Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel; Allkim, T.P.; van Arem, Bart
2010-01-01
Multi objective optimization of externalities of traffic is performed solving a network design problem in which Dynamic Traffic Management measures are used. The resulting Pareto optimal set is determined by employing the SPEA2+ evolutionary algorithm.
Jiang, Shouyong; Yang, Shengxiang
2016-02-01
The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.
Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan
2018-03-01
In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.
Saborido, Rubén; Ruiz, Ana B; Luque, Mariano
2017-01-01
In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.
Strength Pareto Evolutionary Algorithm using Self-Organizing Data Analysis Techniques
Directory of Open Access Journals (Sweden)
Ionut Balan
2015-03-01
Full Text Available Multiobjective optimization is widely used in problems solving from a variety of areas. To solve such problems there was developed a set of algorithms, most of them based on evolutionary techniques. One of the algorithms from this class, which gives quite good results is SPEA2, method which is the basis of the proposed algorithm in this paper. Results from this paper are obtained by running these two algorithms on a flow-shop problem.
International Nuclear Information System (INIS)
Gharari, Rahman; Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi
2016-01-01
In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor
Energy Technology Data Exchange (ETDEWEB)
Gharari, Rahman [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi [Nuclear Engineering Dept, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)
2016-10-15
In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor.
Improving Polyp Detection Algorithms for CT Colonography: Pareto Front Approach.
Huang, Adam; Li, Jiang; Summers, Ronald M; Petrick, Nicholas; Hara, Amy K
2010-03-21
We investigated a Pareto front approach to improving polyp detection algorithms for CT colonography (CTC). A dataset of 56 CTC colon surfaces with 87 proven positive detections of 53 polyps sized 4 to 60 mm was used to evaluate the performance of a one-step and a two-step curvature-based region growing algorithm. The algorithmic performance was statistically evaluated and compared based on the Pareto optimal solutions from 20 experiments by evolutionary algorithms. The false positive rate was lower (pPareto optimization process can effectively help in fine-tuning and redesigning polyp detection algorithms.
PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning
International Nuclear Information System (INIS)
Fiege, Jason; McCurdy, Boyd; Potrebko, Peter; Champion, Heather; Cull, Andrew
2011-01-01
Purpose: In radiation therapy treatment planning, the clinical objectives of uniform high dose to the planning target volume (PTV) and low dose to the organs-at-risk (OARs) are invariably in conflict, often requiring compromises to be made between them when selecting the best treatment plan for a particular patient. In this work, the authors introduce Pareto-Aware Radiotherapy Evolutionary Treatment Optimization (pareto), a multiobjective optimization tool to solve for beam angles and fluence patterns in intensity-modulated radiation therapy (IMRT) treatment planning. Methods: pareto is built around a powerful multiobjective genetic algorithm (GA), which allows us to treat the problem of IMRT treatment plan optimization as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. We have employed a simple parameterized beam fluence representation with a realistic dose calculation approach, incorporating patient scatter effects, to demonstrate feasibility of the proposed approach on two phantoms. The first phantom is a simple cylindrical phantom containing a target surrounded by three OARs, while the second phantom is more complex and represents a paraspinal patient. Results: pareto results in a large database of Pareto nondominated solutions that represent the necessary trade-offs between objectives. The solution quality was examined for several PTV and OAR fitness functions. The combination of a conformity-based PTV fitness function and a dose-volume histogram (DVH) or equivalent uniform dose (EUD) -based fitness function for the OAR produced relatively uniform and conformal PTV doses, with well-spaced beams. A penalty function added to the fitness functions eliminates hotspots. Comparison of resulting DVHs to those from treatment plans developed with a single-objective fluence optimizer (from a commercial treatment planning system) showed good correlation. Results also indicated that pareto shows
PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning.
Fiege, Jason; McCurdy, Boyd; Potrebko, Peter; Champion, Heather; Cull, Andrew
2011-09-01
In radiation therapy treatment planning, the clinical objectives of uniform high dose to the planning target volume (PTV) and low dose to the organs-at-risk (OARs) are invariably in conflict, often requiring compromises to be made between them when selecting the best treatment plan for a particular patient. In this work, the authors introduce Pareto-Aware Radiotherapy Evolutionary Treatment Optimization (pareto), a multiobjective optimization tool to solve for beam angles and fluence patterns in intensity-modulated radiation therapy (IMRT) treatment planning. pareto is built around a powerful multiobjective genetic algorithm (GA), which allows us to treat the problem of IMRT treatment plan optimization as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. We have employed a simple parameterized beam fluence representation with a realistic dose calculation approach, incorporating patient scatter effects, to demonstrate feasibility of the proposed approach on two phantoms. The first phantom is a simple cylindrical phantom containing a target surrounded by three OARs, while the second phantom is more complex and represents a paraspinal patient. pareto results in a large database of Pareto nondominated solutions that represent the necessary trade-offs between objectives. The solution quality was examined for several PTV and OAR fitness functions. The combination of a conformity-based PTV fitness function and a dose-volume histogram (DVH) or equivalent uniform dose (EUD) -based fitness function for the OAR produced relatively uniform and conformal PTV doses, with well-spaced beams. A penalty function added to the fitness functions eliminates hotspots. Comparison of resulting DVHs to those from treatment plans developed with a single-objective fluence optimizer (from a commercial treatment planning system) showed good correlation. Results also indicated that pareto shows promise in optimizing the number
Fernández Caballero, Juan Carlos; Martínez, Francisco José; Hervás, César; Gutiérrez, Pedro Antonio
2010-05-01
This paper proposes a multiclassification algorithm using multilayer perceptron neural network models. It tries to boost two conflicting main objectives of multiclassifiers: a high correct classification rate level and a high classification rate for each class. This last objective is not usually optimized in classification, but is considered here given the need to obtain high precision in each class in real problems. To solve this machine learning problem, we use a Pareto-based multiobjective optimization methodology based on a memetic evolutionary algorithm. We consider a memetic Pareto evolutionary approach based on the NSGA2 evolutionary algorithm (MPENSGA2). Once the Pareto front is built, two strategies or automatic individual selection are used: the best model in accuracy and the best model in sensitivity (extremes in the Pareto front). These methodologies are applied to solve 17 classification benchmark problems obtained from the University of California at Irvine (UCI) repository and one complex real classification problem. The models obtained show high accuracy and a high classification rate for each class.
Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells.
Tendler, Avichai; Mayo, Avraham; Alon, Uri
2015-03-07
Organisms that need to perform multiple tasks face a fundamental tradeoff: no design can be optimal at all tasks at once. Recent theory based on Pareto optimality showed that such tradeoffs lead to a highly defined range of phenotypes, which lie in low-dimensional polyhedra in the space of traits. The vertices of these polyhedra are called archetypes- the phenotypes that are optimal at a single task. To rigorously test this theory requires measurements of thousands of species over hundreds of millions of years of evolution. Ammonoid fossil shells provide an excellent model system for this purpose. Ammonoids have a well-defined geometry that can be parameterized using three dimensionless features of their logarithmic-spiral-shaped shells. Their evolutionary history includes repeated mass extinctions. We find that ammonoids fill out a pyramid in morphospace, suggesting five specific tasks - one for each vertex of the pyramid. After mass extinctions, surviving species evolve to refill essentially the same pyramid, suggesting that the tasks are unchanging. We infer putative tasks for each archetype, related to economy of shell material, rapid shell growth, hydrodynamics and compactness. These results support Pareto optimality theory as an approach to study evolutionary tradeoffs, and demonstrate how this approach can be used to infer the putative tasks that may shape the natural selection of phenotypes.
Abdul Rani, Khairul Najmy; Abdulmalek, Mohamedfareq; A Rahim, Hasliza; Siew Chin, Neoh; Abd Wahab, Alawiyah
2017-04-20
This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele's (ZDT's) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.
DEFF Research Database (Denmark)
Mozaffari, Ahmad; Gorji-Bandpy, Mofid; Samadian, Pendar
2013-01-01
Optimizing and controlling of complex engineering systems is a phenomenon that has attracted an incremental interest of numerous scientists. Until now, a variety of intelligent optimizing and controlling techniques such as neural networks, fuzzy logic, game theory, support vector machines...... and stochastic algorithms were proposed to facilitate controlling of the engineering systems. In this study, an extended version of mutable smart bee algorithm (MSBA) called Pareto based mutable smart bee (PBMSB) is inspired to cope with multi-objective problems. Besides, a set of benchmark problems and four...... well-known Pareto based optimizing algorithms i.e. multi-objective bee algorithm (MOBA), multi-objective particle swarm optimization (MOPSO) algorithm, non-dominated sorting genetic algorithm (NSGA-II), and strength Pareto evolutionary algorithm (SPEA 2) are utilized to confirm the acceptable...
Computing gap free Pareto front approximations with stochastic search algorithms.
Schütze, Oliver; Laumanns, Marco; Tantar, Emilia; Coello, Carlos A Coello; Talbi, El-Ghazali
2010-01-01
Recently, a convergence proof of stochastic search algorithms toward finite size Pareto set approximations of continuous multi-objective optimization problems has been given. The focus was on obtaining a finite approximation that captures the entire solution set in some suitable sense, which was defined by the concept of epsilon-dominance. Though bounds on the quality of the limit approximation-which are entirely determined by the archiving strategy and the value of epsilon-have been obtained, the strategies do not guarantee to obtain a gap free approximation of the Pareto front. That is, such approximations A can reveal gaps in the sense that points f in the Pareto front can exist such that the distance of f to any image point F(a), a epsilon A, is "large." Since such gap free approximations are desirable in certain applications, and the related archiving strategies can be advantageous when memetic strategies are included in the search process, we are aiming in this work for such methods. We present two novel strategies that accomplish this task in the probabilistic sense and under mild assumptions on the stochastic search algorithm. In addition to the convergence proofs, we give some numerical results to visualize the behavior of the different archiving strategies. Finally, we demonstrate the potential for a possible hybridization of a given stochastic search algorithm with a particular local search strategy-multi-objective continuation methods-by showing that the concept of epsilon-dominance can be integrated into this approach in a suitable way.
Introduction to Evolutionary Algorithms
Yu, Xinjie
2010-01-01
Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm opti
An Evolutionary Efficiency Alternative to the Notion of Pareto Efficiency
I.P. van Staveren (Irene)
2012-01-01
textabstractThe paper argues that the notion of Pareto efficiency builds on two normative assumptions: the more general consequentialist norm of any efficiency criterion, and the strong no-harm principle of the prohibition of any redistribution during the economic process that hurts at least one
A New DG Multiobjective Optimization Method Based on an Improved Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Wanxing Sheng
2013-01-01
Full Text Available A distribution generation (DG multiobjective optimization method based on an improved Pareto evolutionary algorithm is investigated in this paper. The improved Pareto evolutionary algorithm, which introduces a penalty factor in the objective function constraints, uses an adaptive crossover and a mutation operator in the evolutionary process and combines a simulated annealing iterative process. The proposed algorithm is utilized to the optimize DG injection models to maximize DG utilization while minimizing system loss and environmental pollution. A revised IEEE 33-bus system with multiple DG units was used to test the multiobjective optimization algorithm in a distribution power system. The proposed algorithm was implemented and compared with the strength Pareto evolutionary algorithm 2 (SPEA2, a particle swarm optimization (PSO algorithm, and nondominated sorting genetic algorithm II (NGSA-II. The comparison of the results demonstrates the validity and practicality of utilizing DG units in terms of economic dispatch and optimal operation in a distribution power system.
Directory of Open Access Journals (Sweden)
J. L. Guardado
2014-01-01
Full Text Available Network reconfiguration is an alternative to reduce power losses and optimize the operation of power distribution systems. In this paper, an encoding scheme for evolutionary algorithms is proposed in order to search efficiently for the Pareto-optimal solutions during the reconfiguration of power distribution systems considering multiobjective optimization. The encoding scheme is based on the edge window decoder (EWD technique, which was embedded in the Strength Pareto Evolutionary Algorithm 2 (SPEA2 and the Nondominated Sorting Genetic Algorithm II (NSGA-II. The effectiveness of the encoding scheme was proved by solving a test problem for which the true Pareto-optimal solutions are known in advance. In order to prove the practicability of the encoding scheme, a real distribution system was used to find the near Pareto-optimal solutions for different objective functions to optimize.
Guardado, J L; Rivas-Davalos, F; Torres, J; Maximov, S; Melgoza, E
2014-01-01
Network reconfiguration is an alternative to reduce power losses and optimize the operation of power distribution systems. In this paper, an encoding scheme for evolutionary algorithms is proposed in order to search efficiently for the Pareto-optimal solutions during the reconfiguration of power distribution systems considering multiobjective optimization. The encoding scheme is based on the edge window decoder (EWD) technique, which was embedded in the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and the Nondominated Sorting Genetic Algorithm II (NSGA-II). The effectiveness of the encoding scheme was proved by solving a test problem for which the true Pareto-optimal solutions are known in advance. In order to prove the practicability of the encoding scheme, a real distribution system was used to find the near Pareto-optimal solutions for different objective functions to optimize.
Safety management in NPPs using evolutionary algorithm
International Nuclear Information System (INIS)
Mishra, A.; Patwardhan, A.; Chauhan, A.; Verma, A.K.
2005-01-01
Technical specification and maintenance (TS and M) activities in a plant are associated with controlling risk or with satisfying requirements, and are candidates to be evaluated for their resource effectiveness in risk-informed applications. The general goal of safety management in Nuclear Power Plants (NPPs) is to make requirements and activities more risk effective and less costly. Accordingly, the risk-based analysis of Technical Specification (RBTS) is being considered in evaluating current TS. The multi objective optimization of the TS and M requirements of a NPP based on risk and cost, gives the pareto-optimal solutions, from which the utility can pick its decision variables suiting its interest. In this paper a multi objective Evolutionary Algorithm technique has been used to make a trade-off between risk and cost both at the system level and at the plant level for Loss of coolant Accident (LOCA) and Main Steam Line Break (MSLB) as initiating events. (authors)
Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms
Lopez, Nicolas
This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.
Diversity-Guided Evolutionary Algorithms
DEFF Research Database (Denmark)
Ursem, Rasmus Kjær
2002-01-01
Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few...... algorithms have used a measure to guide the search. The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results...
Industrial Applications of Evolutionary Algorithms
Sanchez, Ernesto; Tonda, Alberto
2012-01-01
This book is intended as a reference both for experienced users of evolutionary algorithms and for researchers that are beginning to approach these fascinating optimization techniques. Experienced users will find interesting details of real-world problems, and advice on solving issues related to fitness computation, modeling and setting appropriate parameters to reach optimal solutions. Beginners will find a thorough introduction to evolutionary computation, and a complete presentation of all evolutionary algorithms exploited to solve different problems. The book could fill the gap between the
Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao
2016-01-01
Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.
Directory of Open Access Journals (Sweden)
Jarosław Rudy
2015-01-01
Full Text Available In this paper the job shop scheduling problem (JSP with minimizing two criteria simultaneously is considered. JSP is frequently used model in real world applications of combinatorial optimization. Multi-objective job shop problems (MOJSP were rarely studied. We implement and compare two multi-agent nature-based methods, namely ant colony optimization (ACO and genetic algorithm (GA for MOJSP. Both of those methods employ certain technique, taken from the multi-criteria decision analysis in order to establish ranking of solutions. ACO and GA differ in a method of keeping information about previously found solutions and their quality, which affects the course of the search. In result, new features of Pareto approximations provided by said algorithms are observed: aside from the slight superiority of the ACO method the Pareto frontier approximations provided by both methods are disjoint sets. Thus, both methods can be used to search mutually exclusive areas of the Pareto frontier.
Othman, Muhammad Murtadha; Abd Rahman, Nurulazmi; Musirin, Ismail; Fotuhi-Firuzabad, Mahmud; Rajabi-Ghahnavieh, Abbas
2015-01-01
This paper introduces a novel multiobjective approach for capacity benefit margin (CBM) assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE) to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP) technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system. The selection of CBM at the Pareto optimal front is proposed to be performed by referring to a heuristic ranking index that takes into account system loss of load expectation (LOLE) in various conditions. Eventually, the power transfer based available transfer capability (ATC) is determined by considering the firm and nonfirm transfers of CBM. A comprehensive set of numerical studies are conducted on the modified IEEE-RTS79 and the performance of the proposed method is numerically investigated in detail. The main advantage of the proposed technique is in terms of flexibility offered to an independent system operator in selecting an appropriate solution of CBM simultaneously for all areas.
Directory of Open Access Journals (Sweden)
Muhammad Murtadha Othman
2015-01-01
Full Text Available This paper introduces a novel multiobjective approach for capacity benefit margin (CBM assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system. The selection of CBM at the Pareto optimal front is proposed to be performed by referring to a heuristic ranking index that takes into account system loss of load expectation (LOLE in various conditions. Eventually, the power transfer based available transfer capability (ATC is determined by considering the firm and nonfirm transfers of CBM. A comprehensive set of numerical studies are conducted on the modified IEEE-RTS79 and the performance of the proposed method is numerically investigated in detail. The main advantage of the proposed technique is in terms of flexibility offered to an independent system operator in selecting an appropriate solution of CBM simultaneously for all areas.
A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...
Directory of Open Access Journals (Sweden)
Ziaul Huque
2012-01-01
Full Text Available A Computational Fluid Dynamics (CFD and response surface-based multiobjective design optimization were performed for six different 2D airfoil profiles, and the Pareto optimal front of each airfoil is presented. FLUENT, which is a commercial CFD simulation code, was used to determine the relevant aerodynamic loads. The Lift Coefficient (CL and Drag Coefficient (CD data at a range of 0° to 12° angles of attack (α and at three different Reynolds numbers (Re=68,459, 479, 210, and 958, 422 for all the six airfoils were obtained. Realizable k-ε turbulence model with a second-order upwind solution method was used in the simulations. The standard least square method was used to generate response surface by the statistical code JMP. Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II was used to determine the Pareto optimal set based on the response surfaces. Each Pareto optimal solution represents a different compromise between design objectives. This gives the designer a choice to select a design compromise that best suits the requirements from a set of optimal solutions. The Pareto solution set is presented in the form of a Pareto optimal front.
A Pareto Algorithm for Efficient De Novo Design of Multi-functional Molecules.
Daeyaert, Frits; Deem, Micheal W
2017-01-01
We have introduced a Pareto sorting algorithm into Synopsis, a de novo design program that generates synthesizable molecules with desirable properties. We give a detailed description of the algorithm and illustrate its working in 2 different de novo design settings: the design of putative dual and selective FGFR and VEGFR inhibitors, and the successful design of organic structure determining agents (OSDAs) for the synthesis of zeolites. We show that the introduction of Pareto sorting not only enables the simultaneous optimization of multiple properties but also greatly improves the performance of the algorithm to generate molecules with hard-to-meet constraints. This in turn allows us to suggest approaches to address the problem of false positive hits in de novo structure based drug design by introducing structural and physicochemical constraints in the designed molecules, and by forcing essential interactions between these molecules and their target receptor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pareto Principle in Datamining: an Above-Average Fencing Algorithm
Directory of Open Access Journals (Sweden)
K. Macek
2008-01-01
Full Text Available This paper formulates a new datamining problem: which subset of input space has the relatively highest output where the minimal size of this subset is given. This can be useful where usual datamining methods fail because of error distribution asymmetry. The paper provides a novel algorithm for this datamining problem, and compares it with clustering of above-average individuals.
A Hybrid Chaotic Quantum Evolutionary Algorithm
DEFF Research Database (Denmark)
Cai, Y.; Zhang, M.; Cai, H.
2010-01-01
A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....
Development of antibiotic regimens using graph based evolutionary algorithms.
Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M
2013-12-01
This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hybridizing Evolutionary Algorithms with Opportunistic Local Search
DEFF Research Database (Denmark)
Gießen, Christian
2013-01-01
There is empirical evidence that memetic algorithms (MAs) can outperform plain evolutionary algorithms (EAs). Recently the first runtime analyses have been presented proving the aforementioned conjecture rigorously by investigating Variable-Depth Search, VDS for short (Sudholt, 2008). Sudholt...
Convex hull ranking algorithm for multi-objective evolutionary algorithms
Davoodi Monfrared, M.; Mohades, A.; Rezaei, J.
2012-01-01
Due to many applications of multi-objective evolutionary algorithms in real world optimization problems, several studies have been done to improve these algorithms in recent years. Since most multi-objective evolutionary algorithms are based on the non-dominated principle, and their complexity
Algorithmic Mechanism Design of Evolutionary Computation.
Pei, Yan
2015-01-01
We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.
Mahmoodabadi, M J; Taherkhorsandi, M; Bagheri, A
2014-01-01
An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot.
Use of multiple objective evolutionary algorithms in optimizing surveillance requirements
International Nuclear Information System (INIS)
Martorell, S.; Carlos, S.; Villanueva, J.F.; Sanchez, A.I; Galvan, B.; Salazar, D.; Cepin, M.
2006-01-01
This paper presents the development and application of a double-loop Multiple Objective Evolutionary Algorithm that uses a Multiple Objective Genetic Algorithm to perform the simultaneous optimization of periodic Test Intervals (TI) and Test Planning (TP). It takes into account the time-dependent effect of TP performed on stand-by safety-related equipment. TI and TP are part of the Surveillance Requirements within Technical Specifications at Nuclear Power Plants. It addresses the problem of multi-objective optimization in the space of dependable variables, i.e. TI and TP, using a novel flexible structure of the optimization algorithm. Lessons learnt from the cases of application of the methodology to optimize TI and TP for the High-Pressure Injection System are given. The results show that the double-loop Multiple Objective Evolutionary Algorithm is able to find the Pareto set of solutions that represents a surface of non-dominated solutions that satisfy all the constraints imposed on the objective functions and decision variables. Decision makers can adopt then the best solution found depending on their particular preference, e.g. minimum cost, minimum unavailability
Pareto optimal pairwise sequence alignment.
DeRonne, Kevin W; Karypis, George
2013-01-01
Sequence alignment using evolutionary profiles is a commonly employed tool when investigating a protein. Many profile-profile scoring functions have been developed for use in such alignments, but there has not yet been a comprehensive study of Pareto optimal pairwise alignments for combining multiple such functions. We show that the problem of generating Pareto optimal pairwise alignments has an optimal substructure property, and develop an efficient algorithm for generating Pareto optimal frontiers of pairwise alignments. All possible sets of two, three, and four profile scoring functions are used from a pool of 11 functions and applied to 588 pairs of proteins in the ce_ref data set. The performance of the best objective combinations on ce_ref is also evaluated on an independent set of 913 protein pairs extracted from the BAliBASE RV11 data set. Our dynamic-programming-based heuristic approach produces approximated Pareto optimal frontiers of pairwise alignments that contain comparable alignments to those on the exact frontier, but on average in less than 1/58th the time in the case of four objectives. Our results show that the Pareto frontiers contain alignments whose quality is better than the alignments obtained by single objectives. However, the task of identifying a single high-quality alignment among those in the Pareto frontier remains challenging.
δ-Similar Elimination to Enhance Search Performance of Multiobjective Evolutionary Algorithms
Aguirre, Hernán; Sato, Masahiko; Tanaka, Kiyoshi
In this paper, we propose δ-similar elimination to improve the search performance of multiobjective evolutionary algorithms in combinatorial optimization problems. This method eliminates similar individuals in objective space to fairly distribute selection among the different regions of the instantaneous Pareto front. We investigate four eliminating methods analyzing their effects using NSGA-II. In addition, we compare the search performance of NSGA-II enhanced by our method and NSGA-II enhanced by controlled elitism.
Safety management in NPPs using an evolutionary algorithm technique
International Nuclear Information System (INIS)
Mishra, Alok; Patwardhan, Anand; Verma, A.K.
2007-01-01
The general goal of safety management in Nuclear Power Plants (NPPs) is to make requirements and activities more risk effective and less costly. The technical specification and maintenance (TS and M) activities in a plant are associated with controlling risk or with satisfying requirements, and are candidates to be evaluated for their resource effectiveness in risk-informed applications. Accordingly, the risk-based analysis of technical specification (RBTS) is being considered in evaluating current TS. The multi-objective optimization of the TS and M requirements of a NPP based on risk and cost, gives the pareto-optimal solutions, from which the utility can pick its decision variables suiting its interest. In this paper, a multi-objective evolutionary algorithm technique has been used to make a trade-off between risk and cost both at the system level and at the plant level for loss of coolant accident (LOCA) and main steam line break (MSLB) as initiating events
Evolutionary algorithms for mobile ad hoc networks
Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal
2014-01-01
Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...
Directory of Open Access Journals (Sweden)
Vimal Savsani
2017-01-01
Full Text Available Most of the modern multiobjective optimization algorithms are based on the search technique of genetic algorithms; however the search techniques of other recently developed metaheuristics are emerging topics among researchers. This paper proposes a novel multiobjective optimization algorithm named multiobjective heat transfer search (MOHTS algorithm, which is based on the search technique of heat transfer search (HTS algorithm. MOHTS employs the elitist nondominated sorting and crowding distance approach of an elitist based nondominated sorting genetic algorithm-II (NSGA-II for obtaining different nondomination levels and to preserve the diversity among the optimal set of solutions, respectively. The capability in yielding a Pareto front as close as possible to the true Pareto front of MOHTS has been tested on the multiobjective optimization problem of the vehicle suspension design, which has a set of five second-order linear ordinary differential equations. Half car passive ride model with two different sets of five objectives is employed for optimizing the suspension parameters using MOHTS and NSGA-II. The optimization studies demonstrate that MOHTS achieves the better nondominated Pareto front with the widespread (diveresed set of optimal solutions as compared to NSGA-II, and further the comparison of the extreme points of the obtained Pareto front reveals the dominance of MOHTS over NSGA-II, multiobjective uniform diversity genetic algorithm (MUGA, and combined PSO-GA based MOEA.
Comparison of evolutionary computation algorithms for solving bi ...
Indian Academy of Sciences (India)
failure probability. Multiobjective Evolutionary Computation algorithms (MOEAs) are well-suited for Multiobjective task scheduling on heterogeneous environment. The two Multi-Objective Evolutionary Algorithms such as Multiobjective Genetic. Algorithm (MOGA) and Multiobjective Evolutionary Programming (MOEP) with.
A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices
International Nuclear Information System (INIS)
Khoroshiltseva, Marina; Slanzi, Debora; Poli, Irene
2016-01-01
Highlights: • We present a multi-objective optimization algorithm for shading design. • We combine Harmony search and Pareto-based procedures. • Thermal and daylighting performances of external shading were considered. • We applied the optimization process to a residential social housing in Madrid. - Abstract: In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.
Exploitation of linkage learning in evolutionary algorithms
Chen, Ying-ping
2010-01-01
The exploitation of linkage learning is enhancing the performance of evolutionary algorithms. This monograph examines recent progress in linkage learning, with a series of focused technical chapters that cover developments and trends in the field.
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Directory of Open Access Journals (Sweden)
Zhiming Song
2015-01-01
Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.
Directory of Open Access Journals (Sweden)
Lina Yang
2018-02-01
Full Text Available Land-use allocation is of great significance in urban development. This type of allocation is usually considered to be a complex multi-objective spatial optimization problem, whose optimized result is a set of Pareto-optimal solutions (Pareto front reflecting different tradeoffs in several objectives. However, obtaining a Pareto front is a challenging task, and the Pareto front obtained by state-of-the-art algorithms is still not sufficient. To achieve better Pareto solutions, taking the grid-representative land-use allocation problem with two objectives as an example, an artificial bee colony optimization algorithm for multi-objective land-use allocation (ABC-MOLA is proposed. In this algorithm, the traditional ABC’s search direction guiding scheme and solution maintaining process are modified. In addition, a knowledge-informed neighborhood search strategy, which utilizes the auxiliary knowledge of natural geography and spatial structures to facilitate the neighborhood spatial search around each solution, is developed to further improve the Pareto front’s quality. A series of comparison experiments (a simulated experiment with small data volume and a real-world data experiment for a large area shows that all the Pareto fronts obtained by ABC-MOLA totally dominate the Pareto fronts by other algorithms, which demonstrates ABC-MOLA’s effectiveness in achieving Pareto fronts of high quality.
Directory of Open Access Journals (Sweden)
Wei Yue
2015-01-01
Full Text Available The major issues for mean-variance-skewness models are the errors in estimations that cause corner solutions and low diversity in the portfolio. In this paper, a multiobjective fuzzy portfolio selection model with transaction cost and liquidity is proposed to maintain the diversity of portfolio. In addition, we have designed a multiobjective evolutionary algorithm based on decomposition of the objective space to maintain the diversity of obtained solutions. The algorithm is used to obtain a set of Pareto-optimal portfolios with good diversity and convergence. To demonstrate the effectiveness of the proposed model and algorithm, the performance of the proposed algorithm is compared with the classic MOEA/D and NSGA-II through some numerical examples based on the data of the Shanghai Stock Exchange Market. Simulation results show that our proposed algorithm is able to obtain better diversity and more evenly distributed Pareto front than the other two algorithms and the proposed model can maintain quite well the diversity of portfolio. The purpose of this paper is to deal with portfolio problems in the weighted possibilistic mean-variance-skewness (MVS and possibilistic mean-variance-skewness-entropy (MVS-E frameworks with transaction cost and liquidity and to provide different Pareto-optimal investment strategies as diversified as possible for investors at a time, rather than one strategy for investors at a time.
Evolutionary Algorithms for Boolean Queries Optimization
Czech Academy of Sciences Publication Activity Database
Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.
2006-01-01
Roč. 3, č. 1 (2006), s. 15-20 ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics
A Clustal Alignment Improver Using Evolutionary Algorithms
DEFF Research Database (Denmark)
Thomsen, Rene; Fogel, Gary B.; Krink, Thimo
2002-01-01
Multiple sequence alignment (MSA) is a crucial task in bioinformatics. In this paper we extended previous work with evolutionary algorithms (EA) by using MSA solutions obtained from the wellknown Clustal V algorithm as a candidate solution seed of the initial EA population. Our results clearly show...
International Nuclear Information System (INIS)
Gollub, C; De Vivie-Riedle, R
2009-01-01
A multi-objective genetic algorithm is applied to optimize picosecond laser fields, driving vibrational quantum processes. Our examples are state-to-state transitions and unitary transformations. The approach allows features of the shaped laser fields and of the excitation mechanisms to be controlled simultaneously with the quantum yield. Within the parameter range accessible to the experiment, we focus on short pulse durations and low pulse energies to optimize preferably robust laser fields. Multidimensional Pareto fronts for these conflicting objectives could be constructed. Comparison with previous work showed that the solutions from Pareto optimizations and from optimal control theory match very well.
Infrastructure system restoration planning using evolutionary algorithms
Corns, Steven; Long, Suzanna K.; Shoberg, Thomas G.
2016-01-01
This paper presents an evolutionary algorithm to address restoration issues for supply chain interdependent critical infrastructure. Rapid restoration of infrastructure after a large-scale disaster is necessary to sustaining a nation's economy and security, but such long-term restoration has not been investigated as thoroughly as initial rescue and recovery efforts. A model of the Greater Saint Louis Missouri area was created and a disaster scenario simulated. An evolutionary algorithm is used to determine the order in which the bridges should be repaired based on indirect costs. Solutions were evaluated based on the reduction of indirect costs and the restoration of transportation capacity. When compared to a greedy algorithm, the evolutionary algorithm solution reduced indirect costs by approximately 12.4% by restoring automotive travel routes for workers and re-establishing the flow of commodities across the three rivers in the Saint Louis area.
Directory of Open Access Journals (Sweden)
Enrique Calderín-Ojeda
2017-11-01
Full Text Available Generalized linear models might not be appropriate when the probability of extreme events is higher than that implied by the normal distribution. Extending the method for estimating the parameters of a double Pareto lognormal distribution (DPLN in Reed and Jorgensen (2004, we develop an EM algorithm for the heavy-tailed Double-Pareto-lognormal generalized linear model. The DPLN distribution is obtained as a mixture of a lognormal distribution with a double Pareto distribution. In this paper the associated generalized linear model has the location parameter equal to a linear predictor which is used to model insurance claim amounts for various data sets. The performance is compared with those of the generalized beta (of the second kind and lognorma distributions.
Evolutionary Algorithm for Optimal Vaccination Scheme
International Nuclear Information System (INIS)
Parousis-Orthodoxou, K J; Vlachos, D S
2014-01-01
The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease
Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
Jiménez, Fernando; Sánchez, Gracia; Juárez, José M
2014-03-01
This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case
Evolutionary Algorithms Application Analysis in Biometric Systems
Directory of Open Access Journals (Sweden)
N. Goranin
2010-01-01
Full Text Available Wide usage of biometric information for person identity verification purposes, terrorist acts prevention measures and authenticationprocess simplification in computer systems has raised significant attention to reliability and efficiency of biometricsystems. Modern biometric systems still face many reliability and efficiency related issues such as reference databasesearch speed, errors while recognizing of biometric information or automating biometric feature extraction. Current scientificinvestigations show that application of evolutionary algorithms may significantly improve biometric systems. In thisarticle we provide a comprehensive review of main scientific research done in sphere of evolutionary algorithm applicationfor biometric system parameter improvement.
Implementation of an evolutionary algorithm in planning investment in a power distribution system
Directory of Open Access Journals (Sweden)
Carlos Andrés García Montoya
2011-06-01
Full Text Available The definition of an investment plan to implement in a distribution power system, is a task that constantly faced by utilities. This work presents a methodology for determining the investment plan for a distribution power system under a shortterm, using as a criterion for evaluating investment projects, associated costs and customers benefit from its implementation. Given the number of projects carried out annually on the system, the definition of an investment plan requires the use of computational tools to evaluate, a set of possibilities, the one that best suits the needs of the present system and better results. That is why in the job, implementing a multi objective evolutionary algorithm SPEA (Strength Pareto Evolutionary Algorithm, which, based on the principles of Pareto optimality, it deliver to the planning expert, the best solutions found in the optimization process. The performance of the algorithm is tested using a set of projects to determine the best among the possible plans. We analyze also the effect of operators on the performance of evolutionary algorithm and results.
Synthesis of logic circuits with evolutionary algorithms
Energy Technology Data Exchange (ETDEWEB)
JONES,JAKE S.; DAVIDSON,GEORGE S.
2000-01-26
In the last decade there has been interest and research in the area of designing circuits with genetic algorithms, evolutionary algorithms, and genetic programming. However, the ability to design circuits of the size and complexity required by modern engineering design problems, simply by specifying required outputs for given inputs has as yet eluded researchers. This paper describes current research in the area of designing logic circuits using an evolutionary algorithm. The goal of the research is to improve the effectiveness of this method and make it a practical aid for design engineers. A novel method of implementing the algorithm is introduced, and results are presented for various multiprocessing systems. In addition to evolving standard arithmetic circuits, work in the area of evolving circuits that perform digital signal processing tasks is described.
Food processing optimization using evolutionary algorithms | Enitan ...
African Journals Online (AJOL)
Evolutionary algorithms are widely used in single and multi-objective optimization. They are easy to use and provide solution(s) in one simulation run. They are used in food processing industries for decision making. Food processing presents constrained and unconstrained optimization problems. This paper reviews the ...
Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.
Elhossini, Ahmed; Areibi, Shawki; Dony, Robert
2010-01-01
This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.
Directory of Open Access Journals (Sweden)
Alexandr Victorovich Budylskiy
2014-06-01
Full Text Available This article considers the multicriteria optimization approach using the modified genetic algorithm to solve the project-scheduling problem under duration and cost constraints. The work contains the list of choices for solving this problem. The multicriteria optimization approach is justified here. The study describes the Pareto principles, which are used in the modified genetic algorithm. We identify the mathematical model of the project-scheduling problem. We introduced the modified genetic algorithm, the ranking strategies, the elitism approaches. The article includes the example.
International Nuclear Information System (INIS)
Amanifard, N.; Nariman-Zadeh, N.; Borji, M.; Khalkhali, A.; Habibdoust, A.
2008-01-01
Three-dimensional heat transfer characteristics and pressure drop of water flow in a set of rectangular microchannels are numerically investigated using Fluent and compared with those of experimental results. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks are then obtained for modelling of both pressure drop (ΔP) and Nusselt number (Nu) with respect to design variables such as geometrical parameters of microchannels, the amount of heat flux and the Reynolds number. Using such obtained polynomial neural networks, multi-objective genetic algorithms (GAs) (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism is then used for Pareto based optimization of microchannels considering two conflicting objectives such as (ΔP) and (Nu). It is shown that some interesting and important relationships as useful optimal design principles involved in the performance of microchannels can be discovered by Pareto based multi-objective optimization of the obtained polynomial metamodels representing their heat transfer and flow characteristics. Such important optimal principles would not have been obtained without the use of both GMDH type neural network modelling and the Pareto optimization approach
Rajesh Kumar; S.C. Kaushik; Raj Kumar; Ranjana Hans
2016-01-01
Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is s...
Prospective Algorithms for Quantum Evolutionary Computation
Sofge, Donald A.
2008-01-01
This effort examines the intersection of the emerging field of quantum computing and the more established field of evolutionary computation. The goal is to understand what benefits quantum computing might offer to computational intelligence and how computational intelligence paradigms might be implemented as quantum programs to be run on a future quantum computer. We critically examine proposed algorithms and methods for implementing computational intelligence paradigms, primarily focused on ...
A Note on Evolutionary Algorithms and Its Applications
Bhargava, Shifali
2013-01-01
This paper introduces evolutionary algorithms with its applications in multi-objective optimization. Here elitist and non-elitist multiobjective evolutionary algorithms are discussed with their advantages and disadvantages. We also discuss constrained multiobjective evolutionary algorithms and their applications in various areas.
Pareto navigation: algorithmic foundation of interactive multi-criteria IMRT planning.
Monz, M; Küfer, K H; Bortfeld, T R; Thieke, C
2008-02-21
Inherently, IMRT treatment planning involves compromising between different planning goals. Multi-criteria IMRT planning directly addresses this compromising and thus makes it more systematic. Usually, several plans are computed from which the planner selects the most promising following a certain procedure. Applying Pareto navigation for this selection step simultaneously increases the variety of planning options and eases the identification of the most promising plan. Pareto navigation is an interactive multi-criteria optimization method that consists of the two navigation mechanisms 'selection' and 'restriction'. The former allows the formulation of wishes whereas the latter allows the exclusion of unwanted plans. They are realized as optimization problems on the so-called plan bundle -- a set constructed from pre-computed plans. They can be approximately reformulated so that their solution time is a small fraction of a second. Thus, the user can be provided with immediate feedback regarding his or her decisions. Pareto navigation was implemented in the MIRA navigator software and allows real-time manipulation of the current plan and the set of considered plans. The changes are triggered by simple mouse operations on the so-called navigation star and lead to real-time updates of the navigation star and the dose visualizations. Since any Pareto-optimal plan in the plan bundle can be found with just a few navigation operations the MIRA navigator allows a fast and directed plan determination. Besides, the concept allows for a refinement of the plan bundle, thus offering a middle course between single plan computation and multi-criteria optimization. Pareto navigation offers so far unmatched real-time interactions, ease of use and plan variety, setting it apart from the multi-criteria IMRT planning methods proposed so far.
Pareto navigation-algorithmic foundation of interactive multi-criteria IMRT planning
International Nuclear Information System (INIS)
Monz, M; Kuefer, K H; Bortfeld, T R; Thieke, C
2008-01-01
Inherently, IMRT treatment planning involves compromising between different planning goals. Multi-criteria IMRT planning directly addresses this compromising and thus makes it more systematic. Usually, several plans are computed from which the planner selects the most promising following a certain procedure. Applying Pareto navigation for this selection step simultaneously increases the variety of planning options and eases the identification of the most promising plan. Pareto navigation is an interactive multi-criteria optimization method that consists of the two navigation mechanisms 'selection' and 'restriction'. The former allows the formulation of wishes whereas the latter allows the exclusion of unwanted plans. They are realized as optimization problems on the so-called plan bundle-a set constructed from pre-computed plans. They can be approximately reformulated so that their solution time is a small fraction of a second. Thus, the user can be provided with immediate feedback regarding his or her decisions. Pareto navigation was implemented in the MIRA navigator software and allows real-time manipulation of the current plan and the set of considered plans. The changes are triggered by simple mouse operations on the so-called navigation star and lead to real-time updates of the navigation star and the dose visualizations. Since any Pareto-optimal plan in the plan bundle can be found with just a few navigation operations the MIRA navigator allows a fast and directed plan determination. Besides, the concept allows for a refinement of the plan bundle, thus offering a middle course between single plan computation and multi-criteria optimization. Pareto navigation offers so far unmatched real-time interactions, ease of use and plan variety, setting it apart from the multi-criteria IMRT planning methods proposed so far
Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives
International Nuclear Information System (INIS)
Warmflash, Aryeh; Siggia, Eric D; Francois, Paul
2012-01-01
The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input–output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria. (paper)
Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.
Warmflash, Aryeh; Francois, Paul; Siggia, Eric D
2012-10-01
The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.
Directory of Open Access Journals (Sweden)
Dazhi Jiang
2015-01-01
Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.
Modelling Evolutionary Algorithms with Stochastic Differential Equations.
Heredia, Jorge Pérez
2017-11-20
There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.
Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Lvjiang Yin
2016-12-01
Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.
Directory of Open Access Journals (Sweden)
Min-Yin Liu
2017-05-01
Full Text Available Sleep spindles are brief bursts of brain activity in the sigma frequency range (11–16 Hz measured by electroencephalography (EEG mostly during non-rapid eye movement (NREM stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Conventionally, sleep spindles are identified by expert sleep clinicians via visual inspection of EEG signals. The process is laborious and the results are inconsistent among different experts. To resolve the problem, numerous computerized methods have been developed to automate the process of sleep spindle identification. Still, the performance of these automated sleep spindle detection methods varies inconsistently from study to study. There are two reasons: (1 the lack of common benchmark databases, and (2 the lack of commonly accepted evaluation metrics. In this study, we focus on tackling the second problem by proposing to evaluate the performance of a spindle detector in a multi-objective optimization context and hypothesize that using the resultant Pareto fronts for deriving evaluation metrics will improve automatic sleep spindle detection. We use a popular multi-objective evolutionary algorithm (MOEA, the Strength Pareto Evolutionary Algorithm (SPEA2, to optimize six existing frequency-based sleep spindle detection algorithms. They include three Fourier, one continuous wavelet transform (CWT, and two Hilbert-Huang transform (HHT based algorithms. We also explore three hybrid approaches. Trained and tested on open-access DREAMS and MASS databases, two new hybrid methods of combining Fourier with HHT algorithms show significant performance improvement with F1-scores of 0.726–0.737.
A Double Evolutionary Pool Memetic Algorithm for Examination Timetabling Problems
Directory of Open Access Journals (Sweden)
Yu Lei
2014-01-01
Full Text Available A double evolutionary pool memetic algorithm is proposed to solve the examination timetabling problem. To improve the performance of the proposed algorithm, two evolutionary pools, that is, the main evolutionary pool and the secondary evolutionary pool, are employed. The genetic operators have been specially designed to fit the examination timetabling problem. A simplified version of the simulated annealing strategy is designed to speed the convergence of the algorithm. A clonal mechanism is introduced to preserve population diversity. Extensive experiments carried out on 12 benchmark examination timetabling instances show that the proposed algorithm is able to produce promising results for the uncapacitated examination timetabling problem.
Self-organized modularization in evolutionary algorithms.
Dauscher, Peter; Uthmann, Thomas
2005-01-01
The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenberg, some quantitative measures of modularity are introduced. Particularly, we distinguish Built-in Modularity as an inherent property of a genotype and Effective Modularity, which depends on the rest of the population. These measures can easily be applied to a wide range of present Evolutionary Computation models. It will be shown, both theoretically and by simulation, that under certain conditions, Effective Modularity (as defined within this paper) can be a selection factor. This causes Self-Organized Modularization to take place. The experimental observations emphasize the importance of Effective Modularity in comparison with Built-in Modularity. Although the experimental results have been obtained using a minimalist toy model, they can lead to a number of consequences for existing models as well as for future approaches. Furthermore, the results suggest a complex self-amplification of highly modular equivalence classes in the case of respected relations. Since the well-known Holland schemata are just the equivalence classes of respected relations in most Simple Genetic Algorithms, this observation emphasizes the role of schemata as Building Blocks (in comparison with arbitrary subsets of the search space).
Wang, Chun; Ji, Zhicheng; Wang, Yan
2017-07-01
In this paper, multi-objective flexible job shop scheduling problem (MOFJSP) was studied with the objects to minimize makespan, total workload and critical workload. A variable neighborhood evolutionary algorithm (VNEA) was proposed to obtain a set of Pareto optimal solutions. First, two novel crowded operators in terms of the decision space and object space were proposed, and they were respectively used in mating selection and environmental selection. Then, two well-designed neighborhood structures were used in local search, which consider the problem characteristics and can hold fast convergence. Finally, extensive comparison was carried out with the state-of-the-art methods specially presented for solving MOFJSP on well-known benchmark instances. The results show that the proposed VNEA is more effective than other algorithms in solving MOFJSP.
Directory of Open Access Journals (Sweden)
M. Frutos
2013-01-01
Full Text Available Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.
