixture of sparse coding models, inspired by the formation of category-specific subregions in the inferotemporal (IT cortex. We developed a hierarchical network that constructed a mixture of two sparse coding submodels on top of a simple Gabor analysis. The submodels were each trained with face or non-face object images, which resulted in separate representations of facial parts and object parts. Importantly, evoked neural activities were modeled by Bayesian inference, which had a top-down explaining-away effect that enabled recognition of an individual part to depend strongly on the category of the whole input. We show that this explaining-away effect was indeed crucial for the units in the face submodel to exhibit significant selectivity to face images over object images in a similar way to actual face-selective neurons in the macaque IT cortex. Furthermore, the model explained, qualitatively and quantitatively, several tuning properties to facial features found in the middle patch of face processing in IT as documented by Freiwald, Tsao, and Livingstone (2009. These included, in particular, tuning to only a small number of facial features that were often related to geometrically large parts like face outline and hair, preference and anti-preference of extreme facial features (e.g., very large/small inter-eye distance, and reduction of the gain of feature tuning for partial face stimuli compared to whole face stimuli. Thus, we hypothesize that the coding principle of facial features in the middle patch of face processing in the macaque IT cortex may be closely related to mixture of sparse coding models.

  8. Predicting Spike Occurrence and Neuronal Responsiveness from LFPs in Primary Somatosensory Cortex

    Science.gov (United States)

    Storchi, Riccardo; Zippo, Antonio G.; Caramenti, Gian Carlo; Valente, Maurizio; Biella, Gabriele E. M.

    2012-01-01

    Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role. PMID:22586452

  9. Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous synaptic transmission.

    Science.gov (United States)

    Xu, Wei; Morishita, Wade; Buckmaster, Paul S; Pang, Zhiping P; Malenka, Robert C; Südhof, Thomas C

    2012-03-08

    Neurons encode information by firing spikes in isolation or bursts and propagate information by spike-triggered neurotransmitter release that initiates synaptic transmission. Isolated spikes trigger neurotransmitter release unreliably but with high temporal precision. In contrast, bursts of spikes trigger neurotransmission reliably (i.e., boost transmission fidelity), but the resulting synaptic responses are temporally imprecise. However, the relative physiological importance of different spike-firing modes remains unclear. Here, we show that knockdown of synaptotagmin-1, the major Ca(2+) sensor for neurotransmitter release, abrogated neurotransmission evoked by isolated spikes but only delayed, without abolishing, neurotransmission evoked by bursts of spikes. Nevertheless, knockdown of synaptotagmin-1 in the hippocampal CA1 region did not impede acquisition of recent contextual fear memories, although it did impair the precision of such memories. In contrast, knockdown of synaptotagmin-1 in the prefrontal cortex impaired all remote fear memories. These results indicate that different brain circuits and types of memory employ distinct spike-coding schemes to encode and transmit information. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The mirror neuron system and the strange case of Broca's area.

    Science.gov (United States)

    Cerri, Gabriella; Cabinio, Monia; Blasi, Valeria; Borroni, Paola; Iadanza, Antonella; Fava, Enrica; Fornia, Luca; Ferpozzi, Valentina; Riva, Marco; Casarotti, Alessandra; Martinelli Boneschi, Filippo; Falini, Andrea; Bello, Lorenzo

    2015-03-01

    Mirror neurons, originally described in the monkey premotor area F5, are embedded in a frontoparietal network for action execution and observation. A similar Mirror Neuron System (MNS) exists in humans, including precentral gyrus, inferior parietal lobule, and superior temporal sulcus. Controversial is the inclusion of Broca's area, as homologous to F5, a relevant issue in light of the mirror hypothesis of language evolution, which postulates a key role of Broca's area in action/speech perception/production. We assess "mirror" properties of this area by combining neuroimaging and intraoperative neurophysiological techniques. Our results show that Broca's area is minimally involved in action observation and has no motor output on hand or phonoarticulatory muscles, challenging its inclusion in the MNS. The presence of these functions in premotor BA6 makes this area the likely homologue of F5 suggesting that the MNS may be involved in the representation of articulatory rather than semantic components of speech. © 2014 Wiley Periodicals, Inc.

  11. Theta phase precession and phase selectivity: a cognitive device description of neural coding

    Science.gov (United States)

    Zalay, Osbert C.; Bardakjian, Berj L.

    2009-06-01

    Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to

  12. Theta-band phase locking of orbitofrontal neurons during reward expectancy

    NARCIS (Netherlands)

    van Wingerden, M.; Vinck, M.; Lankelma, J.; Pennartz, C.M.A.

    2010-01-01

    The expectancy of a rewarding outcome following actions and cues is coded by a network of brain structures including the orbitofrontal cortex. Thus far, predicted reward was considered to be coded by time-averaged spike rates of neurons. However, besides firing rate, the precise timing of action

  13. Coding of auditory temporal and pitch information by hippocampal individual cells and cell assemblies in the rat.

    Science.gov (United States)

    Sakurai, Y

    2002-01-01

    This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.

  14. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  15. Heterogeneity and convergence of olfactory first-order neurons account for the high speed and sensitivity of second-order neurons.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Rospars

    2014-12-01

    Full Text Available In the olfactory system of male moths, a specialized subset of neurons detects and processes the main component of the sex pheromone emitted by females. It is composed of several thousand first-order olfactory receptor neurons (ORNs, all expressing the same pheromone receptor, that contact synaptically a few tens of second-order projection neurons (PNs within a single restricted brain area. The functional simplicity of this system makes it a favorable model for studying the factors that contribute to its exquisite sensitivity and speed. Sensory information--primarily the identity and intensity of the stimulus--is encoded as the firing rate of the action potentials, and possibly as the latency of the neuron response. We found that over all their dynamic range, PNs respond with a shorter latency and a higher firing rate than most ORNs. Modelling showed that the increased sensitivity of PNs can be explained by the ORN-to-PN convergent architecture alone, whereas their faster response also requires cell-to-cell heterogeneity of the ORN population. So, far from being detrimental to signal detection, the ORN heterogeneity is exploited by PNs, and results in two different schemes of population coding based either on the response of a few extreme neurons (latency or on the average response of many (firing rate. Moreover, ORN-to-PN transformations are linear for latency and nonlinear for firing rate, suggesting that latency could be involved in concentration-invariant coding of the pheromone blend and that sensitivity at low concentrations is achieved at the expense of precise encoding at high concentrations.

  16. Stochasticity in Ca2+ increase in spines enables robust and sensitive information coding.

    Directory of Open Access Journals (Sweden)

    Takuya Koumura

    Full Text Available A dendritic spine is a very small structure (∼0.1 µm3 of a neuron that processes input timing information. Why are spines so small? Here, we provide functional reasons; the size of spines is optimal for information coding. Spines code input timing information by the probability of Ca2+ increases, which makes robust and sensitive information coding possible. We created a stochastic simulation model of input timing-dependent Ca2+ increases in a cerebellar Purkinje cell's spine. Spines used probability coding of Ca2+ increases rather than amplitude coding for input timing detection via stochastic facilitation by utilizing the small number of molecules in a spine volume, where information per volume appeared optimal. Probability coding of Ca2+ increases in a spine volume was more robust against input fluctuation and more sensitive to input numbers than amplitude coding of Ca2+ increases in a cell volume. Thus, stochasticity is a strategy by which neurons robustly and sensitively code information.

  17. [Unconscious sexual desire: fMRI and EEG evidences from self-expansion theory to mirror neurons].

    Science.gov (United States)

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2010-03-24

    Recent advances in cognitive-social neuroscience allow a better understanding of the mechanisms underlying dyadic relationships. From a neuronal viewpoint, desire in dyadic relationships involves a specific fronto-temporo-parietal network and also a subcortical network that mediates conscious and unconscious mechanisms of reward, satisfaction, attention, self representation and self-expansion. The integration of this neuroscientific knowledge on the unconscious neurobiological activation for sexual desire in the human brain will provide physicians with new therapeutical and neuroscientific tools to apprehend sexual disorders in couple.

  18. Parietal epithelial cells and podocytes in glomerular diseases

    NARCIS (Netherlands)

    Smeets, B.; Moeller, M.J.

    2012-01-01

    In recent years, it has become apparent that parietal epithelial cells (PECs) play an important role within the renal glomerulus, in particular in diseased conditions. In this review, we examine current knowledge about the role of PECs and their interactions with podocytes in development and under

  19. Multimodal responses induced by cortical stimulation of the parietal lobe: a stereo-electroencephalography study.

    Science.gov (United States)

    Balestrini, Simona; Francione, Stefano; Mai, Roberto; Castana, Laura; Casaceli, Giuseppe; Marino, Daniela; Provinciali, Leandro; Cardinale, Francesco; Tassi, Laura

    2015-09-01

    The functional complexity of the parietal lobe still represents a challenge for neurophysiological and functional neuroimaging studies. While the somatosensory functions of the anterior parietal cortex are well established, the posterior parietal cortex has a relevant role in processing the sensory information, including visuo-spatial perception, visual attention, visuo-motor transformations and other complex and not completely understood functions. We retrospectively analysed all the clinical manifestations induced by intracerebral bipolar electrical stimulation in 172 patients suffering from drug-resistant focal epilepsy (mean age 25.6, standard deviation 11.6; 44% females and 56% males) with at least one electrode stereotactically implanted in the parietal cortex. A total of 1186 electrical stimulations were included in the analysis, of which 88 were subsequently excluded because of eliciting pathological electric activity or inducing ictal symptomatology. In the dominant parietal lobe, clinical responses were observed for 56 (25%) of the low-frequency stimulations and for 76 (50%) of the high-frequency stimulations. In the non-dominant parietal lobe, 111 (27%) low-frequency and 176 (55%) high-frequency stimulations were associated with a clinical response. Body scheme alteration was the only clinical effect showing a lateralization, as they were evoked only in the non-dominant hemisphere. The occurrence of somatosensory sensations, motor symptoms, dysarthria and multimodal responses were significantly associated with stimulation of the postcentral gyrus (odds ratio: 5.83, P < 0.001; odds ratio: 8.77, P < 0.001; odds ratio: 5.44, P = 0.011; odds ratio: 8.33, P = 0.006; respectively). Stimulation of the intraparietal sulcus was associated with the occurrence of sensory illusions or hallucinations (odds ratio: 8.68, P < 0.001) and eyeball/eyelid movements or sensations (odds ratio: 4.35, P = 0.047). To our knowledge, this is the only currently available complete

  20. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame

    Directory of Open Access Journals (Sweden)

    Jakub Limanowski

    2018-03-01

    Full Text Available Spatially and temporally congruent visuotactile stimulation of a fake hand together with one’s real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants’ index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  1. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame.

    Science.gov (United States)

    Limanowski, Jakub; Blankenburg, Felix

    2018-01-01

    Spatially and temporally congruent visuotactile stimulation of a fake hand together with one's real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants' index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  2. Verbal to visual code switching improves working memory in older adults: An fMRI study

    Directory of Open Access Journals (Sweden)

    Mariko eOsaka

    2012-02-01

    Full Text Available The effects of verbal to visual code switching training on working memory performance were investigated in the elderly. Twenty-five elderly people were introduced to a verbal to visual code switching strategy (training group while the other 25 were not (control group. During this strategy training period, participants in the training group practiced focusing their attention on a target word both by drawing the target’s figure and by forming mental images of the target. To explore the neural substrates underlying strategy effects, fMRI was used to measure brain activity of the elderly in both groups while they performed a working memory task (reading span test, RST, before and after the attention training period. RST recognition accuracy was enhanced only in the training group. fMRI data for this group showed increased activation in the anterior cingulate cortex (ACC, a region that typically shows activation in young adults performing the RST. Furthermore, activation was found both in the left and right inferior parietal lobule (IPL and right superior parietal lobule (SPL, while there was no activation in these areas for the control group. These findings suggest that using a strategy of verbal to visual code switching helped the elderly participants to maintain the words in working memory.

  3. Kinesthetic alexia due to left parietal lobe lesions.

    Science.gov (United States)

    Ihori, Nami; Kawamura, Mitsuru; Araki, Shigeo; Kawachi, Juro

    2002-01-01

    To investigate the neuropsychological mechanisms of kinesthetic alexia, we asked 7 patients who showed kinesthetic alexia with preserved visual reading after damage to the left parietal region to perform tasks consisting of kinesthetic written reproduction (writing down the same letter as the kinesthetic stimulus), kinesthetic reading aloud, visual written reproduction (copying letters), and visual reading aloud of hiragana (Japanese phonograms). We compared the performance in these tasks and the lesion sites in each patient. The results suggested that deficits in any one of the following functions might cause kinesthetic alexia: (1) the retrieval of kinesthetic images (motor engrams) of characters from kinesthetic stimuli, (2) kinesthetic images themselves, (3) access to cross-modal association from kinesthetic images, and (4) cross-modal association itself (retrieval of auditory and visual images from kinesthetic images of characters). Each of these factors seemed to be related to different lesion sites in the left parietal lobe. Copyright 2002 S. Karger AG, Basel

  4. Enhanced Working Memory Binding by Direct Electrical Stimulation of the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Agustina Birba

    2017-06-01

    Full Text Available Recent works evince the critical role of visual short-term memory (STM binding deficits as a clinical and preclinical marker of Alzheimer’s disease (AD. These studies suggest a potential role of posterior brain regions in both the neurocognitive deficits of Alzheimer’s patients and STM binding in general. Thereupon, we surmised that stimulation of the posterior parietal cortex (PPC might be a successful approach to tackle working memory deficits in this condition, especially at early stages. To date, no causal evidence exists of the role of the parietal cortex in STM binding. A unique approach to assess this issue is afforded by single-subject direct intracranial electrical stimulation of specific brain regions during a relevant cognitive task. Electrical stimulation has been used both for clinical purposes and to causally probe brain mechanisms. Previous evidence of electrical currents spreading through white matter along well defined functional circuits indicates that visual working memory mechanisms are subserved by a specific widely distributed network. Here, we stimulated the parietal cortex of a subject with intracranial electrodes as he performed the visual STM task. We compared the ensuing results to those from a non-stimulated condition and to the performance of a matched control group. In brief, direct stimulation of the parietal cortex induced a selective improvement in STM. These results, together with previous studies, provide very preliminary but promising ground to examine behavioral changes upon parietal stimulation in AD. We discuss our results regarding: (a the usefulness of the task to target prodromal stages of AD; (b the role of a posterior network in STM binding and in AD; and (c the potential opportunity to improve STM binding through brain stimulation.

  5. Sequential inference as a mode of cognition and its correlates in fronto-parietal and hippocampal brain regions.

    Directory of Open Access Journals (Sweden)

    Thomas H B FitzGerald

    2017-05-01

    Full Text Available Normative models of human cognition often appeal to Bayesian filtering, which provides optimal online estimates of unknown or hidden states of the world, based on previous observations. However, in many cases it is necessary to optimise beliefs about sequences of states rather than just the current state. Importantly, Bayesian filtering and sequential inference strategies make different predictions about beliefs and subsequent choices, rendering them behaviourally dissociable. Taking data from a probabilistic reversal task we show that subjects' choices provide strong evidence that they are representing short sequences of states. Between-subject measures of this implicit sequential inference strategy had a neurobiological underpinning and correlated with grey matter density in prefrontal and parietal cortex, as well as the hippocampus. Our findings provide, to our knowledge, the first evidence for sequential inference in human cognition, and by exploiting between-subject variation in this measure we provide pointers to its neuronal substrates.

  6. How do auditory cortex neurons represent communication sounds?

    Science.gov (United States)

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris; Laudanski, Jonathan; Occelli, Florian; Edeline, Jean-Marc

    2013-11-01

    A major goal in auditory neuroscience is to characterize how communication sounds are represented at the cortical level. The present review aims at investigating the role of auditory cortex in the processing of speech, bird songs and other vocalizations, which all are spectrally and temporally highly structured sounds. Whereas earlier studies have simply looked for neurons exhibiting higher firing rates to particular conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determined the coding capacity of temporal spike patterns, which are prominent in primary and non-primary areas (and also in non-auditory cortical areas). In several cases, this information seems to be correlated with the behavioral performance of human or animal subjects, suggesting that spike-timing based coding strategies might set the foundations of our perceptive abilities. Also, it is now clear that the responses of auditory cortex neurons are highly nonlinear and that their responses to natural stimuli cannot be predicted from their responses to artificial stimuli such as moving ripples and broadband noises. Since auditory cortex neurons cannot follow rapid fluctuations of the vocalizations envelope, they only respond at specific time points during communication sounds, which can serve as temporal markers for integrating the temporal and spectral processing taking place at subcortical relays. Thus, the temporal sparse code of auditory cortex neurons can be considered as a first step for generating high level representations of communication sounds independent of the acoustic characteristic of these sounds. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The contribution of the human posterior parietal cortex to episodic memory.

    Science.gov (United States)

    Sestieri, Carlo; Shulman, Gordon L; Corbetta, Maurizio

    2017-02-17

    The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional-anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push-pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval - for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions.

  8. The role of parietal cortex in the formation of colour and motion based concepts

    Directory of Open Access Journals (Sweden)

    Samuel William Cheadle

    2014-07-01

    Full Text Available Imaging evidence shows that separate subdivisions of parietal cortex, in and around the intraparietal sulcus (IPS, are engaged when stimuli are grouped according to colour and to motion (Zeki and Stutters 2013. Since grouping is an essential step in the formation of concepts, we wanted to learn whether parietal cortex is also engaged in the formation of concepts according to these two attributes. Using functional magnetic resonance imaging (fMRI, and choosing the recognition of concept-based colour or motion stimuli as our paradigm, we found that there was strong concept-related activity in and around the intraparietal sulcus (IPS, a region whose homologue in the macaque monkey is known to receive direct but segregated anatomical inputs from V4 and V5. Parietal activity related to colour concepts was juxtaposed but did not overlap with activity related to motion concepts, thus emphasizing the continuation of the segregation of colour and motion into the conceptual system. Concurrent retinotopic mapping experiments showed that within the parietal cortex, concept-related activity increases within later stage IPS areas.

  9. The mirror neuron system : New frontiers

    NARCIS (Netherlands)

    Keysers, Christian; Fadiga, Luciano

    2008-01-01

    Since the discovery of mirror neurons, much effort has been invested into Studying their location and properties in the human brain. Here we review these original findings and introduce the Main topics of this special issue of Social Neuroscience. What does the mirror system code? How is the mirror

  10. Investigation of Parietal Polysaccharides from Retama raetam Roots ...

    African Journals Online (AJOL)

    These results indicate the presence of the homogalacturonans and rhamnogalacturonans in pectin. This study constitutes the preliminary data obtained in the biochemical analysis of the parietal compounds of the roots of a species which grows in an arid area in comparison with those of its aerial parts. Keywords: Retama ...

  11. Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG.

    Science.gov (United States)

    Schauer, Georg; Chang, Acer; Schwartzman, David; Rae, Charlotte L; Iriye, Heather; Seth, Anil K; Kanai, Ryota

    2016-08-16

    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant's individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception.

  12. Parietal seeding of unsuspected gallbladder carcinoma after laparoscopic cholecystectomy.

    Science.gov (United States)

    Marmorale, C; Scibé, R; Siquini, W; Massa, M; Brunelli, A; Landi, E

    1998-01-01

    Laparoscopic cholecystectomy (VALC) represents the treatment of choice for the symptomatic gallstones. However the occurrence of an adenocarcinoma of the gallbladder results a controindication for this surgical technique. We present a case of a 52 years old woman who underwent a VALC; histology revealed a gallbladder adenocarcinoma. For this reason the patient underwent a second operation that is right hepatic trisegmentectomy. Six months later the patient presented with a parietal recurrence at the extraction site of the gallbladder. We discuss the possible mechanism responsible for carcinomatous dissemination during laparoscopic surgery and we raccommend the use of some procedures in order to limit the risk and eventually to treat a neoplastic parietal seeding. These complications suggest the problem about the utility and the future played by video assisted laparoscopic surgery in the diagnosis and treatment of intraabdominal malignancies.

  13. Discrete Sparse Coding.

    Science.gov (United States)

    Exarchakis, Georgios; Lücke, Jörg

    2017-11-01

    Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.

  14. Visualizing neuronal network connectivity with connectivity pattern tables

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2010-01-01

    Full Text Available Complex ideas are best conveyed through well-designed illustrations. Up to now, computational neuroscientists have mostly relied on box-and-arrow diagrams of even complex neuronal networks, often using ad hoc notations with conflicting use of symbols from paper to paper. This significantly impedes the communication of ideas in neuronal network modeling. We present here Connectivity Pattern Tables (CPTs as a clutter-free visualization of connectivity in large neuronal networks containing two-dimensional populations of neurons. CPTs can be generated automatically from the same script code used to create the actual network in the NEST simulator. Through aggregation, CPTs can be viewed at different levels, providing either full detail or summary information. We also provide the open source ConnPlotter tool as a means to create connectivity pattern tables.

  15. The effect of noise correlations in populations of diversely tuned neurons.

    Science.gov (United States)

    Ecker, Alexander S; Berens, Philipp; Tolias, Andreas S; Bethge, Matthias

    2011-10-05

    The amount of information encoded by networks of neurons critically depends on the correlation structure of their activity. Neurons with similar stimulus preferences tend to have higher noise correlations than others. In homogeneous populations of neurons, this limited range correlation structure is highly detrimental to the accuracy of a population code. Therefore, reduced spike count correlations under attention, after adaptation, or after learning have been interpreted as evidence for a more efficient population code. Here, we analyze the role of limited range correlations in more realistic, heterogeneous population models. We use Fisher information and maximum-likelihood decoding to show that reduced correlations do not necessarily improve encoding accuracy. In fact, in populations with more than a few hundred neurons, increasing the level of limited range correlations can substantially improve encoding accuracy. We found that this improvement results from a decrease in noise entropy that is associated with increasing correlations if the marginal distributions are unchanged. Surprisingly, for constant noise entropy and in the limit of large populations, the encoding accuracy is independent of both structure and magnitude of noise correlations.

  16. Supralinear and Supramodal Integration of Visual and Tactile Signals in Rats: Psychophysics and Neuronal Mechanisms.

    Science.gov (United States)

    Nikbakht, Nader; Tafreshiha, Azadeh; Zoccolan, Davide; Diamond, Mathew E

    2018-02-07

    To better understand how object recognition can be triggered independently of the sensory channel through which information is acquired, we devised a task in which rats judged the orientation of a raised, black and white grating. They learned to recognize two categories of orientation: 0° ± 45° ("horizontal") and 90° ± 45° ("vertical"). Each trial required a visual (V), a tactile (T), or a visual-tactile (VT) discrimination; VT performance was better than that predicted by optimal linear combination of V and T signals, indicating synergy between sensory channels. We examined posterior parietal cortex (PPC) and uncovered key neuronal correlates of the behavioral findings: PPC carried both graded information about object orientation and categorical information about the rat's upcoming choice; single neurons exhibited identical responses under the three modality conditions. Finally, a linear classifier of neuronal population firing replicated the behavioral findings. Taken together, these findings suggest that PPC is involved in the supramodal processing of shape. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons.

    Science.gov (United States)

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-02-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter--describing somatic integration--and the spike-history filter--accounting for spike-frequency adaptation--dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations.

  18. Retrotransposons and non-protein coding RNAs

    DEFF Research Database (Denmark)

    Mourier, Tobias; Willerslev, Eske

    2009-01-01

    does not merely represent spurious transcription. We review examples of functional RNAs transcribed from retrotransposons, and address the collection of non-protein coding RNAs derived from transposable element sequences, including numerous human microRNAs and the neuronal BC RNAs. Finally, we review...

  19. Parietal and temporal activity during a multimodal dance video game: an fNIRS study.

    Science.gov (United States)

    Tachibana, Atsumichi; Noah, J Adam; Bronner, Shaw; Ono, Yumie; Onozuka, Minoru

    2011-10-03

    Using functional near infrared spectroscopy (fNIRS) we studied how playing a dance video game employs coordinated activation of sensory-motor integration centers of the superior parietal lobe (SPL) and superior temporal gyrus (STG). Subjects played a dance video game, in a block design with 30s of activity alternating with 30s of rest, while changes in oxy-hemoglobin (oxy-Hb) levels were continuously measured. The game was modified to compare difficult (4-arrow), simple (2-arrow), and stepping conditions. Oxy-Hb levels were greatest with increased task difficulty. The quick-onset, trapezoidal time-course increase in SPL oxy-Hb levels reflected the on-off neuronal response of spatial orienting and rhythmic motor timing that were required during the activity. Slow-onset, bell-shaped increases in oxy-Hb levels observed in STG suggested the gradually increasing load of directing multisensory information to downstream processing centers associated with motor behavior and control. Differences in temporal relationships of SPL and STG oxy-Hb concentration levels may reflect the functional roles of these brain structures during the task period. NIRS permits insights into temporal relationships of cortical hemodynamics during real motor tasks. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of visuospatial Attention

    Directory of Open Access Journals (Sweden)

    Yan eWu

    2016-03-01

    Full Text Available The right hemispheric dominance in visuospatial attention in human brain has been well established. Converging evidence has documented that ventral posterior parietal cortex (PPC plays an important role in visuospatial attention. The role of dorsal PPC subregions, especially the superior parietal lobule (SPL in visuospatial attention is still controversial. In the current study, we used repetitive transcranial magnetic stimulation (rTMS and diffusion magnetic resonance imaging (MRI techniques to test the role of posterior SPL in visuospatial attention and to investigate the potential neuroanatomical basis for right hemisphere dominance in visuospatial function. TMS results unraveled that the right SPL predominantly mediated visuospatial attention compared to left SPL. Anatomical connections analyses between the posterior SPL and the intrahemispheric frontal subregions and the contralateral PPC revealed that right posterior SPL has stronger anatomical connections with the ipsilateral middle frontal gyrus, with the ipsilateral inferior frontal gyrus, and with contralateral PPC than that of the left posterior SPL. Furthermore, these asymmetric anatomical connections were closely related to behavioral performances. Our findings indicate that SPL plays a crucial role in regulating visuospatial attention, and dominance of visuospatial attention results from unbalanced interactions between the bilateral fronto-parietal networks and the interhemispheric parietal network.

  1. Theta-Gamma Coding Meets Communication-through-Coherence: Neuronal Oscillatory Multiplexing Theories Reconciled.

    Science.gov (United States)

    McLelland, Douglas; VanRullen, Rufin

    2016-10-01

    Several theories have been advanced to explain how cross-frequency coupling, the interaction of neuronal oscillations at different frequencies, could enable item multiplexing in neural systems. The communication-through-coherence theory proposes that phase-matching of gamma oscillations between areas enables selective processing of a single item at a time, and a later refinement of the theory includes a theta-frequency oscillation that provides a periodic reset of the system. Alternatively, the theta-gamma neural code theory proposes that a sequence of items is processed, one per gamma cycle, and that this sequence is repeated or updated across theta cycles. In short, both theories serve to segregate representations via the temporal domain, but differ on the number of objects concurrently represented. In this study, we set out to test whether each of these theories is actually physiologically plausible, by implementing them within a single model inspired by physiological data. Using a spiking network model of visual processing, we show that each of these theories is physiologically plausible and computationally useful. Both theories were implemented within a single network architecture, with two areas connected in a feedforward manner, and gamma oscillations generated by feedback inhibition within areas. Simply increasing the amplitude of global inhibition in the lower area, equivalent to an increase in the spatial scope of the gamma oscillation, yielded a switch from one mode to the other. Thus, these different processing modes may co-exist in the brain, enabling dynamic switching between exploratory and selective modes of attention.

  2. Context-dependent representation of response-outcome in monkey prefrontal neurons.

    Science.gov (United States)

    Tsujimoto, Satoshi; Sawaguchi, Toshiyuki

    2005-07-01

    For behaviour to be purposeful, it is important to monitor the preceding behavioural context, particularly for factors regarding stimulus, response and outcome. The dorsolateral prefrontal cortex (DLPFC) appears to play a major role in such a context-dependent, flexible behavioural control system, and this area is likely to have a neuronal mechanism for such retrospective coding, which associates response-outcome with the information and/or neural systems that guided the response. To address this hypothesis, we recorded neuronal activity from the DLPFC of monkeys performing memory- and sensory-guided saccade tasks, each of which had two conditions with reward contingencies. We found that post-response activity of a subset of DLPFC neurons was modulated by three factors relating to earlier events: the direction of the immediately preceding response, its outcome (reward or non-reward) and the information type (memory or sensory) that guided the response. Such neuronal coding should play a role in associating response-outcome with information and/or neural systems used to guide behaviour - that is, 'retrospective monitoring' of behavioural context and/or neural systems used for guiding behaviour - thereby contributing to context-dependent, flexible control of behaviours.

  3. Optimal size of stochastic Hodgkin-Huxley neuronal systems for maximal energy efficiency in coding pulse signals

    Science.gov (United States)

    Yu, Lianchun; Liu, Liwei

    2014-03-01

    The generation and conduction of action potentials (APs) represents a fundamental means of communication in the nervous system and is a metabolically expensive process. In this paper, we investigate the energy efficiency of neural systems in transferring pulse signals with APs. By analytically solving a bistable neuron model that mimics the AP generation with a particle crossing the barrier of a double well, we find the optimal number of ion channels that maximizes the energy efficiency of a neuron. We also investigate the energy efficiency of a neuron population in which the input pulse signals are represented with synchronized spikes and read out with a downstream coincidence detector neuron. We find an optimal number of neurons in neuron population, as well as the number of ion channels in each neuron that maximizes the energy efficiency. The energy efficiency also depends on the characters of the input signals, e.g., the pulse strength and the interpulse intervals. These results are confirmed by computer simulation of the stochastic Hodgkin-Huxley model with a detailed description of the ion channel random gating. We argue that the tradeoff between signal transmission reliability and energy cost may influence the size of the neural systems when energy use is constrained.

  4. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.

    Science.gov (United States)

    Meyer, Kristin N; Du, Feng; Parks, Emily; Hopfinger, Joseph B

    2018-03-01

    Despite behavioral and electrophysiological evidence for dissociations between endogenous (voluntary) and exogenous (reflexive) attention, fMRI results have yet to consistently and clearly differentiate neural activation patterns between these two types of attention. This study specifically aimed to determine whether activity in the dorsal fronto-parietal network differed between endogenous and exogenous conditions. Participants performed a visual discrimination task in endogenous and exogenous attention conditions while undergoing fMRI scanning. Analyses revealed robust and bilateral activation throughout the dorsal fronto-parietal network for each condition, in line with many previous results. In order to investigate possible differences in the balance of neural activity within this network with greater sensitivity, a priori regions of interest (ROIs) were selected for analysis, centered on the frontal eye fields (FEF) and intraparietal sulcus (IPS) regions identified in previous studies. The results revealed a significant interaction between region, condition, and hemisphere. Specifically, in the left hemisphere, frontal areas were more active than parietal areas, but only during endogenous attention. Activity in the right hemisphere, in contrast, remained relatively consistent for these regions across conditions. Analysis of this activity over time indicates that this left-hemispheric regional imbalance is present within the FEF early, at 3-6.5 s post-stimulus presentation, whereas a regional imbalance in the exogenous condition is not evident until 6.5-8 s post-stimulus presentation. Overall, our results provide new evidence that although the dorsal fronto-parietal network is indeed associated with both types of attentional orienting, regions of the network are differentially engaged over time and across hemispheres depending on the type of attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Differential Recruitment of Parietal Cortex during Spatial and Non-spatial Reach Planning

    Directory of Open Access Journals (Sweden)

    Pierre-Michel Bernier

    2017-05-01

    Full Text Available The planning of goal-directed arm reaching movements is associated with activity in the dorsal parieto-frontal cortex, within which multiple regions subserve the integration of arm- and target-related sensory signals to encode a motor goal. Surprisingly, many of these regions show sustained activity during reach preparation even when target location is not specified, i.e., when a motor goal cannot be unambiguously formed. The functional role of these non-spatial preparatory signals remains unresolved. Here this process was investigated in humans by comparing reach preparatory activity in the presence or absence of information regarding upcoming target location. In order to isolate the processes specific to reaching and to control for visuospatial attentional factors, the reaching task was contrasted to a finger movement task. Functional MRI and electroencephalography (EEG were used to characterize the spatio-temporal pattern of reach-related activity in the parieto-frontal cortex. Reach planning with advance knowledge of target location induced robust blood oxygenated level dependent and EEG responses across parietal and premotor regions contralateral to the reaching arm. In contrast, reach preparation without knowledge of target location was associated with a significant BOLD response bilaterally in the parietal cortex. Furthermore, EEG alpha- and beta-band activity was restricted to parietal scalp sites, the magnitude of the latter being correlated with reach reaction times. These results suggest an intermediate stage of sensorimotor transformations in bilateral parietal cortex when target location is not specified.

  6. Bilateral parietal extradural metastatic ewing's sarcoma simulating acute epidural hematoma

    International Nuclear Information System (INIS)

    Aslam, E.; Imran, M.; Faridi, N.M.

    2006-01-01

    Sarcomas usually metastasize to lugs. The following case report describes an unusual metastasis of Ewing's sarcoma to extradural parietal region bilaterally. The primary was found at lower end of ulna. (author)

  7. Efficient coding of spectrotemporal binaural sounds leads to emergence of the auditory space representation

    Science.gov (United States)

    Młynarski, Wiktor

    2014-01-01

    To date a number of studies have shown that receptive field shapes of early sensory neurons can be reproduced by optimizing coding efficiency of natural stimulus ensembles. A still unresolved question is whether the efficient coding hypothesis explains formation of neurons which explicitly represent environmental features of different functional importance. This paper proposes that the spatial selectivity of higher auditory neurons emerges as a direct consequence of learning efficient codes for natural binaural sounds. Firstly, it is demonstrated that a linear efficient coding transform—Independent Component Analysis (ICA) trained on spectrograms of naturalistic simulated binaural sounds extracts spatial information present in the signal. A simple hierarchical ICA extension allowing for decoding of sound position is proposed. Furthermore, it is shown that units revealing spatial selectivity can be learned from a binaural recording of a natural auditory scene. In both cases a relatively small subpopulation of learned spectrogram features suffices to perform accurate sound localization. Representation of the auditory space is therefore learned in a purely unsupervised way by maximizing the coding efficiency and without any task-specific constraints. This results imply that efficient coding is a useful strategy for learning structures which allow for making behaviorally vital inferences about the environment. PMID:24639644

  8. Clinical evidence of parietal cortex dysfunction and correlation with extent of allodynia in CRPS type 1.

    Science.gov (United States)

    Cohen, H; McCabe, C; Harris, N; Hall, J; Lewis, J; Blake, D R

    2013-04-01

    Unusual symptoms such as digit misidentification and neglect-like phenomena have been reported in complex regional pain syndrome (CRPS), which we hypothesized could be explained by parietal lobe dysfunction. Twenty-two patients with chronic CRPS attending an in-patient rehabilitation programme underwent standard neurological examination followed by clinical assessment of parietal lobe function and detailed sensory testing. Fifteen (68%) patients had evidence of parietal lobe dysfunction. Six (27%) subjects failed six or more test categories and demonstrated new clinical signs consistent with their parietal testing impairments, which were impacting significantly on activities of daily living. A higher incidence was noted in subjects with >1 limb involvement, CRPS affecting the dominant side and in left-handed subjects. Eighteen patients (82%) had mechanical allodynia covering 3-57.5% of the body surface area. Allochiria (unilateral tactile stimulation perceived only in the analogous location on the opposite limb), sensory extinction (concurrent bilateral tactile stimulation perceived only in one limb), referred sensations (unilateral tactile stimulation perceived concurrently in another discrete body area) and dysynchiria (unilateral non-noxious tactile stimulation perceived bilaterally as noxious) were present in some patients. Greater extent of body surface allodynia was correlated with worse parietal function (Spearman's rho = -0.674, p = 0.001). In patients with chronic CRPS, detailed clinical examination may reveal parietal dysfunction, with severity relating to the extent of allodynia. © 2012 European Federation of International Association for the Study of Pain Chapters.

  9. Does shape discrimination by the mouth activate the parietal and occipital lobes? - near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Tomonori Kagawa

    Full Text Available A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS. Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7, extrastriate cortex (BA18, BA19, and striate cortex (BA17 activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7, extrastriate cortex (BA18, 19, and striate cortex (BA17, as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.

  10. Multicenter prospective randomized study comparing the technique of using a bovine pericardium biological prosthesis reinforcement in parietal herniorrhaphy (Tutomesh TUTOGEN) with simple parietal herniorrhaphy, in a potentially contaminated setting.