An evolutionary algorithm for model selection
Energy Technology Data Exchange (ETDEWEB)
Bicker, Karl [CERN, Geneva (Switzerland); Chung, Suh-Urk; Friedrich, Jan; Grube, Boris; Haas, Florian; Ketzer, Bernhard; Neubert, Sebastian; Paul, Stephan; Ryabchikov, Dimitry [Technische Univ. Muenchen (Germany)
2013-07-01
When performing partial-wave analyses of multi-body final states, the choice of the fit model, i.e. the set of waves to be used in the fit, can significantly alter the results of the partial wave fit. Traditionally, the models were chosen based on physical arguments and by observing the changes in log-likelihood of the fits. To reduce possible bias in the model selection process, an evolutionary algorithm was developed based on a Bayesian goodness-of-fit criterion which takes into account the model complexity. Starting from systematically constructed pools of waves which contain significantly more waves than the typical fit model, the algorithm yields a model with an optimal log-likelihood and with a number of partial waves which is appropriate for the number of events in the data. Partial waves with small contributions to the total intensity are penalized and likely to be dropped during the selection process, as are models were excessive correlations between single waves occur. Due to the automated nature of the model selection, a much larger part of the model space can be explored than would be possible in a manual selection. In addition the method allows to assess the dependence of the fit result on the fit model which is an important contribution to the systematic uncertainty.
Directory of Open Access Journals (Sweden)
Qianwang Deng
2017-01-01
Full Text Available Flexible job-shop scheduling problem (FJSP is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II for multiobjective FJSP (MO-FJSP with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.
Deng, Qianwang; Gong, Guiliang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua
2017-01-01
Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N , in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.
2006-05-15
of different evolutionary approaches to multiobjective optimal design are given by Van Veldhuizen ,7 Van Veldhuizen and Lamont,8 and Zitzler and Thiele...and Machine Learning, Addison-Wesley, Boston, 1989. 7. D. A. Van Veldhuizen , "Multiobjective Evolutionary Algorithms: Classifications, Analyses, and...New Innovations," Ph.D. Dissertation, Air Force Institute of Technology, 1999. 39 8. D. A. Van Veldhuizen and G. B. Lamont, "Multiobjective
Ikefuji, M.; Laeven, R.J.A.; Magnus, J.R.; Muris, C.H.M.
2013-01-01
In searching for an appropriate utility function in the expected utility framework, we formulate four properties that we want the utility function to satisfy. We conduct a search for such a function, and we identify Pareto utility as a function satisfying all four desired properties. Pareto utility
2011-01-01
Itaalia majandusteadlase Vilfredo Pareto jõudmisest oma kuulsa printsiibini ja selle printsiibi mõjust tänapäevasele juhtimisele. Pareto printsiibi kohaselt ei aita suurem osa tegevusest meid tulemuseni jõuda, vaid on aja raiskamine. Diagramm
Evaluation of models generated via hybrid evolutionary algorithms ...
African Journals Online (AJOL)
2016-04-02
Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.
Active learning of Pareto fronts.
Campigotto, Paolo; Passerini, Andrea; Battiti, Roberto
2014-03-01
This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques.
Directory of Open Access Journals (Sweden)
Yoichi Hayashi
2016-01-01
Full Text Available Historically, the assessment of credit risk has proved to be both highly important and extremely difficult. Currently, financial institutions rely on the use of computer-generated credit scores for risk assessment. However, automated risk evaluations are currently imperfect, and the loss of vast amounts of capital could be prevented by improving the performance of computerized credit assessments. A number of approaches have been developed for the computation of credit scores over the last several decades, but these methods have been considered too complex without good interpretability and have therefore not been widely adopted. Therefore, in this study, we provide the first comprehensive comparison of results regarding the assessment of credit risk obtained using 10 runs of 10-fold cross validation of the Re-RX algorithm family, including the Re-RX algorithm, the Re-RX algorithm with both discrete and continuous attributes (Continuous Re-RX, the Re-RX algorithm with J48graft, the Re-RX algorithm with a trained neural network (Sampling Re-RX, NeuroLinear, NeuroLinear+GRG, and three unique rule extraction techniques involving support vector machines and Minerva from four real-life, two-class mixed credit-risk datasets. We also discuss the roles of various newly-extended types of the Re-RX algorithm and high performance classifiers from a Pareto optimal perspective. Our findings suggest that Continuous Re-RX, Re-RX with J48graft, and Sampling Re-RX comprise a powerful management tool that allows the creation of advanced, accurate, concise and interpretable decision support systems for credit risk evaluation. In addition, from a Pareto optimal perspective, the Re-RX algorithm family has superior features in relation to the comprehensibility of extracted rules and the potential for credit scoring with Big Data.
DEFF Research Database (Denmark)
Li, Wuzhao; Wang, Lei; Cai, Xingjuan
2015-01-01
and affect each other in many ways. The relationships include competition, predation, parasitism, mutualism and pythogenesis. In this paper, we consider the five relationships between solutions to propose a co-evolutionary algorithm termed species co-evolutionary algorithm (SCEA). In SCEA, five operators...
Evolutionary algorithm for vehicle driving cycle generation.
Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott
2011-09-01
Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.
A backtracking evolutionary algorithm for power systems
Directory of Open Access Journals (Sweden)
Chiou Ji-Pyng
2017-01-01
Full Text Available This paper presents a backtracking variable scaling hybrid differential evolution, called backtracking VSHDE, for solving the optimal network reconfiguration problems for power loss reduction in distribution systems. The concepts of the backtracking, variable scaling factor, migrating, accelerated, and boundary control mechanism are embedded in the original differential evolution (DE to form the backtracking VSHDE. The concepts of the backtracking and boundary control mechanism can increase the population diversity. And, according to the convergence property of the population, the scaling factor is adjusted based on the 1/5 success rule of the evolution strategies (ESs. A larger population size must be used in the evolutionary algorithms (EAs to maintain the population diversity. To overcome this drawback, two operations, acceleration operation and migrating operation, are embedded into the proposed method. The feeder reconfiguration of distribution systems is modelled as an optimization problem which aims at achieving the minimum loss subject to voltage and current constraints. So, the proper system topology that reduces the power loss according to a load pattern is an important issue. Mathematically, the network reconfiguration system is a nonlinear programming problem with integer variables. One three-feeder network reconfiguration system from the literature is researched by the proposed backtracking VSHDE method and simulated annealing (SA. Numerical results show that the perfrmance of the proposed method outperformed the SA method.
Directory of Open Access Journals (Sweden)
Enrique Carlos Canessa-Terrazas
2016-01-01
Full Text Available Se presenta el uso de Análisis Envolvente de Datos (AED para priorizar y seleccionar soluciones encontradas por un Algoritmo Genético de Pareto (AGP a problemas de diseño robusto en sistemas multirespuesta con muchos factores de control y ruido. El análisis de eficiencia de las soluciones con AED muestra que el AGP encuentra una buena aproximación a la frontera eficiente. Además, se usa AED para determinar la combinación del nivel de ajuste de media y variación de las respuestas del sistema, y con la finalidad de minimizar el costo económico de alcanzar dichos objetivos. Al unir ese costo con otras consideraciones técnicas y/o económicas, la solución que mejor se ajuste con un nivel predeterminado de calidad puede ser seleccionada más apropiadamente.
Optimization of constrained multiple-objective reliability problems using evolutionary algorithms
International Nuclear Information System (INIS)
Salazar, Daniel; Rocco, Claudio M.; Galvan, Blas J.
2006-01-01
This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature
International Nuclear Information System (INIS)
Toffolo, A.; Lazzaretto, A.
2002-01-01
Thermoeconomic analyses in thermal system design are always focused on the economic objective. However, knowledge of only the economic minimum may not be sufficient in the decision making process, since solutions with a higher thermodynamic efficiency, in spite of small increases in total costs, may result in much more interesting designs due to changes in energy market prices or in energy policies. This paper suggests how to perform a multi-objective optimization in order to find solutions that simultaneously satisfy exergetic and economic objectives. This corresponds to a search for the set of Pareto optimal solutions with respect to the two competing objectives. The optimization process is carried out by an evolutionary algorithm, that features a new diversity preserving mechanism using as a test case the well-known CGAM problem. (author)
Optimization of constrained multiple-objective reliability problems using evolutionary algorithms
Energy Technology Data Exchange (ETDEWEB)
Salazar, Daniel [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain) and Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: danielsalazaraponte@gmail.com; Rocco, Claudio M. [Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve; Galvan, Blas J. [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain)]. E-mail: bgalvan@step.es
2006-09-15
This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.
Comparing Evolutionary Strategies on a Biobjective Cultural Algorithm
Directory of Open Access Journals (Sweden)
Carolina Lagos
2014-01-01
Full Text Available Evolutionary algorithms have been widely used to solve large and complex optimisation problems. Cultural algorithms (CAs are evolutionary algorithms that have been used to solve both single and, to a less extent, multiobjective optimisation problems. In order to solve these optimisation problems, CAs make use of different strategies such as normative knowledge, historical knowledge, circumstantial knowledge, and among others. In this paper we present a comparison among CAs that make use of different evolutionary strategies; the first one implements a historical knowledge, the second one considers a circumstantial knowledge, and the third one implements a normative knowledge. These CAs are applied on a biobjective uncapacitated facility location problem (BOUFLP, the biobjective version of the well-known uncapacitated facility location problem. To the best of our knowledge, only few articles have applied evolutionary multiobjective algorithms on the BOUFLP and none of those has focused on the impact of the evolutionary strategy on the algorithm performance. Our biobjective cultural algorithm, called BOCA, obtains important improvements when compared to other well-known evolutionary biobjective optimisation algorithms such as PAES and NSGA-II. The conflicting objective functions considered in this study are cost minimisation and coverage maximisation. Solutions obtained by each algorithm are compared using a hypervolume S metric.
Directory of Open Access Journals (Sweden)
Hui Lu
2014-01-01
Full Text Available Test task scheduling problem (TTSP is a complex optimization problem and has many local optima. In this paper, a hybrid chaotic multiobjective evolutionary algorithm based on decomposition (CMOEA/D is presented to avoid becoming trapped in local optima and to obtain high quality solutions. First, we propose an improving integrated encoding scheme (IES to increase the efficiency. Then ten chaotic maps are applied into the multiobjective evolutionary algorithm based on decomposition (MOEA/D in three phases, that is, initial population and crossover and mutation operators. To identify a good approach for hybrid MOEA/D and chaos and indicate the effectiveness of the improving IES several experiments are performed. The Pareto front and the statistical results demonstrate that different chaotic maps in different phases have different effects for solving the TTSP especially the circle map and ICMIC map. The similarity degree of distribution between chaotic maps and the problem is a very essential factor for the application of chaotic maps. In addition, the experiments of comparisons of CMOEA/D and variable neighborhood MOEA/D (VNM indicate that our algorithm has the best performance in solving the TTSP.
ADAPTIVE SELECTION OF AUXILIARY OBJECTIVES IN MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS
Directory of Open Access Journals (Sweden)
I. A. Petrova
2016-05-01
Full Text Available Subject of Research.We propose to modify the EA+RL method, which increases efficiency of evolutionary algorithms by means of auxiliary objectives. The proposed modification is compared to the existing objective selection methods on the example of travelling salesman problem. Method. In the EA+RL method a reinforcement learning algorithm is used to select an objective – the target objective or one of the auxiliary objectives – at each iteration of the single-objective evolutionary algorithm.The proposed modification of the EA+RL method adopts this approach for the usage with a multiobjective evolutionary algorithm. As opposed to theEA+RL method, in this modification one of the auxiliary objectives is selected by reinforcement learning and optimized together with the target objective at each step of the multiobjective evolutionary algorithm. Main Results.The proposed modification of the EA+RL method was compared to the existing objective selection methods on the example of travelling salesman problem. In the EA+RL method and its proposed modification reinforcement learning algorithms for stationary and non-stationary environment were used. The proposed modification of the EA+RL method applied with reinforcement learning for non-stationary environment outperformed the considered objective selection algorithms on the most problem instances. Practical Significance. The proposed approach increases efficiency of evolutionary algorithms, which may be used for solving discrete NP-hard optimization problems. They are, in particular, combinatorial path search problems and scheduling problems.
Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking
Poluyan, Sergey; Ershov, Nikolay
2018-02-01
In this study we examine the possibility of using evolutionary optimization algorithms in protein-peptide docking. We present the main assumptions that reduce the docking problem to a continuous global optimization problem and provide a way of using evolutionary optimization algorithms. The Rosetta all-atom force field was used for structural representation and energy scoring. We describe the parallelization scheme and MPI/OpenMP realization of the considered algorithms. We demonstrate the efficiency and the performance for some algorithms which were applied to a set of benchmark tests.
International Nuclear Information System (INIS)
Ahmadi, Pouria; Rosen, Marc A.; Dincer, Ibrahim
2012-01-01
A comprehensive thermodynamic modeling and optimization is reported of a polygeneration energy system for the simultaneous production of heating, cooling, electricity and hot water from a common energy source. This polygeneration system is composed of four major parts: gas turbine (GT) cycle, Rankine cycle, absorption cooling cycle and domestic hot water heater. A multi-objective optimization method based on an evolutionary algorithm is applied to determine the best design parameters for the system. The two objective functions utilized in the analysis are the total cost rate of the system, which is the cost associated with fuel, component purchasing and environmental impact, and the system exergy efficiency. The total cost rate of the system is minimized while the cycle exergy efficiency is maximized by using an evolutionary algorithm. To provide a deeper insight, the Pareto frontier is shown for multi-objective optimization. In addition, a closed form equation for the relationship between exergy efficiency and total cost rate is derived. Finally, a sensitivity analysis is performed to assess the effects of several design parameters on the system total exergy destruction rate, CO 2 emission and exergy efficiency.
Towards Automatic Controller Design using Multi-Objective Evolutionary Algorithms
DEFF Research Database (Denmark)
Pedersen, Gerulf
of evolutionary computation, a choice was made to use multi-objective algorithms for the purpose of aiding in automatic controller design. More specifically, the choice was made to use the Non-dominated Sorting Genetic Algorithm II (NSGAII), which is one of the most potent algorithms currently in use...... for automatic controller design. However, because the field of evolutionary computation is relatively unknown in the field of control engineering, this thesis also includes a comprehensive introduction to the basic field of evolutionary computation as well as a description of how the field has previously been......In order to design the controllers of tomorrow, a need has risen for tools that can aid in the design of these. A desire to use evolutionary computation as a tool to achieve that goal is what gave inspiration for the work contained in this thesis. After having studied the foundations...
Analog Circuit Design Optimization Based on Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Mansour Barari
2014-01-01
Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.
Analysis for Performance of Symbiosis Co-evolutionary Algorithm
根路銘, もえ子; 遠藤, 聡志; 山田, 孝治; 宮城, 隼夫; Nerome, Moeko; Endo, Satoshi; Yamada, Koji; Miyagi, Hayao
2000-01-01
In this paper, we analyze the behavior of symbiotic evolution algorithm for the N-Queens problem as benchmark problem for search methods in the field of aritificial intelligence. It is shown that this algorithm improves the ability of evolutionary search method. When the problem is solved by Genetic Algorithms (GAs), an ordinal representation is often used as one of gene conversion methods which convert from phenotype to genotype and reconvert. The representation can hinder occurrence of leth...
Directory of Open Access Journals (Sweden)
Jie Zhang
2013-01-01
Full Text Available In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.
Zhang, Jie; Wang, Yuping; Feng, Junhong
2013-01-01
In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.
When do evolutionary algorithms optimize separable functions in parallel?
DEFF Research Database (Denmark)
Doerr, Benjamin; Sudholt, Dirk; Witt, Carsten
2013-01-01
is that evolutionary algorithms make progress on all subfunctions in parallel, so that optimizing a separable function does not take not much longer than optimizing the hardest subfunction-subfunctions are optimized "in parallel." We show that this is only partially true, already for the simple (1+1) evolutionary...... algorithm ((1+1) EA). For separable functions composed of k Boolean functions indeed the optimization time is the maximum optimization time of these functions times a small O(log k) overhead. More generally, for sums of weighted subfunctions that each attain non-negative integer values less than r = o(log1...
Phylogenetically Acquired Representations and Evolutionary Algorithms.
Wozniak , Adrianna
2006-01-01
First, we explain why Genetic Algorithms (GAs), inspired by the Modern Synthesis, do not accurately model biological evolution, being rather an artificial version of artificial, rather than natural selection. Being focused on optimisation, we propose two improvements of GAs, with the aim to successfully generate adapted, desired behaviour. The first one concerns phylogenetic grounding of meaning, a way to avoid the Symbol Grounding Problem. We give a definition of Phylogenetically Acquired Re...
Evolutionary Algorithms For Neural Networks Binary And Real Data Classification
Directory of Open Access Journals (Sweden)
Dr. Hanan A.R. Akkar
2015-08-01
Full Text Available Artificial neural networks are complex networks emulating the way human rational neurons process data. They have been widely used generally in prediction clustering classification and association. The training algorithms that used to determine the network weights are almost the most important factor that influence the neural networks performance. Recently many meta-heuristic and Evolutionary algorithms are employed to optimize neural networks weights to achieve better neural performance. This paper aims to use recently proposed algorithms for optimizing neural networks weights comparing these algorithms performance with other classical meta-heuristic algorithms used for the same purpose. However to evaluate the performance of such algorithms for training neural networks we examine such algorithms to classify four opposite binary XOR clusters and classification of continuous real data sets such as Iris and Ecoli.
Reinforcement Learning for Online Control of Evolutionary Algorithms
Eiben, A.; Horvath, Mark; Kowalczyk, Wojtek; Schut, Martijn
2007-01-01
The research reported in this paper is concerned with assessing the usefulness of reinforcment learning (RL) for on-line calibration of parameters in evolutionary algorithms (EA). We are running an RL procedure and the EA simultaneously and the RL is changing the EA parameters on-the-fly. We
The mixing evolutionary algorithm : indepedent selection and allocation of trials
C.H.M. van Kemenade
1997-01-01
textabstractWhen using an evolutionary algorithm to solve a problem involving building blocks we have to grow the building blocks and then mix these building blocks to obtain the (optimal) solution. Finding a good balance between the growing and the mixing process is a prerequisite to get a reliable
Evolutionary algorithms for the Vehicle Routing Problem with Time Windows
Bräysy, Olli; Dullaert, Wout; Gendreau, Michel
2004-01-01
This paper surveys the research on evolutionary algorithms for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW can be described as the problem of designing least cost routes from a single depot to a set of geographically scattered points. The routes must be designed in such a way
Hybrid Robust Multi-Objective Evolutionary Optimization Algorithm
2009-03-10
xfar by xint. Else, generate a new individual, using the Sobol pseudo- random sequence generator within the upper and lower bounds of the variables...12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons. 2002. 13. Sobol , I. M., "Uniformly Distributed Sequences
Optimal Design of a Centrifugal Compressor Impeller Using Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Soo-Yong Cho
2012-01-01
Full Text Available An optimization study was conducted on a centrifugal compressor. Eight design variables were chosen from the control points for the Bezier curves which widely influenced the geometric variation; four design variables were selected to optimize the flow passage between the hub and the shroud, and other four design variables were used to improve the performance of the impeller blade. As an optimization algorithm, an artificial neural network (ANN was adopted. Initially, the design of experiments was applied to set up the initial data space of the ANN, which was improved during the optimization process using a genetic algorithm. If a result of the ANN reached a higher level, that result was re-calculated by computational fluid dynamics (CFD and was applied to develop a new ANN. The prediction difference between the ANN and CFD was consequently less than 1% after the 6th generation. Using this optimization technique, the computational time for the optimization was greatly reduced and the accuracy of the optimization algorithm was increased. The efficiency was improved by 1.4% without losing the pressure ratio, and Pareto-optimal solutions of the efficiency versus the pressure ratio were obtained through the 21st generation.
Evolutionary algorithms applied to Landau-gauge fixing
International Nuclear Information System (INIS)
Markham, J.F.
1998-01-01
Current algorithms used to put a lattice gauge configuration into Landau gauge either suffer from the problem of critical slowing-down or involve an additions computational expense to overcome it. Evolutionary Algorithms (EAs), which have been widely applied to other global optimisation problems, may be of use in gauge fixing. Also, being global, they should not suffer from critical slowing-down as do local gradient based algorithms. We apply EA'S and also a Steepest Descent (SD) based method to the problem of Landau Gauge Fixing and compare their performance. (authors)
Variants of Evolutionary Algorithms for Real-World Applications
Weise, Thomas; Michalewicz, Zbigniew
2012-01-01
Evolutionary Algorithms (EAs) are population-based, stochastic search algorithms that mimic natural evolution. Due to their ability to find excellent solutions for conventionally hard and dynamic problems within acceptable time, EAs have attracted interest from many researchers and practitioners in recent years. This book “Variants of Evolutionary Algorithms for Real-World Applications” aims to promote the practitioner’s view on EAs by providing a comprehensive discussion of how EAs can be adapted to the requirements of various applications in the real-world domains. It comprises 14 chapters, including an introductory chapter re-visiting the fundamental question of what an EA is and other chapters addressing a range of real-world problems such as production process planning, inventory system and supply chain network optimisation, task-based jobs assignment, planning for CNC-based work piece construction, mechanical/ship design tasks that involve runtime-intense simulations, data mining for the predictio...
An efficient non-dominated sorting method for evolutionary algorithms.
Fang, Hongbing; Wang, Qian; Tu, Yi-Cheng; Horstemeyer, Mark F
2008-01-01
We present a new non-dominated sorting algorithm to generate the non-dominated fronts in multi-objective optimization with evolutionary algorithms, particularly the NSGA-II. The non-dominated sorting algorithm used by NSGA-II has a time complexity of O(MN(2)) in generating non-dominated fronts in one generation (iteration) for a population size N and M objective functions. Since generating non-dominated fronts takes the majority of total computational time (excluding the cost of fitness evaluations) of NSGA-II, making this algorithm faster will significantly improve the overall efficiency of NSGA-II and other genetic algorithms using non-dominated sorting. The new non-dominated sorting algorithm proposed in this study reduces the number of redundant comparisons existing in the algorithm of NSGA-II by recording the dominance information among solutions from their first comparisons. By utilizing a new data structure called the dominance tree and the divide-and-conquer mechanism, the new algorithm is faster than NSGA-II for different numbers of objective functions. Although the number of solution comparisons by the proposed algorithm is close to that of NSGA-II when the number of objectives becomes large, the total computational time shows that the proposed algorithm still has better efficiency because of the adoption of the dominance tree structure and the divide-and-conquer mechanism.
International Nuclear Information System (INIS)
Ferreira, Jose C.; Gaspar-Cunha, Antonio; Fonseca, Carlos M.
2007-01-01
Most of the real world optimization problems involve multiple, usually conflicting, optimization criteria. Generating Pareto optimal solutions plays an important role in multi-objective optimization, and the problem is considered to be solved when the Pareto optimal set is found, i.e., the set of non-dominated solutions. Multi-Objective Evolutionary Algorithms based on the principle of Pareto optimality are designed to produce the complete set of non-dominated solutions. However, this is not allays enough since the aim is not only to know the Pareto set but, also, to obtain one solution from this Pareto set. Thus, the definition of a methodology able to select a single solution from the set of non-dominated solutions (or a region of the Pareto frontier), and taking into account the preferences of a Decision Maker (DM), is necessary. A different method, based on a weighted stress function, is proposed. It is able to integrate the user's preferences in order to find the best region of the Pareto frontier accordingly with these preferences. This method was tested on some benchmark test problems, with two and three criteria, and on a polymer extrusion problem. This methodology is able to select efficiently the best Pareto-frontier region for the specified relative importance of the criteria
National Research Council Canada - National Science Library
Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram
2005-01-01
The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...
Pareto optimization in algebraic dynamic programming.
Saule, Cédric; Giegerich, Robert
2015-01-01
Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator [Formula: see text] on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme [Formula: see text] correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined.
A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics
Directory of Open Access Journals (Sweden)
Shan Li
2014-01-01
Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.
General upper bounds on the runtime of parallel evolutionary algorithms.
Lässig, Jörg; Sudholt, Dirk
2014-01-01
We present a general method for analyzing the runtime of parallel evolutionary algorithms with spatially structured populations. Based on the fitness-level method, it yields upper bounds on the expected parallel runtime. This allows for a rigorous estimate of the speedup gained by parallelization. Tailored results are given for common migration topologies: ring graphs, torus graphs, hypercubes, and the complete graph. Example applications for pseudo-Boolean optimization show that our method is easy to apply and that it gives powerful results. In our examples the performance guarantees improve with the density of the topology. Surprisingly, even sparse topologies such as ring graphs lead to a significant speedup for many functions while not increasing the total number of function evaluations by more than a constant factor. We also identify which number of processors lead to the best guaranteed speedups, thus giving hints on how to parameterize parallel evolutionary algorithms.
Multi-objective optimization of a vertical ground source heat pump using evolutionary algorithm
International Nuclear Information System (INIS)
Sayyaadi, Hoseyn; Amlashi, Emad Hadaddi; Amidpour, Majid
2009-01-01
Thermodynamic and thermoeconomic optimization of a vertical ground source heat pump system has been studied. A model based on the energy and exergy analysis is presented here. An economic model of the system is developed according to the Total Revenue Requirement (TRR) method. The objective functions based on the thermodynamic and thermoeconomic analysis are developed. The proposed vertical ground source heat pump system including eight decision variables is considered for optimization. An artificial intelligence technique known as evolutionary algorithm (EA) has been utilized as an optimization method. This approach has been applied to minimize either the total levelized cost of the system product or the exergy destruction of the system. Three levels of optimization including thermodynamic single objective, thermoeconomic single objective and multi-objective optimizations are performed. In Multi-objective optimization, both thermodynamic and thermoeconomic objectives are considered, simultaneously. In the case of multi-objective optimization, an example of decision-making process for selection of the final solution from available optimal points on Pareto frontier is presented. The results obtained using the various optimization approaches are compared and discussed. Further, the sensitivity of optimized systems to the interest rate, to the annual number of operating hours and to the electricity cost are studied in detail.
A possibilistic approach to rotorcraft design through a multi-objective evolutionary algorithm
Chae, Han Gil
Most of the engineering design processes in use today in the field may be considered as a series of successive decision making steps. The decision maker uses information at hand, determines the direction of the procedure, and generates information for the next step and/or other decision makers. However, the information is often incomplete, especially in the early stages of the design process of a complex system. As the complexity of the system increases, uncertainties eventually become unmanageable using traditional tools. In such a case, the tools and analysis values need to be "softened" to account for the designer's intuition. One of the methods that deals with issues of intuition and incompleteness is possibility theory. Through the use of possibility theory coupled with fuzzy inference, the uncertainties estimated by the intuition of the designer are quantified for design problems. By involving quantified uncertainties in the tools, the solutions can represent a possible set, instead of a crisp spot, for predefined levels of certainty. From a different point of view, it is a well known fact that engineering design is a multi-objective problem or a set of such problems. The decision maker aims to find satisfactory solutions, sometimes compromising the objectives that conflict with each other. Once the candidates of possible solutions are generated, a satisfactory solution can be found by various decision-making techniques. A number of multi-objective evolutionary algorithms (MOEAs) have been developed, and can be found in the literature, which are capable of generating alternative solutions and evaluating multiple sets of solutions in one single execution of an algorithm. One of the MOEA techniques that has been proven to be very successful for this class of problems is the strength Pareto evolutionary algorithm (SPEA) which falls under the dominance-based category of methods. The Pareto dominance that is used in SPEA, however, is not enough to account for the
EFFICIENT MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR JOB SHOP SCHEDULING
Institute of Scientific and Technical Information of China (English)
Lei Deming; Wu Zhiming
2005-01-01
A new representation method is first presented based on priority rules. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict occurring in the corresponding machine is resolved by the corresponding priority rule. Then crowding-measure multi-objective evolutionary algorithm (CMOEA) is designed,in which both archive maintenance and fitness assignment use crowding measure. Finally the comparisons between CMOEA and SPEA in solving 15 scheduling problems demonstrate that CMOEA is suitable to job shop scheduling.
Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.
Yamada, N; Nishikawa, T
2010-06-21
In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.
Physical Mapping Using Simulated Annealing and Evolutionary Algorithms
DEFF Research Database (Denmark)
Vesterstrøm, Jacob Svaneborg
2003-01-01
optimization method when searching for an ordering of the fragments in PM. In this paper, we applied an evolutionary algorithm to the problem, and compared its performance to that of SA and local search on simulated PM data, in order to determine the important factors in finding a good ordering of the segments....... The analysis highlights the importance of a good PM model, a well-correlated fitness function, and high quality hybridization data. We suggest that future work in PM should focus on design of more reliable fitness functions and on developing error-screening algorithms....
Parameterless evolutionary algorithm applied to the nuclear reload problem
International Nuclear Information System (INIS)
Caldas, Gustavo Henrique Flores; Schirru, Roberto
2008-01-01
In this work, an evolutionary algorithm with no parameters called FPBIL (parameter free PBIL) is developed based on PBIL (population-based incremental learning). Moreover, the analysis reveals how the parameters from PBIL can be replaced by self-adaptable mechanisms which appear from the radically different form by which the evolution is processed. Despite the advantages, the FPBIL reveals itself compact and relatively modest in the use of computational resources. The FPBIL is then applied to the nuclear reload problem. The experimental results observed are compared to those of other works and corroborate to affirm the superiority of the new algorithm
Analog Group Delay Equalizers Design Based on Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
M. Laipert
2006-04-01
Full Text Available This paper deals with a design method of the analog all-pass filter designated for equalization of the group delay frequency response of the analog filter. This method is based on usage of evolutionary algorithm, the Differential Evolution algorithm in particular. We are able to design such equalizers to be obtained equal-ripple group delay frequency response in the pass-band of the low-pass filter. The procedure works automatically without an input estimation. The method is presented on solving practical examples.
Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
Smith, Robert W; van Sluijs, Bob; Fleck, Christian
2017-12-02
Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.
International Nuclear Information System (INIS)
Shojaeefard, Mohammad Hasan; Behnagh, Reza Abdi; Akbari, Mostafa; Givi, Mohammad Kazem Besharati; Farhani, Foad
2013-01-01
Highlights: ► Defect-free friction stir welds have been produced for AA5083-O/AA7075-O. ► Back-propagation was sufficient for predicting hardness and tensile strength. ► A hybrid multi-objective algorithm is proposed to deal with this MOP. ► Multi-objective particle swarm optimization was used to find the Pareto solutions. ► TOPSIS is used to rank the given alternatives of the Pareto solutions. -- Abstract: Friction Stir Welding (FSW) has been successfully used to weld similar and dissimilar cast and wrought aluminium alloys, especially for aircraft aluminium alloys, that generally present with low weldability by the traditional fusion welding process. This paper focuses on the microstructural and mechanical properties of the Friction Stir Welding (FSW) of AA7075-O to AA5083-O aluminium alloys. Weld microstructures, hardness and tensile properties were evaluated in as-welded condition. Tensile tests indicated that mechanical properties of the joint were better than in the base metals. An Artificial Neural Network (ANN) model was developed to simulate the correlation between the Friction Stir Welding parameters and mechanical properties. Performance of the ANN model was excellent and the model was employed to predict the ultimate tensile strength and hardness of butt joint of AA7075–AA5083 as functions of weld and rotational speeds. The multi-objective particle swarm optimization was used to obtain the Pareto-optimal set. Finally, the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) was applied to determine the best compromised solution.
Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.
Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj
2016-01-01
The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.
Virus evolutionary genetic algorithm for task collaboration of logistics distribution
Ning, Fanghua; Chen, Zichen; Xiong, Li
2005-12-01
In order to achieve JIT (Just-In-Time) level and clients' maximum satisfaction in logistics collaboration, a Virus Evolutionary Genetic Algorithm (VEGA) was put forward under double constraints of logistics resource and operation sequence. Based on mathematic description of a multiple objective function, the algorithm was designed to schedule logistics tasks with different due dates and allocate them to network members. By introducing a penalty item, make span and customers' satisfaction were expressed in fitness function. And a dynamic adaptive probability of infection was used to improve performance of local search. Compared to standard Genetic Algorithm (GA), experimental result illustrates the performance superiority of VEGA. So the VEGA can provide a powerful decision-making technique for optimizing resource configuration in logistics network.
An Evolutionary Algorithm to Mine High-Utility Itemsets
Directory of Open Access Journals (Sweden)
Jerry Chun-Wei Lin
2015-01-01
Full Text Available High-utility itemset mining (HUIM is a critical issue in recent years since it can be used to reveal the profitable products by considering both the quantity and profit factors instead of frequent itemset mining (FIM of association rules (ARs. In this paper, an evolutionary algorithm is presented to efficiently mine high-utility itemsets (HUIs based on the binary particle swarm optimization. A maximal pattern (MP-tree strcutrue is further designed to solve the combinational problem in the evolution process. Substantial experiments on real-life datasets show that the proposed binary PSO-based algorithm has better results compared to the state-of-the-art GA-based algorithm.
Fast stochastic algorithm for simulating evolutionary population dynamics
Tsimring, Lev; Hasty, Jeff; Mather, William
2012-02-01
Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.
A Novel Evolutionary Algorithm Inspired by Beans Dispersal
Directory of Open Access Journals (Sweden)
Xiaoming Zhang
2013-02-01
Full Text Available Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wetsarsquo; research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications.
Directory of Open Access Journals (Sweden)
Enrique Canessa
2014-01-01
Full Text Available Se presenta un Algoritmo Genético de Pareto (AGP, que encuentra la frontera de Pareto en problemas de diseño robusto para sistemas multiobjetivo. El AGP fue diseñado para ser aplicado usando el método de Diseño de Parámetros de Taguchi, el cual es el método más frecuentemente empleado por profesionales para ejecutar diseño robusto. El AGP se probó con datos obtenidos de un sistema real con una respuesta y de un simulador de procesos multiobjetivo con muchos factores de control y ruido. En todos los casos, el AGP entregó soluciones óptimas que cumplen con los objetivos del diseño robusto. Además, la discusión de resultados muestra que tener dichas soluciones ayuda en la selección de las mejores a ser implementadas en el sistema bajo estudio, especialmente cuando el sistema tiene muchos factores de control y salidas.
Economic modeling using evolutionary algorithms : the effect of binary encoding of strategies
Waltman, L.R.; Eck, van N.J.; Dekker, Rommert; Kaymak, U.
2011-01-01
We are concerned with evolutionary algorithms that are employed for economic modeling purposes. We focus in particular on evolutionary algorithms that use a binary encoding of strategies. These algorithms, commonly referred to as genetic algorithms, are popular in agent-based computational economics
Comparison of evolutionary algorithms in gene regulatory network model inference.
LENUS (Irish Health Repository)
2010-01-01
ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.
The wind power prediction research based on mind evolutionary algorithm
Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina
2018-04-01
When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.
Swarm, genetic and evolutionary programming algorithms applied to multiuser detection
Directory of Open Access Journals (Sweden)
Paul Jean Etienne Jeszensky
2005-02-01
Full Text Available In this paper, the particles swarm optimization technique, recently published in the literature, and applied to Direct Sequence/Code Division Multiple Access systems (DS/CDMA with multiuser detection (MuD is analyzed, evaluated and compared. The Swarm algorithm efficiency when applied to the DS-CDMA multiuser detection (Swarm-MuD is compared through the tradeoff performance versus computational complexity, being the complexity expressed in terms of the number of necessary operations in order to reach the performance obtained through the optimum detector or the Maximum Likelihood detector (ML. The comparison is accomplished among the genetic algorithm, evolutionary programming with cloning and Swarm algorithm under the same simulation basis. Additionally, it is proposed an heuristics-MuD complexity analysis through the number of computational operations. Finally, an analysis is carried out for the input parameters of the Swarm algorithm in the attempt to find the optimum parameters (or almost-optimum for the algorithm applied to the MuD problem.
Evolutionary Pseudo-Relaxation Learning Algorithm for Bidirectional Associative Memory
Institute of Scientific and Technical Information of China (English)
Sheng-Zhi Du; Zeng-Qiang Chen; Zhu-Zhi Yuan
2005-01-01
This paper analyzes the sensitivity to noise in BAM (Bidirectional Associative Memory), and then proves the noise immunity of BAM relates not only to the minimum absolute value of net inputs (MAV) but also to the variance of weights associated with synapse connections. In fact, it is a positive monotonically increasing function of the quotient of MAV divided by the variance of weights. Besides, the performance of pseudo-relaxation method depends on learning parameters (λ and ζ), but the relation of them is not linear. So it is hard to find a best combination of λ and ζ which leads to the best BAM performance. And it is obvious that pseudo-relaxation is a kind of local optimization method, so it cannot guarantee to get the global optimal solution. In this paper, a novel learning algorithm EPRBAM (evolutionary psendo-relaxation learning algorithm for bidirectional association memory) employing genetic algorithm and pseudo-relaxation method is proposed to get feasible solution of BAM weight matrix. This algorithm uses the quotient as the fitness of each individual and employs pseudo-relaxation method to adjust individual solution when it does not satisfy constraining condition any more after genetic operation. Experimental results show this algorithm improves noise immunity of BAM greatly. At the same time, EPRBAM does not depend on learning parameters and can get global optimal solution.
Nouiri, Issam
2017-11-01
This paper presents the development of multi-objective Genetic Algorithms to optimize chlorination design and management in drinking water networks (DWN). Three objectives have been considered: the improvement of the chlorination uniformity (healthy objective), the minimization of chlorine booster stations number, and the injected chlorine mass (economic objectives). The problem has been dissociated in medium and short terms ones. The proposed methodology was tested on hypothetical and real DWN. Results proved the ability of the developed optimization tool to identify relationships between the healthy and economic objectives as Pareto fronts. The proposed approach was efficient in computing solutions ensuring better chlorination uniformity while requiring the weakest injected chlorine mass when compared to other approaches. For the real DWN studied, chlorination optimization has been crowned by great improvement of free-chlorine-dosing uniformity and by a meaningful chlorine mass reduction, in comparison with the conventional chlorination.
Nuclear fuel management optimization using adaptive evolutionary algorithms with heuristics
International Nuclear Information System (INIS)
Axmann, J.K.; Van de Velde, A.
1996-01-01
Adaptive Evolutionary Algorithms in combination with expert knowledge encoded in heuristics have proved to be a robust and powerful optimization method for the design of optimized PWR fuel loading pattern. Simple parallel algorithmic structures coupled with a low amount of communications between computer processor units in use makes it possible for workstation clusters to be employed efficiently. The extension of classic evolution strategies not only by new and alternative methods but also by the inclusion of heuristics with effects on the exchange probabilities of the fuel assemblies at specific core positions leads to the RELOPAT optimization code of the Technical University of Braunschweig. In combination with the new, neutron-physical 3D nodal core simulator PRISM developed by SIEMENS the PRIMO loading pattern optimization system has been designed. Highly promising results in the recalculation of known reload plans for German PWR's new lead to a commercially usable program. (author)
Savsani, Vimal; Patel, Vivek; Gadhvi, Bhargav; Tawhid, Mohamed
2017-01-01
Most of the modern multiobjective optimization algorithms are based on the search technique of genetic algorithms; however the search techniques of other recently developed metaheuristics are emerging topics among researchers. This paper proposes a novel multiobjective optimization algorithm named multiobjective heat transfer search (MOHTS) algorithm, which is based on the search technique of heat transfer search (HTS) algorithm. MOHTS employs the elitist nondominated sorting and crowding dis...
Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization
Directory of Open Access Journals (Sweden)
Weishang Gao
2013-01-01
Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.
Françoise Benz
2004-01-01
ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on natural annealing processes or Evolutionary Computation, based on biological evolution processes. Geneti...
A Novel Evolutionary Algorithm for Designing Robust Analog Filters
Directory of Open Access Journals (Sweden)
Shaobo Li
2018-03-01
Full Text Available Designing robust circuits that withstand environmental perturbation and device degradation is critical for many applications. Traditional robust circuit design is mainly done by tuning parameters to improve system robustness. However, the topological structure of a system may set a limit on the robustness achievable through parameter tuning. This paper proposes a new evolutionary algorithm for robust design that exploits the open-ended topological search capability of genetic programming (GP coupled with bond graph modeling. We applied our GP-based robust design (GPRD algorithm to evolve robust lowpass and highpass analog filters. Compared with a traditional robust design approach based on a state-of-the-art real-parameter genetic algorithm (GA, our GPRD algorithm with a fitness criterion rewarding robustness, with respect to parameter perturbations, can evolve more robust filters than what was achieved through parameter tuning alone. We also find that inappropriate GA tuning may mislead the search process and that multiple-simulation and perturbed fitness evaluation methods for evolving robustness have complementary behaviors with no absolute advantage of one over the other.
Multi-objective mixture-based iterated density estimation evolutionary algorithms
Thierens, D.; Bosman, P.A.N.
2001-01-01
We propose an algorithm for multi-objective optimization using a mixture-based iterated density estimation evolutionary algorithm (MIDEA). The MIDEA algorithm is a prob- abilistic model building evolutionary algo- rithm that constructs at each generation a mixture of factorized probability
Improved multilayer OLED architecture using evolutionary genetic algorithm
International Nuclear Information System (INIS)
Quirino, W.G.; Teixeira, K.C.; Legnani, C.; Calil, V.L.; Messer, B.; Neto, O.P. Vilela; Pacheco, M.A.C.; Cremona, M.
2009-01-01
Organic light-emitting diodes (OLEDs) constitute a new class of emissive devices, which present high efficiency and low voltage operation, among other advantages over current technology. Multilayer architecture (M-OLED) is generally used to optimize these devices, specially overcoming the suppression of light emission due to the exciton recombination near the metal layers. However, improvement in recombination, transport and charge injection can also be achieved by blending electron and hole transporting layers into the same one. Graded emissive region devices can provide promising results regarding quantum and power efficiency and brightness, as well. The massive number of possible model configurations, however, suggests that a search algorithm would be more suitable for this matter. In this work, multilayer OLEDs were simulated and fabricated using Genetic Algorithms (GAs) as evolutionary strategy to improve their efficiency. Genetic Algorithms are stochastic algorithms based on genetic inheritance and Darwinian strife to survival. In our simulations, it was assumed a 50 nm width graded region, divided into five equally sized layers. The relative concentrations of the materials within each layer were optimized to obtain the lower V/J 0.5 ratio, where V is the applied voltage and J the current density. The best M-OLED architecture obtained by genetic algorithm presented a V/J 0.5 ratio nearly 7% lower than the value reported in the literature. In order to check the experimental validity of the improved results obtained in the simulations, two M-OLEDs with different architectures were fabricated by thermal deposition in high vacuum environment. The results of the comparison between simulation and some experiments are presented and discussed.
ANTQ evolutionary algorithm applied to nuclear fuel reload problem
International Nuclear Information System (INIS)
Machado, Liana; Schirru, Roberto
2000-01-01
Nuclear fuel reload optimization is a NP-complete combinatorial optimization problem where the aim is to find fuel rods' configuration that maximizes burnup or minimizes the power peak factor. For decades this problem was solved exclusively using an expert's knowledge. From the eighties, however, there have been efforts to automatize fuel reload. The first relevant effort used Simulated Annealing, but more recent publications show Genetic Algorithm's (GA) efficiency on this problem's solution. Following this direction, our aim is to optimize nuclear fuel reload using Ant-Q, a reinforcement learning algorithm based on the Cellular Computing paradigm. Ant-Q's results on the Travelling Salesmen Problem, which is conceptually similar to fuel reload, are better than the GA's ones. Ant-Q was tested on fuel reload by the simulation of the first cycle in-out reload of Bibils, a 193 fuel element PWR. Comparing An-Q's result with the GA's ones, it can b seen that even without a local heuristics, the former evolutionary algorithm can be used to solve the nuclear fuel reload problem. (author)
Pareto-optimal phylogenetic tree reconciliation.
Libeskind-Hadas, Ran; Wu, Yi-Chieh; Bansal, Mukul S; Kellis, Manolis
2014-06-15
Phylogenetic tree reconciliation is a widely used method for reconstructing the evolutionary histories of gene families and species, hosts and parasites and other dependent pairs of entities. Reconciliation is typically performed using maximum parsimony, in which each evolutionary event type is assigned a cost and the objective is to find a reconciliation of minimum total cost. It is generally understood that reconciliations are sensitive to event costs, but little is understood about the relationship between event costs and solutions. Moreover, choosing appropriate event costs is a notoriously difficult problem. We address this problem by giving an efficient algorithm for computing Pareto-optimal sets of reconciliations, thus providing the first systematic method for understanding the relationship between event costs and reconciliations. This, in turn, results in new techniques for computing event support values and, for cophylogenetic analyses, performing robust statistical tests. We provide new software tools and demonstrate their use on a number of datasets from evolutionary genomic and cophylogenetic studies. Our Python tools are freely available at www.cs.hmc.edu/∼hadas/xscape. . © The Author 2014. Published by Oxford University Press.