    Science.gov (United States)

    Nedelcu, Marius; Verhaeghe, Pierre; Skalli, Mehdi; Champault, Gerard; Barrat, Christophe; Sebbag, Hugues; Reche, Fabian; Passebois, Laurent; Beyrne, Daniel; Gugenheim, Jean; Berdah, Stephane; Bouayed, Amine; Michel Fabre, Jean; Nocca, David

    2016-03-01

    The use of parietal synthetic prosthetic reinforcement material in potentially contaminated settings is not recommended, as there is a risk that the prosthesis may become infected. Thus, simple parietal herniorrhaphy, is the conventional treatment, even though there is a significant risk that the hernia may recur. Using new biomaterials of animal origin presently appears to offer a new therapeutic solution, but their effectiveness has yet to be demonstrated. The purpose of this multicenter prospective randomized single-blind study was to compare the surgical treatment of inguinal hernia or abdominal incisional hernia by simple parietal herniorrhaphy without prosthetic reinforcement (Group A), with Tutomesh TUTOGEN biological prosthesis reinforcement parietal herniorrhaphy (Group B), in a potentially contaminated setting. We examined early postoperative complications in the first month after the operation, performed an assessment after one year of survival without recurrence and analyzed the quality of life and pain of the patients (using SF-12 health status questionnaire and Visual Analog Pain Scale) at 1, 6, and 12 months, together with an economic impact study. Hundred and thirty four patients were enrolled between January 2009 and October 2010 in 20 French hospitals. The groups were comparable with respect to their enrollment characteristics, their history, types of operative indications and procedures carried out. At one month post-op, the rate of infectious complications (n(A) = 11(18.33%) vs. n(B) = 12(19.05%), p = 0.919) was not significantly different between the two groups. The assessment after one year of survival without recurrence revealed that survival was significantly greater in Group B (Group A recurrence: 10, Group B: 3; p = 0.0475). No difference in the patients' quality of life was demonstrated at 1, 6, or 12 months. However, at the 1 month follow-up, the "perceived health" rating seemed better in the group with Tutomesh (p

  11. Striatal and Tegmental Neurons Code Critical Signals for Temporal-Difference Learning of State Value in Domestic Chicks

    Directory of Open Access Journals (Sweden)

    Chentao Wen

    2016-11-01

    Full Text Available To ensure survival, animals must update the internal representations of their environment in a trial-and-error fashion. Psychological studies of associative learning and neurophysiological analyses of dopaminergic neurons have suggested that this updating process involves the temporal-difference (TD method in the basal ganglia network. However, the way in which the component variables of the TD method are implemented at the neuronal level is unclear. To investigate the underlying neural mechanisms, we trained domestic chicks to associate color cues with food rewards. We recorded neuronal activities from the medial striatum or tegmentum in a freely behaving condition and examined how reward omission changed neuronal firing. To compare neuronal activities with the signals assumed in the TD method, we simulated the behavioral task in the form of a finite sequence composed of discrete steps of time. The three signals assumed in the simulated task were the prediction signal, the target signal for updating, and the TD-error signal. In both the medial striatum and tegmentum, the majority of recorded neurons were categorized into three types according to their fitness for three models, though these neurons tended to form a continuum spectrum without distinct differences in the firing rate. Specifically, two types of striatal neurons successfully mimicked the target signal and the prediction signal. A linear summation of these two types of striatum neurons was a good fit for the activity of one type of tegmental neurons mimicking the TD-error signal. The present study thus demonstrates that the striatum and tegmentum can convey the signals critically required for the TD method. Based on the theoretical and neurophysiological studies, together with tract-tracing data, we propose a novel model to explain how the convergence of signals represented in the striatum could lead to the computation of TD error in tegmental dopaminergic neurons.

  12. Encoding of Naturalistic Optic Flow by a Population of Blowfly Motion-Sensitive Neurons

    NARCIS (Netherlands)

    Karmeier, K.; Hateren, J.H. van; Kern, R.; Egelhaaf, M.

    In sensory systems information is encoded by the activity of populations of neurons. To analyze the coding properties of neuronal populations sensory stimuli have usually been used that were much simpler than those encountered in real life. It has been possible only recently to stimulate visual

  13. Spike-based population coding and working memory.

    Directory of Open Access Journals (Sweden)

    Martin Boerlin

    2011-02-01

    Full Text Available Compelling behavioral evidence suggests that humans can make optimal decisions despite the uncertainty inherent in perceptual or motor tasks. A key question in neuroscience is how populations of spiking neurons can implement such probabilistic computations. In this article, we develop a comprehensive framework for optimal, spike-based sensory integration and working memory in a dynamic environment. We propose that probability distributions are inferred spike-per-spike in recurrently connected networks of integrate-and-fire neurons. As a result, these networks can combine sensory cues optimally, track the state of a time-varying stimulus and memorize accumulated evidence over periods much longer than the time constant of single neurons. Importantly, we propose that population responses and persistent working memory states represent entire probability distributions and not only single stimulus values. These memories are reflected by sustained, asynchronous patterns of activity which make relevant information available to downstream neurons within their short time window of integration. Model neurons act as predictive encoders, only firing spikes which account for new information that has not yet been signaled. Thus, spike times signal deterministically a prediction error, contrary to rate codes in which spike times are considered to be random samples of an underlying firing rate. As a consequence of this coding scheme, a multitude of spike patterns can reliably encode the same information. This results in weakly correlated, Poisson-like spike trains that are sensitive to initial conditions but robust to even high levels of external neural noise. This spike train variability reproduces the one observed in cortical sensory spike trains, but cannot be equated to noise. On the contrary, it is a consequence of optimal spike-based inference. In contrast, we show that rate-based models perform poorly when implemented with stochastically spiking neurons.

  14. Fronto-Parietal Network Reconfiguration Supports the Development of Reasoning Ability.

    Science.gov (United States)

    Wendelken, Carter; Ferrer, Emilio; Whitaker, Kirstie J; Bunge, Silvia A

    2016-05-01

    The goal of this fMRI study was to examine how well developmental improvements in reasoning ability can be explained by changes in functional connectivity between specific nodes in prefrontal and parietal cortices. To this end, we examined connectivity within the lateral fronto-parietal network (LFPN) and its relation to reasoning ability in 132 children and adolescents aged 6-18 years, 56 of whom were scanned twice over the course of 1.5 years. Developmental changes in strength of connections within the LFPN were most prominent in late childhood and early adolescence. Reasoning ability was related to functional connectivity between left rostrolateral prefrontal cortex (RLPFC) and inferior parietal lobule (IPL), but only among 12-18-year olds. For 9-11-year olds, reasoning ability was most strongly related to connectivity between left and right RLPFC; this relationship was mediated by working memory. For 6-8-year olds, significant relationships between connectivity and performance were not observed; in this group, processing speed was the primary mediator of improvement in reasoning ability. We conclude that different connections best support reasoning at different points in development and that RLPFC-IPL connectivity becomes an important predictor of reasoning during adolescence. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. The fMRI study on the front-parietal activation in abacus mental calculation trained children

    International Nuclear Information System (INIS)

    Zhao Kunyuan; Wang Bin; Long Jinfeng; Li Lixin; Shen Xiaojun

    2010-01-01

    Objective: To investigate the difference in front-parietal activation between the trained and untrained children engaged in addition and multiplication with functional magnetic resonance imaging (fMRI), and to explore the role of abacus mental calculation in brain development. Methods: Twenty-four children trained with abacus mental calculation and twelve untrained children performed mental calculation tasks including addition, multiplication and number-object control judging tasks. Blood oxygenation level dependence (BOLD) fMRI was performed when they were calculating. All data were analyzed by SPM2 (statistical parametric mapping 2) to generate the brain activation map. Results: The performance of the trained group had better correctness and shorter reaction time than that of the untrained group. The front-parietal activation between two groups had obvious difference. The activation involved less prefrontal cortex in the trained group than in the untrained group (P<0.05). The parietal activation in the trained group was mainly in the posterior superior parietal lobe/ precuneus, whereas the activation areas focused on the inferior parietal lobule in the untrained group. Conclusion: Abacus mental calculation involves multiple functional areas. and these areas may work together as a whole in processing arithmetic problems. Abacus mental calculation not only enhances the information processing in some brain areas and improves the utilization efficiency of neural resources, but also plays an important role in developing brain. (authors)

  16. Development of Right-hemispheric Dominance of Inferior Parietal Lobule in Proprioceptive Illusion Task

    Science.gov (United States)

    Naito, Eiichi; Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru

    2017-01-01

    Abstract Functional lateralization can be an indicator of brain maturation. We have consistently shown that, in the adult brain, proprioceptive processing of muscle spindle afferents generating illusory movement of the right hand activates inferior frontoparietal cortical regions in a right-side dominant manner in addition to the cerebrocerebellar motor network. Here we provide novel evidence regarding the development of the right-dominant use of the inferior frontoparietal cortical regions in humans using this task. We studied brain activity using functional magnetic resonance imaging while 60 right-handed blindfolded healthy children (8–11 years), adolescents (12–15 years), and young adults (18–23 years) (20 per group) experienced the illusion. Adult-like right-dominant use of the inferior parietal lobule (IPL) was observed in adolescents, while children used the IPL bilaterally. In contrast, adult-like lateralized cerebrocerebellar motor activation patterns were already observable in children. The right-side dominance progresses during adolescence along with the suppression of the left-sided IPL activity that emerges during childhood. Therefore, the neuronal processing implemented in the adult's right IPL during the proprioceptive illusion task is likely mediated bilaterally during childhood, and then becomes right-lateralized during adolescence at a substantially later time than the lateralized use of the cerebrocerebellar motor system for kinesthetic processing. PMID:28968653

  17. Subtotal ablation of parietal epithelial cells induces crescent formation.

    NARCIS (Netherlands)

    Sicking, E.M.; Fuss, A.; Uhlig, S.; Jirak, P.; Dijkman, H.; Wetzels, J.; Engel, D.R.; Urzynicok, T.; Heidenreich, S.; Kriz, W.; Kurts, C.; Ostendorf, T.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established

  18. Regional intercostal bulging of the parietal pleura

    International Nuclear Information System (INIS)

    Jantsch, H.; Greene, R.; Lechner, G.; Mavritz, W.; Pichler, W.; Winkler, M.; Zadrobilek, E.

    1989-01-01

    This paper describes bedside radiographs with localized intercostal bulging as the sole indication of tension pneumothorax in six patients with acute deterioration in gas exchange. Relief of the pneumothorax was followed by a rush of gas from the tension space and a prompt improvement in gas exchange. The authors concluded the regional intercostal bulging of the parietal pleura may be the sole indicator of life-threatening tension pneumothorax in patients on mechanical ventilation

  19. Parietal cells?new perspectives in glomerular disease

    OpenAIRE

    Miesen, Laura; Steenbergen, Eric; Smeets, Bart

    2017-01-01

    In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman?s capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and podocytes have a common mesenchymal origin and are the result of divergent differentiation during embryogenesis. Podocytes and PTECs are highly differentiated cells with well-established functions pertain...

  20. Decoding a Decision Process in the Neuronal Population of Dorsal Premotor Cortex.

    Science.gov (United States)

    Rossi-Pool, Román; Zainos, Antonio; Alvarez, Manuel; Zizumbo, Jerónimo; Vergara, José; Romo, Ranulfo

    2017-12-20

    When trained monkeys discriminate the temporal structure of two sequential vibrotactile stimuli, dorsal premotor cortex (DPC) showed high heterogeneity among its neuronal responses. Notably, DPC neurons coded stimulus patterns as broader categories and signaled them during working memory, comparison, and postponed decision periods. Here, we show that such population activity can be condensed into two major coding components: one that persistently represented in working memory both the first stimulus identity and the postponed informed choice and another that transiently coded the initial sensory information and the result of the comparison between the two stimuli. Additionally, we identified relevant signals that coded the timing of task events. These temporal and task-parameter readouts were shown to be strongly linked to the monkeys' behavior when contrasted to those obtained in a non-demanding cognitive control task and during error trials. These signals, hidden in the heterogeneity, were prominently represented by the DPC population response. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The chronotron: a neuron that learns to fire temporally precise spike patterns.

    Directory of Open Access Journals (Sweden)

    Răzvan V Florian

    Full Text Available In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons, one that provides high memory capacity (E-learning, and one that has a higher biological plausibility (I-learning. With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm.

  2. Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction

    Directory of Open Access Journals (Sweden)

    Muriel Anne Lobier

    2014-07-01

    Full Text Available The visual attention (VA span deficit hypothesis of developmental dyslexia posits that impaired multiple element processing can be responsible for poor reading outcomes. In VA span impaired dyslexic children, poor performance on letter report tasks is associated with reduced parietal activations for multiple letter processing. While this hints towards a non-specific, attention-based dysfunction, it is still unclear whether reduced parietal activity generalizes to other types of stimuli. Furthermore, putative links between reduced parietal activity and reduced ventral occipito-temporal (vOT in dyslexia have yet to be explored. Using fMRI, we measured brain activity in 12 VA span impaired dyslexic adults and 12 adult skilled readers while they carried out a categorization task on single or multiple alphanumeric or non-alphanumeric characters. While healthy readers activated parietal areas more strongly for multiple than single element processing (right-sided for alphanumeric and bilateral for non-alphanumeric, similar stronger multiple element right parietal activations were absent for dyslexic participants. Contrasts between skilled and dyslexic readers revealed significantly reduced right superior parietal lobule (SPL activity for dyslexic readers regardless of stimuli type. Using a priori anatomically defined ROI, we showed that neural activity was reduced for dyslexic participants in both SPL and vOT bilaterally. Finally, we used multiple regressions to test whether SPL activity could predict vOT activity in each group. In the left hemisphere, SPL activity modulated vOT activity for both normal and dyslexic readers. In contrast, in the right hemisphere, SPL activity modulated vOT activity only for dyslexic readers. These results bring critical support to the visual attention interpretation of the VA Span deficit. In addition, they offer a new insight on how deficits in automatic vOT based word recognition could arise in developmental dyslexia.

  3. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  4. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee.

    Science.gov (United States)

    Kropf, Jan; Rössler, Wolfgang

    2018-01-01

    The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN) convey olfactory information on ~900 projection neurons (PN) in the antennal lobe (AL). To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB). This pathway comprises the medial (m-ALT) and the lateral antennal lobe tract (l-ALT). PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC) that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level.

  5. Decoding spikes in a spiking neuronal network

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [Department of Informatics, University of Sussex, Brighton BN1 9QH (United Kingdom); Ding, Mingzhou [Department of Mathematics, Florida Atlantic University, Boca Raton, FL 33431 (United States)

    2004-06-04

    We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the 'brute-force rate coding' estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuroscience, i.e. a temporal average is equivalent to an ensemble average, is in general not true. Averaging over an ensemble of neurons usually gives a biased estimate of the input information. A method on how to compensate for the bias is proposed. Reconstruction of dynamical input signals with a group of spiking neurons is extensively studied and our results show that less than a spike is sufficient to accurately decode dynamical inputs.

  6. Decoding spikes in a spiking neuronal network

    International Nuclear Information System (INIS)

    Feng Jianfeng; Ding, Mingzhou

    2004-01-01

    We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the 'brute-force rate coding' estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuroscience, i.e. a temporal average is equivalent to an ensemble average, is in general not true. Averaging over an ensemble of neurons usually gives a biased estimate of the input information. A method on how to compensate for the bias is proposed. Reconstruction of dynamical input signals with a group of spiking neurons is extensively studied and our results show that less than a spike is sufficient to accurately decode dynamical inputs

  7. Percent wall thickness evaluated by Gd-DTPA enhanced cine MRI as an indicator of local parietal movement in hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    Hirano, Masaharu

    1998-01-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac disease, the basic pathology of which consists of a decrease in left ventricular dilation compliance due to uneven hypertrophy of the left ventricular wall. Magnetic resonance imaging (MRI) is useful in monitoring uneven parietal hypertrophy and kinetics in HCM patients. The present study was undertaken in 47 HCM patients who showed asymmetrical septal hypertrophy to determine if percent thickness can be an indicator of left ventricular local movement using cine MRI. Longest and shortest axis images were acquired by the ECG synchronization method using a 1.5 T MR imager. Cardiac function was analyzed based on longest axis cine images, and telediastolic and telesystolic parietal thickness were measured based on shorter axis cine images at the papillary muscle level. Parietal movement index and percent thickness were used as indicators of local parietal movement. The correlation between these indicators and parietal thickness was evaluated. The percent thickness changed at an earlier stage of hypertrophy than the parietal movement index, thus it is thought to be useful in detecting left ventricular parietal movement disorders at an early stage of HCM. (author)

  8. Percent wall thickness evaluated by Gd-DTPA enhanced cine MRI as an indicator of local parietal movement in hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    1998-11-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac disease, the basic pathology of which consists of a decrease in left ventricular dilation compliance due to uneven hypertrophy of the left ventricular wall. Magnetic resonance imaging (MRI) is useful in monitoring uneven parietal hypertrophy and kinetics in HCM patients. The present study was undertaken in 47 HCM patients who showed asymmetrical septal hypertrophy to determine if percent thickness can be an indicator of left ventricular local movement using cine MRI. Longest and shortest axis images were acquired by the ECG synchronization method using a 1.5 T MR imager. Cardiac function was analyzed based on longest axis cine images, and telediastolic and telesystolic parietal thickness were measured based on shorter axis cine images at the papillary muscle level. Parietal movement index and percent thickness were used as indicators of local parietal movement. The correlation between these indicators and parietal thickness was evaluated. The percent thickness changed at an earlier stage of hypertrophy than the parietal movement index, thus it is thought to be useful in detecting left ventricular parietal movement disorders at an early stage of HCM. (author)

  9. Metabolic Hyperactivity of the Medial Posterior Parietal Lobes in Psychogenic Tremor

    Directory of Open Access Journals (Sweden)

    Peter Hedera

    2012-05-01

    Full Text Available Background: The pathophysiology of psychogenic movement disorders, including psychogenic tremor (PT, is only emerging. Case Report: This is a single case report of a patient who met diagnostic criteria for PT. He underwent positron emission tomography (PET of brain with 18F-deoxyglucose at resting state. His PET study showed symmetrically increased 18F-deoxyglucose uptake in both posterior medial parietal lobes. There was no corresponding abnormality on structural imaging. Discussion: Hypermetabolism of the medial aspects of posterior parietal lobes bilaterally may reflect abnormal activity of sensory integration that is important in the pathogenesis of PT. This further supports the idea that non-organic movement disorders may be associated with detectable functional brain abnormalities.

  10. ANNarchy: a code generation approach to neural simulations on parallel hardware

    Science.gov (United States)

    Vitay, Julien; Dinkelbach, Helge Ü.; Hamker, Fred H.

    2015-01-01

    Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions. PMID:26283957

  11. MicroRNA-338 modulates cortical neuronal placement and polarity.

    Science.gov (United States)

    Kos, Aron; de Mooij-Malsen, Annetrude J; van Bokhoven, Hans; Kaplan, Barry B; Martens, Gerard J; Kolk, Sharon M; Aschrafi, Armaz

    2017-07-03

    The precise spatial and temporal regulation of gene expression orchestrates the many intricate processes during brain development. In the present study we examined the role of the brain-enriched microRNA-338 (miR-338) during mouse cortical development. Reduction of miR-338 levels in the developing mouse cortex, using a sequence-specific miR-sponge, resulted in a loss of neuronal polarity in the cortical plate and significantly reduced the number of neurons within this cortical layer. Conversely, miR-338 overexpression in developing mouse cortex increased the number of neurons, which exhibited a multipolar morphology. All together, our results raise the possibility for a direct role for this non-coding RNA, which was recently associated with schizophrenia, in the regulation of cortical neuronal polarity and layer placement.

  12. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right......-handed subjects to test if this procedure could modulate M1 excitability and PPC–M1 connectivity. One hundred and eighty paired transcranial magnetic stimuli to the PPC and M1 at an interstimulus interval (ISI) of 8 ms were delivered at 0.2 Hz. We found that parietal ccPAS in the left hemisphere increased...... the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input–output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms...

  13. Sensory-parietal cortical stimulation improves motor recovery in severe capsular infarct.

    Science.gov (United States)

    Kim, Ra Gyung; Cho, Jongwook; Ree, Jinkyue; Kim, Hyung-Sun; Rosa-Neto, Pedro; Kim, Jin-Myung; Lee, Min-Cheol; Kim, Hyoung-Ihl

    2016-12-01

    The prevalence of subcortical white matter strokes in elderly patients is on the rise, but these patients show mixed responses to conventional rehabilitative interventions. To examine whether cortical electrical stimulation can promote motor recovery after white matter stroke, we delivered stimulation to a small or wide region of sensory-parietal cortex for two weeks in a rodent model of circumscribed subcortical capsular infarct. The sham-operated group (SOG) showed persistent and severe motor impairments together with decreased activation in bilateral sensorimotor cortices and striatum. In contrast, sensory-parietal cortex stimulation significantly improved motor recovery: final recovery levels were 72.9% of prelesion levels in the wide stimulation group (WSG) and 37% of prelesion levels in the small stimulation group (SSG). The microPET imaging showed reversal of cortical diaschisis in both groups: in both hemispheres for the WSG, and in the hemisphere ipsilateral to stimulation in the SSG. In addition, we observed activation of the corpus callosum and subcortical corticostriatal structures after stimulation. The results from the c-Fos mapping study were grossly consistent with the microPET imaging. Sensory-parietal cortex stimulation may therefore be a useful strategy for overcoming the limits of rehabilitative training in patients with severe forms of subcortical capsular infarct. © The Author(s) 2015.

  14. Learning and coding in biological neural networks

    Science.gov (United States)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and

  15. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval.

    Science.gov (United States)

    Sumbre, Germán; Muto, Akira; Baier, Herwig; Poo, Mu-ming

    2008-11-06

    The ability to process temporal information is fundamental to sensory perception, cognitive processing and motor behaviour of all living organisms, from amoebae to humans. Neural circuit mechanisms based on neuronal and synaptic properties have been shown to process temporal information over the range of tens of microseconds to hundreds of milliseconds. How neural circuits process temporal information in the range of seconds to minutes is much less understood. Studies of working memory in monkeys and rats have shown that neurons in the prefrontal cortex, the parietal cortex and the thalamus exhibit ramping activities that linearly correlate with the lapse of time until the end of a specific time interval of several seconds that the animal is trained to memorize. Many organisms can also memorize the time interval of rhythmic sensory stimuli in the timescale of seconds and can coordinate motor behaviour accordingly, for example, by keeping the rhythm after exposure to the beat of music. Here we report a form of rhythmic activity among specific neuronal ensembles in the zebrafish optic tectum, which retains the memory of the time interval (in the order of seconds) of repetitive sensory stimuli for a duration of up to approximately 20 s. After repetitive visual conditioning stimulation (CS) of zebrafish larvae, we observed rhythmic post-CS activities among specific tectal neuronal ensembles, with a regular interval that closely matched the CS. Visuomotor behaviour of the zebrafish larvae also showed regular post-CS repetitions at the entrained time interval that correlated with rhythmic neuronal ensemble activities in the tectum. Thus, rhythmic activities among specific neuronal ensembles may act as an adjustable 'metronome' for time intervals in the order of seconds, and serve as a mechanism for the short-term perceptual memory of rhythmic sensory experience.

  16. Transient extracellular application of gold nanostars increases hippocampal neuronal activity.

    Science.gov (United States)

    Salinas, Kirstie; Kereselidze, Zurab; DeLuna, Frank; Peralta, Xomalin G; Santamaria, Fidel

    2014-08-20

    With the increased use of nanoparticles in biomedical applications there is a growing need to understand the effects that nanoparticles may have on cell function. Identifying these effects and understanding the mechanism through which nanoparticles interfere with the normal functioning of a cell is necessary for any therapeutic or diagnostic application. The aim of this study is to evaluate if gold nanoparticles can affect the normal function of neurons, namely their activity and coding properties. We synthesized star shaped gold nanoparticles of 180 nm average size. We applied the nanoparticles to acute mouse hippocampal slices while recording the action potentials from single neurons in the CA3 region. Our results show that CA3 hippocampal neurons increase their firing rate by 17% after the application of gold nanostars. The increase in excitability lasted for as much as 50 minutes after a transient 5 min application of the nanoparticles. Further analyses of the action potential shape and computational modeling suggest that nanoparticles block potassium channels responsible for the repolarization of the action potentials, thus allowing the cell to increase its firing rate. Our results show that gold nanoparticles can affect the coding properties of neurons by modifying their excitability.

  17. Characterization of visual percepts evoked by noninvasive stimulation of the human posterior parietal cortex.

    Directory of Open Access Journals (Sweden)

    Peter J Fried

    Full Text Available Phosphenes are commonly evoked by transcranial magnetic stimulation (TMS to study the functional organization, connectivity, and excitability of the human visual brain. For years, phosphenes have been documented only from stimulating early visual areas (V1-V3 and a handful of specialized visual regions (V4, V5/MT+ in occipital cortex. Recently, phosphenes were reported after applying TMS to a region of posterior parietal cortex involved in the top-down modulation of visuo-spatial processing. In the present study, we systematically characterized parietal phosphenes to determine if they are generated directly by local mechanisms or emerge through indirect activation of other visual areas. Using technology developed in-house to record the subjective features of phosphenes, we found no systematic differences in the size, shape, location, or frame-of-reference of parietal phosphenes when compared to their occipital counterparts. In a second experiment, discrete deactivation by 1 Hz repetitive TMS yielded a double dissociation: phosphene thresholds increased at the deactivated site without producing a corresponding change at the non-deactivated location. Overall, the commonalities of parietal and occipital phosphenes, and our ability to independently modulate their excitability thresholds, lead us to conclude that they share a common neural basis that is separate from either of the stimulated regions.

  18. First-spike latency in Hodgkin's three classes of neurons.

    Science.gov (United States)

    Wang, Hengtong; Chen, Yueling; Chen, Yong

    2013-07-07

    We study the first-spike latency (FSL) in Hodgkin's three classes of neurons with the Morris-Lecar neuron model. It is found that all the three classes of neurons can encode an external stimulus into FSLs. With DC inputs, the FSLs of all of the neurons decrease with input intensity. With input current decreased to the threshold, class 1 neurons show an arbitrary long FSL whereas class 2 and 3 neurons exhibit the short-limit FSLs. When the input current is sinusoidal, the amplitude, frequency and initial phase can be encoded by all the three classes of neurons. The FSLs of all of the neurons decrease with the input amplitude and frequency. When the input frequency is too high, all of the neurons respond with infinite FSLs. When the initial phase increases, the FSL decreases and then jumps to a maximal value and finally decreases linearly. With changes in the input parameters, the FSLs of the class 1 and 2 neurons exhibit similar properties. However, the FSL of the class 3 neurons became slightly longer and only produces responses for a narrow range of initial phase if input frequencies are low. Moreover, our results also show that the FSL and firing rate responses are mutually independent processes and that neurons can encode an external stimulus into different FSLs and firing rates simultaneously. This finding is consistent with the current theory of dual or multiple complementary coding mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Efficient coding of spectrotemporal binaural sounds leads to emergence of the auditory space representation

    Directory of Open Access Journals (Sweden)

    Wiktor eMlynarski

    2014-03-01

    Full Text Available To date a number of studies have shown that receptive field shapes of early sensory neurons can be reproduced by optimizing coding efficiency of natural stimulus ensembles. A still unresolved question is whether the efficientcoding hypothesis explains formation of neurons which explicitly represent environmental features of different functional importance. This paper proposes that the spatial selectivity of higher auditory neurons emerges as a direct consequence of learning efficient codes for natural binaural sounds. Firstly, it is demonstrated that a linear efficient coding transform - Independent Component Analysis (ICA trained on spectrograms of naturalistic simulated binaural sounds extracts spatial information present in the signal. A simple hierarchical ICA extension allowing for decoding of sound position is proposed. Furthermore, it is shown that units revealing spatial selectivity can be learned from a binaural recording of a natural auditory scene. In both cases a relatively small subpopulation of learned spectrogram features suffices to perform accurate sound localization. Representation of the auditory space is therefore learned in a purely unsupervised way by maximizing the coding efficiency and without any task-specific constraints. This results imply that efficient coding is a useful strategy for learning structures which allow for making behaviorally vital inferences about the environment.

  20. Sensory Coding by Cerebellar Mossy Fibres through Inhibition-Driven Phase Resetting and Synchronisation

    Science.gov (United States)

    Holtzman, Tahl; Jörntell, Henrik

    2011-01-01

    Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex. PMID:22046297

  1. Sensory coding by cerebellar mossy fibres through inhibition-driven phase resetting and synchronisation.

    Directory of Open Access Journals (Sweden)

    Tahl Holtzman

    Full Text Available Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex.

  2. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory.

    Directory of Open Access Journals (Sweden)

    Katelin F Hansen

    2010-11-01

    Full Text Available Inducible gene expression plays a central role in neuronal plasticity, learning, and memory, and dysfunction of the underlying molecular events can lead to severe neuronal disorders. In addition to coding transcripts (mRNAs, non-coding microRNAs (miRNAs appear to play a role in these processes. For instance, the CREB-regulated miRNA miR132 has been shown to affect neuronal structure in an activity-dependent manner, yet the details of its physiological effects and the behavioral consequences in vivo remain unclear. To examine these questions, we employed a transgenic mouse strain that expresses miR132 in forebrain neurons. Morphometric analysis of hippocampal neurons revealed that transgenic miR132 triggers a marked increase in dendritic spine density. Additionally, miR132 transgenic mice exhibited a decrease in the expression of MeCP2, a protein implicated in Rett Syndrome and other disorders of mental retardation. Consistent with these findings, miR132 transgenic mice displayed significant deficits in novel object recognition. Together, these data support a role for miR132 as a regulator of neuronal structure and function, and raise the possibility that dysregulation of miR132 could contribute to an array of cognitive disorders.

  3. Neural Elements for Predictive Coding.

    Science.gov (United States)

    Shipp, Stewart

    2016-01-01

    Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backward in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many 'illusory' instances of perception where what is seen (heard, etc.) is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forward and backward pathways should be completely separate, given their functional distinction; this aspect of circuitry - that neurons with extrinsically bifurcating axons do not project in both directions - has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy) formulation of predictive coding is combined with the classic 'canonical microcircuit' and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a) updates in the microcircuitry of primate visual cortex, and (b) rapid technical advances made possible by transgenic neural

  4. An enlarged parietal foramen in the late archaic Xujiayao 11 neurocranium from Northern China, and rare anomalies among Pleistocene Homo.

    Science.gov (United States)

    Wu, Xiu-Jie; Xing, Song; Trinkaus, Erik

    2013-01-01

    We report here a neurocranial abnormality previously undescribed in Pleistocene human fossils, an enlarged parietal foramen (EPF) in the early Late Pleistocene Xujiayao 11 parietal bones from the Xujiayao (Houjiayao) site, northern China. Xujiayao 11 is a pair of partial posteromedial parietal bones from an adult. It exhibits thick cranial vault bones, arachnoid granulations, a deviated posterior sagittal suture, and a unilateral (right) parietal lacuna with a posteriorly-directed and enlarged endocranial vascular sulcus. Differential diagnosis indicates that the perforation is a congenital defect, an enlarged parietal foramen, commonly associated with cerebral venous and cranial vault anomalies. It was not lethal given the individual's age-at-death, but it may have been associated with secondary neurological deficiencies. The fossil constitutes the oldest evidence in human evolution of this very rare condition (a single enlarged parietal foramen). In combination with developmental and degenerative abnormalities in other Pleistocene human remains, it suggests demographic and survival patterns among Pleistocene Homo that led to an elevated frequency of conditions unknown or rare among recent humans.

  5. An enlarged parietal foramen in the late archaic Xujiayao 11 neurocranium from Northern China, and rare anomalies among Pleistocene Homo.

    Directory of Open Access Journals (Sweden)

    Xiu-Jie Wu

    Full Text Available We report here a neurocranial abnormality previously undescribed in Pleistocene human fossils, an enlarged parietal foramen (EPF in the early Late Pleistocene Xujiayao 11 parietal bones from the Xujiayao (Houjiayao site, northern China. Xujiayao 11 is a pair of partial posteromedial parietal bones from an adult. It exhibits thick cranial vault bones, arachnoid granulations, a deviated posterior sagittal suture, and a unilateral (right parietal lacuna with a posteriorly-directed and enlarged endocranial vascular sulcus. Differential diagnosis indicates that the perforation is a congenital defect, an enlarged parietal foramen, commonly associated with cerebral venous and cranial vault anomalies. It was not lethal given the individual's age-at-death, but it may have been associated with secondary neurological deficiencies. The fossil constitutes the oldest evidence in human evolution of this very rare condition (a single enlarged parietal foramen. In combination with developmental and degenerative abnormalities in other Pleistocene human remains, it suggests demographic and survival patterns among Pleistocene Homo that led to an elevated frequency of conditions unknown or rare among recent humans.

  6. Bifurcation software in Matlab with applications in neuronal modeling.

    Science.gov (United States)

    Govaerts, Willy; Sautois, Bart

    2005-02-01

    Many biological phenomena, notably in neuroscience, can be modeled by dynamical systems. We describe a recent improvement of a Matlab software package for dynamical systems with applications to modeling single neurons and all-to-all connected networks of neurons. The new software features consist of an object-oriented approach to bifurcation computations and the partial inclusion of C-code to speed up the computation. As an application, we study the origin of the spiking behaviour of neurons when the equilibrium state is destabilized by an incoming current. We show that Class II behaviour, i.e. firing with a finite frequency, is possible even if the destabilization occurs through a saddle-node bifurcation. Furthermore, we show that synchronization of an all-to-all connected network of such neurons with only excitatory connections is also possible in this case.

  7. The mirror neuron system: new frontiers.

    Science.gov (United States)

    Keysers, Christian; Fadiga, Luciano

    2008-01-01

    Since the discovery of mirror neurons, much effort has been invested into studying their location and properties in the human brain. Here we review these original findings and introduce the main topics of this special issue of Social Neuroscience. What does the mirror system code? How is the mirror system embedded into the mosaic of circuits that compose our brain? How does the mirror system contribute to communication, language and social interaction? Can the principle of mirror neurons be extended to emotions, sensations and thoughts? Papers using a wide range of methods, including single cell recordings, fMRI, TMS, EEG and psychophysics, collected in this special issue, start to give us some impressive answers.

  8. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee.

    Directory of Open Access Journals (Sweden)

    Jan Kropf

    Full Text Available The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN convey olfactory information on ~900 projection neurons (PN in the antennal lobe (AL. To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB. This pathway comprises the medial (m-ALT and the lateral antennal lobe tract (l-ALT. PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level.

  9. Olfactory bulb dysgenesis, mirror neuron system dysfunction, and autonomic dysregulation as the neural basis for autism.

    Science.gov (United States)

    Brang, David; Ramachandran, V S

    2010-05-01

    Autism is a disorder characterized by social withdrawal, impoverished language and empathy, and a profound inability to adopt another's viewpoint - a failure to construct a "theory of mind" for interpreting another person's thoughts and intentions. We previously showed that these symptoms might be explained, in part, by a paucity of mirror neurons. Prompted by an MRI report of an individual with autism, we now suggest that there may be, in addition, a congenital aplasia/dysplasia of the olfactory bulbs with consequent reduction of vasopressin and oxytocin receptor binding. There may also be sub-clinical temporal lobe epilepsy affecting the recently discovered third visual system that is rich in "empathy" related mirror neurons (MNS) and projects (via the TOP junction - just below the inferior parietal lobule) to limbic structures that regulate autonomic outflow. This causes deranged autonomic feedback, resulting in additional deficiencies in MNS with loss of emotional empathy and introspection.

  10. Information transmission with spiking Bayesian neurons

    International Nuclear Information System (INIS)

    Lochmann, Timm; Deneve, Sophie

    2008-01-01

    Spike trains of cortical neurons resulting from repeatedpresentations of a stimulus are variable and exhibit Poisson-like statistics. Many models of neural coding therefore assumed that sensory information is contained in instantaneous firing rates, not spike times. Here, we ask how much information about time-varying stimuli can be transmitted by spiking neurons with such input and output variability. In particular, does this variability imply spike generation to be intrinsically stochastic? We consider a model neuron that estimates optimally the current state of a time-varying binary variable (e.g. presence of a stimulus) by integrating incoming spikes. The unit signals its current estimate to other units with spikes whenever the estimate increased by a fixed amount. As shown previously, this computation results in integrate and fire dynamics with Poisson-like output spike trains. This output variability is entirely due to the stochastic input rather than noisy spike generation. As a result such a deterministic neuron can transmit most of the information about the time varying stimulus. This contrasts with a standard model of sensory neurons, the linear-nonlinear Poisson (LNP) model which assumes that most variability in output spike trains is due to stochastic spike generation. Although it yields the same firing statistics, we found that such noisy firing results in the loss of most information. Finally, we use this framework to compare potential effects of top-down attention versus bottom-up saliency on information transfer with spiking neurons

  11. Examining the role of the temporo-parietal network in memory, imagery and viewpoint transformations

    Directory of Open Access Journals (Sweden)

    Kiret eDhindsa

    2014-09-01

    Full Text Available The traditional view of the medial temporal lobe (MTL focuses on its role in episodic memory. However, some of the underlying functions of the MTL can be ascertained from its wider role in supporting spatial cognition in concert with parietal and prefrontal regions. The MTL is strongly implicated in the formation of enduring allocentric representations (e.g. O’Keefe (1976; Ekstrom et al. (2003; King et al. (2002. According to our BBB model (Byrne et al. (2007, these representations must interact with head-centered and body-centered representations in posterior parietal cortex via a transformation circuit involving retrosplenial areas. Egocentric sensory representations in parietal areas can then cue the recall of allocentric spatial representations in long-term memory and, conversely, the products of retrieval in MTL can generate mental imagery within a parietal ’window’. Such imagery is necessarily egocentric and forms part of visuospatial working memory, where it can be manipulated for the purpose of planning/imagining the future. Recent fMRI evidence (Lambrey et al. (2012; Zhang et al. (2012 supports the BBB model. To further test the model, we had participants learn the locations of objects in a virtual scene and tested their spatial memory under conditions that impose varying demands on the transformation circuit. We analyzed how brain activity correlated with accuracy in judging the direction of an object 1 from visuospatial working memory (we assume working memory due to the order of tasks and the consistency viewpoint, but long-term memory is also possible, 2 after a rotation of viewpoint, or 3 after a rotation and translation (judgement of relative direction. We found performance-related activity in both tasks requiring viewpoint rotation in the core medial temporal to medial parietal. These results are consistent with the BBB model and shed further light on the mechanisms underlying spatial memory, mental imagery and viewpoint

  12. Diffusion approximation of neuronal models revisited

    Czech Academy of Sciences Publication Activity Database

    Čupera, Jakub

    2014-01-01

    Roč. 11, č. 1 (2014), s. 11-25 ISSN 1547-1063. [International Workshop on Neural Coding (NC) /10./. Praha, 02.09.2012-07.09.2012] R&D Projects: GA ČR(CZ) GAP103/11/0282 Institutional support: RVO:67985823 Keywords : stochastic model * neuronal activity * first-passage time Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.840, year: 2014

  13. Models of neural networks temporal aspects of coding and information processing in biological systems

    CERN Document Server

    Hemmen, J; Schulten, Klaus

    1994-01-01

    Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity may express that neurons process the same "object" of, for example, a visual scene by spiking at the very same time. The traditional description of a neural network through a firing rate, the famous S-shaped curve, presupposes a wide time window of, say, at least 100 ms. It thus fails to exploit the capacity to "bind" sets of coherently firing neurons for the purpose of both scene segmentation and figure-ground segregatio...

  14. The regenerative potential of parietal epithelial cells in adult mice

    NARCIS (Netherlands)

    Berger, K.; Schulte, K.; Boor, P.; Kuppe, C.; Kuppevelt, T.H. van; Floege, J.; Smeets, B.; Moeller, M.J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically

  15. [Successive subcortical hemorrhages in the superior parietal lobule and postcentral gyrus in a 23-year-old female].