Directory of Open Access Journals (Sweden)
Fuqing Zhao
2016-01-01
Full Text Available A fixed evolutionary mechanism is usually adopted in the multiobjective evolutionary algorithms and their operators are static during the evolutionary process, which causes the algorithm not to fully exploit the search space and is easy to trap in local optima. In this paper, a SPEA2 algorithm which is based on adaptive selection evolution operators (AOSPEA is proposed. The proposed algorithm can adaptively select simulated binary crossover, polynomial mutation, and differential evolution operator during the evolutionary process according to their contribution to the external archive. Meanwhile, the convergence performance of the proposed algorithm is analyzed with Markov chain. Simulation results on the standard benchmark functions reveal that the performance of the proposed algorithm outperforms the other classical multiobjective evolutionary algorithms.
Directory of Open Access Journals (Sweden)
Rajesh Kumar
2016-06-01
Full Text Available Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is selected using Fuzzy, TOPSIS, LINMAP and Shannon’s entropy decision making methods. Triple objective evolutionary approach applied to the proposed model gives power output, thermal efficiency, ecological function as (53.89 kW, 0.1611, −142 kW which are 29.78%, 25.86% and 21.13% lower in comparison with reversible system. Furthermore, the present study reflects the effect of various heat capacitance rates and component efficiencies on triple objectives in graphical custom. Finally, with the aim of error investigation, average and maximum errors of obtained results are computed.
Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm
Directory of Open Access Journals (Sweden)
O. G. Monahov
2014-01-01
Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously
GENERALIZED DOUBLE PARETO SHRINKAGE.
Armagan, Artin; Dunson, David B; Lee, Jaeyong
2013-01-01
We propose a generalized double Pareto prior for Bayesian shrinkage estimation and inferences in linear models. The prior can be obtained via a scale mixture of Laplace or normal distributions, forming a bridge between the Laplace and Normal-Jeffreys' priors. While it has a spike at zero like the Laplace density, it also has a Student's t -like tail behavior. Bayesian computation is straightforward via a simple Gibbs sampling algorithm. We investigate the properties of the maximum a posteriori estimator, as sparse estimation plays an important role in many problems, reveal connections with some well-established regularization procedures, and show some asymptotic results. The performance of the prior is tested through simulations and an application.
The Research of Disease Spots Extraction Based on Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Kangshun Li
2017-01-01
Full Text Available According to the characteristics of maize disease spot performance in the image, this paper designs two-histogram segmentation method based on evolutionary algorithm, which combined with the analysis of image of maize diseases and insect pests, with full consideration of color and texture characteristic of the lesion of pests and diseases, the chroma and gray image, composed of two tuples to build a two-dimensional histogram, solves the problem of one-dimensional histograms that cannot be clearly divided into target and background bimodal distribution and improved the traditional two-dimensional histogram application in pest damage lesion extraction. The chromosome coding suitable for the characteristics of lesion image is designed based on second segmentation of the genetic algorithm Otsu. Determining initial population with analysis results of lesion image, parallel selection, optimal preservation strategy, and adaptive mutation operator are used to improve the search efficiency. Finally, by setting the fluctuation threshold, we continue to search for the best threshold in the range of fluctuations for implementation of global search and local search.
Optimum oil production planning using infeasibility driven evolutionary algorithm.
Singh, Hemant Kumar; Ray, Tapabrata; Sarker, Ruhul
2013-01-01
In this paper, we discuss a practical oil production planning optimization problem. For oil wells with insufficient reservoir pressure, gas is usually injected to artificially lift oil, a practice commonly referred to as enhanced oil recovery (EOR). The total gas that can be used for oil extraction is constrained by daily availability limits. The oil extracted from each well is known to be a nonlinear function of the gas injected into the well and varies between wells. The problem is to identify the optimal amount of gas that needs to be injected into each well to maximize the amount of oil extracted subject to the constraint on the total daily gas availability. The problem has long been of practical interest to all major oil exploration companies as it has the potential to derive large financial benefit. In this paper, an infeasibility driven evolutionary algorithm is used to solve a 56 well reservoir problem which demonstrates its efficiency in solving constrained optimization problems. Furthermore, a multi-objective formulation of the problem is posed and solved using a number of algorithms, which eliminates the need for solving the (single objective) problem on a regular basis. Lastly, a modified single objective formulation of the problem is also proposed, which aims to maximize the profit instead of the quantity of oil. It is shown that even with a lesser amount of oil extracted, more economic benefits can be achieved through the modified formulation.
Performance Analysis of Evolutionary Algorithms for Steiner Tree Problems.
Lai, Xinsheng; Zhou, Yuren; Xia, Xiaoyun; Zhang, Qingfu
2017-01-01
The Steiner tree problem (STP) aims to determine some Steiner nodes such that the minimum spanning tree over these Steiner nodes and a given set of special nodes has the minimum weight, which is NP-hard. STP includes several important cases. The Steiner tree problem in graphs (GSTP) is one of them. Many heuristics have been proposed for STP, and some of them have proved to be performance guarantee approximation algorithms for this problem. Since evolutionary algorithms (EAs) are general and popular randomized heuristics, it is significant to investigate the performance of EAs for STP. Several empirical investigations have shown that EAs are efficient for STP. However, up to now, there is no theoretical work on the performance of EAs for STP. In this article, we reveal that the (1+1) EA achieves 3/2-approximation ratio for STP in a special class of quasi-bipartite graphs in expected runtime [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] are, respectively, the number of Steiner nodes, the number of special nodes, and the largest weight among all edges in the input graph. We also show that the (1+1) EA is better than two other heuristics on two GSTP instances, and the (1+1) EA may be inefficient on a constructed GSTP instance.
Taxon ordering in phylogenetic trees by means of evolutionary algorithms
Directory of Open Access Journals (Sweden)
Cerutti Francesco
2011-07-01
Full Text Available Abstract Background In in a typical "left-to-right" phylogenetic tree, the vertical order of taxa is meaningless, as only the branch path between them reflects their degree of similarity. To make unresolved trees more informative, here we propose an innovative Evolutionary Algorithm (EA method to search the best graphical representation of unresolved trees, in order to give a biological meaning to the vertical order of taxa. Methods Starting from a West Nile virus phylogenetic tree, in a (1 + 1-EA we evolved it by randomly rotating the internal nodes and selecting the tree with better fitness every generation. The fitness is a sum of genetic distances between the considered taxon and the r (radius next taxa. After having set the radius to the best performance, we evolved the trees with (λ + μ-EAs to study the influence of population on the algorithm. Results The (1 + 1-EA consistently outperformed a random search, and better results were obtained setting the radius to 8. The (λ + μ-EAs performed as well as the (1 + 1, except the larger population (1000 + 1000. Conclusions The trees after the evolution showed an improvement both of the fitness (based on a genetic distance matrix, then close taxa are actually genetically close, and of the biological interpretation. Samples collected in the same state or year moved close each other, making the tree easier to interpret. Biological relationships between samples are also easier to observe.
Preventive maintenance scheduling by variable dimension evolutionary algorithms
International Nuclear Information System (INIS)
Limbourg, Philipp; Kochs, Hans-Dieter
2006-01-01
Black box optimization strategies have been proven to be useful tools for solving complex maintenance optimization problems. There has been a considerable amount of research on the right choice of optimization strategies for finding optimal preventive maintenance schedules. Much less attention is turned to the representation of the schedule to the algorithm. Either the search space is represented as a binary string leading to highly complex combinatorial problem or maintenance operations are defined by regular intervals which may restrict the search space to suboptimal solutions. An adequate representation however is vitally important for result quality. This work presents several nonstandard input representations and compares them to the standard binary representation. An evolutionary algorithm with extensions to handle variable length genomes is used for the comparison. The results demonstrate that two new representations perform better than the binary representation scheme. A second analysis shows that the performance may be even more increased using modified genetic operators. Thus, the choice of alternative representations leads to better results in the same amount of time and without any loss of accuracy
Directory of Open Access Journals (Sweden)
Mengjun Ming
2017-05-01
Full Text Available Due to the scarcity of conventional energy resources and the greenhouse effect, renewable energies have gained more attention. This paper proposes methods for multi-objective optimal design of hybrid renewable energy system (HRES in both isolated-island and grid-connected modes. In each mode, the optimal design aims to find suitable configurations of photovoltaic (PV panels, wind turbines, batteries and diesel generators in HRES such that the system cost and the fuel emission are minimized, and the system reliability/renewable ability (corresponding to different modes is maximized. To effectively solve this multi-objective problem (MOP, the multi-objective evolutionary algorithm based on decomposition (MOEA/D using localized penalty-based boundary intersection (LPBI method is proposed. The algorithm denoted as MOEA/D-LPBI is demonstrated to outperform its competitors on the HRES model as well as a set of benchmarks. Moreover, it effectively obtains a good approximation of Pareto optimal HRES configurations. By further considering a decision maker’s preference, the most satisfied configuration of the HRES can be identified.
EvAg: A Scalable Peer-to-Peer Evolutionary Algorithm
Laredo, J.L.J.; Eiben, A.E.; van Steen, M.R.; Merelo, J.J.
2010-01-01
This paper studies the scalability of an Evolutionary Algorithm (EA) whose population is structured by means of a gossiping protocol and where the evolutionary operators act exclusively within the local neighborhoods. This makes the algorithm inherently suited for parallel execution in a
Sounds unheard of evolutionary algorithms as creative tools for the contemporary composer
DEFF Research Database (Denmark)
Dahlstedt, Palle
2004-01-01
Evolutionary algorithms are studied as tools for generating novel musical material in the form of musical scores and synthesized sounds. The choice of genetic representation defines a space of potential music. This space is explored using evolutionary algorithms, in search of useful musical mater...... composed with the tools described in the thesis are presented....
Françoise Benz
2004-01-01
ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on nat...
International Nuclear Information System (INIS)
Atashkari, K.; Nariman-Zadeh, N.; Goelcue, M.; Khalkhali, A.; Jamali, A.
2007-01-01
The main reason for the efficiency decrease at part load conditions for four-stroke spark-ignition (SI) engines is the flow restriction at the cross-sectional area of the intake system. Traditionally, valve-timing has been designed to optimize operation at high engine-speed and wide open throttle conditions. Several investigations have demonstrated that improvements at part load conditions in engine performance can be accomplished if the valve-timing is variable. Controlling valve-timing can be used to improve the torque and power curve as well as to reduce fuel consumption and emissions. In this paper, a group method of data handling (GMDH) type neural network and evolutionary algorithms (EAs) are firstly used for modelling the effects of intake valve-timing (V t ) and engine speed (N) of a spark-ignition engine on both developed engine torque (T) and fuel consumption (Fc) using some experimentally obtained training and test data. Using such obtained polynomial neural network models, a multi-objective EA (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism are secondly used for Pareto based optimization of the variable valve-timing engine considering two conflicting objectives such as torque (T) and fuel consumption (Fc). The comparison results demonstrate the superiority of the GMDH type models over feedforward neural network models in terms of the statistical measures in the training data, testing data and the number of hidden neurons. Further, it is shown that some interesting and important relationships, as useful optimal design principles, involved in the performance of the variable valve-timing four-stroke spark-ignition engine can be discovered by the Pareto based multi-objective optimization of the polynomial models. Such important optimal principles would not have been obtained without the use of both the GMDH type neural network modelling and the multi-objective Pareto optimization approach
The concept of ageing in evolutionary algorithms: Discussion and inspirations for human ageing.
Dimopoulos, Christos; Papageorgis, Panagiotis; Boustras, George; Efstathiades, Christodoulos
2017-04-01
This paper discusses the concept of ageing as this applies to the operation of Evolutionary Algorithms, and examines its relationship to the concept of ageing as this is understood for human beings. Evolutionary Algorithms constitute a family of search algorithms which base their operation on an analogy from the evolution of species in nature. The paper initially provides the necessary knowledge on the operation of Evolutionary Algorithms, focusing on the use of ageing strategies during the implementation of the evolutionary process. Background knowledge on the concept of ageing, as this is defined scientifically for biological systems, is subsequently presented. Based on this information, the paper provides a comparison between the two ageing concepts, and discusses the philosophical inspirations which can be drawn for human ageing based on the operation of Evolutionary Algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
S. N. Syed Nasir
2018-01-01
Full Text Available This research is focusing on optimal placement and sizing of multiple variable passive filter (VPF to mitigate harmonic distortion due to charging station (CS at 449 bus distribution network. There are 132 units of CS which are scheduled based on user behaviour within 24 hours, with the interval of 15 minutes. By considering the varying of CS patterns and harmonic impact, Modified Lightning Search Algorithm (MLSA is used to find 22 units of VPF coordination, so that less harmonics will be injected from 415 V bus to the medium voltage network and power loss is also reduced. Power system harmonic flow, VPF, CS, battery, and the analysis will be modelled in MATLAB/m-file platform. High Performance Computing (HPC is used to make simulation faster. Pareto-Fuzzy technique is used to obtain sizing of VPF from all nondominated solutions. From the result, the optimal placements and sizes of VPF are able to reduce the maximum THD for voltage and current and also the total apparent losses up to 39.14%, 52.5%, and 2.96%, respectively. Therefore, it can be concluded that the MLSA is suitable method to mitigate harmonic and it is beneficial in minimizing the impact of aggressive CS installation at distribution network.
An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization
Directory of Open Access Journals (Sweden)
Rafał Dreżewski
2017-08-01
Full Text Available Algorithms based on the process of natural evolution are widely used to solve multi-objective optimization problems. In this paper we propose the agent-based co-evolutionary algorithm for multi-objective portfolio optimization. The proposed technique is compared experimentally to the genetic algorithm, co-evolutionary algorithm and a more classical approach—the trend-following algorithm. During the experiments historical data from the Warsaw Stock Exchange is used in order to assess the performance of the compared algorithms. Finally, we draw some conclusions from these experiments, showing the strong and weak points of all the techniques.
Optimization of heat transfer utilizing graph based evolutionary algorithms
International Nuclear Information System (INIS)
Bryden, Kenneth M.; Ashlock, Daniel A.; McCorkle, Douglas S.; Urban, Gregory L.
2003-01-01
This paper examines the use of graph based evolutionary algorithms (GBEAs) for optimization of heat transfer in a complex system. The specific case examined in this paper is the optimization of heat transfer in a biomass cookstove utilizing three-dimensional computational fluid dynamics to generate the fitness function. In this stove hot combustion gases are used to heat a cooking surface. The goal is to provide an even spatial temperature distribution on the cooking surface by redirecting the flow of combustion gases with baffles. The variables in the optimization are the position and size of the baffles, which are described by integer values. GBEAs are a novel type of EA in which a topology or geography is imposed on an evolving population of solutions. The choice of graph controls the rate at which solutions can spread within the population, impacting the diversity of solutions and convergence rate of the EAs. In this study, the choice of graph in the GBEAs changes the number of mating events required for convergence by a factor of approximately 2.25 and the diversity of the population by a factor of 2. These results confirm that by tuning the graph and parameters in GBEAs, computational time can be significantly reduced
Can we reach Pareto optimal outcomes using bottom-up approaches?
V. Sanchez-Anguix (Victor); R. Aydoğan (Reyhan); T. Baarslag (Tim); C.M. Jonker (Catholijn)
2016-01-01
textabstractClassically, disciplines like negotiation and decision making have focused on reaching Pareto optimal solutions due to its stability and efficiency properties. Despite the fact that many practical and theoretical algorithms have successfully attempted to provide Pareto optimal solutions,
Directory of Open Access Journals (Sweden)
G.Subashini
2010-07-01
Full Text Available To meet the increasing computational demands, geographically distributed resources need to be logically coupled to make them work as a unified resource. In analyzing the performance of such distributed heterogeneous computing systems scheduling a set of tasks to the available set of resources for execution is highly important. Task scheduling being an NP-complete problem, use of metaheuristics is more appropriate in obtaining optimal solutions. Schedules thus obtained can be evaluated using several criteria that may conflict with one another which require multi objective problem formulation. This paper investigates the application of an elitist Nondominated Sorting Genetic Algorithm (NSGA-II, to efficiently schedule a set of independent tasks in a heterogeneous distributed computing system. The objectives considered in this paper include minimizing makespan and average flowtime simultaneously. The implementation of NSGA-II algorithm and Weighted-Sum Genetic Algorithm (WSGA has been tested on benchmark instances for distributed heterogeneous systems. As NSGA-II generates a set of Pareto optimal solutions, to verify the effectiveness of NSGA-II over WSGA a fuzzy based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set.
Chevrier , Rémy
2010-01-01
International audience; An approach for speed tuning in railway management is presented for optimizing both travel duration and energy saving. This approach is based on a state-of-the-art evolutionary algorithm with Pareto approach. This algorithm provides a set of diversified non-dominated solutions to the decision-maker. A case study on Gonesse connection (France) is also reported and analyzed.
Nash evolutionary algorithms : Testing problem size in reconstruction problems in frame structures
Greiner, D.; Periaux, Jacques; Emperador, J.M.; Galván, B.; Winter, G.
2016-01-01
The use of evolutionary algorithms has been enhanced in recent years for solving real engineering problems, where the requirements of intense computational calculations are needed, especially when computational engineering simulations are involved (use of finite element method, boundary element method, etc). The coupling of game-theory concepts in evolutionary algorithms has been a recent line of research which could enhance the efficiency of the optimum design procedure and th...
Fixed Parameter Evolutionary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutations
DEFF Research Database (Denmark)
Kratsch, Stefan; Lehre, Per Kristian; Neumann, Frank
2011-01-01
Evolutionary algorithms have been shown to be very successful for a wide range of NP-hard combinatorial optimization problems. We investigate the NP-hard problem of computing a spanning tree that has a maximal number of leaves by evolutionary algorithms in the context of fixed parameter tractabil...... two common mutation operators, we show that an operator related to spanning tree problems leads to an FPT running time in contrast to a general mutation operator that does not have this property....
Tydrichova, Magdalena
2017-01-01
In this project, various available multi-objective optimization evolutionary algorithms were compared considering their performance and distribution of solutions. The main goal was to select the most suitable algorithms for applications in cancer hadron therapy planning. For our purposes, a complex testing and analysis software was developed. Also, many conclusions and hypothesis have been done for the further research.
Comparison of some evolutionary algorithms for optimization of the path synthesis problem
Grabski, Jakub Krzysztof; Walczak, Tomasz; Buśkiewicz, Jacek; Michałowska, Martyna
2018-01-01
The paper presents comparison of the results obtained in a mechanism synthesis by means of some selected evolutionary algorithms. The optimization problem considered in the paper as an example is the dimensional synthesis of the path generating four-bar mechanism. In order to solve this problem, three different artificial intelligence algorithms are employed in this study.
A kNN method that uses a non-natural evolutionary algorithm for ...
African Journals Online (AJOL)
We used this algorithm for component selection of a kNN (k Nearest Neighbor) method for breast cancer prognosis. Results with the UCI prognosis data set show that we can find components that help improve the accuracy of kNN by almost 3%, raising it above 79%. Keywords: kNN; classification; evolutionary algorithm; ...
Directory of Open Access Journals (Sweden)
sadegh sadeghitabas
2015-12-01
Full Text Available Multi-objective problems rarely ever provide a single optimal solution, rather they yield an optimal set of outputs (Pareto fronts. Solving these problems was previously accomplished by using some simplifier methods such as the weighting coefficient method used for converting a multi-objective problem to a single objective function. However, such robust tools as multi-objective meta-heuristic algorithms have been recently developed for solving these problems. The hedging model is one of the classic problems for reservoir operation that is generally employed for mitigating drought impacts in water resources management. According to this method, although it is possible to supply the total planned demands, only portions of the demands are met to save water by allowing small deficits in the current conditions in order to avoid or reduce severe deficits in future. The approach heavily depends on economic and social considerations. In the present study, the meta-heuristic algorithms of NSGA-II, MOPSO, SPEA-II, and AMALGAM are used toward the multi-objective optimization of the hedging model. For this purpose, the rationing factors involved in Taleghan dam operation are optimized over a 35-year statistical period of inflow. There are two objective functions: a minimizing the modified shortage index, and b maximizing the reliability index (i.e., two opposite objectives. The results show that the above algorithms are applicable to a wide range of optimal solutions. Among the algorithms, AMALGAM is found to produce a better Pareto front for the values of the objective function, indicating its more satisfactory performance.
Performance comparison of some evolutionary algorithms on job shop scheduling problems
Mishra, S. K.; Rao, C. S. P.
2016-09-01
Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.
Dynamic Uniform Scaling for Multiobjective Genetic Algorithms
DEFF Research Database (Denmark)
Pedersen, Gerulf; Goldberg, David E.
2004-01-01
Before Multiobjective Evolutionary Algorithms (MOEAs) can be used as a widespread tool for solving arbitrary real world problems there are some salient issues which require further investigation. One of these issues is how a uniform distribution of solutions along the Pareto non-dominated front c...
Dynamic Uniform Scaling for Multiobjective Genetic Algorithms
DEFF Research Database (Denmark)
Pedersen, Gerulf; Goldberg, D.E.
2004-01-01
Before Multiobjective Evolutionary Algorithms (MOEAs) can be used as a widespread tool for solving arbitrary real world problems there are some salient issues which require further investigation. One of these issues is how a uniform distribution of solutions along the Pareto non-dominated front can...
Pareto-Optimal Estimates of California Precipitation Change
Langenbrunner, Baird; Neelin, J. David
2017-12-01
In seeking constraints on global climate model projections under global warming, one commonly finds that different subsets of models perform well under different objective functions, and these trade-offs are difficult to weigh. Here a multiobjective approach is applied to a large set of subensembles generated from the Climate Model Intercomparison Project phase 5 ensemble. We use observations and reanalyses to constrain tropical Pacific sea surface temperatures, upper level zonal winds in the midlatitude Pacific, and California precipitation. An evolutionary algorithm identifies the set of Pareto-optimal subensembles across these three measures, and these subensembles are used to constrain end-of-century California wet season precipitation change. This methodology narrows the range of projections throughout California, increasing confidence in estimates of positive mean precipitation change. Finally, we show how this technique complements and generalizes emergent constraint approaches for restricting uncertainty in end-of-century projections within multimodel ensembles using multiple criteria for observational constraints.
Mitavskiy, Boris; Cannings, Chris
2009-01-01
The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When the mutation rate is positive, the Markov chain modeling of an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution. Rather little is known about the stationary distribution. In fact, the only quantitative facts established so far tell us that the stationary distributions of Markov chains modeling evolutionary algorithms concentrate on uniform populations (i.e., those populations consisting of a repeated copy of the same individual). At the same time, knowing the stationary distribution may provide some information about the expected time it takes for the algorithm to reach a certain solution, assessment of the biases due to recombination and selection, and is of importance in population genetics to assess what is called a "genetic load" (see the introduction for more details). In the recent joint works of the first author, some bounds have been established on the rates at which the stationary distribution concentrates on the uniform populations. The primary tool used in these papers is the "quotient construction" method. It turns out that the quotient construction method can be exploited to derive much more informative bounds on ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely, selection, recombination, and mutation.
Comparing the Robustness of Evolutionary Algorithms on the Basis of Benchmark Functions
Directory of Open Access Journals (Sweden)
DENIZ ULKER, E.
2013-05-01
Full Text Available In real-world optimization problems, even though the solution quality is of great importance, the robustness of the solution is also an important aspect. This paper investigates how the optimization algorithms are sensitive to the variations of control parameters and to the random initialization of the solution set for fixed control parameters. The comparison is performed of three well-known evolutionary algorithms which are Particle Swarm Optimization (PSO algorithm, Differential Evolution (DE algorithm and the Harmony Search (HS algorithm. Various benchmark functions with different characteristics are used for the evaluation of these algorithms. The experimental results show that the solution quality of the algorithms is not directly related to their robustness. In particular, the algorithm that is highly robust can have a low solution quality, or the algorithm that has a high quality of solution can be quite sensitive to the parameter variations.
DNA evolutionary algorithm (DNAEA) for source term identification in convection-diffusion equation
International Nuclear Information System (INIS)
Yang, X-H; Hu, X-X; Shen, Z-Y
2008-01-01
The source identification problem is changed into an optimization problem in this paper. This is a complicated nonlinear optimization problem. It is very intractable with traditional optimization methods. So DNA evolutionary algorithm (DNAEA) is presented to solve the discussed problem. In this algorithm, an initial population is generated by a chaos algorithm. With the shrinking of searching range, DNAEA gradually directs to an optimal result with excellent individuals obtained by DNAEA. The position and intensity of pollution source are well found with DNAEA. Compared with Gray-coded genetic algorithm and pure random search algorithm, DNAEA has rapider convergent speed and higher calculation precision
Evolutionary Algorithms Approach to the Solution of Damage Detection Problems
Salazar Pinto, Pedro Yoajim; Begambre, Oscar
2010-09-01
In this work is proposed a new Self-Configured Hybrid Algorithm by combining the Particle Swarm Optimization (PSO) and a Genetic Algorithm (GA). The aim of the proposed strategy is to increase the stability and accuracy of the search. The central idea is the concept of Guide Particle, this particle (the best PSO global in each generation) transmits its information to a particle of the following PSO generation, which is controlled by the GA. Thus, the proposed hybrid has an elitism feature that improves its performance and guarantees the convergence of the procedure. In different test carried out in benchmark functions, reported in the international literature, a better performance in stability and accuracy was observed; therefore the new algorithm was used to identify damage in a simple supported beam using modal data. Finally, it is worth noting that the algorithm is independent of the initial definition of heuristic parameters.
A hybrid multi-objective evolutionary algorithm approach for ...
Indian Academy of Sciences (India)
V K MANUPATI
for handling sequence- and machine-dependent set-up times ... algorithm has been compared to that of multi-objective particle swarm optimization (MOPSO) and conventional ..... position and cognitive learning factor are considered for.
Self-Organized Criticality and Mass Extinction in Evolutionary Algorithms
DEFF Research Database (Denmark)
Krink, Thiemo; Thomsen, Rene
2001-01-01
The gaps in the fossil record gave rise to the hypothesis that evolution proceeded in long periods of stasis, which alternated with occasional, rapid changes that yielded evolutionary progress. One mechanism that could cause these punctuated bursts is the re-colonbation of changing and deserted...... at a critical state between chaos and order, known as self-organized criticality (SOC). Based on this background, we used SOC to control the size of spatial extinction zones in a diffusion model. The SOC selection process was easy to implement and implied only negligible computational costs. Our results show...
DEFF Research Database (Denmark)
Wang, Yong; Cai, Zixing; Zhou, Yuren
2009-01-01
A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...
Design of synthetic biological logic circuits based on evolutionary algorithm.
Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei
2013-08-01
The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.
Dash, Subhransu; Panigrahi, Bijaya
2015-01-01
The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems (ICAEES 2014) held at Noorul Islam Centre for Higher Education, Kumaracoil, India. These research papers provide the latest developments in the broad area of use of artificial intelligence and evolutionary algorithms in engineering systems. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.
Investigating the Multi-memetic Mind Evolutionary Computation Algorithm Efficiency
Directory of Open Access Journals (Sweden)
M. K. Sakharov
2017-01-01
Full Text Available In solving practically significant problems of global optimization, the objective function is often of high dimensionality and computational complexity and of nontrivial landscape as well. Studies show that often one optimization method is not enough for solving such problems efficiently - hybridization of several optimization methods is necessary.One of the most promising contemporary trends in this field are memetic algorithms (MA, which can be viewed as a combination of the population-based search for a global optimum and the procedures for a local refinement of solutions (memes, provided by a synergy. Since there are relatively few theoretical studies concerning the MA configuration, which is advisable for use to solve the black-box optimization problems, many researchers tend just to adaptive algorithms, which for search select the most efficient methods of local optimization for the certain domains of the search space.The article proposes a multi-memetic modification of a simple SMEC algorithm, using random hyper-heuristics. Presents the software algorithm and memes used (Nelder-Mead method, method of random hyper-sphere surface search, Hooke-Jeeves method. Conducts a comparative study of the efficiency of the proposed algorithm depending on the set and the number of memes. The study has been carried out using Rastrigin, Rosenbrock, and Zakharov multidimensional test functions. Computational experiments have been carried out for all possible combinations of memes and for each meme individually.According to results of study, conducted by the multi-start method, the combinations of memes, comprising the Hooke-Jeeves method, were successful. These results prove a rapid convergence of the method to a local optimum in comparison with other memes, since all methods perform the fixed number of iterations at the most.The analysis of the average number of iterations shows that using the most efficient sets of memes allows us to find the optimal
Optimal Scheduling for Retrieval Jobs in Double-Deep AS/RS by Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Kuo-Yang Wu
2013-01-01
Full Text Available We investigate the optimal scheduling of retrieval jobs for double-deep type Automated Storage and Retrieval Systems (AS/RS in the Flexible Manufacturing System (FMS used in modern industrial production. Three types of evolutionary algorithms, the Genetic Algorithm (GA, the Immune Genetic Algorithm (IGA, and the Particle Swarm Optimization (PSO algorithm, are implemented to obtain the optimal assignments. The objective is to minimize the working distance, that is, the shortest retrieval time travelled by the Storage and Retrieval (S/R machine. Simulation results and comparisons show the advantages and feasibility of the proposed methods.
Artificial neural networks and evolutionary algorithms in engineering design
T. Velsker; M. Eerme; J. Majak; M. Pohlak; K. Karjust
2011-01-01
Purpose: Purpose of this paper is investigation of optimization strategies eligible for solving complex engineering design problems. An aim is to develop numerical algorithms for solving optimal design problems which may contain real and integer variables, a number of local extremes, linear- and non-linear constraints and multiple optimality criteria.Design/methodology/approach: The methodology proposed for solving optimal design problems is based on integrated use of meta-modeling techniques...
Pareto front estimation for decision making.
Giagkiozis, Ioannis; Fleming, Peter J
2014-01-01
The set of available multi-objective optimisation algorithms continues to grow. This fact can be partially attributed to their widespread use and applicability. However, this increase also suggests several issues remain to be addressed satisfactorily. One such issue is the diversity and the number of solutions available to the decision maker (DM). Even for algorithms very well suited for a particular problem, it is difficult-mainly due to the computational cost-to use a population large enough to ensure the likelihood of obtaining a solution close to the DM's preferences. In this paper we present a novel methodology that produces additional Pareto optimal solutions from a Pareto optimal set obtained at the end run of any multi-objective optimisation algorithm for two-objective and three-objective problem instances.
Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che
2014-01-16
To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high
Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.
Bianchi, Emanuela; Doppelbauer, Günther; Filion, Laura; Dijkstra, Marjolein; Kahl, Gerhard
2012-06-07
We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show that the two methods are equally successful and provide consistent results on crystalline phases of patchy particle systems.
Low emittance lattice optimization using a multi-objective evolutionary algorithm
International Nuclear Information System (INIS)
Gao Weiwei; Wang Lin; Li Weimin; He Duohui
2011-01-01
A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. (authors)
Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Richard Lamb
2015-09-01
Full Text Available Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine how the application of a Multiobjective Evolutionary Algorithm (MOEA can work in concert with an existing computational-model to effectively model critical-thinking in the science classroom. An evolutionary algorithm is an algorithm that iteratively optimizes machine learning based computational models. The research question is, does the application of an evolutionary algorithm provide a means to optimize the Student Task and Cognition Model (STAC-M and does the optimized model sufficiently represent and predict teaching and learning outcomes in the science classroom? Within this computational study, the authors outline and simulate the effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the Student Task and Cognition Model (STAC-M a computational model of student cognitive processing in science class developed in 2013, the authors complete a computational experiment which examines the role of cognitive retraining on student learning. Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the potential uses of cognitive and neuropsychological computational modeling in educational research. The authors also outline the limitations and assumptions of computational modeling.
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem
2018-01-01
In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Directory of Open Access Journals (Sweden)
Azmat Ullah
Full Text Available In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA with Interior Point Algorithm (IPA is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
DEFF Research Database (Denmark)
Neumann, Frank; Witt, Carsten
2015-01-01
combinatorial optimization problem, namely makespan scheduling. We study the model of a strong adversary which is allowed to change one job at regular intervals. Furthermore, we investigate the setting of random changes. Our results show that randomized local search and a simple evolutionary algorithm are very...
An Extensible Component-Based Multi-Objective Evolutionary Algorithm Framework
DEFF Research Database (Denmark)
Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2017-01-01
The ability to easily modify the problem definition is currently missing in Multi-Objective Evolutionary Algorithms (MOEA). Existing MOEA frameworks do not support dynamic addition and extension of the problem formulation. The existing frameworks require a re-specification of the problem definition...
Identification of Water Diffusivity of Inorganic Porous Materials Using Evolutionary Algorithms
Czech Academy of Sciences Publication Activity Database
Kočí, J.; Maděra, J.; Jerman, M.; Keppert, M.; Svora, Petr; Černý, R.
2016-01-01
Roč. 113, č. 1 (2016), s. 51-66 ISSN 0169-3913 Institutional support: RVO:61388980 Keywords : Evolutionary algorithms * Water transport * Inorganic porous materials * Inverse analysis Subject RIV: CA - Inorganic Chemistry Impact factor: 2.205, year: 2016
P.A.N. Bosman (Peter); J.A. La Poutré (Han); D. Thierens (Dirk)
2007-01-01
htmlabstractThe focus of this paper is on how to design evolutionary algorithms (EAs) for solving stochastic dynamic optimization problems online, i.e. as time goes by. For a proper design, the EA must not only be capable of tracking shifting optima, it must also take into account the future
Directory of Open Access Journals (Sweden)
Bogna MRÓWCZYŃSKA
2011-01-01
Full Text Available This paper describes an application of an evolutionary algorithm and an artificial immune systems to solve a problem of scheduling an optimal route for waste disposal garbage trucks in its daily operation. Problem of an optimisation is formulated and solved using both methods. The results are presented for an area in one of the Polish cities.
SOLVING THE PROBLEM OF VEHICLE ROUTING BY EVOLUTIONARY ALGORITHM
Directory of Open Access Journals (Sweden)
Remigiusz Romuald Iwańkowicz
2016-03-01
Full Text Available In the presented work the vehicle routing problem is formulated, which concerns planning the collection of wastes by one garbage truck from a certain number of collection points. The garbage truck begins its route in the base point, collects the load in subsequent collection points, then drives the wastes to the disposal site (landfill or sorting plant and returns to the another visited collection points. The filled garbage truck each time goes to the disposal site. It returns to the base after driving wastes from all collection points. Optimization model is based on genetic algorithm where individual is the whole garbage collection plan. Permutation is proposed as the code of the individual.
A Comparison of Evolutionary Algorithms for Tracking Time-Varying Recursive Systems
Directory of Open Access Journals (Sweden)
White Michael S
2003-01-01
Full Text Available A comparison is made of the behaviour of some evolutionary algorithms in time-varying adaptive recursive filter systems. Simulations show that an algorithm including random immigrants outperforms a more conventional algorithm using the breeder genetic algorithm as the mutation operator when the time variation is discontinuous, but neither algorithm performs well when the time variation is rapid but smooth. To meet this deficit, a new hybrid algorithm which uses a hill climber as an additional genetic operator, applied for several steps at each generation, is introduced. A comparison is made of the effect of applying the hill climbing operator a few times to all members of the population or a larger number of times solely to the best individual; it is found that applying to the whole population yields the better results, substantially improved compared with those obtained using earlier methods.
Harmonic elimination in diode-clamped multilevel inverter using evolutionary algorithms
Energy Technology Data Exchange (ETDEWEB)
Barkati, Said [Laboratoire d' analyse des Signaux et Systemes (LASS), Universite de M' sila, BP. 166, rue Ichbilia 28000 M' sila (Algeria); Baghli, Lotfi [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN), CNRS UMR 7030, Universite Henri Poincare Nancy 1, BP. 239, 54506 Vandoeuvre-les-Nancy (France); Berkouk, El Madjid; Boucherit, Mohamed-Seghir [Laboratoire de Commande des Processus (LCP), Ecole Nationale Polytechnique, BP. 182, 10 Avenue Hassen Badi, 16200 El Harrach, Alger (Algeria)
2008-10-15
This paper describes two evolutionary algorithms for the optimized harmonic stepped-waveform technique. Genetic algorithms and particle swarm optimization are applied to compute the switching angles in a three-phase seven-level inverter to produce the required fundamental voltage while, at the same time, specified harmonics are eliminated. Furthermore, these algorithms are also used to solve the starting point problem of the Newton-Raphson conventional method. This combination provides a very effective method for the harmonic elimination technique. This strategy is useful for different structures of seven-level inverters. The diode-clamped topology is considered in this study. (author)
Directory of Open Access Journals (Sweden)
P. Fischer
2018-04-01
Full Text Available This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.
Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network
Xu, Xiao-Feng
2018-03-01
Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.
Directory of Open Access Journals (Sweden)
Yongyi Shou
2014-01-01
Full Text Available A multiagent evolutionary algorithm is proposed to solve the resource-constrained project portfolio selection and scheduling problem. The proposed algorithm has a dual level structure. In the upper level a set of agents make decisions to select appropriate project portfolios. Each agent selects its project portfolio independently. The neighborhood competition operator and self-learning operator are designed to improve the agent’s energy, that is, the portfolio profit. In the lower level the selected projects are scheduled simultaneously and completion times are computed to estimate the expected portfolio profit. A priority rule-based heuristic is used by each agent to solve the multiproject scheduling problem. A set of instances were generated systematically from the widely used Patterson set. Computational experiments confirmed that the proposed evolutionary algorithm is effective for the resource-constrained project portfolio selection and scheduling problem.
A Runtime Analysis of Parallel Evolutionary Algorithms in Dynamic Optimization
DEFF Research Database (Denmark)
Lissovoi, Andrei; Witt, Carsten
2017-01-01
A simple island model with (Formula presented.) islands and migration occurring after every (Formula presented.) iterations is studied on the dynamic fitness function Maze. This model is equivalent to a (Formula presented.) EA if (Formula presented.), i. e., migration occurs during every iteratio.......). The relationship of (Formula presented.), and the ability of the island model to track the optimum is then investigated more closely. Finally, experiments are performed to supplement the asymptotic results, and investigate the impact of the migration topology.......A simple island model with (Formula presented.) islands and migration occurring after every (Formula presented.) iterations is studied on the dynamic fitness function Maze. This model is equivalent to a (Formula presented.) EA if (Formula presented.), i. e., migration occurs during every iteration....... It is proved that even for an increased offspring population size up to (Formula presented.), the (Formula presented.) EA is still not able to track the optimum of Maze. If the migration interval is chosen carefully, the algorithm is able to track the optimum even for logarithmic (Formula presented...
Directory of Open Access Journals (Sweden)
Nurmaulidar Nurmaulidar
2015-04-01
Full Text Available Travelling Salesman Problem (TSP is one of complex optimization problem that is difficult to be solved, and require quite a long time for a large number of cities. Evolutionary algorithm is a precise algorithm used in solving complex optimization problem as it is part of heuristic method. Evolutionary algorithm, like many other algorithms, also experiences a premature convergence phenomenon, whereby variation is eliminated from a population of fairly fit individuals before a complete solution is achieved. Therefore it requires a method to delay the convergence. A specific method of fitness sharing called phenotype fitness sharing has been used in this research. The aim of this research is to find out whether fitness sharing in evolutionary algorithm is able to optimize TSP. There are two concepts of evolutionary algorithm being used in this research. the first one used single elitism and the other one used federated solution. The two concepts had been tested to the method of fitness sharing by using the threshold of 0.25, 0.50 and 0.75. The result was then compared to a non fitness sharing method. The result in this study indicated that by using single elitism concept, fitness sharing was able to give a more optimum result for the data of 100-1000 cities. On the other hand, by using federation solution concept, fitness sharing can yield a more optimum result for the data above 1000 cities, as well as a better solution of data-spreading compared to the method without fitness sharing.
Approximating convex Pareto surfaces in multiobjective radiotherapy planning
International Nuclear Information System (INIS)
Craft, David L.; Halabi, Tarek F.; Shih, Helen A.; Bortfeld, Thomas R.
2006-01-01
Radiotherapy planning involves inherent tradeoffs: the primary mission, to treat the tumor with a high, uniform dose, is in conflict with normal tissue sparing. We seek to understand these tradeoffs on a case-to-case basis, by computing for each patient a database of Pareto optimal plans. A treatment plan is Pareto optimal if there does not exist another plan which is better in every measurable dimension. The set of all such plans is called the Pareto optimal surface. This article presents an algorithm for computing well distributed points on the (convex) Pareto optimal surface of a multiobjective programming problem. The algorithm is applied to intensity-modulated radiation therapy inverse planning problems, and results of a prostate case and a skull base case are presented, in three and four dimensions, investigating tradeoffs between tumor coverage and critical organ sparing
A chaos-based evolutionary algorithm for general nonlinear programming problems
International Nuclear Information System (INIS)
El-Shorbagy, M.A.; Mousa, A.A.; Nasr, S.M.
2016-01-01
In this paper we present a chaos-based evolutionary algorithm (EA) for solving nonlinear programming problems named chaotic genetic algorithm (CGA). CGA integrates genetic algorithm (GA) and chaotic local search (CLS) strategy to accelerate the optimum seeking operation and to speed the convergence to the global solution. The integration of global search represented in genetic algorithm and CLS procedures should offer the advantages of both optimization methods while offsetting their disadvantages. By this way, it is intended to enhance the global convergence and to prevent to stick on a local solution. The inherent characteristics of chaos can enhance optimization algorithms by enabling it to escape from local solutions and increase the convergence to reach to the global solution. Twelve chaotic maps have been analyzed in the proposed approach. The simulation results using the set of CEC’2005 show that the application of chaotic mapping may be an effective strategy to improve the performances of EAs.
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems
Directory of Open Access Journals (Sweden)
Leilei Cao
2016-01-01
Full Text Available A Guiding Evolutionary Algorithm (GEA with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.
The (1+λ) evolutionary algorithm with self-adjusting mutation rate
DEFF Research Database (Denmark)
Doerr, Benjamin; Witt, Carsten; Gießen, Christian
2017-01-01
We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate is then upd......We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate...... is then updated to the rate used in that subpopulation which contains the best offspring. We analyze how the (1 + A) evolutionary algorithm with this self-adjusting mutation rate optimizes the OneMax test function. We prove that this dynamic version of the (1 + A) EA finds the optimum in an expected optimization...... time (number of fitness evaluations) of O(nA/log A + n log n). This time is asymptotically smaller than the optimization time of the classic (1 + A) EA. Previous work shows that this performance is best-possible among all A-parallel mutation-based unbiased black-box algorithms. This result shows...
Cody, B. M.; Gonzalez-Nicolas, A.; Bau, D. A.
2011-12-01
Carbon capture and storage (CCS) has been proposed as a method of reducing global carbon dioxide (CO2) emissions. Although CCS has the potential to greatly retard greenhouse gas loading to the atmosphere while cleaner, more sustainable energy solutions are developed, there is a possibility that sequestered CO2 may leak and intrude into and adversely affect groundwater resources. It has been reported [1] that, while CO2 intrusion typically does not directly threaten underground drinking water resources, it may cause secondary effects, such as the mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. These risks must be fully understood and minimized before CCS project implementation. Combined management of project resources and leakage risk is crucial for the implementation of CCS. In this work, we present a method of: (a) minimizing the total CCS cost, the summation of major project costs with the cost associated with CO2 leakage; and (b) maximizing the mass of injected CO2, for a given proposed sequestration site. Optimization decision variables include the number of CO2 injection wells, injection rates, and injection well locations. The capital and operational costs of injection wells are directly related to injection well depth, location, injection flow rate, and injection duration. The cost of leakage is directly related to the mass of CO2 leaked through weak areas, such as abandoned oil wells, in the cap rock layers overlying the injected formation. Additional constraints on fluid overpressure caused by CO2 injection are imposed to maintain predefined effective stress levels that prevent cap rock fracturing. Here, both mass leakage and fluid overpressure are estimated using two semi-analytical models based upon work by [2,3]. A multi-objective evolutionary algorithm coupled with these semi-analytical leakage flow models is used to determine Pareto-optimal trade-off sets giving minimum total cost vs. maximum mass
Directory of Open Access Journals (Sweden)
Kareema Abed Al-Kadim
2017-12-01
Full Text Available In this paper Rayleigh Pareto distribution have introduced denote by( R_PD. We stated some useful functions. Therefor we give some of its properties like the entropy function, mean, mode, median , variance , the r-th moment about the mean, the rth moment about the origin, reliability, hazard functions, coefficients of variation, of sekeness and of kurtosis. Finally, we estimate the parameters so the aim of this search is to introduce a new distribution
A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks
Directory of Open Access Journals (Sweden)
Sho Fukuda
2014-12-01
Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks
An Analytical Framework for Runtime of a Class of Continuous Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Yushan Zhang
2015-01-01
Full Text Available Although there have been many studies on the runtime of evolutionary algorithms in discrete optimization, relatively few theoretical results have been proposed on continuous optimization, such as evolutionary programming (EP. This paper proposes an analysis of the runtime of two EP algorithms based on Gaussian and Cauchy mutations, using an absorbing Markov chain. Given a constant variation, we calculate the runtime upper bound of special Gaussian mutation EP and Cauchy mutation EP. Our analysis reveals that the upper bounds are impacted by individual number, problem dimension number n, searching range, and the Lebesgue measure of the optimal neighborhood. Furthermore, we provide conditions whereby the average runtime of the considered EP can be no more than a polynomial of n. The condition is that the Lebesgue measure of the optimal neighborhood is larger than a combinatorial calculation of an exponential and the given polynomial of n.
THE APPLICATION OF AN EVOLUTIONARY ALGORITHM TO THE OPTIMIZATION OF A MESOSCALE METEOROLOGICAL MODEL
Energy Technology Data Exchange (ETDEWEB)
Werth, D.; O' Steen, L.
2008-02-11
We show that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root mean square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). We find that the optimization can be efficient with relatively modest computer resources, thus operational implementation is possible. The optimization efficiency, however, is found to depend strongly on the procedure used to perturb the 'child' parameters relative to their 'parents' within the evolutionary algorithm. In addition, the meteorological variables included in the rms error and their weighting are found to be an important factor with respect to finding the global optimum.
International Nuclear Information System (INIS)
Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud
2012-01-01
Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.
Scheduling for the National Hockey League Using a Multi-objective Evolutionary Algorithm
Craig, Sam; While, Lyndon; Barone, Luigi
We describe a multi-objective evolutionary algorithm that derives schedules for the National Hockey League according to three objectives: minimising the teams' total travel, promoting equity in rest time between games, and minimising long streaks of home or away games. Experiments show that the system is able to derive schedules that beat the 2008-9 NHL schedule in all objectives simultaneously, and that it returns a set of schedules that offer a range of trade-offs across the objectives.
Synthesizing multi-objective H2/H-infinity dynamic controller using evolutionary algorithms
DEFF Research Database (Denmark)
Pedersen, Gerulf; Langballe, A.S.; Wisniewski, Rafal
This paper covers the design of an Evolutionary Algorithm (EA), which should be able to synthesize a mixed H2/H-infinity. It will be shown how a system can be expressed as Matrix Inequalities (MI) and these will then be used in the design of the EA. The main objective is to examine whether a mixed...... H2/H-infinity controller is feasible, and if so, how the optimal mixed controller might befound....
Synthesizing mixed H2/H-infinity dynamic controller using evolutionary algorithms
DEFF Research Database (Denmark)
Pedersen, Gerulf; Langballe, A.S.; Wisniewski, Rafal
2001-01-01
This paper covers the design of an Evolutionary Algorithm (EA), which should be able to synthesize a mixed H2/H-infinity. It will be shown how a system can be expressed as Matrix Inequalities (MI) and these will then be used in the design of the EA. The main objective is to examine whether a mixed...... H2/H-infinity controller is feasible, and if so, how the optimal mixed controller might befound....
An Adaptive Evolutionary Algorithm for Traveling Salesman Problem with Precedence Constraints
Directory of Open Access Journals (Sweden)
Jinmo Sung
2014-01-01
Full Text Available Traveling sales man problem with precedence constraints is one of the most notorious problems in terms of the efficiency of its solution approach, even though it has very wide range of industrial applications. We propose a new evolutionary algorithm to efficiently obtain good solutions by improving the search process. Our genetic operators guarantee the feasibility of solutions over the generations of population, which significantly improves the computational efficiency even when it is combined with our flexible adaptive searching strategy. The efficiency of the algorithm is investigated by computational experiments.
DEFF Research Database (Denmark)
Vesterstrøm, Jacob Svaneborg; Thomsen, Rene
2004-01-01
Several extensions to evolutionary algorithms (EAs) and particle swarm optimization (PSO) have been suggested during the last decades offering improved performance on selected benchmark problems. Recently, another search heuristic termed differential evolution (DE) has shown superior performance...... in several real-world applications. In this paper, we evaluate the performance of DE, PSO, and EAs regarding their general applicability as numerical optimization techniques. The comparison is performed on a suite of 34 widely used benchmark problems. The results from our study show that DE generally...... outperforms the other algorithms. However, on two noisy functions, both DE and PSO were outperformed by the EA....
A New Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Complex Networks
Directory of Open Access Journals (Sweden)
Guoqiang Chen
2013-01-01
Full Text Available Community detection in dynamic networks is an important research topic and has received an enormous amount of attention in recent years. Modularity is selected as a measure to quantify the quality of the community partition in previous detection methods. But, the modularity has been exposed to resolution limits. In this paper, we propose a novel multiobjective evolutionary algorithm for dynamic networks community detection based on the framework of nondominated sorting genetic algorithm. Modularity density which can address the limitations of modularity function is adopted to measure the snapshot cost, and normalized mutual information is selected to measure temporal cost, respectively. The characteristics knowledge of the problem is used in designing the genetic operators. Furthermore, a local search operator was designed, which can improve the effectiveness and efficiency of community detection. Experimental studies based on synthetic datasets show that the proposed algorithm can obtain better performance than the compared algorithms.
Analysis of Ant Colony Optimization and Population-Based Evolutionary Algorithms on Dynamic Problems
DEFF Research Database (Denmark)
Lissovoi, Andrei
the dynamic optimum for finite alphabets up to size μ, while MMAS is able to do so for any finite alphabet size. Parallel Evolutionary Algorithms on Maze. We prove that while a (1 + λ) EA is unable to track the optimum of the dynamic fitness function Maze for offspring population size up to λ = O(n1-ε......This thesis presents new running time analyses of nature-inspired algorithms on various dynamic problems. It aims to identify and analyse the features of algorithms and problem classes which allow efficient optimization to occur in the presence of dynamic behaviour. We consider the following...... settings: λ-MMAS on Dynamic Shortest Path Problems. We investigate how in-creasing the number of ants simulated per iteration may help an ACO algorithm to track optimum in a dynamic problem. It is shown that while a constant number of ants per-vertex is sufficient to track some oscillations, there also...
Expert-guided evolutionary algorithm for layout design of complex space stations
Qian, Zhiqin; Bi, Zhuming; Cao, Qun; Ju, Weiguo; Teng, Hongfei; Zheng, Yang; Zheng, Siyu
2017-08-01
The layout of a space station should be designed in such a way that different equipment and instruments are placed for the station as a whole to achieve the best overall performance. The station layout design is a typical nondeterministic polynomial problem. In particular, how to manage the design complexity to achieve an acceptable solution within a reasonable timeframe poses a great challenge. In this article, a new evolutionary algorithm has been proposed to meet such a challenge. It is called as the expert-guided evolutionary algorithm with a tree-like structure decomposition (EGEA-TSD). Two innovations in EGEA-TSD are (i) to deal with the design complexity, the entire design space is divided into subspaces with a tree-like structure; it reduces the computation and facilitates experts' involvement in the solving process. (ii) A human-intervention interface is developed to allow experts' involvement in avoiding local optimums and accelerating convergence. To validate the proposed algorithm, the layout design of one-space station is formulated as a multi-disciplinary design problem, the developed algorithm is programmed and executed, and the result is compared with those from other two algorithms; it has illustrated the superior performance of the proposed EGEA-TSD.
Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm
Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung
2016-07-01
In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.
Directory of Open Access Journals (Sweden)
B. Y. Qu
2017-01-01
Full Text Available Portfolio optimization problems involve selection of different assets to invest in order to maximize the overall return and minimize the overall risk simultaneously. The complexity of the optimal asset allocation problem increases with an increase in the number of assets available to select from for investing. The optimization problem becomes computationally challenging when there are more than a few hundreds of assets to select from. To reduce the complexity of large-scale portfolio optimization, two asset preselection procedures that consider return and risk of individual asset and pairwise correlation to remove assets that may not potentially be selected into any portfolio are proposed in this paper. With these asset preselection methods, the number of assets considered to be included in a portfolio can be increased to thousands. To test the effectiveness of the proposed methods, a Normalized Multiobjective Evolutionary Algorithm based on Decomposition (NMOEA/D algorithm and several other commonly used multiobjective evolutionary algorithms are applied and compared. Six experiments with different settings are carried out. The experimental results show that with the proposed methods the simulation time is reduced while return-risk trade-off performances are significantly improved. Meanwhile, the NMOEA/D is able to outperform other compared algorithms on all experiments according to the comparative analysis.
International Nuclear Information System (INIS)
Zhang Huifeng; Zhou Jianzhong; Zhang Yongchuan; Lu Youlin; Wang Yongqiang
2013-01-01
Highlights: ► Culture belief is integrated into multi-objective differential evolution. ► Chaotic sequence is imported to improve evolutionary population diversity. ► The priority of convergence rate is proved in solving hydrothermal problem. ► The results show the quality and potential of proposed algorithm. - Abstract: A culture belief based multi-objective hybrid differential evolution (CB-MOHDE) is presented to solve short term hydrothermal optimal scheduling with economic emission (SHOSEE) problem. This problem is formulated for compromising thermal cost and emission issue while considering its complicated non-linear constraints with non-smooth and non-convex characteristics. The proposed algorithm integrates a modified multi-objective differential evolutionary algorithm into the computation model of culture algorithm (CA) as well as some communication protocols between population space and belief space, three knowledge structures in belief space are redefined according to these problem-solving characteristics, and in the differential evolution a chaotic factor is embedded into mutation operator for avoiding the premature convergence by enlarging the search scale when the search trajectory reaches local optima. Furthermore, a new heuristic constraint-handling technique is utilized to handle those complex equality and inequality constraints of SHOSEE problem. After the application on hydrothermal scheduling system, the efficiency and stability of the proposed CB-MOHDE is verified by its more desirable results in comparison to other method established recently, and the simulation results also reveal that CB-MOHDE can be a promising alternative for solving SHOSEE.
Dash, Rajashree
2017-11-01
Forecasting purchasing power of one currency with respect to another currency is always an interesting topic in the field of financial time series prediction. Despite the existence of several traditional and computational models for currency exchange rate forecasting, there is always a need for developing simpler and more efficient model, which will produce better prediction capability. In this paper, an evolutionary framework is proposed by using an improved shuffled frog leaping (ISFL) algorithm with a computationally efficient functional link artificial neural network (CEFLANN) for prediction of currency exchange rate. The model is validated by observing the monthly prediction measures obtained for three currency exchange data sets such as USD/CAD, USD/CHF, and USD/JPY accumulated within same period of time. The model performance is also compared with two other evolutionary learning techniques such as Shuffled frog leaping algorithm and Particle Swarm optimization algorithm. Practical analysis of results suggest that, the proposed model developed using the ISFL algorithm with CEFLANN network is a promising predictor model for currency exchange rate prediction compared to other models included in the study.
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher [Electronic and Electrical Engineering Department, Shiraz University of Technology, Shiraz (Iran)
2009-08-15
This paper introduces a robust searching hybrid evolutionary algorithm to solve the multi-objective Distribution Feeder Reconfiguration (DFR). The main objective of the DFR is to minimize the real power loss, deviation of the nodes' voltage, the number of switching operations, and balance the loads on the feeders. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. This paper presents a new approach based on norm3 for the DFR problem. In the proposed method, the objective functions are considered as a vector and the aim is to maximize the distance (norm2) between the objective function vector and the worst objective function vector while the constraints are met. Since the proposed DFR is a multi objective and non-differentiable optimization problem, a new hybrid evolutionary algorithm (EA) based on the combination of the Honey Bee Mating Optimization (HBMO) and the Discrete Particle Swarm Optimization (DPSO), called DPSO-HBMO, is implied to solve it. The results of the proposed reconfiguration method are compared with the solutions obtained by other approaches, the original DPSO and HBMO over different distribution test systems. (author)
Application of evolutionary algorithms for multi-objective optimization in VLSI and embedded systems
2015-01-01
This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design. Many complex engineering optimization problems can be modelled as multi-objective formulations. This book provides an introduction to multi-objective optimization using meta-heuristic algorithms, GA and PSO, and how they can be applied to problems like hardware/software partitioning in embedded systems, circuit partitioning in VLSI, design of operational amplifiers in analog VLSI, design space exploration in high-level synthesis, delay fault testing in VLSI testing, and scheduling in heterogeneous distributed systems. It is shown how, in each case, the various aspects of the EA, namely its representation, and operators like crossover, mutation, etc. can be separately formulated to solve these problems. This book is intended for design engineers and researchers in the field ...
Fanuel, Ibrahim Mwita; Mushi, Allen; Kajunguri, Damian
2018-03-01
This paper analyzes more than 40 papers with a restricted area of application of Multi-Objective Genetic Algorithm, Non-Dominated Sorting Genetic Algorithm-II and Multi-Objective Differential Evolution (MODE) to solve the multi-objective problem in agricultural water management. The paper focused on different application aspects which include water allocation, irrigation planning, crop pattern and allocation of available land. The performance and results of these techniques are discussed. The review finds that there is a potential to use MODE to analyzed the multi-objective problem, the application is more significance due to its advantage of being simple and powerful technique than any Evolutionary Algorithm. The paper concludes with the hopeful new trend of research that demand effective use of MODE; inclusion of benefits derived from farm byproducts and production costs into the model.
International Nuclear Information System (INIS)
Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.
2012-01-01
Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector
O'Hagan, Steve; Knowles, Joshua; Kell, Douglas B.
2012-01-01
Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular genetic markers in experimental breeding programmes (e.g. for improved crops and livestock), nor the question of which organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for which there is a large literature in the field of evolutionary computation (EC), but which has not really been applied in this way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses) by optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have knowledge of where they are in the (genotypic) search space (G-algorithms) with some (albeit well-tuned ones) that do not (F-algorithms). For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and effectiveness, although we recognise that the G-algorithms were not equipped with any ‘prior knowledge’ of epistatic pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available (via Supplementary information). PMID:23185279
DEFF Research Database (Denmark)
Ursem, Rasmus Kjær
population and many generations, which essentially turns the problem into a series of related static problems. To our surprise, the control problem could easily be solved when optimized like this. To further examine this, we compared the EA with a particle swarm and a local search approach, which we...... simulate an evolutionary process where the goal is to evolve solutions by means of crossover, mutation, and selection based on their quality (fitness) with respect to the optimization problem at hand. Evolutionary algorithms (EAs) are highly relevant for industrial applications, because they are capable...... of handling problems with non-linear constraints, multiple objectives, and dynamic components – properties that frequently appear in real-world problems. This thesis presents research in three fundamental areas of EC; fitness function design, methods for parameter control, and techniques for multimodal...
Efficient fractal-based mutation in evolutionary algorithms from iterated function systems
Salcedo-Sanz, S.; Aybar-Ruíz, A.; Camacho-Gómez, C.; Pereira, E.
2018-03-01
In this paper we present a new mutation procedure for Evolutionary Programming (EP) approaches, based on Iterated Function Systems (IFSs). The new mutation procedure proposed consists of considering a set of IFS which are able to generate fractal structures in a two-dimensional phase space, and use them to modify a current individual of the EP algorithm, instead of using random numbers from different probability density functions. We test this new proposal in a set of benchmark functions for continuous optimization problems. In this case, we compare the proposed mutation against classical Evolutionary Programming approaches, with mutations based on Gaussian, Cauchy and chaotic maps. We also include a discussion on the IFS-based mutation in a real application of Tuned Mass Dumper (TMD) location and optimization for vibration cancellation in buildings. In both practical cases, the proposed EP with the IFS-based mutation obtained extremely competitive results compared to alternative classical mutation operators.
A Gaze-Driven Evolutionary Algorithm to Study Aesthetic Evaluation of Visual Symmetry
Directory of Open Access Journals (Sweden)
Alexis D. J. Makin
2016-03-01
Full Text Available Empirical work has shown that people like visual symmetry. We used a gaze-driven evolutionary algorithm technique to answer three questions about symmetry preference. First, do people automatically evaluate symmetry without explicit instruction? Second, is perfect symmetry the best stimulus, or do people prefer a degree of imperfection? Third, does initial preference for symmetry diminish after familiarity sets in? Stimuli were generated as phenotypes from an algorithmic genotype, with genes for symmetry (coded as deviation from a symmetrical template, deviation–symmetry, DS gene and orientation (0° to 90°, orientation, ORI gene. An eye tracker identified phenotypes that were good at attracting and retaining the gaze of the observer. Resulting fitness scores determined the genotypes that passed to the next generation. We recorded changes to the distribution of DS and ORI genes over 20 generations. When participants looked for symmetry, there was an increase in high-symmetry genes. When participants looked for the patterns they preferred, there was a smaller increase in symmetry, indicating that people tolerated some imperfection. Conversely, there was no increase in symmetry during free viewing, and no effect of familiarity or orientation. This work demonstrates the viability of the evolutionary algorithm approach as a quantitative measure of aesthetic preference.
Ahmed, Qasim Zeeshan
2015-02-01
In this paper, a new detector is proposed for an amplify-and-forward (AF) relaying system. The detector is designed to minimize the symbol-error-rate (SER) of the system. The SER surface is non-linear and may have multiple minimas, therefore, designing an SER detector for cooperative communications becomes an optimization problem. Evolutionary based algorithms have the capability to find the global minima, therefore, evolutionary algorithms such as particle swarm optimization (PSO) and differential evolution (DE) are exploited to solve this optimization problem. The performance of proposed detectors is compared with the conventional detectors such as maximum likelihood (ML) and minimum mean square error (MMSE) detector. In the simulation results, it can be observed that the SER performance of the proposed detectors is less than 2 dB away from the ML detector. Significant improvement in SER performance is also observed when comparing with the MMSE detector. The computational complexity of the proposed detector is much less than the ML and MMSE algorithms. Moreover, in contrast to ML and MMSE detectors, the computational complexity of the proposed detectors increases linearly with respect to the number of relays.
Multi-objective optimization of HVAC system with an evolutionary computation algorithm
International Nuclear Information System (INIS)
Kusiak, Andrew; Tang, Fan; Xu, Guanglin
2011-01-01
A data-mining approach for the optimization of a HVAC (heating, ventilation, and air conditioning) system is presented. A predictive model of the HVAC system is derived by data-mining algorithms, using a dataset collected from an experiment conducted at a research facility. To minimize the energy while maintaining the corresponding IAQ (indoor air quality) within a user-defined range, a multi-objective optimization model is developed. The solutions of this model are set points of the control system derived with an evolutionary computation algorithm. The controllable input variables - supply air temperature and supply air duct static pressure set points - are generated to reduce the energy use. The results produced by the evolutionary computation algorithm show that the control strategy saves energy by optimizing operations of an HVAC system. -- Highlights: → A data-mining approach for the optimization of a heating, ventilation, and air conditioning (HVAC) system is presented. → The data used in the project has been collected from an experiment conducted at an energy research facility. → The approach presented in the paper leads to accomplishing significant energy savings without compromising the indoor air quality. → The energy savings are accomplished by computing set points for the supply air temperature and the supply air duct static pressure.
Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad
2008-04-01
To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology
Evolutionary Cellular Automata for Image Segmentation and Noise Filtering Using Genetic Algorithms
Directory of Open Access Journals (Sweden)
Sihem SLATNIA
2011-01-01
Full Text Available We use an evolutionary process to seek a specialized set of rules among a wide range of rules to be used by Cellular Automata (CA for a range of tasks,extracting edges in a given gray or colour image, noise filtering applied to black-white image. This is the best set of local rules determine the future state of CA in an asynchronous way. The Genetic Algorithm (GA is applied to search the best CA rules that can realize the best edge detection and noise filtering.
Evolutionary Cellular Automata for Image Segmentation and Noise Filtering Using Genetic Algorithms
Directory of Open Access Journals (Sweden)
Okba Kazar
2011-01-01
Full Text Available We use an evolutionary process to seek a specialized set of rules among a wide range of rules to be used by Cellular Automata (CA for a range of tasks, extracting edges in a given gray or colour image, noise filtering applied to black-white image. This is the best set of local rules determine the future state of CA in an asynchronous way. The Genetic Algorithm (GA is applied to search the best CA rules that can realize the best edge detection and noise filtering.
Creating ensembles of oblique decision trees with evolutionary algorithms and sampling
Cantu-Paz, Erick [Oakland, CA; Kamath, Chandrika [Tracy, CA
2006-06-13
A decision tree system that is part of a parallel object-oriented pattern recognition system, which in turn is part of an object oriented data mining system. A decision tree process includes the step of reading the data. If necessary, the data is sorted. A potential split of the data is evaluated according to some criterion. An initial split of the data is determined. The final split of the data is determined using evolutionary algorithms and statistical sampling techniques. The data is split. Multiple decision trees are combined in ensembles.
A Problem-Reduction Evolutionary Algorithm for Solving the Capacitated Vehicle Routing Problem
Directory of Open Access Journals (Sweden)
Wanfeng Liu
2015-01-01
Full Text Available Assessment of the components of a solution helps provide useful information for an optimization problem. This paper presents a new population-based problem-reduction evolutionary algorithm (PREA based on the solution components assessment. An individual solution is regarded as being constructed by basic elements, and the concept of acceptability is introduced to evaluate them. The PREA consists of a searching phase and an evaluation phase. The acceptability of basic elements is calculated in the evaluation phase and passed to the searching phase. In the searching phase, for each individual solution, the original optimization problem is reduced to a new smaller-size problem. With the evolution of the algorithm, the number of common basic elements in the population increases until all individual solutions are exactly the same which is supposed to be the near-optimal solution of the optimization problem. The new algorithm is applied to a large variety of capacitated vehicle routing problems (CVRP with customers up to nearly 500. Experimental results show that the proposed algorithm has the advantages of fast convergence and robustness in solution quality over the comparative algorithms.
Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan
2017-07-01
Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis of Steered Flat-top Beam Pattern Using Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
D. Mandal
2016-12-01
Full Text Available In this paper a pattern synthesis method based on Evolutionary Algorithm is presented. A Flat-top beam pattern has been generated from a concentric ring array of isotropic elements by finding out the optimum set of elements amplitudes and phases using Differential Evolution algorithm. The said pattern is generated in three predefined azimuth planes instate of a single phi plane and also verified for a range of azimuth plane for the same optimum excitations. The main beam is steered to an elevation angle of 30 degree with lower peak SLL and ripple. Dynamic range ratio (DRR is also being improved by eliminating the weakly excited array elements, which simplify the design complexity of feed networks.
An Endosymbiotic Evolutionary Algorithm for the Hub Location-Routing Problem
Directory of Open Access Journals (Sweden)
Ji Ung Sun
2015-01-01
Full Text Available We consider a capacitated hub location-routing problem (HLRP which combines the hub location problem and multihub vehicle routing decisions. The HLRP not only determines the locations of the capacitated p-hubs within a set of potential hubs but also deals with the routes of the vehicles to meet the demands of customers. This problem is formulated as a 0-1 mixed integer programming model with the objective of the minimum total cost including routing cost, fixed hub cost, and fixed vehicle cost. As the HLRP has impractically demanding for the large sized problems, we develop a solution method based on the endosymbiotic evolutionary algorithm (EEA which solves hub location and vehicle routing problem simultaneously. The performance of the proposed algorithm is examined through a comparative study. The experimental results show that the proposed EEA can be a viable solution method for the supply chain network planning.
DEFF Research Database (Denmark)
Bligaard, Thomas; Johannesson, Gisli Holmar; Ruban, Andrei
2003-01-01
Large databases that can be used in the search for new materials with specific properties remain an elusive goal in materials science. The problem is complicated by the fact that the optimal material for a given application is usually a compromise between a number of materials properties and the ......Large databases that can be used in the search for new materials with specific properties remain an elusive goal in materials science. The problem is complicated by the fact that the optimal material for a given application is usually a compromise between a number of materials properties...... and the cost. In this letter we present a database consisting of the lattice parameters, bulk moduli, and heats of formation for over 64 000 ordered metallic alloys, which has been established by direct first-principles density-functional-theory calculations. Furthermore, we use a concept from economic theory......, the Pareto-optimal set, to determine optimal alloy solutions for the compromise between low compressibility, high stability, and cost....
Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine
2012-12-09
Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a
An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.
Directory of Open Access Journals (Sweden)
Afnizanfaizal Abdullah
Full Text Available The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.
A standard deviation selection in evolutionary algorithm for grouper fish feed formulation
Cai-Juan, Soong; Ramli, Razamin; Rahman, Rosshairy Abdul
2016-10-01
Malaysia is one of the major producer countries for fishery production due to its location in the equatorial environment. Grouper fish is one of the potential markets in contributing to the income of the country due to its desirable taste, high demand and high price. However, the demand of grouper fish is still insufficient from the wild catch. Therefore, there is a need to farm grouper fish to cater to the market demand. In order to farm grouper fish, there is a need to have prior knowledge of the proper nutrients needed because there is no exact data available. Therefore, in this study, primary data and secondary data are collected even though there is a limitation of related papers and 30 samples are investigated by using standard deviation selection in Evolutionary algorithm. Thus, this study would unlock frontiers for an extensive research in respect of grouper fish feed formulation. Results shown that the fitness of standard deviation selection in evolutionary algorithm is applicable. The feasible and low fitness, quick solution can be obtained. These fitness can be further predicted to minimize cost in farming grouper fish.
An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.
Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V
2013-01-01
The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.
Directory of Open Access Journals (Sweden)
Chandramouli Anandaraman
2012-01-01
Full Text Available A new evolutionary computation algorithm, Superbug algorithm, which simulates evolution of bacteria in a culture, is proposed. The algorithm is developed for solving large scale optimization problems such as scheduling, transportation and assignment problems. In this work, the algorithm optimizes machine schedules in a Flexible Manufacturing System (FMS by minimizing makespan. The FMS comprises of four machines and two identical Automated Guided Vehicles (AGVs. AGVs are used for carrying jobs between the Load/Unload (L/U station and the machines. Experimental results indicate the efficiency of the proposed algorithm in its optimization performance in scheduling is noticeably superior to other evolutionary algorithms when compared to the best results reported in the literature for FMS Scheduling.
International Nuclear Information System (INIS)
Wang, Jiangfeng; Yan, Zhequan; Wang, Man; Li, Maoqing; Dai, Yiping
2013-01-01
Highlights: • Multi-objective optimization of an ORC is conducted to obtain optimum performance. • NSGA-II is employed to solve this multi-objective optimization problem. • The effects of parameters on the exergy efficiency and capital cost are examined. - Abstract: Organic Rankine cycle (ORC) can effectively recover low grade waste heat due to its excellent thermodynamic performance. Based on the examinations of the effects of key thermodynamic parameters on the exergy efficiency and overall capital cost, multi-objective optimization of the ORC with R134a as working fluid is conducted to achieve the system optimization design from both thermodynamic and economic aspects using Non-dominated sorting genetic algorithm-II (NSGA-II). The exergy efficiency and overall capital cost are selected as two objective functions to maximize the exergy efficiency and minimize the overall capital cost under the given waste heat conditions. Turbine inlet pressure, turbine inlet temperature, pinch temperature difference, approach temperature difference and condenser temperature difference are selected as the decision variables owing to their significant effects on the exergy efficiency and overall capital cost. A Pareto frontier obtained shows that an increase in the exergy efficiency can increase the overall capital cost of the ORC system. The optimum design solution with their corresponding decision variables is selected from the Pareto frontier. The optimum exergy efficiency and overall capital cost are 13.98% and 129.28 × 10 4 USD, respectively, under the given waste heat conditions
Directory of Open Access Journals (Sweden)
Weidong Lei
2017-01-01
Full Text Available We aim at solving the cyclic scheduling problem with a single robot and flexible processing times in a robotic flow shop, which is a well-known optimization problem in advanced manufacturing systems. The objective of the problem is to find an optimal robot move sequence such that the throughput rate is maximized. We propose a hybrid algorithm based on the Quantum-Inspired Evolutionary Algorithm (QEA and genetic operators for solving the problem. The algorithm integrates three different decoding strategies to convert quantum individuals into robot move sequences. The Q-gate is applied to update the states of Q-bits in each individual. Besides, crossover and mutation operators with adaptive probabilities are used to increase the population diversity. A repairing procedure is proposed to deal with infeasible individuals. Comparison results on both benchmark and randomly generated instances demonstrate that the proposed algorithm is more effective in solving the studied problem in terms of solution quality and computational time.
A new evolutionary algorithm with LQV learning for combinatorial problems optimization
International Nuclear Information System (INIS)
Machado, Marcelo Dornellas; Schirru, Roberto
2000-01-01
Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for combinatorial problems optimization. In this work, a new learning mode, to be used by the population-based incremental learning algorithm, has the aim to build a new evolutionary algorithm to be used in optimization of numerical problems and combinatorial problems. This new learning mode uses a variable learning rate during the optimization process, constituting a process known as proportional reward. The development of this new algorithm aims its application in the optimization of reload problem of PWR nuclear reactors, in order to increase the useful life of the nuclear fuel. For the test, two classes of problems are used: numerical problems and combinatorial problems. Due to the fact that the reload problem is a combinatorial problem, the major interest relies on the last class. The results achieved with the tests indicate the applicability of the new learning mode, showing its potential as a developing tool in the solution of reload problem. (author)
Pareto-Optimization of HTS CICC for High-Current Applications in Self-Field
Directory of Open Access Journals (Sweden)
Giordano Tomassetti
2018-01-01
Full Text Available The ENEA superconductivity laboratory developed a novel design for Cable-in-Conduit Conductors (CICCs comprised of stacks of 2nd-generation REBCO coated conductors. In its original version, the cable was made up of 150 HTS tapes distributed in five slots, twisted along an aluminum core. In this work, taking advantage of a 2D finite element model, able to estimate the cable’s current distribution in the cross-section, a multiobjective optimization procedure was implemented. The aim of optimization was to simultaneously maximize both engineering current density and total current flowing inside the tapes when operating in self-field, by varying the cross-section layout. Since the optimization process involved both integer and real geometrical variables, the choice of an evolutionary search algorithm was strictly necessary. The use of an evolutionary algorithm in the frame of a multiple objective optimization made it an obliged choice to numerically approach the problem using a nonstandard fast-converging optimization algorithm. By means of this algorithm, the Pareto frontiers for the different configurations were calculated, providing a powerful tool for the designer to achieve the desired preliminary operating conditions in terms of engineering current density and/or total current, depending on the specific application field, that is, power transmission cable and bus bar systems.
XTALOPT: An open-source evolutionary algorithm for crystal structure prediction
Lonie, David C.; Zurek, Eva
2011-02-01
The implementation and testing of XTALOPT, an evolutionary algorithm for crystal structure prediction, is outlined. We present our new periodic displacement (ripple) operator which is ideally suited to extended systems. It is demonstrated that hybrid operators, which combine two pure operators, reduce the number of duplicate structures in the search. This allows for better exploration of the potential energy surface of the system in question, while simultaneously zooming in on the most promising regions. A continuous workflow, which makes better use of computational resources as compared to traditional generation based algorithms, is employed. Various parameters in XTALOPT are optimized using a novel benchmarking scheme. XTALOPT is available under the GNU Public License, has been interfaced with various codes commonly used to study extended systems, and has an easy to use, intuitive graphical interface. Program summaryProgram title:XTALOPT Catalogue identifier: AEGX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v2.1 or later [1] No. of lines in distributed program, including test data, etc.: 36 849 No. of bytes in distributed program, including test data, etc.: 1 149 399 Distribution format: tar.gz Programming language: C++ Computer: PCs, workstations, or clusters Operating system: Linux Classification: 7.7 External routines: QT [2], OpenBabel [3], AVOGADRO [4], SPGLIB [8] and one of: VASP [5], PWSCF [6], GULP [7]. Nature of problem: Predicting the crystal structure of a system from its stoichiometry alone remains a grand challenge in computational materials science, chemistry, and physics. Solution method: Evolutionary algorithms are stochastic search techniques which use concepts from biological evolution in order to locate the global minimum on their potential energy surface. Our evolutionary algorithm, XTALOPT, is freely
Pareto-optimal estimates that constrain mean California precipitation change
Langenbrunner, B.; Neelin, J. D.
2017-12-01
Global climate model (GCM) projections of greenhouse gas-induced precipitation change can exhibit notable uncertainty at the regional scale, particularly in regions where the mean change is small compared to internal variability. This is especially true for California, which is located in a transition zone between robust precipitation increases to the north and decreases to the south, and where GCMs from the Climate Model Intercomparison Project phase 5 (CMIP5) archive show no consensus on mean change (in either magnitude or sign) across the central and southern parts of the state. With the goal of constraining this uncertainty, we apply a multiobjective approach to a large set of subensembles (subsets of models from the full CMIP5 ensemble). These constraints are based on subensemble performance in three fields important to California precipitation: tropical Pacific sea surface temperatures, upper-level zonal winds in the midlatitude Pacific, and precipitation over the state. An evolutionary algorithm is used to sort through and identify the set of Pareto-optimal subensembles across these three measures in the historical climatology, and we use this information to constrain end-of-century California wet season precipitation change. This technique narrows the range of projections throughout the state and increases confidence in estimates of positive mean change. Furthermore, these methods complement and generalize emergent constraint approaches that aim to restrict uncertainty in end-of-century projections, and they have applications to even broader aspects of uncertainty quantification, including parameter sensitivity and model calibration.
Classification as clustering: a Pareto cooperative-competitive GP approach.
McIntyre, Andrew R; Heywood, Malcolm I
2011-01-01
Intuitively population based algorithms such as genetic programming provide a natural environment for supporting solutions that learn to decompose the overall task between multiple individuals, or a team. This work presents a framework for evolving teams without recourse to prespecifying the number of cooperating individuals. To do so, each individual evolves a mapping to a distribution of outcomes that, following clustering, establishes the parameterization of a (Gaussian) local membership function. This gives individuals the opportunity to represent subsets of tasks, where the overall task is that of classification under the supervised learning domain. Thus, rather than each team member representing an entire class, individuals are free to identify unique subsets of the overall classification task. The framework is supported by techniques from evolutionary multiobjective optimization (EMO) and Pareto competitive coevolution. EMO establishes the basis for encouraging individuals to provide accurate yet nonoverlaping behaviors; whereas competitive coevolution provides the mechanism for scaling to potentially large unbalanced datasets. Benchmarking is performed against recent examples of nonlinear SVM classifiers over 12 UCI datasets with between 150 and 200,000 training instances. Solutions from the proposed coevolutionary multiobjective GP framework appear to provide a good balance between classification performance and model complexity, especially as the dataset instance count increases.
Combining evolutionary algorithms with oblique decision trees to detect bent-double galaxies
Cantu-Paz, Erick; Kamath, Chandrika
2000-10-01
Decision tress have long been popular in classification as they use simple and easy-to-understand tests at each node. Most variants of decision trees test a single attribute at a node, leading to axis- parallel trees, where the test results in a hyperplane which is parallel to one of the dimensions in the attribute space. These trees can be rather large and inaccurate in cases where the concept to be learned is best approximated by oblique hyperplanes. In such cases, it may be more appropriate to use an oblique decision tree, where the decision at each node is a linear combination of the attributes. Oblique decision trees have not gained wide popularity in part due to the complexity of constructing good oblique splits and the tendency of existing splitting algorithms to get stuck in local minima. Several alternatives have been proposed to handle these problems including randomization in conjunction wiht deterministic hill-climbing and the use of simulated annealing. In this paper, we use evolutionary algorithms (EAs) to determine the split. EAs are well suited for this problem because of their global search properties, their tolerance to noisy fitness evaluations, and their scalability to large dimensional search spaces. We demonstrate our technique on a synthetic data set, and then we apply it to a practical problem from astronomy, namely, the classification of galaxies with a bent-double morphology. In addition, we describe our experiences with several split evaluation criteria. Our results suggest that, in some cases, the evolutionary approach is faster and more accurate than existing oblique decision tree algorithms. However, for our astronomical data, the accuracy is not significantly different than the axis-parallel trees.
Pareto Optimal Design for Synthetic Biology.
Patanè, Andrea; Santoro, Andrea; Costanza, Jole; Carapezza, Giovanni; Nicosia, Giuseppe
2015-08-01
Recent advances in synthetic biology call for robust, flexible and efficient in silico optimization methodologies. We present a Pareto design approach for the bi-level optimization problem associated to the overproduction of specific metabolites in Escherichia coli. Our method efficiently explores the high dimensional genetic manipulation space, finding a number of trade-offs between synthetic and biological objectives, hence furnishing a deeper biological insight to the addressed problem and important results for industrial purposes. We demonstrate the computational capabilities of our Pareto-oriented approach comparing it with state-of-the-art heuristics in the overproduction problems of i) 1,4-butanediol, ii) myristoyl-CoA, i ii) malonyl-CoA , iv) acetate and v) succinate. We show that our algorithms are able to gracefully adapt and scale to more complex models and more biologically-relevant simulations of the genetic manipulations allowed. The Results obtained for 1,4-butanediol overproduction significantly outperform results previously obtained, in terms of 1,4-butanediol to biomass formation ratio and knock-out costs. In particular overproduction percentage is of +662.7%, from 1.425 mmolh⁻¹gDW⁻¹ (wild type) to 10.869 mmolh⁻¹gDW⁻¹, with a knockout cost of 6. Whereas, Pareto-optimal designs we have found in fatty acid optimizations strictly dominate the ones obtained by the other methodologies, e.g., biomass and myristoyl-CoA exportation improvement of +21.43% (0.17 h⁻¹) and +5.19% (1.62 mmolh⁻¹gDW⁻¹), respectively. Furthermore CPU time required by our heuristic approach is more than halved. Finally we implement pathway oriented sensitivity analysis, epsilon-dominance analysis and robustness analysis to enhance our biological understanding of the problem and to improve the optimization algorithm capabilities.
International Nuclear Information System (INIS)
Lahanas, M; Baltas, D; Zamboglou, N
2003-01-01
Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives
Multi-agent Pareto appointment exchanging in hospital patient scheduling
Vermeulen, I.B.; Bohté, S.M.; Somefun, D.J.A.; Poutré, La J.A.
2007-01-01
We present a dynamic and distributed approach to the hospital patient scheduling problem, in which patients can have multiple appointments that have to be scheduled to different resources. To efficiently solve this problem we develop a multi-agent Pareto-improvement appointment exchanging algorithm:
Li, Hong; Liu, Mingyong; Zhang, Feihu
2017-01-01
This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments.
International Nuclear Information System (INIS)
Ottosson, Rickard O.; Sjoestroem, David; Behrens, Claus F.; Karlsson, Anna; Engstroem, Per E.; Knoeoes, Tommy; Ceberg, Crister
2009-01-01
Pareto optimality is a concept that formalises the trade-off between a given set of mutually contradicting objectives. A solution is said to be Pareto optimal when it is not possible to improve one objective without deteriorating at least one of the other. A set of Pareto optimal solutions constitute the Pareto front. The Pareto concept applies well to the inverse planning process, which involves inherently contradictory objectives, high and uniform target dose on one hand, and sparing of surrounding tissue and nearby organs at risk (OAR) on the other. Due to the specific characteristics of a treatment planning system (TPS), treatment strategy or delivery technique, Pareto fronts for a given case are likely to differ. The aim of this study was to investigate the feasibility of using Pareto fronts as a comparative tool for TPSs, treatment strategies and delivery techniques. In order to sample Pareto fronts, multiple treatment plans with varying target conformity and dose sparing of OAR were created for a number of prostate and head and neck IMRT cases. The DVHs of each plan were evaluated with respect to target coverage and dose to relevant OAR. Pareto fronts were successfully created for all studied cases. The results did indeed follow the definition of the Pareto concept, i.e. dose sparing of the OAR could not be improved without target coverage being impaired or vice versa. Furthermore, various treatment techniques resulted in distinguished and well separated Pareto fronts. Pareto fronts may be used to evaluate a number of parameters within radiotherapy. Examples are TPS optimization algorithms, the variation between accelerators or delivery techniques and the degradation of a plan during the treatment planning process. The issue of designing a model for unbiased comparison of parameters with such large inherent discrepancies, e.g. different TPSs, is problematic and should be carefully considered
Ottosson, Rickard O; Engstrom, Per E; Sjöström, David; Behrens, Claus F; Karlsson, Anna; Knöös, Tommy; Ceberg, Crister
2009-01-01
Pareto optimality is a concept that formalises the trade-off between a given set of mutually contradicting objectives. A solution is said to be Pareto optimal when it is not possible to improve one objective without deteriorating at least one of the other. A set of Pareto optimal solutions constitute the Pareto front. The Pareto concept applies well to the inverse planning process, which involves inherently contradictory objectives, high and uniform target dose on one hand, and sparing of surrounding tissue and nearby organs at risk (OAR) on the other. Due to the specific characteristics of a treatment planning system (TPS), treatment strategy or delivery technique, Pareto fronts for a given case are likely to differ. The aim of this study was to investigate the feasibility of using Pareto fronts as a comparative tool for TPSs, treatment strategies and delivery techniques. In order to sample Pareto fronts, multiple treatment plans with varying target conformity and dose sparing of OAR were created for a number of prostate and head & neck IMRT cases. The DVHs of each plan were evaluated with respect to target coverage and dose to relevant OAR. Pareto fronts were successfully created for all studied cases. The results did indeed follow the definition of the Pareto concept, i.e. dose sparing of the OAR could not be improved without target coverage being impaired or vice versa. Furthermore, various treatment techniques resulted in distinguished and well separated Pareto fronts. Pareto fronts may be used to evaluate a number of parameters within radiotherapy. Examples are TPS optimization algorithms, the variation between accelerators or delivery techniques and the degradation of a plan during the treatment planning process. The issue of designing a model for unbiased comparison of parameters with such large inherent discrepancies, e.g. different TPSs, is problematic and should be carefully considered.
International Nuclear Information System (INIS)
Machado, Marcelo D.; Dchirru, Roberto
2005-01-01
The nuclear reactor core reload optimization problem consists in finding a pattern of partially burned-up and fresh fuels that optimizes the plant's next operation cycle. This optimization problem has been traditionally solved using an expert's knowledge, but recently artificial intelligence techniques have also been applied successfully. The artificial intelligence optimization techniques generally have a single objective. However, most real-world engineering problems, including nuclear core reload optimization, have more than one objective (multi-objective) and these objectives are usually conflicting. The aim of this work is to develop a tool to solve multi-objective problems based on the Population-Based Incremental Learning (PBIL) algorithm. The new tool is applied to solve the Angra 1 PWR core reload optimization problem with the purpose of creating a Pareto surface, so that a pattern selected from this surface can be applied for the plant's next operation cycle. (author)
Support vector machines and evolutionary algorithms for classification single or together?
Stoean, Catalin
2014-01-01
When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame. Yet, their black box means to do so make the practical users quite circumspect about relying on it, without much understanding of the how and why of its predictions. The question raised in this book is how can this ‘masked hero’ be made more comprehensible and friendly to the public: provide a surrogate model for its hidden optimization engine, replace the method completely or appoint a more friendly approach to tag along and offer the much desired explanations? Evolutionary algorithms can do all these and this book presents such possibilities of achieving high accuracy, comprehensibility, reasonable runtime as well as unconstrained performance.
Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm
Wu, Xiaolan; Grubesic, Tony H.
2010-12-01
Spatial cluster detection techniques are widely used in criminology, geography, epidemiology, and other fields. In particular, spatial scan statistics are popular and efficient techniques for detecting areas of elevated crime or disease events. The majority of spatial scan approaches attempt to delineate geographic zones by evaluating the significance of clusters using likelihood ratio statistics tested with the Poisson distribution. While this can be effective, many scan statistics give preference to circular clusters, diminishing their ability to identify elongated and/or irregular shaped clusters. Although adjusting the shape of the scan window can mitigate some of these problems, both the significance of irregular clusters and their spatial structure must be accounted for in a meaningful way. This paper utilizes a multiobjective evolutionary algorithm to find clusters with maximum significance while quantitatively tracking their geographic structure. Crime data for the city of Cincinnati are utilized to demonstrate the advantages of the new approach and highlight its benefits versus more traditional scan statistics.
International Nuclear Information System (INIS)
Gomes, Alvaro; Antunes, Carlos Henggeler; Martins, Antonio Gomes
2005-01-01
This paper aims at presenting a multiple objective model to evaluate the attractiveness of the use of demand resources (through load management control actions) by different stakeholders and in diverse structure scenarios in electricity systems. For the sake of model flexibility, the multiple (and conflicting) objective functions of technical, economical and quality of service nature are able to capture distinct market scenarios and operating entities that may be interested in promoting load management activities. The computation of compromise solutions is made by resorting to evolutionary algorithms, which are well suited to tackle multiobjective problems of combinatorial nature herein involving the identification and selection of control actions to be applied to groups of loads. (Author)
Energy Technology Data Exchange (ETDEWEB)
Fernandes, D.H.; Medeiros, A.R. [Subsea7, Niteroi, RJ (Brazil); Jacob, B.P.; Lima, B.S.L.P.; Albrecht, C.H. [Universidade Federaldo Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao de Programas de Pos-graduacao em Engenharia
2009-07-01
This work presents studies regarding the determination of optimal pipeline routes for offshore applications. The assembly of an objective function is presented; this function can be later associated with Evolutionary Algorithm to implement a computational tool for the automatic determination of the most advantageous pipeline route for a given scenario. This tool may reduce computational overheads, avoid mistakes with route interpretation, and minimize costs with respect to submarine pipeline design and installation. The following aspects can be considered in the assembly of the objective function: Geophysical and geotechnical data obtained from the bathymetry and sonography; the influence of the installation method, total pipeline length and number of free spans to be mitigated along the routes as well as vessel time for both cases. Case studies are presented to illustrate the use of the proposed objective function, including a sensitivity analysis intended to identify the relative influence of selected parameters in the evaluation of different routes. (author)
WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification
Directory of Open Access Journals (Sweden)
J. Zambrano
2018-01-01
Full Text Available Current methods to identify Wiener-Hammerstein systems using Best Linear Approximation (BLA involve at least two steps. First, BLA is divided into obtaining front and back linear dynamics of the Wiener-Hammerstein model. Second, a refitting procedure of all parameters is carried out to reduce modelling errors. In this paper, a novel approach to identify Wiener-Hammerstein systems in a single step is proposed. This approach is based on a customized evolutionary algorithm (WH-EA able to look for the best BLA split, capturing at the same time the process static nonlinearity with high precision. Furthermore, to correct possible errors in BLA estimation, the locations of poles and zeros are subtly modified within an adequate search space to allow a fine-tuning of the model. The performance of the proposed approach is analysed by using a demonstration example and a nonlinear system identification benchmark.