    Science.gov (United States)

    Sato, K; Yoshikawa, H; Komai, K; Takamori, M

    1998-04-01

    We report a non-hypertensive 23-year-old female with successive hemorrhages in parietal subcortical regions. She had first experienced a transient pain in the left upper extremity one month before admission. She noticed dysesthesia in the same limb and weakness on her left hand, and, five days after, visited our hospital because of suddenly developed convulsion in the limb and loss of consciousness for a few minutes. Neurological examination revealed distal dominant flaccid paresis, positive pathological reflex and touch and position sense disturbances in the affected limb. Brain CT detected two high-density areas in the parietal lobe. Brain MRI demonstrated an acute phase subcortical hematoma in the left postcentral gyrus and a subacute phase one in the left superior parietal lobule. SPECT indicated hypoperfusion in the left frontal and parietal cortex. Cerebral angiography showed no abnormal findings. Her symptoms gradually improved, but left ulnar-type pseudoradicular sensory impairment remained on discharge. We considered the hemorrhage in this patient have arisen from rupture of cavernous hemangioma, because she was relatively young, the hematomas were oval in shape and successively developed in the left parietal lobe. Our patient suggests that a subcortical hemorrhage in the post-central gyrus causes flaccid paresis and pyramidal tract involvement.

  16. Seeing is not feeling: posterior parietal but not somatosensory cortex engagement during touch observation.

    Science.gov (United States)

    Chan, Annie W-Y; Baker, Chris I

    2015-01-28

    Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants (n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex. Copyright © 2015 the authors 0270-6474/15/351468-13$15.00/0.

  17. Quantitative Profiling of Peptides from RNAs classified as non-coding

    Science.gov (United States)

    Prabakaran, Sudhakaran; Hemberg, Martin; Chauhan, Ruchi; Winter, Dominic; Tweedie-Cullen, Ry Y.; Dittrich, Christian; Hong, Elizabeth; Gunawardena, Jeremy; Steen, Hanno; Kreiman, Gabriel; Steen, Judith A.

    2014-01-01

    Only a small fraction of the mammalian genome codes for messenger RNAs destined to be translated into proteins, and it is generally assumed that a large portion of transcribed sequences - including introns and several classes of non-coding RNAs (ncRNAs) do not give rise to peptide products. A systematic examination of translation and physiological regulation of ncRNAs has not been conducted. Here, we use computational methods to identify the products of non-canonical translation in mouse neurons by analyzing unannotated transcripts in combination with proteomic data. This study supports the existence of non-canonical translation products from both intragenic and extragenic genomic regions, including peptides derived from anti-sense transcripts and introns. Moreover, the studied novel translation products exhibit temporal regulation similar to that of proteins known to be involved in neuronal activity processes. These observations highlight a potentially large and complex set of biologically regulated translational events from transcripts formerly thought to lack coding potential. PMID:25403355

  18. Spiking Activity of a LIF Neuron in Distributed Delay Framework

    Directory of Open Access Journals (Sweden)

    Saket Kumar Choudhary

    2016-06-01

    Full Text Available Evolution of membrane potential and spiking activity for a single leaky integrate-and-fire (LIF neuron in distributed delay framework (DDF is investigated. DDF provides a mechanism to incorporate memory element in terms of delay (kernel function into a single neuron models. This investigation includes LIF neuron model with two different kinds of delay kernel functions, namely, gamma distributed delay kernel function and hypo-exponential distributed delay kernel function. Evolution of membrane potential for considered models is studied in terms of stationary state probability distribution (SPD. Stationary state probability distribution of membrane potential (SPDV for considered neuron models are found asymptotically similar which is Gaussian distributed. In order to investigate the effect of membrane potential delay, rate code scheme for neuronal information processing is applied. Firing rate and Fano-factor for considered neuron models are calculated and standard LIF model is used for comparative study. It is noticed that distributed delay increases the spiking activity of a neuron. Increase in spiking activity of neuron in DDF is larger for hypo-exponential distributed delay function than gamma distributed delay function. Moreover, in case of hypo-exponential delay function, a LIF neuron generates spikes with Fano-factor less than 1.

  19. Development of Right-hemispheric Dominance of Inferior Parietal Lobule in Proprioceptive Illusion Task.

    Science.gov (United States)

    Naito, Eiichi; Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru

    2017-11-01

    Functional lateralization can be an indicator of brain maturation. We have consistently shown that, in the adult brain, proprioceptive processing of muscle spindle afferents generating illusory movement of the right hand activates inferior frontoparietal cortical regions in a right-side dominant manner in addition to the cerebrocerebellar motor network. Here we provide novel evidence regarding the development of the right-dominant use of the inferior frontoparietal cortical regions in humans using this task. We studied brain activity using functional magnetic resonance imaging while 60 right-handed blindfolded healthy children (8-11 years), adolescents (12-15 years), and young adults (18-23 years) (20 per group) experienced the illusion. Adult-like right-dominant use of the inferior parietal lobule (IPL) was observed in adolescents, while children used the IPL bilaterally. In contrast, adult-like lateralized cerebrocerebellar motor activation patterns were already observable in children. The right-side dominance progresses during adolescence along with the suppression of the left-sided IPL activity that emerges during childhood. Therefore, the neuronal processing implemented in the adult's right IPL during the proprioceptive illusion task is likely mediated bilaterally during childhood, and then becomes right-lateralized during adolescence at a substantially later time than the lateralized use of the cerebrocerebellar motor system for kinesthetic processing. © The Author 2017. Published by Oxford University Press.

  20. The role of stochasticity in an information-optimal neural population code

    International Nuclear Information System (INIS)

    Stocks, N G; Nikitin, A P; McDonnell, M D; Morse, R P

    2009-01-01

    In this paper we consider the optimisation of Shannon mutual information (MI) in the context of two model neural systems. The first is a stochastic pooling network (population) of McCulloch-Pitts (MP) type neurons (logical threshold units) subject to stochastic forcing; the second is (in a rate coding paradigm) a population of neurons that each displays Poisson statistics (the so called 'Poisson neuron'). The mutual information is optimised as a function of a parameter that characterises the 'noise level'-in the MP array this parameter is the standard deviation of the noise; in the population of Poisson neurons it is the window length used to determine the spike count. In both systems we find that the emergent neural architecture and, hence, code that maximises the MI is strongly influenced by the noise level. Low noise levels leads to a heterogeneous distribution of neural parameters (diversity), whereas, medium to high noise levels result in the clustering of neural parameters into distinct groups that can be interpreted as subpopulations. In both cases the number of subpopulations increases with a decrease in noise level. Our results suggest that subpopulations are a generic feature of an information optimal neural population.

  1. Auditory stimuli elicit hippocampal neuronal responses during sleep

    Directory of Open Access Journals (Sweden)

    Ekaterina eVinnik

    2012-06-01

    Full Text Available To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50 percent of the trials, sound stimuli were presented followed by water reward after a 3-second delay. Sound at the water port predicted subsequent reward delivery in 100 percent of the trials and the absence of sound predicted reward omission. During this task, 40% of recorded neurons fired differently according to which of the 2 reward ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to sound/nosepoke (19% and reward delivery (24%. When the sounds were played during passive wakefulness, 8% of neurons responded with short latency onset responses; 25% of neurons responded to sounds when they were played during sleep. Based on the current findings and the results of previous experiments we propose the existence of two types of hippocampal neuronal responses to sounds: sound-onset responses with very short latency and longer-lasting sound-specific responses that are likely to be present when the animal is actively engaged in the task. During sleep the short-latency responses in hippocampus are intermingled with sustained activity which in the current experiment was detected for 1-2 seconds.

  2. A Dynamic Bayesian Model for Characterizing Cross-Neuronal Interactions During Decision-Making.

    Science.gov (United States)

    Zhou, Bo; Moorman, David E; Behseta, Sam; Ombao, Hernando; Shahbaba, Babak

    2016-01-01

    The goal of this paper is to develop a novel statistical model for studying cross-neuronal spike train interactions during decision making. For an individual to successfully complete the task of decision-making, a number of temporally-organized events must occur: stimuli must be detected, potential outcomes must be evaluated, behaviors must be executed or inhibited, and outcomes (such as reward or no-reward) must be experienced. Due to the complexity of this process, it is likely the case that decision-making is encoded by the temporally-precise interactions between large populations of neurons. Most existing statistical models, however, are inadequate for analyzing such a phenomenon because they provide only an aggregated measure of interactions over time. To address this considerable limitation, we propose a dynamic Bayesian model which captures the time-varying nature of neuronal activity (such as the time-varying strength of the interactions between neurons). The proposed method yielded results that reveal new insight into the dynamic nature of population coding in the prefrontal cortex during decision making. In our analysis, we note that while some neurons in the prefrontal cortex do not synchronize their firing activity until the presence of a reward, a different set of neurons synchronize their activity shortly after stimulus onset. These differentially synchronizing sub-populations of neurons suggests a continuum of population representation of the reward-seeking task. Secondly, our analyses also suggest that the degree of synchronization differs between the rewarded and non-rewarded conditions. Moreover, the proposed model is scalable to handle data on many simultaneously-recorded neurons and is applicable to analyzing other types of multivariate time series data with latent structure. Supplementary materials (including computer codes) for our paper are available online.

  3. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal fronto-parietal network

    Science.gov (United States)

    Shulman, Gordon L.; Pope, Daniel L. W.; Astafiev, Serguei V.; McAvoy, Mark P.; Snyder, Abraham Z.; Corbetta, Maurizio

    2010-01-01

    Spatial selective attention is widely considered to be right hemisphere dominant. Previous functional magnetic resonance imaging (fMRI) studies, however, have reported bilateral blood-oxygenation-level-dependent (BOLD) responses in dorsal fronto-parietal regions during anticipatory shifts of attention to a location (Kastner et al., 1999; Corbetta et al., 2000; Hopfinger et al., 2000). Right-lateralized activity has mainly been reported in ventral fronto-parietal regions for shifts of attention to an unattended target stimulus (Arrington et al., 2000; Corbetta et al., 2000). However, clear conclusions cannot be drawn from these studies because hemispheric asymmetries were not assessed using direct voxel-wise comparisons of activity in left and right hemispheres. Here, we used this technique to measure hemispheric asymmetries during shifts of spatial attention evoked by a peripheral cue stimulus and during target detection at the cued location. Stimulus-driven shifts of spatial attention in both visual fields evoked right-hemisphere dominant activity in temporo-parietal junction (TPJ). Target detection at the attended location produced a more widespread right hemisphere dominance in frontal, parietal, and temporal cortex, including the TPJ region asymmetrically activated during shifts of spatial attention. However, hemispheric asymmetries were not observed during either shifts of attention or target detection in the dorsal fronto-parietal regions (anterior precuneus, medial intraparietal sulcus, frontal eye fields) that showed the most robust activations for shifts of attention. Therefore, right hemisphere dominance during stimulus-driven shifts of spatial attention and target detection reflects asymmetries in cortical regions that are largely distinct from the dorsal fronto-parietal network involved in the control of selective attention. PMID:20219998

  4. Gastrin receptor characterization: affinity cross-linking of the gastrin receptor on canine gastric parietal cells

    International Nuclear Information System (INIS)

    Matsumoto, M.; Park, J.; Yamada, T.

    1987-01-01

    The authors applied affinity cross-linking methods to label the gastrin receptor on isolated canine gastric parietal cells in order to elucidate the nature of its chemical structure. 125 I-labeled Leu 15 -gastrin and 125 I-labeled gastrin/sub 2-17/ bound to intact parietal cells and their membranes with equal affinity, and half-maximal inhibition of binding was obtained at an incubation concentration of 3.2 x 10 -10 M unlabeled gastrin. 125 I-gastrin/sub 2-17/ was cross-linked to plasma membranes or intact parietal cells by incubation in disuccinimidyl suberate. The membrane pellets were solubilized with or without dithiothreitol and applied to electrophoresis on 7.5% sodium dodecyl sulfate polyacrylamide gels. Autoradiograms revealed a band of labeling at M/sub r/ 76,000 and labeling of this band was inhibited in a dose-dependent fashion by addition of unlabeled gastrin to the incubation mixture. Dithiothreitol in concentrations as high as 100 mM did not later the electrophoretic mobility of the labeled band. After taking into account the molecular weight of 125 I-gastrin/sub 2-17/, the results suggest that the gastrin receptor on parietal cells is a single protein of M/sub r/ 74,000 without disulfide-linked subunits

  5. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions

    Directory of Open Access Journals (Sweden)

    Fumi eKatsuki

    2012-05-01

    Full Text Available The dorsolateral prefrontal and posterior parietal cortex are two parts of a broader brain network involved in the control of cognitive functions such as working memory, spatial attention, and decision making. The two areas share many functional properties and exhibit similar patterns of activation during the execution of mental operations. However, neurophysiological experiments in non-human primates have also documented subtle differences, revealing functional specialization within the fronto-parietal network. These differences include the ability of the dorsolateral prefrontal cortex to influence memory performance, attention allocation and motor responses to a greater extent, and to resist interference by distracting stimuli. In recent years, distinct cellular and anatomical differences have been identified, offering insights into how functional specialization is achieved. This article reviews the common functions and functional differences between the dorsolateral prefrontal and posterior parietal cortex, and their underlying mechanisms.

  6. Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task

    Science.gov (United States)

    Vinnik, Ekaterina; Honey, Christian; Schnupp, Jan; Diamond, Mathew E.

    2012-01-01

    To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction. To test the effect of spatial context on sound coding, we trained rats to carry out the task on two identical testing platforms at different locations in the same room. Twenty-one percent of the recorded neurons exhibited sensitivity to sound identity, as quantified by the difference in firing rate for the two sounds associated with the same response direction. Sensitivity to sound identity was often observed on only one of the two testing platforms, indicating an effect of spatial context on sensory responses. Forty-three percent of the neurons were sensitive to response direction, and the probability that any one neuron was sensitive to response direction was statistically independent from its sensitivity to sound identity. There was no significant coding for sound identity when the rats heard the same sounds outside the behavioral task. These results suggest that CA1 neurons encode sound stimuli, but only when those sounds are associated with actions. PMID:22219030

  7. Precise auditory-vocal mirroring in neurons for learned vocal communication.

    Science.gov (United States)

    Prather, J F; Peters, S; Nowicki, S; Mooney, R

    2008-01-17

    Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons that display a precise auditory-vocal correspondence could facilitate vocal communication, they have yet to be identified. Here we report that a certain class of neurons in the swamp sparrow forebrain displays a precise auditory-vocal correspondence. We show that these neurons respond in a temporally precise fashion to auditory presentation of certain note sequences in this songbird's repertoire and to similar note sequences in other birds' songs. These neurons display nearly identical patterns of activity when the bird sings the same sequence, and disrupting auditory feedback does not alter this singing-related activity, indicating it is motor in nature. Furthermore, these neurons innervate striatal structures important for song learning, raising the possibility that singing-related activity in these cells is compared to auditory feedback to guide vocal learning.

  8. Prediction of Reach Goals in Depth and Direction from the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Matteo Filippini

    2018-04-01

    Full Text Available Summary: The posterior parietal cortex is well known to mediate sensorimotor transformations during the generation of movement plans, but its ability to control prosthetic limbs in 3D environments has not yet been fully demonstrated. With this aim, we trained monkeys to perform reaches to targets located at various depths and directions and tested whether the reach goal position can be extracted from parietal signals. The reach goal location was reliably decoded with accuracy close to optimal (>90%, and this occurred also well before movement onset. These results, together with recent work showing a reliable decoding of hand grip in the same area, suggest that this is a suitable site to decode the entire prehension action, to be considered in the development of brain-computer interfaces. : Filippini et al. show that it is possible to use parietal cortex activity to predict in which direction the arm will move and how far it will reach. This opens up the possibility of neural prostheses that can accurately guide reach and grasp using signals from this part of the brain. Keywords: neuroprosthetics, offline neural decoding, reaching in depth, monkey, V6A, machine learning, visuomotor transformations, hand guidance, prehension, robotics

  9. Transcranial direct current stimulation over the parietal cortex alters bias in item and source memory tasks.

    Science.gov (United States)

    Pergolizzi, Denise; Chua, Elizabeth F

    2016-10-01

    Neuroimaging data have shown that activity in the lateral posterior parietal cortex (PPC) correlates with item recognition and source recollection, but there is considerable debate about its specific contributions. Performance on both item and source memory tasks were compared between participants who were given bilateral transcranial direct current stimulation (tDCS) over the parietal cortex to those given prefrontal or sham tDCS. The parietal tDCS group, but not the prefrontal group, showed decreased false recognition, and less bias in item and source discrimination tasks compared to sham stimulation. These results are consistent with a causal role of the PPC in item and source memory retrieval, likely based on attentional and decision-making biases. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure

    International Nuclear Information System (INIS)

    Samardak, A. S.; Nogaret, A.; Janson, N. B.; Balanov, A.; Farrer, I.; Ritchie, D. A.

    2011-01-01

    We have demonstrated the proof of principle of a semiconductor neuron, which has dendrites, axon, and a soma and computes information encoded in electrical pulses in the same way as biological neurons. Electrical impulses applied to dendrites diffuse along microwires to the soma. The soma is the active part of the neuron, which regenerates input pulses above a voltage threshold and transmits them into the axon. Our concept of neuron is a major step forward because its spatial structure controls the timing of pulses, which arrive at the soma. Dendrites and axon act as transmission delay lines, which modify the information, coded in the timing of pulses. We have finally shown that noise enhances the detection sensitivity of the neuron by helping the transmission of weak periodic signals. A maximum enhancement of signal transmission was observed at an optimum noise level known as stochastic resonance. The experimental results are in excellent agreement with simulations of the FitzHugh-Nagumo model. Our neuron is therefore extremely well suited to providing feedback on the various mathematical approximations of neurons and building functional networks.

  11. Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons.

    Science.gov (United States)

    Oddo, Calogero M; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M D; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik

    2017-04-04

    Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models.

  12. Vulnerability of the frontal and parietal regions in hypertensive patients during working memory task.

    Science.gov (United States)

    Li, Xin; Wang, Wenxiao; Wang, Ailin; Li, Peng; Zhang, Junying; Tao, Wuhai; Zhang, Zhanjun

    2017-05-01

    Hypertension is related with cognitive decline in the elderly. The frontal-parietal executive system plays an important role in cognitive aging and is also vulnerable to damage in elderly patients with hypertension. Examination of the brain's functional characteristics in frontal-parietal regions of hypertension is likely to be important for understanding the neural mechanisms of hypertension's effect on cognitive aging. We address this issue by comparing hypertension and control-performers in a functional MRI study. Twenty-eight hypertensive patients and 32 elderly controls were tested with n-back task with two load levels. The hypertensive patients exhibited worse executive and memory abilities than control subjects. The patterns of brain activation changed under different working memory loads in the hypertensive patients, who exhibited reduced activation only in the precentral gyrus under low loads and reduced activation in the middle frontal gyrus, left medial superior frontal gyrus and right precuneus under high loads. Thus, more regions of diminished activation were observed in the frontal and parietal regions with increasing task difficulty. More importantly, we found that lower activation in changed frontal and parietal regions was associated with worse cognitive function in high loads. The results demonstrate the relationship between cognitive function and frontoparietal functional activation in hypertension and their relevance to cognitive aging risk. Our findings provide a better understanding of the mechanism of cognitive decline in hypertension and highlight the importance of brain protection in hypertension.

  13. A physiologically-inspired model of numerical classification based on graded stimulus coding

    Directory of Open Access Journals (Sweden)

    John Pearson

    2010-01-01

    Full Text Available In most natural decision contexts, the process of selecting among competing actions takes place in the presence of informative, but potentially ambiguous, stimuli. Decisions about magnitudes—quantities like time, length, and brightness that are linearly ordered—constitute an important subclass of such decisions. It has long been known that perceptual judgments about such quantities obey Weber’s Law, wherein the just-noticeable difference in a magnitude is proportional to the magnitude itself. Current physiologically inspired models of numerical classification assume discriminations are made via a labeled line code of neurons selectively tuned for numerosity, a pattern observed in the firing rates of neurons in the ventral intraparietal area (VIP of the macaque. By contrast, neurons in the contiguous lateral intraparietal area (LIP signal numerosity in a graded fashion, suggesting the possibility that numerical classification could be achieved in the absence of neurons tuned for number. Here, we consider the performance of a decision model based on this analog coding scheme in a paradigmatic discrimination task—numerosity bisection. We demonstrate that a basic two-neuron classifier model, derived from experimentally measured monotonic responses of LIP neurons, is sufficient to reproduce the numerosity bisection behavior of monkeys, and that the threshold of the classifier can be set by reward maximization via a simple learning rule. In addition, our model predicts deviations from Weber Law scaling of choice behavior at high numerosity. Together, these results suggest both a generic neuronal framework for magnitude-based decisions and a role for reward contingency in the classification of such stimuli.

  14. Population coding in mouse visual cortex: response reliability and dissociability of stimulus tuning and noise correlation

    Directory of Open Access Journals (Sweden)

    Jorrit S. Montijn

    2014-06-01

    Full Text Available The primary visual cortex is an excellent model system for investigating how neuronal populations encode information, because of well-documented relationships between stimulus characteristics and neuronal activation patterns. We used two-photon calcium imaging data to relate the performance of different methods for studying population coding (population vectors, template matching, and Bayesian decoding algorithms to their underlying assumptions. We show that the variability of neuronal responses may hamper the decoding of population activity, and that a normalization to correct for this variability may be of critical importance for correct decoding of population activity. Second, by comparing noise correlations and stimulus tuning we find that these properties have dissociated anatomical correlates, even though noise correlations have been previously hypothesized to reflect common synaptic input. We hypothesize that noise correlations arise from large non-specific increases in spiking activity acting on many weak synapses simultaneously, while neuronal stimulus response properties are dependent on more reliable connections. Finally, this paper provides practical guidelines for further research on population coding and shows that population coding cannot be approximated by a simple summation of inputs, but is heavily influenced by factors such as input reliability and noise correlation structure.

  15. Connections of the medial posterior parietal cortex (area 7m) in the monkey.

    Science.gov (United States)

    Leichnetz, G R

    2001-06-01

    The afferent and efferent cortical and subcortical connections of the medial posterior parietal cortex (area 7m) were studied in cebus (Cebus apella) and macaque (Macaca fascicularis) monkeys using the retrograde and anterograde capabilities of the horseradish peroxidase (HRP) technique. The principal intraparietal corticocortical connections of area 7m in both cebus and macaque cases were with the ipsilateral medial bank of the intraparietal sulcus (MIP) and adjacent superior parietal lobule (area 5), inferior parietal lobule (area 7a), lateral bank of the IPS (area 7ip), caudal parietal operculum (PGop), dorsal bank of the caudal superior temporal sulcus (visual area MST), and medial prestriate cortex (including visual area PO and caudal medial lobule). Its principal frontal corticocortical connections were with the prefrontal cortex in the shoulder above the principal sulcus and the cortex in the shoulder above the superior ramus of the arcuate sulcus (SAS), the area purported to contain the smooth eye movement-related frontal eye field (FEFsem) in the cebus monkey by other investigators. There were moderate connections with the cortex in the rostral bank of the arcuate sulcus (purported to contain the saccade-related frontal eye field; FEFsac), supplementary eye field (SEF), and rostral dorsal premotor area (PMDr). Area 7m also had major connections with the cingulate cortex (area 23), particularly the ventral bank of the cingulate sulcus. The principal subcortical connections of area 7m were with the dorsal portion of the ventrolateral thalamic (VLc) nucleus, lateral posterior thalamic nucleus, lateral pulvinar, caudal mediodorsal thalamic nucleus and medial pulvinar, central lateral, central superior lateral, and central inferior intralaminar thalamic nuclei, dorsolateral caudate nucleus and putamen, middle region of the claustrum, nucleus of the diagonal band, zona incerta, pregeniculate nucleus, anterior and posterior pretectal nuclei, intermediate layer of

  16. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    International Nuclear Information System (INIS)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T.

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, [3H]glutamate and [3H]glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of [3H]quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus

  17. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T. (Meijo Univ., Nagoya (Japan))

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, (3H)glutamate and (3H)glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of (3H)quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus.

  18. Automatic and Intentional Number Processing Both Rely on Intact Right Parietal Cortex: A Combined fMRI and Neuronavigated TMS Study

    Science.gov (United States)

    Cohen Kadosh, Roi; Bien, Nina; Sack, Alexander T.

    2012-01-01

    Practice and training usually lead to performance increase in a given task. In addition, a shift from intentional toward more automatic processing mechanisms is often observed. It is currently debated whether automatic and intentional processing is subserved by the same or by different mechanism(s), and whether the same or different regions in the brain are recruited. Previous correlational evidence provided by behavioral, neuroimaging, modeling, and neuropsychological studies addressing this question yielded conflicting results. Here we used transcranial magnetic stimulation (TMS) to compare the causal influence of disrupting either left or right parietal cortex during automatic and intentional numerical processing, as reflected by the size congruity effect and the numerical distance effect, respectively. We found a functional hemispheric asymmetry within parietal cortex with only the TMS-induced right parietal disruption impairing both automatic and intentional numerical processing. In contrast, disrupting the left parietal lobe with TMS, or applying sham stimulation, did not affect performance during automatic or intentional numerical processing. The current results provide causal evidence for the functional relevance of right, but not left, parietal cortex for intentional, and automatic numerical processing, implying that at least within the parietal cortices, automatic, and intentional numerical processing rely on the same underlying hemispheric lateralization. PMID:22347175

  19. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy

    Science.gov (United States)

    Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.

    2015-01-01

    Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID

  20. Examining the role of the temporo-parietal network in memory, imagery, and viewpoint transformations.

    Science.gov (United States)

    Dhindsa, Kiret; Drobinin, Vladislav; King, John; Hall, Geoffrey B; Burgess, Neil; Becker, Suzanna

    2014-01-01

    The traditional view of the medial temporal lobe (MTL) focuses on its role in episodic memory. However, some of the underlying functions of the MTL can be ascertained from its wider role in supporting spatial cognition in concert with parietal and prefrontal regions. The MTL is strongly implicated in the formation of enduring allocentric representations (e.g., O'Keefe, 1976; King et al., 2002; Ekstrom et al., 2003). According to our BBB model (Byrne et al., 2007), these representations must interact with head-centered and body-centered representations in posterior parietal cortex via a transformation circuit involving retrosplenial areas. Egocentric sensory representations in parietal areas can then cue the recall of allocentric spatial representations in long-term memory and, conversely, the products of retrieval in MTL can generate mental imagery within a parietal "window." Such imagery is necessarily egocentric and forms part of visuospatial working memory, in which it can be manipulated for the purpose of planning/imagining the future. Recent fMRI evidence (Lambrey et al., 2012; Zhang et al., 2012) supports the BBB model. To further test the model, we had participants learn the locations of objects in a virtual scene and tested their spatial memory under conditions that impose varying demands on the transformation circuit. We analyzed how brain activity correlated with accuracy in judging the direction of an object (1) from visuospatial working memory (we assume transient working memory due to the order of tasks and the absence of change in viewpoint, but long-term memory retrieval is also possible), (2) after a rotation of viewpoint, or (3) after a rotation and translation of viewpoint (judgment of relative direction). We found performance-related activity in both tasks requiring viewpoint rotation (ROT and JRD, i.e., conditions 2 and 3) in the core medial temporal to medial parietal circuit identified by the BBB model. These results are consistent with the

  1. Learning Recruits Neurons Representing Previously Established Associations in the Corvid Endbrain.

    Science.gov (United States)

    Veit, Lena; Pidpruzhnykova, Galyna; Nieder, Andreas

    2017-10-01

    Crows quickly learn arbitrary associations. As a neuronal correlate of this behavior, single neurons in the corvid endbrain area nidopallium caudolaterale (NCL) change their response properties during association learning. In crows performing a delayed association task that required them to map both familiar and novel sample pictures to the same two choice pictures, NCL neurons established a common, prospective code for associations. Here, we report that neuronal tuning changes during learning were not distributed equally in the recorded population of NCL neurons. Instead, such learning-related changes relied almost exclusively on neurons which were already encoding familiar associations. Only in such neurons did behavioral improvements during learning of novel associations coincide with increasing selectivity over the learning process. The size and direction of selectivity for familiar and newly learned associations were highly correlated. These increases in selectivity for novel associations occurred only late in the delay period. Moreover, NCL neurons discriminated correct from erroneous trial outcome based on feedback signals at the end of the trial, particularly in newly learned associations. Our results indicate that task-relevant changes during association learning are not distributed within the population of corvid NCL neurons but rather are restricted to a specific group of association-selective neurons. Such association neurons in the multimodal cognitive integration area NCL likely play an important role during highly flexible behavior in corvids.

  2. Right parietal cortex and calculation processing: intraoperative functional mapping of multiplication and addition in patients affected by a brain tumor.

    Science.gov (United States)

    Della Puppa, Alessandro; De Pellegrin, Serena; d'Avella, Elena; Gioffrè, Giorgio; Munari, Marina; Saladini, Marina; Salillas, Elena; Scienza, Renato; Semenza, Carlo

    2013-11-01

    The role of parietal areas in number processing is well known. The significance of intraoperative functional mapping of these areas has been only partially explored, however, and only a few discordant data are available in the surgical literature with regard to the right parietal lobe. The purpose of this study was to evaluate the clinical impact of simple calculation in cortical electrostimulation of right-handed patients affected by a right parietal brain tumor. Calculation mapping in awake surgery was performed in 3 right-handed patients affected by high-grade gliomas located in the right parietal lobe. Preoperatively, none of the patients presented with calculation deficits. In all 3 cases, after sensorimotor and language mapping, cortical and intraparietal sulcus areas involved in single-digit multiplication and addition calculations were mapped using bipolar electrostimulation. In all patients, different sites of the right parietal cortex, mainly in the inferior lobule, were detected as being specifically related to calculation (multiplication or addition). In 2 patients the intraparietal sulcus was functionally specific for multiplication. No functional sites for language were detected. All sites functional for calculation were spared during tumor resection, which was complete in all cases without postoperative neurological deficits. These findings provide intraoperative data in support of an anatomofunctional organization for multiplication and addition within the right parietal area. Furthermore, the study shows the potential clinical relevance of intraoperative mapping of calculation in patients undergoing surgery in the right parietal area. Further and larger studies are needed to confirm these data and assess whether mapped areas are effectively essential for function.

  3. Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells.

    NARCIS (Netherlands)

    Smeets, B.; Uhlig, S.; Fuss, A.; Mooren, F.; Wetzels, J.F.M.; Floege, J.; Moeller, M.J.

    2009-01-01

    Cellular lesions form in Bowman's space in both crescentic glomerulonephritis and collapsing glomerulopathy. The pathomechanism and origin of the proliferating cells in these lesions are unknown. In this study, we examined proliferating cells by lineage tracing of either podocytes or parietal

  4. The role of frontal and parietal brain areas in bistable perception

    NARCIS (Netherlands)

    Knapen, T.; Brascamp, J.; Pearson, J.; van Ee, R.; Blake, R.

    2011-01-01

    When sensory input allows for multiple, competing perceptual interpretations, observers' perception can fluctuate over time, which is called bistable perception. Imaging studies in humans have revealed transient responses in a right-lateralized network in the frontal-parietal cortex (rFPC) around

  5. Hidden neuronal correlations in cultured networks

    International Nuclear Information System (INIS)

    Segev, Ronen; Baruchi, Itay; Hulata, Eyal; Ben-Jacob, Eshel

    2004-01-01

    Utilization of a clustering algorithm on neuronal spatiotemporal correlation matrices recorded during a spontaneous activity of in vitro networks revealed the existence of hidden correlations: the sequence of synchronized bursting events (SBEs) is composed of statistically distinguishable subgroups each with its own distinct pattern of interneuron spatiotemporal correlations. These findings hint that each of the SBE subgroups can serve as a template for coding, storage, and retrieval of a specific information

  6. Involvement of sensory neurons in bone defect repair in rats

    International Nuclear Information System (INIS)

    Henmi, Akiko; Nakamura, Megumi; Echigo, Seishi; Sasano, Yasuyuki

    2011-01-01

    We investigated bone repair in sensory-denervated rats, compared with controls, to elucidate the involvement of sensory neurons. Nine-week-old male Wistar rats received subcutaneous injections of capsaicin to denervate sensory neurons. Rats treated with the same amount of vehicle served as controls. A standardized bone defect was created on the parietal bone. We measured the amount of repaired bone with quantitative radiographic analysis and the mRNA expressions of osteocalcin and cathepsin K with real-time polymerase chain reaction (PCR). Quantitative radiographic analysis showed that the standard deviations and coefficients of variation for the amount of repaired bone were much higher in the capsaicin-treated group than in the control group at any time point, which means that larger individual differences in the amount of repaired bone were found in capsaicin-treated rats than controls. Furthermore, radiographs showed radiolucency in pre-existing bone surrounding the standardized defect only in the capsaicin-treated group, and histological observation demonstrated some multinuclear cells corresponding to the radiolucent area. Real-time PCR indicated that there was no significant difference in the mRNA expression levels of osteocalcin and cathepsin K between the control group and the capsaicin-treated group. These results suggest that capsaicin-induced sensory denervation affects the bone defect repair. (author)

  7. Action potential bursts in central snail neurons elicited by paeonol: roles of ionic currents

    Science.gov (United States)

    Chen, Yi-hung; Lin, Pei-lin; Hsu, Hui-yu; Wu, Ya-ting; Yang, Han-yin; Lu, Dah-yuu; Huang, Shiang-suo; Hsieh, Ching-liang; Lin, Jaung-geng

    2010-01-01

    Aim: To investigate the effects of 2′-hydroxy-4′-methoxyacetophenone (paeonol) on the electrophysiological behavior of a central neuron (right parietal 4; RP4) of the giant African snail (Achatina fulica Ferussac). Methods: Intracellular recordings and the two-electrode voltage clamp method were used to study the effects of paeonol on the RP4 neuron. Results: The RP4 neuron generated spontaneous action potentials. Bath application of paeonol at a concentration of ≥500 μmol/L reversibly elicited action potential bursts in a concentration-dependent manner. Immersing the neurons in Co2+-substituted Ca2+-free solution did not block paeonol-elicited bursting. Pretreatment with the protein kinase A (PKA) inhibitor KT-5720 or the protein kinase C (PKC) inhibitor Ro 31-8220 did not affect the action potential bursts. Voltage-clamp studies revealed that paeonol at a concentration of 500 μmol/L had no remarkable effects on the total inward currents, whereas paeonol decreased the delayed rectifying K+ current (IKD) and the fast-inactivating K+ current (IA). Application of 4-aminopyridine (4-AP 5 mmol/L), an inhibitor of IA, or charybdotoxin 250 nmol/L, an inhibitor of the Ca2+-activated K+ current (IK(Ca)), failed to elicit action potential bursts, whereas tetraethylammonium chloride (TEA 50 mmol/L), an IKD blocker, successfully elicited action potential bursts. At a lower concentration of 5 mmol/L, TEA facilitated the induction of action potential bursts elicited by paeonol. Conclusion: Paeonol elicited a bursting firing pattern of action potentials in the RP4 neuron and this activity relates closely to the inhibitory effects of paeonol on the IKD. PMID:21042287

  8. Right parietal cortex mediates recognition memory for melodies.

    Science.gov (United States)

    Schaal, Nora K; Javadi, Amir-Homayoun; Halpern, Andrea R; Pollok, Bettina; Banissy, Michael J

    2015-07-01

    Functional brain imaging studies have highlighted the significance of right-lateralized temporal, frontal and parietal brain areas for memory for melodies. The present study investigated the involvement of bilateral posterior parietal cortices (PPCs) for the recognition memory of melodies using transcranial direct current stimulation (tDCS). Participants performed a recognition task before and after tDCS. The task included an encoding phase (12 melodies), a retention period, as well as a recognition phase (24 melodies). Experiment 1 revealed that anodal tDCS over the right PPC led to a deterioration of overall memory performance compared with sham. Experiment 2 confirmed the results of Experiment 1 and further showed that anodal tDCS over the left PPC did not show a modulatory effect on memory task performance, indicating a right lateralization for musical memory. Furthermore, both experiments revealed that the decline in memory for melodies can be traced back to an interference of anodal stimulation on the recollection process (remember judgements) rather than to familiarity judgements. Taken together, this study revealed a causal involvement of the right PPC for memory for melodies and demonstrated a key role for this brain region in the recollection process of the memory task. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. The role of stochasticity in an information-optimal neural population code

    Energy Technology Data Exchange (ETDEWEB)

    Stocks, N G; Nikitin, A P [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); McDonnell, M D [Institute for Telecommunications Research, University of South Australia, SA 5095 (Australia); Morse, R P, E-mail: n.g.stocks@warwick.ac.u [School of Life and Health Sciences, Aston University, Birmingham B4 7ET (United Kingdom)

    2009-12-01

    In this paper we consider the optimisation of Shannon mutual information (MI) in the context of two model neural systems. The first is a stochastic pooling network (population) of McCulloch-Pitts (MP) type neurons (logical threshold units) subject to stochastic forcing; the second is (in a rate coding paradigm) a population of neurons that each displays Poisson statistics (the so called 'Poisson neuron'). The mutual information is optimised as a function of a parameter that characterises the 'noise level'-in the MP array this parameter is the standard deviation of the noise; in the population of Poisson neurons it is the window length used to determine the spike count. In both systems we find that the emergent neural architecture and, hence, code that maximises the MI is strongly influenced by the noise level. Low noise levels leads to a heterogeneous distribution of neural parameters (diversity), whereas, medium to high noise levels result in the clustering of neural parameters into distinct groups that can be interpreted as subpopulations. In both cases the number of subpopulations increases with a decrease in noise level. Our results suggest that subpopulations are a generic feature of an information optimal neural population.

  10. Neuron selection based on deflection coefficient maximization for the neural decoding of dexterous finger movements.

    Science.gov (United States)

    Kim, Yong-Hee; Thakor, Nitish V; Schieber, Marc H; Kim, Hyoung-Nam

    2015-05-01

    Future generations of brain-machine interface (BMI) will require more dexterous motion control such as hand and finger movements. Since a population of neurons in the primary motor cortex (M1) area is correlated with finger movements, neural activities recorded in M1 area are used to reconstruct an intended finger movement. In a BMI system, decoding discrete finger movements from a large number of input neurons does not guarantee a higher decoding accuracy in spite of the increase in computational burden. Hence, we hypothesize that selecting neurons important for coding dexterous flexion/extension of finger movements would improve the BMI performance. In this paper, two metrics are presented to quantitatively measure the importance of each neuron based on Bayes risk minimization and deflection coefficient maximization in a statistical decision problem. Since motor cortical neurons are active with movements of several different fingers, the proposed method is more suitable for a discrete decoding of flexion-extension finger movements than the previous methods for decoding reaching movements. In particular, the proposed metrics yielded high decoding accuracies across all subjects and also in the case of including six combined two-finger movements. While our data acquisition and analysis was done off-line and post processing, our results point to the significance of highly coding neurons in improving BMI performance.