XTALOPT version r11: An open-source evolutionary algorithm for crystal structure prediction
Avery, Patrick; Falls, Zackary; Zurek, Eva
2018-01-01
Version 11 of XTALOPT, an evolutionary algorithm for crystal structure prediction, has now been made available for download from the CPC library or the XTALOPT website, http://xtalopt.github.io. Whereas the previous versions of XTALOPT were published under the Gnu Public License (GPL), the current version is made available under the 3-Clause BSD License, which is an open source license that is recognized by the Open Source Initiative. Importantly, the new version can be executed via a command line interface (i.e., it does not require the use of a Graphical User Interface). Moreover, the new version is written as a stand-alone program, rather than an extension to AVOGADRO.
Multiobjective constraints for climate model parameter choices: Pragmatic Pareto fronts in CESM1
Langenbrunner, B.; Neelin, J. D.
2017-09-01
Global climate models (GCMs) are examples of high-dimensional input-output systems, where model output is a function of many variables, and an update in model physics commonly improves performance in one objective function (i.e., measure of model performance) at the expense of degrading another. Here concepts from multiobjective optimization in the engineering literature are used to investigate parameter sensitivity and optimization in the face of such trade-offs. A metamodeling technique called cut high-dimensional model representation (cut-HDMR) is leveraged in the context of multiobjective optimization to improve GCM simulation of the tropical Pacific climate, focusing on seasonal precipitation, column water vapor, and skin temperature. An evolutionary algorithm is used to solve for Pareto fronts, which are surfaces in objective function space along which trade-offs in GCM performance occur. This approach allows the modeler to visualize trade-offs quickly and identify the physics at play. In some cases, Pareto fronts are small, implying that trade-offs are minimal, optimal parameter value choices are more straightforward, and the GCM is well-functioning. In all cases considered here, the control run was found not to be Pareto-optimal (i.e., not on the front), highlighting an opportunity for model improvement through objectively informed parameter selection. Taylor diagrams illustrate that these improvements occur primarily in field magnitude, not spatial correlation, and they show that specific parameter updates can improve fields fundamental to tropical moist processes—namely precipitation and skin temperature—without significantly impacting others. These results provide an example of how basic elements of multiobjective optimization can facilitate pragmatic GCM tuning processes.
Sánchez, M S; Sarabia, L A; Ortiz, M C
2012-11-19
Experimental designs for a given task should be selected on the base of the problem being solved and of some criteria that measure their quality. There are several such criteria because there are several aspects to be taken into account when making a choice. The most used criteria are probably the so-called alphabetical optimality criteria (for example, the A-, E-, and D-criteria related to the joint estimation of the coefficients, or the I- and G-criteria related to the prediction variance). Selecting a proper design to solve a problem implies finding a balance among these several criteria that measure the performance of the design in different aspects. Technically this is a problem of multi-criteria optimization, which can be tackled from different views. The approach presented here addresses the problem in its real vector nature, so that ad hoc experimental designs are generated with an algorithm based on evolutionary algorithms to find the Pareto-optimal front. There is not theoretical limit to the number of criteria that can be studied and, contrary to other approaches, no just one experimental design is computed but a set of experimental designs all of them with the property of being Pareto-optimal in the criteria needed by the user. Besides, the use of an evolutionary algorithm makes it possible to search in both continuous and discrete domains and avoid the need of having a set of candidate points, usual in exchange algorithms. Copyright © 2012 Elsevier B.V. All rights reserved.
System optimization for HVAC energy management using the robust evolutionary algorithm
International Nuclear Information System (INIS)
Fong, K.F.; Hanby, V.I.; Chow, T.T.
2009-01-01
For an installed centralized heating, ventilating and air conditioning (HVAC) system, appropriate energy management measures would achieve energy conservation targets through the optimal control and operation. The performance optimization of conventional HVAC systems may be handled by operation experience, but it may not cover different optimization scenarios and parameters in response to a variety of load and weather conditions. In this regard, it is common to apply the suitable simulation-optimization technique to model the system then determine the required operation parameters. The particular plant simulation models can be built up by either using the available simulation programs or a system of mathematical expressions. To handle the simulation models, iterations would be involved in the numerical solution methods. Since the gradient information is not easily available due to the complex nature of equations, the traditional gradient-based optimization methods are not applicable for this kind of system models. For the heuristic optimization methods, the continual search is commonly necessary, and the system function call is required for each search. The frequency of simulation function calls would then be a time-determining step, and an efficient optimization method is crucial, in order to find the solution through a number of function calls in a reasonable computational period. In this paper, the robust evolutionary algorithm (REA) is presented to tackle this nature of the HVAC simulation models. REA is based on one of the paradigms of evolutionary algorithm, evolution strategy, which is a stochastic population-based searching technique emphasized on mutation. The REA, which incorporates the Cauchy deterministic mutation, tournament selection and arithmetic recombination, would provide a synergetic effect for optimal search. The REA is effective to cope with the complex simulation models, as well as those represented by explicit mathematical expressions of
Clarkin, T. J.; Kasprzyk, J. R.; Raseman, W. J.; Herman, J. D.
2015-12-01
This study contributes a diagnostic assessment of multiobjective evolutionary algorithm (MOEA) search on a set of water resources problem formulations with different configurations of constraints. Unlike constraints in classical optimization modeling, constraints within MOEA simulation-optimization represent limits on acceptable performance that delineate whether solutions within the search problem are feasible. Constraints are relevant because of the emergent pressures on water resources systems: increasing public awareness of their sustainability, coupled with regulatory pressures on water management agencies. In this study, we test several state-of-the-art MOEAs that utilize restricted tournament selection for constraint handling on varying configurations of water resources planning problems. For example, a problem that has no constraints on performance levels will be compared with a problem with several severe constraints, and a problem with constraints that have less severe values on the constraint thresholds. One such problem, Lower Rio Grande Valley (LRGV) portfolio planning, has been solved with a suite of constraints that ensure high reliability, low cost variability, and acceptable performance in a single year severe drought. But to date, it is unclear whether or not the constraints are negatively affecting MOEAs' ability to solve the problem effectively. Two categories of results are explored. The first category uses control maps of algorithm performance to determine if the algorithm's performance is sensitive to user-defined parameters. The second category uses run-time performance metrics to determine the time required for the algorithm to reach sufficient levels of convergence and diversity on the solution sets. Our work exploring the effect of constraints will better enable practitioners to define MOEA problem formulations for real-world systems, especially when stakeholders are concerned with achieving fixed levels of performance according to one or
DEFF Research Database (Denmark)
Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2015-01-01
Non-trivial real world decision-making processes usually involve multiple parties having potentially conflicting interests over a set of issues. State-of-the-art multi-objective evolutionary algorithms (MOEA) are well known to solve this class of complex real-world problems. In this paper, we...... compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...... of all aforementioned algorithms is assessed and compared using performance indicators to evaluate proximity, diversity and consistency. Our insights to this comparative study enhanced our understanding of MOEAs performance in order to solve a non-linear complex climate control problem. The empirical...
On the Truncated Pareto Distribution with applications
Zaninetti, Lorenzo; Ferraro, Mario
2008-01-01
The Pareto probability distribution is widely applied in different fields such us finance, physics, hydrology, geology and astronomy. This note deals with an application of the Pareto distribution to astrophysics and more precisely to the statistical analysis of mass of stars and of diameters of asteroids. In particular a comparison between the usual Pareto distribution and its truncated version is presented. Finally a possible physical mechanism that produces Pareto tails for the distributio...
Double-layer evolutionary algorithm for distributed optimization of particle detection on the Grid
International Nuclear Information System (INIS)
Padée, Adam; Zaremba, Krzysztof; Kurek, Krzysztof
2013-01-01
Reconstruction of particle tracks from information collected by position-sensitive detectors is an important procedure in HEP experiments. It is usually controlled by a set of numerical parameters which have to be manually optimized. This paper proposes an automatic approach to this task by utilizing evolutionary algorithm (EA) operating on both real-valued and binary representations. Because of computational complexity of the task a special distributed architecture of the algorithm is proposed, designed to be run in grid environment. It is two-level hierarchical hybrid utilizing asynchronous master-slave EA on the level of clusters and island model EA on the level of the grid. The technical aspects of usage of production grid infrastructure are covered, including communication protocols on both levels. The paper deals also with the problem of heterogeneity of the resources, presenting efficiency tests on a benchmark function. These tests confirm that even relatively small islands (clusters) can be beneficial to the optimization process when connected to the larger ones. Finally a real-life usage example is presented, which is an optimization of track reconstruction in Large Angle Spectrometer of NA-58 COMPASS experiment held at CERN, using a sample of Monte Carlo simulated data. The overall reconstruction efficiency gain, achieved by the proposed method, is more than 4%, compared to the manually optimized parameters
Optimization of operating schedule of machines in granite industry using evolutionary algorithms
International Nuclear Information System (INIS)
Loganthurai, P.; Rajasekaran, V.; Gnanambal, K.
2014-01-01
Highlights: • Operating time of machines in granite industries was studied. • Operating time has been optimized using evolutionary algorithms such as PSO, DE. • The maximum demand has been reduced. • Hence the electricity cost of the industry and feeder stress have been reduced. - Abstract: Electrical energy consumption cost plays an important role in the production cost of any industry. The electrical energy consumption cost is calculated as two part tariff, the first part is maximum demand cost and the second part is energy consumption cost or unit cost (kW h). The maximum demand cost can be reduced without affecting the production. This paper focuses on the reduction of maximum demand by proper operating schedule of major equipments. For this analysis, various granite industries are considered. The major equipments in granite industries are cutting machine, polishing machine and compressor. To reduce the maximum demand, the operating time of polishing machine is rescheduled by optimization techniques such as Differential Evolution (DE) and particle swarm optimization (PSO). The maximum demand costs are calculated before and after rescheduling. The results show that if the machines are optimally operated, the cost is reduced. Both DE and PSO algorithms reduce the maximum demand cost at the same rate for all the granite industries. However, the optimum scheduling obtained by DE reduces the feeder power flow than the PSO scheduling
An evolutionary algorithm for port-of-entry security optimization considering sensor thresholds
International Nuclear Information System (INIS)
Concho, Ana Lisbeth; Ramirez-Marquez, Jose Emmanuel
2010-01-01
According to the US Customs and Border Protection (CBP), the number of offloaded ship cargo containers arriving at US seaports each year amounts to more than 11 million. The costs of locating an undetonated terrorist weapon at one US port, or even worst, the cost caused by a detonated weapon of mass destruction, would amount to billions of dollars. These costs do not yet account for the devastating consequences that it would cause in the ability to keep the supply chain operating and the sociological and psychological effects. As such, this paper is concerned with developing a container inspection strategy that minimizes the total cost of inspection while maintaining a user specified detection rate for 'suspicious' containers. In this respect and based on a general decision-tree model, this paper presents a holistic evolutionary algorithm for finding the following: (1) optimal threshold values for every sensor and (2) the optimal configuration of the inspection strategy. The algorithm is under the assumption that different sensors with different reliability and cost characteristics can be used. Testing and experimentation show the proposed approach consistently finds high quality solutions in a reduced computational time.
Record Values of a Pareto Distribution.
Ahsanullah, M.
The record values of the Pareto distribution, labelled Pareto (II) (alpha, beta, nu), are reviewed. The best linear unbiased estimates of the parameters in terms of the record values are provided. The prediction of the sth record value based on the first m (s>m) record values are obtained. A classical Pareto distribution provides reasonably…
Directory of Open Access Journals (Sweden)
Wiktor HUDY
2013-12-01
Full Text Available In this paper, the impact of regulators set and their types for the characteristic of rotational speed of induction motor was researched.. The evolutionary algorithm was used as optimization tool. Results were verified with using MATLAB/Simulink.
An evolutionary algorithm for tomographic reconstructions in limited data sets problems
International Nuclear Information System (INIS)
Turcanu, Catrinel; Craciunescu, Teddy
2000-01-01
The paper proposes a new method for tomographic reconstructions. Unlike nuclear medicine applications, in physical science problems we are often confronted with limited data sets: constraints in the number of projections or limited angle views. The problem of image reconstruction from projections may be considered as a problem of finding an image (solution) having projections that match the experimental ones. In our approach, we choose a statistical correlation coefficient to evaluate the fitness of any potential solution. The optimization process is carried out by an evolutionary algorithm. Our algorithm has some problem-oriented characteristics. One of them is that a chromosome, representing a potential solution, is not linear but coded as a matrix of pixels corresponding to a two-dimensional image. This kind of internal representation reflects the genuine manifestation and slight differences between two points situated in the original problem space give rise to similar differences once they become coded. Another particular feature is a newly built crossover operator: the grid-based crossover, suitable for high dimension two-dimensional chromosomes. Except for the population size and the dimension of the cutting grid for the grid-based crossover, all the other parameters of the algorithm are independent of the geometry of the tomographic reconstruction. The performances of the method are evaluated in comparison with a traditional tomographic method, based on the maximization of the entropy of the image, that proved to work well with limited data sets. The test phantom is typical for an application with limited data sets: the determination of the neutron energy spectra with time resolution in case of short-pulsed neutron emission. The qualitative judgement and also the quantitative one, based on some figures of merit, point out that the proposed method ensures an improved reconstruction of shapes, sizes and resolution in the image, even in the presence of noise
Pareto law and Pareto index in the income distribution of Japanese companies
Ishikawa, Atushi
2004-01-01
In order to study the phenomenon in detail that income distribution follows Pareto law, we analyze the database of high income companies in Japan. We find a quantitative relation between the average capital of the companies and the Pareto index. The larger the average capital becomes, the smaller the Pareto index becomes. From this relation, we can possibly explain that the Pareto index of company income distribution hardly changes, while the Pareto index of personal income distribution chang...
Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel
2013-06-01
Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.
Pareto-depth for multiple-query image retrieval.
Hsiao, Ko-Jen; Calder, Jeff; Hero, Alfred O
2015-02-01
Most content-based image retrieval systems consider either one single query, or multiple queries that include the same object or represent the same semantic information. In this paper, we consider the content-based image retrieval problem for multiple query images corresponding to different image semantics. We propose a novel multiple-query information retrieval algorithm that combines the Pareto front method with efficient manifold ranking. We show that our proposed algorithm outperforms state of the art multiple-query retrieval algorithms on real-world image databases. We attribute this performance improvement to concavity properties of the Pareto fronts, and prove a theoretical result that characterizes the asymptotic concavity of the fronts.
AMOBH: Adaptive Multiobjective Black Hole Algorithm.
Wu, Chong; Wu, Tao; Fu, Kaiyuan; Zhu, Yuan; Li, Yongbo; He, Wangyong; Tang, Shengwen
2017-01-01
This paper proposes a new multiobjective evolutionary algorithm based on the black hole algorithm with a new individual density assessment (cell density), called "adaptive multiobjective black hole algorithm" (AMOBH). Cell density has the characteristics of low computational complexity and maintains a good balance of convergence and diversity of the Pareto front. The framework of AMOBH can be divided into three steps. Firstly, the Pareto front is mapped to a new objective space called parallel cell coordinate system. Then, to adjust the evolutionary strategies adaptively, Shannon entropy is employed to estimate the evolution status. At last, the cell density is combined with a dominance strength assessment called cell dominance to evaluate the fitness of solutions. Compared with the state-of-the-art methods SPEA-II, PESA-II, NSGA-II, and MOEA/D, experimental results show that AMOBH has a good performance in terms of convergence rate, population diversity, population convergence, subpopulation obtention of different Pareto regions, and time complexity to the latter in most cases.
International Nuclear Information System (INIS)
Navid, Ali; Khalilarya, Shahram; Taghavifar, Hadi
2016-01-01
Highlights: • NLPQL algorithm with Latin hypercube and multi-objective GA were applied on engine. • NLPQL converge to the best solution at RunID41, MOGA introduces at RunID84. • Deeper, more encircled design gives the lowest NOx, greater radius and deeper bowl the highest IMEP. • The maximum IMEP and minimum ISFC obtained with NLPQL, the lowest NOx with MOGA. - Abstract: This study is concerned with the application of two major kinds of optimization algorithms on the baseline diesel engine in the class of evolutionary and non-evolutionary algorithms. The multi-objective genetic algorithm and non-linear programming by quadratic Lagrangian (NLPQL) method have completely different functions in optimizing and finding the global optimal design. The design variables are injection angle, half spray cone angle, inner distance of the bowl wall, and the bowl radius, while the objectives include NOx emission, spray droplet diameter, indicated mean effective pressure (IMEP), and indicated specific fuel consumption (ISFC). The restrictions were set on the objectives to distinguish between feasible designs and infeasible designs to sort those cases that cannot fulfill the demands of diesel engine designers and emission control measures. It is found that a design with deeper bowl and more encircled shape (higher swirl motion) is more suitable for NO_x emission control, whereas designs with a bigger bowl radius, and closer inner wall distance of the bowl (Di) may lead to higher engine efficiency indices. Moreover, it was revealed that the NLPQL could rapidly search for the best design at Run ID 41 compared to genetic algorithm, which is able to find the global optima at last runs (ID 84). Both techniques introduce almost the same geometrical shape of the combustion chamber with a negligible contrast in the injection system.
Shrimp Feed Formulation via Evolutionary Algorithm with Power Heuristics for Handling Constraints
Directory of Open Access Journals (Sweden)
Rosshairy Abd. Rahman
2017-01-01
Full Text Available Formulating feed for shrimps represents a challenge to farmers and industry partners. Most previous studies selected from only a small number of ingredients due to cost pressures, even though hundreds of potential ingredients could be used in the shrimp feed mix. Even with a limited number of ingredients, the best combination of the most appropriate ingredients is still difficult to obtain due to various constraint requirements, such as nutrition value and cost. This paper proposes a new operator which we call Power Heuristics, as part of an Evolutionary Algorithm (EA, which acts as a constraint handling technique for the shrimp feed or diet formulation. The operator is able to choose and discard certain ingredients by utilising a specialized search mechanism. The aim is to achieve the most appropriate combination of ingredients. Power Heuristics are embedded in the EA at the early stage of a semirandom initialization procedure. The resulting combination of ingredients, after fulfilling all the necessary constraints, shows that this operator is useful in discarding inappropriate ingredients when a crucial constraint is violated.
Smith, R.; Kasprzyk, J. R.; Zagona, E. A.
2013-12-01
Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.
Directory of Open Access Journals (Sweden)
Jingling Zhang
2012-01-01
Full Text Available The multiobjective vehicle routing problem considering customer satisfaction (MVRPCS involves the distribution of orders from several depots to a set of customers over a time window. This paper presents a self-adaptive grid multi-objective quantum evolutionary algorithm (MOQEA for the MVRPCS, which takes into account customer satisfaction as well as travel costs. The degree of customer satisfaction is represented by proposing an improved fuzzy due-time window, and the optimization problem is modeled as a mixed integer linear program. In the MOQEA, nondominated solution set is constructed by the Challenge Cup rules. Moreover, an adaptive grid is designed to achieve the diversity of solution sets; that is, the number of grids in each generation is not fixed but is automatically adjusted based on the distribution of the current generation of nondominated solution set. In the study, the MOQEA is evaluated by applying it to classical benchmark problems. Results of numerical simulation and comparison show that the established model is valid and the MOQEA is effective for MVRPCS.
Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm
Wong, Ka Chun
2011-02-05
Protein-DNA bindings are essential activities. Understanding them forms the basis for further deciphering of biological and genetic systems. In particular, the protein-DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play a central role in gene transcription. Comprehensive TF-TFBS binding sequence pairs have been found in a recent study. However, they are in one-to-one mappings which cannot fully reflect the many-to-many mappings within the bindings. An evolutionary algorithm is proposed to learn generalized representations (many-to-many mappings) from the TF-TFBS binding sequence pairs (one-to-one mappings). The generalized pairs are shown to be more meaningful than the original TF-TFBS binding sequence pairs. Some representative examples have been analyzed in this study. In particular, it shows that the TF-TFBS binding sequence pairs are not presumably in one-to-one mappings. They can also exhibit many-to-many mappings. The proposed method can help us extract such many-to-many information from the one-to-one TF-TFBS binding sequence pairs found in the previous study, providing further knowledge in understanding the bindings between TFs and TFBSs. © 2011 Springer-Verlag.
Directory of Open Access Journals (Sweden)
Nicholas S. Flann
2013-09-01
Full Text Available The Quantitative Trait Loci (QTL mapping problem aims to identify regions in the genome that are linked to phenotypic features of the developed organism that vary in degree. It is a principle step in determining targets for further genetic analysis and is key in decoding the role of specific genes that control quantitative traits within species. Applications include identifying genetic causes of disease, optimization of cross-breeding for desired traits and understanding trait diversity in populations. In this paper a new multi-objective evolutionary algorithm (MOEA method is introduced and is shown to increase the accuracy of QTL mapping identification for both independent and epistatic loci interactions. The MOEA method optimizes over the space of possible partial least squares (PLS regression QTL models and considers the conflicting objectives of model simplicity versus model accuracy. By optimizing for minimal model complexity, MOEA has the advantage of solving the over-fitting problem of conventional PLS models. The effectiveness of the method is confirmed by comparing the new method with Bayesian Interval Mapping approaches over a series of test cases where the optimal solutions are known. This approach can be applied to many problems that arise in analysis of genomic data sets where the number of features far exceeds the number of observations and where features can be highly correlated.
Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm
Wong, Ka Chun; Peng, Chengbin; Wong, Manhon; Leung, Kwongsak
2011-01-01
Protein-DNA bindings are essential activities. Understanding them forms the basis for further deciphering of biological and genetic systems. In particular, the protein-DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play a central role in gene transcription. Comprehensive TF-TFBS binding sequence pairs have been found in a recent study. However, they are in one-to-one mappings which cannot fully reflect the many-to-many mappings within the bindings. An evolutionary algorithm is proposed to learn generalized representations (many-to-many mappings) from the TF-TFBS binding sequence pairs (one-to-one mappings). The generalized pairs are shown to be more meaningful than the original TF-TFBS binding sequence pairs. Some representative examples have been analyzed in this study. In particular, it shows that the TF-TFBS binding sequence pairs are not presumably in one-to-one mappings. They can also exhibit many-to-many mappings. The proposed method can help us extract such many-to-many information from the one-to-one TF-TFBS binding sequence pairs found in the previous study, providing further knowledge in understanding the bindings between TFs and TFBSs. © 2011 Springer-Verlag.
Tractable Pareto Optimization of Temporal Preferences
Morris, Robert; Morris, Paul; Khatib, Lina; Venable, Brent
2003-01-01
This paper focuses on temporal constraint problems where the objective is to optimize a set of local preferences for when events occur. In previous work, a subclass of these problems has been formalized as a generalization of Temporal CSPs, and a tractable strategy for optimization has been proposed, where global optimality is defined as maximizing the minimum of the component preference values. This criterion for optimality, which we call 'Weakest Link Optimization' (WLO), is known to have limited practical usefulness because solutions are compared only on the basis of their worst value; thus, there is no requirement to improve the other values. To address this limitation, we introduce a new algorithm that re-applies WLO iteratively in a way that leads to improvement of all the values. We show the value of this strategy by proving that, with suitable preference functions, the resulting solutions are Pareto Optimal.
Derivative-free generation and interpolation of convex Pareto optimal IMRT plans
Hoffmann, Aswin L.; Siem, Alex Y. D.; den Hertog, Dick; Kaanders, Johannes H. A. M.; Huizenga, Henk
2006-12-01
In inverse treatment planning for intensity-modulated radiation therapy (IMRT), beamlet intensity levels in fluence maps of high-energy photon beams are optimized. Treatment plan evaluation criteria are used as objective functions to steer the optimization process. Fluence map optimization can be considered a multi-objective optimization problem, for which a set of Pareto optimal solutions exists: the Pareto efficient frontier (PEF). In this paper, a constrained optimization method is pursued to iteratively estimate the PEF up to some predefined error. We use the property that the PEF is convex for a convex optimization problem to construct piecewise-linear upper and lower bounds to approximate the PEF from a small initial set of Pareto optimal plans. A derivative-free Sandwich algorithm is presented in which these bounds are used with three strategies to determine the location of the next Pareto optimal solution such that the uncertainty in the estimated PEF is maximally reduced. We show that an intelligent initial solution for a new Pareto optimal plan can be obtained by interpolation of fluence maps from neighbouring Pareto optimal plans. The method has been applied to a simplified clinical test case using two convex objective functions to map the trade-off between tumour dose heterogeneity and critical organ sparing. All three strategies produce representative estimates of the PEF. The new algorithm is particularly suitable for dynamic generation of Pareto optimal plans in interactive treatment planning.
Derivative-free generation and interpolation of convex Pareto optimal IMRT plans
International Nuclear Information System (INIS)
Hoffmann, Aswin L; Siem, Alex Y D; Hertog, Dick den; Kaanders, Johannes H A M; Huizenga, Henk
2006-01-01
In inverse treatment planning for intensity-modulated radiation therapy (IMRT), beamlet intensity levels in fluence maps of high-energy photon beams are optimized. Treatment plan evaluation criteria are used as objective functions to steer the optimization process. Fluence map optimization can be considered a multi-objective optimization problem, for which a set of Pareto optimal solutions exists: the Pareto efficient frontier (PEF). In this paper, a constrained optimization method is pursued to iteratively estimate the PEF up to some predefined error. We use the property that the PEF is convex for a convex optimization problem to construct piecewise-linear upper and lower bounds to approximate the PEF from a small initial set of Pareto optimal plans. A derivative-free Sandwich algorithm is presented in which these bounds are used with three strategies to determine the location of the next Pareto optimal solution such that the uncertainty in the estimated PEF is maximally reduced. We show that an intelligent initial solution for a new Pareto optimal plan can be obtained by interpolation of fluence maps from neighbouring Pareto optimal plans. The method has been applied to a simplified clinical test case using two convex objective functions to map the trade-off between tumour dose heterogeneity and critical organ sparing. All three strategies produce representative estimates of the PEF. The new algorithm is particularly suitable for dynamic generation of Pareto optimal plans in interactive treatment planning
Multicriteria Similarity-Based Anomaly Detection Using Pareto Depth Analysis.
Hsiao, Ko-Jen; Xu, Kevin S; Calder, Jeff; Hero, Alfred O
2016-06-01
We consider the problem of identifying patterns in a data set that exhibits anomalous behavior, often referred to as anomaly detection. Similarity-based anomaly detection algorithms detect abnormally large amounts of similarity or dissimilarity, e.g., as measured by the nearest neighbor Euclidean distances between a test sample and the training samples. In many application domains, there may not exist a single dissimilarity measure that captures all possible anomalous patterns. In such cases, multiple dissimilarity measures can be defined, including nonmetric measures, and one can test for anomalies by scalarizing using a nonnegative linear combination of them. If the relative importance of the different dissimilarity measures are not known in advance, as in many anomaly detection applications, the anomaly detection algorithm may need to be executed multiple times with different choices of weights in the linear combination. In this paper, we propose a method for similarity-based anomaly detection using a novel multicriteria dissimilarity measure, the Pareto depth. The proposed Pareto depth analysis (PDA) anomaly detection algorithm uses the concept of Pareto optimality to detect anomalies under multiple criteria without having to run an algorithm multiple times with different choices of weights. The proposed PDA approach is provably better than using linear combinations of the criteria, and shows superior performance on experiments with synthetic and real data sets.
Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms
Directory of Open Access Journals (Sweden)
Feng Lin
2007-11-01
Full Text Available Abstract Background Peptides binding to Major Histocompatibility Complex (MHC class II molecules are crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific MHC molecule plays an important role in determining potential candidates for vaccines. The binding groove in class II MHC is open at both ends, allowing peptides longer than 9-mer to bind. Finding the consensus motif facilitating the binding of peptides to a MHC class II molecule is difficult because of different lengths of binding peptides and varying location of 9-mer binding core. The level of difficulty increases when the molecule is promiscuous and binds to a large number of low affinity peptides. In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA for predicting peptides binding to MHC class II molecules. One uses the information from both binders and non-binders for self-discovery of motifs. The other, in addition, uses information from experimentally determined motifs for guided-discovery of motifs. Results The proposed methods are intended for finding peptides binding to MHC class II I-Ag7 molecule – a promiscuous binder to a large number of low affinity peptides. Cross-validation results across experiments on two motifs derived for I-Ag7 datasets demonstrate better generalization abilities and accuracies of the present method over earlier approaches. Further, the proposed method was validated and compared on two publicly available benchmark datasets: (1 an ensemble of qualitative HLA-DRB1*0401 peptide data obtained from five different sources, and (2 quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets, indicating that it is well suited for finding peptides binding to MHC class II molecules. Conclusion We present two MOEA-based algorithms for finding motifs
Multiobjective Multifactorial Optimization in Evolutionary Multitasking.
Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen
2016-05-03
In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.
Lara-Cabrera, Raúl; Cotta, Carlos; Fernández Leiva, Antonio J.
2013-01-01
This work presents a procedural content generation system that uses an evolutionary algorithm in order to generate interesting maps for a real-time strategy game, called Planet Wars. Interestingness is here captured by the dynamism of games (i.e., the extent to which they are action-packed). We consider two different approaches to measure the dynamism of the games resulting from these generated maps, one based on fluctuations in the resources controlled by either player and another one based ...
Giller, C A
2011-12-01
The use of conformity indices to optimize Gamma Knife planning is common, but does not address important tradeoffs between dose to tumor and normal tissue. Pareto analysis has been used for this purpose in other applications, but not for Gamma Knife (GK) planning. The goal of this work is to use computer models to show that Pareto analysis may be feasible for GK planning to identify dosimetric tradeoffs. We define a GK plan A to be Pareto dominant to B if the prescription isodose volume of A covers more tumor but not more normal tissue than B, or if A covers less normal tissue but not less tumor than B. A plan is Pareto optimal if it is not dominated by any other plan. Two different Pareto optimal plans represent different tradeoffs between dose to tumor and normal tissue, because neither plan dominates the other. 'GK simulator' software calculated dose distributions for GK plans, and was called repetitively by a genetic algorithm to calculate Pareto dominant plans. Three irregular tumor shapes were tested in 17 trials using various combinations of shots. The mean number of Pareto dominant plans/trial was 59 ± 17 (sd). Different planning strategies were identified by large differences in shot positions, and 70 of the 153 coordinate plots (46%) showed differences of 5mm or more. The Pareto dominant plans dominated other nearby plans. Pareto dominant plans represent different dosimetric tradeoffs and can be systematically calculated using genetic algorithms. Automatic identification of non-intuitive planning strategies may be feasible with these methods.
Directory of Open Access Journals (Sweden)
K. Roshangar
2016-09-01
Full Text Available Introduction: Exact prediction of transported sediment rate by rivers in water resources projects is of utmost importance. Basically erosion and sediment transport process is one of the most complexes hydrodynamic. Although different studies have been developed on the application of intelligent models based on neural, they are not widely used because of lacking explicitness and complexity governing on choosing and architecting of proper network. In this study, a Genetic expression programming model (as an important branches of evolutionary algorithems for predicting of sediment load is selected and investigated as an intelligent approach along with other known classical and imperical methods such as Larsen´s equation, Engelund-Hansen´s equation and Bagnold´s equation. Materials and Methods: In this study, in order to improve explicit prediction of sediment load of Gotoorchay, located in Aras catchment, Northwestern Iran latitude: 38°24´33.3˝ and longitude: 44°46´13.2˝, genetic programming (GP and Genetic Algorithm (GA were applied. Moreover, the semi-empirical models for predicting of total sediment load and rating curve have been used. Finally all the methods were compared and the best ones were introduced. Two statistical measures were used to compare the performance of the different models, namely root mean square error (RMSE and determination coefficient (DC. RMSE and DC indicate the discrepancy between the observed and computed values. Results and Discussions: The statistical characteristics results obtained from the analysis of genetic programming method for both selected model groups indicated that the model 4 including the only discharge of the river, relative to other studied models had the highest DC and the least RMSE in the testing stage (DC= 0.907, RMSE= 0.067. Although there were several parameters applied in other models, these models were complicated and had weak results of prediction. Our results showed that the model 9
Holmes, Tim; Zanker, Johannes M
2013-01-01
Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was used to investigate the preferred combination of color and shape which have been promoted in the Bauhaus arts school. We used the same three shapes (square, circle, triangle) used by Kandinsky (1923), with the three color palette from the original experiment (A), an extended seven color palette (B), and eight different shape orientation (C). Participants were instructed to look for their preferred circle, triangle or square in displays with eight stimuli of different shapes, colors and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested six participants extensively on the different conditions and found consistent preferences for color-shape combinations for individuals, but little evidence at the group level for clear color/shape preference consistent with Kandinsky's claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of color and shapes, but also that these associations are robust within a single individual. These individual differences go some way toward challenging the claims of the universal preference for color/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the
Directory of Open Access Journals (Sweden)
Tim eHolmes
2013-12-01
Full Text Available Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioural measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA, which has been used as a tool to identify aesthetic preferences (Holmes & Zanker, 2012. In the present study, the GDEA was used to investigate the preferred combination of colour and shape which have been promoted in the Bauhaus arts school. We used the same 3 shapes (square, circle, triangle used by Kandinsky (1923, with the 3 colour palette from the original experiment (A, an extended 7 colour palette (B, and 8 different shape orientation (C. Participants were instructed to look for their preferred circle, triangle or square in displays with 8 stimuli of different shapes, colours and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested 6 participants extensively on the different conditions and found consistent preferences for individuals, but little evidence at the group level for preference consistent with Kandinsky’s claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of colour and shapes, but also that these associations are robust within a single individual. These individual differences go some way towards challenging the claims of the universal preference for colour/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the vast potential of the GDEA in experimental aesthetics
Ketabchi, Hamed; Ataie-Ashtiani, Behzad
2015-01-01
This paper surveys the literature associated with the application of evolutionary algorithms (EAs) in coastal groundwater management problems (CGMPs). This review demonstrates that previous studies were mostly relied on the application of limited and particular EAs, mainly genetic algorithm (GA) and its variants, to a number of specific problems. The exclusive investigation of these problems is often not the representation of the variety of feasible processes may be occurred in coastal aquifers. In this study, eight EAs are evaluated for CGMPs. The considered EAs are: GA, continuous ant colony optimization (CACO), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony optimization (ABC), harmony search (HS), shuffled complex evolution (SCE), and simplex simulated annealing (SIMPSA). The first application of PSO, ABC, HS, and SCE in CGMPs is reported here. Moreover, the four benchmark problems with different degree of difficulty and variety are considered to address the important issues of groundwater resources in coastal regions. Hence, the wide ranges of popular objective functions and constraints with the number of decision variables ranging from 4 to 15 are included. These benchmark problems are applied in the combined simulation-optimization model to examine the optimization scenarios. Some preliminary experiments are performed to select the most efficient parameters values for EAs to set a fair comparison. The specific capabilities of each EA toward CGMPs in terms of results quality and required computational time are compared. The evaluation of the results highlights EA's applicability in CGMPs, besides the remarkable strengths and weaknesses of them. The comparisons show that SCE, CACO, and PSO yield superior solutions among the EAs according to the quality of solutions whereas ABC presents the poor performance. CACO provides the better solutions (up to 17%) than the worst EA (ABC) for the problem with the highest decision
International Nuclear Information System (INIS)
Wang, Bo; Tai, Neng-ling; Zhai, Hai-qing; Ye, Jian; Zhu, Jia-dong; Qi, Liang-bo
2008-01-01
In this paper, a new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting is proposed. Auto-regressive (AR) and moving average (MA) with exogenous variables (ARMAX) has been widely applied in the load forecasting area. Because of the nonlinear characteristics of the power system loads, the forecasting function has many local optimal points. The traditional method based on gradient searching may be trapped in local optimal points and lead to high error. While, the hybrid method based on evolutionary algorithm and particle swarm optimization can solve this problem more efficiently than the traditional ways. It takes advantage of evolutionary strategy to speed up the convergence of particle swarm optimization (PSO), and applies the crossover operation of genetic algorithm to enhance the global search ability. The new ARMAX model for short-term load forecasting has been tested based on the load data of Eastern China location market, and the results indicate that the proposed approach has achieved good accuracy. (author)
Rodrigo, Deepal
2007-12-01
This dissertation introduces a novel approach for optimally operating a day-ahead electricity market not only by economically dispatching the generation resources but also by minimizing the influences of market manipulation attempts by the individual generator-owning companies while ensuring that the power system constraints are not violated. Since economic operation of the market conflicts with the individual profit maximization tactics such as market manipulation by generator-owning companies, a methodology that is capable of simultaneously optimizing these two competing objectives has to be selected. Although numerous previous studies have been undertaken on the economic operation of day-ahead markets and other independent studies have been conducted on the mitigation of market power, the operation of a day-ahead electricity market considering these two conflicting objectives simultaneously has not been undertaken previously. These facts provided the incentive and the novelty for this study. A literature survey revealed that many of the traditional solution algorithms convert multi-objective functions into either a single-objective function using weighting schemas or undertake optimization of one function at a time. Hence, these approaches do not truly optimize the multi-objectives concurrently. Due to these inherent deficiencies of the traditional algorithms, the use of alternative non-traditional solution algorithms for such problems has become popular and widely used. Of these, multi-objective evolutionary algorithms (MOEA) have received wide acceptance due to their solution quality and robustness. In the present research, three distinct algorithms were considered: a non-dominated sorting genetic algorithm II (NSGA II), a multi-objective tabu search algorithm (MOTS) and a hybrid of multi-objective tabu search and genetic algorithm (MOTS/GA). The accuracy and quality of the results from these algorithms for applications similar to the problem investigated here
Existence of pareto equilibria for multiobjective games without compactness
Shiraishi, Yuya; Kuroiwa, Daishi
2013-01-01
In this paper, we investigate the existence of Pareto and weak Pareto equilibria for multiobjective games without compactness. By employing an existence theorem of Pareto equilibria due to Yu and Yuan([10]), several existence theorems of Pareto and weak Pareto equilibria for the multiobjective games are established in a similar way to Flores-B´azan.
TU-C-17A-01: A Data-Based Development for Pratical Pareto Optimality Assessment and Identification
International Nuclear Information System (INIS)
Ruan, D; Qi, S; DeMarco, J; Kupelian, P; Low, D
2014-01-01
Purpose: To develop an efficient Pareto optimality assessment scheme to support plan comparison and practical determination of best-achievable practical treatment plan goals. Methods: Pareto efficiency reflects the tradeoffs among competing target coverage and normal tissue sparing in multi-criterion optimization (MCO) based treatment planning. Assessing and understanding Pareto optimality provides insightful guidance for future planning. However, current MCO-driven Pareto estimation makes relaxed assumptions about the Pareto structure and insufficiently account for practical limitations in beam complexity, leading to performance upper bounds that may be unachievable. This work proposed an alternative data-driven approach that implicitly incorporates the practical limitations, and identifies the Pareto frontier subset by eliminating dominated plans incrementally using the Edgeworth Pareto hull (EPH). The exactness of this elimination process also permits the development of a hierarchical procedure for speedup when the plan cohort size is large, by partitioning the cohort and performing elimination in each subset before a final aggregated elimination. The developed algorithm was first tested on 2D and 3D where accuracy can be reliably assessed. As a specific application, the algorithm was applied to compare systematic plan quality for lower head-and-neck, amongst 4 competing treatment modalities. Results: The algorithm agrees exactly with brute-force pairwise comparison and visual inspection in low dimensions. The hierarchical algorithm shows sqrt(k) folds speedup with k being the number of data points in the plan cohort, demonstrating good efficiency enhancement for heavy testing tasks. Application to plan performance comparison showed superiority of tomotherapy plans for the lower head-and-neck, and revealed a potential nonconvex Pareto frontier structure. Conclusion: An accurate and efficient scheme to identify Pareto frontier from a plan cohort has been
TU-C-17A-01: A Data-Based Development for Pratical Pareto Optimality Assessment and Identification
Energy Technology Data Exchange (ETDEWEB)
Ruan, D; Qi, S; DeMarco, J; Kupelian, P; Low, D [UCLA Department of Radiation Oncology, Los Angeles, CA (United States)
2014-06-15
Purpose: To develop an efficient Pareto optimality assessment scheme to support plan comparison and practical determination of best-achievable practical treatment plan goals. Methods: Pareto efficiency reflects the tradeoffs among competing target coverage and normal tissue sparing in multi-criterion optimization (MCO) based treatment planning. Assessing and understanding Pareto optimality provides insightful guidance for future planning. However, current MCO-driven Pareto estimation makes relaxed assumptions about the Pareto structure and insufficiently account for practical limitations in beam complexity, leading to performance upper bounds that may be unachievable. This work proposed an alternative data-driven approach that implicitly incorporates the practical limitations, and identifies the Pareto frontier subset by eliminating dominated plans incrementally using the Edgeworth Pareto hull (EPH). The exactness of this elimination process also permits the development of a hierarchical procedure for speedup when the plan cohort size is large, by partitioning the cohort and performing elimination in each subset before a final aggregated elimination. The developed algorithm was first tested on 2D and 3D where accuracy can be reliably assessed. As a specific application, the algorithm was applied to compare systematic plan quality for lower head-and-neck, amongst 4 competing treatment modalities. Results: The algorithm agrees exactly with brute-force pairwise comparison and visual inspection in low dimensions. The hierarchical algorithm shows sqrt(k) folds speedup with k being the number of data points in the plan cohort, demonstrating good efficiency enhancement for heavy testing tasks. Application to plan performance comparison showed superiority of tomotherapy plans for the lower head-and-neck, and revealed a potential nonconvex Pareto frontier structure. Conclusion: An accurate and efficient scheme to identify Pareto frontier from a plan cohort has been
Qiu, Xin; Miikkulainen, Risto
2018-01-01
Optimization problems with uncertain fitness functions are common in the real world, and present unique challenges for evolutionary optimization approaches. Existing issues include excessively expensive evaluation, lack of solution reliability, and incapability in maintaining high overall fitness during optimization. Using conversion rate optimization as an example, this paper proposes a series of new techniques for addressing these issues. The main innovation is to augment evolutionary algor...
International Nuclear Information System (INIS)
Vianna Neto, Julio Xavier; Andrade Bernert, Diego Luis de; Santos Coelho, Leandro dos
2011-01-01
The objective of the economic dispatch problem (EDP) of electric power generation, whose characteristics are complex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying all unit and system equality and inequality constraints. Recently, as an alternative to the conventional mathematical approaches, modern meta-heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. Research on merging evolutionary computation and quantum computation has been started since late 1990. Inspired on the quantum computation, this paper presented an improved quantum-inspired evolutionary algorithm (IQEA) based on diversity information of population. A classical quantum-inspired evolutionary algorithm (QEA) and the IQEA were implemented and validated for a benchmark of EDP with 15 thermal generators with prohibited operating zones. From the results for the benchmark problem, it is observed that the proposed IQEA approach provides promising results when compared to various methods available in the literature.
Energy Technology Data Exchange (ETDEWEB)
Vianna Neto, Julio Xavier, E-mail: julio.neto@onda.com.b [Pontifical Catholic University of Parana, PUCPR, Undergraduate Program at Mechatronics Engineering, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Andrade Bernert, Diego Luis de, E-mail: dbernert@gmail.co [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Santos Coelho, Leandro dos, E-mail: leandro.coelho@pucpr.b [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil)
2011-01-15
The objective of the economic dispatch problem (EDP) of electric power generation, whose characteristics are complex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying all unit and system equality and inequality constraints. Recently, as an alternative to the conventional mathematical approaches, modern meta-heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. Research on merging evolutionary computation and quantum computation has been started since late 1990. Inspired on the quantum computation, this paper presented an improved quantum-inspired evolutionary algorithm (IQEA) based on diversity information of population. A classical quantum-inspired evolutionary algorithm (QEA) and the IQEA were implemented and validated for a benchmark of EDP with 15 thermal generators with prohibited operating zones. From the results for the benchmark problem, it is observed that the proposed IQEA approach provides promising results when compared to various methods available in the literature.
Energy Technology Data Exchange (ETDEWEB)
Neto, Julio Xavier Vianna [Pontifical Catholic University of Parana, PUCPR, Undergraduate Program at Mechatronics Engineering, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Bernert, Diego Luis de Andrade; Coelho, Leandro dos Santos [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil)
2011-01-15
The objective of the economic dispatch problem (EDP) of electric power generation, whose characteristics are complex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying all unit and system equality and inequality constraints. Recently, as an alternative to the conventional mathematical approaches, modern meta-heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. Research on merging evolutionary computation and quantum computation has been started since late 1990. Inspired on the quantum computation, this paper presented an improved quantum-inspired evolutionary algorithm (IQEA) based on diversity information of population. A classical quantum-inspired evolutionary algorithm (QEA) and the IQEA were implemented and validated for a benchmark of EDP with 15 thermal generators with prohibited operating zones. From the results for the benchmark problem, it is observed that the proposed IQEA approach provides promising results when compared to various methods available in the literature. (author)
Cheng, Liantao; Zhang, Fenghui; Kang, Xiaoyu; Wang, Lang
2018-05-01
In evolutionary population synthesis (EPS) models, we need to convert stellar evolutionary parameters into spectra via interpolation in a stellar spectral library. For theoretical stellar spectral libraries, the spectrum grid is homogeneous on the effective-temperature and gravity plane for a given metallicity. It is relatively easy to derive stellar spectra. For empirical stellar spectral libraries, stellar parameters are irregularly distributed and the interpolation algorithm is relatively complicated. In those EPS models that use empirical stellar spectral libraries, different algorithms are used and the codes are often not released. Moreover, these algorithms are often complicated. In this work, based on a radial basis function (RBF) network, we present a new spectrum interpolation algorithm and its code. Compared with the other interpolation algorithms that are used in EPS models, it can be easily understood and is highly efficient in terms of computation. The code is written in MATLAB scripts and can be used on any computer system. Using it, we can obtain the interpolated spectra from a library or a combination of libraries. We apply this algorithm to several stellar spectral libraries (such as MILES, ELODIE-3.1 and STELIB-3.2) and give the integrated spectral energy distributions (ISEDs) of stellar populations (with ages from 1 Myr to 14 Gyr) by combining them with Yunnan-III isochrones. Our results show that the differences caused by the adoption of different EPS model components are less than 0.2 dex. All data about the stellar population ISEDs in this work and the RBF spectrum interpolation code can be obtained by request from the first author or downloaded from http://www1.ynao.ac.cn/˜zhangfh.
Frasch, Jonathan Lemoine
Determining the electrical permittivity and magnetic permeability of materials is an important task in electromagnetics research. The method using reflection and transmission scattering parameters to determine these constants has been widely employed for many years, ever since the work of Nicolson, Ross, and Weir in the 1970's. For general materials that are homogeneous, linear, and isotropic, the method they developed (the NRW method) works very well and provides an analytical solution. For materials which possess a metal backing or are applied as a coating to a metal surface, it can be difficult or even impossible to obtain a transmission measurement, especially when the coating is thin. In such a circumstance, it is common to resort to a method which uses two reflection type measurements. There are several such methods for free-space measurements, using multiple angles or polarizations for example. For waveguide measurements, obtaining two independent sources of information from which to extract two complex parameters can be a challenge. This dissertation covers three different topics. Two of these involve different techniques to characterize conductor-backed materials, and the third proposes a method for designing synthetic validation standards for use with standard NRW measurements. All three of these topics utilize modal expansions of electric and magnetic fields to analyze propagation in stepped rectangular waveguides. Two of the projects utilize evolutionary algorithms (EA) to design waveguide structures. These algorithms were developed specifically for these projects and utilize fairly recent innovations within the optimization community. The first characterization technique uses two different versions of a single vertical step in the waveguide. Samples to be tested lie inside the steps with the conductor reflection plane behind them. If the two reflection measurements are truly independent it should be possible to recover the values of two complex
The exponentiated generalized Pareto distribution | Adeyemi | Ife ...
African Journals Online (AJOL)
Recently Gupta et al. (1998) introduced the exponentiated exponential distribution as a generalization of the standard exponential distribution. In this paper, we introduce a three-parameter generalized Pareto distribution, the exponentiated generalized Pareto distribution (EGP). We present a comprehensive treatment of the ...
Long, Kim Chenming
Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this
Directory of Open Access Journals (Sweden)
Kangji Li
2017-02-01
Full Text Available This paper is concerned with the development of a high-resolution and control-friendly optimization framework in enclosed environments that helps improve thermal comfort, indoor air quality (IAQ, and energy costs of heating, ventilation and air conditioning (HVAC system simultaneously. A computational fluid dynamics (CFD-based optimization method which couples algorithms implemented in Matlab with CFD simulation is proposed. The key part of this method is a data interactive mechanism which efficiently passes parameters between CFD simulations and optimization functions. A two-person office room is modeled for the numerical optimization. The multi-objective evolutionary algorithm—non-dominated-and-crowding Sorting Genetic Algorithm II (NSGA-II—is realized to explore the environment/energy Pareto front of the enclosed space. Performance analysis will demonstrate the effectiveness of the presented optimization method.
International Nuclear Information System (INIS)
Machado, Marcelo Dornellas
1999-04-01
Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for function optimization. In this work, a new learning mode, to be used by the Population-Based Incremental Learning (PBIL) algorithm, who combines mechanisms of standard genetic algorithm with simple competitive learning, has the aim to build a new evolutionary algorithm to be used in optimization of numerical problems and combinatorial problems. This new learning mode uses a variable learning rate during the optimization process, constituting a process know as proportional reward. The development of this new algorithm aims its application in the optimization of reload problem of PWR nuclear reactors. This problem can be interpreted as search of a load pattern to be used in the nucleus of the reactor in order to increase the useful life of the nuclear fuel. For the test, two classes of problems are used: numerical problems and combinatorial problem, the major interest relies on the last class. The results achieved with the tests indicate the applicability of the new learning mode, showing its potential as a developing tool in the solution of reload problem. (author)
Exploratory Analysis of an On-line Evolutionary Algorithm in Simulated Robots
Haasdijk, E.W.; Smit, S.K.; Eiben, A.E.
2012-01-01
In traditional evolutionary robotics, robot controllers are evolved in a separate design phase preceding actual deployment; we call this off-line evolution. Alternatively, robot controllers can evolve while the robots perform their proper tasks, during the actual operational phase; we call this
International Nuclear Information System (INIS)
Ahmadi, Mohammad H.; Sayyaadi, Hoseyn; Mohammadi, Amir H.; Barranco-Jimenez, Marco A.
2013-01-01
Highlights: • Thermo-economic multi-objective optimization of solar dish-Stirling engine is studied. • Application of the evolutionary algorithm is investigated. • Error analysis is done to find out the error through investigation. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great number of studies are conducted on Stirling engine and finite time thermo-economic is one of them. In the present study, the dimensionless thermo-economic objective function, thermal efficiency and dimensionless power output are optimized for a dish-Stirling system using finite time thermo-economic analysis and NSGA-II algorithm. Optimized answers are chosen from the results using three decision-making methods. Error analysis is done to find out the error through investigation
Pareto-path multitask multiple kernel learning.
Li, Cong; Georgiopoulos, Michael; Anagnostopoulos, Georgios C
2015-01-01
A traditional and intuitively appealing Multitask Multiple Kernel Learning (MT-MKL) method is to optimize the sum (thus, the average) of objective functions with (partially) shared kernel function, which allows information sharing among the tasks. We point out that the obtained solution corresponds to a single point on the Pareto Front (PF) of a multiobjective optimization problem, which considers the concurrent optimization of all task objectives involved in the Multitask Learning (MTL) problem. Motivated by this last observation and arguing that the former approach is heuristic, we propose a novel support vector machine MT-MKL framework that considers an implicitly defined set of conic combinations of task objectives. We show that solving our framework produces solutions along a path on the aforementioned PF and that it subsumes the optimization of the average of objective functions as a special case. Using the algorithms we derived, we demonstrate through a series of experimental results that the framework is capable of achieving a better classification performance, when compared with other similar MTL approaches.
Multiobjective Optimization of Linear Cooperative Spectrum Sensing: Pareto Solutions and Refinement.
Yuan, Wei; You, Xinge; Xu, Jing; Leung, Henry; Zhang, Tianhang; Chen, Chun Lung Philip
2016-01-01
In linear cooperative spectrum sensing, the weights of secondary users and detection threshold should be optimally chosen to minimize missed detection probability and to maximize secondary network throughput. Since these two objectives are not completely compatible, we study this problem from the viewpoint of multiple-objective optimization. We aim to obtain a set of evenly distributed Pareto solutions. To this end, here, we introduce the normal constraint (NC) method to transform the problem into a set of single-objective optimization (SOO) problems. Each SOO problem usually results in a Pareto solution. However, NC does not provide any solution method to these SOO problems, nor any indication on the optimal number of Pareto solutions. Furthermore, NC has no preference over all Pareto solutions, while a designer may be only interested in some of them. In this paper, we employ a stochastic global optimization algorithm to solve the SOO problems, and then propose a simple method to determine the optimal number of Pareto solutions under a computational complexity constraint. In addition, we extend NC to refine the Pareto solutions and select the ones of interest. Finally, we verify the effectiveness and efficiency of the proposed methods through computer simulations.
Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana
2016-01-01
With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.
He, Lu; Friedman, Alan M.; Bailey-Kellogg, Chris
2016-01-01
In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability vs. novelty, affinity vs. specificity, activity vs. immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not “dominated”; i.e., no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), in order to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, PEPFR (Protein Engineering Pareto FRontier), that hierarchically subdivides the objective space, employing appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. PMID:22180081
Directory of Open Access Journals (Sweden)
Bohui Zhu
2013-01-01
Full Text Available This paper presents a novel maximum margin clustering method with immune evolution (IEMMC for automatic diagnosis of electrocardiogram (ECG arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias.
A practical exact maximum compatibility algorithm for reconstruction of recent evolutionary history
Cherry, Joshua L.
2017-01-01
Background Maximum compatibility is a method of phylogenetic reconstruction that is seldom applied to molecular sequences. It may be ideal for certain applications, such as reconstructing phylogenies of closely-related bacteria on the basis of whole-genome sequencing. Results Here I present an algorithm that rapidly computes phylogenies according to a compatibility criterion. Although based on solutions to the maximum clique problem, this algorithm deals properly with ambiguities in the data....
Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam
2018-04-01
Objective. Considering the importance and the near-future development of noninvasive brain-machine interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods
Directory of Open Access Journals (Sweden)
Juliano Rodrigues Brianeze
2009-12-01
Full Text Available This work presents three of the main evolutionary algorithms: Genetic Algorithm, Evolution Strategy and Evolutionary Programming, applied to microstrip antennas design. Efficiency tests were performed, considering the analysis of key physical and geometrical parameters, evolution type, numerical random generators effects, evolution operators and selection criteria. These algorithms were validated through design of microstrip antennas based on the Resonant Cavity Method, and allow multiobjective optimizations, considering bandwidth, standing wave ratio and relative material permittivity. The optimal results obtained with these optimization processes, were confirmed by CST Microwave Studio commercial package.Este trabajo presenta tres de los principales algoritmos evolutivos: Algoritmo Genético, Estrategia Evolutiva y Programación Evolutiva, aplicados al diseño de antenas de microlíneas (microstrip. Se realizaron pruebas de eficiencia de los algoritmos, considerando el análisis de los parámetros físicos y geométricos, tipo de evolución, efecto de generación de números aleatorios, operadores evolutivos y los criterios de selección. Estos algoritmos fueron validados a través del diseño de antenas de microlíneas basado en el Método de Cavidades Resonantes y permiten optimizaciones multiobjetivo, considerando ancho de banda, razón de onda estacionaria y permitividad relativa del dieléctrico. Los resultados óptimos obtenidos fueron confirmados a través del software comercial CST Microwave Studio.
Multi-Working Modes Product-Color Planning Based on Evolutionary Algorithms and Swarm Intelligence
Directory of Open Access Journals (Sweden)
Man Ding
2010-01-01
Full Text Available In order to assist designer in color planning during product development, a novel synthesized evaluation method is presented to evaluate color-combination schemes of multi-working modes products (MMPs. The proposed evaluation method considers color-combination images in different working modes as evaluating attributes, to which the corresponding weights are assigned for synthesized evaluation. Then a mathematical model is developed to search for optimal color-combination schemes of MMP based on the proposed evaluation method and two powerful search techniques known as Evolution Algorithms (EAs and Swarm Intelligence (SI. In the experiments, we present a comparative study for two EAs, namely, Genetic Algorithm (GA and Difference Evolution (DE, and one SI algorithm, namely, Particle Swarm Optimization (PSO, on searching for color-combination schemes of MMP problem. All of the algorithms are evaluated against a test scenario, namely, an Arm-type aerial work platform, which has two working modes. The results show that the DE obtains the superior solution than the other two algorithms for color-combination scheme searching problem in terms of optimization accuracy and computation robustness. Simulation results demonstrate that the proposed method is feasible and efficient.
Effectively Tackling Reinsurance Problems by Using Evolutionary and Swarm Intelligence Algorithms
Directory of Open Access Journals (Sweden)
Sancho Salcedo-Sanz
2014-04-01
Full Text Available This paper is focused on solving different hard optimization problems that arise in the field of insurance and, more specifically, in reinsurance problems. In this area, the complexity of the models and assumptions considered in the definition of the reinsurance rules and conditions produces hard black-box optimization problems (problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program, which must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in this kind of mathematical problem, so new computational paradigms must be applied to solve these problems. In this paper, we show the performance of two evolutionary and swarm intelligence techniques (evolutionary programming and particle swarm optimization. We provide an analysis in three black-box optimization problems in reinsurance, where the proposed approaches exhibit an excellent behavior, finding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.
Directory of Open Access Journals (Sweden)
Boyang Qu
2017-12-01
Full Text Available The intermittency of wind power and the large-scale integration of electric vehicles (EVs bring new challenges to the reliability and economy of power system dispatching. In this paper, a novel multi-objective dynamic economic emission dispatch (DEED model is proposed considering the EVs and uncertainties of wind power. The total fuel cost and pollutant emission are considered as the optimization objectives, and the vehicle to grid (V2G power and the conventional generator output power are set as the decision variables. The stochastic wind power is derived by Weibull probability distribution function. Under the premise of meeting the system energy and user’s travel demand, the charging and discharging behavior of the EVs are dynamically managed. Moreover, we propose a two-step dynamic constraint processing strategy for decision variables based on penalty function, and, on this basis, the Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D algorithm is improved. The proposed model and approach are verified by the 10-generator system. The results demonstrate that the proposed DEED model and the improved MOEA/D algorithm are effective and reasonable.
Parameter identification of Rossler's chaotic system by an evolutionary algorithm
Energy Technology Data Exchange (ETDEWEB)
Chang, W.-D. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)]. E-mail: wdchang@mail.stu.edu.tw
2006-09-15
In this paper, a differential evolution (DE) algorithm is applied to parameter identification of Rossler's chaotic system. The differential evolution has been shown to possess a powerful searching capability for finding the solutions for a given optimization problem, and it allows for parameter solution to appear directly in the form of floating point without further numerical coding or decoding. Three unknown parameters of Rossler's Chaotic system are optimally estimated by using the DE algorithm. Finally, a numerical example is given to verify the effectiveness of the proposed method.
Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms
Zhao, J.; Basto, Fernandes V.; Jiao, L.; Yevseyeva, I.; Asep, Maulana A.; Li, R.; Bäck, T.H.W.; Tang, T.; Michael, Emmerich T. M.
2016-01-01
The receiver operating characteristic (ROC) and detection error tradeoff(DET) curves are frequently used in the machine learning community to analyze the performance of binary classifiers. Recently, the convex-hull-based multiobjective genetic programming algorithm was proposed and successfully
Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms
Bianchi, E.; Doppelbauer, G.; Filion, L.C.; Dijkstra, M.; Kahl, G.
2012-01-01
We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the
A practical exact maximum compatibility algorithm for reconstruction of recent evolutionary history.
Cherry, Joshua L
2017-02-23
Maximum compatibility is a method of phylogenetic reconstruction that is seldom applied to molecular sequences. It may be ideal for certain applications, such as reconstructing phylogenies of closely-related bacteria on the basis of whole-genome sequencing. Here I present an algorithm that rapidly computes phylogenies according to a compatibility criterion. Although based on solutions to the maximum clique problem, this algorithm deals properly with ambiguities in the data. The algorithm is applied to bacterial data sets containing up to nearly 2000 genomes with several thousand variable nucleotide sites. Run times are several seconds or less. Computational experiments show that maximum compatibility is less sensitive than maximum parsimony to the inclusion of nucleotide data that, though derived from actual sequence reads, has been identified as likely to be misleading. Maximum compatibility is a useful tool for certain phylogenetic problems, such as inferring the relationships among closely-related bacteria from whole-genome sequence data. The algorithm presented here rapidly solves fairly large problems of this type, and provides robustness against misleading characters than can pollute large-scale sequencing data.
Mochnacki, Bohdan; Majchrzak, Ewa; Paruch, Marek
2018-01-01
In the paper the soft tissue freezing process is considered. The tissue sub-domain is subjected to the action of cylindrical cryoprobe. Thermal processes proceeding in the domain considered are described using the dual-phase lag equation (DPLE) supplemented by the appropriate boundary and initial conditions. DPLE results from the generalization of the Fourier law in which two lag times are introduced (relaxation and thermalization times). The aim of research is the identification of these parameters on the basis of measured cooling curves at the set of points selected from the tissue domain. To solve the problem the evolutionary algorithms are used. The paper contains the mathematical model of the tissue freezing process, the very short information concerning the numerical solution of the basic problem, the description of the inverse problem solution and the results of computations.
Directory of Open Access Journals (Sweden)
Marek A. Jakubowski
2014-11-01
Full Text Available At the beginning we would like to provide a short description of the new theory of learning in the digital age called connectivism. It is the integration of principles explored by the following theories: chaos, network, complexity and self-organization. Next, we describe in short new visual solutions for the teaching of writing so called multimodal literacy 5–11. We define and describe the following notions: multimodal text and original theory so called NOS (non-optimum systems methodology as a basis for new methods of visual solutions at the classes and audiovisual texts applications. Especially, we would like to emphasize the tremendous usefulness of evolutionary algorithms VEGA and NSGA as tools for optimal planning of multimodal composition in teaching texts. Finally, we give some examples of didactic texts for classrooms, which provide a deep insight into learning skills and tasks needed in the Internet age.
Pareto fronts in clinical practice for pinnacle.
Janssen, Tomas; van Kesteren, Zdenko; Franssen, Gijs; Damen, Eugène; van Vliet, Corine
2013-03-01
Our aim was to develop a framework to objectively perform treatment planning studies using Pareto fronts. The Pareto front represents all optimal possible tradeoffs among several conflicting criteria and is an ideal tool with which to study the possibilities of a given treatment technique. The framework should require minimal user interaction and should resemble and be applicable to daily clinical practice. To generate the Pareto fronts, we used the native scripting language of Pinnacle(3) (Philips Healthcare, Andover, MA). The framework generates thousands of plans automatically from which the Pareto front is generated. As an example, the framework is applied to compare intensity modulated radiation therapy (IMRT) with volumetric modulated arc therapy (VMAT) for prostate cancer patients. For each patient and each technique, 3000 plans are generated, resulting in a total of 60,000 plans. The comparison is based on 5-dimensional Pareto fronts. Generating 3000 plans for 10 patients in parallel requires on average 96 h for IMRT and 483 hours for VMAT. Using VMAT, compared to IMRT, the maximum dose of the boost PTV was reduced by 0.4 Gy (P=.074), the mean dose in the anal sphincter by 1.6 Gy (P=.055), the conformity index of the 95% isodose (CI(95%)) by 0.02 (P=.005), and the rectal wall V(65 Gy) by 1.1% (P=.008). We showed the feasibility of automatically generating Pareto fronts with Pinnacle(3). Pareto fronts provide a valuable tool for performing objective comparative treatment planning studies. We compared VMAT with IMRT in prostate patients and found VMAT had a dosimetric advantage over IMRT. Copyright © 2013 Elsevier Inc. All rights reserved.
Pareto Fronts in Clinical Practice for Pinnacle
International Nuclear Information System (INIS)
Janssen, Tomas; Kesteren, Zdenko van; Franssen, Gijs; Damen, Eugène; Vliet, Corine van
2013-01-01
Purpose: Our aim was to develop a framework to objectively perform treatment planning studies using Pareto fronts. The Pareto front represents all optimal possible tradeoffs among several conflicting criteria and is an ideal tool with which to study the possibilities of a given treatment technique. The framework should require minimal user interaction and should resemble and be applicable to daily clinical practice. Methods and Materials: To generate the Pareto fronts, we used the native scripting language of Pinnacle 3 (Philips Healthcare, Andover, MA). The framework generates thousands of plans automatically from which the Pareto front is generated. As an example, the framework is applied to compare intensity modulated radiation therapy (IMRT) with volumetric modulated arc therapy (VMAT) for prostate cancer patients. For each patient and each technique, 3000 plans are generated, resulting in a total of 60,000 plans. The comparison is based on 5-dimensional Pareto fronts. Results: Generating 3000 plans for 10 patients in parallel requires on average 96 h for IMRT and 483 hours for VMAT. Using VMAT, compared to IMRT, the maximum dose of the boost PTV was reduced by 0.4 Gy (P=.074), the mean dose in the anal sphincter by 1.6 Gy (P=.055), the conformity index of the 95% isodose (CI 95% ) by 0.02 (P=.005), and the rectal wall V 65 Gy by 1.1% (P=.008). Conclusions: We showed the feasibility of automatically generating Pareto fronts with Pinnacle 3 . Pareto fronts provide a valuable tool for performing objective comparative treatment planning studies. We compared VMAT with IMRT in prostate patients and found VMAT had a dosimetric advantage over IMRT
Pareto joint inversion of 2D magnetotelluric and gravity data
Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek
2015-04-01
In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where
Pareto-Optimal Model Selection via SPRINT-Race.
Zhang, Tiantian; Georgiopoulos, Michael; Anagnostopoulos, Georgios C
2018-02-01
In machine learning, the notion of multi-objective model selection (MOMS) refers to the problem of identifying the set of Pareto-optimal models that optimize by compromising more than one predefined objectives simultaneously. This paper introduces SPRINT-Race, the first multi-objective racing algorithm in a fixed-confidence setting, which is based on the sequential probability ratio with indifference zone test. SPRINT-Race addresses the problem of MOMS with multiple stochastic optimization objectives in the proper Pareto-optimality sense. In SPRINT-Race, a pairwise dominance or non-dominance relationship is statistically inferred via a non-parametric, ternary-decision, dual-sequential probability ratio test. The overall probability of falsely eliminating any Pareto-optimal models or mistakenly returning any clearly dominated models is strictly controlled by a sequential Holm's step-down family-wise error rate control method. As a fixed-confidence model selection algorithm, the objective of SPRINT-Race is to minimize the computational effort required to achieve a prescribed confidence level about the quality of the returned models. The performance of SPRINT-Race is first examined via an artificially constructed MOMS problem with known ground truth. Subsequently, SPRINT-Race is applied on two real-world applications: 1) hybrid recommender system design and 2) multi-criteria stock selection. The experimental results verify that SPRINT-Race is an effective and efficient tool for such MOMS problems. code of SPRINT-Race is available at https://github.com/watera427/SPRINT-Race.
Directory of Open Access Journals (Sweden)
Laxmi A. Bewoor
2017-10-01
Full Text Available The no-wait flow shop is a flowshop in which the scheduling of jobs is continuous and simultaneous through all machines without waiting for any consecutive machines. The scheduling of a no-wait flow shop requires finding an appropriate sequence of jobs for scheduling, which in turn reduces total processing time. The classical brute force method for finding the probabilities of scheduling for improving the utilization of resources may become trapped in local optima, and this problem can hence be observed as a typical NP-hard combinatorial optimization problem that requires finding a near optimal solution with heuristic and metaheuristic techniques. This paper proposes an effective hybrid Particle Swarm Optimization (PSO metaheuristic algorithm for solving no-wait flow shop scheduling problems with the objective of minimizing the total flow time of jobs. This Proposed Hybrid Particle Swarm Optimization (PHPSO algorithm presents a solution by the random key representation rule for converting the continuous position information values of particles to a discrete job permutation. The proposed algorithm initializes population efficiently with the Nawaz-Enscore-Ham (NEH heuristic technique and uses an evolutionary search guided by the mechanism of PSO, as well as simulated annealing based on a local neighborhood search to avoid getting stuck in local optima and to provide the appropriate balance of global exploration and local exploitation. Extensive computational experiments are carried out based on Taillard’s benchmark suite. Computational results and comparisons with existing metaheuristics show that the PHPSO algorithm outperforms the existing methods in terms of quality search and robustness for the problem considered. The improvement in solution quality is confirmed by statistical tests of significance.
PMU Placement Methods in Power Systems based on Evolutionary Algorithms and GPS Receiver
Directory of Open Access Journals (Sweden)
M. R. Mosavi
2013-06-01
Full Text Available In this paper, optimal placement of Phasor Measurement Unit (PMU using Global Positioning System (GPS is discussed. Ant Colony Optimization (ACO, Simulated Annealing (SA, Particle Swarm Optimization (PSO and Genetic Algorithm (GA are used for this problem. Pheromone evaporation coefficient and the probability of moving from state x to state y by ant are introduced into the ACO. The modified algorithm overcomes the ACO in obtaining global optimal solution and convergence speed, when applied to optimizing the PMU placement problem. We also compare this simulink with SA, PSO and GA that to find capability of ACO in the search of optimal solution. The fitness function includes observability, redundancy and number of PMU. Logarithmic Least Square Method (LLSM is used to calculate the weights of fitness function. The suggested optimization method is applied in 30-bus IEEE system and the simulation results show modified ACO find results better than PSO and SA, but same result with GA.
Couceiro, Micael
2015-01-01
This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, suc
Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts.
Diego-Mas, Jose Antonio; Poveda-Bautista, Rocio; Garzon-Leal, Diana
2017-11-01
RGB-D sensors can collect postural data in an automatized way. However, the application of these devices in real work environments requires overcoming problems such as lack of accuracy or body parts' occlusion. This work presents the use of RGB-D sensors and genetic algorithms for the optimization of workstation layouts. RGB-D sensors are used to capture workers' movements when they reach objects on workbenches. Collected data are then used to optimize workstation layout by means of genetic algorithms considering multiple ergonomic criteria. Results show that typical drawbacks of using RGB-D sensors for body tracking are not a problem for this application, and that the combination with intelligent algorithms can automatize the layout design process. The procedure described can be used to automatically suggest new layouts when workers or processes of production change, to adapt layouts to specific workers based on their ways to do the tasks, or to obtain layouts simultaneously optimized for several production processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Periaux, Jacques; Lee, Dong Seop Chris
2015-01-01
Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with c...
Directory of Open Access Journals (Sweden)
E. Osaba
2014-01-01
Full Text Available Since their first formulation, genetic algorithms (GAs have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test.
Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.
2014-01-01
Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731
Post Pareto optimization-A case
Popov, Stoyan; Baeva, Silvia; Marinova, Daniela
2017-12-01
Simulation performance may be evaluated according to multiple quality measures that are in competition and their simultaneous consideration poses a conflict. In the current study we propose a practical framework for investigating such simulation performance criteria, exploring the inherent conflicts amongst them and identifying the best available tradeoffs, based upon multi-objective Pareto optimization. This approach necessitates the rigorous derivation of performance criteria to serve as objective functions and undergo vector optimization. We demonstrate the effectiveness of our proposed approach by applying it with multiple stochastic quality measures. We formulate performance criteria of this use-case, pose an optimization problem, and solve it by means of a simulation-based Pareto approach. Upon attainment of the underlying Pareto Frontier, we analyze it and prescribe preference-dependent configurations for the optimal simulation training.
Pareto versus lognormal: a maximum entropy test.
Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano
2011-08-01
It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.
A note on the estimation of the Pareto efficient set for multiobjective matrix permutation problems.
Brusco, Michael J; Steinley, Douglas
2012-02-01
There are a number of important problems in quantitative psychology that require the identification of a permutation of the n rows and columns of an n × n proximity matrix. These problems encompass applications such as unidimensional scaling, paired-comparison ranking, and anti-Robinson forms. The importance of simultaneously incorporating multiple objective criteria in matrix permutation applications is well recognized in the literature; however, to date, there has been a reliance on weighted-sum approaches that transform the multiobjective problem into a single-objective optimization problem. Although exact solutions to these single-objective problems produce supported Pareto efficient solutions to the multiobjective problem, many interesting unsupported Pareto efficient solutions may be missed. We illustrate the limitation of the weighted-sum approach with an example from the psychological literature and devise an effective heuristic algorithm for estimating both the supported and unsupported solutions of the Pareto efficient set. © 2011 The British Psychological Society.
Distributed approximation of Pareto surfaces in multicriteria radiation therapy treatment planning
International Nuclear Information System (INIS)
Bokrantz, Rasmus
2013-01-01
We consider multicriteria radiation therapy treatment planning by navigation over the Pareto surface, implemented by interpolation between discrete treatment plans. Current state of the art for calculation of a discrete representation of the Pareto surface is to sandwich this set between inner and outer approximations that are updated one point at a time. In this paper, we generalize this sequential method to an algorithm that permits parallelization. The principle of the generalization is to apply the sequential method to an approximation of an inexpensive model of the Pareto surface. The information gathered from the model is sub-sequently used for the calculation of points from the exact Pareto surface, which are processed in parallel. The model is constructed according to the current inner and outer approximations, and given a shape that is difficult to approximate, in order to avoid that parts of the Pareto surface are incorrectly disregarded. Approximations of comparable quality to those generated by the sequential method are demonstrated when the degree of parallelization is up to twice the number of dimensions of the objective space. For practical applications, the number of dimensions is typically at least five, so that a speed-up of one order of magnitude is obtained. (paper)
Distributed approximation of Pareto surfaces in multicriteria radiation therapy treatment planning.
Bokrantz, Rasmus
2013-06-07
We consider multicriteria radiation therapy treatment planning by navigation over the Pareto surface, implemented by interpolation between discrete treatment plans. Current state of the art for calculation of a discrete representation of the Pareto surface is to sandwich this set between inner and outer approximations that are updated one point at a time. In this paper, we generalize this sequential method to an algorithm that permits parallelization. The principle of the generalization is to apply the sequential method to an approximation of an inexpensive model of the Pareto surface. The information gathered from the model is sub-sequently used for the calculation of points from the exact Pareto surface, which are processed in parallel. The model is constructed according to the current inner and outer approximations, and given a shape that is difficult to approximate, in order to avoid that parts of the Pareto surface are incorrectly disregarded. Approximations of comparable quality to those generated by the sequential method are demonstrated when the degree of parallelization is up to twice the number of dimensions of the objective space. For practical applications, the number of dimensions is typically at least five, so that a speed-up of one order of magnitude is obtained.
Optimal Management Of Renewable-Based Mgs An Intelligent Approach Through The Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Mehdi Nafar
2015-08-01
Full Text Available Abstract- This article proposes a probabilistic frame built on Scenario fabrication to considerate the uncertainties in the finest action managing of Micro Grids MGs. The MG contains different recoverable energy resources such as Wind Turbine WT Micro Turbine MT Photovoltaic PV Fuel Cell FC and one battery as the storing device. The advised frame is based on scenario generation and Roulette wheel mechanism to produce different circumstances for handling the uncertainties of altered factors. It habits typical spreading role as a probability scattering function of random factors. The uncertainties which are measured in this paper are grid bid alterations cargo request calculating error and PV and WT yield power productions. It is well-intentioned to asset that solving the MG difficult for 24 hours of a day by considering diverse uncertainties and different constraints needs one powerful optimization method that can converge fast when it doesnt fall in local optimal topic. Simultaneously single Group Search Optimization GSO system is presented to vision the total search space globally. The GSO algorithm is instigated from group active of beasts. Also the GSO procedure one change is similarly planned for this algorithm. The planned context and way is applied o one test grid-connected MG as a typical grid.
Optimized smart grid energy procurement for LTE networks using evolutionary algorithms
Ghazzai, Hakim
2014-11-01
Energy efficiency aspects in cellular networks can contribute significantly to reducing worldwide greenhouse gas emissions. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Moreover, introducing renewable energy as an alternative power source has become a real challenge among network operators. In this paper, we formulate an optimization problem that aims to maximize the profit of Long-Term Evolution (LTE) cellular operators and to simultaneously minimize the CO2 emissions in green wireless cellular networks without affecting the desired quality of service (QoS). The BS sleeping strategy lends itself to an interesting implementation using several heuristic approaches, such as the genetic (GA) and particle swarm optimization (PSO) algorithms. In this paper, we propose GA-based and PSO-based methods that reduce the energy consumption of BSs by not only shutting down underutilized BSs but by optimizing the amounts of energy procured from different retailers (renewable energy and electricity retailers), as well. A comparison with another previously proposed algorithm is also carried out to evaluate the performance and the computational complexity of the employed methods.
Ward, V. L.; Singh, R.; Reed, P. M.; Keller, K.
2014-12-01
As water resources problems typically involve several stakeholders with conflicting objectives, multi-objective evolutionary algorithms (MOEAs) are now key tools for understanding management tradeoffs. Given the growing complexity of water planning problems, it is important to establish if an algorithm can consistently perform well on a given class of problems. This knowledge allows the decision analyst to focus on eliciting and evaluating appropriate problem formulations. This study proposes a multi-objective adaptation of the classic environmental economics "Lake Problem" as a computationally simple but mathematically challenging MOEA benchmarking problem. The lake problem abstracts a fictional town on a lake which hopes to maximize its economic benefit without degrading the lake's water quality to a eutrophic (polluted) state through excessive phosphorus loading. The problem poses the challenge of maintaining economic activity while confronting the uncertainty of potentially crossing a nonlinear and potentially irreversible pollution threshold beyond which the lake is eutrophic. Objectives for optimization are maximizing economic benefit from lake pollution, maximizing water quality, maximizing the reliability of remaining below the environmental threshold, and minimizing the probability that the town will have to drastically change pollution policies in any given year. The multi-objective formulation incorporates uncertainty with a stochastic phosphorus inflow abstracting non-point source pollution. We performed comprehensive diagnostics using 6 algorithms: Borg, MOEAD, eMOEA, eNSGAII, GDE3, and NSGAII to ascertain their controllability, reliability, efficiency, and effectiveness. The lake problem abstracts elements of many current water resources and climate related management applications where there is the potential for crossing irreversible, nonlinear thresholds. We show that many modern MOEAs can fail on this test problem, indicating its suitability as a
Energy Technology Data Exchange (ETDEWEB)
2016-12-21
The JMP Add-In TopN-PFS provides an automated tool for finding layered Pareto front to identify the top N solutions from an enumerated list of candidates subject to optimizing multiple criteria. The approach constructs the N layers of Pareto fronts, and then provides a suite of graphical tools to explore the alternatives based on different prioritizations of the criteria. The tool is designed to provide a set of alternatives from which the decision-maker can select the best option for their study goals.
Spectral-Efficiency - Illumination Pareto Front for Energy Harvesting Enabled VLC System
Abdelhady, Amr Mohamed Abdelaziz
2017-12-13
The continuous improvement in optical energy harvesting devices motivates visible light communication (VLC) system developers to utilize such available free energy sources. An outdoor VLC system is considered where an optical base station sends data to multiple users that are capable of harvesting the optical energy. The proposed VLC system serves multiple users using time division multiple access (TDMA) with unequal time and power allocation, which are allocated to improve the system performance. The adopted optical system provides users with illumination and data communication services. The outdoor optical design objective is to maximize the illumination, while the communication design objective is to maximize the spectral efficiency (SE). The design objectives are shown to be conflicting, therefore, a multiobjective optimization problem is formulated to obtain the Pareto front performance curve for the proposed system. To this end, the marginal optimization problems are solved first using low complexity algorithms. Then, based on the proposed algorithms, a low complexity algorithm is developed to obtain an inner bound of the Pareto front for the illumination-SE tradeoff. The inner bound for the Pareto-front is shown to be close to the optimal Pareto-frontier via several simulation scenarios for different system parameters.
Optimal PMU Placement with Uncertainty Using Pareto Method
Directory of Open Access Journals (Sweden)
A. Ketabi
2012-01-01
Full Text Available This paper proposes a method for optimal placement of Phasor Measurement Units (PMUs in state estimation considering uncertainty. State estimation has first been turned into an optimization exercise in which the objective function is selected to be the number of unobservable buses which is determined based on Singular Value Decomposition (SVD. For the normal condition, Differential Evolution (DE algorithm is used to find the optimal placement of PMUs. By considering uncertainty, a multiobjective optimization exercise is hence formulated. To achieve this, DE algorithm based on Pareto optimum method has been proposed here. The suggested strategy is applied on the IEEE 30-bus test system in several case studies to evaluate the optimal PMUs placement.
An Evolutionary Approach for Bilevel Multi-objective Problems
Deb, Kalyanmoy; Sinha, Ankur
Evolutionary multi-objective optimization (EMO) algorithms have been extensively applied to find multiple near Pareto-optimal solutions over the past 15 years or so. However, EMO algorithms for solving bilevel multi-objective optimization problems have not received adequate attention yet. These problems appear in many applications in practice and involve two levels, each comprising of multiple conflicting objectives. These problems require every feasible upper-level solution to satisfy optimality of a lower-level optimization problem, thereby making them difficult to solve. In this paper, we discuss a recently proposed bilevel EMO procedure and show its working principle on a couple of test problems and on a business decision-making problem. This paper should motivate other EMO researchers to engage more into this important optimization task of practical importance.
AN EVOLUTIONARY ALGORITHM FOR CHANNEL ASSIGNMENT PROBLEM IN WIRELESS MOBILE NETWORKS
Directory of Open Access Journals (Sweden)
Yee Shin Chia
2012-12-01
Full Text Available The channel assignment problem in wireless mobile network is the assignment of appropriate frequency spectrum to incoming calls while maintaining a satisfactory level of electromagnetic compatibility (EMC constraints. An effective channel assignment strategy is important due to the limited capacity of frequency spectrum in wireless mobile network. Most of the existing channel assignment strategies are based on deterministic methods. In this paper, an adaptive genetic algorithm (GA based channel assignment strategy is introduced for resource management and to reduce the effect of EMC interferences. The most significant advantage of the proposed optimization method is its capability to handle both the reassignment of channels for existing calls as well as the allocation of channel to a new incoming call in an adaptive process to maximize the utility of the limited resources. It is capable to adapt the population size to the number of eligible channels for a particular cell upon new call arrivals to achieve reasonable convergence speed. The MATLAB simulation on a 49-cells network model for both uniform and nonuniform call traffic distributions showed that the proposed channel optimization method can always achieve a lower average new incoming call blocking probability compared to the deterministic based channel assignment strategy.
Application of an Evolutionary Algorithm for Parameter Optimization in a Gully Erosion Model
Energy Technology Data Exchange (ETDEWEB)
Rengers, Francis; Lunacek, Monte; Tucker, Gregory
2016-06-01
Herein we demonstrate how to use model optimization to determine a set of best-fit parameters for a landform model simulating gully incision and headcut retreat. To achieve this result we employed the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), an iterative process in which samples are created based on a distribution of parameter values that evolve over time to better fit an objective function. CMA-ES efficiently finds optimal parameters, even with high-dimensional objective functions that are non-convex, multimodal, and non-separable. We ran model instances in parallel on a high-performance cluster, and from hundreds of model runs we obtained the best parameter choices. This method is far superior to brute-force search algorithms, and has great potential for many applications in earth science modeling. We found that parameters representing boundary conditions tended to converge toward an optimal single value, whereas parameters controlling geomorphic processes are defined by a range of optimal values.
Robust bayesian inference of generalized Pareto distribution ...
African Journals Online (AJOL)
En utilisant une etude exhaustive de Monte Carlo, nous prouvons que, moyennant une fonction perte generalisee adequate, on peut construire un estimateur Bayesien robuste du modele. Key words: Bayesian estimation; Extreme value; Generalized Fisher information; Gener- alized Pareto distribution; Monte Carlo; ...
Axiomatizations of Pareto Equilibria in Multicriteria Games
Voorneveld, M.; Vermeulen, D.; Borm, P.E.M.
1997-01-01
We focus on axiomatizations of the Pareto equilibrium concept in multicriteria games based on consistency.Axiomatizations of the Nash equilibrium concept by Peleg and Tijs (1996) and Peleg, Potters, and Tijs (1996) have immediate generalizations.The axiomatization of Norde et al.(1996) cannot be
Pareto optimality in organelle energy metabolism analysis.
Angione, Claudio; Carapezza, Giovanni; Costanza, Jole; Lió, Pietro; Nicosia, Giuseppe
2013-01-01
In low and high eukaryotes, energy is collected or transformed in compartments, the organelles. The rich variety of size, characteristics, and density of the organelles makes it difficult to build a general picture. In this paper, we make use of the Pareto-front analysis to investigate the optimization of energy metabolism in mitochondria and chloroplasts. Using the Pareto optimality principle, we compare models of organelle metabolism on the basis of single- and multiobjective optimization, approximation techniques (the Bayesian Automatic Relevance Determination), robustness, and pathway sensitivity analysis. Finally, we report the first analysis of the metabolic model for the hydrogenosome of Trichomonas vaginalis, which is found in several protozoan parasites. Our analysis has shown the importance of the Pareto optimality for such comparison and for insights into the evolution of the metabolism from cytoplasmic to organelle bound, involving a model order reduction. We report that Pareto fronts represent an asymptotic analysis useful to describe the metabolism of an organism aimed at maximizing concurrently two or more metabolite concentrations.
How Well Do We Know Pareto Optimality?
Mathur, Vijay K.
1991-01-01
Identifies sources of ambiguity in economics textbooks' discussion of the condition for efficient output mix. Points out that diverse statements without accompanying explanations create confusion among students. Argues that conflicting views concerning the concept of Pareto optimality as one source of ambiguity. Suggests clarifying additions to…
Performance-based Pareto optimal design
Sariyildiz, I.S.; Bittermann, M.S.; Ciftcioglu, O.
2008-01-01
A novel approach for performance-based design is presented, where Pareto optimality is pursued. Design requirements may contain linguistic information, which is difficult to bring into computation or make consistent their impartial estimations from case to case. Fuzzy logic and soft computing are
van Zyl, J. Martin
2012-01-01
Random variables of the generalized Pareto distribution, can be transformed to that of the Pareto distribution. Explicit expressions exist for the maximum likelihood estimators of the parameters of the Pareto distribution. The performance of the estimation of the shape parameter of generalized Pareto distributed using transformed observations, based on the probability weighted method is tested. It was found to improve the performance of the probability weighted estimator and performs good wit...
PARETO OPTIMAL SOLUTIONS FOR MULTI-OBJECTIVE GENERALIZED ASSIGNMENT PROBLEM
Directory of Open Access Journals (Sweden)
S. Prakash
2012-01-01
Full Text Available
ENGLISH ABSTRACT: The Multi-Objective Generalized Assignment Problem (MGAP with two objectives, where one objective is linear and the other one is non-linear, has been considered, with the constraints that a job is assigned to only one worker – though he may be assigned more than one job, depending upon the time available to him. An algorithm is proposed to find the set of Pareto optimal solutions of the problem, determining assignments of jobs to workers with two objectives without setting priorities for them. The two objectives are to minimise the total cost of the assignment and to reduce the time taken to complete all the jobs.
AFRIKAANSE OPSOMMING: ‘n Multi-doelwit veralgemeende toekenningsprobleem (“multi-objective generalised assignment problem – MGAP” met twee doelwitte, waar die een lineêr en die ander nielineêr is nie, word bestudeer, met die randvoorwaarde dat ‘n taak slegs toegedeel word aan een werker – alhoewel meer as een taak aan hom toegedeel kan word sou die tyd beskikbaar wees. ‘n Algoritme word voorgestel om die stel Pareto-optimale oplossings te vind wat die taaktoedelings aan werkers onderhewig aan die twee doelwitte doen sonder dat prioriteite toegeken word. Die twee doelwitte is om die totale koste van die opdrag te minimiseer en om die tyd te verminder om al die take te voltooi.
Determination of Pareto frontier in multi-objective maintenance optimization
International Nuclear Information System (INIS)
Certa, Antonella; Galante, Giacomo; Lupo, Toni; Passannanti, Gianfranco
2011-01-01
The objective of a maintenance policy generally is the global maintenance cost minimization that involves not only the direct costs for both the maintenance actions and the spare parts, but also those ones due to the system stop for preventive maintenance and the downtime for failure. For some operating systems, the failure event can be dangerous so that they are asked to operate assuring a very high reliability level between two consecutive fixed stops. The present paper attempts to individuate the set of elements on which performing maintenance actions so that the system can assure the required reliability level until the next fixed stop for maintenance, minimizing both the global maintenance cost and the total maintenance time. In order to solve the previous constrained multi-objective optimization problem, an effective approach is proposed to obtain the best solutions (that is the Pareto optimal frontier) among which the decision maker will choose the more suitable one. As well known, describing the whole Pareto optimal frontier generally is a troublesome task. The paper proposes an algorithm able to rapidly overcome this problem and its effectiveness is shown by an application to a case study regarding a complex series-parallel system.