  11. Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks.

    Science.gov (United States)

    Schauer, Georg; Kanai, Ryota; Brascamp, Jan W

    2016-02-01

    When visual input is ambiguous, perception spontaneously alternates between interpretations: bistable perception. Studies have identified two distinct sites near the right intraparietal sulcus where inhibitory transcranial magnetic stimulation (TMS) affects the frequency of occurrence of these alternations, but strikingly with opposite directions of effect for the two sites. Lesion and TMS studies on spatial and sustained attention have also indicated a parcellation of right parietal cortex, into areas serving distinct attentional functions. We used the exact TMS procedure previously employed to affect bistable perception, yet measured its effect on spatial and sustained attention tasks. Although there was a trend for TMS to affect performance, trends were consistently similar for both parietal sites, with no indication of opposite effects. We interpret this as signifying that the previously observed parietal fractionation of function regarding the perception of ambiguous stimuli is not due to TMS-induced modification of spatial or sustained attention. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Transcriptional landscape of glomerular parietal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sina A Gharib

    Full Text Available Very little is known about the function of glomerular parietal epithelial cells (PECs. In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire.

  13. A transcription factor collective defines the HSN serotonergic neuron regulatory landscape.

    Science.gov (United States)

    Lloret-Fernández, Carla; Maicas, Miren; Mora-Martínez, Carlos; Artacho, Alejandro; Jimeno-Martín, Ángela; Chirivella, Laura; Weinberg, Peter; Flames, Nuria

    2018-03-22

    Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis -regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans . Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years. © 2018, Lloret-Fernández et al.

  14. Fronto-parietal contributions to phonological processes in successful artificial grammar learning

    Directory of Open Access Journals (Sweden)

    Dariya Goranskaya

    2016-11-01

    Full Text Available Sensitivity to regularities plays a crucial role in the acquisition of various linguistic features from spoken language input. Artificial grammar (AG learning paradigms explore pattern recognition abilities in a set of structured sequences (i.e. of syllables or letters. In the present study, we investigated the functional underpinnings of learning phonological regularities in auditorily presented syllable sequences. While previous neuroimaging studies either focused on functional differences between the processing of correct vs. incorrect sequences or between different levels of sequence complexity, here the focus is on the neural foundation of the actual learning success. During functional magnetic resonance imaging (fMRI, participants were exposed to a set of syllable sequences with an underlying phonological rule system, known to ensure performance differences between participants. We expected that successful learning and rule application would require phonological segmentation and phoneme comparison. As an outcome of four alternating learning and test fMRI sessions, participants split into successful learners and non-learners. Relative to non-learners, successful learners showed increased task-related activity in a fronto-parietal network of brain areas encompassing the left lateral premotor cortex as well as bilateral superior and inferior parietal cortices during both learning and rule application. These areas were previously associated with phonological segmentation, phoneme comparison and verbal working memory. Based on these activity patterns and the phonological strategies for rule acquisition and application, we argue that successful learning and processing of complex phonological rules in our paradigm is mediated via a fronto-parietal network for phonological processes.

  15. Temporo-Parietal and Fronto-Parietal Lobe Contributions to Theory of Mind and Executive Control: An fMRI Study of Verbal Jokes

    Directory of Open Access Journals (Sweden)

    Yu-Chen eChan

    2015-09-01

    Full Text Available ‘Getting a joke’ always requires resolving an apparent incongruity but the particular cognitive operations called upon vary depending on the nature of the joke itself. Previous research has identified the primary neural correlates of the cognitive and affective processes called upon to respond to humor generally, but little work has been done on the substrates underlying the distinct cognitive operations required to comprehend particular joke types. This study explored the neural correlates of the cognitive processes required to successfully comprehend three joke types: bridging-inference jokes, exaggeration jokes and ambiguity jokes. For all joke types, the left dlPFC appeared to support common cognitive mechanisms, such as script-shifting, while the vACC was associated with affective appreciation. The temporo-parietal lobe (TPJ and MTG was associated with bridging-inference jokes, suggesting involvement of these regions with ‘theory of mind’ processing. The ventral fronto-parietal lobe (IPL and IFG was associated with both exaggeration and ambiguity jokes, suggesting that it supports executive control processes such as retrieval from episodic memory, self-awareness, and language-based decoding. The social-affective appreciation of verbal jokes was associated with activity in the orbitofrontal cortex, amygdala, ventral anterior cingulate cortex (vACC, and parahippocampal gyrus. These results allow a more precise account of the neural

  16. Epigenetic Basis of Neuronal and Synaptic Plasticity.

    Science.gov (United States)

    Karpova, Nina N; Sales, Amanda J; Joca, Samia R

    2017-01-01

    Neuronal network and plasticity change as a function of experience. Altered neural connectivity leads to distinct transcriptional programs of neuronal plasticity-related genes. The environmental challenges throughout life may promote long-lasting reprogramming of gene expression and the development of brain disorders. The modifications in neuronal epigenome mediate gene-environmental interactions and are required for activity-dependent regulation of neuronal differentiation, maturation and plasticity. Here, we highlight the latest advances in understanding the role of the main players of epigenetic machinery (DNA methylation and demethylation, histone modifications, chromatin-remodeling enzymes, transposons, and non-coding RNAs) in activity-dependent and long- term neural and synaptic plasticity. The review focuses on both the transcriptional and post-transcriptional regulation of gene expression levels, including the processes of promoter activation, alternative splicing, regulation of stability of gene transcripts by natural antisense RNAs, and alternative polyadenylation. Further, we discuss the epigenetic aspects of impaired neuronal plasticity and the pathogenesis of neurodevelopmental (Rett syndrome, Fragile X Syndrome, genomic imprinting disorders, schizophrenia, and others), stressrelated (mood disorders) and neurodegenerative Alzheimer's, Parkinson's and Huntington's disorders. The review also highlights the pharmacological compounds that modulate epigenetic programming of gene expression, the potential treatment strategies of discussed brain disorders, and the questions that should be addressed during the development of effective and safe approaches for the treatment of brain disorders.

  17. Parietal intradiploic encephalocele: Report of a case and review of the literature.

    Science.gov (United States)

    Arevalo-Perez, Julio; Millán-Juncos, José M

    2015-06-01

    Encephaloceles consist of brain tissue and meninges that has herniated through a skull defect, usually located in the midline. They are seen more commonly in children and very rarely in adults. We present a case of an 84-year-old patient who was incidentally diagnosed with a lytic bone lesion in the right parietal intradiploic space, after computed tomography of the head was performed. A magnetic resonance imaging scan of the brain showed herniation of brain tissue through the defect. Magnetic resonance imaging was crucial in demonstrating the presence of parenchyma and its continuity with the rest of the brain, consequently distinguishing it from other entities. We report the imaging findings of a parietal indradiploic encephalocele with its differential diagnosis and a review of the relevant literature. © The Author(s) 2015.

  18. Reward value-based gain control: divisive normalization in parietal cortex.

    Science.gov (United States)

    Louie, Kenway; Grattan, Lauren E; Glimcher, Paul W

    2011-07-20

    The representation of value is a critical component of decision making. Rational choice theory assumes that options are assigned absolute values, independent of the value or existence of other alternatives. However, context-dependent choice behavior in both animals and humans violates this assumption, suggesting that biological decision processes rely on comparative evaluation. Here we show that neurons in the monkey lateral intraparietal cortex encode a relative form of saccadic value, explicitly dependent on the values of the other available alternatives. Analogous to extra-classical receptive field effects in visual cortex, this relative representation incorporates target values outside the response field and is observed in both stimulus-driven activity and baseline firing rates. This context-dependent modulation is precisely described by divisive normalization, indicating that this standard form of sensory gain control may be a general mechanism of cortical computation. Such normalization in decision circuits effectively implements an adaptive gain control for value coding and provides a possible mechanistic basis for behavioral context-dependent violations of rationality.

  19. Nav 1.8-null mice show stimulus-dependent deficits in spinal neuronal activity

    Directory of Open Access Journals (Sweden)

    Wood John N

    2006-02-01

    Full Text Available Abstract Background The voltage gated sodium channel Nav 1.8 has a highly restricted expression pattern to predominantly nociceptive peripheral sensory neurones. Behaviourally Nav 1.8-null mice show an increased acute pain threshold to noxious mechanical pressure and also deficits in inflammatory and visceral, but not neuropathic pain. Here we have made in vivo electrophysiology recordings of dorsal horn neurones in intact anaesthetised Nav 1.8-null mice, in response to a wide range of stimuli to further the understanding of the functional roles of Nav 1.8 in pain transmission from the periphery to the spinal cord. Results Nav 1.8-null mice showed marked deficits in the coding by dorsal horn neurones to mechanical, but not thermal, -evoked responses over the non-noxious and noxious range compared to littermate controls. Additionally, responses evoked to other stimulus modalities were also significantly reduced in Nav 1.8-null mice where the reduction observed to pinch > brush. The occurrence of ongoing spontaneous neuronal activity was significantly less in mice lacking Nav 1.8 compared to control. No difference was observed between groups in the evoked activity to electrical activity of the peripheral receptive field. Conclusion This study demonstrates that deletion of the sodium channel Nav 1.8 results in stimulus-dependent deficits in the dorsal horn neuronal coding to mechanical, but not thermal stimuli applied to the neuronal peripheral receptive field. This implies that Nav 1.8 is either responsible for, or associated with proteins involved in mechanosensation.

  20. El contexto del arte parietal. La tecnología de los artistas en la Cueva de Tito Bustillo (Asturias

    Directory of Open Access Journals (Sweden)

    Moure Romanillo, Alfonso

    1988-12-01

    Full Text Available This study overlaps in part with a communication presented to the «Colloque International d'Art Parietal Paléolithique» held at Perigueux-Le Thot in december 1984. The technological responses contained in a decorated zone of the cave of Tito Bustillo are analyzed, as well as the activities carried out on living floors related to the preparation and completion of the parietal art.

    El trabajo coincide parcialmente con la comunicación presentada al «Colloque International d'Art Parietal Paléolithique» celebrado en Perigueux-Le Thot, en diciembre de 1984. Se analizan las respuestas tecnológicas contenidas en un área de decoración de la cueva de Tito Bustillo (Asturias, así como las actividades en áreas de estancia relacionadas con la preparación y ejecución del arte parietal.

  1. Glutamate and GABA as rapid effectors of hypothalamic peptidergic neurons

    Directory of Open Access Journals (Sweden)

    Cornelia eSchöne

    2012-11-01

    Full Text Available Vital hypothalamic neurons regulating hunger, wakefulness, reward-seeking, and body weight are often defined by unique expression of hypothalamus-specific neuropeptides. Gene-ablation studies show that some of these peptides, notably orexin/hypocretin (hcrt/orx, are themselves critical for stable states of consciousness and metabolic health. However, neuron-ablation studies often reveal more severe phenotypes, suggesting key roles for co-expressed transmitters. Indeed, most hypothalamic neurons, including hcrt/orx cells, contain fast transmitters glutamate and GABA, as well as several neuropeptides. What are the roles and relations between different transmitters expressed by the same neuron? Here, we consider signaling codes for releasing different transmitters in relation to transmitter and receptor diversity in behaviorally-defined, widely-projecting peptidergic neurons, such as hcrt/orx cells. We then discuss latest optogenetic studies of endogenous transmitter release from defined sets of axons in situ, which suggest that recently-characterized vital peptidergic neurons (e.g. hcrt/orx, proopiomelanocortin , and agouti-related peptide cells, as well as classical modulatory neurons (e.g. dopamine and acetylcholine cells, all use fast transmitters to control their postsynaptic targets. These optogenetic insights are complemented by recent observations of behavioral deficiencies caused by genetic ablation of fast transmission from specific neuropeptidergic and aminergic neurons. Powerful and fast (millisecond-scale GABAergic and glutamatergic signaling from neurons previously considered to be primarily modulatory raises new questions about the roles of slower co-transmitters they co-express.

  2. GeNN: a code generation framework for accelerated brain simulations

    Science.gov (United States)

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-01

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.

  3. The impact of top-down spatial attention on laterality and hemispheric asymmetry in the human parietal cortex.

    Science.gov (United States)

    Jeong, Su Keun; Xu, Yaoda

    2016-08-01

    The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region.

  4. Post-eclosion odor experience modifies olfactory receptor neuron coding in Drosophila.

    Science.gov (United States)

    Iyengar, Atulya; Chakraborty, Tuhin Subhra; Goswami, Sarit Pati; Wu, Chun-Fang; Siddiqi, Obaid

    2010-05-25

    Olfactory responses of Drosophila undergo pronounced changes after eclosion. The flies develop attraction to odors to which they are exposed and aversion to other odors. Behavioral adaptation is correlated with changes in the firing pattern of olfactory receptor neurons (ORNs). In this article, we present an information-theoretic analysis of the firing pattern of ORNs. Flies reared in a synthetic odorless medium were transferred after eclosion to three different media: (i) a synthetic medium relatively devoid of odor cues, (ii) synthetic medium infused with a single odorant, and (iii) complex cornmeal medium rich in odors. Recordings were made from an identified sensillum (type II), and the Jensen-Shannon divergence (D(JS)) was used to assess quantitatively the differences between ensemble spike responses to different odors. Analysis shows that prolonged exposure to ethyl acetate and several related esters increases sensitivity to these esters but does not improve the ability of the fly to distinguish between them. Flies exposed to cornmeal display varied sensitivity to these odorants and at the same time develop greater capacity to distinguish between odors. Deprivation of odor experience on an odorless synthetic medium leads to a loss of both sensitivity and acuity. Rich olfactory experience thus helps to shape the ORNs response and enhances its discriminative power. The experiments presented here demonstrate an experience-dependent adaptation at the level of the receptor neuron.

  5. Distinct regions of right temporo-parietal junction are selective for theory of mind and exogenous attention.

    Science.gov (United States)

    Scholz, Jonathan; Triantafyllou, Christina; Whitfield-Gabrieli, Susan; Brown, Emery N; Saxe, Rebecca

    2009-01-01

    In functional magnetic resonance imaging (fMRI) studies, a cortical region in the right temporo-parietal junction (RTPJ) is recruited when participants read stories about people's thoughts ('Theory of Mind'). Both fMRI and lesion studies suggest that a region near the RTPJ is associated with attentional reorienting in response to an unexpected stimulus. Do Theory of Mind and attentional reorienting recruit a single population of neurons, or are there two neighboring but distinct neural populations in the RTPJ? One recent study compared these activations, and found evidence consistent with a single common region. However, the apparent overlap may have been due to the low resolution of the previous technique. We tested this hypothesis using a high-resolution protocol, within-subjects analyses, and more powerful statistical methods. Strict conjunction analyses revealed that the area of overlap was small and on the periphery of each activation. In addition, a bootstrap analysis identified a reliable 6-10 mm spatial displacement between the peak activations of the two tasks; the same magnitude and direction of displacement was observed in within-subjects comparisons. In all, these results suggest that there are neighboring but distinct regions within the RTPJ implicated in Theory of Mind and orienting attention.

  6. Sustained attention is associated with right superior longitudinal fasciculus and superior parietal white matter microstructure in children

    DEFF Research Database (Denmark)

    Klarborg, Brith; Skak Madsen, Kathrine; Vestergaard, Martin

    2013-01-01

    Sustained attention develops during childhood and has been linked to the right fronto-parietal cortices in functional imaging studies; however, less is known about its relation to white matter (WM) characteristics. Here we investigated whether the microstructure of the WM underlying and connecting...... the right fronto-parietal cortices was associated with sustained attention performance in a group of 76 typically developing children aged 7-13 years. Sustained attention was assessed using a rapid visual information processing paradigm. The two behavioral measures of interest were the sensitivity index d......' and the coefficient of variation in reaction times (RT(CV) ). Diffusion-weighted imaging was performed. Mean fractional anisotropy (FA) was extracted from the WM underlying right dorsolateral prefrontal (DLPFC) and parietal cortex (PC), and the right superior longitudinal fasciculus (SLF), as well as equivalent...

  7. Neuronal Oscillations Indicate Sleep-dependent Changes in the Cortical Memory Trace.

    Science.gov (United States)

    Köster, Moritz; Finger, Holger; Kater, Maren-Jo; Schenk, Christoph; Gruber, Thomas

    2017-04-01

    Sleep promotes the consolidation of newly acquired associative memories. Here we used neuronal oscillations in the human EEG to investigate sleep-dependent changes in the cortical memory trace. The retrieval activity for object-color associations was assessed immediately after encoding and after 3 hr of sleep or wakefulness. Sleep had beneficial effects on memory performance and led to reduced event-related theta and gamma power during the retrieval of associative memories. Furthermore, event-related alpha suppression was attenuated in the wake group for memorized and novel stimuli. There were no sleep-dependent changes in retrieval activity for missed items or items retrieved without color. Thus, the sleep-dependent reduction in theta and gamma oscillations was specific for the retrieval of associative memories. In line with theoretical accounts on sleep-dependent memory consolidation, decreased theta may indicate reduced mediotemporal activity because of a transfer of information into neocortical networks during sleep, whereas reduced parietal gamma may reflect effects of synaptic downscaling. Changes in alpha suppression in the wake group possibly index reduced attentional resources that may also contribute to a lower memory performance in this group. These findings indicate that the consolidation of associative memories during sleep is associated with profound changes in the cortical memory trace and relies on multiple neuronal processes working in concert.

  8. Effects of rearranged vision on event-related lateralizations of the EEG during pointing.

    Science.gov (United States)

    Berndt, Isabelle; Franz, Volker H; Bülthoff, Heinrich H; Gotz, Karl G; Wascher, Edmund

    2005-01-01

    We used event-related lateralizations of the EEG (ERLs) and reversed vision to study visuomotor processing with conflicting proprioceptive and visual information during pointing. Reversed vision decreased arm-related lateralization, probably reflecting the simultaneous activity of left and right arm specific neurons: neurons in the hemisphere contralateral to the observed action were probably activated by visual feedback, neurons in the hemisphere contralateral to the response side by the somatomotor feedback. Lateralization related to the target in parietal cortex increased, indicating that visual to motor transformation in parietal cortex required additional time and resources with reversed vision. A short period of adaptation to an additional lateral displacement of the visual field increased arm-contralateral activity in parietal cortex during the movement. This is in agreement with the, which showed that adaptation to a lateral displacement of the visual field is reflected in increased parietal involvement during pointing.

  9. Distribution of the P2X2 receptor and chemical coding in ileal enteric neurons of obese male mice (ob/ob)

    Science.gov (United States)

    Mizuno, Márcia Sanae; Crisma, Amanda Rabello; Borelli, Primavera; Schäfer, Bárbara Tavares; Silveira, Mariana Póvoa; Castelucci, Patricia

    2014-01-01

    AIM: To investigate the colocalization, density and profile of neuronal areas of enteric neurons in the ileum of male obese mice. METHODS: The small intestinal samples of male mice in an obese group (OG) (C57BL/6J ob/ob) and a control group (CG) (+/+) were used. The tissues were analyzed using a double immunostaining technique for immunoreactivity (ir) of the P2X2 receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT) and calretinin (Calr). Also, we investigated the density and profile of neuronal areas of the NOS-, ChAT- and Calr-ir neurons in the myenteric plexus. Myenteric neurons were labeled using an NADH-diaphorase histochemical staining method. RESULTS: The analysis demonstrated that the P2X2 receptor was expressed in the cytoplasm and in the nuclear and cytoplasmic membranes only in the CG. Neuronal density values (neuron/cm2) decreased 31% (CG: 6579 ± 837; OG: 4556 ± 407) and 16.5% (CG: 7796 ± 528; OG: 6513 ± 610) in the NOS-ir and calretinin-ir neurons in the OG, respectively (P < 0.05). Density of ChAT-ir (CG: 6200 ± 310; OG: 8125 ± 749) neurons significantly increased 31% in the OG (P < 0.05). Neuron size studies demonstrated that NOS, ChAT, and Calr-ir neurons did not differ significantly between the CG and OG groups. The examination of NADH-diaphorase-positive myenteric neurons revealed an overall similarity between the OG and CG. CONCLUSION: Obesity may exert its effects by promoting a decrease in P2X2 receptor expression and modifications in the density of the NOS-ir, ChAT-ir and CalR-ir myenteric neurons. PMID:25320527

  10. Caracterización del injerto parietal

    Directory of Open Access Journals (Sweden)

    José Manuel Díaz Fernández

    1996-12-01

    Full Text Available Se realizó un estudio descriptivo, longitudinal y prospectivo de 22 pacientes en los que se utilizó el injerto parietal autógeno para reconstruir defectos del cráneo, en los servicios de Cirugía Maxilofacial y Neurocirugía del Hospital Clinicoquirúrgico Docente "Saturnino Lora", de Santiago de Cuba, desde 1988 hasta 1991. El método de extracción del injerto con división in situ resultó el más empleado y el que ofreció las mejores posibilidades de reconstrucción en cuanto a forma, volumen y flexibilidad, por lo que se recomienda en los defectos pequeños y medianos, sobre todo de la región frontal y áreas adyacentes, donde el contorno y la simetría son los 2 aspectos fundamentales que se deben conseguir. El método de división, in vitro se utilizó en las reconstrucciones de las deformidades de grandes dimensiones, particularmente en aquellas que no incluían la frente. El índice de complicaciones fue bajoIt was carried out a descriptive, longitudinal and prospective study of 22 patients in whom an autogenous parietal graft was used to reconstruct cranial defects at the Maxillofacial Surgery and Neurosurgery Department of the "Saturnino Lora" Clinical and Surgical Teaching Hospital, in Santiago de Cuba, from 1988 to 1991. The graft extraction method with division in situ was the most used and offered the best possibilities for reconstruction as regards form, volume and flexibility. Therefore, it is recommended for small and medium defects, particularly of the frontal region and adjacent areas, where contour and symmetry are the two fundamental aspects to be taken into consideration. The method of division in vitro was used to reconstruct large deformities, specially those in which the forehead was not included. The complications index was low

  11. Bitter taste stimuli induce differential neural codes in mouse brain.

    Directory of Open Access Journals (Sweden)

    David M Wilson

    Full Text Available A growing literature suggests taste stimuli commonly classified as "bitter" induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total, including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA, presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5 were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05 to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05 from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among "bitter" stimuli, data that challenge a strict monoguesia model for the bitter quality.

  12. Posterior parietal cortex and episodic encoding: insights from fMRI subsequent memory effects and dual-attention theory.

    Science.gov (United States)

    Uncapher, Melina R; Wagner, Anthony D

    2009-02-01

    The formation of episodic memories--memories for life events--is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding.

  13. Mental reversal of imagined melodies: a role for the posterior parietal cortex.

    Science.gov (United States)

    Zatorre, Robert J; Halpern, Andrea R; Bouffard, Marc

    2010-04-01

    Two fMRI experiments explored the neural substrates of a musical imagery task that required manipulation of the imagined sounds: temporal reversal of a melody. Musicians were presented with the first few notes of a familiar tune (Experiment 1) or its title (Experiment 2), followed by a string of notes that was either an exact or an inexact reversal. The task was to judge whether the second string was correct or not by mentally reversing all its notes, thus requiring both maintenance and manipulation of the represented string. Both experiments showed considerable activation of the superior parietal lobe (intraparietal sulcus) during the reversal process. Ventrolateral and dorsolateral frontal cortices were also activated, consistent with the memory load required during the task. We also found weaker evidence for some activation of right auditory cortex in both studies, congruent with results from previous simpler music imagery tasks. We interpret these results in the context of other mental transformation tasks, such as mental rotation in the visual domain, which are known to recruit the intraparietal sulcus region, and we propose that this region subserves general computations that require transformations of a sensory input. Mental imagery tasks may thus have both task or modality-specific components as well as components that supersede any specific codes and instead represent amodal mental manipulation.

  14. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.

    Science.gov (United States)

    Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S

    2013-10-16

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.

  15. Frontal and Parietal Cortical Interactions with Distributed Visual Representations during Selective Attention and Action Selection

    Science.gov (United States)

    Stokes, Mark; Nobre, Anna C.; Rushworth, Matthew F. S.

    2013-01-01

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity. PMID:24133250

  16. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models

    Directory of Open Access Journals (Sweden)

    Alexander eHanuschkin

    2013-06-01

    Full Text Available Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: Random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, they allow for imitating arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions.Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird’s own song

  17. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models.

    Science.gov (United States)

    Hanuschkin, A; Ganguli, S; Hahnloser, R H R

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli.

  18. Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons.

    Directory of Open Access Journals (Sweden)

    Kyriaki Sidiropoulou

    Full Text Available Proper functioning of working memory involves the expression of stimulus-selective persistent activity in pyramidal neurons of the prefrontal cortex (PFC, which refers to neural activity that persists for seconds beyond the end of the stimulus. The mechanisms which PFC pyramidal neurons use to discriminate between preferred vs. neutral inputs at the cellular level are largely unknown. Moreover, the presence of pyramidal cell subtypes with different firing patterns, such as regular spiking and intrinsic bursting, raises the question as to what their distinct role might be in persistent firing in the PFC. Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS and an intrinsic bursting (IB model neuron. We identify synaptic location within the basal dendrites as a feature of stimulus selectivity. Specifically, persistent activity-inducing stimuli consist of activated synapses that are located more distally from the soma compared to non-inducing stimuli, in both model cells. In addition, the action potential (AP latency and the first few inter-spike-intervals of the neuronal response can be used to reliably detect inducing vs. non-inducing inputs, suggesting a potential mechanism by which downstream neurons can rapidly decode the upcoming emergence of persistent activity. While the two model neurons did not differ in the coding features of persistent activity emergence, the properties of persistent activity, such as the firing pattern and the duration of temporally-restricted persistent activity were distinct. Collectively, our results pinpoint to specific features of the neuronal response to a given

  19. Novel Application of Stem Cell-Derived Neurons to Evaluate the Time-and Dose-Dependent Progression of Excitotoxic Injury

    Science.gov (United States)

    2013-05-14

    3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Novel Application of Stem Cell -Derived Neurons to Evaluate the Time- and Dose-Dependent 5a...01.10.RC.021). 14. ABSTRACT See reprint. 15. SUBJECT TERMS Mouse stem cell -derived neurons, NMDA receptor, AMPA receptor, Neurotoxicity, Apoptosis...area code) 410-436-8044 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Novel Application of Stem Cell -Derived Neurons to Evaluate the

  20. Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin.

    NARCIS (Netherlands)

    Kabgani, N.; Grigoleit, T.; Schulte, K.; Sechi, A.; Sauer-Lehnen, S.; Tag, C.; Boor, P.; Kuppe, C.; Warsow, G.; Schordan, S.; Mostertz, J.; Chilukoti, R.K.; Homuth, G.; Endlich, N.; Tacke, F.; Weiskirchen, R.; Fuellen, G.; Endlich, K.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) are crucially involved in the pathogenesis of rapidly progressive glomerulonephritis (RPGN) as well as in focal and segmental glomerulosclerosis (FSGS). In this study, transgenic mouse lines were used to isolate pure, genetically tagged primary cultures of PECs or

  1. Individual structural differences in left inferior parietal area are associated with schoolchildrens’ arithmetic scores

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-12-01

    Full Text Available Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the grey matter (GM volume in the left intraparietal sulcus (IPS. Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF, bilateral inferior longitudinal fasciculus (ILF and inferior fronto-occipital fasciculus (IFOF were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children’s arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren.

  2. An atretic parietal cephalocele associated with multiple intracranial and eye anomalies

    International Nuclear Information System (INIS)

    Saatci, I.; Yelgec, S.; Aydin, K.; Akalan, N.

    1998-01-01

    We present the cranial MRI findings in a 4-month-old girl with an atretic parietal cephalocele associated with multiple cerebral and ocular anomalies including lobar holoprosencephaly, a Dandy-Walker malformation, agenesis of the corpus callosum, grey-matter heterotopia, extra-axial cysts in various locations, bilateral microphthalmia and a retroocular cyst. (orig.)

  3. Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions

    Science.gov (United States)

    Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi

    2009-01-01

    The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…

  4. Rational modulation of neuronal processing with applied electric fields.

    Science.gov (United States)

    Bikson, Marom; Radman, Thomas; Datta, Abhishek

    2006-01-01

    Traditional approaches to electrical stimulation, using trains of supra-threshold pulses to trigger action potentials, may be replaced or augmented by using 'rational' sub-threshold stimulation protocols that incorporate knowledge of single neuron geometry, inhomogeneous tissue properties, and nervous system information coding. Sub-threshold stimulation, at intensities (well) below those sufficient to trigger action potentials, may none-the-less exert a profound effect on brain function through modulation of concomitant neuronal activity. For example, small DC fields may coherently polarize a network of neurons and thus modulate the simultaneous processing of afferent synaptic input as well as resulting changes in synaptic plasticity. Through 'activity-dependent plasticity', sub-threshold fields may allow specific targeting of pathological networks and are thus particularly suitable to overcome the poor anatomical focus of noninvasive (transcranial) electrical stimulation. Additional approaches to improve targeting in transcranial stimulation using novel electrode configurations are also introduced.

  5. Estimation of time-dependent input from neuronal membrane potential

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, R.; Shinomoto, S.; Lánský, Petr

    2011-01-01

    Roč. 23, č. 12 (2011), s. 3070-3093 ISSN 0899-7667 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GAP103/11/0282 Institutional research plan: CEZ:AV0Z50110509 Keywords : neuronal coding * statistical estimation * Bayes method Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.884, year: 2011

  6. The mechanism of long non-coding RNA MEG3 for neurons apoptosis caused by hypoxia: mediated by miR-181b-12/15-LOX signaling pathway

    Directory of Open Access Journals (Sweden)

    Xiaomin Liu

    2016-09-01

    Full Text Available Objective: lncRNAs are recently thought to play a significant role in cellular homeostasis during pathological process of diseases by competing inhibiting miRNA function. The aim of present study was to assess the function of long non-coding RNA (lncRNA MEG3 and its functional interaction with microRNA-181b in cerebral ischemic infarct of mice and hypoxia-induced neurons apoptosis. Methods: To address this question, we performed the experiments with in vivo middle cerebral artery occlusion (MCAO mice model and in vitro oxygen-glucose deprivation (OGD-cultured neuronal HT22 cell line. Relative expression of MEG3, miR-181b and 12/15-LOX (lipoxygenase mRNA was determined using quantitative RT-PCR. Western blot was used to evaluate 12/15-LOX protein expression. TUNEL assay was performed to assess cell apoptosis.Results: In both MCAO mice and OGD-cultured HT22 cell, ischemia or hypoxia treatment results in a time-dependent increase in MEG3 and 12/15-LOX expression and decrease in miR-181b expression. Knockdown of MEG3 contributes to attenuation of hypoxia-induced apoptosis of HT22 cell. Also, expression level of MEG3 negatively correlated with miR-181b expression and positively correlated with 12/15-LOX expression. In contrary to MEG3, miR-181b overexpression attenuated hypoxia-induced HT22 cell apoptosis, as well as suppressed hypoxia-induced increase in 12/15-LOX expression. By luciferase reporter assay, we concluded that miR-181b directly binds to 12/15-LOX 3’-UTR, thereby negatively regulates 12/15-LOX expression. Conclusion: Our data suggested that long non-coding RNA MEG3 functions as a competing endogenous RNA for miR-181b to regulate 12/15-LOX expression in middle cerebral artery occlusion-induced ischemic infarct of brain nerve cells.

  7. Central and peripheral components of writing critically depend on a defined area of the dominant superior parietal gyrus.

    Science.gov (United States)

    Magrassi, Lorenzo; Bongetta, Daniele; Bianchini, Simonetta; Berardesca, Marta; Arienta, Cesare

    2010-07-30

    Classical neuropsychological models of writing separate central (linguistic) processes common to oral spelling, writing and typing from peripheral (motor) processes that are modality specific. Damage to the left superior parietal gyrus, an area of the cortex involved in peripheral processes specific to handwriting, should generate distorted graphemes but not misspelled words, while damage to other areas of the cortex like the frontal lobe should produce alterations in written and oral spelling without distorted graphemes. We describe the clinical and neuropsychological features of a patient with combined agraphia for handwriting and typewriting bearing a small glioblastoma in the left parietal lobe. His agraphia resolved after antiedema therapy and we tested by bipolar cortical stimulation his handwriting abilities during an awake neurosurgical procedure. We found that we could reversibly re-induce the same defects of writing by stimulating during surgery a limited area of the superior parietal gyrus in the same patient and in an independent patient that was never agraphic before the operation. In those patients stimulation caused spelling errors, poorly formed letters and in some cases a complete cessation of writing with minimal or no effects on oral spelling. Our results suggest that stimulating a specific area in the superior parietal gyrus we can generate different patterns of agraphia. Moreover, our findings also suggest that some of the central processes specific for typing and handwriting converge with motor processes at least in the limited portion of the superior parietal gyrus we mapped in our patients. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Syndecan-1 in the mouse parietal peritoneum microcirculation in inflammation.

    Directory of Open Access Journals (Sweden)

    Paulina M Kowalewska

    Full Text Available BACKGROUND: The heparan sulfate proteoglycan syndecan-1 (CD138 was shown to regulate inflammatory responses by binding chemokines and cytokines and interacting with adhesion molecules, thereby modulating leukocyte trafficking to tissues. The objectives of this study were to examine the expression of syndecan-1 and its role in leukocyte recruitment and chemokine presentation in the microcirculation underlying the parietal peritoneum. METHODS: Wild-type BALB/c and syndecan-1 null mice were stimulated with an intraperitoneal injection of Staphylococcus aureus LTA, Escherichia coli LPS or TNFα and the microcirculation of the parietal peritoneum was examined by intravital microscopy after 4 hours. Fluorescence confocal microscopy was used to examine syndecan-1 expression in the peritoneal microcirculation using fluorescent antibodies. Blocking antibodies to adhesion molecules were used to examine the role of these molecules in leukocyte-endothelial cell interactions in response to LTA. To determine whether syndecan-1 co-localizes with chemokines in vivo, fluorescent antibodies to syndecan-1 were co-injected intravenously with anti-MIP-2 (CXCL2, anti-KC (CXCL1 or anti-MCP-1 (CCL2. RESULTS AND CONCLUSION: Syndecan-1 was localized to the subendothelial region of peritoneal venules and the mesothelial layer. Leukocyte rolling was significantly decreased with LPS treatment while LTA and TNFα significantly increased leukocyte adhesion compared with saline control. Leukocyte-endothelial cell interactions were not different in syndecan-1 null mice. Antibody blockade of β2 integrin (CD18, ICAM-1 (CD54 and VCAM-1 (CD106 did not decrease leukocyte adhesion in response to LTA challenge while blockade of P-selectin (CD62P abrogated leukocyte rolling. Lastly, MIP-2 expression in the peritoneal venules was not dependent on syndecan-1 in vivo. Our data suggest that syndecan-1 is expressed in the parietal peritoneum microvasculature but does not regulate leukocyte

  9. Activity in human visual and parietal cortex reveals object-based attention in working memory.

    Science.gov (United States)

    Peters, Benjamin; Kaiser, Jochen; Rahm, Benjamin; Bledowski, Christoph

    2015-02-25

    Visual attention enables observers to select behaviorally relevant information based on spatial locations, features, or objects. Attentional selection is not limited to physically present visual information, but can also operate on internal representations maintained in working memory (WM) in service of higher-order cognition. However, only little is known about whether attention to WM contents follows the same principles as attention to sensory stimuli. To address this question, we investigated in humans whether the typically observed effects of object-based attention in perception are also evident for object-based attentional selection of internal object representations in WM. In full accordance with effects in visual perception, the key behavioral and neuronal characteristics of object-based attention were observed in WM. Specifically, we found that reaction times were shorter when shifting attention to memory positions located on the currently attended object compared with equidistant positions on a different object. Furthermore, functional magnetic resonance imaging and multivariate pattern analysis of visuotopic activity in visual (areas V1-V4) and parietal cortex revealed that directing attention to one position of an object held in WM also enhanced brain activation for other positions on the same object, suggesting that attentional selection in WM activates the entire object. This study demonstrated that all characteristic features of object-based attention are present in WM and thus follows the same principles as in perception. Copyright © 2015 the authors 0270-6474/15/353360-10$15.00/0.

  10. Endogenous BDNF is required for long-term memory formation in the rat parietal cortex.

    Science.gov (United States)

    Alonso, Mariana; Bekinschtein, Pedro; Cammarota, Martín; Vianna, Monica R M; Izquierdo, Iván; Medina, Jorge H

    2005-01-01

    Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory consolidation in the neocortex. Brain-derived neurotrophic factor (BDNF) modulates both short-term synaptic function and activity-dependent synaptic plasticity in hippocampal and cortical neurons. We have recently demonstrated that endogenous BDNF in the hippocampus is involved in memory formation. Here we examined the role of BDNF in the parietal cortex (PCx) in short-term (STM) and long-term memory (LTM) formation of a one-trial fear-motivated learning task in rats. Bilateral infusions of function-blocking anti-BDNF antibody into the PCx impaired both STM and LTM retention scores and decreased the phosphorylation state of cAMP response element-binding protein (CREB). In contrast, intracortical administration of recombinant human BDNF facilitated LTM and increased CREB activation. Moreover, inhibitory avoidance training is associated with a rapid and transient increase in phospho-CREB/total CREB ratio in the PCx. Thus, our results indicate that endogenous BDNF is required for both STM and LTM formation of inhibitory avoidance learning, possibly involving CREB activation-dependent mechanisms. The present data support the idea that early sensory areas constitute important components of the networks subserving memory formation and that information processing in neocortex plays an important role in memory formation.