Santos, José; Monteagudo, Ángel
2017-03-27
The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.
Energy Technology Data Exchange (ETDEWEB)
Fleischhauer, T.; Knoedler, K.; Poland, J.; Zell, A.
2003-07-01
The BMW AG Munich, Drive system development, Test and simulation systems, and the University of Tuebingen, chair' of Computer Architecture at the Wilhelm-Schickard-Institute for Computer Science, worked together in the project MOTOP to solve a number of optimization tasks in the application of motor control units. The most important research topic was the development of the online optimization algorithm mbminimize with a robust constraint handling. The goal was to bring the new software developed in the project to the point where it is directly usable at the motor test bed. This goal was met until the end of the project in so far, as a robust modelling of the primary objective function, a robust parameter change strategy (including retraction strategy in case of a parameter limit violation), a variable limit modelling and an optimized parameter change strategy could be realized. Another important point was the development of active learning methods for these applications. These methods allow the integration of newly measured data directly into the online measurement point planning, reducing the total number of measurements considerably, and improving the quality of the models. (orig.) [German] Die BMW AG Muenchen, Entwicklung Antrieb, Pruef-/Simulationssysteme, und die Universitaet Tuebingen, Lehrstuhl Rechnerarchitektur am Wilhelm-Schickard-Institut fuer Informatik, bearbeiteten im MOTOP-Projekt verschiedene Optimierungsaufgaben im Gesamtprozess der Applikation von Motorsteuergeraeten. Der Forschungsschwerpunkt war die Entwicklung des Online-Optimierungsalgorithmus mbminimize mit einer robusten Constraint-Behandlung. Das Ziel war dabei, die entwickelte Software fuer die automatisierte Optimierung der Motorparameter direkt am Pruefstand einsatzbereit zu machen. Dieses Ziel konnte bis Ende des Berichtszeitraums in Form einer robusten Modellierung der primaeren Zielfunktion, einer robusten Verstellstrategie (inkl. Rueckzugstrategie im Falle einer Limitverletzung
Champion, H; Fiege, J; McCurdy, B; Potrebko, P; Cull, A
2012-07-01
PARETO (Pareto-Aware Radiotherapy Evolutionary Treatment Optimization) is a novel multiobjective treatment planning system that performs beam orientation and fluence optimization simultaneously using an advanced evolutionary algorithm. In order to reduce the number of parameters involved in this enormous search space, we present several methods for modeling the beam fluence. The parameterizations are compared using innovative tools that evaluate fluence complexity, solution quality, and run efficiency. A PARETO run is performed using the basic weight (BW), linear gradient (LG), cosine transform (CT), beam group (BG), and isodose-projection (IP) methods for applying fluence modulation over the projection of the Planning Target Volume in the beam's-eye-view plane. The solutions of each run are non-dominated with respect to other trial solutions encountered during the run. However, to compare the solution quality of independent runs, each run competes against every other run in a round robin fashion. Score is assigned based on the fraction of solutions that survive when a tournament selection operator is applied to the solutions of the two competitors. To compare fluence complexity, a modulation index, fractal dimension, and image gradient entropy are calculated for the fluence maps of each optimal plan. We have found that the LG method results in superior solution quality for a spine phantom, lung patient, and cauda equina patient. The BG method produces solutions with the highest degree of fluence complexity. Most methods result in comparable run times. The LG method produces superior solution quality using a moderate degree of fluence modulation. © 2012 American Association of Physicists in Medicine.
Smith, R.; Kasprzyk, J. R.; Zagona, E. A.
2015-12-01
Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.
He, Lu; Friedman, Alan M; Bailey-Kellogg, Chris
2012-03-01
In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability versus novelty, affinity versus specificity, activity versus immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not "dominated"; that is, no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, Protein Engineering Pareto FRontier (PEPFR), that hierarchically subdivides the objective space, using appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. Copyright © 2011 Wiley Periodicals, Inc.
Evaluation of Preanalytical Quality Indicators by Six Sigma and Pareto`s Principle.
Kulkarni, Sweta; Ramesh, R; Srinivasan, A R; Silvia, C R Wilma Delphine
2018-01-01
Preanalytical steps are the major sources of error in clinical laboratory. The analytical errors can be corrected by quality control procedures but there is a need for stringent quality checks in preanalytical area as these processes are done outside the laboratory. Sigma value depicts the performance of laboratory and its quality measures. Hence in the present study six sigma and Pareto principle was applied to preanalytical quality indicators to evaluate the clinical biochemistry laboratory performance. This observational study was carried out for a period of 1 year from November 2015-2016. A total of 1,44,208 samples and 54,265 test requisition forms were screened for preanalytical errors like missing patient information, sample collection details in forms and hemolysed, lipemic, inappropriate, insufficient samples and total number of errors were calculated and converted into defects per million and sigma scale. Pareto`s chart was drawn using total number of errors and cumulative percentage. In 75% test requisition forms diagnosis was not mentioned and sigma value of 0.9 was obtained and for other errors like sample receiving time, stat and type of sample sigma values were 2.9, 2.6, and 2.8 respectively. For insufficient sample and improper ratio of blood to anticoagulant sigma value was 4.3. Pareto`s chart depicts out of 80% of errors in requisition forms, 20% is contributed by missing information like diagnosis. The development of quality indicators, application of six sigma and Pareto`s principle are quality measures by which not only preanalytical, the total testing process can be improved.
Energy Technology Data Exchange (ETDEWEB)
Adam Lurka; Peter Swanson [Central Mining Institute, Katowice (Poland)
2009-09-15
Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor array during longwall coal mining provide the data set used in the analyses. A spatially variable seismic velocity model is constructed using seismic event sources in a passive tomographic method. The resulting three-dimensional velocity model is used to relocate seismic event positions. An evolutionary optimization algorithm is implemented and used in both the velocity model development and in seeking improved event location solutions. Results obtained using the different velocity models are compared. The combination of the tomographic velocity model development and evolutionary search algorithm provides improvement to the event locations. 13 refs., 5 figs., 4 tabs.
Pareto optimization of an industrial ecosystem: sustainability maximization
Directory of Open Access Journals (Sweden)
J. G. M.-S. Monteiro
2010-09-01
Full Text Available This work investigates a procedure to design an Industrial Ecosystem for sequestrating CO2 and consuming glycerol in a Chemical Complex with 15 integrated processes. The Complex is responsible for the production of methanol, ethylene oxide, ammonia, urea, dimethyl carbonate, ethylene glycol, glycerol carbonate, β-carotene, 1,2-propanediol and olefins, and is simulated using UNISIM Design (Honeywell. The process environmental impact (EI is calculated using the Waste Reduction Algorithm, while Profit (P is estimated using classic cost correlations. MATLAB (The Mathworks Inc is connected to UNISIM to enable optimization. The objective is granting maximum process sustainability, which involves finding a compromise between high profitability and low environmental impact. Sustainability maximization is therefore understood as a multi-criteria optimization problem, addressed by means of the Pareto optimization methodology for trading off P vs. EI.
Multiclass gene selection using Pareto-fronts.
Rajapakse, Jagath C; Mundra, Piyushkumar A
2013-01-01
Filter methods are often used for selection of genes in multiclass sample classification by using microarray data. Such techniques usually tend to bias toward a few classes that are easily distinguishable from other classes due to imbalances of strong features and sample sizes of different classes. It could therefore lead to selection of redundant genes while missing the relevant genes, leading to poor classification of tissue samples. In this manuscript, we propose to decompose multiclass ranking statistics into class-specific statistics and then use Pareto-front analysis for selection of genes. This alleviates the bias induced by class intrinsic characteristics of dominating classes. The use of Pareto-front analysis is demonstrated on two filter criteria commonly used for gene selection: F-score and KW-score. A significant improvement in classification performance and reduction in redundancy among top-ranked genes were achieved in experiments with both synthetic and real-benchmark data sets.
Pareto vs Simmel: residui ed emozioni
Directory of Open Access Journals (Sweden)
Silvia Fornari
2017-08-01
Full Text Available A cento anni dalla pubblicazione del Trattato di sociologia generale (Pareto 1988 siamo a mantenere vivo ed attuale lo studio paretiano con una rilettura contemporanea del suo pensiero. Ricordato per la grande versatilità intellettuale dagli economisti, rimane lo scienziato rigoroso ed analitico i cui contributi sono ancora discussi a livello internazionale. Noi ne analizzeremo gli aspetti che l’hanno portato ad avvicinarsi all’approccio sociologico, con l’introduzione della nota distinzione dell’azione sociale: logica e non-logica. Una dicotomia utilizzata per dare conto dei cambiamenti sociali riguardanti le modalità d’azione degli uomini e delle donne. Com’è noto le azioni logiche sono quelle che riguardano comportamenti mossi da logicità e raziocinio, in cui vi è una diretta relazione causa-effetto, azioni oggetto di studio degli economisti, e di cui non si occupano i sociologi. Le azioni non-logiche riguardano tutte le tipologie di agire umano che rientrano nel novero delle scienze sociali, e che rappresentano la parte più ampia dell’agire sociale. Sono le azioni guidate dai sentimenti, dall’emotività, dalla superstizione, ecc., illustrate da Pareto nel Trattato di sociologia generale e in saggi successivi, dove riprende anche il concetto di eterogenesi dei fini, formulato per la prima volta da Giambattista Vico. Concetto secondo il quale la storia umana, pur conservando in potenza la realizzazione di certi fini, non è lineare e lungo il suo percorso evolutivo può accadere che l’uomo nel tentativo di raggiungere una finalità arrivi a conclusioni opposte. Pareto collega la definizione del filosofo napoletano alle tipologie di azione sociale e alla loro distinzione (logiche, non-logiche. L’eterogenesi dei fini per Pareto è dunque l’esito di un particolare tipo di azione non-logica dell’essere umano e della collettività.
Monopoly, Pareto and Ramsey mark-ups
Ten Raa, T.
2009-01-01
Monopoly prices are too high. It is a price level problem, in the sense that the relative mark-ups have Ramsey optimal proportions, at least for independent constant elasticity demands. I show that this feature of monopoly prices breaks down the moment one demand is replaced by the textbook linear demand or, even within the constant elasticity framework, dependence is introduced. The analysis provides a single Generalized Inverse Elasticity Rule for the problems of monopoly, Pareto and Ramsey.
Directory of Open Access Journals (Sweden)
Sergei L Kosakovsky Pond
2009-11-01
Full Text Available Genetically diverse pathogens (such as Human Immunodeficiency virus type 1, HIV-1 are frequently stratified into phylogenetically or immunologically defined subtypes for classification purposes. Computational identification of such subtypes is helpful in surveillance, epidemiological analysis and detection of novel variants, e.g., circulating recombinant forms in HIV-1. A number of conceptually and technically different techniques have been proposed for determining the subtype of a query sequence, but there is not a universally optimal approach. We present a model-based phylogenetic method for automatically subtyping an HIV-1 (or other viral or bacterial sequence, mapping the location of breakpoints and assigning parental sequences in recombinant strains as well as computing confidence levels for the inferred quantities. Our Subtype Classification Using Evolutionary ALgorithms (SCUEAL procedure is shown to perform very well in a variety of simulation scenarios, runs in parallel when multiple sequences are being screened, and matches or exceeds the performance of existing approaches on typical empirical cases. We applied SCUEAL to all available polymerase (pol sequences from two large databases, the Stanford Drug Resistance database and the UK HIV Drug Resistance Database. Comparing with subtypes which had previously been assigned revealed that a minor but substantial (approximately 5% fraction of pure subtype sequences may in fact be within- or inter-subtype recombinants. A free implementation of SCUEAL is provided as a module for the HyPhy package and the Datamonkey web server. Our method is especially useful when an accurate automatic classification of an unknown strain is desired, and is positioned to complement and extend faster but less accurate methods. Given the increasingly frequent use of HIV subtype information in studies focusing on the effect of subtype on treatment, clinical outcome, pathogenicity and vaccine design, the importance
International Nuclear Information System (INIS)
Guerra, J.G.; Rubiano, J.G.; Winter, G.; Guerra, A.G.; Alonso, H.; Arnedo, M.A.; Tejera, A.; Gil, J.M.; Rodríguez, R.; Martel, P.; Bolivar, J.P.
2015-01-01
The determination in a sample of the activity concentration of a specific radionuclide by gamma spectrometry needs to know the full energy peak efficiency (FEPE) for the energy of interest. The difficulties related to the experimental calibration make it advisable to have alternative methods for FEPE determination, such as the simulation of the transport of photons in the crystal by the Monte Carlo method, which requires an accurate knowledge of the characteristics and geometry of the detector. The characterization process is mainly carried out by Canberra Industries Inc. using proprietary techniques and methodologies developed by that company. It is a costly procedure (due to shipping and to the cost of the process itself) and for some research laboratories an alternative in situ procedure can be very useful. The main goal of this paper is to find an alternative to this costly characterization process, by establishing a method for optimizing the parameters of characterizing the detector, through a computational procedure which could be reproduced at a standard research lab. This method consists in the determination of the detector geometric parameters by using Monte Carlo simulation in parallel with an optimization process, based on evolutionary algorithms, starting from a set of reference FEPEs determined experimentally or computationally. The proposed method has proven to be effective and simple to implement. It provides a set of characterization parameters which it has been successfully validated for different source-detector geometries, and also for a wide range of environmental samples and certified materials. - Highlights: • A computational method for characterizing an HPGe spectrometer has been developed. • Detector characterized using as reference photopeak efficiencies obtained experimentally or by Monte Carlo calibration. • The characterization obtained has been validated for samples with different geometries and composition. • Good agreement
Kirchner-Bossi, Nicolas; Porté-Agel, Fernando
2017-04-01
Wind turbine wakes can significantly disrupt the performance of further downstream turbines in a wind farm, thus seriously limiting the overall wind farm power output. Such effect makes the layout design of a wind farm to play a crucial role on the whole performance of the project. An accurate definition of the wake interactions added to a computationally compromised layout optimization strategy can result in an efficient resource when addressing the problem. This work presents a novel soft-computing approach to optimize the wind farm layout by minimizing the overall wake effects that the installed turbines exert on one another. An evolutionary algorithm with an elitist sub-optimization crossover routine and an unconstrained (continuous) turbine positioning set up is developed and tested over an 80-turbine offshore wind farm over the North Sea off Denmark (Horns Rev I). Within every generation of the evolution, the wind power output (cost function) is computed through a recently developed and validated analytical wake model with a Gaussian profile velocity deficit [1], which has shown to outperform the traditionally employed wake models through different LES simulations and wind tunnel experiments. Two schemes with slightly different perimeter constraint conditions (full or partial) are tested. Results show, compared to the baseline, gridded layout, a wind power output increase between 5.5% and 7.7%. In addition, it is observed that the electric cable length at the facilities is reduced by up to 21%. [1] Bastankhah, Majid, and Fernando Porté-Agel. "A new analytical model for wind-turbine wakes." Renewable Energy 70 (2014): 116-123.
Directory of Open Access Journals (Sweden)
Rudy Clausen
2015-09-01
Full Text Available An important goal in molecular biology is to understand functional changes upon single-point mutations in proteins. Doing so through a detailed characterization of structure spaces and underlying energy landscapes is desirable but continues to challenge methods based on Molecular Dynamics. In this paper we propose a novel algorithm, SIfTER, which is based instead on stochastic optimization to circumvent the computational challenge of exploring the breadth of a protein's structure space. SIfTER is a data-driven evolutionary algorithm, leveraging experimentally-available structures of wildtype and variant sequences of a protein to define a reduced search space from where to efficiently draw samples corresponding to novel structures not directly observed in the wet laboratory. The main advantage of SIfTER is its ability to rapidly generate conformational ensembles, thus allowing mapping and juxtaposing landscapes of variant sequences and relating observed differences to functional changes. We apply SIfTER to variant sequences of the H-Ras catalytic domain, due to the prominent role of the Ras protein in signaling pathways that control cell proliferation, its well-studied conformational switching, and abundance of documented mutations in several human tumors. Many Ras mutations are oncogenic, but detailed energy landscapes have not been reported until now. Analysis of SIfTER-computed energy landscapes for the wildtype and two oncogenic variants, G12V and Q61L, suggests that these mutations cause constitutive activation through two different mechanisms. G12V directly affects binding specificity while leaving the energy landscape largely unchanged, whereas Q61L has pronounced, starker effects on the landscape. An implementation of SIfTER is made available at http://www.cs.gmu.edu/~ashehu/?q=OurTools. We believe SIfTER is useful to the community to answer the question of how sequence mutations affect the function of a protein, when there is an
Directory of Open Access Journals (Sweden)
Yang Sun
2018-01-01
Full Text Available Using Pareto optimization in Multi-Objective Reinforcement Learning (MORL leads to better learning results for network defense games. This is particularly useful for network security agents, who must often balance several goals when choosing what action to take in defense of a network. If the defender knows his preferred reward distribution, the advantages of Pareto optimization can be retained by using a scalarization algorithm prior to the implementation of the MORL. In this paper, we simulate a network defense scenario by creating a multi-objective zero-sum game and using Pareto optimization and MORL to determine optimal solutions and compare those solutions to different scalarization approaches. We build a Pareto Defense Strategy Selection Simulator (PDSSS system for assisting network administrators on decision-making, specifically, on defense strategy selection, and the experiment results show that the Satisficing Trade-Off Method (STOM scalarization approach performs better than linear scalarization or GUESS method. The results of this paper can aid network security agents attempting to find an optimal defense policy for network security games.
A hybrid pareto mixture for conditional asymmetric fat-tailed distributions.
Carreau, Julie; Bengio, Yoshua
2009-07-01
In many cases, we observe some variables X that contain predictive information over a scalar variable of interest Y , with (X,Y) pairs observed in a training set. We can take advantage of this information to estimate the conditional density p(Y|X = x). In this paper, we propose a conditional mixture model with hybrid Pareto components to estimate p(Y|X = x). The hybrid Pareto is a Gaussian whose upper tail has been replaced by a generalized Pareto tail. A third parameter, in addition to the location and spread parameters of the Gaussian, controls the heaviness of the upper tail. Using the hybrid Pareto in a mixture model results in a nonparametric estimator that can adapt to multimodality, asymmetry, and heavy tails. A conditional density estimator is built by modeling the parameters of the mixture estimator as functions of X. We use a neural network to implement these functions. Such conditional density estimators have important applications in many domains such as finance and insurance. We show experimentally that this novel approach better models the conditional density in terms of likelihood, compared to competing algorithms: conditional mixture models with other types of components and a classical kernel-based nonparametric model.
A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization
Czech Academy of Sciences Publication Activity Database
Hájek, J.; Szöllös, A.; Šístek, Jakub
2010-01-01
Roč. 41, 7-8 (2010), s. 1031-1057 ISSN 0965-9978 R&D Projects: GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z10190503 Keywords : multi-objective optimization * micro-genetic algorithm * diversity * Pareto archive Subject RIV: BA - General Mathematics Impact factor: 1.004, year: 2010 http://www.sciencedirect.com/science/article/pii/S0965997810000451
A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization
Czech Academy of Sciences Publication Activity Database
Hájek, J.; Szöllös, A.; Šístek, Jakub
2010-01-01
Roč. 41, 7-8 (2010), s. 1031-1057 ISSN 0965-9978 R&D Projects: GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z10190503 Keywords : multi-objective optimization * micro- genetic algorithm * diversity * Pareto archive Subject RIV: BA - General Mathematics Impact factor: 1.004, year: 2010 http://www.sciencedirect.com/science/article/pii/S0965997810000451
RNA-Pareto: interactive analysis of Pareto-optimal RNA sequence-structure alignments.
Schnattinger, Thomas; Schöning, Uwe; Marchfelder, Anita; Kestler, Hans A
2013-12-01
Incorporating secondary structure information into the alignment process improves the quality of RNA sequence alignments. Instead of using fixed weighting parameters, sequence and structure components can be treated as different objectives and optimized simultaneously. The result is not a single, but a Pareto-set of equally optimal solutions, which all represent different possible weighting parameters. We now provide the interactive graphical software tool RNA-Pareto, which allows a direct inspection of all feasible results to the pairwise RNA sequence-structure alignment problem and greatly facilitates the exploration of the optimal solution set.
Pareto-optimal multi-objective design of airplane control systems
Schy, A. A.; Johnson, K. G.; Giesy, D. P.
1980-01-01
A constrained minimization algorithm for the computer aided design of airplane control systems to meet many requirements over a set of flight conditions is generalized using the concept of Pareto-optimization. The new algorithm yields solutions on the boundary of the achievable domain in objective space in a single run, whereas the older method required a sequence of runs to approximate such a limiting solution. However, Pareto-optimality does not guarantee a satisfactory design, since such solutions may emphasize some objectives at the expense of others. The designer must still interact with the program to obtain a well-balanced set of objectives. Using the example of a fighter lateral stability augmentation system (SAS) design over five flight conditions, several effective techniques are developed for obtaining well-balanced Pareto-optimal solutions. For comparison, one of these techniques is also used in a recently developed algorithm of Kreisselmeier and Steinhauser, which replaces the hard constraints with soft constraints, using a special penalty function. It is shown that comparable results can be obtained.
A Pareto-Improving Minimum Wage
Eliav Danziger; Leif Danziger
2014-01-01
This paper shows that a graduated minimum wage, in contrast to a constant minimum wage, can provide a strict Pareto improvement over what can be achieved with an optimal income tax. The reason is that a graduated minimum wage requires high-productivity workers to work more to earn the same income as low-productivity workers, which makes it more difficult for the former to mimic the latter. In effect, a graduated minimum wage allows the low-productivity workers to benefit from second-degree pr...
Directory of Open Access Journals (Sweden)
J. S. Sadaghiani
2014-04-01
Full Text Available Flexible job shop scheduling problem is a key factor of using efficiently in production systems. This paper attempts to simultaneously optimize three objectives including minimization of the make span, total workload and maximum workload of jobs. Since the multi objective flexible job shop scheduling problem is strongly NP-Hard, an integrated heuristic approach has been used to solve it. The proposed approach was based on a floating search procedure that has used some heuristic algorithms. Within floating search procedure utilize local heuristic algorithms; it makes the considered problem into two sections including assigning and sequencing sub problem. First of all search is done upon assignment space achieving an acceptable solution and then search would continue on sequencing space based on a heuristic algorithm. This paper has used a multi-objective approach for producing Pareto solution. Thus proposed approach was adapted on NSGA II algorithm and evaluated Pareto-archives. The elements and parameters of the proposed algorithms were adjusted upon preliminary experiments. Finally, computational results were used to analyze efficiency of the proposed algorithm and this results showed that the proposed algorithm capable to produce efficient solutions.
A fast method for calculating reliable event supports in tree reconciliations via Pareto optimality.
To, Thu-Hien; Jacox, Edwin; Ranwez, Vincent; Scornavacca, Celine
2015-11-14
Given a gene and a species tree, reconciliation methods attempt to retrieve the macro-evolutionary events that best explain the discrepancies between the two tree topologies. The DTL parsimonious approach searches for a most parsimonious reconciliation between a gene tree and a (dated) species tree, considering four possible macro-evolutionary events (speciation, duplication, transfer, and loss) with specific costs. Unfortunately, many events are erroneously predicted due to errors in the input trees, inappropriate input cost values or because of the existence of several equally parsimonious scenarios. It is thus crucial to provide a measure of the reliability for predicted events. It has been recently proposed that the reliability of an event can be estimated via its frequency in the set of most parsimonious reconciliations obtained using a variety of reasonable input cost vectors. To compute such a support, a straightforward but time-consuming approach is to generate the costs slightly departing from the original ones, independently compute the set of all most parsimonious reconciliations for each vector, and combine these sets a posteriori. Another proposed approach uses Pareto-optimality to partition cost values into regions which induce reconciliations with the same number of DTL events. The support of an event is then defined as its frequency in the set of regions. However, often, the number of regions is not large enough to provide reliable supports. We present here a method to compute efficiently event supports via a polynomial-sized graph, which can represent all reconciliations for several different costs. Moreover, two methods are proposed to take into account alternative input costs: either explicitly providing an input cost range or allowing a tolerance for the over cost of a reconciliation. Our methods are faster than the region based method, substantially faster than the sampling-costs approach, and have a higher event-prediction accuracy on
Indian Academy of Sciences (India)
polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.
The application of analytical methods to the study of Pareto - optimal control systems
Directory of Open Access Journals (Sweden)
I. K. Romanova
2014-01-01
Full Text Available The subject of research articles - - methods of multicriteria optimization and their application for parametric synthesis of double-circuit control systems in conditions of inconsistency of individual criteria. The basis for solving multicriteria problems is a fundamental principle of a multi-criteria choice - the principle of the Edgeworth - Pareto. Getting Pareto - optimal variants due to inconsistency of individual criteria does not mean reaching a final decision. Set these options only offers the designer (DM.An important issue when using traditional numerical methods is their computational cost. An example is the use of methods of sounding the parameter space, including with use of uniform grids and uniformly distributed sequences. Very complex computational task is the application of computer methods of approximation bounds of Pareto.The purpose of this work is the development of a fairly simple search methods of Pareto - optimal solutions for the case of the criteria set out in the analytical form.The proposed solution is based on the study of the properties of the analytical dependences of criteria. The case is not covered so far in the literature, namely, the topology of the task, in which no touch of indifference curves (lines level. It is shown that for such tasks may be earmarked for compromise solutions. Prepositional use of the angular position of antigradient to the indifference curves in the parameter space relative to the coordinate axes. Formulated propositions on the characteristics of comonotonicity and contramonotonicity and angular characteristics of antigradient to determine Pareto optimal solutions. Considers the General algorithm of calculation: determine the scope of permissible values of parameters; investigates properties comonotonicity and contraventanas; to build an equal level (indifference curves; determined touch type: single sided (task is not strictly multicriteria or bilateral (objective relates to the Pareto
International Nuclear Information System (INIS)
Singh, Sonveer; Agrawal, Sanjay; Gadh, Rajit
2015-01-01
Highlights: • Optimization of SCGPVT array using Evolutionary Algorithm. • The overall exergy gain is maximized with an Evolutionary Algorithm. • Annual Performance has been evaluated for New Delhi (India). • There are improvement in results than the model given in literature. • Carbon credit analysis has been done. - Abstract: In this paper, work is carried out in three steps. In the first step, optimization of single channel glazed photovoltaic thermal (SCGPVT) array has been done with an Evolutionary Algorithm (EA) keeping the overall exergy gain is an objective function of the SCGPVT array. For maximization of overall exergy gain, total seven design variables have been optimized such as length of the channel (L), mass flow rate of flowing fluid (m_F), velocity of flowing fluid (V_F), convective heat transfer coefficient through the tedlar (U_T), overall heat transfer coefficient between solar cell to ambient through glass cover (U_S_C_A_G), overall back loss heat transfer coefficient from flowing fluid to ambient (U_F_A) and convective heat transfer coefficient of tedlar (h_T). It has been observed that the instant overall exergy gain obtained from optimized system is 1.42 kW h, which is 87.86% more than the overall exergy gain of a un-optimized system given in literature. In the second step, overall exergy gain and overall thermal gain of SCGPVT array has been evaluated annually and there are 69.52% and 88.05% improvement in annual overall exergy gain and annual overall thermal gain respectively than the un-optimized system for the same input irradiance and ambient temperature. In the third step, carbon credit earned by the optimized SCGPVT array has also been evaluated as per norms of Kyoto Protocol Bangalore climatic conditions.
Pareto-Optimal Multi-objective Inversion of Geophysical Data
Schnaidt, Sebastian; Conway, Dennis; Krieger, Lars; Heinson, Graham
2018-01-01
In the process of modelling geophysical properties, jointly inverting different data sets can greatly improve model results, provided that the data sets are compatible, i.e., sensitive to similar features. Such a joint inversion requires a relationship between the different data sets, which can either be analytic or structural. Classically, the joint problem is expressed as a scalar objective function that combines the misfit functions of multiple data sets and a joint term which accounts for the assumed connection between the data sets. This approach suffers from two major disadvantages: first, it can be difficult to assess the compatibility of the data sets and second, the aggregation of misfit terms introduces a weighting of the data sets. We present a pareto-optimal multi-objective joint inversion approach based on an existing genetic algorithm. The algorithm treats each data set as a separate objective, avoiding forced weighting and generating curves of the trade-off between the different objectives. These curves are analysed by their shape and evolution to evaluate data set compatibility. Furthermore, the statistical analysis of the generated solution population provides valuable estimates of model uncertainty.
Pareto Improving Price Regulation when the Asset Market is Incomplete
Herings, P.J.J.; Polemarchakis, H.M.
1999-01-01
When the asset market is incomplete, competitive equilibria are constrained suboptimal, which provides a scope for pareto improving interventions. Price regulation can be such a pareto improving policy, even when the welfare effects of rationing are taken into account. An appealing aspect of price
Pareto optimality in infinite horizon linear quadratic differential games
Reddy, P.V.; Engwerda, J.C.
2013-01-01
In this article we derive conditions for the existence of Pareto optimal solutions for linear quadratic infinite horizon cooperative differential games. First, we present a necessary and sufficient characterization for Pareto optimality which translates to solving a set of constrained optimal
Pareto 80/20 Law: Derivation via Random Partitioning
Lipovetsky, Stan
2009-01-01
The Pareto 80/20 Rule, also known as the Pareto principle or law, states that a small number of causes (20%) is responsible for a large percentage (80%) of the effect. Although widely recognized as a heuristic rule, this proportion has not been theoretically based. The article considers derivation of this 80/20 rule and some other standard…
The exponential age distribution and the Pareto firm size distribution
Coad, Alex
2008-01-01
Recent work drawing on data for large and small firms has shown a Pareto distribution of firm size. We mix a Gibrat-type growth process among incumbents with an exponential distribution of firm’s age, to obtain the empirical Pareto distribution.
Energy Technology Data Exchange (ETDEWEB)
Salazar A, Daniel E. [Division de Computacion Evolutiva (CEANI), Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Universidad de Las Palmas de Gran Canaria. Canary Islands (Spain)]. E-mail: danielsalazaraponte@gmail.com; Rocco S, Claudio M. [Universidad Central de Venezuela, Facultad de Ingenieria, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve
2007-06-15
This paper extends the approach proposed by the second author in [Rocco et al. Robust design using a hybrid-cellular-evolutionary and interval-arithmetic approach: a reliability application. In: Tarantola S, Saltelli A, editors. SAMO 2001: Methodological advances and useful applications of sensitivity analysis. Reliab Eng Syst Saf 2003;79(2):149-59 [special issue
Finding the Pareto Optimal Equitable Allocation of Homogeneous Divisible Goods Among Three Players
Directory of Open Access Journals (Sweden)
Marco Dall'Aglio
2017-01-01
Full Text Available We consider the allocation of a finite number of homogeneous divisible items among three players. Under the assumption that each player assigns a positive value to every item, we develop a simple algorithm that returns a Pareto optimal and equitable allocation. This is based on the tight relationship between two geometric objects of fair division: The Individual Pieces Set (IPS and the Radon-Nykodim Set (RNS. The algorithm can be considered as an extension of the Adjusted Winner procedure by Brams and Taylor to the three-player case, without the guarantee of envy-freeness. (original abstract
Pareto upper confidence bounds algorithms : an empirical study
Drugan, M.M.; Nowé, A.; Manderick, B.
2014-01-01
Many real-world stochastic environments are inherently multi-objective environments with conflicting objectives. The multi-objective multi-armed bandits (MOMAB) are extensions of the classical, i.e. single objective, multi-armed bandits to reward vectors and multi-objective optimisation techniques
A Hybrid Multiobjective Evolutionary Approach for Flexible Job-Shop Scheduling Problems
Directory of Open Access Journals (Sweden)
Jian Xiong
2012-01-01
Full Text Available This paper addresses multiobjective flexible job-shop scheduling problem (FJSP with three simultaneously considered objectives: minimizing makespan, minimizing total workload, and minimizing maximal workload. A hybrid multiobjective evolutionary approach (H-MOEA is developed to solve the problem. According to the characteristic of FJSP, a modified crowding distance measure is introduced to maintain the diversity of individuals. In the proposed H-MOEA, well-designed chromosome representation and genetic operators are developed for FJSP. Moreover, a local search procedure based on critical path theory is incorporated in H-MOEA to improve the convergence ability of the algorithm. Experiment results on several well-known benchmark instances demonstrate the efficiency and stability of the proposed algorithm. The comparison with other recently published approaches validates that H-MOEA can obtain Pareto-optimal solutions with better quality and/or diversity.
International Nuclear Information System (INIS)
Liao, Gwo-Ching
2011-01-01
An optimization algorithm is proposed in this paper to solve the economic dispatch problem that includes wind farm using the Chaotic Quantum Genetic Algorithm (CQGA). In addition to the detailed models of economic dispatch introduction and their associated constraints, the wind power effect is also included in this paper. The chaotic quantum genetic algorithm used to solve the economic dispatch process and discussed with real scenarios used for the simulation tests. After comparing the proposed algorithm with several other algorithms commonly used to solve optimization problems, the results show that the proposed algorithm is able to find the optimal solution quickly and accurately (i.e. to obtain the minimum cost for power generation in the shortest time). At the end, the impact to the total cost savings for power generation after adding (or not adding) wind power generation is also discussed. The actual implementation results prove that the proposed algorithm is economical, fast and practical. They are quite valuable for further research. -- Research highlights: → Quantum Genetic Algorithm can effectively improve the global search ability. → It can achieve the real objective of the global optimal solutions. → The CPU computation time is less than that other algorithms adopted in this paper.
Liu, Penghui; Liu, Jing
2017-06-28
Understanding the emergence of cooperation has long been a challenge across disciplines. Even if network reciprocity reflected the importance of population structure in promoting cooperation, it remains an open question how population structures can be optimized, thereby enhancing cooperation. In this paper, we attempt to apply the evolutionary algorithm (EA) to solve this highly complex problem. However, as it is hard to evaluate the fitness (cooperation level) of population structures, simply employing the canonical evolutionary algorithm (EA) may fail in optimization. Thus, we propose a new EA variant named mlEA-C PD -SFN to promote the cooperation level of scale-free networks (SFNs) in the Prisoner's Dilemma Game (PDG). Meanwhile, to verify the preceding conclusions may not be applied to this problem, we also provide the optimization results of the comparative experiment (EA cluster ), which optimizes the clustering coefficient of structures. Even if preceding research concluded that highly clustered scale-free networks enhance cooperation, we find EA cluster does not perform desirably, while mlEA-C PD -SFN performs efficiently in different optimization environments. We hope that mlEA-C PD -SFN may help promote the structure of species in nature and that more general properties that enhance cooperation can be learned from the output structures.
Deb, Kalyanmoy; Sinha, Ankur
2010-01-01
Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.
2007-03-01
Optimization Coello, Van Veldhuizen , and Lamont define global optimization as, “the process of finding the global minimum4 within some search space S [CVL02...Technology, Shapes Markets, and Manages People, Simon & Schuster, New York, 1995. [CVL02] Coello, C., Van Veldhuizen , D., Lamont, G.B., Evolutionary...Anomaly Detection, Technical Report CS- 2003-02, Computer Science Department, Florida Institute of Technology, 2003. [Marmelstein99] Marmelstein, R., Van
Urselmann, Maren; Emmerich, Michael T. M.; Till, Jochen; Sand, Guido; Engell, Sebastian
2007-07-01
Engineering optimization often deals with large, mixed-integer search spaces with a rigid structure due to the presence of a large number of constraints. Metaheuristics, such as evolutionary algorithms (EAs), are frequently suggested as solution algorithms in such cases. In order to exploit the full potential of these algorithms, it is important to choose an adequate representation of the search space and to integrate expert-knowledge into the stochastic search operators, without adding unnecessary bias to the search. Moreover, hybridisation with mathematical programming techniques such as mixed-integer programming (MIP) based on a problem decomposition can be considered for improving algorithmic performance. In order to design problem-specific EAs it is desirable to have a set of design guidelines that specify properties of search operators and representations. Recently, a set of guidelines has been proposed that gives rise to so-called Metric-based EAs (MBEAs). Extended by the minimal moves mutation they allow for a generalization of EA with self-adaptive mutation strength in discrete search spaces. In this article, a problem-specific EA for process engineering task is designed, following the MBEA guidelines and minimal moves mutation. On the background of the application, the usefulness of the design framework is discussed, and further extensions and corrections proposed. As a case-study, a two-stage stochastic programming problem in chemical batch process scheduling is considered. The algorithm design problem can be viewed as the choice of a hierarchical decision structure, where on different layers of the decision process symmetries and similarities can be exploited for the design of minimal moves. After a discussion of the design approach and its instantiation for the case-study, the resulting problem-specific EA/MIP is compared to a straightforward application of a canonical EA/MIP and to a monolithic mathematical programming algorithm. In view of the
Indian Academy of Sciences (India)
to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...
Projections onto the Pareto surface in multicriteria radiation therapy optimization.
Bokrantz, Rasmus; Miettinen, Kaisa
2015-10-01
To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose-volume histogram constraints are used to prevent that the projection causes a violation of some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose-volume histogram constraints were used. No consistent improvements in target homogeneity were observed. There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan.
Projections onto the Pareto surface in multicriteria radiation therapy optimization
International Nuclear Information System (INIS)
Bokrantz, Rasmus; Miettinen, Kaisa
2015-01-01
Purpose: To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. Methods: The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose–volume histogram constraints are used to prevent that the projection causes a violation of some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. Results: The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose–volume histogram constraints were used. No consistent improvements in target homogeneity were observed. Conclusions: There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan
International Nuclear Information System (INIS)
Lima, Alan M.M. de; Schirru, Roberto
2000-01-01
Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for function optimization. The purpose of this work is to introduce a new parallelization method to be applied to the Population-Based Incremental Learning (PBIL) algorithm. PBIL combines standard genetic algorithm mechanisms with simple competitive learning and has ben successfully used in combinatorial optimization problems. The development of this algorithm aims its application to the reload optimization of PWR nuclear reactors. Tests have been performed with combinatorial optimization problems similar to the reload problem. Results are compared to the serial PBIL ones, showing the new method's superiority and its viability as a tool for the nuclear core reload problem solution. (author)
Directory of Open Access Journals (Sweden)
Galperin Michael Y
2003-01-01
Full Text Available Abstract Background Comparative analysis of sequenced genomes reveals numerous instances of apparent horizontal gene transfer (HGT, at least in prokaryotes, and indicates that lineage-specific gene loss might have been even more common in evolution. This complicates the notion of a species tree, which needs to be re-interpreted as a prevailing evolutionary trend, rather than the full depiction of evolution, and makes reconstruction of ancestral genomes a non-trivial task. Results We addressed the problem of constructing parsimonious scenarios for individual sets of orthologous genes given a species tree. The orthologous sets were taken from the database of Clusters of Orthologous Groups of proteins (COGs. We show that the phyletic patterns (patterns of presence-absence in completely sequenced genomes of almost 90% of the COGs are inconsistent with the hypothetical species tree. Algorithms were developed to reconcile the phyletic patterns with the species tree by postulating gene loss, COG emergence and HGT (the latter two classes of events were collectively treated as gene gains. We prove that each of these algorithms produces a parsimonious evolutionary scenario, which can be represented as mapping of loss and gain events on the species tree. The distribution of the evolutionary events among the tree nodes substantially depends on the underlying assumptions of the reconciliation algorithm, e.g. whether or not independent gene gains (gain after loss after gain are permitted. Biological considerations suggest that, on average, gene loss might be a more likely event than gene gain. Therefore different gain penalties were used and the resulting series of reconstructed gene sets for the last universal common ancestor (LUCA of the extant life forms were analysed. The number of genes in the reconstructed LUCA gene sets grows as the gain penalty increases. However, qualitative examination of the LUCA versions reconstructed with different gain penalties
Analysis of a Pareto Mixture Distribution for Maritime Surveillance Radar
Directory of Open Access Journals (Sweden)
Graham V. Weinberg
2012-01-01
Full Text Available The Pareto distribution has been shown to be an excellent model for X-band high-resolution maritime surveillance radar clutter returns. Given the success of mixture distributions in radar, it is thus of interest to consider the effect of Pareto mixture models. This paper introduces a formulation of a Pareto intensity mixture distribution and investigates coherent multilook radar detector performance using this new clutter model. Clutter parameter estimates are derived from data sets produced by the Defence Science and Technology Organisation's Ingara maritime surveillance radar.
Using Pareto points for model identification in predictive toxicology
2013-01-01
Predictive toxicology is concerned with the development of models that are able to predict the toxicity of chemicals. A reliable prediction of toxic effects of chemicals in living systems is highly desirable in cosmetics, drug design or food protection to speed up the process of chemical compound discovery while reducing the need for lab tests. There is an extensive literature associated with the best practice of model generation and data integration but management and automated identification of relevant models from available collections of models is still an open problem. Currently, the decision on which model should be used for a new chemical compound is left to users. This paper intends to initiate the discussion on automated model identification. We present an algorithm, based on Pareto optimality, which mines model collections and identifies a model that offers a reliable prediction for a new chemical compound. The performance of this new approach is verified for two endpoints: IGC50 and LogP. The results show a great potential for automated model identification methods in predictive toxicology. PMID:23517649
Part E: Evolutionary Computation
DEFF Research Database (Denmark)
2015-01-01
of Computational Intelligence. First, comprehensive surveys of genetic algorithms, genetic programming, evolution strategies, parallel evolutionary algorithms are presented, which are readable and constructive so that a large audience might find them useful and – to some extent – ready to use. Some more general...... kinds of evolutionary algorithms, have been prudently analyzed. This analysis was followed by a thorough analysis of various issues involved in stochastic local search algorithms. An interesting survey of various technological and industrial applications in mechanical engineering and design has been...... topics like the estimation of distribution algorithms, indicator-based selection, etc., are also discussed. An important problem, from a theoretical and practical point of view, of learning classifier systems is presented in depth. Multiobjective evolutionary algorithms, which constitute one of the most...
Automated Design Framework for Synthetic Biology Exploiting Pareto Optimality.
Otero-Muras, Irene; Banga, Julio R
2017-07-21
In this work we consider Pareto optimality for automated design in synthetic biology. We present a generalized framework based on a mixed-integer dynamic optimization formulation that, given design specifications, allows the computation of Pareto optimal sets of designs, that is, the set of best trade-offs for the metrics of interest. We show how this framework can be used for (i) forward design, that is, finding the Pareto optimal set of synthetic designs for implementation, and (ii) reverse design, that is, analyzing and inferring motifs and/or design principles of gene regulatory networks from the Pareto set of optimal circuits. Finally, we illustrate the capabilities and performance of this framework considering four case studies. In the first problem we consider the forward design of an oscillator. In the remaining problems, we illustrate how to apply the reverse design approach to find motifs for stripe formation, rapid adaption, and fold-change detection, respectively.
A Pareto Optimal Auction Mechanism for Carbon Emission Rights
Directory of Open Access Journals (Sweden)
Mingxi Wang
2014-01-01
Full Text Available The carbon emission rights do not fit well into the framework of existing multi-item auction mechanisms because of their own unique features. This paper proposes a new auction mechanism which converges to a unique Pareto optimal equilibrium in a finite number of periods. In the proposed auction mechanism, the assignment outcome is Pareto efficient and the carbon emission rights’ resources are efficiently used. For commercial application and theoretical completeness, both discrete and continuous markets—represented by discrete and continuous bid prices, respectively—are examined, and the results show the existence of a Pareto optimal equilibrium under the constraint of individual rationality. With no ties, the Pareto optimal equilibrium can be further proven to be unique.
Kullback-Leibler divergence and the Pareto-Exponential approximation.
Weinberg, G V
2016-01-01
Recent radar research interests in the Pareto distribution as a model for X-band maritime surveillance radar clutter returns have resulted in analysis of the asymptotic behaviour of this clutter model. In particular, it is of interest to understand when the Pareto distribution is well approximated by an Exponential distribution. The justification for this is that under the latter clutter model assumption, simpler radar detection schemes can be applied. An information theory approach is introduced to investigate the Pareto-Exponential approximation. By analysing the Kullback-Leibler divergence between the two distributions it is possible to not only assess when the approximation is valid, but to determine, for a given Pareto model, the optimal Exponential approximation.
Directory of Open Access Journals (Sweden)
Alexandre Teixeira Dias
2011-01-01
Full Text Available This study aims to contribute to the understanding of the relationship between Corporate Strategy and Performance, from the perspective of the Evolutionary Theory. As methods of data processing, obtained in secondary databases, we used artificial neural networks and genetic algorithms. The results of processing neural networks and genetic algorithms demonstrate the importance of corporate strategies in determining performance. The evolutionary perspective emphasizes the importance of investing in operations as a factor influencing the adequacy of the organization, in order to achieve an improved performance, in addition to establishing relationships with other organizations, through members of the board.
Phase transitions in Pareto optimal complex networks.
Seoane, Luís F; Solé, Ricard
2015-09-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.
Kinetics of wealth and the Pareto law.