  11. Bilateral fronto-parietal integrity in young chronic cigarette smokers: a diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Yanhui Liao

    Full Text Available Cigarette smoking continues to be the leading cause of preventable morbidity and mortality in China and other countries. Previous studies have demonstrated gray matter loss in chronic smokers. However, only a few studies assessed the changes of white matter integrity in this group. Based on those previous reports of alterations in white matter integrity in smokers, the aim of this study was to examine the alteration of white matter integrity in a large, well-matched sample of chronic smokers and non-smokers.Using in vivo diffusion tensor imaging (DTI to measure the differences of whole-brain white matter integrity between 44 chronic smoking subjects (mean age, 28.0±5.6 years and 44 healthy age- and sex-matched comparison non-smoking volunteers (mean age, 26.3±5.8 years. DTI was performed on a 3-Tesla Siemens scanner (Allegra; Siemens Medical System. The data revealed that smokers had higher fractional anisotropy (FA than healthy non-smokers in almost symmetrically bilateral fronto-parietal tracts consisting of a major white matter pathway, the superior longitudinal fasciculus (SLF.We found the almost symmetrically bilateral fronto-parietal whiter matter changes in a relatively large sample of chronic smokers. These findings support the hypothesis that chronic cigarette smoking involves alterations of bilateral fronto-parietal connectivity.

  12. Noninvasive brain stimulation of the parietal lobe for improving neurologic, neuropsychologic, and neuropsychiatric deficits.

    Science.gov (United States)

    Bolognini, Nadia; Miniussi, Carlo

    2018-01-01

    Transcranial magnetic stimulation (TMS) and transcranial electric stimulation (tES) are noninvasive brain stimulation (NIBS) tools that are now widely used in neuroscientific research in humans. The fact that both TMS and tES are able to modulate brain plasticity and, in turn, affect behavior is opening up new horizons in the treatment of brain circuit and plasticity disorders. In the present chapter, we will first provide the reader with a brief background on the basic principles of NIBS, describing the electromagnetic and physical foundations of TMS and tES, as well as the current knowledge of the neurophysiologic basis of their effects on brain activity and plasticity. In the main part, we will outline studies aimed at improving persistent symptoms and deficits in patients suffering from neurologic and neuropsychiatric disorders featured by dysfunction of the parietal lobe. The emerging view is that NIBS of parietal areas holds the promise to overcome various sensory, motor, and cognitive disorders that are often refractory to standard medical or behavioral therapies. The chapter closes with an outlook on further developments in this realm, discussing novel therapeutic approaches that could lead to more effective rehabilitation procedures, better suited for the specific parietal lobe dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  14. Neural code alterations and abnormal time patterns in Parkinson’s disease

    Science.gov (United States)

    Andres, Daniela Sabrina; Cerquetti, Daniel; Merello, Marcelo

    2015-04-01

    Objective. The neural code used by the basal ganglia is a current question in neuroscience, relevant for the understanding of the pathophysiology of Parkinson’s disease. While a rate code is known to participate in the communication between the basal ganglia and the motor thalamus/cortex, different lines of evidence have also favored the presence of complex time patterns in the discharge of the basal ganglia. To gain insight into the way the basal ganglia code information, we studied the activity of the globus pallidus pars interna (GPi), an output node of the circuit. Approach. We implemented the 6-hydroxydopamine model of Parkinsonism in Sprague-Dawley rats, and recorded the spontaneous discharge of single GPi neurons, in head-restrained conditions at full alertness. Analyzing the temporal structure function, we looked for characteristic scales in the neuronal discharge of the GPi. Main results. At a low-scale, we observed the presence of dynamic processes, which allow the transmission of time patterns. Conversely, at a middle-scale, stochastic processes force the use of a rate code. Regarding the time patterns transmitted, we measured the word length and found that it is increased in Parkinson’s disease. Furthermore, it showed a positive correlation with the frequency of discharge, indicating that an exacerbation of this abnormal time pattern length can be expected, as the dopamine depletion progresses. Significance. We conclude that a rate code and a time pattern code can co-exist in the basal ganglia at different temporal scales. However, their normal balance is progressively altered and replaced by pathological time patterns in Parkinson’s disease.

  15. CNS activation and regional connectivity during pantomime observation: no engagement of the mirror neuron system for deaf signers.

    Science.gov (United States)

    Emmorey, Karen; Xu, Jiang; Gannon, Patrick; Goldin-Meadow, Susan; Braun, Allen

    2010-01-01

    Deaf signers have extensive experience using their hands to communicate. Using fMRI, we examined the neural systems engaged during the perception of manual communication in 14 deaf signers and 14 hearing non-signers. Participants passively viewed blocked video clips of pantomimes (e.g., peeling an imaginary banana) and action verbs in American Sign Language (ASL) that were rated as meaningless by non-signers (e.g., TO-DANCE). In contrast to visual fixation, pantomimes strongly activated fronto-parietal regions (the mirror neuron system, MNS) in hearing non-signers, but only bilateral middle temporal regions in deaf signers. When contrasted with ASL verbs, pantomimes selectively engaged inferior and superior parietal regions in hearing non-signers, but right superior temporal cortex in deaf signers. The perception of ASL verbs recruited similar regions as pantomimes for deaf signers, with some evidence of greater involvement of left inferior frontal gyrus for ASL verbs. Functional connectivity analyses with left hemisphere seed voxels (ventral premotor, inferior parietal lobule, fusiform gyrus) revealed robust connectivity with the MNS for the hearing non-signers. Deaf signers exhibited functional connectivity with the right hemisphere that was not observed for the hearing group for the fusiform gyrus seed voxel. We suggest that life-long experience with manual communication, and/or auditory deprivation, may alter regional connectivity and brain activation when viewing pantomimes. We conclude that the lack of activation within the MNS for deaf signers does not support an account of human communication that depends upon automatic sensorimotor resonance between perception and action.

  16. Recency Effects in the Inferior Parietal Lobe during Verbal Recognition Memory

    Directory of Open Access Journals (Sweden)

    Bradley Russell Buchsbaum

    2011-07-01

    Full Text Available The most recently encountered information is often most easily remembered in psychological tests of memory. Recent investigations of the neural basis of such recency effects have shown that activation in the lateral inferior parietal cortex (LIPC tracks the recency of a probe item when subjects make recognition memory judgments. A key question regarding recency effects in the LIPC is whether they fundamentally reflect the storage (and strength of information in memory, or whether such effects are a consequence of task difficulty or an upswing in resting state network activity. Using functional magnetic resonance imaging (fMRI we show that recency effects in the LIPC are independent of the difficulty of recognition memory decisions, that they are not a by-product of an increase in resting state network activity, and that they appear to dissociate from regions known to be involved in verbal working memory maintenance. We conclude with a discussion of two alternative explanations – the memory strength and expectancy hypotheses, respectively -- of the parietal lobe recency effect.

  17. Parietal pleural invasion/adhesion of subpleural lung cancer: Quantitative 4-dimensional CT analysis using dynamic-ventilatory scanning

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Kotaro, E-mail: ksakuma@ohara-hp.or.jp [Department of Radiology, Ohara General Hospital, 6-11 Omachi, Fukushima City, Fukushima 960-8611 (Japan); Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima 960-1295 (Japan); Yamashiro, Tsuneo, E-mail: clatsune@yahoo.co.jp [Department of Radiology, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215 (Japan); Moriya, Hiroshi, E-mail: hrshmoriya@gmail.com [Department of Radiology, Ohara General Hospital, 6-11 Omachi, Fukushima City, Fukushima 960-8611 (Japan); Murayama, Sadayuki, E-mail: sadayuki@med.u-ryukyu.ac.jp [Department of Radiology, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215 (Japan); Ito, Hiroshi, E-mail: h-ito@fmu.ac.jp [Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima 960-1295 (Japan)

    2017-02-15

    Highlights: • 4DCT can be used for assessment of pleural invasion/adhesion by lung cancer. • Quantitative 4DCT indices of lung cancer and adjacent structures are described. • An automatic analysis of pleural invasion/adhesion would be developed in the future. - Abstract: Purpose: Using 4-dimensional dynamic-ventilatory scanning by a 320-row computed tomography (CT) scanner, we performed a quantitative assessment of parietal pleural invasion and adhesion by peripheral (subpleural) lung cancers. Methods: Sixteen patients with subpleural lung cancer underwent dynamic-ventilation CT during free breathing. Neither parietal pleural invasion nor adhesion was subsequently confirmed by surgery in 10 patients, whereas the other 6 patients were judged to have parietal pleural invasion or adhesion. Using research software, we tracked the movements of the cancer and of an adjacent structure such as the rib or aorta, and converted the data to 3-dimensional loci. The following quantitative indices were compared by the Mann-Whitney test: cross-correlation coefficient between time curves for the distances moved from the inspiratory frame by the cancer and the adjacent structure, the ratio of the total movement distances (cancer/adjacent structure), and the cosine similarities between the inspiratory and expiratory vectors (from the cancer to the adjacent structure) and between vectors of the cancer and of the adjacent structure (from inspiratory to expiratory frames). Results: Generally, the movements of the loci of the lung cancer and the adjacent structure were similar in patients with parietal pleural invasion/adhesion, while they were independent in patients without. There were significant differences in all the parameters between the two patient groups (cross-correlation coefficient and the movement distance ratio, P < 0.01; cosine similarities, P < 0.05). Conclusion: These observations suggest that quantitative indices by dynamic-ventilation CT can be utilized as a

  18. Gyri of the human parietal lobe: Volumes, spatial extents, automatic labelling, and probabilistic atlases.

    Directory of Open Access Journals (Sweden)

    Heather M Wild

    Full Text Available Accurately describing the anatomy of individual brains enables interlaboratory communication of functional and developmental studies and is crucial for possible surgical interventions. The human parietal lobe participates in multimodal sensory integration including language processing and also contains the primary somatosensory area. We describe detailed protocols to subdivide the parietal lobe, analyze morphological and volumetric characteristics, and create probabilistic atlases in MNI152 stereotaxic space. The parietal lobe was manually delineated on 3D T1 MR images of 30 healthy subjects and divided into four regions: supramarginal gyrus (SMG, angular gyrus (AG, superior parietal lobe (supPL and postcentral gyrus (postCG. There was the expected correlation of male gender with larger brain and intracranial volume. We examined a wide range of anatomical features of the gyri and the sulci separating them. At least a rudimentary primary intermediate sulcus of Jensen (PISJ separating SMG and AG was identified in nearly all (59/60 hemispheres. Presence of additional gyri in SMG and AG was related to sulcal features and volumetric characteristics. The parietal lobe was slightly (2% larger on the left, driven by leftward asymmetries of the postCG and SMG. Intersubject variability was highest for SMG and AG, and lowest for postCG. Overall the morphological characteristics tended to be symmetrical, and volumes also tended to covary between hemispheres. This may reflect developmental as well as maturation factors. To assess the accuracy with which the labels can be used to segment newly acquired (unlabelled T1-weighted brain images, we applied multi-atlas label propagation software (MAPER in a leave-one-out experiment and compared the resulting automatic labels with the manually prepared ones. The results showed strong agreement (mean Jaccard index 0.69, corresponding to a mean Dice index of 0.82, average mean volume error of 0.6%. Stereotaxic

  19. NeuronBank: a tool for cataloging neuronal circuitry

    Directory of Open Access Journals (Sweden)

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  20. Multimodal FMRI resting-state functional connectivity in granulin mutations: the case of fronto-parietal dementia.

    Directory of Open Access Journals (Sweden)

    Enrico Premi

    Full Text Available BACKGROUND: Monogenic dementias represent a great opportunity to trace disease progression from preclinical to symptomatic stages. Frontotemporal Dementia related to Granulin (GRN mutations presents a specific framework of brain damage, involving fronto-temporal regions and long inter-hemispheric white matter bundles. Multimodal resting-state functional MRI (rs-fMRI is a promising tool to carefully describe disease signature from the earliest disease phase. OBJECTIVE: To define local connectivity alterations in GRN related pathology moving from the presymptomatic (asymptomatic GRN mutation carriers to the clinical phase of the disease (GRN- related Frontotemporal Dementia. METHODS: Thirty-one GRN Thr272fs mutation carriers (14 patients with Frontotemporal Dementia and 17 asymptomatic carriers and 38 healthy controls were recruited. Local connectivity measures (Regional Homogeneity (ReHo, Fractional Amplitude of Low Frequency Fluctuation (fALFF and Degree Centrality (DC were computed, considering age and gender as nuisance variables as well as the influence of voxel-level gray matter atrophy. RESULTS: Asymptomatic GRN carriers had selective reduced ReHo in the left parietal region and increased ReHo in frontal regions compared to healthy controls. Considering Frontotemporal Dementia patients, all measures (ReHo, fALFF and DC were reduced in inferior parietal, frontal lobes and posterior cingulate cortex. Considering GRN mutation carriers, an inverse correlation with age in the posterior cingulate cortex, inferior parietal lobule and orbitofrontal cortex was found. CONCLUSIONS: GRN pathology is characterized by functional brain network alterations even decades before the clinical onset; they involve the parietal region primarily and then spread to the anterior regions of the brain, supporting the concept of molecular nexopathies.

  1. Posterior Parietal Cortex and Episodic Encoding: Insights from fMRI Subsequent Memory Effects and Dual Attention Theory

    Science.gov (United States)

    Uncapher, Melina; Wagner, Anthony D.

    2010-01-01

    The formation of episodic memories –– memories for life events –– is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding. PMID:19028591

  2. Action observation and mirror neuron network: a tool for motor stroke rehabilitation.

    Science.gov (United States)

    Sale, P; Franceschini, M

    2012-06-01

    Mirror neurons are a specific class of neurons that are activated and discharge both during observation of the same or similar motor act performed by another individual and during the execution of a motor act. Different studies based on non invasive neuroelectrophysiological assessment or functional brain imaging techniques have demonstrated the presence of the mirror neuron and their mechanism in humans. Various authors have demonstrated that in the human these networks are activated when individuals learn motor actions via execution (as in traditional motor learning), imitation, observation (as in observational learning) and motor imagery. Activation of these brain areas (inferior parietal lobe and the ventral premotor cortex, as well as the caudal part of the inferior frontal gyrus [IFG]) following observation or motor imagery may thereby facilitate subsequent movement execution by directly matching the observed or imagined action to the internal simulation of that action. It is therefore believed that this multi-sensory action-observation system enables individuals to (re) learn impaired motor functions through the activation of these internal action-related representations. In humans, the mirror mechanism is also located in various brain segment: in Broca's area, which is involved in language processing and speech production and not only in centres that mediate voluntary movement, but also in cortical areas that mediate visceromotor emotion-related behaviours. On basis of this finding, during the last 10 years various studies were carry out regarding the clinical use of action observation for motor rehabilitation of sub-acute and chronic stroke patients.

  3. The pairwise phase consistency in cortical network and its relationship with neuronal activation

    Directory of Open Access Journals (Sweden)

    Wang Daming

    2017-01-01

    Full Text Available Gamma-band neuronal oscillation and synchronization with the range of 30-90 Hz are ubiquitous phenomenon across numerous brain areas and various species, and correlated with plenty of cognitive functions. The phase of the oscillation, as one aspect of CTC (Communication through Coherence hypothesis, underlies various functions for feature coding, memory processing and behaviour performing. The PPC (Pairwise Phase Consistency, an improved coherence measure, statistically quantifies the strength of phase synchronization. In order to evaluate the PPC and its relationships with input stimulus, neuronal activation and firing rate, a simplified spiking neuronal network is constructed to simulate orientation columns in primary visual cortex. If the input orientation stimulus is preferred for a certain orientation column, neurons within this corresponding column will obtain higher firing rate and stronger neuronal activation, which consequently engender higher PPC values, with higher PPC corresponding to higher firing rate. In addition, we investigate the PPC in time resolved analysis with a sliding window.

  4. The Opponent Channel Population Code of Sound Location Is an Efficient Representation of Natural Binaural Sounds

    Science.gov (United States)

    Młynarski, Wiktor

    2015-01-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a “panoramic” code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding. PMID:25996373

  5. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    Science.gov (United States)

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Glomerular parietal epithelial cells in kidney physiology, pathology, and repair

    OpenAIRE

    Shankland, Stuart J.; Anders, Hans-Joachim; Romagnani, Paola

    2013-01-01

    Purpose of review We have summarized recently published glomerular parietal epithelial cell (PEC) research, focusing on their roles in glomerular development and physiology, and in certain glomerular diseases. The rationale is that PECs have been largely ignored until the recent availability of cell lineage tracing studies, human and murine PEC culture systems, and potential therapeutic interventions of PECs. Recent findings Several new paradigms involving PECs have emerged demonstrating thei...

  7. Gas1 expression in parietal cells of Bowman's capsule in experimental diabetic nephropathy.

    Science.gov (United States)

    Luna-Antonio, Brenda I; Rodriguez-Muñoz, Rafael; Namorado-Tonix, Carmen; Vergara, Paula; Segovia, Jose; Reyes, Jose L

    2017-07-01

    Gas1 (Growth Arrest-Specific 1) is a pleiotropic protein with novel functions including anti-proliferative and proapoptotic activities. In the kidney, the expression of Gas1 has been described in mesangial cells. In this study, we described that renal parietal cells of Bowman's capsule (BC) and the distal nephron cells also express Gas1. The role of Gas1 in the kidney is not yet known. There is a subpopulation of progenitor cells in Bowman's capsule with self-renewal properties which can eventually differentiate into podocytes as a possible mechanism of regeneration in the early stages of diabetic nephropathy. We analyzed the expression of Gas1 in the parietal cells of Bowman's capsule in murine experimental diabetes. We found that diabetes reduced the expression of Gas1 and increased the expression of progenitor markers like NCAM, CD24, and SIX1/2, and mesenchymal markers like PAX2 in the Bowman's capsule. We also analyzed the expression of WT1 (a podocyte-specific marker) on BC and observed an increase in the number of WT1 positive cells in diabetes. In contrast, nephrin, another podocyte-specific protein, decreases its expression in the first week of diabetes in the glomerular tuft, which is gradually restored during the second and third weeks of diabetes. These results suggest that in diabetes the decrease of Gas1 promotes the activation of parietal progenitor cells of Bowman's capsule that might differentiate into podocytes and compensate their loss observed in this pathology.

  8. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    Science.gov (United States)

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A Radial Glia Fascicle Leads Principal Neurons from the Pallial-Subpallial Boundary into the Developing Human Insula.

    Science.gov (United States)

    González-Arnay, Emilio; González-Gómez, Miriam; Meyer, Gundela

    2017-01-01

    The human insular lobe, in the depth of the Sylvian fissure, displays three main cytoarchitectonic divisions defined by the differentiation of granular layers II and IV. These comprise a rostro-ventral agranular area, an intermediate dysgranular area, and a dorso-caudal granular area. Immunohistochemistry in human embryos and fetuses using antibodies against PCNA, Vimentin, Nestin, Tbr1, and Tb2 reveals that the insular cortex is unique in that it develops far away from the ventricular zone (VZ), with most of its principal neurons deriving from the subventricular zone (SVZ) of the pallial-subpallial boundary (PSB). In human embryos (Carnegie stage 16/17), the rostro-ventral insula is the first cortical region to develop; its Tbr1+ neurons migrate from the PSB along the lateral cortical stream. From 10 gestational weeks (GW) onward, lateral ventricle, ganglionic eminences, and PSB grow forming a C-shaped curvature. The SVZ of the PSB gives rise to a distinct radial glia fiber fascicle (RGF), which courses lateral to the putamen in the external capsule. In the RGF, four components can be established: PF, descending from the prefrontal PSB to the anterior insula; FP, descending from the fronto-parietal PSB toward the intermediate insula; PT, coursing from the PSB near the parieto-temporal junction to the posterior insula, and T, ascending from the temporal PSB and merging with components FP and PT. The RGF fans out at different dorso-ventral and rostro-caudal levels of the insula, with descending fibers predominating over ascending ones. The RGF guides migrating principal neurons toward the future agranular, dysgranular, and granular insular areas, which show an adult-like definition at 32 GW. Despite the narrow subplate, and the absence of an intermediate zone except in the caudal insula, most insular subdivisions develop into a 6-layered isocortex, possibly due to the well developed outer SVZ at the PSB, which is particularly prominent at the level of the dorso

  10. A Radial Glia Fascicle Leads Principal Neurons from the Pallial-Subpallial Boundary into the Developing Human Insula

    Directory of Open Access Journals (Sweden)

    Emilio González-Arnay

    2017-12-01

    Full Text Available The human insular lobe, in the depth of the Sylvian fissure, displays three main cytoarchitectonic divisions defined by the differentiation of granular layers II and IV. These comprise a rostro-ventral agranular area, an intermediate dysgranular area, and a dorso-caudal granular area. Immunohistochemistry in human embryos and fetuses using antibodies against PCNA, Vimentin, Nestin, Tbr1, and Tb2 reveals that the insular cortex is unique in that it develops far away from the ventricular zone (VZ, with most of its principal neurons deriving from the subventricular zone (SVZ of the pallial-subpallial boundary (PSB. In human embryos (Carnegie stage 16/17, the rostro-ventral insula is the first cortical region to develop; its Tbr1+ neurons migrate from the PSB along the lateral cortical stream. From 10 gestational weeks (GW onward, lateral ventricle, ganglionic eminences, and PSB grow forming a C-shaped curvature. The SVZ of the PSB gives rise to a distinct radial glia fiber fascicle (RGF, which courses lateral to the putamen in the external capsule. In the RGF, four components can be established: PF, descending from the prefrontal PSB to the anterior insula; FP, descending from the fronto-parietal PSB toward the intermediate insula; PT, coursing from the PSB near the parieto-temporal junction to the posterior insula, and T, ascending from the temporal PSB and merging with components FP and PT. The RGF fans out at different dorso-ventral and rostro-caudal levels of the insula, with descending fibers predominating over ascending ones. The RGF guides migrating principal neurons toward the future agranular, dysgranular, and granular insular areas, which show an adult-like definition at 32 GW. Despite the narrow subplate, and the absence of an intermediate zone except in the caudal insula, most insular subdivisions develop into a 6-layered isocortex, possibly due to the well developed outer SVZ at the PSB, which is particularly prominent at the level of

  11. The sign rule and beyond: boundary effects, flexibility, and noise correlations in neural population codes.

    Directory of Open Access Journals (Sweden)

    Yu Hu

    2014-02-01

    Full Text Available Over repeat presentations of the same stimulus, sensory neurons show variable responses. This "noise" is typically correlated between pairs of cells, and a question with rich history in neuroscience is how these noise correlations impact the population's ability to encode the stimulus. Here, we consider a very general setting for population coding, investigating how information varies as a function of noise correlations, with all other aspects of the problem - neural tuning curves, etc. - held fixed. This work yields unifying insights into the role of noise correlations. These are summarized in the form of theorems, and illustrated with numerical examples involving neurons with diverse tuning curves. Our main contributions are as follows. (1 We generalize previous results to prove a sign rule (SR - if noise correlations between pairs of neurons have opposite signs vs. their signal correlations, then coding performance will improve compared to the independent case. This holds for three different metrics of coding performance, and for arbitrary tuning curves and levels of heterogeneity. This generality is true for our other results as well. (2 As also pointed out in the literature, the SR does not provide a necessary condition for good coding. We show that a diverse set of correlation structures can improve coding. Many of these violate the SR, as do experimentally observed correlations. There is structure to this diversity: we prove that the optimal correlation structures must lie on boundaries of the possible set of noise correlations. (3 We provide a novel set of necessary and sufficient conditions, under which the coding performance (in the presence of noise will be as good as it would be if there were no noise present at all.

  12. Symbol manipulation and rule learning in spiking neuronal networks.

    Science.gov (United States)

    Fernando, Chrisantha

    2011-04-21

    It has been claimed that the productivity, systematicity and compositionality of human language and thought necessitate the existence of a physical symbol system (PSS) in the brain. Recent discoveries about temporal coding suggest a novel type of neuronal implementation of a physical symbol system. Furthermore, learning classifier systems provide a plausible algorithmic basis by which symbol re-write rules could be trained to undertake behaviors exhibiting systematicity and compositionality, using a kind of natural selection of re-write rules in the brain, We show how the core operation of a learning classifier system, namely, the replication with variation of symbol re-write rules, can be implemented using spike-time dependent plasticity based supervised learning. As a whole, the aim of this paper is to integrate an algorithmic and an implementation level description of a neuronal symbol system capable of sustaining systematic and compositional behaviors. Previously proposed neuronal implementations of symbolic representations are compared with this new proposal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Optimal Detection of a Localized Perturbation in Random Networks of Integrate-and-Fire Neurons

    Science.gov (United States)

    Bernardi, Davide; Lindner, Benjamin

    2017-06-01

    Experimental and theoretical studies suggest that cortical networks are chaotic and coding relies on averages over large populations. However, there is evidence that rats can respond to the short stimulation of a single cortical cell, a theoretically unexplained fact. We study effects of single-cell stimulation on a large recurrent network of integrate-and-fire neurons and propose a simple way to detect the perturbation. Detection rates obtained from simulations and analytical estimates are similar to experimental response rates if the readout is slightly biased towards specific neurons. Near-optimal detection is attained for a broad range of intermediate values of the mean coupling between neurons.

  14. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model.

    Science.gov (United States)

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-05-19

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.

  15. Dysfunction of the Human Mirror Neuron System in Ideomotor Apraxia: Evidence from Mu Suppression.

    Science.gov (United States)

    Frenkel-Toledo, Silvi; Liebermann, Dario G; Bentin, Shlomo; Soroker, Nachum

    2016-06-01

    Stroke patients with ideomotor apraxia (IMA) have difficulties controlling voluntary motor actions, as clearly seen when asked to imitate simple gestures performed by the examiner. Despite extensive research, the neurophysiological mechanisms underlying failure to imitate gestures in IMA remain controversial. The aim of the current study was to explore the relationship between imitation failure in IMA and mirror neuron system (MNS) functioning. Mirror neurons were found to play a crucial role in movement imitation and in imitation-based motor learning. Their recruitment during movement observation and execution is signaled in EEG recordings by suppression of the lower (8-10 Hz) mu range. We examined the modulation of EEG in this range in stroke patients with left (n = 21) and right (n = 15) hemisphere damage during observation of video clips showing different manual movements. IMA severity was assessed by the DeRenzi standardized diagnostic test. Results showed that failure to imitate observed manual movements correlated with diminished mu suppression in patients with damage to the right inferior parietal lobule and in patients with damage to the right inferior frontal gyrus pars opercularis-areas where major components of the human MNS are assumed to reside. Voxel-based lesion symptom mapping revealed a significant impact on imitation capacity for the left inferior and superior parietal lobules and the left post central gyrus. Both left and right hemisphere damages were associated with imitation failure typical of IMA, yet a clear demonstration of relationship to the MNS was obtained only in the right hemisphere damage group. Suppression of the 8-10 Hz range was stronger in central compared with occipital sites, pointing to a dominant implication of mu rather than alpha rhythms. However, the suppression correlated with De Renzi's apraxia test scores not only in central but also in occipital sites, suggesting a multifactorial mechanism for IMA, with a possible

  16. A parietal biomarker for ADHD liability:As predicted by The Distributed Effects Perspective Model of ADHD

    Directory of Open Access Journals (Sweden)

    T. Sigi eHale

    2015-05-01

    Full Text Available Background: We previously hypothesized that poor task-directed sensory information processing should be indexed by increased weighting of right hemisphere (RH biased attention and visuo-perceptual brain functions during task operations, and have demonstrated this phenotype in ADHD across multiple studies, using multiple methodologies. However, in our recent Distributed Effects Model of ADHD, we surmised that this phenotype is not ADHD specific, but rather more broadly reflective of any circumstance that disrupts the induction and maintenance of an emergent task-directed neural architecture. Under this view, increased weighting of RH biased attention and visuo-perceptual brain functions is expected to generally index neurocognitive sets that are not optimized for task-directed thought and action, and when durable expressed, liability for ADHD. Method: The current study tested this view by examining whether previously identified rightward parietal EEG asymmetry in ADHD was associated with common ADHD characteristics and comorbidities (i.e., ADHD risk factors. Results: Barring one exception (non-right handedness, we found that it was. Rightward parietal asymmetry was associated with carrying the DRD4-7R risk allele, being male, having mood disorder, and having anxiety disorder. However, differences in the specific expression of rightward parietal asymmetry were observed, which are discussed in relation to possible unique mechanisms underlying ADHD liability in different ADHD RFs. Conclusion: Rightward parietal asymmetry appears to be a durable feature of ADHD liability, as predicted by the Distributed Effects Perspective Model of ADHD. Moreover, variability in the expression of this phenotype may shed light on different sources of ADHD liability.

  17. Distinct parietal sites mediate the influences of mood, arousal, and their interaction on human recognition memory.

    Science.gov (United States)

    Greene, Ciara M; Flannery, Oliver; Soto, David

    2014-12-01

    The two dimensions of emotion, mood valence and arousal, have independent effects on recognition memory. At present, however, it is not clear how those effects are reflected in the human brain. Previous research in this area has generally dealt with memory for emotionally valenced or arousing stimuli, but the manner in which interacting mood and arousal states modulate responses in memory substrates remains poorly understood. We investigated memory for emotionally neutral items while independently manipulating mood valence and arousal state by means of music exposure. Four emotional conditions were created: positive mood/high arousal, positive mood/low arousal, negative mood/high arousal, and negative mood/low arousal. We observed distinct effects of mood valence and arousal in parietal substrates of recognition memory. Positive mood increased activity in ventral posterior parietal cortex (PPC) and orbitofrontal cortex, whereas arousal condition modulated activity in dorsal PPC and the posterior cingulate. An interaction between valence and arousal was observed in left ventral PPC, notably in a parietal area distinct from the those identified for the main effects, with a stronger effect of mood on recognition memory responses here under conditions of relative high versus low arousal. We interpreted the PPC activations in terms of the attention-to-memory hypothesis: Increased arousal may lead to increased top-down control of memory, and hence dorsal PPC activation, whereas positive mood valence may result in increased activity in ventral PPC regions associated with bottom-up attention to memory. These findings indicate that distinct parietal sites mediate the influences of mood, arousal, and their interplay during recognition memory.

  18. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Directory of Open Access Journals (Sweden)

    Marjolijn Hoekert

    Full Text Available In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms. Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction, revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become

  19. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Science.gov (United States)

    Hoekert, Marjolijn; Bais, Leonie; Kahn, René S; Aleman, André

    2008-05-21

    In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody) conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS) to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms). Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction), revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become more apparent half

  20. Autoimmune gastritis and parietal cell reactivity in two children with abnormal intestinal permeability

    NARCIS (Netherlands)

    Greenwood, Deanne L. V.; Crock, Patricia; Braye, Stephen; Davidson, Patricia; Sentry, John W.

    Autoimmune gastritis is characterised by lymphocytic infiltration of the gastric submucosa, with loss of parietal and chief cells and achlorhydria. Often, gastritis is expressed clinically as cobalamin deficiency with megaloblastic anaemia, which is generally described as a disease of the elderly.

  1. Parietal scalp is another affected area in female pattern hair loss: an analysis of hair density and hair diameter

    Directory of Open Access Journals (Sweden)

    Rojhirunsakool S

    2017-12-01

    Full Text Available Salinee Rojhirunsakool, Poonkiat Suchonwanit Department of Medicine, Division of Dermatology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand Purpose: Female pattern hair loss (FPHL is a common hair disease. However, studies of the quantitative measurement of FPHL are still limited. The aim of this study was to investigate the characteristics of hair density and hair diameter in normal women and FPHL patients, and further correlate the quantitative measurement with the clinical presentation of FPHL.Patients and methods: An evaluation of 471 FPHL patients and 236 normal women was carried out according to the Ludwig classification, and analysis was performed by using a computerized handheld USB camera with computer-assisted software. Various areas of the scalp, including frontal, parietal, midscalp, and occipital, were analyzed for hair density, non-vellus hair diameter, and percentage of miniaturized hair.Results: The hair density in normal women was the highest and the lowest in the midscalp and parietal areas, respectively. The FPHL group revealed the lowest hair density in the parietal area. Significant differences in hair density, non-vellus hair diameter, and percentage of miniaturized hair between the normal and FPHL groups were observed, especially in the midscalp and parietal areas.Conclusion: The parietal area is another important affected area in FPHL in addition to the midscalp area. This finding provides novel important information of FPHL and will be useful for hair transplant surgeons choosing the optimal donor sites for hair transplantation in women. Keywords: androgenetic alopecia, alopecia, phototrichogram, miniaturization

  2. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    OpenAIRE

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glo...

  3. Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory.

    Science.gov (United States)

    Galeano Weber, Elena M; Hahn, Tim; Hilger, Kirsten; Fiebach, Christian J

    2017-02-01

    Limitations in visual working memory (WM) quality (i.e., WM precision) may depend on perceptual and attentional limitations during stimulus encoding, thereby affecting WM capacity. WM encoding relies on the interaction between sensory processing systems and fronto-parietal 'control' regions, and differences in the quality of this interaction are a plausible source of individual differences in WM capacity. Accordingly, we hypothesized that the coupling between perceptual and attentional systems affects the quality of WM encoding. We combined fMRI connectivity analysis with behavioral modeling by fitting a variable precision and fixed capacity model to the performance data obtained while participants performed a visual delayed continuous response WM task. We quantified functional connectivity during WM encoding between occipital and parietal brain regions activated during both perception and WM encoding, as determined using a conjunction of two independent experiments. The multivariate pattern of voxel-wise inter-areal functional connectivity significantly predicted WM performance, most specifically the mean of WM precision but not the individual number of items that could be stored in memory. In particular, higher occipito-parietal connectivity was associated with higher behavioral mean precision. These results are consistent with a network perspective of WM capacity, suggesting that the efficiency of information flow between perceptual and attentional neural systems is a critical determinant of limitations in WM quality. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Influence of electroencephalograph bionic electrical stimulation on neuronal activities in patients with Alzheimer's disease: A functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Liling Jiang

    2018-03-01

    Full Text Available Purpose: To investigate the influence of electroencephalograph bionic electrical stimulation on neuronal activity in patients with Alzheimer's disease (AD using resting-state blood oxygen level dependent functional MRI (BOLD-fMRI and amplitude of low-frequency fluctuation (ALFF and fraction ALFF (fALFF analysis. Methods: 42 AD patients were divided into two groups in accordance with the randomized double blind principle, every group was 21. Treatment group received electroencephalograph bionic electrical stimulation. Both groups received resting-state BOLD-fMRI scanning before and after treatment and comparing differences in ALFF and fALFF in each group by statistical methods. Correlation analysis was performed between ALFF or fALFF images and neuropsychological tests scale after treatment. Results: Post-therapy brain regions with higher ALFF included left cerebellum posterior lobe, right cerebellum posterior lobe, left hippocampus/parahippocampus, left posterior cingulated cortex, left dorsolateral prefrontal cortex, right inferior parietal lobule in treatment group. Higher fALFF was observed in the right inferior parietal lobule. In the placebo group lower ALFF was observed in bilateral cerebellum posterior lobe and left posterior cingulated cortex. Alzheimer's Disease Assessment Scale-Cognitive section was closely correlated with ALFF in left cerebellum posterior lobe and right cerebellum posterior lobe. Conclusion: These results indicated improved neuronal activity in some brain areas could be achieved in AD after treatment of electroencephalograph bionic electrical stimulation. The change of BOLD-fMRI signal might provide a potential imaging strategy for studying neural mechanisms of electroencephalograph bionic electrical stimulation for AD. Keywords: Electroencephalograph bionic electrical stimulation, Alzheimer's disease, Low-frequency fluctuation, Fraction low-frequency fluctuation

  5. Endoplasmic reticulum stress responses differ in meninges and associated vasculature, striatum, and parietal cortex after a neurotoxic amphetamine exposure.

    Science.gov (United States)

    Thomas, Monzy; George, Nysia I; Saini, Upasana T; Patterson, Tucker A; Hanig, Joseph P; Bowyer, John F

    2010-08-01

    Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.

  6. Wave-processing of long-scale information by neuronal chains.

    Directory of Open Access Journals (Sweden)

    José Antonio Villacorta-Atienza

    Full Text Available Investigation of mechanisms of information handling in neural assemblies involved in computational and cognitive tasks is a challenging problem. Synergetic cooperation of neurons in time domain, through synchronization of firing of multiple spatially distant neurons, has been widely spread as the main paradigm. Complementary, the brain may also employ information coding and processing in spatial dimension. Then, the result of computation depends also on the spatial distribution of long-scale information. The latter bi-dimensional alternative is notably less explored in the literature. Here, we propose and theoretically illustrate a concept of spatiotemporal representation and processing of long-scale information in laminar neural structures. We argue that relevant information may be hidden in self-sustained traveling waves of neuronal activity and then their nonlinear interaction yields efficient wave-processing of spatiotemporal information. Using as a testbed a chain of FitzHugh-Nagumo neurons, we show that the wave-processing can be achieved by incorporating into the single-neuron dynamics an additional voltage-gated membrane current. This local mechanism provides a chain of such neurons with new emergent network properties. In particular, nonlinear waves as a carrier of long-scale information exhibit a variety of functionally different regimes of interaction: from complete or asymmetric annihilation to transparent crossing. Thus neuronal chains can work as computational units performing different operations over spatiotemporal information. Exploiting complexity resonance these composite units can discard stimuli of too high or too low frequencies, while selectively compress those in the natural frequency range. We also show how neuronal chains can contextually interpret raw wave information. The same stimulus can be processed differently or identically according to the context set by a periodic wave train injected at the opposite end of the

  7. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  8. Sustained Firing of Model Central Auditory Neurons Yields a Discriminative Spectro-temporal Representation for Natural Sounds

    OpenAIRE

    Carlin, Michael A.; Elhilali, Mounya

    2013-01-01

    The processing characteristics of neurons in the central auditory system are directly shaped by and reflect the statistics of natural acoustic environments, but the principles that govern the relationship between natural sound ensembles and observed responses in neurophysiological studies remain unclear. In particular, accumulating evidence suggests the presence of a code based on sustained neural firing rates, where central auditory neurons exhibit strong, persistent responses to their prefe...

  9. Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues.

    Science.gov (United States)

    Hughes, Mark A; Brennan, Paul M; Bunting, Andrew S; Cameron, Katherine; Murray, Alan F; Shipston, Mike J

    2014-05-01

    Interfacing neurons with silicon semiconductors is a challenge being tackled through various bioengineering approaches. Such constructs inform our understanding of neuronal coding and learning and ultimately guide us toward creating intelligent neuroprostheses. A fundamental prerequisite is to dictate the spatial organization of neuronal cells. We sought to pattern neurons using photolithographically defined arrays of polymer parylene-C, activated with fetal calf serum. We used a purified human neuronal cell line [Lund human mesencephalic (LUHMES)] to establish whether neurons remain viable when isolated on-chip or whether they require a supporting cell substrate. When cultured in isolation, LUHMES neurons failed to pattern and did not show any morphological signs of differentiation. We therefore sought a cell type with which to prepattern parylene regions, hypothesizing that this cellular template would enable secondary neuronal adhesion and network formation. From a range of cell lines tested, human embryonal kidney (HEK) 293 cells patterned with highest accuracy. LUHMES neurons adhered to pre-established HEK 293 cell clusters and this coculture environment promoted morphological differentiation of neurons. Neurites extended between islands of adherent cell somata, creating an orthogonally arranged neuronal network. HEK 293 cells appear to fulfill a role analogous to glia, dictating cell adhesion, and generating an environment conducive to neuronal survival. We next replaced HEK 293 cells with slower growing glioma-derived precursors. These primary human cells patterned accurately on parylene and provided a similarly effective scaffold for neuronal adhesion. These findings advance the use of this microfabrication-compatible platform for neuronal patterning. Copyright © 2013 Wiley Periodicals, Inc.

  10. Primate amygdala neurons evaluate the progress of self-defined economic choice sequences.

    Science.gov (United States)

    Grabenhorst, Fabian; Hernadi, Istvan; Schultz, Wolfram

    2016-10-12

    The amygdala is a prime valuation structure yet its functions in advanced behaviors are poorly understood. We tested whether individual amygdala neurons encode a critical requirement for goal-directed behavior: the evaluation of progress during sequential choices. As monkeys progressed through choice sequences toward rewards, amygdala neurons showed phasic, gradually increasing responses over successive choice steps. These responses occurred in the absence of external progress cues or motor preplanning. They were often specific to self-defined sequences, typically disappearing during instructed control sequences with similar reward expectation. Their build-up rate reflected prospectively the forthcoming choice sequence, suggesting adaptation to an internal plan. Population decoding demonstrated a high-accuracy progress code. These findings indicate that amygdala neurons evaluate the progress of planned, self-defined behavioral sequences. Such progress signals seem essential for aligning stepwise choices with internal plans. Their presence in amygdala neurons may inform understanding of human conditions with amygdala dysfunction and deregulated reward pursuit.

  11. Neural coding in graphs of bidirectional associative memories.

    Science.gov (United States)

    Bouchain, A David; Palm, Günther

    2012-01-24

    In the last years we have developed large neural network models for the realization of complex cognitive tasks in a neural network architecture that resembles the network of the cerebral cortex. We have used networks of several cortical modules that contain two populations of neurons (one excitatory, one inhibitory). The excitatory populations in these so-called "cortical networks" are organized as a graph of Bidirectional Associative Memories (BAMs), where edges of the graph correspond to BAMs connecting two neural modules and nodes of the graph correspond to excitatory populations with associative feedback connections (and inhibitory interneurons). The neural code in each of these modules consists essentially of the firing pattern of the excitatory population, where mainly it is the subset of active neurons that codes the contents to be represented. The overall activity can be used to distinguish different properties of the patterns that are represented which we need to distinguish and control when performing complex tasks like language understanding with these cortical networks. The most important pattern properties or situations are: exactly fitting or matching input, incomplete information or partially matching pattern, superposition of several patterns, conflicting information, and new information that is to be learned. We show simple simulations of these situations in one area or module and discuss how to distinguish these situations based on the overall internal activation of the module. This article is part of a Special Issue entitled "Neural Coding". Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Role of temporal processing stages by inferior temporal neurons in facial recognition

    Directory of Open Access Journals (Sweden)

    Yasuko eSugase-Miyamoto

    2011-06-01

    Full Text Available In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses.In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of

  13. Parietal and occipital encephalocele in same child: A rarest variety of double encephalocele.

    Science.gov (United States)

    Sharma, Somnath; Ojha, Bal Krishan; Chandra, Anil; Singh, Sunil Kumar; Srivastava, Chhitij

    2016-05-01

    An encephalocele is a protrusion of the brain and/or meninges through a defect in the skull. Based on the location of the skull defect they are classified into sincipital, basal, occipital or parietal varieties. Occurrence of more than one Encephalocele in a patient is very rare and very few cases of double encephalocele are reported. We report an interesting case where a parietal and an occipital encephalocele were present together. The patient was a 2 months boy who was brought to us with complaints of two swelling on the scalp since birth. Neuroimaging studies confirmed it to be a case of double encephalocele. The rarity of the findings prompted us to report this case. The presentation and management of the case along with and review of the relevant literature is presented. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  14. Cerebral volumes, neuronal integrity and brain inflammation measured by MRI in patients receiving PI monotherapy or triple therapy.

    Science.gov (United States)

    Valero, Ignacio Pérez; Baeza, Alicia Gonzalez; Hernandez-Tamames, Juan Antonio; Monge, Susana; Arnalich, Francisco; Arribas, Jose Ramon

    2014-01-01

    Penetration of protease inhibitors (PI) in the central nervous system (CNS) is limited. Therefore, there are concerns about the capacity of PI monotherapy (MT) to control HIV in CNS and preserve brain integrity. Exploratory case-control study designed to compare neuronal integrity and brain inflammation in HIV-suppressed patients (>2 years) with and without neurocognitive impairment (NI), treated with MT or triple therapy (TT), 3-Tesla cerebral magnetic resonance image (MRI) and spectroscopy (MRS) were used to evaluate neuronal integrity (volume of cerebral structures and MRS levels of N-acetyl-aspartate (NAA)) and brain inflammation (MRS levels of myo-inositol (MI) and choline (CHO)). MRS biomarkers were measured in 4 voxels located in basal ganglia, frontal (2) and parietal lobes. A comprehensive battery of tests (14 tests - 7 domains) was used to diagnose neurocognitive impairment (1). We included 18 neurocognitively impaired patients (MT: 10, TT: 8) and 21 without NI (MT: 9; TT: 12, Table 1). Subset of patients with NI: cerebral volumes and MRS biomarkers were mostly similar between MT and TT with exception of the right cingulate nucleolus volume (MT: 8854±1851 vs TT: 10482±1107 mm(3); p<0.04), CHO levels in basal ganglia (MT: 0.44±0.05 vs TT: 0.37±0.03 MMOL/L; p<0.01) and the NAA levels in parietal lobe (MT: 1.49±0.12 vs 1.70±0.13 MMOL/L; p<0.01). Subset of patients without NI: cerebral volumes and MRS biomarkers were mostly similar between MT and TT with exception of MI levels in frontal lobe (MT: 1.20±0.36 vs 0.81±0.25 MMOL/L; p=0.01). We did not find significant differences in cerebral volumes or MRS biomarkers in most areas of the brain. However, we found higher levels of inflammation and neuronal damage in some brain areas of patients who received MT. This observation has to be taken into caution while we could not adjust our results by potential confounders. Further investigation is needed to confirm these preliminary results.

  15. Different populations of subthalamic neurons encode cocaine vs. sucrose reward and predict future error.

    Science.gov (United States)

    Lardeux, Sylvie; Paleressompoulle, Dany; Pernaud, Remy; Cador, Martine; Baunez, Christelle

    2013-10-01

    The search for treatment of cocaine addiction raises the challenge to find a way to diminish motivation for the drug without decreasing it for natural rewards. Subthalamic nucleus (STN) inactivation decreases motivation for cocaine while increasing motivation for food, suggesting that STN can dissociate different rewards. Here, we investigated how rat STN neurons respond to cues predicting cocaine or sucrose and to reward delivery while rats are performing a discriminative stimuli task. We show that different neuronal populations of STN neurons encode cocaine and sucrose. In addition, we show that STN activity at the cue onset predicts future error. When changing the reward predicted unexpectedly, STN neurons show capacities of adaptation, suggesting a role in reward-prediction error. Furthermore, some STN neurons show a response to executive error (i.e., "oops neurons") that is specific to the missed reward. These results position the STN as a nexus where natural rewards and drugs of abuse are coded differentially and can influence the performance. Therefore, STN can be viewed as a structure where action could be taken for the treatment of cocaine addiction.

  16. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  17. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Directory of Open Access Journals (Sweden)

    Michael X Cohen

    Full Text Available Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz, followed by a later alpha-band (8-12 Hz conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz, alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  18. EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K. Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201

  19. Parietal disruption alters audiovisual binding in the sound-induced flash illusion.

    Science.gov (United States)

    Kamke, Marc R; Vieth, Harrison E; Cottrell, David; Mattingley, Jason B

    2012-09-01

    Selective attention and multisensory integration are fundamental to perception, but little is known about whether, or under what circumstances, these processes interact to shape conscious awareness. Here, we used transcranial magnetic stimulation (TMS) to investigate the causal role of attention-related brain networks in multisensory integration between visual and auditory stimuli in the sound-induced flash illusion. The flash illusion is a widely studied multisensory phenomenon in which a single flash of light is falsely perceived as multiple flashes in the presence of irrelevant sounds. We investigated the hypothesis that extrastriate regions involved in selective attention, specifically within the right parietal cortex, exert an influence on the multisensory integrative processes that cause the flash illusion. We found that disruption of the right angular gyrus, but not of the adjacent supramarginal gyrus or of a sensory control site, enhanced participants' veridical perception of the multisensory events, thereby reducing their susceptibility to the illusion. Our findings suggest that the same parietal networks that normally act to enhance perception of attended events also play a role in the binding of auditory and visual stimuli in the sound-induced flash illusion. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Acute parietal lobe infarction presenting as Gerstmann’s syndrome and cognitive decline mimicking senile dementia

    Directory of Open Access Journals (Sweden)

    Chen TY

    2013-07-01

    Full Text Available Tien-Yu Chen,1 Chun-Yen Chen,1,3 Che-Hung Yen,2,3 Shin-Chang Kuo,1,3 Yi-Wei Yeh,1,3 Serena Chang,1 San-Yuan Huang1,31Department of Psychiatry, 2Department of Neurology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, 3Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of ChinaAbstract: Gerstmann’s syndrome encompasses the tetrad of finger agnosia, agraphia, acalculia, and right-left confusion. An elderly man with a history of several cardiovascular diseases was initially brought to the psychiatric outpatient department by his family because of worsening of recent memory, executive function, and mixed anxious-depressive mood. Gerstmann’s syndrome without obvious motor function impairment and dementia-like features could be observed at first. Emergent brain computed tomography scan revealed new left-middle cerebral artery infarction over the left posterior parietal lobe. This case reminds us that acute cerebral infarction involving the parietal lobe may present as Gerstmann’s syndrome accompanied by cognitive decline mimicking dementia. As a result, emergent organic workups should be arranged, especially for elderly patients at high risk for cerebral vascular accident.Keywords: Gerstmann’s syndrome, dementia, parietal lobe infarction

  1. Investigating the Functional Utility of the Left Parietal ERP Old/New Effect: Brain Activity Predicts within But Not between Participant Variance in Episodic Recollection

    Directory of Open Access Journals (Sweden)

    Catherine A. MacLeod

    2017-12-01

    Full Text Available A success story within neuroimaging has been the discovery of distinct neural correlates of episodic retrieval, providing insight into the processes that support memory for past life events. Here we focus on one commonly reported neural correlate, the left parietal old/new effect, a positive going modulation seen in event-related potential (ERP data that is widely considered to index episodic recollection. Substantial evidence links changes in the size of the left parietal effect to changes in remembering, but the precise functional utility of the effect remains unclear. Here, using forced choice recognition of verbal stimuli, we present a novel population level test of the hypothesis that the magnitude of the left parietal effect correlates with memory performance. We recorded ERPs during old/new recognition, source accuracy and Remember/Know/Guess tasks in two large samples of healthy young adults, and successfully replicated existing within participant modulations of the magnitude of the left parietal effect with recollection. Critically, however, both datasets also show that across participants the magnitude of the left parietal effect does not correlate with behavioral measures of memory – including both subjective and objective estimates of recollection. We conclude that in these tasks, and across this healthy young adult population, the generators of the left parietal ERP effect do not index performance as expected. Taken together, these novel findings provide important constraints on the functional interpretation of the left parietal effect, suggesting that between group differences in the magnitude of old/new effects cannot always safely be used to infer differences in recollection.

  2. Granularity of the mirror neuron system: A complex endeavor. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by A. D'Ausilio et al.

    Science.gov (United States)

    Swinnen, S. P.; Alaerts, K.

    2015-03-01

    The review paper by D'Ausilio and coauthors [3] is very timely and addresses one of the long-standing issues with respect to the coding features of mirror neurons. Through the history of mirror neuron research, there has been some controversy with respect to the level of granularity of the mirror neuron system, as studied in animal and human systems. While some researchers have suggested that abstract (high level) features of movement are coded, others have claimed evidence for more muscle specific (low level) coding properties (for an example, see [1,2]). D'Ausilio et al. [3] take a strong position in their review, suggesting a convergence between basic mechanisms of movement control and the mirror neuron system. Their suggestion is inspired by Bernstein's influential work on the so-called degrees of freedom problem. Even though a goal can in principle be reached in an infinite number of ways, consistent and stereotypical patterns of kinematics and muscle activation are often observed [4]. This has led to the notion of movement synergies as the basic building blocks for movement control. Even though it is essentially possible to contract isolated muscles or even motor units, Bernstein suggested that control of complex movement relies on movement synergies or coordinative structures, referring to a group of muscles that behave as a functional unit. This reduces the computational demands of the central nervous system considerably by assigning more responsibility to the lower levels of the movement control system. Bernstein's approach has inspired the dynamical systems perspective that has focused on a better understanding of complex biological systems such as interlimb coordination in humans [8]. For example, the upper limbs behave as a coordinative structure whereby simultaneous activation of the homologous muscle groups constitutes the default or preferred coordination mode that has to be defied when alternative patterns of coordination need to be performed or

  3. Predicting Intentions of a Familiar Significant Other Beyond the Mirror Neuron System

    Directory of Open Access Journals (Sweden)

    Stephanie Cacioppo

    2017-08-01

    Full Text Available Inferring intentions of others is one of the most intriguing issues in interpersonal interaction. Theories of embodied cognition and simulation suggest that this mechanism takes place through a direct and automatic matching process that occurs between an observed action and past actions. This process occurs via the reactivation of past self-related sensorimotor experiences within the inferior frontoparietal network (including the mirror neuron system, MNS. The working model is that the anticipatory representations of others' behaviors require internal predictive models of actions formed from pre-established, shared representations between the observer and the actor. This model suggests that observers should be better at predicting intentions performed by a familiar actor, rather than a stranger. However, little is known about the modulations of the intention brain network as a function of the familiarity between the observer and the actor. Here, we combined functional magnetic resonance imaging (fMRI with a behavioral intention inference task, in which participants were asked to predict intentions from three types of actors: A familiar actor (their significant other, themselves (another familiar actor, and a non-familiar actor (a stranger. Our results showed that the participants were better at inferring intentions performed by familiar actors than non-familiar actors and that this better performance was associated with greater activation within and beyond the inferior frontoparietal network i.e., in brain areas related to familiarity (e.g., precuneus. In addition, and in line with Hebbian principles of neural modulations, the more the participants reported being cognitively close to their partner, the less the brain areas associated with action self-other comparison (e.g., inferior parietal lobule, attention (e.g., superior parietal lobule, recollection (hippocampus, and pair bond (ventral tegmental area, VTA were recruited, suggesting that the

  4. L-type calcium channels refine the neural population code of sound level

    Science.gov (United States)

    Grimsley, Calum Alex; Green, David Brian

    2016-01-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1–1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. PMID:27605536

  5. Pneumothorax simulated by detachment of parietal pleura associated with pneumomediastinum

    International Nuclear Information System (INIS)

    Rozeik, C.; Kotterer, O.; Deininger, H.K.

    1994-01-01

    We report a case of blunt chest trauma, where findings on repeated conventional chest radiographs were compatible with pneumothorax developing after 2 days of mechanical high-pressure ventilation. CT showed that the appearance was due to a detachment of the parietal pleura along the lateral, mediastinal and diaphragmatic boundaries of the lungs, imitating a pneumothorax. The case report illustrates the key role of CT in the differential diagnosis of epipleural interstitial air collection versus pneumothorax. (orig./MG)

  6. Pneumothorax simulated by detachment of parietal pleura associated with pneumomediastinum

    Energy Technology Data Exchange (ETDEWEB)

    Rozeik, C. [Radiologie 1, Staedtische Kliniken Darmstadt (Germany); Kotterer, O. [Radiologie 1, Staedtische Kliniken Darmstadt (Germany); Deininger, H.K. [Radiologie 1, Staedtische Kliniken Darmstadt (Germany)

    1994-10-01

    We report a case of blunt chest trauma, where findings on repeated conventional chest radiographs were compatible with pneumothorax developing after 2 days of mechanical high-pressure ventilation. CT showed that the appearance was due to a detachment of the parietal pleura along the lateral, mediastinal and diaphragmatic boundaries of the lungs, imitating a pneumothorax. The case report illustrates the key role of CT in the differential diagnosis of epipleural interstitial air collection versus pneumothorax. (orig./MG)

  7. Posterior parietal cortex mediates encoding and maintenance processes in change blindness.

    Science.gov (United States)

    Tseng, Philip; Hsu, Tzu-Yu; Muggleton, Neil G; Tzeng, Ovid J L; Hung, Daisy L; Juan, Chi-Hung

    2010-03-01

    It is commonly accepted that right posterior parietal cortex (PPC) plays an important role in updating spatial representations, directing visuospatial attention, and planning actions. However, recent studies suggest that right PPC may also be involved in processes that are more closely associated with our visual awareness as its activation level positively correlates with successful conscious change detection (Beck, D.M., Rees, G., Frith, C.D., & Lavie, N. (2001). Neural correlates of change detection and change blindness. Nature Neuroscience, 4, 645-650.). Furthermore, disruption of its activity increases the occurrences of change blindness, thus suggesting a causal role for right PPC in change detection (Beck, D.M., Muggleton, N., Walsh, V., & Lavie, N. (2006). Right parietal cortex plays a critical role in change blindness. Cerebral Cortex, 16, 712-717.). In the context of a 1-shot change detection paradigm, we applied transcranial magnetic stimulation (TMS) during different time intervals to elucidate the temporally precise involvement of PPC in change detection. While subjects attempted to detect changes between two image sets separated by a brief time interval, TMS was applied either during the presentation of picture 1 when subjects were encoding and maintaining information into visual short-term memory, or picture 2 when subjects were retrieving information relating to picture 1 and comparing it to picture 2. Our results show that change blindness occurred more often when TMS was applied during the viewing of picture 1, which implies that right PPC plays a crucial role in the processes of encoding and maintaining information in visual short-term memory. In addition, since our stimuli did not involve changes in spatial locations, our findings also support previous studies suggesting that PPC may be involved in the processes of encoding non-spatial visual information (Todd, J.J. & Marois, R. (2004). Capacity limit of visual short-term memory in human

  8. Neural Elements for Predictive Coding

    Directory of Open Access Journals (Sweden)

    Stewart SHIPP

    2016-11-01

    Full Text Available Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backwards in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many ‘illusory’ instances of perception where what is seen (heard, etc is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forwards and backwards pathways should be completely separate, given their functional distinction; this aspect of circuitry – that neurons with extrinsically bifurcating axons do not project in both directions – has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy formulation of predictive coding is combined with the classic ‘canonical microcircuit’ and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a updates in the microcircuitry of primate visual cortex, and (b rapid technical advances made

  9. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  10. The Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans.

    Directory of Open Access Journals (Sweden)

    Derrik E Asher

    Full Text Available Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these issues, we constructed four biologically plausible network architectures to simulate PPC: 1 feedforward from sensory input to the PPC to a motor output area, 2 feedforward with the addition of an efference copy from the motor area, 3 feedforward with the addition of lateral or recurrent connectivity across PPC neurons, and 4 feedforward plus efference copy, and lateral connections. Using an evolutionary strategy, the connectivity of these network architectures was evolved to execute visually guided movements, where the target stimulus provided visual input for the entirety of each trial. The models were then tested on a memory guided motor task, where the visual target disappeared after a short duration. Sensory input to the neural networks had sensory delays consistent with results from monkey studies. We found that lateral connections within the PPC resulted in smoother movements and were necessary for accurate movements in the absence of visual input. The addition of lateral connections resulted in velocity profiles consistent with those observed in human and non-human primate visually guided studies of reaching, and allowed for smooth, rapid, and accurate movements under all conditions. In contrast, Feedforward or Feedback architectures were insufficient to overcome these challenges. Our results suggest that intrinsic lateral connections are critical for executing accurate, smooth motor plans.

  11. Inhibition of partially purified K+/H+-ATPase from guinea-pig isolated and enriched parietal cells by substituted benzimidazoles.

    Science.gov (United States)

    Beil, W.; Sewing, K. F.

    1984-01-01

    The cellular and subcellular distributions of adenosinetriphosphatases (ATPases) were examined in guinea-pig gastric mucosal cells. All cell types displayed Mg2+-ATPase and bicarbonate (HCO3-)-stimulated ATPase activity. K+-ATPase was located only in fractions derived from parietal cells. Differential and density-gradient centrifugation of material prepared from parietal cells revealed that K+-ATPase activity was located in a tubulo-vesicular membrane fraction. Enzyme activity was ten fold greater in this fraction than in a crude parietal cell homogenate. The substituted benzimidazoles, omeprazole and picoprazole, inhibited K+-ATPase (IC50 1.8 +/- 0.5 mumol l-1 and 3.1 +/- 0.4 mumol l-1, respectively). Detailed kinetic analysis indicated that these compounds were non-competitive and reversible inhibitors of the enzyme. In contrast cimetidine and verapamil were without effect on the enzyme. The relevance of the inhibition of K+-ATPase to the antisecretory activity of the benzimidazoles, in experimental animals and man, is discussed. PMID:6146367

  12. Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance.

    Science.gov (United States)

    Ribeiro, Jéssica Alves; Marinho, Francisco Victor Costa; Rocha, Kaline; Magalhães, Francisco; Baptista, Abrahão Fontes; Velasques, Bruna; Ribeiro, Pedro; Cagy, Mauricio; Bastos, Victor Hugo; Gupta, Daya; Teixeira, Silmar

    2018-03-01

    Spatial working memory has been extensively investigated with different tasks, treatments, and analysis tools. Several studies suggest that low frequency of the repetitive transcranial magnetic stimulation (rTMS) applied to the parietal cortex may influence spatial working memory (SWM). However, it is not yet known if after low-frequency rTMS applied to the superior parietal cortex, according to Pz electroencephalography (EEG) electrode, would change the orientation interpretation about the vertical and horizontal axes coordinates in an SWM task. The current study aims at filling this gap and obtains a better understanding of the low-frequency rTMS effect in SWM. In this crossover study, we select 20 healthy subjects in two conditions (control and 1-Hz rTMS). The subjects performed an SWM task with two random coordinates. Our results presented that low-frequency rTMS applied over the superior parietal cortex may influence the SWM to lead to a larger distance of axes interception point (p low-frequency rTMS over the superior parietal cortex (SPC) changes the SWM performance, and it has more predominance in horizontal axis.

  13. Attentional Demands Predict Short-Term Memory Load Response in Posterior Parietal Cortex

    Science.gov (United States)

    Magen, Hagit; Emmanouil, Tatiana-Aloi; McMains, Stephanie A.; Kastner, Sabine; Treisman, Anne

    2009-01-01

    Limits to the capacity of visual short-term memory (VSTM) indicate a maximum storage of only 3 or 4 items. Recently, it has been suggested that activity in a specific part of the brain, the posterior parietal cortex (PPC), is correlated with behavioral estimates of VSTM capacity and might reflect a capacity-limited store. In three experiments that…

  14. Dynamic spatial coding within the dorsal frontoparietal network during a visual search task.

    Directory of Open Access Journals (Sweden)

    Wieland H Sommer

    Full Text Available To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect.

  15. Bayesian Ising approximation for learning dictionaries of multispike timing patterns in premotor neurons

    Science.gov (United States)

    Hernandez Lahme, Damian; Sober, Samuel; Nemenman, Ilya

    Important questions in computational neuroscience are whether, how much, and how information is encoded in the precise timing of neural action potentials. We recently demonstrated that, in the premotor cortex during vocal control in songbirds, spike timing is far more informative about upcoming behavior than is spike rate (Tang et al, 2014). However, identification of complete dictionaries that relate spike timing patterns with the controled behavior remains an elusive problem. Here we present a computational approach to deciphering such codes for individual neurons in the songbird premotor area RA, an analog of mammalian primary motor cortex. Specifically, we analyze which multispike patterns of neural activity predict features of the upcoming vocalization, and hence are important codewords. We use a recently introduced Bayesian Ising Approximation, which properly accounts for the fact that many codewords overlap and hence are not independent. Our results show which complex, temporally precise multispike combinations are used by individual neurons to control acoustic features of the produced song, and that these code words are different across individual neurons and across different acoustic features. This work was supported, in part, by JSMF Grant 220020321, NSF Grant 1208126, NIH Grant NS084844 and NIH Grant 1 R01 EB022872.

  16. The natural history of sound localization in mammals--a story of neuronal inhibition.

    Science.gov (United States)

    Grothe, Benedikt; Pecka, Michael

    2014-01-01

    Our concepts of sound localization in the vertebrate brain are widely based on the general assumption that both the ability to detect air-borne sounds and the neuronal processing are homologous in archosaurs (present day crocodiles and birds) and mammals. Yet studies repeatedly report conflicting results on the neuronal circuits and mechanisms, in particular the role of inhibition, as well as the coding strategies between avian and mammalian model systems. Here we argue that mammalian and avian phylogeny of spatial hearing is characterized by a convergent evolution of hearing air-borne sounds rather than by homology. In particular, the different evolutionary origins of tympanic ears and the different availability of binaural cues in early mammals and archosaurs imposed distinct constraints on the respective binaural processing mechanisms. The role of synaptic inhibition in generating binaural spatial sensitivity in mammals is highlighted, as it reveals a unifying principle of mammalian circuit design for encoding sound position. Together, we combine evolutionary, anatomical and physiological arguments for making a clear distinction between mammalian processing mechanisms and coding strategies and those of archosaurs. We emphasize that a consideration of the convergent nature of neuronal mechanisms will significantly increase the explanatory power of studies of spatial processing in both mammals and birds.

  17. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    Science.gov (United States)

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron

  18. Tetrodotoxin- and resiniferatoxin-induced changes in paracervical ganglion ChAT- and nNOS-IR neurons supplying the urinary bladder in female pigs.

    Science.gov (United States)

    Burliński, Piotr Józef; Gonkowski, Sławomir; Całka, Jarosław

    2011-12-01

    The aim of the present study was to establish the effect of intravesical administration of resiniferatoxin (RTX) and tetrodotoxin (TTX) on the chemical coding of paracervical ganglion (PCG) neurons supplying the urinary bladder in the pig. In order to identify the PCG neurons innervating the bladder, retrograde tracer Fast Blue was injected into the bladder wall prior to intravesical RTX or TTX administration. Consequent application of immunocytochemical methods revealed that in the control group 76.82% of Fast Blue positive PCG neurons contain nitric oxide synthetase (nNOS), and 66.92% contain acetylcholine transferase (ChAT). Intravesical infusion of RTX resulted in a reduction of the nNOS-IR neurons to 57.74% and ChAT-IR to 57.05%. Alternative administration of TTX induced an increase of nNOS-IR neurons up to 79.29% and a reduction of the ChAT-IR population down to 3.73% of the Fast Blue positive PCG cells. Our data show that both neurotoxins affect the chemical coding of PCG cells supplying the porcine urinary bladder, but the effects of their action are different. Moreover, these results shed light on the possible involvement of NO-ergic and cholinergic neurons in the mechanisms of therapeutic action exerted by RTX and TTX in curing the overactive bladder disorder.

  19. Coding the presence of visual objects in a recurrent neural network of visual cortex.

    Science.gov (United States)

    Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard

    2007-01-01

    Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.

  20. Distinct kinetics of inhibitory currents in thalamocortical neurons that arise from dendritic or axonal origin.

    Directory of Open Access Journals (Sweden)

    Sunggu Yang

    Full Text Available Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN transfer visual information from retina to primary visual cortex. This information is modulated by inhibitory input arising from local interneurons and thalamic reticular nucleus (TRN neurons, leading to alterations of receptive field properties of thalamocortical neurons. Local GABAergic interneurons provide two distinct synaptic outputs: axonal (F1 terminals and dendritic (F2 terminals onto dLGN thalamocortical neurons. By contrast, TRN neurons provide only axonal output (F1 terminals onto dLGN thalamocortical neurons. It is unclear if GABAA receptor-mediated currents originating from F1 and F2 terminals have different characteristics. In the present study, we examined multiple characteristics (rise time, slope, halfwidth and decay τ of GABAA receptor-mediated miniature inhibitory postsynaptic synaptic currents (mIPSCs originating from F1 and F2 terminals. The mIPSCs arising from F2 terminals showed slower kinetics relative to those from F1 terminals. Such differential kinetics of GABAAR-mediated responses could be an important role in temporal coding of visual signals.

  1. Optimal decoding and information transmission in Hodgkin–Huxley neurons under metabolic cost constraints

    Czech Academy of Sciences Publication Activity Database

    Košťál, Lubomír; Kobayashi, R.

    2015-01-01

    Roč. 136, Oct 2015 (2015), s. 3-10 ISSN 0303-2647 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : neuronal coding * information transfer * optimal decoding Subject RIV: BD - Theory of Information Impact factor: 1.495, year: 2015

  2. Inferring eye position from populations of lateral intraparietal neurons.

    Science.gov (United States)

    Graf, Arnulf Ba; Andersen, Richard A

    2014-05-20

    Understanding how the brain computes eye position is essential to unraveling high-level visual functions such as eye movement planning, coordinate transformations and stability of spatial awareness. The lateral intraparietal area (LIP) is essential for this process. However, despite decades of research, its contribution to the eye position signal remains controversial. LIP neurons have recently been reported to inaccurately represent eye position during a saccadic eye movement, and to be too slow to support a role in high-level visual functions. We addressed this issue by predicting eye position and saccade direction from the responses of populations of LIP neurons. We found that both signals were accurately predicted before, during and after a saccade. Also, the dynamics of these signals support their contribution to visual functions. These findings provide a principled understanding of the coding of information in populations of neurons within an important node of the cortical network for visual-motor behaviors.DOI: http://dx.doi.org/10.7554/eLife.02813.001. Copyright © 2014, Graf and Andersen.

  3. Amygdalar auditory neurons contribute to self-other distinction during ultrasonic social vocalization in rats

    Directory of Open Access Journals (Sweden)

    Jumpei Matsumoto

    2016-09-01

    Full Text Available Although clinical studies reported hyperactivation of the auditory system and amygdala in patients with auditory hallucinations (hearing others’ but not one’s own voice, independent of any external stimulus, neural mechanisms of self/other attribution is not well understood. We recorded neuronal responses in the dorsal amygdala including the lateral amygdaloid nucleus to ultrasonic vocalization (USVs emitted by subjects and conspecifics during free social interaction in 16 adult male rats. The animals emitting the USVs were identified by EMG recordings. One-quarter of the amygdalar neurons (15/60 responded to 50 kHz calls by the subject and/or conspecifics. Among the responsive neurons, most neurons (Type-Other neurons (73%, 11/15 responded only to calls by conspecifics but not subjects. Two Type-Self neurons (13%, 2/15 responded to calls by the subject but not those by conspecifics, although their response selectivity to subjects vs. conspecifics was lower than that of Type-Other neurons. The remaining two neurons (13% responded to calls by both the subject and conspecifics. Furthermore, population coding of the amygdalar neurons represented distinction of subject vs. conspecific calls. The present results provide the first neurophysiological evidence that the amygdala discriminately represents affective social calls by subject and conspecifics. These findings suggest that the amygdala is an important brain region for self/other attribution. Furthermore, pathological activation of the amygdala, where Type-Other neurons predominate, could induce external misattribution of percepts of vocalization.

  4. Distinct antigenic characteristics of murine parietal yolk sac laminin

    DEFF Research Database (Denmark)

    Wewer, U M; Tichy, D; Damjanov, A

    1987-01-01

    Two monoclonal antibodies (LAM-A and LAM-B) specific for laminin from normal and neoplastic parietal yolk sac (PYS) cells were produced in rats immunized with a mouse yolk sac carcinoma cell line. Both antibodies immunoprecipitated the 400,000- and 200,000-Da chains of laminin and reacted...... with purified PYS laminin in ELISA. LAM-A reacted with mouse and rat PYS laminin, whereas LAM-B reacted only with mouse PYS laminin. Formaldehyde- and methanol-fixed adult and fetal somatic tissues were immunohistochemically unreactive with either of the two antibodies. In acetone-fixed tissue sections, both...

  5. Neuronal representation of individual heroin choices in the orbitofrontal cortex.

    Science.gov (United States)

    Guillem, Karine; Brenot, Viridiana; Durand, Audrey; Ahmed, Serge H

    2018-05-01

    Drug addiction is a harmful preference for drug use over and at the expense of other non-drug-related activities. We previously identified in the rat orbitofrontal cortex (OFC) a mechanism that influences individual preferences between cocaine use and an alternative action rewarded by a non-drug reward (i.e. sweet water). Here, we sought to test the generality of this mechanism to a different addictive drug, heroin. OFC neuronal activity was recorded while rats responded for heroin or the alternative non-drug reward separately or while they chose between the two. First, we found that heroin-rewarded and sweet water-rewarded actions were encoded by two non-overlapping OFC neuronal populations and that the relative size of the heroin population represented individual drug choices. Second, OFC neurons encoding the preferred action-which was the non-drug action in the large majority of individuals-progressively fired more than non-preferred action-coding neurons 1 second after the onset of choice trials and around 1 second before the preferred action was actually chosen, suggesting a pre-choice neuronal competition for action selection. Together with a previous study on cocaine choice, the present study on heroin choice reveals important commonalities in how OFC neurons encode individual drug choices and preferences across different classes of drugs. It also reveals some drug-specific differences in OFC encoding activity. Notably, the proportion of neurons that non-selectively encode both the drug and the non-drug reward was higher when the drug was heroin (present study) than when it was cocaine (previous study). We will discuss the potential functional significance of these commonalities and differences in OFC neuronal activity across different drugs for understanding drug choice. © 2017 Society for the Study of Addiction.

  6. Anatomical substrates of the alerting, orienting and executive control components of attention: focus on the posterior parietal lobe.

    Directory of Open Access Journals (Sweden)

    Xuntao Yin

    Full Text Available Both neuropsychological and functional neuroimaging studies have identified that the posterior parietal lobe (PPL is critical for the attention function. However, the unique role of distinct parietal cortical subregions and their underlying white matter (WM remains in question. In this study, we collected both magnetic resonance imaging and diffusion tensor imaging (DTI data in normal participants, and evaluated their attention performance using attention network test (ANT, which could isolate three different attention components: alerting, orienting and executive control. Cortical thickness, surface area and DTI parameters were extracted from predefined PPL subregions and correlated with behavioural performance. Tract-based spatial statistics (TBSS was used for the voxel-wise statistical analysis. Results indicated structure-behaviour relationships on multiple levels. First, a link between the cortical thickness and WM integrity of the right inferior parietal regions and orienting performance was observed. Specifically, probabilistic tractography demonstrated that the integrity of WM connectivity between the bilateral inferior parietal lobules mediated the orienting performance. Second, the scores of executive control were significantly associated with the WM diffusion metrics of the right supramarginal gyrus. Finally, TBSS analysis revealed that alerting performance was significant correlated with the fractional anisotropy of local WM connecting the right thalamus and supplementary motor area. We conclude that distinct areas and features within PPL are associated with different components of attention. These findings could yield a more complete understanding of the nature of the PPL contribution to visuospatial attention.

  7. Efficient computation in networks of spiking neurons: simulations and theory

    International Nuclear Information System (INIS)

    Natschlaeger, T.

    1999-01-01

    One of the most prominent features of biological neural systems is that individual neurons communicate via short electrical pulses, the so called action potentials or spikes. In this thesis we investigate possible mechanisms which can in principle explain how complex computations in spiking neural networks (SNN) can be performed very fast, i.e. within a few 10 milliseconds. Some of these models are based on the assumption that relevant information is encoded by the timing of individual spikes (temporal coding). We will also discuss a model which is based on a population code and still is able to perform fast complex computations. In their natural environment biological neural systems have to process signals with a rich temporal structure. Hence it is an interesting question how neural systems process time series. In this context we explore possible links between biophysical characteristics of single neurons (refractory behavior, connectivity, time course of postsynaptic potentials) and synapses (unreliability, dynamics) on the one hand and possible computations on times series on the other hand. Furthermore we describe a general model of computation that exploits dynamic synapses. This model provides a general framework for understanding how neural systems process time-varying signals. (author)

  8. Parietal and premotor cortices: activation reflects imitation accuracy during observation, delayed imitation and concurrent imitation.

    Science.gov (United States)

    Krüger, Britta; Bischoff, Matthias; Blecker, Carlo; Langhanns, Christine; Kindermann, Stefan; Sauerbier, Isabell; Reiser, Mathias; Stark, Rudolf; Munzert, Jörn; Pilgramm, Sebastian

    2014-10-15

    This study investigated whether activation within areas belonging to the action observation and imitation network reveals a linear relation to the subsequent accuracy of imitating a bimanual rhythmic movement measured via a motion capturing system. 20 participants were scanned with functional magnetic resonance imaging (fMRI) when asked to imitate observed bimanual movements either concurrently versus with a delay (2s) or simply to observe the movements without imitation. Results showed that action observation relates to activation within classic mirror-related areas. Activation patterns were more widespread when participants were asked to imitate the movement. During observation with concurrent imitation, activation in the left inferior parietal lobe (IPL) was associated negatively with imitation accuracy. During observation in the delayed imitation condition, higher subsequent imitation accuracy was coupled with higher activation in the right superior parietal lobe (SPL) and the left parietal operculum (POp). During the delayed imitation itself, a negative association between imitation accuracy and brain activation was revealed in the right ventral premotor cortex (vPMC). We conclude that the IPL is involved in online comparison and visuospatial attention processes during imitation, the SPL provides a kinesthetic blueprint during movement observation, the POp preserves body identity, and the vPMC recruits motor representations--especially when no concurrent visual guidance is possible. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Inactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions.

    Science.gov (United States)

    Christopoulos, Vassilios N; Bonaiuto, James; Kagan, Igor; Andersen, Richard A

    2015-08-19

    The posterior parietal cortex (PPC) has traditionally been considered important for awareness, spatial perception, and attention. However, recent findings provide evidence that the PPC also encodes information important for making decisions. These findings have initiated a running argument of whether the PPC is critically involved in decision making. To examine this issue, we reversibly inactivated the parietal reach region (PRR), the area of the PPC that is specialized for reaching movements, while two monkeys performed a memory-guided reaching or saccade task. The task included choices between two equally rewarded targets presented simultaneously in opposite visual fields. Free-choice trials were interleaved with instructed trials, in which a single cue presented in the peripheral visual field defined the reach and saccade target unequivocally. We found that PRR inactivation led to a strong reduction of contralesional choices, but only for reaches. On the other hand, saccade choices were not affected by PRR inactivation. Importantly, reaching and saccade movements to single instructed targets remained largely intact. These results cannot be explained as an effector-nonspecific deficit in spatial attention or awareness, since the temporary "lesion" had an impact only on reach choices. Hence, the PPR is a part of a network for reach decisions and not just reach planning. There has been an ongoing debate on whether the posterior parietal cortex (PPC) represents only spatial awareness, perception, and attention or whether it is also involved in decision making for actions. In this study we explore whether the parietal reach region (PRR), the region of the PPC that is specialized for reaches, is involved in the decision process. We inactivated the PRR while two monkeys performed reach and saccade choices between two targets presented simultaneously in both hemifields. We found that inactivation affected only the reach choices, while leaving saccade choices intact

  10. Distinct neuronal interactions in anterior inferotemporal areas of macaque monkeys during retrieval of object association memory.

    Science.gov (United States)

    Hirabayashi, Toshiyuki; Tamura, Keita; Takeuchi, Daigo; Takeda, Masaki; Koyano, Kenji W; Miyashita, Yasushi

    2014-07-09

    In macaque monkeys, the anterior inferotemporal cortex, a region crucial for object memory processing, is composed of two adjacent, hierarchically distinct areas, TE and 36, for which different functional roles and neuronal responses in object memory tasks have been characterized. However, it remains unknown how the neuronal interactions differ between these areas during memory retrieval. Here, we conducted simultaneous recordings from multiple single-units in each of these areas while monkeys performed an object association memory task and examined the inter-area differences in neuronal interactions during the delay period. Although memory neurons showing sustained activity for the presented cue stimulus, cue-holding (CH) neurons, interacted with each other in both areas, only those neurons in area 36 interacted with another type of memory neurons coding for the to-be-recalled paired associate (pair-recall neurons) during memory retrieval. Furthermore, pairs of CH neurons in area TE showed functional coupling in response to each individual object during memory retention, whereas the same class of neuron pairs in area 36 exhibited a comparable strength of coupling in response to both associated objects. These results suggest predominant neuronal interactions in area 36 during the mnemonic processing, which may underlie the pivotal role of this brain area in both storage and retrieval of object association memory. Copyright © 2014 the authors 0270-6474/14/349377-12$15.00/0.

  11. Altered Parietal Activation during Non-symbolic Number Comparison in Children with Prenatal Alcohol Exposure

    Directory of Open Access Journals (Sweden)

    Keri J. Woods

    2018-01-01

    Full Text Available Number processing is a cognitive domain particularly sensitive to prenatal alcohol exposure, which relies on intact parietal functioning. Alcohol-related alterations in brain activation have been found in the parietal lobe during symbolic number processing. However, the effects of prenatal alcohol exposure on the neural correlates of non-symbolic number comparison and the numerical distance effect have not been investigated. Using functional magnetic resonance imaging (fMRI, we examined differences in brain activation associated with prenatal alcohol exposure in five parietal regions involved in number processing during a non-symbolic number comparison task with varying degrees of difficulty. fMRI results are presented for 27 Cape Colored children (6 fetal alcohol syndome (FAS/partial FAS, 5 heavily exposed (HE non-sydromal, 16 controls; mean age ± SD = 11.7 ± 1.1 years. Fetal alcohol exposure was assessed by interviewing mothers using a timeline follow-back approach. Separate subject analyses were performed in each of five regions of interest, bilateral horizontal intraparietal sulci (IPS, bilateral posterior superior parietal lobules (PSPL, and left angular gyrus (left AG, using the general linear model with predictors for number comparison and difficulty level. Mean percent signal change for each predictor was extracted for each subject for each region to examine group differences and associations with continuous measures of alcohol exposure. Although groups did not differ in performance, controls activated the right PSPL more during non-symbolic number comparison than exposed children, but this was not significant after controlling for maternal smoking, and the right IPS more than children with fetal alcohol syndrome (FAS or partial FAS. More heavily exposed children recruited the left AG to a greater extent as task difficulty increased, possibly to compensate, in part, for impairments in function in the PSPL and IPS. Notably, in non

  12. Single-cell axotomy of cultured hippocampal neurons integrated in neuronal circuits.

    Science.gov (United States)

    Gomis-Rüth, Susana; Stiess, Michael; Wierenga, Corette J; Meyn, Liane; Bradke, Frank

    2014-05-01

    An understanding of the molecular mechanisms of axon regeneration after injury is key for the development of potential therapies. Single-cell axotomy of dissociated neurons enables the study of the intrinsic regenerative capacities of injured axons. This protocol describes how to perform single-cell axotomy on dissociated hippocampal neurons containing synapses. Furthermore, to axotomize hippocampal neurons integrated in neuronal circuits, we describe how to set up coculture with a few fluorescently labeled neurons. This approach allows axotomy of single cells in a complex neuronal network and the observation of morphological and molecular changes during axon regeneration. Thus, single-cell axotomy of mature neurons is a valuable tool for gaining insights into cell intrinsic axon regeneration and the plasticity of neuronal polarity of mature neurons. Dissociation of the hippocampus and plating of hippocampal neurons takes ∼2 h. Neurons are then left to grow for 2 weeks, during which time they integrate into neuronal circuits. Subsequent axotomy takes 10 min per neuron and further imaging takes 10 min per neuron.

  13. Matrix metalloproteinase-9 expression is enhanced in renal parietal epithelial cells of zucker diabetic Fatty rats and is induced by albumin in in vitro primary parietal cell culture.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    Full Text Available As a subfamily of matrix metalloproteinases (MMPs, gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive

  14. Matrix Metalloproteinase-9 Expression Is Enhanced in Renal Parietal Epithelial Cells of Zucker Diabetic Fatty Rats and Is Induced by Albumin in In Vitro Primary Parietal Cell Culture

    Science.gov (United States)

    Zhang, Yuanyuan; George, Jasmine; Li, Yun; Olufade, Rebecca; Zhao, Xueying

    2015-01-01

    As a subfamily of matrix metalloproteinases (MMPs), gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs) expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin) in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml) for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK) in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive diabetic nephropathy

  15. Neural mechanisms of vocal imitation: The role of sleep replay in shaping mirror neurons.

    Science.gov (United States)

    Giret, Nicolas; Edeline, Jean-Marc; Del Negro, Catherine

    2017-06-01

    Learning by imitation involves not only perceiving another individual's action to copy it, but also the formation of a memory trace in order to gradually establish a correspondence between the sensory and motor codes, which represent this action through sensorimotor experience. Memory and sensorimotor processes are closely intertwined. Mirror neurons, which fire both when the same action is performed or perceived, have received considerable attention in the context of imitation. An influential view of memory processes considers that the consolidation of newly acquired information or skills involves an active offline reprocessing of memories during sleep within the neuronal networks that were initially used for encoding. Here, we review the recent advances in the field of mirror neurons and offline processes in the songbird. We further propose a theoretical framework that could establish the neurobiological foundations of sensorimotor learning by imitation. We propose that the reactivation of neuronal assemblies during offline periods contributes to the integration of sensory feedback information and the establishment of sensorimotor mirroring activity at the neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Expression of UV-sensitive parapinopsin in the iguana parietal eyes and its implication in UV-sensitivity in vertebrate pineal-related organs.

    Science.gov (United States)

    Wada, Seiji; Kawano-Yamashita, Emi; Koyanagi, Mitsumasa; Terakita, Akihisa

    2012-01-01

    The pineal-related organs of lower vertebrates have the ability to discriminate different wavelengths of light. This wavelength discrimination is achieved through antagonistic light responses to UV or blue and visible light. Previously, we demonstrated that parapinopsin underlies the UV reception in the lamprey pineal organ and identified parapinopsin genes in teleosts and frogs of which the pineal-related organs were reported to discriminate light. In this study, we report the first identification of parapinopsin in the reptile lineage and show its expression in the parietal eye of the green iguana. Spectroscopic analysis revealed that iguana parapinopsin is a UV-sensitive pigment, similar to lamprey parapinopsin. Interestingly, immunohistochemical analyses using antibodies specific to parapinopsin and parietopsin, a parietal eye green-sensitive pigment, revealed that parapinopsin and parietopsin are colocalized in the outer segments of the parietal eye photoreceptor cells in iguanas. These results strongly suggest that parapinopsin underlies the wavelength discrimination involving UV reception in the iguana parietal eye. The current findings support the idea that parapinopsin is a common photopigment underlying the UV-sensitivity in wavelength discrimination of the pineal-related organs found from lampreys to reptiles.

  17. Expression of UV-Sensitive Parapinopsin in the Iguana Parietal Eyes and Its Implication in UV-Sensitivity in Vertebrate Pineal-Related Organs

    Science.gov (United States)

    Wada, Seiji; Kawano-Yamashita, Emi; Koyanagi, Mitsumasa; Terakita, Akihisa

    2012-01-01

    The pineal-related organs of lower vertebrates have the ability to discriminate different wavelengths of light. This wavelength discrimination is achieved through antagonistic light responses to UV or blue and visible light. Previously, we demonstrated that parapinopsin underlies the UV reception in the lamprey pineal organ and identified parapinopsin genes in teleosts and frogs of which the pineal-related organs were reported to discriminate light. In this study, we report the first identification of parapinopsin in the reptile lineage and show its expression in the parietal eye of the green iguana. Spectroscopic analysis revealed that iguana parapinopsin is a UV-sensitive pigment, similar to lamprey parapinopsin. Interestingly, immunohistochemical analyses using antibodies specific to parapinopsin and parietopsin, a parietal eye green-sensitive pigment, revealed that parapinopsin and parietopsin are colocalized in the outer segments of the parietal eye photoreceptor cells in iguanas. These results strongly suggest that parapinopsin underlies the wavelength discrimination involving UV reception in the iguana parietal eye. The current findings support the idea that parapinopsin is a common photopigment underlying the UV-sensitivity in wavelength discrimination of the pineal-related organs found from lampreys to reptiles. PMID:22720013

  18. Expression of UV-sensitive parapinopsin in the iguana parietal eyes and its implication in UV-sensitivity in vertebrate pineal-related organs.

    Directory of Open Access Journals (Sweden)

    Seiji Wada

    Full Text Available The pineal-related organs of lower vertebrates have the ability to discriminate different wavelengths of light. This wavelength discrimination is achieved through antagonistic light responses to UV or blue and visible light. Previously, we demonstrated that parapinopsin underlies the UV reception in the lamprey pineal organ and identified parapinopsin genes in teleosts and frogs of which the pineal-related organs were reported to discriminate light. In this study, we report the first identification of parapinopsin in the reptile lineage and show its expression in the parietal eye of the green iguana. Spectroscopic analysis revealed that iguana parapinopsin is a UV-sensitive pigment, similar to lamprey parapinopsin. Interestingly, immunohistochemical analyses using antibodies specific to parapinopsin and parietopsin, a parietal eye green-sensitive pigment, revealed that parapinopsin and parietopsin are colocalized in the outer segments of the parietal eye photoreceptor cells in iguanas. These results strongly suggest that parapinopsin underlies the wavelength discrimination involving UV reception in the iguana parietal eye. The current findings support the idea that parapinopsin is a common photopigment underlying the UV-sensitivity in wavelength discrimination of the pineal-related organs found from lampreys to reptiles.

  19. Dynamics of intrinsic electrophysiological properties in spinal cord neurones

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1999-01-01

    The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. ....... Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands....

  20. Neuronal survival in the brain: neuron type-specific mechanisms

    DEFF Research Database (Denmark)

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether...... for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various...

  1. Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface

    Science.gov (United States)

    Novellino, A.; D'Angelo, P.; Cozzi, L.; Chiappalone, M.; Sanguineti, V.; Martinoia, S.

    2007-01-01

    One of the key properties of intelligent behaviors is the capability to learn and adapt to changing environmental conditions. These features are the result of the continuous and intense interaction of the brain with the external world, mediated by the body. For this reason “embodiment” represents an innovative and very suitable experimental paradigm when studying the neural processes underlying learning new behaviors and adapting to unpredicted situations. To this purpose, we developed a novel bidirectional neural interface. We interconnected in vitro neurons, extracted from rat embryos and plated on a microelectrode array (MEA), to external devices, thus allowing real-time closed-loop interaction. The novelty of this experimental approach entails the necessity to explore different computational schemes and experimental hypotheses. In this paper, we present an open, scalable architecture, which allows fast prototyping of different modules and where coding and decoding schemes and different experimental configurations can be tested. This hybrid system can be used for studying the computational properties and information coding in biological neuronal networks with far-reaching implications for the future development of advanced neuroprostheses. PMID:18350128

  2. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

    Science.gov (United States)

    Hernández, Vivian M; Hegeman, Daniel J; Cui, Qiaoling; Kelver, Daniel A; Fiske, Michael P; Glajch, Kelly E; Pitt, Jason E; Huang, Tina Y; Justice, Nicholas J; Chan, C Savio

    2015-08-26

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the

  3. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    Science.gov (United States)

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  4. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior.

    Science.gov (United States)

    Carlson, Bruce A

    2009-07-29

    Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge. In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals, and bandpass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally relevant stimulus information encoded into temporal patterns of activity by sensory neurons.

  5. Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group Independent Component Analysis of the mental addition and subtraction of fractions.

    Science.gov (United States)

    Schmithorst, Vincent J; Brown, Rhonda Douglas

    2004-07-01

    The suitability of a previously hypothesized triple-code model of numerical processing, involving analog magnitude, auditory verbal, and visual Arabic codes of representation, was investigated for the complex mathematical task of the mental addition and subtraction of fractions. Functional magnetic resonance imaging (fMRI) data from 15 normal adult subjects were processed using exploratory group Independent Component Analysis (ICA). Separate task-related components were found with activation in bilateral inferior parietal, left perisylvian, and ventral occipitotemporal areas. These results support the hypothesized triple-code model corresponding to the activated regions found in the individual components and indicate that the triple-code model may be a suitable framework for analyzing the neuropsychological bases of the performance of complex mathematical tasks. Copyright 2004 Elsevier Inc.

  6. The natural history of sound localization in mammals – a story of neuronal inhibition

    Directory of Open Access Journals (Sweden)

    Benedikt eGrothe

    2014-10-01

    Full Text Available Our concepts of sound localization in the vertebrate brain are widely based on the general assumption that both the ability to detect air-borne sounds and the neuronal processing are homologous in archosaurs (present day crocodiles and birds and mammals. Yet studies repeatedly report conflicting results on the neuronal circuits and mechanisms, in particular the role of inhibition, as well as the coding strategies between avian and mammalian model systems.Here we argue that mammalian and avian phylogeny of spatial hearing is characterized by a convergent evolution of hearing air-borne sounds rather than by homology. In particular, the different evolutionary origins of tympanic ears and the different availability of binaural cues in early mammals and archosaurs imposed distinct constraints on the respective binaural processing mechanisms. The role of synaptic inhibition in generating binaural spatial sensitivity in mammals is highlighted, as it reveals a unifying principle of mammalian circuit design for encoding sound position. Together, we combine evolutionary, anatomical and physiological arguments for making a clear distinction between mammalian processing mechanisms and coding strategies and those of archosaurs. We emphasize that a consideration of the convergent nature of neuronal mechanisms will significantly increase the explanatory power of studies of spatial processing in both mammals and birds.

  7. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes

    Science.gov (United States)

    2012-01-01

    Action potentials at the neurons and graded signals at the synapses are primary codes in the brain. In terms of their functional interaction, the studies were focused on the influence of presynaptic spike patterns on synaptic activities. How the synapse dynamics quantitatively regulates the encoding of postsynaptic digital spikes remains unclear. We investigated this question at unitary glutamatergic synapses on cortical GABAergic neurons, especially the quantitative influences of release probability on synapse dynamics and neuronal encoding. Glutamate release probability and synaptic strength are proportionally upregulated by presynaptic sequential spikes. The upregulation of release probability and the efficiency of probability-driven synaptic facilitation are strengthened by elevating presynaptic spike frequency and Ca2+. The upregulation of release probability improves spike capacity and timing precision at postsynaptic neuron. These results suggest that the upregulation of presynaptic glutamate release facilitates a conversion of synaptic analogue signals into digital spikes in postsynaptic neurons, i.e., a functional compatibility between presynaptic and postsynaptic partners. PMID:22852823

  8. Self-Face Recognition Begins to Share Active Region in Right Inferior Parietal Lobule with Proprioceptive Illusion During Adolescence.

    Science.gov (United States)

    Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru; Naito, Eiichi

    2018-04-01

    We recently reported that right-side dominance of the inferior parietal lobule (IPL) in self-body recognition (proprioceptive illusion) task emerges during adolescence in typical human development. Here, we extend this finding by demonstrating that functional lateralization to the right IPL also develops during adolescence in another self-body (specifically a self-face) recognition task. We collected functional magnetic resonance imaging (fMRI) data from 60 right-handed healthy children (8-11 years), adolescents (12-15 years), and adults (18-23 years; 20 per group) while they judged whether a presented face was their own (Self) or that of somebody else (Other). We also analyzed fMRI data collected while they performed proprioceptive illusion task. All participants performed self-face recognition with high accuracy. Among brain regions where self-face-related activity (Self vs. Other) developed, only right IPL activity developed predominantly for self-face processing, with no substantial involvement in other-face processing. Adult-like right-dominant use of IPL emerged during adolescence, but was not yet present in childhood. Adult-like common activation between the tasks also emerged during adolescence. Adolescents showing stronger right-lateralized IPL activity during illusion also showed this during self-face recognition. Our results suggest the importance of the right IPL in neuronal processing of information associated with one's own body in typically developing humans.

  9. Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex.

    Science.gov (United States)

    Bolognini, Nadia; Convento, Silvia; Banco, Elisabetta; Mattioli, Flavia; Tesio, Luigi; Vallar, Giuseppe

    2015-02-01

    Limb apraxia, a deficit of planning voluntary gestures, is most frequently caused by damage to the left hemisphere, where, according to an influential neurofunctional model, gestures are planned, before being executed through the motor cortex of the hemisphere contralateral to the acting hand. We used anodal transcranial direct current stimulation delivered to the left posterior parietal cortex (PPC), the right motor cortex (M1), and a sham stimulation condition, to modulate the ability of six left-brain-damaged patients with ideomotor apraxia, and six healthy control subjects, to imitate hand gestures, and to perform skilled hand movements using the left hand. Transcranial direct current stimulation delivered to the left PPC reduced the time required to perform skilled movements, and planning, but not execution, times in imitating gestures, in both patients and controls. In patients, the amount of decrease of planning times brought about by left PPC transcranial direct current stimulation was influenced by the size of the parietal lobe damage, with a larger parietal damage being associated with a smaller improvement. Of interest from a clinical perspective, left PPC stimulation also ameliorated accuracy in imitating hand gestures in patients. Instead, transcranial direct current stimulation to the right M1 diminished execution, but not planning, times in both patients and healthy controls. In conclusion, by using a transcranial stimulation approach, we temporarily improved ideomotor apraxia in the left hand of left-brain-damaged patients, showing a role of the left PPC in planning gestures. This evidence opens up novel perspectives for the use of transcranial direct current stimulation in the rehabilitation of limb apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. The neural code for face orientation in the human fusiform face area.

    Science.gov (United States)

    Ramírez, Fernando M; Cichy, Radoslaw M; Allefeld, Carsten; Haynes, John-Dylan

    2014-09-03

    Humans recognize faces and objects with high speed and accuracy regardless of their orientation. Recent studies have proposed that orientation invariance in face recognition involves an intermediate representation where neural responses are similar for mirror-symmetric views. Here, we used fMRI, multivariate pattern analysis, and computational modeling to investigate the neural encoding of faces and vehicles at different rotational angles. Corroborating previous studies, we demonstrate a representation of face orientation in the fusiform face-selective area (FFA). We go beyond these studies by showing that this representation is category-selective and tolerant to retinal translation. Critically, by controlling for low-level confounds, we found the representation of orientation in FFA to be compatible with a linear angle code. Aspects of mirror-symmetric coding cannot be ruled out when FFA mean activity levels are considered as a dimension of coding. Finally, we used a parametric family of computational models, involving a biased sampling of view-tuned neuronal clusters, to compare different face angle encoding models. The best fitting model exhibited a predominance of neuronal clusters tuned to frontal views of faces. In sum, our findings suggest a category-selective and monotonic code of face orientation in the human FFA, in line with primate electrophysiology studies that observed mirror-symmetric tuning of neural responses at higher stages of the visual system, beyond the putative homolog of human FFA. Copyright © 2014 the authors 0270-6474/14/3412155-13$15.00/0.

  11. Role of inferior temporal neurons in visual memory. II. Multiplying temporal waveforms related to vision and memory.

    Science.gov (United States)

    Eskandar, E N; Optican, L M; Richmond, B J

    1992-10-01

    1. In the companion paper we reported on the activity of neurons in the inferior temporal (IT) cortex during a sequential pattern matching task. In this task a sample stimulus was followed by a test stimulus that was either a match or a nonmatch. Many of the neurons encoded information about the patterns of both current and previous stimuli in the temporal modulation of their responses. 2. A simple information processing model of visual memory can be formed with just four steps: 1) encode the current stimulus; 2) recall the code of a remembered stimulus; 3) compare the two codes; 4) and decide whether they are similar or different. The analysis presented in the first paper suggested that some IT neurons were performing the comparison step of visual memory. 3. We propose that IT neurons participate in the comparison of temporal waveforms related to vision and memory by multiplying them together. This product could form the basis of a crosscorrelation-based comparison. 4. We tested our hypothesis by fitting a simple multiplicative model to data from IT neurons. The model generated waveforms in separate memory and visual channels. The waveforms arising from the two channels were then multiplied on a point by point basis to yield the output waveform. The model was fitted to the actual neuronal data by a gradient descent method to find the best fit waveforms that also had the lowest total energy. 5. The multiplicative model fit the neuronal responses quite well. The multiplicative model made consistently better predictions of the actual response waveforms than did an additive model. Furthermore, the fit was better when the actual relationship between the responses and the sample and test stimuli were preserved than when that relationship was randomized. 6. We infer from the superior fit of the multiplicative model that IT neurons are multiplying temporally modulated waveforms arising from separate visual and memory systems in the comparison step of visual memory.

  12. Detection of viable cortical neurons using benzodiazepine receptor imaging after reversible focal ischaemia in rats: comparison with regional cerebral blood flow

    International Nuclear Information System (INIS)

    Watanabe, Yoshiyuki; Nakano, Takayuki; Yutani, Kenji; Nishimura, Hiroshi; Nishimura, Tsunehiko; Kusuoka, Hideo; Nakamura, Hironobu

    2000-01-01

    To elucidate the utility of benzodiazepine receptor imaging for the detection of viable cortical neurons, dual-tracer autoradiography using iodine-125 iomazenil (IMZ) and iodine-123 N-isopropyl-4-iodoamphetamine (IMP) was performed in a model of reversible focal ischaemia during the acute and subacute phases. The right middle cerebral artery of anaesthetized rats was occluded for 60 min using an intraluminal filament and reperfused. In the acute phase study, 125 I-IMZ (370 kBq) was injected via the femoral vein at 2 h after reperfusion, and 123 I-IMP (37 MBq) was injected at 50 min post-injection. Rats were sacrificed 10 min after the injection of 123 I-IMP. In the subacute phase study, the same procedure was performed at 5 days after reperfusion. In the acute phase, the IMP uptake was significantly decreased in almost all areas of the lesioned hemisphere, an exception being the cerebellum; however, the IMZ uptake was significantly decreased only in ischaemic cores. The discrepancy between IMZ and IMP uptake was observed in the lateral neocortex and the lateral caudate putamen (CPu), which were most frequently damaged in this ischaemic model. In the subacute phase, the IMZ uptake in lesioned rats was significantly decreased only in the parietal lobe and hippocampus, though the IMP uptake was decreased in many regions of lesioned hemispheres (the frontal, parietal cortex, CPu, hippocampus and thalamus). Histopathological findings indicated that both the IMP and the IMZ uptake was markedly decreased in necrotic areas. Although the IMP uptake was significantly decreased in the ischaemic areas, the IMZ uptake was maintained in these areas. These results suggest that benzodiazepine receptor imaging is superior to regional cerebral blood flow imaging for the detection of viable cortical neurons in both the acute and subacute phases of ischaemia. (orig.)

  13. Detection of viable cortical neurons using benzodiazepine receptor imaging after reversible focal ischaemia in rats: comparison with regional cerebral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshiyuki [Dept. of Radiology, Osaka National Hospital (Japan); Nakano, Takayuki; Yutani, Kenji; Nishimura, Hiroshi; Nishimura, Tsunehiko [Div. of Tracer Kinetics, Osaka University Medical School (Japan); Kusuoka, Hideo [Clinical Research Institute, Osaka National Hospital (Japan); Nakamura, Hironobu [Dept. of Radiology, Osaka University Medical School (Japan)

    2000-03-01

    To elucidate the utility of benzodiazepine receptor imaging for the detection of viable cortical neurons, dual-tracer autoradiography using iodine-125 iomazenil (IMZ) and iodine-123 N-isopropyl-4-iodoamphetamine (IMP) was performed in a model of reversible focal ischaemia during the acute and subacute phases. The right middle cerebral artery of anaesthetized rats was occluded for 60 min using an intraluminal filament and reperfused. In the acute phase study, {sup 125}I-IMZ (370 kBq) was injected via the femoral vein at 2 h after reperfusion, and {sup 123}I-IMP (37 MBq) was injected at 50 min post-injection. Rats were sacrificed 10 min after the injection of {sup 123}I-IMP. In the subacute phase study, the same procedure was performed at 5 days after reperfusion. In the acute phase, the IMP uptake was significantly decreased in almost all areas of the lesioned hemisphere, an exception being the cerebellum; however, the IMZ uptake was significantly decreased only in ischaemic cores. The discrepancy between IMZ and IMP uptake was observed in the lateral neocortex and the lateral caudate putamen (CPu), which were most frequently damaged in this ischaemic model. In the subacute phase, the IMZ uptake in lesioned rats was significantly decreased only in the parietal lobe and hippocampus, though the IMP uptake was decreased in many regions of lesioned hemispheres (the frontal, parietal cortex, CPu, hippocampus and thalamus). Histopathological findings indicated that both the IMP and the IMZ uptake was markedly decreased in necrotic areas. Although the IMP uptake was significantly decreased in the ischaemic areas, the IMZ uptake was maintained in these areas. These results suggest that benzodiazepine receptor imaging is superior to regional cerebral blood flow imaging for the detection of viable cortical neurons in both the acute and subacute phases of ischaemia. (orig.)

  14. El arte parietal, espejo de las sociedades paleolíticas

    Directory of Open Access Journals (Sweden)

    Georges SAUVET

    2009-12-01

    Full Text Available RESUMEN: El presente trabajo aboga por un estudio del arte parietal como instrumento del conocimiento de la geografía humana de las sociedades de cazadores y de la evolución de sus redes de alianza, durante el Paleolítico superior. Tomando como ejemplo el componente figurativo de este arte y un amplio corpus de 3981 figuras procedentes de 154 yacimientos franceses y españoles, se demuestra que las asociaciones entre especies animales diferentes obedecen a reglas simples y coherentes, que se dejan fácilmente exprimir por un modelo formal. El análisis de doce sub-conjuntos sincrónicos y diacrónicos evidencia la movilidad de las connexiones interregionales (por ejemplo el desarrollo del Solutrense cantábrico en relación con los centros peninsulares y con escaso contacto con el sudoeste francés, al contrario de la situación que prevalece durante el Magdaleniense medio-superior. Sin embargo conforta la idea que las variaciones regionales operan dentro de un sistema de pensamiento religioso relativamente estable. Una segunda fase del trabajo se propone describir la estructuración del arte parietal a un nivel mucho más fino, teniendo en cuenta la diversidad formal de cada figura y sus relaciones topológicas con las demás. Una larga base de datos está en curso de elaboración para su tratamiento con las técnicas de "extracción de conocimiento" (Knowledge Discovery in Databases. Unos resultados preliminares dejan esperar que una base de datos de este tipo servirá el objetivo y proporcionará une visión más precisa y segura de la historia de los pueblos paleolíticos, dado que la fuente del estilo propio de cada grupo debe buscarse en la construcción gráfica de paneles complejos.ABSTRACT: This paper pleads in favour of the study of parietal art as a means to investigate the human geography of palaeolithic hunter-gatherers in Europe and the evolution of their alliance networks. Taking the example of the figurative component of Rock

  15. Parietal Lobe Volume Deficits in Adolescents with Schizophrenia and Adolescents with Cannabis Use Disorders

    Science.gov (United States)

    Kumra, Sanjiv; Robinson, Paul; Tambyraja, Rabindra; Jensen, Daniel; Schimunek, Caroline; Houri, Alaa; Reis, Tiffany; Lim, Kelvin

    2012-01-01

    Objective: In early-onset schizophrenia (EOS), the earliest structural brain volumetric abnormalities appear in the parietal cortices. Early exposure to cannabis may represent an environmental risk factor for developing schizophrenia. This study characterized cerebral cortical gray matter structure in adolescents in regions of interest (ROIs) that…

  16. Pathological changes in hippocampal neuronal circuits underlie age-associated neurodegeneration and memory loss: positive clue toward SAD.

    Science.gov (United States)

    Moorthi, P; Premkumar, P; Priyanka, R; Jayachandran, K S; Anusuyadevi, M

    2015-08-20

    Among vertebrates hippocampus forms the major component of the brain in consolidating information from short-term memory to long-term memory. Aging is considered as the major risk factor for memory impairment in sporadic Alzheimer's disease (SAD) like pathology. Present study thus aims at investigating whether age-specific degeneration of neuronal-circuits in hippocampal formation (neural-layout of Subiculum-hippocampus proper-dentate gyrus (DG)-entorhinal cortex (EC)) results in cognitive impairment. Furthermore, the neuroprotective effect of Resveratrol (RSV) was attempted to study in the formation of hippocampal neuronal-circuits. Radial-Arm-Maze was conducted to evaluate hippocampal-dependent spatial and learning memory in control and experimental rats. Nissl staining of frontal cortex (FC), subiculum, hippocampal-proper (CA1→CA2→CA3→CA4), DG, amygdala, cerebellum, thalamus, hypothalamus, layers of temporal and parietal lobe of the neocortex were examined for pathological changes in young and aged wistar rats, with and without RSV. Hippocampal trisynaptic circuit (EC layerII→DG→CA3→CA1) forming new memory and monosynaptic circuit (EC→CA1) that strengthen old memories were found disturbed in aged rats. Loss of Granular neuron observed in DG and polymorphic cells of CA4 can lead to decreased mossy fibers disturbing neural-transmission (CA4→CA3) in perforant pathway. Further, intensity of nissl granules (stratum lacunosum moleculare (SLM)-SR-SO) of CA3 pyramidal neurons was decreased, disturbing the communication in schaffer collaterals (CA3-CA1) during aging. We also noticed disarranged neuronal cell layer in Subiculum (presubiculum (PrS)-parasubiculum (PaS)), interfering output from hippocampus to prefrontal cortex (PFC), EC, hypothalamus, and amygdala that may result in interruption of thought processes. We conclude from our observations that poor memory performance of aged rats as evidenced through radial arm maze (RAM) analysis was due to the

  17. Deficits in visual search for conjunctions of motion and form after parietal damage but with spared hMT+/V5.

    Science.gov (United States)

    Dent, Kevin; Lestou, Vaia; Humphreys, Glyn W

    2010-02-01

    It has been argued that area hMT+/V5 in humans acts as a motion filter, enabling targets defined by a conjunction of motion and form to be efficiently selected. We present data indicating that (a) damage to parietal cortex leads to a selective problem in processing motion-form conjunctions, and (b) that the presence of a structurally and functional intact hMT+/V5 is not sufficient for efficient search for motion-form conjunctions. We suggest that, in addition to motion-processing areas (e.g., hMT+/V5), the posterior parietal cortex is necessary for efficient search with motion-form conjunctions, so that damage to either brain region may bring about deficits in search. We discuss the results in terms of the involvement of the posterior parietal cortex in the top-down guidance of search or in the binding of motion and form information.

  18. Bursts generate a non-reducible spike-pattern code

    Directory of Open Access Journals (Sweden)

    Hugo G Eyherabide

    2009-05-01

    Full Text Available On the single-neuron level, precisely timed spikes can either constitute firing-rate codes or spike-pattern codes that utilize the relative timing between consecutive spikes. There has been little experimental support for the hypothesis that such temporal patterns contribute substantially to information transmission. Using grasshopper auditory receptors as a model system, we show that correlations between spikes can be used to represent behaviorally relevant stimuli. The correlations reflect the inner structure of the spike train: a succession of burst-like patterns. We demonstrate that bursts with different spike counts encode different stimulus features, such that about 20% of the transmitted information corresponds to discriminating between different features, and the remaining 80% is used to allocate these features in time. In this spike-pattern code, the "what" and the "when" of the stimuli are encoded in the duration of each burst and the time of burst onset, respectively. Given the ubiquity of burst firing, we expect similar findings also for other neural systems.

  19. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Jin, Seung-Hyun; Joutsen, Atte

    2012-01-01

    at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately...... following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal-motor interactions......Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants...

  20. Hippocampal and posterior parietal contributions to developmental increases in visual short-term memory capacity.

    Science.gov (United States)

    von Allmen, David Yoh; Wurmitzer, Karoline; Klaver, Peter

    2014-10-01

    Developmental increases in visual short-term memory (VSTM) capacity have been associated with changes in attention processing limitations and changes in neural activity within neural networks including the posterior parietal cortex (PPC). A growing body of evidence suggests that the hippocampus plays a role in VSTM, but it is unknown whether the hippocampus contributes to the capacity increase across development. We investigated the functional development of the hippocampus and PPC in 57 children, adolescents and adults (age 8-27 years) who performed a visuo-spatial change detection task. A negative relationship between age and VSTM related activity was found in the right posterior hippocampus that was paralleled by a positive age-activity relationship in the right PPC. In the posterior hippocampus, VSTM related activity predicted individual capacity in children, whereas neural activity in the right anterior hippocampus predicted individual capacity in adults. The findings provide first evidence that VSTM development is supported by an integrated neural network that involves hippocampal and posterior parietal regions.

  1. Coherence resonance in globally coupled neuronal networks with different neuron numbers

    International Nuclear Information System (INIS)

    Ning Wei-Lian; Zhang Zheng-Zhen; Zeng Shang-You; Luo Xiao-Shu; Hu Jin-Lin; Zeng Shao-Wen; Qiu Yi; Wu Hui-Si

    2012-01-01

    Because a brain consists of tremendous neuronal networks with different neuron numbers ranging from tens to tens of thousands, we study the coherence resonance due to ion channel noises in globally coupled neuronal networks with different neuron numbers. We confirm that for all neuronal networks with different neuron numbers there exist the array enhanced coherence resonance and the optimal synaptic conductance to cause the maximal spiking coherence. Furthermoremore, the enhancement effects of coupling on spiking coherence and on optimal synaptic conductance are almost the same, regardless of the neuron numbers in the neuronal networks. Therefore for all the neuronal networks with different neuron numbers in the brain, relative weak synaptic conductance (0.1 mS/cm 2 ) is sufficient to induce the maximal spiking coherence and the best sub-threshold signal encoding. (interdisciplinary physics and related areas of science and technology)

  2. Glucose modulates food-related salience coding of midbrain neurons in humans.

    Science.gov (United States)

    Ulrich, Martin; Endres, Felix; Kölle, Markus; Adolph, Oliver; Widenhorn-Müller, Katharina; Grön, Georg

    2016-12-01

    Although early rat studies demonstrated that administration of glucose diminishes dopaminergic midbrain activity, evidence in humans has been lacking so far. In the present functional magnetic resonance imaging study, glucose was intravenously infused in healthy human male participants while seeing images depicting low-caloric food (LC), high-caloric food (HC), and non-food (NF) during a food/NF discrimination task. Analysis of brain activation focused on the ventral tegmental area (VTA) as the origin of the mesolimbic system involved in salience coding. Under unmodulated fasting baseline conditions, VTA activation was greater during HC compared with LC food cues. Subsequent to infusion of glucose, this difference in VTA activation as a function of caloric load leveled off and even reversed. In a control group not receiving glucose, VTA activation during HC relative to LC cues remained stable throughout the course of the experiment. Similar treatment-specific patterns of brain activation were observed for the hypothalamus. The present findings show for the first time in humans that glucose infusion modulates salience coding mediated by the VTA. Hum Brain Mapp 37:4376-4384, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Temporo-Parietal Junction Activity in Theory-of-Mind Tasks: Falseness, Beliefs, or Attention

    Science.gov (United States)

    Aichhorn, Markus; Perner, Josef; Weiss, Benjamin; Kronbichler, Martin; Staffen, Wolfgang; Ladurner, Gunther

    2009-01-01

    By combining the false belief (FB) and photo (PH) vignettes to identify theory-of-mind areas with the false sign (FS) vignettes, we re-establish the functional asymmetry between the left and right temporo-parietal junction (TPJ). The right TPJ (TPJ-R) is specially sensitive to processing belief information, whereas the left TPJ (TPJ-L) is equally…

  4. Repeated whisker stimulation evokes invariant neuronal responses in the dorsolateral striatum of anesthetized rats: a potential correlate of sensorimotor habits

    OpenAIRE

    Mowery, Todd M.; Harrold, Jon B.; Alloway, Kevin D.

    2011-01-01

    The dorsolateral striatum (DLS) receives extensive projections from primary somatosensory cortex (SI), but very few studies have used somesthetic stimulation to characterize the sensory coding properties of DLS neurons. In this study, we used computer-controlled whisker deflections to characterize the extracellular responses of DLS neurons in rats lightly anesthetized with isoflurane. When multiple whiskers were synchronously deflected by rapid back-and-forth movements, whisker-sensitive neur...

  5. Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex.

    Directory of Open Access Journals (Sweden)

    Michael T Lippert

    Full Text Available Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level.

  6. Neuron-derived IgG protects neurons from complement-dependent cytotoxicity.

    Science.gov (United States)

    Zhang, Jie; Niu, Na; Li, Bingjie; McNutt, Michael A

    2013-12-01

    Passive immunity of the nervous system has traditionally been thought to be predominantly due to the blood-brain barrier. This concept must now be revisited based on the existence of neuron-derived IgG. The conventional concept is that IgG is produced solely by mature B lymphocytes, but it has now been found to be synthesized by murine and human neurons. However, the function of this endogenous IgG is poorly understood. In this study, we confirm IgG production by rat cortical neurons at the protein and mRNA levels, with 69.0 ± 5.8% of cortical neurons IgG-positive. Injury to primary-culture neurons was induced by complement leading to increases in IgG production. Blockage of neuron-derived IgG resulted in more neuronal death and early apoptosis in the presence of complement. In addition, FcγRI was found in microglia and astrocytes. Expression of FcγR I in microglia was increased by exposure to neuron-derived IgG. Release of NO from microglia triggered by complement was attenuated by neuron-derived IgG, and this attenuation could be reversed by IgG neutralization. These data demonstrate that neuron-derived IgG is protective of neurons against injury induced by complement and microglial activation. IgG appears to play an important role in maintaining the stability of the nervous system.

  7. High Frequency rTMS over the Left Parietal Lobule Increases Non-Word Reading Accuracy

    Science.gov (United States)

    Costanzo, Floriana; Menghini, Deny; Caltagirone, Carlo; Oliveri, Massimiliano; Vicari, Stefano

    2012-01-01

    Increasing evidence in the literature supports the usefulness of Transcranial Magnetic Stimulation (TMS) in studying reading processes. Two brain regions are primarily involved in phonological decoding: the left superior temporal gyrus (STG), which is associated with the auditory representation of spoken words, and the left inferior parietal lobe…

  8. Predictive coding of dynamical variables in balanced spiking networks.

    Science.gov (United States)

    Boerlin, Martin; Machens, Christian K; Denève, Sophie

    2013-01-01

    Two observations about the cortex have puzzled neuroscientists for a long time. First, neural responses are highly variable. Second, the level of excitation and inhibition received by each neuron is tightly balanced at all times. Here, we demonstrate that both properties are necessary consequences of neural networks that represent information efficiently in their spikes. We illustrate this insight with spiking networks that represent dynamical variables. Our approach is based on two assumptions: We assume that information about dynamical variables can be read out linearly from neural spike trains, and we assume that neurons only fire a spike if that improves the representation of the dynamical variables. Based on these assumptions, we derive a network of leaky integrate-and-fire neurons that is able to implement arbitrary linear dynamical systems. We show that the membrane voltage of the neurons is equivalent to a prediction error about a common population-level signal. Among other things, our approach allows us to construct an integrator network of spiking neurons that is robust against many perturbations. Most importantly, neural variability in our networks cannot be equated to noise. Despite exhibiting the same single unit properties as widely used population code models (e.g. tuning curves, Poisson distributed spike trains), balanced networks are orders of magnitudes more reliable. Our approach suggests that spikes do matter when considering how the brain computes, and that the reliability of cortical representations could have been strongly underestimated.

  9. A neuron-astrocyte transistor-like model for neuromorphic dressed neurons.

    Science.gov (United States)

    Valenza, G; Pioggia, G; Armato, A; Ferro, M; Scilingo, E P; De Rossi, D

    2011-09-01

    Experimental evidences on the role of the synaptic glia as an active partner together with the bold synapse in neuronal signaling and dynamics of neural tissue strongly suggest to investigate on a more realistic neuron-glia model for better understanding human brain processing. Among the glial cells, the astrocytes play a crucial role in the tripartite synapsis, i.e. the dressed neuron. A well-known two-way astrocyte-neuron interaction can be found in the literature, completely revising the purely supportive role for the glia. The aim of this study is to provide a computationally efficient model for neuron-glia interaction. The neuron-glia interactions were simulated by implementing the Li-Rinzel model for an astrocyte and the Izhikevich model for a neuron. Assuming the dressed neuron dynamics similar to the nonlinear input-output characteristics of a bipolar junction transistor, we derived our computationally efficient model. This model may represent the fundamental computational unit for the development of real-time artificial neuron-glia networks opening new perspectives in pattern recognition systems and in brain neurophysiology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. MicroRNA-338 Attenuates Cortical Neuronal Outgrowth by Modulating the Expression of Axon Guidance Genes.

    Science.gov (United States)

    Kos, Aron; Klein-Gunnewiek, Teun; Meinhardt, Julia; Loohuis, Nikkie F M Olde; van Bokhoven, Hans; Kaplan, Barry B; Martens, Gerard J; Kolk, Sharon M; Aschrafi, Armaz

    2017-07-01

    MicroRNAs (miRs) are small non-coding RNAs that confer robustness to gene networks through post-transcriptional gene regulation. Previously, we identified miR-338 as a modulator of axonal outgrowth in sympathetic neurons. In the current study, we examined the role of miR-338 in the development of cortical neurons and uncovered its downstream mRNA targets. Long-term inhibition of miR-338 during neuronal differentiation resulted in reduced dendritic complexity and altered dendritic spine morphology. Furthermore, monitoring axon outgrowth in cortical cells revealed that miR-338 overexpression decreased, whereas inhibition of miR-338 increased axonal length. To identify gene targets mediating the observed phenotype, we inhibited miR-338 in cortical neurons and performed whole-transcriptome analysis. Pathway analysis revealed that miR-338 modulates a subset of transcripts involved in the axonal guidance machinery by means of direct and indirect gene targeting. Collectively, our results implicate miR-338 as a novel regulator of cortical neuronal maturation by fine-tuning the expression of gene networks governing cortical outgrowth.

  11. Self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal superior longitudinal fasciculus III network.

    Science.gov (United States)

    Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru; Naito, Eiichi

    2017-04-21

    Proprioception is somatic sensation that allows us to sense and recognize position, posture, and their changes in our body parts. It pertains directly to oneself and may contribute to bodily awareness. Likewise, one's face is a symbol of oneself, so that visual self-face recognition directly contributes to the awareness of self as distinct from others. Recently, we showed that right-hemispheric dominant activity in the inferior fronto-parietal cortices, which are connected by the inferior branch of the superior longitudinal fasciculus (SLF III), is associated with proprioceptive illusion (awareness), in concert with sensorimotor activity. Herein, we tested the hypothesis that visual self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal SLF III network. We scanned brain activity using functional magnetic resonance imaging while twenty-two right-handed healthy adults performed two tasks. One was a proprioceptive illusion task, where blindfolded participants experienced a proprioceptive illusion of right hand movement. The other was a visual self-face recognition task, where the participants judged whether an observed face was their own. We examined whether the self-face recognition and the proprioceptive illusion commonly activated the inferior fronto-parietal cortices connected by the SLF III in a right-hemispheric dominant manner. Despite the difference in sensory modality and in the body parts involved in the two tasks, both tasks activated the right inferior fronto-parietal cortices, which are likely connected by the SLF III, in a right-side dominant manner. Here we discuss possible roles for right inferior fronto-parietal activity in bodily awareness and self-awareness. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Trepanation and enlarged parietal foramen on skulls from the Loyalty Islands (Melanesia).

    Science.gov (United States)

    Vasilyev, Sergey V; Sviridov, Alexey A

    2017-06-01

    The goal of this study is a comprehensive examination of openings discovered on two skulls in the collection of skeletal remains from the Loyalty Islands (Melanesia). The skull No. 1524 displayed an evidence of successful trepanation, and the skull No. 7985 revealed openings that were reminiscent of a trepanation, however, we are inclined to believe that in the latter case we are dealing with a rare genetic anomaly - enlarged parietal foramen.

  13. Inhibitory neurons modulate spontaneous signaling in cultured cortical neurons: density-dependent regulation of excitatory neuronal signaling

    International Nuclear Information System (INIS)

    Serra, Michael; Guaraldi, Mary; Shea, Thomas B

    2010-01-01

    Cortical neuronal activity depends on a balance between excitatory and inhibitory influences. Culturing of neurons on multi-electrode arrays (MEAs) has provided insight into the development and maintenance of neuronal networks. Herein, we seeded MEAs with murine embryonic cortical/hippocampal neurons at different densities ( 1000 cells mm −2 ) and monitored resultant spontaneous signaling. Sparsely seeded cultures displayed a large number of bipolar, rapid, high-amplitude individual signals with no apparent temporal regularity. By contrast, densely seeded cultures instead displayed clusters of signals at regular intervals. These patterns were observed even within thinner and thicker areas of the same culture. GABAergic neurons (25% of total neurons in our cultures) mediated the differential signal patterns observed above, since addition of the inhibitory antagonist bicuculline to dense cultures and hippocampal slice cultures induced the signal pattern characteristic of sparse cultures. Sparsely seeded cultures likely lacked sufficient inhibitory neurons to modulate excitatory activity. Differential seeding of MEAs can provide a unique model for analyses of pertubation in the interaction between excitatory and inhibitory function during aging and neuropathological conditions where dysregulation of GABAergic neurons is a significant component

  14. Differential Medial Temporal Lobe and Parietal Cortical Contributions to Real-world Autobiographical Episodic and Autobiographical Semantic Memory.

    Science.gov (United States)

    Brown, Thackery I; Rissman, Jesse; Chow, Tiffany E; Uncapher, Melina R; Wagner, Anthony D

    2018-04-18

    Autobiographical remembering can depend on two forms of memory: episodic (event) memory and autobiographical semantic memory (remembering personally relevant semantic knowledge, independent of recalling a specific experience). There is debate about the degree to which the neural signals that support episodic recollection relate to or build upon autobiographical semantic remembering. Pooling data from two fMRI studies of memory for real-world personal events, we investigated whether medial temporal lobe (MTL) and parietal subregions contribute to autobiographical episodic and semantic remembering. During scanning, participants made memory judgments about photograph sequences depicting past events from their life or from others' lives, and indicated whether memory was based on episodic or semantic knowledge. Results revealed several distinct functional patterns: activity in most MTL subregions was selectively associated with autobiographical episodic memory; the hippocampal tail, superior parietal lobule, and intraparietal sulcus were similarly engaged when memory was based on retrieval of an autobiographical episode or autobiographical semantic knowledge; and angular gyrus demonstrated a graded pattern, with activity declining from autobiographical recollection to autobiographical semantic remembering to correct rejections of novel events. Collectively, our data offer insights into MTL and parietal cortex functional organization, and elucidate circuitry that supports different forms of real-world autobiographical memory.

  15. The parietal memory network activates similarly for true and associative false recognition elicited via the DRM procedure.

    Science.gov (United States)

    McDermott, Kathleen B; Gilmore, Adrian W; Nelson, Steven M; Watson, Jason M; Ojemann, Jeffrey G

    2017-02-01

    Neuroimaging investigations of human memory encoding and retrieval have revealed that multiple regions of parietal cortex contribute to memory. Recently, a sparse network of regions within parietal cortex has been identified using resting state functional connectivity (MRI techniques). The regions within this network exhibit consistent task-related responses during memory formation and retrieval, leading to its being called the parietal memory network (PMN). Among its signature patterns are: deactivation during initial experience with an item (e.g., encoding); activation during subsequent repetitions (e.g., at retrieval); greater activation for successfully retrieved familiar words than novel words (e.g., hits relative to correctly-rejected lures). The question of interest here is whether novel words that are subjectively experienced as having been recently studied would elicit PMN activation similar to that of hits. That is, we compared old items correctly recognized to two types of novel items on a recognition test: those correctly identified as new and those incorrectly labeled as old due to their strong associative relation to the studied words (in the DRM false memory protocol). Subjective oldness plays a strong role in driving activation, as hits and false alarms activated similarly (and greater than correctly-rejected lures). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Repair of large frontal temporal parietal skull defect with digitally reconstructed titanium mesh: a report of 20 cases

    Directory of Open Access Journals (Sweden)

    Gang-ge CHENG

    2013-09-01

    Full Text Available Objective To explore the clinical effect and surgical technique of the repair of large defect involving frontal, temporal, and parietal regions using digitally reconstructed titanium mesh. Methods Twenty patients with large frontal, temporal, and parietal skull defect hospitalized in Air Force General Hospital from November 2006 to May 2012 were involved in this study. In these 20 patients, there were 13 males and 7 females, aged 18-58 years (mean 39 years, and the defect size measured from 7.0cm×9.0cm to 11.5cm×14.0cm (mean 8.5cm×12.0cm. Spiral CT head scan and digital three-dimensional reconstruction of skull were performed in all the patients. The shape and geometric size of skull defect was traced based on the symmetry principle, and then the data were transferred into digital precision lathe to reconstruct a titanium mesh slightly larger (1.0-1.5cm than the skull defect, and the finally the prosthesis was perfected after pruning the border. Cranioplasty was performed 6-12 months after craniotomy using the digitally reconstructed titanium mesh. Results The digitally reconstructed titanium mesh was used in 20 patients with large frontal, temporal, parietal skull defect. The surgical technique was relatively simple, and the surgical duration was shorter than before. The titanium mesh fit to the defect of skull accurately with satisfactory molding effect, good appearance and symmetrical in shape. No related complication was found in all the patients. Conclusion Repair of large frontal, temporal, parietal skull defect with digitally reconstructed titanium mesh is more advantageous than traditional manual reconstruction, and it can improve the life quality of patients.

  17. Channel noise effects on first spike latency of a stochastic Hodgkin-Huxley neuron

    Science.gov (United States)

    Maisel, Brenton; Lindenberg, Katja

    2017-02-01

    While it is widely accepted that information is encoded in neurons via action potentials or spikes, it is far less understood what specific features of spiking contain encoded information. Experimental evidence has suggested that the timing of the first spike may be an energy-efficient coding mechanism that contains more neural information than subsequent spikes. Therefore, the biophysical features of neurons that underlie response latency are of considerable interest. Here we examine the effects of channel noise on the first spike latency of a Hodgkin-Huxley neuron receiving random input from many other neurons. Because the principal feature of a Hodgkin-Huxley neuron is the stochastic opening and closing of channels, the fluctuations in the number of open channels lead to fluctuations in the membrane voltage and modify the timing of the first spike. Our results show that when a neuron has a larger number of channels, (i) the occurrence of the first spike is delayed and (ii) the variation in the first spike timing is greater. We also show that the mean, median, and interquartile range of first spike latency can be accurately predicted from a simple linear regression by knowing only the number of channels in the neuron and the rate at which presynaptic neurons fire, but the standard deviation (i.e., neuronal jitter) cannot be predicted using only this information. We then compare our results to another commonly used stochastic Hodgkin-Huxley model and show that the more commonly used model overstates the first spike latency but can predict the standard deviation of first spike latencies accurately. We end by suggesting a more suitable definition for the neuronal jitter based upon our simulations and comparison of the two models.

  18. The Role of the Parietal Lobe in Visual Extinction Studied with Transcranial Magnetic Stimulation

    Science.gov (United States)

    Battelli, Lorella; Alvarez, George A.; Carlson, Thomas; Pascual-Leone, Alvaro

    2009-01-01

    Interhemispheric competition between homologous areas in the human brain is believed to be involved in a wide variety of human behaviors from motor activity to visual perception and particularly attention. For example, patients with lesions in the posterior parietal cortex are unable to selectively track objects in the contralesional side of…

  19. Estudos sobre thrombose cardiaca e endocardite parietal de origem não valvular On thrombosis of heart and on mural endocarditis of non-valvular origin

    Directory of Open Access Journals (Sweden)

    C. Magarinos Torres

    1928-01-01

    Full Text Available 1.-Since the parietal endocarditis represents a chapter generally neglected, owing to the relative lack of cases, and somewhat confused because there various terms have been applied to a very same morbid condition, it justifies the work which previously we tried to accomplish, of nosographic classification. Taking into account the functional disturbances and the anatomical changes, all cases of parietal endocarditis referred to in the litterature were distributed by the following groups: A-Group-Valvulo-parietal endocarditis. 1st . type-Valvulo-parietal endocarditis per continuum. 2nd. type-Metastatic valvulo-parietal endocarditis. 3rd. type-Valvulo-parietal endocarditis of the mitral stenosis. B-Group-Genuine parietal endocarditis. a with primary lesions in the myocardium. b with primary lesions in the endocardium. 4th type-Fibrous chronic parietal endocarditis (B A Ü M L E R, « endocarditis parietalis simplex». 5th type-Septic acute parietal endocarditis (LESCHKE, «endocarditis parietalis septica». 6th type-Subacute parietal endocarditis (MAGARINOS TORRES, «endocarditis muralis lenta». 2.-Studying a group of 14 cases of fibrous endomyocarditis with formation of thrombi, and carrying together pathological and bacteriological examinations it has been found that some of such cases represent an infectious parietal endocarditis, sometimes post-puerperal, of subacute or slow course, the endocardic vegetations being contamined by pathogenic microörganisms of which the most frequent is the Diplococcus pneumoniae, in most cases of attenuated virulence. Along with the infectious parietal endocarditis, there occur arterial and venous thromboses (abdominal aorta, common illiac and femural arteries and external jugular veins. The case 5,120 is a typical one of this condition which we name subacute parietal endocarditis (endocarditis parietalis s. muralis lenta. 3.-The endocarditis muralis lenta encloses an affection reputed to be of rare occurrence

  20. The brain's dress code: How The Dress allows to decode the neuronal pathway of an optical illusion.

    Science.gov (United States)

    Schlaffke, Lara; Golisch, Anne; Haag, Lauren M; Lenz, Melanie; Heba, Stefanie; Lissek, Silke; Schmidt-Wilcke, Tobias; Eysel, Ulf T; Tegenthoff, Martin

    2015-12-01

    Optical illusions have broadened our understanding of the brain's role in visual perception. A modern day optical illusion emerged from a posted photo of a striped dress, which some perceived as white and gold and others as blue and black. Here we show, using functional magnetic resonance imaging (fMRI), that those who perceive The Dress as white/gold have higher activation in response to the image of The Dress in brain regions critically involved in higher cognition (frontal and parietal brain areas). These results are consistent with theories of top-down modulation and present a neural signature associated with the differences in perceiving The Dress as white/gold or blue/black. Furthermore the results support recent psychophysiological data on this phenomenon and provide a fundamental building block to study interindividual differences in visual processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Single neurons in prefrontal cortex encode abstract rules.

    Science.gov (United States)

    Wallis, J D; Anderson, K C; Miller, E K

    2001-06-21

    The ability to abstract principles or rules from direct experience allows behaviour to extend beyond specific circumstances to general situations. For example, we learn the 'rules' for restaurant dining from specific experiences and can then apply them in new restaurants. The use of such rules is thought to depend on the prefrontal cortex (PFC) because its damage often results in difficulty in following rules. Here we explore its neural basis by recording from single neurons in the PFC of monkeys trained to use two abstract rules. They were required to indicate whether two successively presented pictures were the same or different depending on which rule was currently in effect. The monkeys performed this task with new pictures, thus showing that they had learned two general principles that could be applied to stimuli that they had not yet experienced. The most prevalent neuronal activity observed in the PFC reflected the coding of these abstract rules.

  2. The sixth sense in mammalian forerunners: Variability of the parietal foramen and the evolution of the pineal eye in South African Permo-Triassic eutheriodont therapsids

    Directory of Open Access Journals (Sweden)

    Julien Benoit

    2016-12-01

    Full Text Available In some extant ectotherms, the third eye (or pineal eye is a photosensitive organ located in the parietal foramen on the midline of the skull roof. The pineal eye sends information regarding exposure to sunlight to the pineal complex, a region of the brain devoted to the regulation of body temperature, reproductive synchrony, and biological rhythms. The parietal foramen is absent in mammals but present in most of the closest extinct relatives of mammals, the Therapsida. A broad ranging survey of the occurrence and size of the parietal foramen in different South African therapsid taxa demonstrates that through time the parietal foramen tends, in a convergent manner, to become smaller and is absent more frequently in eutherocephalians (Akidnognathiidae, Whaitsiidae, and Baurioidea and non-mammaliaform eucynodonts. Among the latter, the Probainognathia, the lineage leading to mammaliaforms, are the only one to achieve the complete loss of the parietal foramen. These results suggest a gradual and convergent loss of the photoreceptive function of the pineal organ and degeneration of the third eye. Given the role of the pineal organ to achieve fine-tuned thermoregulation in ectotherms (i.e., “cold-blooded” vertebrates, the gradual loss of the parietal foramen through time in the Karoo stratigraphic succession may be correlated with the transition from a mesothermic metabolism to a high metabolic rate (endothermy in mammalian ancestry. The appearance in the eye of melanopsin-containing retinal ganglion cells replacing the photoreceptive role of the pineal eye could also have accompanied its loss.

  3. Time Resolution Dependence of Information Measures for Spiking Neurons: Scaling and Universality

    Directory of Open Access Journals (Sweden)

    James P Crutchfield

    2015-08-01

    Full Text Available The mutual information between stimulus and spike-train response is commonly used to monitor neural coding efficiency, but neuronal computation broadly conceived requires more refined and targeted information measures of input-output joint processes. A first step towards that larger goal is todevelop information measures for individual output processes, including information generation (entropy rate, stored information (statisticalcomplexity, predictable information (excess entropy, and active information accumulation (bound information rate. We calculate these for spike trains generated by a variety of noise-driven integrate-and-fire neurons as a function of time resolution and for alternating renewal processes. We show that their time-resolution dependence reveals coarse-grained structural properties of interspike interval statistics; e.g., $tau$-entropy rates that diverge less quickly than the firing rate indicate interspike interval correlations. We also find evidence that the excess entropy and regularized statistical complexity of different types of integrate-and-fire neurons are universal in the continuous-time limit in the sense that they do not depend on mechanism details. This suggests a surprising simplicity in the spike trains generated by these model neurons. Interestingly, neurons with gamma-distributed ISIs and neurons whose spike trains are alternating renewal processes do not fall into the same universality class. These results lead to two conclusions. First, the dependence of information measures on time resolution reveals mechanistic details about spike train generation. Second, information measures can be used as model selection tools for analyzing spike train processes.

  4. Neurons from the adult human dentate nucleus: neural networks in the neuron classification.

    Science.gov (United States)

    Grbatinić, Ivan; Marić, Dušica L; Milošević, Nebojša T

    2015-04-07

    Topological (central vs. border neuron type) and morphological classification of adult human dentate nucleus neurons according to their quantified histomorphological properties using neural networks on real and virtual neuron samples. In the real sample 53.1% and 14.1% of central and border neurons, respectively, are classified correctly with total of 32.8% of misclassified neurons. The most important result present 62.2% of misclassified neurons in border neurons group which is even greater than number of correctly classified neurons (37.8%) in that group, showing obvious failure of network to classify neurons correctly based on computational parameters used in our study. On the virtual sample 97.3% of misclassified neurons in border neurons group which is much greater than number of correctly classified neurons (2.7%) in that group, again confirms obvious failure of network to classify neurons correctly. Statistical analysis shows that there is no statistically significant difference in between central and border neurons for each measured parameter (p>0.05). Total of 96.74% neurons are morphologically classified correctly by neural networks and each one belongs to one of the four histomorphological types: (a) neurons with small soma and short dendrites, (b) neurons with small soma and long dendrites, (c) neuron with large soma and short dendrites, (d) neurons with large soma and long dendrites. Statistical analysis supports these results (pneurons can be classified in four neuron types according to their quantitative histomorphological properties. These neuron types consist of two neuron sets, small and large ones with respect to their perykarions with subtypes differing in dendrite length i.e. neurons with short vs. long dendrites. Besides confirmation of neuron classification on small and large ones, already shown in literature, we found two new subtypes i.e. neurons with small soma and long dendrites and with large soma and short dendrites. These neurons are

  5. It takes two-coincidence coding within the dual olfactory pathway of the honeybee.

    Science.gov (United States)

    Brill, Martin F; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).

  6. Neuronal Migration and Neuronal Migration Disorder in Cerebral Cortex

    OpenAIRE

    SUN, Xue-Zhi; TAKAHASHI, Sentaro; GUI, Chun; ZHANG, Rui; KOGA, Kazuo; NOUYE, Minoru; MURATA, Yoshiharu

    2002-01-01

    Neuronal cell migration is one of the most significant features during cortical development. After final mitosis, neurons migrate from the ventricular zone into the cortical plate, and then establish neuronal lamina and settle onto the outermost layer, forming an "inside-out" gradient of maturation. Neuronal migration is guided by radial glial fibers and also needs proper receptors, ligands, and other unknown extracellular factors, requests local signaling (e.g. some emitted by the Cajal-Retz...

  7. Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting.

    Science.gov (United States)

    Morozova, Ekaterina O; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C; Kuznetsov, Alexey

    2016-10-01

    In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca 2+ ) concentration, thus reducing the Ca 2+ -dependent potassium (K + ) current. In this way, the GABA-mediated hyperpolarization replaces Ca 2+ -dependent K + current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. Copyright © 2016 the American Physiological Society.

  8. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  9. The effects of spinal cord stimulation on the neuronal activity of the brain in patients with chronic neuropathic pain

    International Nuclear Information System (INIS)

    Kunitake, Ayumi; Hidaka, Nami; Katsuki, Hiroshi; Iwasaki, Tatsuma; Nagamachi, Shigeki; Takasaki, Mayumi; Uno, Takeshi

    2005-01-01

    The effects of spinal cord stimulation (SCS) on the neuronal activity of the brain were examined by single photon emission computed tomography (SPECT) in patients with chronic neuropathic pain. Regional cerebral blood flow (CBF) in each cortical area and the thalamus decreased in several patients without SCS. Patients with central pain due to thalamic hemorrhage showed a decrease in rCBF in the thalamus contralateral to the painful side. During the stimulation period in SCS, parietal rCBF decreased on the side contralateral to the pain. In contrast, rCBF increased in the bilateral frontal and anterior cingulate cortex and in the contralateral temporal lobe in half of the patients in whom SCS was effective in relieving pain. The decrease in thalamic rCBF in two patients with central pain was improved by the SCS therapy; however, pain was relieved in only one of them. In the majority of patients in whom SCS was not effective, there was no change in rCBF in various cortical areas, even after SCS. These results suggest that, in patients with chronic neuropathic pain, SCS modulates the neuronal activities of several brain areas that are believed to be associated with pain processing. (author)

  10. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells.

    NARCIS (Netherlands)

    Dijkman, H.B.P.M.; Weening, J.J.; Smeets, B.; Verrijp, K.; Kuppevelt, A.H.M.S.M. van; Assmann, K.K.; Steenbergen, E.; Wetzels, J.F.M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  11. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells

    NARCIS (Netherlands)

    Dijkman, H. B. P. M.; Weening, J. J.; Smeets, B.; Verrijp, K. C. N.; van Kuppevelt, T. H.; Assmann, K. K. J. M.; Steenbergen, E. J.; Wetzels, J. F. M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  12. 18F-FDG PET imaging on the neuronal network of Parkinson's disease patients following deep brain stimulation of bilateral subthalamic nucleus

    International Nuclear Information System (INIS)

    Zuo Chuantao; Huang Zhemin; Zhao Jun; Guan Yihui; Lin Xiangtong; Li Dianyou; Sun Bomin

    2007-01-01

    Objective: There is evidence that the cause and progression of Parkinson's disease (PD) may be attributed to subthalamic nucleus (STN) dysfunction and that external electrical stimulation of the STN may improve the underlying neuronal network. This study aimed at using 18 F-FDG PET to monitor the functional status of the neuronal network of advanced PD patients following deep brain stimulation (DBS) of bilateral STN. Methods: Five PD patients in advanced stage, rated according to unified PD rat- ing scale (UPDRS) motion score, underwent bilateral STN DBS implantation. Six months after the implantation, each patient was studied with 18 F-FDG PET scans under stimulation turned 'on' and 'off' conditions. Statistical parametric mapping 2 (SPM2) was applied for data analyses. Results: Bilateral STN DBS reduced glucose utilization in lentiform nucleus (globus pallidus), bilateral thalamus, cerebellum, as well as the distal parietal cortex. However, glucose utilization in midbrain and pons was increased. The PD-related pattern (PDRP) scores were significantly different during the 'on' status (2.12 ± 15.24) and 'off' status (4.93 ± 13.01), which corresponded to the clinical improvement of PD symptoms as PDRP scores decreased. Conclusion: 18 F-FDG PET may be useful in monitoring and mapping the metabolism of the neuronal network during bilateral STN DBS, thus supporting its therapeutic impact on PD patients. (authors)

  13. Subset specification of central serotonergic neurons

    Directory of Open Access Journals (Sweden)

    Marten P Smidt

    2013-10-01

    Full Text Available The last decade the serotonin (5-hydroxytryptamine; 5-HT system has received enormous attention due to its role in regulation of behavior, exemplified by the discovery that increased 5-HT tone in the central nervous system is able to alleviate affective disorders. Here, we review the developmental processes, with a special emphasis on subset specification, leading to the formation of the 5-HT system in the brain. Molecular classification of 5-HT neuronal groups leads to the definition of two independent rostral groups positioned in rhombomere 1 and 2/3 and a caudal group in rhombomere 5-8. In addition, more disperse refinement of these subsets is present as shown by the selective expression of the 5-HT1A autoreceptor, indicating functional diversity between 5-HT subsets. The functional significance of the molecular coding differences is not well known and the molecular basis of described specific connectivity patterns remain to be elucidated. Recent developments in genetic lineage tracing models will provide these data and form a major step-up towards the full understanding of the importance of developmental programming and function of 5-HT neuronal subsets.

  14. Neuronal Adaptations during Amygdala-Dependent Learning and Memory : Neuronale aanpassingen tijdens Amygdala-afhankelijk leren en geheugen

    NARCIS (Netherlands)

    B.S. Hosseini (Behdokht)

    2016-01-01

    textabstractThe amygdala, a structure deep in the temporal lobe of the brain, is an essential region for emotional and fearful processing. Neuronal coding in the lateral nucleus of the amygdala (LA) endows the brain with the ability to acquire enduring aversive associations, physically represented

  15. Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface

    Directory of Open Access Journals (Sweden)

    A. Novellino

    2007-01-01

    Full Text Available One of the key properties of intelligent behaviors is the capability to learn and adapt to changing environmental conditions. These features are the result of the continuous and intense interaction of the brain with the external world, mediated by the body. For this reason x201C;embodiment” represents an innovative and very suitable experimental paradigm when studying the neural processes underlying learning new behaviors and adapting to unpredicted situations. To this purpose, we developed a novel bidirectional neural interface. We interconnected in vitro neurons, extracted from rat embryos and plated on a microelectrode array (MEA, to external devices, thus allowing real-time closed-loop interaction. The novelty of this experimental approach entails the necessity to explore different computational schemes and experimental hypotheses. In this paper, we present an open, scalable architecture, which allows fast prototyping of different modules and where coding and decoding schemes and different experimental configurations can be tested. This hybrid system can be used for studying the computational properties and information coding in biological neuronal networks with far-reaching implications for the future development of advanced neuroprostheses.

  16. The Effects of Maternal Hyperthyroidism on Histologic Changes in Parietal Lobe in Rat Embryos

    Directory of Open Access Journals (Sweden)

    Fatemeh Mirsafi

    2017-05-01

    Full Text Available Background Maternal hyperthyroidism causes developmental defects on the nervous system of fetuses. Objectives The present study was designed to study the effects of maternal hyperthyroidism on the development of the parietal lobe in the brain of rat embryos. Methods In this experimental study, thirty Sprague-Dawley rats were randomly divided into three groups. The control group received no injections, the sham group received intraperitoneal injections of distilled water solution containing salt and polysorbate (solvent of levothyroxine, and the experimental group received once-daily, intraperitoneal injections of 0.5 mg/kg levothyroxine for a 10-day period to become hyperthyroid rats. The hyperthyroid rats were then mated, and all pregnant rats were killed on the 20th day of gestation. Fetuses were removed, fixed, and processed for histological procedures. The fetuses were sagitally sectioned at 5 µ thickness and stained with hematoxylin-eosin (H and E technique. The sections were examined using a light microscope and Motic software. Results The results showed no significant difference in the studied variables between the sham and control groups. A significantly increase in body weight and a significant decrease in crown-rump length of embryos was observed in the experimental group when compared to the control group. The mean total thickness of the parietal cortex, ventricular layer, and intermediate layer of embryos showed a significant decrease in the experimental group compared to the control and sham groups. The mean number of cells also showed a significant decrease in the intermediate and ventricular layers in the experimental group compared to the control and sham groups. Conclusions This study showed that maternal hyperthyroidism leads to a reduction in development of the parietal cortex in embryos. Maternal hyperthyroidism can disturb the growth and development of embryos.

  17. Which spike train distance is most suitable for distinguishing rate and temporal coding?

    Science.gov (United States)

    Satuvuori, Eero; Kreuz, Thomas

    2018-04-01

    It is commonly assumed in neuronal coding that repeated presentations of a stimulus to a coding neuron elicit similar responses. One common way to assess similarity are spike train distances. These can be divided into spike-resolved, such as the Victor-Purpura and the van Rossum distance, and time-resolved, e.g. the ISI-, the SPIKE- and the RI-SPIKE-distance. We use independent steady-rate Poisson processes as surrogates for spike trains with fixed rate and no timing information to address two basic questions: How does the sensitivity of the different spike train distances to temporal coding depend on the rates of the two processes and how do the distances deal with very low rates? Spike-resolved distances always contain rate information even for parameters indicating time coding. This is an issue for reasonably high rates but beneficial for very low rates. In contrast, the operational range for detecting time coding of time-resolved distances is superior at normal rates, but these measures produce artefacts at very low rates. The RI-SPIKE-distance is the only measure that is sensitive to timing information only. While our results on rate-dependent expectation values for the spike-resolved distances agree with Chicharro et al. (2011), we here go one step further and specifically investigate applicability for very low rates. The most appropriate measure depends on the rates of the data being analysed. Accordingly, we summarize our results in one table that allows an easy selection of the preferred measure for any kind of data. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Towards a general theory of neural computation based on prediction by single neurons.

    Directory of Open Access Journals (Sweden)

    Christopher D Fiorillo

    Full Text Available Although there has been tremendous progress in understanding the mechanics of the nervous system, there has not been a general theory of its computational function. Here I present a theory that relates the established biophysical properties of single generic neurons to principles of Bayesian probability theory, reinforcement learning and efficient coding. I suggest that this theory addresses the general computational problem facing the nervous system. Each neuron is proposed to mirror the function of the whole system in learning to predict aspects of the world related to future reward. According to the model, a typical neuron receives current information about the state of the world from a subset of its excitatory synaptic inputs, and prior information from its other inputs. Prior information would be contributed by synaptic inputs representing distinct regions of space, and by different types of non-synaptic, voltage-regulated channels representing distinct periods of the past. The neuron's membrane voltage is proposed to signal the difference between current and prior information ("prediction error" or "surprise". A neuron would apply a Hebbian plasticity rule to select those excitatory inputs that are the most closely correlated with reward but are the least predictable, since unpredictable inputs provide the neuron with the most "new" information about future reward. To minimize the error in its predictions and to respond only when excitation is "new and surprising," the neuron selects amongst its prior information sources through an anti-Hebbian rule. The unique inputs of a mature neuron would therefore result from learning about spatial and temporal patterns in its local environment, and by extension, the external world. Thus the theory describes how the structure of the mature nervous system could reflect the structure of the external world, and how the complexity and intelligence of the system might develop from a population of

  19. Brain cells in the avian 'prefrontal cortex' code for features of slot-machine-like gambling.

    Directory of Open Access Journals (Sweden)

    Damian Scarf

    2011-01-01

    Full Text Available Slot machines are the most common and addictive form of gambling. In the current study, we recorded from single neurons in the 'prefrontal cortex' of pigeons while they played a slot-machine-like task. We identified four categories of neurons that coded for different aspects of our slot-machine-like task. Reward-Proximity neurons showed a linear increase in activity as the opportunity for a reward drew near. I-Won neurons fired only when the fourth stimulus of a winning (four-of-a-kind combination was displayed. I-Lost neurons changed their firing rate at the presentation of the first nonidentical stimulus, that is, when it was apparent that no reward was forthcoming. Finally, Near-Miss neurons also changed their activity the moment it was recognized that a reward was no longer available, but more importantly, the activity level was related to whether the trial contained one, two, or three identical stimuli prior to the display of the nonidentical stimulus. These findings not only add to recent neurophysiological research employing simulated gambling paradigms, but also add to research addressing the functional correspondence between the avian NCL and primate PFC.

  20. Distinct Developmental Origins Manifest in the Specialized Encoding of Movement by Adult Neurons of the External Globus Pallidus

    Science.gov (United States)

    Dodson, Paul D.; Larvin, Joseph T.; Duffell, James M.; Garas, Farid N.; Doig, Natalie M.; Kessaris, Nicoletta; Duguid, Ian C.; Bogacz, Rafal; Butt, Simon J.B.; Magill, Peter J.

    2015-01-01

    Summary Transcriptional codes initiated during brain development are ultimately realized in adulthood as distinct cell types performing specialized roles in behavior. Focusing on the mouse external globus pallidus (GPe), we demonstrate that the potential contributions of two GABAergic GPe cell types to voluntary action are fated from early life to be distinct. Prototypic GPe neurons derive from the medial ganglionic eminence of the embryonic subpallium and express the transcription factor Nkx2-1. These neurons fire at high rates during alert rest, and encode movements through heterogeneous firing rate changes, with many neurons decreasing their activity. In contrast, arkypallidal GPe neurons originate from lateral/caudal ganglionic eminences, express the transcription factor FoxP2, fire at low rates during rest, and encode movements with robust increases in firing. We conclude that developmental diversity positions prototypic and arkypallidal neurons to fulfil distinct roles in behavior via their disparate regulation of GABA release onto different basal ganglia targets. PMID:25843402