Boghosian, Bruce M
2014-04-01
An important class of economic models involve agents whose wealth changes due to transactions with other agents. Several authors have pointed out an analogy with kinetic theory, which describes molecules whose momentum and energy change due to interactions with other molecules. We pursue this analogy and derive a Boltzmann equation for the time evolution of the wealth distribution of a population of agents for the so-called Yard-Sale Model of wealth exchange. We examine the solutions to this equation by a combination of analytical and numerical methods and investigate its long-time limit. We study an important limit of this equation for small transaction sizes and derive a partial integrodifferential equation governing the evolution of the wealth distribution in a closed economy. We then describe how this model can be extended to include features such as inflation, production, and taxation. In particular, we show that the model with taxation exhibits the basic features of the Pareto law, namely, a lower cutoff to the wealth density at small values of wealth, and approximate power-law behavior at large values of wealth.
Directory of Open Access Journals (Sweden)
Mariano Frutos-Alazard
2012-01-01
Full Text Available La planificación, en el ámbito productivo, se encarga de diseñar, coordinar, administrar y controlar todas las operaciones que se hallan presentes en la explotación de los sistemas productivos. En este marco de trabajo, aparecen numerosos Problemas de Optimización Multi-objetivo (MOPs. Éstos constan de varias funciones que suelen ser complejas y evaluarlas puede ser muy costoso. La optimización multi-objetivo es la disciplina que trata de encontrar las soluciones, denominadas Pareto óptimas, a este tipo de problemas. La compleja resolución de los MOPs es debida a las dimensiones propias del problema, al carácter combinatorio de los algoritmos y a la naturaleza de los objetivos, los cuales están vinculados a la eficiencia del sistema. En las últimas décadas muchos MOPs vinculados a la producción han sido tratados con éxito con técnicas de resolución basadas en Algoritmos Genéticos. En este trabajo se evalúa a NSGAII (Non-dominated Sorting Genetic Algorithm II, SPEAII (Strength Pareto Evolutionary Algorithm II y a sus antecesores, NSGA y SPEA, en el proceso de planificación de la producción no estandarizada. Luego de la experiencia realizada, el algoritmo NSGAII mostró mayor eficiencia.Planning in production environments takes care of designing, coordinating, managing and controlling all the operations existing in the use of productive systems. There are, in the framework analyzed within this work, several relevant Multi-Objective Optimization Problems (MOPs. They consist of several functions which tend to be complex and expensive to evaluate. Multi-objective optimization is the discipline developed to provide solutions, called Pareto optimal, for the simultaneous optimization of those functions. The costs of solving MOPs is due to the dimension of the problems, the combinatorial nature of the algorithms and the kind of objectives represented, linked to the efficiency of the system.. In the last decades several production
Energy Technology Data Exchange (ETDEWEB)
Guerra, J.G., E-mail: jglezg2002@gmail.es [Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Rubiano, J.G. [Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Instituto Universitario de Estudios Ambientales y Recursos Naturales, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Winter, G. [Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en la Ingeniería, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Guerra, A.G.; Alonso, H.; Arnedo, M.A.; Tejera, A.; Martel, P. [Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Instituto Universitario de Estudios Ambientales y Recursos Naturales, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Bolivar, J.P. [Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva (Spain)
2017-06-21
In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs. - Highlights: • A computational method for characterizing HPGe detectors has been generalized. • The new version is usable for a wider range of sample geometries. • It starts from reference FEPEs obtained through a standard calibration procedure. • A model of an HPGe XtRa detector has been
Guerra, J. G.; Rubiano, J. G.; Winter, G.; Guerra, A. G.; Alonso, H.; Arnedo, M. A.; Tejera, A.; Martel, P.; Bolivar, J. P.
2017-06-01
In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs.
International Nuclear Information System (INIS)
Guerra, J.G.; Rubiano, J.G.; Winter, G.; Guerra, A.G.; Alonso, H.; Arnedo, M.A.; Tejera, A.; Martel, P.; Bolivar, J.P.
2017-01-01
In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs. - Highlights: • A computational method for characterizing HPGe detectors has been generalized. • The new version is usable for a wider range of sample geometries. • It starts from reference FEPEs obtained through a standard calibration procedure. • A model of an HPGe XtRa detector has been
Indian Academy of Sciences (India)
ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...
Application of Pareto optimization method for ontology matching in nuclear reactor domain
International Nuclear Information System (INIS)
Meenachi, N. Madurai; Baba, M. Sai
2017-01-01
This article describes the need for ontology matching and describes the methods to achieve the same. Efforts are put in the implementation of the semantic web based knowledge management system for nuclear domain which necessitated use of the methods for development of ontology matching. In order to exchange information in a distributed environment, ontology mapping has been used. The constraints in matching the ontology are also discussed. Pareto based ontology matching algorithm is used to find the similarity between two ontologies in the nuclear reactor domain. Algorithms like Jaro Winkler distance, Needleman Wunsch algorithm, Bigram, Kull Back and Cosine divergence are employed to demonstrate ontology matching. A case study was carried out to analysis the ontology matching in diversity in the nuclear reactor domain and same was illustrated.
Application of Pareto optimization method for ontology matching in nuclear reactor domain
Energy Technology Data Exchange (ETDEWEB)
Meenachi, N. Madurai [Indira Gandhi Centre for Atomic Research, HBNI, Tamil Nadu (India). Planning and Human Resource Management Div.; Baba, M. Sai [Indira Gandhi Centre for Atomic Research, HBNI, Tamil Nadu (India). Resources Management Group
2017-12-15
This article describes the need for ontology matching and describes the methods to achieve the same. Efforts are put in the implementation of the semantic web based knowledge management system for nuclear domain which necessitated use of the methods for development of ontology matching. In order to exchange information in a distributed environment, ontology mapping has been used. The constraints in matching the ontology are also discussed. Pareto based ontology matching algorithm is used to find the similarity between two ontologies in the nuclear reactor domain. Algorithms like Jaro Winkler distance, Needleman Wunsch algorithm, Bigram, Kull Back and Cosine divergence are employed to demonstrate ontology matching. A case study was carried out to analysis the ontology matching in diversity in the nuclear reactor domain and same was illustrated.
A Regionalization Approach to select the final watershed parameter set among the Pareto solutions
Park, G. H.; Micheletty, P. D.; Carney, S.; Quebbeman, J.; Day, G. N.
2017-12-01
The calibration of hydrological models often results in model parameters that are inconsistent with those from neighboring basins. Considering that physical similarity exists within neighboring basins some of the physically related parameters should be consistent among them. Traditional manual calibration techniques require an iterative process to make the parameters consistent, which takes additional effort in model calibration. We developed a multi-objective optimization procedure to calibrate the National Weather Service (NWS) Research Distributed Hydrological Model (RDHM), using the Nondominant Sorting Genetic Algorithm (NSGA-II) with expert knowledge of the model parameter interrelationships one objective function. The multi-objective algorithm enables us to obtain diverse parameter sets that are equally acceptable with respect to the objective functions and to choose one from the pool of the parameter sets during a subsequent regionalization step. Although all Pareto solutions are non-inferior, we exclude some of the parameter sets that show extremely values for any of the objective functions to expedite the selection process. We use an apriori model parameter set derived from the physical properties of the watershed (Koren et al., 2000) to assess the similarity for a given parameter across basins. Each parameter is assigned a weight based on its assumed similarity, such that parameters that are similar across basins are given higher weights. The parameter weights are useful to compute a closeness measure between Pareto sets of nearby basins. The regionalization approach chooses the Pareto parameter sets that minimize the closeness measure of the basin being regionalized. The presentation will describe the results of applying the regionalization approach to a set of pilot basins in the Upper Colorado basin as part of a NASA-funded project.
Radhakrishnan, Mohanasundar; Pathirana, Assela; Ghebremichael, Kebreab A.; Amy, Gary L.
2012-01-01
Concerns have been raised regarding disinfection by-products (DBPs) formed as a result of the reaction of halogen-based disinfectants with DBP precursors. In order to appreciate the chemical and biological tradeoffs, it is imperative to understand the formation trends of DBPs and their spread in the distribution network. However, the water at a point in a complex distribution system is a mixture from various sources, whose proportions are complex to estimate and requires advanced hydraulic analysis. To understand the risks of DBPs and to develop mitigation strategies, it is important to understand the distribution of DBPs in a water network, which requires modelling. The goal of this research was to integrate a steady-state water network model with a particle backtracking algorithm and chlorination as well as DBPs models in order to assess the tradeoffs between biological and chemical risks in the distribution network. A multi-objective optimisation algorithm was used to identify the optimal proportion of water from various sources, dosages of alum, and dosages of chlorine in the treatment plant and in booster locations to control the formation of chlorination DBPs and to achieve a balance between microbial and chemical risks. © IWA Publishing 2012.
Radhakrishnan, Mohanasundar
2012-05-01
Concerns have been raised regarding disinfection by-products (DBPs) formed as a result of the reaction of halogen-based disinfectants with DBP precursors. In order to appreciate the chemical and biological tradeoffs, it is imperative to understand the formation trends of DBPs and their spread in the distribution network. However, the water at a point in a complex distribution system is a mixture from various sources, whose proportions are complex to estimate and requires advanced hydraulic analysis. To understand the risks of DBPs and to develop mitigation strategies, it is important to understand the distribution of DBPs in a water network, which requires modelling. The goal of this research was to integrate a steady-state water network model with a particle backtracking algorithm and chlorination as well as DBPs models in order to assess the tradeoffs between biological and chemical risks in the distribution network. A multi-objective optimisation algorithm was used to identify the optimal proportion of water from various sources, dosages of alum, and dosages of chlorine in the treatment plant and in booster locations to control the formation of chlorination DBPs and to achieve a balance between microbial and chemical risks. © IWA Publishing 2012.
Fourment, Lionel; Ducloux, Richard; Marie, Stéphane; Ejday, Mohsen; Monnereau, Dominique; Massé, Thomas; Montmitonnet, Pierre
2010-06-01
The use of material processing numerical simulation allows a strategy of trial and error to improve virtual processes without incurring material costs or interrupting production and therefore save a lot of money, but it requires user time to analyze the results, adjust the operating conditions and restart the simulation. Automatic optimization is the perfect complement to simulation. Evolutionary Algorithm coupled with metamodelling makes it possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. Ten industrial partners have been selected to cover the different area of the mechanical forging industry and provide different examples of the forming simulation tools. It aims to demonstrate that it is possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. The large computational time is handled by a metamodel approach. It allows interpolating the objective function on the entire parameter space by only knowing the exact function values at a reduced number of "master points". Two algorithms are used: an evolution strategy combined with a Kriging metamodel and a genetic algorithm combined with a Meshless Finite Difference Method. The later approach is extended to multi-objective optimization. The set of solutions, which corresponds to the best possible compromises between the different objectives, is then computed in the same way. The population based approach allows using the parallel capabilities of the utilized computer with a high efficiency. An optimization module, fully embedded within the Forge2009 IHM, makes possible to cover all the defined examples, and the use of new multi-core hardware to compute several simulations at the same time reduces the needed time dramatically. The presented examples
Practical advantages of evolutionary computation
Fogel, David B.
1997-10-01
Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.
Kotegawa, Tatsuya
Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high
Indian Academy of Sciences (India)
algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).
Indian Academy of Sciences (India)
algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...
Mapping the Pareto optimal design space for a functionally deimmunized biotherapeutic candidate.
Salvat, Regina S; Parker, Andrew S; Choi, Yoonjoo; Bailey-Kellogg, Chris; Griswold, Karl E
2015-01-01
The immunogenicity of biotherapeutics can bottleneck development pipelines and poses a barrier to widespread clinical application. As a result, there is a growing need for improved deimmunization technologies. We have recently described algorithms that simultaneously optimize proteins for both reduced T cell epitope content and high-level function. In silico analysis of this dual objective design space reveals that there is no single global optimum with respect to protein deimmunization. Instead, mutagenic epitope deletion yields a spectrum of designs that exhibit tradeoffs between immunogenic potential and molecular function. The leading edge of this design space is the Pareto frontier, i.e. the undominated variants for which no other single design exhibits better performance in both criteria. Here, the Pareto frontier of a therapeutic enzyme has been designed, constructed, and evaluated experimentally. Various measures of protein performance were found to map a functional sequence space that correlated well with computational predictions. These results represent the first systematic and rigorous assessment of the functional penalty that must be paid for pursuing progressively more deimmunized biotherapeutic candidates. Given this capacity to rapidly assess and design for tradeoffs between protein immunogenicity and functionality, these algorithms may prove useful in augmenting, accelerating, and de-risking experimental deimmunization efforts.
Klammer, Martin; Dybowski, J Nikolaj; Hoffmann, Daniel; Schaab, Christoph
2015-01-01
Multivariate biomarkers that can predict the effectiveness of targeted therapy in individual patients are highly desired. Previous biomarker discovery studies have largely focused on the identification of single biomarker signatures, aimed at maximizing prediction accuracy. Here, we present a different approach that identifies multiple biomarkers by simultaneously optimizing their predictive power, number of features, and proximity to the drug target in a protein-protein interaction network. To this end, we incorporated NSGA-II, a fast and elitist multi-objective optimization algorithm that is based on the principle of Pareto optimality, into the biomarker discovery workflow. The method was applied to quantitative phosphoproteome data of 19 non-small cell lung cancer (NSCLC) cell lines from a previous biomarker study. The algorithm successfully identified a total of 77 candidate biomarker signatures predicting response to treatment with dasatinib. Through filtering and similarity clustering, this set was trimmed to four final biomarker signatures, which then were validated on an independent set of breast cancer cell lines. All four candidates reached the same good prediction accuracy (83%) as the originally published biomarker. Although the newly discovered signatures were diverse in their composition and in their size, the central protein of the originally published signature - integrin β4 (ITGB4) - was also present in all four Pareto signatures, confirming its pivotal role in predicting dasatinib response in NSCLC cell lines. In summary, the method presented here allows for a robust and simultaneous identification of multiple multivariate biomarkers that are optimized for prediction performance, size, and relevance.
Directory of Open Access Journals (Sweden)
Leonardo Bottolo
Full Text Available Genome-wide association studies (GWAS yielded significant advances in defining the genetic architecture of complex traits and disease. Still, a major hurdle of GWAS is narrowing down multiple genetic associations to a few causal variants for functional studies. This becomes critical in multi-phenotype GWAS where detection and interpretability of complex SNP(s-trait(s associations are complicated by complex Linkage Disequilibrium patterns between SNPs and correlation between traits. Here we propose a computationally efficient algorithm (GUESS to explore complex genetic-association models and maximize genetic variant detection. We integrated our algorithm with a new Bayesian strategy for multi-phenotype analysis to identify the specific contribution of each SNP to different trait combinations and study genetic regulation of lipid metabolism in the Gutenberg Health Study (GHS. Despite the relatively small size of GHS (n = 3,175, when compared with the largest published meta-GWAS (n > 100,000, GUESS recovered most of the major associations and was better at refining multi-trait associations than alternative methods. Amongst the new findings provided by GUESS, we revealed a strong association of SORT1 with TG-APOB and LIPC with TG-HDL phenotypic groups, which were overlooked in the larger meta-GWAS and not revealed by competing approaches, associations that we replicated in two independent cohorts. Moreover, we demonstrated the increased power of GUESS over alternative multi-phenotype approaches, both Bayesian and non-Bayesian, in a simulation study that mimics real-case scenarios. We showed that our parallel implementation based on Graphics Processing Units outperforms alternative multi-phenotype methods. Beyond multivariate modelling of multi-phenotypes, our Bayesian model employs a flexible hierarchical prior structure for genetic effects that adapts to any correlation structure of the predictors and increases the power to identify
Rizzo, D. M.; Hanley, J.; Monroy, C.; Rodas, A.; Stevens, L.; Dorn, P.
2016-12-01
Chagas disease is a deadly, neglected tropical disease that is endemic to every country in Central and South America. The principal insect vector of Chagas disease in Central America is Triatoma dimidiata. EcoHealth interventions are an environmentally friendly alternative that use local materials to lower household infestation, reduce the risk of infestation, and improve the quality of life. Our collaborators from La Universidad de San Carlos de Guatemala along with Ministry of Health Officials reach out to communities with high infestation and teach the community EcoHealth interventions. The process of identifying which interventions have the potential to be most effective as well as the houses that are most at risk is both expensive and time consuming. In order to better identify the risk factors associated with household infestation of T. dimidiata, a number of studies have conducted socioeconomic and entomologic surveys that contain numerous potential risk factors consisting of both nominal and ordinal data. Univariate logistic regression is one of the more popular methods for determining which risk factors are most closely associated with infestation. However, this tool has limitations, especially with the large amount and type of "Big Data" associated with our study sites (e.g., 5 villages comprise of socioeconomic, demographic, and entomologic data). The infestation of a household with T. dimidiata is a complex problem that is most likely not univariate in nature and is likely to contain higher order epistatic relationships that cannot be discovered using univariate logistic regression. Add to this, the problems raised with using p-values in traditional statistics. Also, our T. dimidiata infestation dataset is too large to exhaustively search. Therefore, we use a novel evolutionary algorithm to efficiently search for higher order interactions in surveys associated with households infested with T. dimidiata. In this study, we use our novel evolutionary
Directory of Open Access Journals (Sweden)
Sid-Ahmed Selouani
2003-07-01
Full Text Available Limiting the decrease in performance due to acoustic environment changes remains a major challenge for continuous speech recognition (CSR systems. We propose a novel approach which combines the Karhunen-LoÃƒÂ¨ve transform (KLT in the mel-frequency domain with a genetic algorithm (GA to enhance the data representing corrupted speech. The idea consists of projecting noisy speech parameters onto the space generated by the genetically optimized principal axis issued from the KLT. The enhanced parameters increase the recognition rate for highly interfering noise environments. The proposed hybrid technique, when included in the front-end of an HTK-based CSR system, outperforms that of the conventional recognition process in severe interfering car noise environments for a wide range of signal-to-noise ratios (SNRs varying from 16 dB to Ã¢ÂˆÂ’4 dB. We also showed the effectiveness of the KLT-GA method in recognizing speech subject to telephone channel degradations.
Indian Academy of Sciences (India)
will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...
A Pareto upper tail for capital income distribution
Oancea, Bogdan; Pirjol, Dan; Andrei, Tudorel
2018-02-01
We present a study of the capital income distribution and of its contribution to the total income (capital income share) using individual tax income data in Romania, for 2013 and 2014. Using a parametric representation we show that the capital income is Pareto distributed in the upper tail, with a Pareto coefficient α ∼ 1 . 44 which is much smaller than the corresponding coefficient for wage- and non-wage-income (excluding capital income), of α ∼ 2 . 53. Including the capital income contribution has the effect of increasing the overall inequality measures.
Designing Pareto-superior demand-response rate options
International Nuclear Information System (INIS)
Horowitz, I.; Woo, C.K.
2006-01-01
We explore three voluntary service options-real-time pricing, time-of-use pricing, and curtailable/interruptible service-that a local distribution company might offer its customers in order to encourage them to alter their electricity usage in response to changes in the electricity-spot-market price. These options are simple and practical, and make minimal information demands. We show that each of the options is Pareto-superior ex ante, in that it benefits both the participants and the company offering it, while not affecting the non-participants. The options are shown to be Pareto-superior ex post as well, except under certain exceptional circumstances. (author)
Pareto-Zipf law in growing systems with multiplicative interactions
Ohtsuki, Toshiya; Tanimoto, Satoshi; Sekiyama, Makoto; Fujihara, Akihiro; Yamamoto, Hiroshi
2018-06-01
Numerical simulations of multiplicatively interacting stochastic processes with weighted selections were conducted. A feedback mechanism to control the weight w of selections was proposed. It becomes evident that when w is moderately controlled around 0, such systems spontaneously exhibit the Pareto-Zipf distribution. The simulation results are universal in the sense that microscopic details, such as parameter values and the type of control and weight, are irrelevant. The central ingredient of the Pareto-Zipf law is argued to be the mild control of interactions.
Saavedra, Juan Alejandro
Quality Control (QC) and Quality Assurance (QA) strategies vary significantly across industries in the manufacturing sector depending on the product being built. Such strategies range from simple statistical analysis and process controls, decision-making process of reworking, repairing, or scraping defective product. This study proposes an optimal QC methodology in order to include rework stations during the manufacturing process by identifying the amount and location of these workstations. The factors that are considered to optimize these stations are cost, cycle time, reworkability and rework benefit. The goal is to minimize the cost and cycle time of the process, but increase the reworkability and rework benefit. The specific objectives of this study are: (1) to propose a cost estimation model that includes energy consumption, and (2) to propose an optimal QC methodology to identify quantity and location of rework workstations. The cost estimation model includes energy consumption as part of the product direct cost. The cost estimation model developed allows the user to calculate product direct cost as the quality sigma level of the process changes. This provides a benefit because a complete cost estimation calculation does not need to be performed every time the processes yield changes. This cost estimation model is then used for the QC strategy optimization process. In order to propose a methodology that provides an optimal QC strategy, the possible factors that affect QC were evaluated. A screening Design of Experiments (DOE) was performed on seven initial factors and identified 3 significant factors. It reflected that one response variable was not required for the optimization process. A full factorial DOE was estimated in order to verify the significant factors obtained previously. The QC strategy optimization is performed through a Genetic Algorithm (GA) which allows the evaluation of several solutions in order to obtain feasible optimal solutions. The GA
Directory of Open Access Journals (Sweden)
Hanning Chen
2014-01-01
Full Text Available The development of radio frequency identification (RFID technology generates the most challenging RFID network planning (RNP problem, which needs to be solved in order to operate the large-scale RFID network in an optimal fashion. RNP involves many objectives and constraints and has been proven to be a NP-hard multi-objective problem. The application of evolutionary algorithm (EA and swarm intelligence (SI for solving multiobjective RNP (MORNP has gained significant attention in the literature, but these algorithms always transform multiple objectives into a single objective by weighted coefficient approach. In this paper, we use multiobjective EA and SI algorithms to find all the Pareto optimal solutions and to achieve the optimal planning solutions by simultaneously optimizing four conflicting objectives in MORNP, instead of transforming multiobjective functions into a single objective function. The experiment presents an exhaustive comparison of three successful multiobjective EA and SI, namely, the recently developed multiobjective artificial bee colony algorithm (MOABC, the nondominated sorting genetic algorithm II (NSGA-II, and the multiobjective particle swarm optimization (MOPSO, on MORNP instances of different nature, namely, the two-objective and three-objective MORNP. Simulation results show that MOABC proves to be more superior for planning RFID networks than NSGA-II and MOPSO in terms of optimization accuracy and computation robustness.
Hashemi, Zohreh; Rafiezadeh, Shohreh; Hafizi, Roohollah; Hashemifar, S. Javad; Akbarzadeh, Hadi
2018-04-01
Evolutionary algorithm is combined with full-potential ab initio calculations to investigate conformational space of (MoS2)n and (MoSe2)n (n = 1-10) nanoclusters and to identify the lowest energy structural isomers of these systems. It is argued that within both BLYP and PBE functionals, these nanoclusters favor sandwiched planar configurations, similar to their ideal planar sheets. The second order difference in total energy (Δ2 E) of the lowest energy isomers is computed to estimate the abundance of the clusters at different sizes and to determine the magic sizes of (MoS2)n and (MoSe2)n nanoclusters. In order to investigate the electronic properties of nanoclusters, their energy gap is calculated by several methods, including hybrid functionals (B3LYP and PBE0), GW approach, and Δ scf method. At the end, the vibrational modes of the lowest lying isomers are calculated by using the force constants method and the IR active modes of the systems are identified. The vibrational spectra are used to calculate the Helmholtz free energy of the systems and then to investigate abundance of the nanoclusters at finite temperatures.
S, Kyriacou; E, Kontoleontos; S, Weissenberger; L, Mangani; E, Casartelli; I, Skouteropoulou; M, Gattringer; A, Gehrer; M, Buchmayr
2014-03-01
An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure.
International Nuclear Information System (INIS)
Kyriacou S; Kontoleontos E; Weissenberger S; Mangani L; Casartelli E; Skouteropoulou I; Gattringer M; Gehrer A; Buchmayr M
2014-01-01
An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure
Pareto Distribution of Firm Size and Knowledge Spillover Process as a Network
Tomohiko Konno
2013-01-01
The firm size distribution is considered as Pareto distribution. In the present paper, we show that the Pareto distribution of firm size results from the spillover network model which was introduced in Konno (2010).
A Pareto scale-inflated outlier model and its Bayesian analysis
Scollnik, David P. M.
2016-01-01
This paper develops a Pareto scale-inflated outlier model. This model is intended for use when data from some standard Pareto distribution of interest is suspected to have been contaminated with a relatively small number of outliers from a Pareto distribution with the same shape parameter but with an inflated scale parameter. The Bayesian analysis of this Pareto scale-inflated outlier model is considered and its implementation using the Gibbs sampler is discussed. The paper contains three wor...
Multi-agent Pareto appointment exchanging in hospital patient scheduling
I.B. Vermeulen (Ivan); S.M. Bohte (Sander); D.J.A. Somefun (Koye); J.A. La Poutré (Han)
2007-01-01
htmlabstractWe present a dynamic and distributed approach to the hospital patient scheduling problem, in which patients can have multiple appointments that have to be scheduled to different resources. To efficiently solve this problem we develop a multi-agent Pareto-improvement appointment
Word frequencies: A comparison of Pareto type distributions
Wiegand, Martin; Nadarajah, Saralees; Si, Yuancheng
2018-03-01
Mehri and Jamaati (2017) [18] used Zipf's law to model word frequencies in Holy Bible translations for one hundred live languages. We compare the fit of Zipf's law to a number of Pareto type distributions. The latter distributions are shown to provide the best fit, as judged by a number of comparative plots and error measures. The fit of Zipf's law appears generally poor.
Robustness analysis of bogie suspension components Pareto optimised values
Mousavi Bideleh, Seyed Milad
2017-08-01
Bogie suspension system of high speed trains can significantly affect vehicle performance. Multiobjective optimisation problems are often formulated and solved to find the Pareto optimised values of the suspension components and improve cost efficiency in railway operations from different perspectives. Uncertainties in the design parameters of suspension system can negatively influence the dynamics behaviour of railway vehicles. In this regard, robustness analysis of a bogie dynamics response with respect to uncertainties in the suspension design parameters is considered. A one-car railway vehicle model with 50 degrees of freedom and wear/comfort Pareto optimised values of bogie suspension components is chosen for the analysis. Longitudinal and lateral primary stiffnesses, longitudinal and vertical secondary stiffnesses, as well as yaw damping are considered as five design parameters. The effects of parameter uncertainties on wear, ride comfort, track shift force, stability, and risk of derailment are studied by varying the design parameters around their respective Pareto optimised values according to a lognormal distribution with different coefficient of variations (COVs). The robustness analysis is carried out based on the maximum entropy concept. The multiplicative dimensional reduction method is utilised to simplify the calculation of fractional moments and improve the computational efficiency. The results showed that the dynamics response of the vehicle with wear/comfort Pareto optimised values of bogie suspension is robust against uncertainties in the design parameters and the probability of failure is small for parameter uncertainties with COV up to 0.1.
Meta-Modeling by Symbolic Regression and Pareto Simulated Annealing
Stinstra, E.; Rennen, G.; Teeuwen, G.J.A.
2006-01-01
The subject of this paper is a new approach to Symbolic Regression.Other publications on Symbolic Regression use Genetic Programming.This paper describes an alternative method based on Pareto Simulated Annealing.Our method is based on linear regression for the estimation of constants.Interval
Efficient approximation of black-box functions and Pareto sets
Rennen, G.
2009-01-01
In the case of time-consuming simulation models or other so-called black-box functions, we determine a metamodel which approximates the relation between the input- and output-variables of the simulation model. To solve multi-objective optimization problems, we approximate the Pareto set, i.e. the
Tsallis-Pareto like distributions in hadron-hadron collisions
International Nuclear Information System (INIS)
Barnafoeldi, G G; Uermoessy, K; Biro, T S
2011-01-01
Non-extensive thermodynamics is a novel approach in high energy physics. In high-energy heavy-ion, and especially in proton-proton collisions we are far from a canonical thermal state, described by the Boltzmann-Gibbs statistic. In these reactions low and intermediate transverse momentum spectra are extremely well reproduced by the Tsallis-Pareto distribution, but the physical origin of Tsallis parameters is still an unsettled question. Here, we analyze whether Tsallis-Pareto energy distribution do overlap with hadron spectra at high-pT. We fitted data, measured in proton-proton (proton-antiproton) collisions in wide center of mass energy range from 200 GeV RHIC up to 7 TeV LHC energies. Furthermore, our test is extended to an investigation of a possible √s-dependence of the power in the Tsallis-Pareto distribution, motivated by QCD evolution equations. We found that Tsallis-Pareto distributions fit well high-pT data, in the wide center of mass energy range. Deviance from the fits appears at p T > 20-30 GeV/c, especially on CDF data. Introducing a pT-scaling ansatz, the fits at low and intermediate transverse momenta still remain good, and the deviations tend to disappear at the highest-pT data.
COMPROMISE, OPTIMAL AND TRACTIONAL ACCOUNTS ON PARETO SET
Directory of Open Access Journals (Sweden)
V. V. Lahuta
2010-11-01
Full Text Available The problem of optimum traction calculations is considered as a problem about optimum distribution of a resource. The dynamic programming solution is based on a step-by-step calculation of set of points of Pareto-optimum values of a criterion function (energy expenses and a resource (time.
An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.
Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun
2017-09-01
The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.
Design of a centrifugal compressor impeller using multi-objective optimization algorithm
International Nuclear Information System (INIS)
Kim, Jin Hyuk; Husain, Afzal; Kim, Kwang Yong; Choi, Jae Ho
2009-01-01
This paper presents a design optimization of a centrifugal compressor impeller with hybrid multi-objective evolutionary algorithm (hybrid MOEA). Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. Two objectives, i.e., isentropic efficiency and total pressure ratio are selected with four design variables defining impeller hub and shroud contours in meridional contours to optimize the system. Non-dominated Sorting of Genetic Algorithm (NSGA-II) with ε-constraint strategy for local search coupled with Radial Basis Neural Network model is used for multi-objective optimization. The optimization results show that isentropic efficiencies and total pressure ratios of the five cluster points at the Pareto-optimal solutions are enhanced by multi-objective optimization.
Design of a centrifugal compressor impeller using multi-objective optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Kim, Jin Hyuk; Husain, Afzal; Kim, Kwang Yong [Inha University, Incheon (Korea, Republic of); Choi, Jae Ho [Samsung Techwin Co., Ltd., Changwon (Korea, Republic of)
2009-07-01
This paper presents a design optimization of a centrifugal compressor impeller with hybrid multi-objective evolutionary algorithm (hybrid MOEA). Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. Two objectives, i.e., isentropic efficiency and total pressure ratio are selected with four design variables defining impeller hub and shroud contours in meridional contours to optimize the system. Non-dominated Sorting of Genetic Algorithm (NSGA-II) with {epsilon}-constraint strategy for local search coupled with Radial Basis Neural Network model is used for multi-objective optimization. The optimization results show that isentropic efficiencies and total pressure ratios of the five cluster points at the Pareto-optimal solutions are enhanced by multi-objective optimization.
Computing the Distribution of Pareto Sums Using Laplace Transformation and Stehfest Inversion
Harris, C. K.; Bourne, S. J.
2017-05-01
that is shared by the sum of an arbitrary number of such variables. The technique involves applying the Laplace transform to the normalized sum (which is simply the product of the Laplace transforms of the densities of the individual variables, with a suitable scaling of the Laplace variable), and then inverting it numerically using the Gaver-Stehfest algorithm. After validating the method using a number of test cases, it was applied to address the distribution of total seismic moment, and the quantiles computed for various numbers of seismic events were compared with those obtained in the literature using Monte Carlo simulation. Excellent agreement was obtained. As an application, the method was applied to the evolution of total seismic moment released by tremors due to gas production in the Groningen gas field in the northeastern Netherlands. The speed, accuracy and ease of implementation of the method allows the development of accurate correlations for constraining statistical seismological models using, for example, the maximum-likelihood method. It should also be of value in other natural processes governed by Pareto distributions with exponent less than unity.
Pardo-Montero, Juan; Fenwick, John D
2010-06-01
The purpose of this work is twofold: To further develop an approach to multiobjective optimization of rotational therapy treatments recently introduced by the authors [J. Pardo-Montero and J. D. Fenwick, "An approach to multiobjective optimization of rotational therapy," Med. Phys. 36, 3292-3303 (2009)], especially regarding its application to realistic geometries, and to study the quality (Pareto optimality) of plans obtained using such an approach by comparing them with Pareto optimal plans obtained through inverse planning. In the previous work of the authors, a methodology is proposed for constructing a large number of plans, with different compromises between the objectives involved, from a small number of geometrically based arcs, each arc prioritizing different objectives. Here, this method has been further developed and studied. Two different techniques for constructing these arcs are investigated, one based on image-reconstruction algorithms and the other based on more common gradient-descent algorithms. The difficulty of dealing with organs abutting the target, briefly reported in previous work of the authors, has been investigated using partial OAR unblocking. Optimality of the solutions has been investigated by comparison with a Pareto front obtained from inverse planning. A relative Euclidean distance has been used to measure the distance of these plans to the Pareto front, and dose volume histogram comparisons have been used to gauge the clinical impact of these distances. A prostate geometry has been used for the study. For geometries where a blocked OAR abuts the target, moderate OAR unblocking can substantially improve target dose distribution and minimize hot spots while not overly compromising dose sparing of the organ. Image-reconstruction type and gradient-descent blocked-arc computations generate similar results. The Pareto front for the prostate geometry, reconstructed using a large number of inverse plans, presents a hockey-stick shape
Energy Technology Data Exchange (ETDEWEB)
Leimbach, Marian [Potsdam-Institut fuer Klimafolgenforschung e.V., Potsdam (Germany); Eisenack, Klaus [Oldenburg Univ. (Germany). Dept. of Economics and Statistics
2008-11-15
In this paper we present an algorithm that deals with trade interactions within a multi-region model. In contrast to traditional approaches this algorithm is able to handle spillover externalities. Technological spillovers are expected to foster the diffusion of new technologies, which helps to lower the cost of climate change mitigation. We focus on technological spillovers which are due to capital trade. The algorithm of finding a pareto-optimal solution in an intertemporal framework is embedded in a decomposed optimization process. The paper analyzes convergence and equilibrium properties of this algorithm. In the final part of the paper, we apply the algorithm to investigate possible impacts of technological spillovers. While benefits of technological spillovers are significant for the capital-importing region, benefits for the capital-exporting region depend on the type of regional disparities and the resulting specialization and terms-of-trade effects. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Daneshmand, Morteza [University of Tartu, Tartu (Estonia); Saadatzi, Mohammad Hossein [Colorado School of Mines, Golden (United States); Kaloorazi, Mohammad Hadi [École de Technologie Supérieur, Montréal (Canada); Masouleh, Mehdi Tale [University of Tehran, Tehran (Iran, Islamic Republic of); Anbarjafari, Gholamreza [Hasan Kalyoncu University, Gaziantep (Turkmenistan)
2016-03-15
This study aims to provide an optimal design for a Spherical parallel manipulator (SPM), namely, the Agile Eye. This aim is approached by investigating kinetostatic performance and workspace and searching for the most promising design. Previously recommended designs are examined to determine whether they provide acceptable kinetostatic performance and workspace. Optimal designs are provided according to different kinetostatic performance indices, especially kinematic sensitivity. The optimization process is launched based on the concept of the genetic algorithm. A single-objective process is implemented in accordance with the guidelines of an evolutionary algorithm called differential evolution. A multi-objective procedure is then provided following the reasoning of the nondominated sorting genetic algorithm-II. This process results in several sets of Pareto points for reconciliation between kinetostatic performance indices and workspace. The concept of numerous kinetostatic performance indices and the results of optimization algorithms are elaborated. The conclusions provide hints on the provided set of designs and their credibility to provide a well-conditioned workspace and acceptable kinetostatic performance for the SPM under study, which can be well extended to other types of SPMs.
Directory of Open Access Journals (Sweden)
R. Venkata Rao
2014-01-01
Full Text Available The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved to enhance its exploration and exploitation capacities by introducing the concept of number of teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. Pareto front maintained in an external archive. The performance of the MO-ITLBO algorithm is assessed by implementing it on unconstrained and constrained test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009 competition. The performance assessment is done by using the inverted generational distance (IGD measure. The IGD measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is used to assess the overall performance of competitive algorithms. Results have shown that the proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained test functions and the 3rd rank in the optimization of constrained test functions.
Fuzzy ranking based non-dominated sorting genetic algorithm-II for network overload alleviation
Directory of Open Access Journals (Sweden)
Pandiarajan K.
2014-09-01
Full Text Available This paper presents an effective method of network overload management in power systems. The three competing objectives 1 generation cost 2 transmission line overload and 3 real power loss are optimized to provide pareto-optimal solutions. A fuzzy ranking based non-dominated sorting genetic algorithm-II (NSGA-II is used to solve this complex nonlinear optimization problem. The minimization of competing objectives is done by generation rescheduling. Fuzzy ranking method is employed to extract the best compromise solution out of the available non-dominated solutions depending upon its highest rank. N-1 contingency analysis is carried out to identify the most severe lines and those lines are selected for outage. The effectiveness of the proposed approach is demonstrated for different contingency cases in IEEE 30 and IEEE 118 bus systems with smooth cost functions and their results are compared with other single objective evolutionary algorithms like Particle swarm optimization (PSO and Differential evolution (DE. Simulation results show the effectiveness of the proposed approach to generate well distributed pareto-optimal non-dominated solutions of multi-objective problem
Evolutionary computation for reinforcement learning
Whiteson, S.; Wiering, M.; van Otterlo, M.
2012-01-01
Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,
Income inequality in Romania: The exponential-Pareto distribution
Oancea, Bogdan; Andrei, Tudorel; Pirjol, Dan
2017-03-01
We present a study of the distribution of the gross personal income and income inequality in Romania, using individual tax income data, and both non-parametric and parametric methods. Comparing with official results based on household budget surveys (the Family Budgets Survey and the EU-SILC data), we find that the latter underestimate the income share of the high income region, and the overall income inequality. A parametric study shows that the income distribution is well described by an exponential distribution in the low and middle incomes region, and by a Pareto distribution in the high income region with Pareto coefficient α = 2.53. We note an anomaly in the distribution in the low incomes region (∼9,250 RON), and present a model which explains it in terms of partial income reporting.
Decomposition and Simplification of Multivariate Data using Pareto Sets.
Huettenberger, Lars; Heine, Christian; Garth, Christoph
2014-12-01
Topological and structural analysis of multivariate data is aimed at improving the understanding and usage of such data through identification of intrinsic features and structural relationships among multiple variables. We present two novel methods for simplifying so-called Pareto sets that describe such structural relationships. Such simplification is a precondition for meaningful visualization of structurally rich or noisy data. As a framework for simplification operations, we introduce a decomposition of the data domain into regions of equivalent structural behavior and the reachability graph that describes global connectivity of Pareto extrema. Simplification is then performed as a sequence of edge collapses in this graph; to determine a suitable sequence of such operations, we describe and utilize a comparison measure that reflects the changes to the data that each operation represents. We demonstrate and evaluate our methods on synthetic and real-world examples.
[Origination of Pareto distribution in complex dynamic systems].
Chernavskiĭ, D S; Nikitin, A P; Chernavskaia, O D
2008-01-01
The Pareto distribution, whose probability density function can be approximated at sufficiently great chi as rho(chi) - chi(-alpha), where alpha > or = 2, is of crucial importance from both the theoretical and practical point of view. The main reason is its qualitative distinction from the normal (Gaussian) distribution. Namely, the probability of high deviations appears to be significantly higher. The conception of the universal applicability of the Gauss law remains to be widely distributed despite the lack of objective confirmation of this notion in a variety of application areas. The origin of the Pareto distribution in dynamic systems located in the gaussian noise field is considered. A simple one-dimensional model is discussed where the system response in a rather wide interval of the variable can be quite precisely approximated by this distribution.
Using the Pareto Distribution to Improve Estimates of Topcoded Earnings
Philip Armour; Richard V. Burkhauser; Jeff Larrimore
2014-01-01
Inconsistent censoring in the public-use March Current Population Survey (CPS) limits its usefulness in measuring labor earnings trends. Using Pareto estimation methods with less-censored internal CPS data, we create an enhanced cell-mean series to capture top earnings in the public-use CPS. We find that previous approaches for imputing topcoded earnings systematically understate top earnings. Annual earnings inequality trends since 1963 using our series closely approximate those found by Kop...
Accelerated life testing design using geometric process for pareto distribution
Mustafa Kamal; Shazia Zarrin; Arif Ul Islam
2013-01-01
In this paper the geometric process is used for the analysis of accelerated life testing under constant stress for Pareto Distribution. Assuming that the lifetimes under increasing stress levels form a geometric process, estimates of the parameters are obtained by using the maximum likelihood method for complete data. In addition, asymptotic interval estimates of the parameters of the distribution using Fisher information matrix are also obtained. The statistical properties of the parameters ...
Small Sample Robust Testing for Normality against Pareto Tails
Czech Academy of Sciences Publication Activity Database
Stehlík, M.; Fabián, Zdeněk; Střelec, L.
2012-01-01
Roč. 41, č. 7 (2012), s. 1167-1194 ISSN 0361-0918 Grant - others:Aktion(CZ-AT) 51p7, 54p21, 50p14, 54p13 Institutional research plan: CEZ:AV0Z10300504 Keywords : consistency * Hill estimator * t-Hill estimator * location functional * Pareto tail * power comparison * returns * robust tests for normality Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.295, year: 2012
Pareto optimal design of sectored toroidal superconducting magnet for SMES
Energy Technology Data Exchange (ETDEWEB)
Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok
2014-10-15
Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.
Pareto optimal design of sectored toroidal superconducting magnet for SMES
International Nuclear Information System (INIS)
Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok
2014-01-01
Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy
Pareto optimal design of sectored toroidal superconducting magnet for SMES
Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok
2014-10-01
A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium-titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.
Generalized Pareto optimum and semi-classical spinors
Rouleux, M.
2018-02-01
In 1971, S. Smale presented a generalization of Pareto optimum he called the critical Pareto set. The underlying motivation was to extend Morse theory to several functions, i.e. to find a Morse theory for m differentiable functions defined on a manifold M of dimension ℓ. We use this framework to take a 2 × 2 Hamiltonian ℋ = ℋ(p) ∈ 2 C ∞(T * R 2) to its normal form near a singular point of the Fresnel surface. Namely we say that ℋ has the Pareto property if it decomposes, locally, up to a conjugation with regular matrices, as ℋ(p) = u ‧(p)C(p)(u ‧(p))*, where u : R 2 → R 2 has singularities of codimension 1 or 2, and C(p) is a regular Hermitian matrix (“integrating factor”). In particular this applies in certain cases to the matrix Hamiltonian of Elasticity theory and its (relative) perturbations of order 3 in momentum at the origin.
Directory of Open Access Journals (Sweden)
Juan Carlos Montoya M.
2008-06-01
Full Text Available Multicast juega un papel muy importante para soportar una nueva generación de aplicaciones. En la actualidad y por diferentes razones, técnicas y no técnicas, multicast IP no ha sido totalmente adoptado en Internet. Durante los últimos a˜nos, un área de investigación activa es la de implementar este tipo de tráfico desde la perspectiva del nivel de aplicación, donde la funcionalidad de multicast no es responsabilidad de los enrutadores sino de los hosts, a lo que se le conoce como Multicast Overlay Network (MON. En este artículo se plantea el enrutamiento en MON como un problema de Optimización Multiobjetivo (MOP donde se optimizan dos funciones: 1 el retardo total extremo a extremo del árbol multicast, y 2 la máxima utilización de los enlaces. La optimización simultánea de estas dos funciones es un problema NP completo y para resolverlo se propone utilizar Algoritmos Evolutivos Multiobjetivos (MOEA, específicamente NSGAIMulticast plays an important role in supporting a new generation of applications. At present and for different reasons, technical and non–technical, multicast IP hasn’t yet been totally adopted for Internet. During recent years, an active area of research is that of implementing this kind of traffic in the application layer where the multicast functionality isn´t a responsibility of the routers but that of the hosts, which we know as Multicast Overlay Networks (MON. In this article, routing in an MON is put forward as a multiobjective optimization problem (MOP where two functions are optimized: 1 the total end to end delay of the multicast tree and 2 the maximum link utilization. The simultaneous optimization of these two functions is an NP–Complete problem and to solve this we suggest using Multiobjective Evolutionary Algorithms (MOEA, specifically NSGA–II.
Chevalier, Robert L
2017-05-01
Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.
Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization
Energy Technology Data Exchange (ETDEWEB)
Kumar, Ranjan [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: ranjan.k@ks3.ecs.kyoto-u.ac.jp; Izui, Kazuhiro [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: izui@prec.kyoto-u.ac.jp; Yoshimura, Masataka [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: yoshimura@prec.kyoto-u.ac.jp; Nishiwaki, Shinji [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shinji@prec.kyoto-u.ac.jp
2009-04-15
Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.
Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization
International Nuclear Information System (INIS)
Kumar, Ranjan; Izui, Kazuhiro; Yoshimura, Masataka; Nishiwaki, Shinji
2009-01-01
Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets