WorldWideScience

Sample records for parent compound ethanol

  1. Compound list: ethanol [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available ethanol ETN 00137 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_v...itro/ethanol.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/et...hanol.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single.../ethanol.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/ethanol.Rat.in_vivo.Liver.Repeat.zip ...

  2. Dissolution behavior of lithium compounds in ethanol

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-12-01

    Full Text Available In order to exchange the components which received irradiation damage during the operation at the International Fusion Materials Irradiation Facility, the adhered lithium, which is partially converted to lithium compounds such as lithium oxide and lithium hydroxide, should be removed from the components. In this study, the dissolution experiments of lithium compounds (lithium nitride, lithium hydroxide, and lithium oxide were performed in a candidate solvent, allowing the clarification of time and temperature dependence. Based on the results, a cleaning procedure for adhered lithium on the inner surface of the components was proposed.

  3. Analysis of alkaloid phytochemical compounds in the ethanolic ...

    African Journals Online (AJOL)

    The aim of this study was to assess the compounds of alkaloids extracts from the leaves of Datura stramonium, which can be the basis for the synthesis of new antibiotics. ... The chemical compositions of the leaves of ethanolic extract of D.

  4. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jennifer L.; Zhang, Xiaolin

    2017-12-26

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  5. Catalytic dehydration of ethanol for poly 13 C compounds synthesis

    International Nuclear Information System (INIS)

    Almasan, Valer; Marginean, Petru; Lazar, Mihaela; Tusa, Florina

    2003-01-01

    Classical methods for the synthesis of organic compounds are not very well applied in the case of 13 C labeled compounds. One of the principal demands is to find the best method to transform a small quantity of isotopic reagent with a very high yield. In this case to obtain 13 C 2 chloroethanol from 13 C 2 ethanol there are two synthesis steps: - catalytic dehydration of ethanol to ethylene; - ethylene double bounding saturation: either via ethylene oxide (30% yield) or in diluted solution of chlorine. For the first step of synthesis we choose the thermal dehydration over alumina catalyst at 400 deg C. There were tested 2 samples of g alumina with 255 m 2 /g and 355 m 2 /g with very good results. In the second step of the synthesis we used the chlorine addition to ethylene in very diluted water solution. We have built a reactor which combined the two steps of this synthesis method to produce 13 C 2 chloroethanol from 13 C 2 ethanol. The global yield of method was 42%. (authors)

  6. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  7. Phenolic Compounds Protect Cultured Hippocampal Neurons against Ethanol-Withdrawal Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Marianna E. Jung

    2009-04-01

    Full Text Available Ethanol withdrawal is linked to elevated oxidative damage to neurons. Here we report our findings on the contribution of phenolic antioxidants (17β-estradiol, p-octyl-phenol and 2,6-di-tert-butyl-4-methylphenol to counterbalance sudden ethanol withdrawal-initiated oxidative events in hippocampus-derived cultured HT-22 cells. We showed that ethanol withdrawal for 4 h after 24-h ethanol treatment provoked greater levels of oxidative damage than the preceding ethanol exposure. Phenolic antioxidant treatment either during ethanol exposure or ethanol withdrawal only, however, dose-dependently reversed cellular oxidative damage, as demonstrated by the significantly enhanced cell viability, reduced malondialdehyde production and protein carbonylation, compared to untreated cells. Interestingly, the antioxidant treatment schedule had no significant impact on the observed neuroprotection. In addition, the efficacy of the three phenolic compounds was practically equipotent in protecting HT-22 cells in spite of predictions based on an in silico study and a cell free assay of lipid peroxidation. This finding implies that free-radical scavenging may not be the sole factor responsible for the observed neuroprotection and warrants further studies to establish, whether the HT-22 line is indeed a suitable model for in vitro screening of antioxidants against EW-related neuronal damage.

  8. PHENOLIC COMPOUNDS OF WATER-ETHANOLIC EXTRACT OF MENTHA LONGIFOLIA L

    Directory of Open Access Journals (Sweden)

    O. A. Grebennikova

    2014-01-01

    Full Text Available The article represents data about qualitative and quantitative composition of phenolic compounds in water-ethanol extract of perspective clone of Mentha longifolia L. of NBE-NSC selection. Phenolic substances content in water-ethanol extract amounted to 3003.3 mg/100g. 13 components were determined in the extract. The extract contains caffeic acid, chlorogenic acid isomers, rosmarinic acid and glycosides of luteolin. Rosmarinic acid (50.2% prevails among phenolic substances of Mentha longifolia extract. The conclusion is that the use of this extract is possible to create products with high biological value

  9. Investigations on the parent compounds of Fe-chalcogenide superconductors

    International Nuclear Information System (INIS)

    Koz, Cevriye

    2015-01-01

    This work is focused on the parent compounds of the Fe-chalcogenide superconductors. For this purpose poly- and single-crystalline forms of tetragonal β-Fe x Se, Fe 1+y Te, Fe 1+y Te 1-x Se x and Fe (1+y)-x M x Te (M = Ni, Co) have been prepared. Second focal points of this study are the low-temperature structural phase transitions and physical property changes in tetragonal Fe 1+y Te which are induced by composition, external pressure, and cationic substitution.

  10. Phytochemical characterization of bioactive compounds on methanolic and ethanolic leaf extracts of Myrciaria sp.

    Directory of Open Access Journals (Sweden)

    Nathalia F. Naspolini

    2016-06-01

    Full Text Available Among the native species of importance in Brazil, jabuticabeira (Myrciaria sp. is a native fruit tree from several Brazilian regions. Few studies report the chemical constituents of the leaves and its pharmacological and nutraceutical properties. The aim of this study was to identify the phenolic compounds of the methanolic (MeOH and ethanolic (EtOH leaf extracts of Myrciaria sp. Phytochemical profile of the extracts was carried-out using High Performance Liquid Chromatography (HPLC analysis. Antioxidant potential was evaluated by radical scavenging capacity with 2,2-diphenyl-1-picryl-hydrazyl (DPPH and total phenolics were determined with Folin-Ciocalteau reagent. A total of nine different compounds were identified in the free and bound phenolics extractions: 2,4 dihydroxybenzoic, vanillin, p-coumaric, ferulic, sinapinic, rutin, epicatechin, trans-caffeic and myricetin. The extracts demonstrated high radical scavenging capacity (MeOH: 1.83 and EtOH: 8.05 mg/mL and high phenolic content (MeOH: 1.15; and EtOH: 1.04 mg/g dry matter. The wide variability of compounds revealed and the amount of peaks not identified, gives us a background of a potential plant matrix for further investigations in order to develop a nutraceutical agent.

  11. Use of a flor velum yeast for modulating colour, ethanol and major aroma compound contents in red wine.

    Science.gov (United States)

    Moreno, Juan; Moreno-García, Jaime; López-Muñoz, Beatriz; Mauricio, Juan Carlos; García-Martínez, Teresa

    2016-12-15

    The most important and negative effect of the global warming for winemakers in warm and sunny regions is the observed lag between industrial and phenolic grape ripeness, so only it is possible to obtain an acceptable colour when the ethanol content of wine is high. By contrast, the actual market trends are to low ethanol content wines. Flor yeast growing a short time under velum conditions, decreases the ethanol and volatile acidity contents, has a favorable effect on the colour and astringency and significantly changes the wine content in 1-propanol, isobutanol, acetaldehyde, 1,1-diethoxiethane and ethyl lactate. The Principal Component Analysis of six enological parameters or five aroma compounds allows to classify the wines subjected to different velum formation conditions. The obtained results in two tasting sessions suggest that the flor yeast helps to modulate the ethanol, astringency and colour and supports a new biotechnological perspective for red winemakers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Exposure to volatile organic compounds in an ethanol and gasoline service station.

    Science.gov (United States)

    de Oliveira, K M P G; Martins, E M; Arbilla, G; Gatti, L V

    2007-08-01

    The present study was conducted to determine the VOCs concentrations in a service station located in a residential and commercial area in the city of Rio de Janeiro. This is, to our knowledge, the first published determination in Brazil, where both ethanol and ethanol-blended gasoline are used. Electro polished, stainless steel, evacuated canisters were used for sampling. The analysis was performed by gaschromatography with flame ionization detection (CG-FID) and by gas chromatography-mass spectrometry (CG-MS). A total of 80 and 56 compounds were determined in samples collected at the service station and control location, respectively. The most abundant compounds at the service station were in order of decreasing concentration (units: microg m(-3)): 2-methylbutane (1,715.7), 2-methylbut-1-ene (1,043.2), isobutene (758.8), 2-methylprop-1-ene (703.7), 2-methylpentane (492.1), pentadi-1,3-ene (189.7), toluene (157.0), benzene (144.5), but-2-ene (126.3) and m,p-xylene (123.2). A mean concentration of 144.5 microg m(-3) was determined for benzene, this value is about ten times the concentration determined in the control location in this work and about 70 times the value determined in other locations of Rio de Janeiro using charcoal cartridges for the sampling. The mean benzene/toluene ratios are 0.92 and 0.31 in the service station and control location, respectively. Since in Brazil service station workers are employed to fill customer's cars (self-service is not commonly used) the possible risk of cancer of these workers should be evaluated in a future study.

  13. The bioactive compounds and antioxidant activity of ethanol and ethyl ecetate extracts of Candi Banana (Musa paradisiaca)

    Science.gov (United States)

    Laeliocattleya, R. A.; Estiasih, T.; Griselda, G.; Muchlisyiyah, J.

    2018-03-01

    Banana has various benefits for health. One local variety of banana is candi banana (Musa paradisiaca). The aim of this research was to study the content of the bioactive compounds of phenolics, flavonoids, tannin, carotenoids and the antioxidant activity of extract ethanol and ethyl acetate of candi banana. Powdered candi banana was extracted using ethanol and ethyl acetate in an ultrasonic bath. The results showed that the content of phenolics, flavonoids, tannin and carotenoids in ethanol extract were 58.76 ± 3.19 mg/kg, 416.08 ± 18.79 mg/kg, 209.83 ± 15.87 mg/kg and 74.55 ± 4.31 mg/kg, respectively. The content of phenolics, flavonoids, tannin and carotenoids in ethyl acetate extract were 0.83 ± 0.12 mg/kg, 4.31 ± 0.66 mg/kg, 49.97 ± 2.43 mg/kg and 304.40 ± 16.62 mg/kg. While the antioxidant activity (IC50) of ethanol extract and ethyl acetate were 3374.13 ± 123.46 ppm and 40318.19 ± 1014.90 ppm. This research showed that type of solvents of ethanol and ethyl acetate affected the content of bioactive compounds and antioxidant activity of candi banana. The antioxidant activity of ethanol extract was higher than that of ethyl acetate extract. It showed that ethanol was a better solvent than ethyl acetate to extract bioactive compounds in candi banana.

  14. Thiophene Conversion and Ethanol Oxidation on SiO2-Supported 12-PMoV-Mixed Heteropoly Compounds

    Czech Academy of Sciences Publication Activity Database

    Spojakina, A. A.; Kostova, N. G.; Sow, Bineta; Stamenova, M. W.; Jirátová, Květa

    2001-01-01

    Roč. 65, 2-4 (2001), s. 315-321 ISSN 0920-5861 Institutional research plan: CEZ:AV0Z4072921 Keywords : thiophene conversion * ethanol oxidation * mixed heteropoly compounds Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.333, year: 2001

  15. Anti-equine arteritis virus activity of ethanolic extract and compounds from Origanum vulgare

    Directory of Open Access Journals (Sweden)

    Daiane Einhardt Blank

    2017-05-01

    Full Text Available The equine arteritis virus (EAV is responsible by an important respiratory and reproductive disease in equine populations and there is no specific antiviral treatment available. The objective of this study was to investigate the activity of an ethanolic crude extract of Origanum vulgare (EEO and of isolated compound caffeic acid, p-coumaric acid, rosmarinic acid, quercetin, luteolin, carnosol, carnosic acid, kaempferol and apigenin against EAV. The assays were performed using non-cytotoxic concentrations. The antiviral activity was monitored initially by cytopathic effect inhibition (CPE assay in RK13 cells in the presence or absence of EEO. Pre-incubated cells with EEO were also examined to show prophylactic effect. Direct viral inactivation by EEO and isolated compounds was evaluated by incubation at 37°C or 20°C. After the incubation period, the infectivity was immediately determined by virus titrations on cell cultures and expressed as 50% tissue culture infective dose (TCID50/100 µL. There was significant virucidal activity of EEO and of the compounds caffeic acid, p-coumaric acid, quercetin, carnosic acid and kaempferol. When EEO was added after infection, EEO inhibited the virus growth in infected cells, as evidenced by significant reduction of the viral titre. The results provide evidence that the EEO exhibit an inhibitory effect anti-EAV. Among the main compounds evaluated, caffeic acid, p-coumaric acid, carnosic acid, kaempferol and mainly quercetin, contributed to the activity of EEO. EEO may represent a good prototype for the development of a new antiviral agent, presenting promising for combating arteriviruses infections.

  16. Phytochemical characterization of bioactive compounds on methanolic and ethanolic leaf extracts of Myrciaria sp.

    Directory of Open Access Journals (Sweden)

    Nathalia F. Naspolini

    2016-01-01

    Full Text Available Among the native species of importance in Braz il, jabuticabeira ( Myrciaria sp. is a native fruit tree from several Brazilian regions. Few studies report the chemical constituents of the leaves and its pharmacological and nutraceutical properties. The aim of this study was to identify the phenolic com pounds of the methanolic (MeOH and ethanolic (EtOH leaf extracts of Myrciaria sp. Phytochemical profile of the extracts was carried - out using High Performance Liquid Chromatography (HPLC analysis. Antioxidant potential was evaluated by radical scavengin g capacity with 2,2 - diphenyl - 1 - picryl - hydrazyl (DPPH and total phenolics were determined with Folin -Ciocalteau reagent. A total of nine different compounds were identified in the free and bound phenolics extractions: 2,4 dihydroxybenzoic, vanillin, p- coumaric, ferulic, sinapinic, rutin, epicatechin, trans- caffeic and myricetin. The extracts demonstrated high radical scavenging capacity (MeOH: 1.83 and EtOH: 8.05 mg/mL and high phenolic content (MeOH: 1.15; and EtOH: 1.04 mg/g dry matter. The wide variability of compounds revealed and the amount of peaks not identified, gives us a background of a potential plant matrix for further investigations in order to develop a nutraceutical agent.

  17. Occurrence of cyanazine compounds in groundwater: Degradates more prevalent than the parent compound

    Science.gov (United States)

    Kolpin, D.W.; Thurman, E.M.; Linhart, S.M.

    2001-01-01

    A recently developed analytical method using liquid chromatography/mass spectrometry was used to investigate the occurrence of cyanazine and its degradates cyanazine acid (CAC), cyanazine amide (CAM), deethylcyanazine (DEC), and deethylcyanazine acid (DCAC) in groundwater. This research represents some of the earliest data on the occurrence of cyanazine degradates in groundwater. Although cyanazine was infrequently detected in the 64 wells across Iowa sampled in 1999, cyanazine degradates were commonly found during this study. The most frequently detected cyanazine compound was DCAC (32.8%) followed by CAC (29.7%), CAM (17.2%), DEC (3.1%), and cyanazine (3.1%). The frequency of detection for cyanazine or one or more of its degradates (CYTOT) was more than 12-fold over that of cyanazine alone (39.1% for CYTOT versus 3.1% for cyanazine). Of the total measured concentration of cyanazine, only 0.2% was derived from its parent compound - with DCAC (74.1%) and CAC (18.4%) comprising 92.5% of this total. Thus, although DCAC and CAC had similar frequencies of detection, DCAC was generally present in higher concentrations. No concentrations of cyanazine compounds for this study exceeded water-quality criteria for the protection of human health. Only cyanazine, however, has such a criteria established. Nevertheless, because these cyanazine degradates are still chlorinated, they may have similar toxicity as their parent compound - similar to what has been found with the chlorinated degradates of atrazine. Thus, the results of this study documented that data on the degradates for cyanazine are critical for understanding its fate and transport in the hydrologic system. Furthermore, the prevalence of the chlorinated degradates of cyanazine found in groundwater suggests that to accurately determine the overall effect on human health and the environment from cyanazine its degradates should also be considered. In addition, because CYTOT was found in 57.6% of the samples collected

  18. Influence of different water-ethanol solvent systems on the spectroscopic and physico-chemical properties of the macrocyclic compounds pheophytin and chlorophyll a

    International Nuclear Information System (INIS)

    Moreira, Leonardo M.; Rodrigues, Maira R.; Oliveira, Hueder P. M. de; Lima, Adriana; Soares, Rafael R. S.; Batistela, Vagner R.; Gerola, Adriana P.; Hioka, Noboru; Severino, Divinomar; Baptista, Mauricio S.; Machado, Antonio Eduardo da Hora

    2010-01-01

    This work focus on the influence of solvent on the photophysical properties of chlorophyll a and pheophytin. Both compounds are related to the photosynthesis process and are considered prototypes of photosensitizers in Photodynamic Therapy. Fluorescence measurements were developed using water/ethanol mixtures at different compositions, since both solvents could be employed in biological applications. The spectroscopic properties of these compounds undergo profound changes depending on water content in the ethanol due to auto-aggregation processes. The major hydrophobicity and the lower dielectric constant of ethanol when compared with water precluded significantly the auto-aggregation process of these compounds. (author)

  19. From Ethanol to Salsolinol: Role of Ethanol Metabolites in the Effects of Ethanol

    Directory of Open Access Journals (Sweden)

    Alessandra T. Peana

    2016-01-01

    Full Text Available In spite of the global reputation of ethanol as the psychopharmacologically active ingredient of alcoholic drinks, the neurobiological basis of the central effects of ethanol still presents some dark sides due to a number of unanswered questions related to both its precise mechanism of action and its metabolism. Accordingly, ethanol represents the interesting example of a compound whose actions cannot be explained as simply due to the involvement of a single receptor/neurotransmitter, a scenario further complicated by the robust evidence that two main metabolites, acetaldehyde and salsolinol, exert many effects similar to those of their parent compound. The present review recapitulates, in a perspective manner, the major and most recent advances that in the last decades boosted a significant growth in the understanding on the role of ethanol metabolism, in particular, in the neurobiological basis of its central effects.

  20. Pseudoliquid behavior of heteropoly compound catalysts. Unusual pressure dependencies of the rate and selectivity for ethanol dehydration

    International Nuclear Information System (INIS)

    Misono, M.; Okuhara, T.; Ichiki, T.; Arai, T.; Kanda, Y.

    1987-01-01

    Heteropoly compounds arenow utilized as industrial catalysts for olefin hydration and aldehyde oxidation and as interesting cluster models of mixed oxide catalysts. Certain heteropoly acids, like H 3 PW 12 O 40 and H 3 PMo 12 O 40 , easily absorb a large amount of water, alchols, and ethers in the solid state, although their surface areas are very low. This is not adsorption in micropores; rather molecules are absorbed between the lattice polyanions, sometimes expanding the lattice. The expansion can be seen visually as well as by x-ray diffraction. The authors showed that in some cases catalytic reactions take place in this novel bulk phase. Presumably due to this behavior, very high catalytic activity and unique selectivity as well as unusual reactivity order have been observed. They called this state the pseudoliquid phase. However, in only one case was the amount of absorbed reactant measured under the working conditions. They report here unusual pressure dependencies of the rate and selectivity of ethanol dehydration over heteropoly compounds. The dependency can only be explained by the formation of a pseudoliquid phase, i.e., a phase where the amount of absorbed ethanol has changed as a function of ethanol pressure

  1. Effects of γ-Irradiation of Wild Thyme (Thymus serpyllum L. on the Phenolic Compounds Profile of Its Ethanolic Extract

    Directory of Open Access Journals (Sweden)

    Janiak Michał A.

    2017-12-01

    Full Text Available The presented study revealed that there were changes in the phenolic compounds profile of extract of wild thyme (Thymus serpyllum L. after γ-irradiation at the dose of 5 kGy. Ethanolic extracts of irradiated and non-irradiated herb were prepared and their compounds were analyzed by RP-HPLC-DAD technique. Between thirty two detected constituents, twelve phenolic compounds classified as hydroxybenzoic and hydroxycinnamic acids derivatives, flavones and flavanones were identified. Among them, caffeic acid derivatives and flavones predominated with the highest content of rosmarinic acid and luteolin-7-O-glucoside, respectively. Additionally, thymol was recognized in the analyzed extracts. γ-Irradiation slightly affected the quantitative profile of phenolic compounds of a wild thyme ethanolic extract. Only four constituents differed significantly (P<0.05 in terms of their content in the irradiated and non-irradiated samples. The content of phenolic acids (p-coumaric and caffeic acids decreased and that of flavonoid aglycons (luteolin and eriodictyol increased after the γ-ray treatment.

  2. Radiolysis study of the oxidation of a vitamin K model compound in ethanolic solution

    International Nuclear Information System (INIS)

    Fackir, L.; Jore, D.; Gardes-Albert, M.; Ferradini, C.; Acher, F.; Azerad, R.

    1993-01-01

    It seems that the biological action of vitamin K (with its important role in carboxylating processes) may involve monoelectronic exchanges. Therefore radical mechanisms of a vitamin K model molecule KHp have been studied in ethanolic solution by mean of steady state radiolysis method. The oxidation of KHp by H 3 C-CH(OH)OO . model peroxyl radicals leads to the formation of a 'dimeric' form of vitamin K. The superoxide anions seem not to be reactive towards KHp in the chosen irradiation conditions

  3. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    Science.gov (United States)

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

    Science.gov (United States)

    López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús

    2012-05-01

    In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Fermentation of liquid coproducts and liquid compound diets: Part 2. Effects on pH, acid-binding capacity, organic acids and ethanol during a 6-day period

    NARCIS (Netherlands)

    Scholten, R.H.J.; Rijnen, M.M.J.A.; Schrama, J.W.; Boer, H.; Peet-Schwering, van der C.M.C.; Hartog, den L.A.; Vesseur, P.C.

    2001-01-01

    The effects of a 6-day storage period on changes in pH, acid-binding capacity, level of organic acids and ethanol of three liquid coproducts [liquid wheat starch (LWS), mashed potato steam peel (PSP) and cheese whey (CW)] and two liquid compound diets [liquid grower diet (LGD) and liquid finisher

  6. Decomposition of lignin model compounds by Lewis acid catalysts in water and ethanol

    NARCIS (Netherlands)

    Guvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Emiel J. M.

    2015-01-01

    The conversion of benzyl phenyl ether, diphenyl ether, diphenyl methane and biphenyl as representative model compounds for alpha-O-4, 5-O-4, alpha(1) (methylene bridges) and 5-5' lignin linkages was investigated. We compared the use of metal chlorides and acetates. The reactions were studied in sub-

  7. Isolation, identification, and antibacterial activity of chemical compounds from ethanolic extract of suji leaf (Pleomele angusifolia NE Brown)

    Science.gov (United States)

    Faridah; Natalia; Lina, Maria; W, Hendig

    2014-03-01

    Suji (Pleomele angustifolia NE Brown) is one of the medicinal plants of the tribe of Liliaceae, empirically useful to treat coughs and respiratory diseases such as tuberculosis (TB) and pneumonia. In this study, ethanolic extract of suji leaves was tested its activity against bacteria that attacks the respiratory organs, namely Mycobacterium tuberculosis and Streptococcus pneumoniae, using a paper disc diffusion and dilution agar method. These extracts have activity in inhibiting the growth of M. tuberculosis at a concentration of 8 mg and against S. pneumoniae at a concentration of 4 mg. The fractions were tested their antibacterial activity against Streptococcus pneumoniae using paper disc diffusion method. The most active fraction was chosen based on the inhibition diameter. The fractions contained flavonoids, steroids, and essential oils. The precipitate isolated from the extraction process shows needle-shaped, white, cold and tasteless crystals. Moreover, the HPLC analysis of isolate revealed a single peak with a retention time of 7.183 minutes. The exact compounds in the isolate could not be determined but it was known the compounds contained the functional groups of alkene, alkane, C=O, -OH. Test results obtained from UV-Vis spectrophotometer provides maximum absorption at a wavelength of 203.0 nm.

  8. Effects of potassium sorbate and Lactobacillus plantarum MTD1 on production of ethanol and other volatile organic compounds in corn silage

    DEFF Research Database (Denmark)

    Hafner, Sasha D.; Windle, Michelle; Merrill, Caitlyn

    2015-01-01

    was to evaluate the effect of additives on production of nine silage VOC in corn silage, including compounds thought to contribute to poor air quality or affect feed intake (alcohols: methanol, ethanol, 1-propanol; esters: methyl acetate, ethyl acetate, ethyl lactate; and aldehydes: acetaldehyde, valeraldehyde....... These results provide additional evidence that potassium sorbate is an effective additive for reducing production of ethanol and ethyl esters in corn silage. Combining potassium sorbate with L. plantarum may provide additional benefits, although the persistence of this effect for silages with higher VOC...

  9. Parental effects of endocrine disrupting compounds in aquatic wildlife: Is there evidence of transgenerational inheritance?

    Science.gov (United States)

    Schwindt, Adam R

    2015-08-01

    The effects of endocrine disrupting compounds (EDCs) on aquatic wildlife are increasingly being recognized for their complexity. Investigators have detected alterations at multiple levels of biological organization in offspring exposed to EDCs through the blood or germ line of the parents, suggesting that generational consequences of EDCs are evident. Exposure to EDCs through the parents is concerning because if the resulting phenotype of the offspring is heritable and affects fitness, then evolutionary consequences may be evident. This review summarizes the evidence for transgenerational effects of EDCs in aquatic wildlife and illustrates cases where alterations appear to be transmitted maternally, paternally, or parentally. The literature indicates that EDC exposure to the parents induces developmental, physiological, endocrinological, and behavioral changes as well as increased mortality of offspring raised in clean environments. What is lacking, however, is a clear demonstration of heritable transgenerational effects in aquatic wildlife. Therefore, it is not known if the parental effects are the result of developmental or phenotypic plasticity or if the altered phenotypes are durably passed to subsequent generations. Epigenetic changes to gene regulation are discussed as a possible mechanism responsible for EDC induced parental effects. Additional research is needed to evaluate if heritable effects of EDCs are evident in aquatic wildlife, as has been demonstrated for terrestrial mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Inhibitory effects of phenolic compounds of rice straw formed by saccharification during ethanol fermentation by Pichia stipitis.

    Science.gov (United States)

    Wang, Xiahui; Tsang, Yiu Fai; Li, Yuhao; Ma, Xiubing; Cui, Shouqing; Zhang, Tian-Ao; Hu, Jiajun; Gao, Min-Tian

    2017-11-01

    In this study, it was found that the type of phenolic acids derived from rice straw was the major factor affecting ethanol fermentation by Pichia stipitis. The aim of this study was to investigate the inhibitory effect of phenolic acids on ethanol fermentation with rice straw. Different cellulases produced different ratios of free phenolic acids to soluble conjugated phenolic acids, resulting in different fermentation efficiencies. Free phenolic acids exhibited much higher inhibitory effect than conjugated phenolic acids. The flow cytometry results indicated that the damage to cell membranes was the primary mechanism of inhibition of ethanol fermentation by phenolic acids. The removal of free phenolic acids from the hydrolysates increased ethanol productivity by 2.0-fold, indicating that the free phenolic acids would be the major inhibitors formed during saccharification. The integrated process for ethanol and phenolic acids may constitute a new strategy for the production of low-cost ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Inhibition mechanism of compound ethanol extracts from wuweizi (fructus schisandrae chinensis) on renal interstitial fibrosis in diabetic nephropathy model mice.

    Science.gov (United States)

    Zhang, Yanqiu; Zhang, Daning; Zhang, Mianzhi

    2012-12-01

    To evaluate inhibition effect and mechanism of compound ethanol extracts from Wuweizi (Fructus Schisandrae Chinensis), Chuanxiong (Rhizoma Chuanxiong) and Muli (Cocha Ostreae) (FRC) on glomerular and tubular interstitial fibrosis in streptozocin (STZ)-induced diabetic nephropathy (ND) model mice. Twenty-seven male C57BL/6 mice were divided randomly into 3 groups: nondibetic (ND), STZ-induced diabetic (D), and STZ-induced diabetic that were treated with 5 g x kg(-1) x day(-1) of FRC by oral gavage (D(FRC)), with 9 in each group. The protein expressions of E-cadherin, alpha-smooth muscle actin (alpha-SMA), Plasminogen Activator Inhibitor-1 (PAL-1) in renal tissues were investigated by Western blotting. The expressions of fibronectin (FN) and alpha-SMA were detected by immunohistochemical method. The morphological changes of renal tissues were observed under a microscope. Renal tissues in the D(FRC) group showed a lessened degree of fibrosis. Meanwhile, the expressions of FN, alpha-SMA and PAI-1 were significantly lower in the D(FRC) group than those in the D group (all P < 0.05). FRC can ameliorate the DN in the C57BL/6 mice, and its mechanism may relate to inhibition on the epithelial to mesenchymal transdifferentiation, endothelial-myofibroblast transition and PAL-1 expression.

  12. Analysis of Relative Concentration of Ethanol and Other Odorous Compounds (OCs) Emitted from the Working Surface at a Landfill in China

    Science.gov (United States)

    Li, Dong; Lu, Wenjing; Liu, Yanjun; Guo, Hanwen; Xu, Sai; Ming, Zhongyuan; Wang, Hongtao

    2015-01-01

    Estimating odor emissions from landfill sites is a complicated task because of the various chemical and biological species that exist in landfill gases. In this study, the relative concentration of ethanol and other odorous compounds emitted from the working surface at a landfill in China was analyzed. Gas sampling was conducted at the landfill on a number of selected days from March 2012 to March 2014, which represented different periods throughout the two years. A total of 41, 59, 66, 54, 63, 54, 41, and 42 species of odorous compounds were identified and quantified in eight sampling activities, respectively; a number of 86 species of odorous compounds were identified and quantified all together in the study. The measured odorous compounds were classified into six different categories (Oxygenated compounds, Halogenated compounds, Terpenes, Sulfur compounds, Aromatics, and Hydrocarbons). The total average concentrations of the oxygenated compounds, sulfur compounds, aromatics, halogenated compounds, hydrocarbons, and terpenes were 2.450 mg/m3, 0.246 mg/m3, 0.203 mg/m3, 0.319 mg/m3, 0.530 mg/m3, and 0.217 mg/m3, respectively. The relative concentrations of 59 odorous compounds with respect to the concentration of ethyl alcohol (1000 ppm) were determined. The dominant contaminants that cause odor pollution around the landfill are ethyl sulfide, methyl mercaptan, acetaldehyde, and hydrogen sulfide; dimethyl disulfide and dimethyl sulfide also contribute to the pollution to a certain degree. PMID:25769100

  13. Development of Ni-Based Catalysts Derived from Hydrotalcite-Like Compounds Precursors for Synthesis Gas Production via Methane or Ethanol Reforming

    OpenAIRE

    Ya-Li Du; Xu Wu; Qiang Cheng; Yan-Li Huang; Wei Huang

    2017-01-01

    As a favorably clean fuel, syngas (synthesis gas) production has been the focus of concern in past decades. Substantial literatures reported the syngas production by various catalytic reforming reactions particularly in methane or ethanol reforming. Among the developed catalysts in these reforming processes, Ni-based catalysts from hydrotalcite-like compounds (HTLcs) precursors have drawn considerable attention for their preferable structural traits. This review covers the recent literature r...

  14. Assessment of chloroethene degradation rates based on ratios of daughter/parent compounds in groundwater plumes

    Science.gov (United States)

    Höhener, Patrick

    2014-05-01

    Chlorinated solvent spills at industrial and urban sites create groundwater plumes where tetrachloro- and trichloroethene may degrade to their daughter compounds, dichloroethenes, vinyl chloride and ethane. The assessment of degradation and natural attenuation at such sites may be based on the analysis and inverse modelling of concentration data, on the calculation of mass fluxes in transsects, and/or on the analysis of stable isotope ratios in the ethenes. Relatively few work has investigated the possibility of using ratio of concentrations for gaining information on degradation rates. The use of ratios bears the advantage that dilution of a single sample with contaminant-free water does not matter. It will be shown that molar ratios of daughter to parent compounds measured along a plume streamline are a rapid and robust mean of determining whether degradation rates increase or decrease along the degradation chain, and allow furthermore a quantitation of the relative magnitude of degradation rates compared to the rate of the parent compound. Furthermore, ratios of concentration will become constant in zones where degradation is absent, and this allows to sketching the extension of actively degrading zones. The assessment is possible for pure sources and also for mixed sources. A quantification method is proposed in order to estimate first-order degradation rates in zones of constant degradation activity. This quantification method includes corrections that are needed due to longitudinal and transversal dispersivity. The method was tested on a number of real field sites from literature. At the majority of these sites, the first-order degradation rates were decreasing along the degradation chain from tetrachloroethene to vinyl chloride, meaning that the latter was often reaching important concentrations. This is bad news for site owners due to the increased toxicity of vinyl chloride compared to its parent compounds.

  15. A biorefinery concept for simultaneous recovery of cellulosic ethanol and phenolic compounds from oil palm fronds: Process optimization

    International Nuclear Information System (INIS)

    Ofori-Boateng, Cynthia; Lee, Keat Teong; Saad, Bahruddin

    2014-01-01

    Highlights: • Biorefinery concept for simultaneous recovery of cellulose and phenolic compounds. • Sono-assisted organosolv/H 2 O 2 pretreatment was used to isolate palm fronds cellulose. • Optimum conditions for pretreatment: 60 °C, 40 min, 1:20 g/ml, 3% NaOH concentration. • Optimum conditions yielded 55.3% cellulose, 20.1 g/l glucose and 0.769 g/g ethanol. • Pretreatment liquor contained 4.691 mg GAE/g phenolics. - Abstract: In this study, process optimization of an ultrasonic-assisted organosolv/liquid oxidative pretreatment (SOP) of oil palm fronds (OPFs) for the simultaneous recovery of cellulose, bioethanol and biochemicals (i.e. phenolic compounds) in a biorefinery concept was carried out. The effects of time (30–60 min.), temperature (40–80 °C), NaOH concentration (1–5%) and sample:solvent ratio (1:10–1:50 g/ml) on cellulose content, bioethanol yield and total phenolics contents (TPC) after SOP were investigated. At optimum conditions of pretreatment (i.e. 60 °C, 40 min, 3% w/v aq. NaOH and 1:20 g/ml sample to solvent ratio), the recovered cellulose (55.30%) which served as substrate for enzymatic hydrolysis and subsequent fermentation yielded about 20.1 g/l glucose, 11.3 g/l xylose and 9.3 g/l bioethanol (yield of 0.769 g/g). The pretreatment liquor (mostly regarded as wastes) obtained at the optimum pretreatment conditions contained about 4.691 mg gallic acid equivalent (GAE)/g OPFs of TPC, 0.297 mg vanillic acid (VA)/g OPFs, 1.591 mg gallic acid (GA)/g OPFs and 0.331 mg quercetin (QU)/g OPFs. The pretreatment liquor was again analyzed to possess high antiradical scavenging activity (about 97.2%) compared to the synthetic antioxidant, 3,5-di-tert-butyl-4-hydroxytoluene (BHT) (80.7%) at 100 ppm. Thus one sustainable way of managing wastes in biorefinery is the recovery of multi-bioproducts (e.g. bioethanol and biochemicals) during the pretreatment process

  16. Antifungal activity of the ethanolic extracts of Punica granatum L. and evaluation of the morphological and structural modifications of its compounds upon the cells of Candida spp.

    Science.gov (United States)

    Anibal, Paula Cristina; Peixoto, Iza Teixeira Alves; Foglio, Mary Ann; Höfling, José Francisco

    2013-01-01

    Ethanolic crude extracts prepared from the arils and seeds, pericarp, peels and from the whole fruit of Punica granatum, known as pomegranate, had their antifungal activity tested against Candida spp. The ethanolic crude extracts were analyzed by Mass Spectrometry and yielded many compounds such as punicalagin and galladydilacton. The extracts from the pericarp and peel showed activity against Candida spp., with MICs of 125 μg/mL. The effect of pericarp and peel extracts upon the morphological and structure of C. albicans and C. krusei were examined by scanning and transmission electron microscopy, with the visualization of an irregular membrane and hyphae, formation of vacuoles and thickening of the cell wall. The data obtained revealed potential antimicrobial activity against yeasts cells of the Candida genus, and the bioactive compounds could be responsible for changes in cell morphology and structure. The data obtained open new perspectives for future research in continuation to this study, where information such as determination of the site of action of the compounds could contribute to an alternative therapy against these organisms.

  17. Electrotechnologies, microwaves, and ultrasounds combined with binary mixtures of ethanol and water to extract steviol glycosides and antioxidant compounds from Stevia rebaudiana leaves

    DEFF Research Database (Denmark)

    Carbonell-Capella, Juana M.; Šic Žlabur, Jana; Rimac Brnčić, Suzana

    2017-01-01

    /g) was obtained after ultrasound-assisted extraction, while microwave allowed the highest yields of rebaudioside A (22.7 ± 0.1 mg/g). However, pulsed electric field technology was the most efficient to recover stevioside (44.2 ± 0.1 mg/g) and rebaudioside A (22.4 ± 0.3 mg/g) when using 50% ethanol-water. Results...... leaves in food industry is usually performed using thermal extraction under agitation after drying and grinding. Although efficient, this technique generates an extract not only rich in targeted compounds but also in impurities, which complicates the downstream processing steps. Selective extraction...

  18. Determination of Acid Dissociation Constants (pKa) of Bicyclic Thiohydantoin-Pyrrolidine Compounds in 20% Ethanol-Water Hydroorganic Solvent

    Science.gov (United States)

    Nural, Yahya; Döndaş, H. Ali; Sarı, Hayati; Atabey, Hasan; Belveren, Samet; Gemili, Müge

    2014-01-01

    The acid dissociation constants of potential bioactive fused ring thiohydantoin-pyrrolidine compounds were determined by potentiometric titration in 20% (v/v) ethanol-water mixed at 25 ± 0.1°C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Proton affinities of potential donor atoms of the ligands were calculated by AM1 and PM3 semiempiric methods. We found, potentiometrically, three different acid dissociation constants for 1a–f. We suggest that these acid dissociation constants are related to the carboxyl, enol, and amino groups. PMID:24799905

  19. (Liquid + liquid) equilibrium for systems composed of clove and allspice essential oil compounds and hydrous ethanol at T = 298.2 K

    International Nuclear Information System (INIS)

    Koshima, Cristina C.; Umeda, Thayla K.; Nakamoto, Karina T.; Venâncio, Larissa L.; Aracava, Keila K.; Rodrigues, Christianne E.C.

    2016-01-01

    Highlights: • A fraction enriched in oxyterpenes can be obtained via the deterpenation process. • Liquid extraction with hydrous ethanol can be applied to essential oil deterpenation. • Distribution coefficients of caryophyllene, methyl eugenol and eugenol were studied. • Eugenol has the highest distribution coefficient compared to the data in the literature. • Phase compositions were well described by the NRTL parameters. - Abstract: In the deterpenation process of essential oils, a fraction enriched in oxyterpenes is obtained. When compared to terpenic hydrocarbons, this fraction is more stable and soluble in water, maintaining the characteristic flavor and fragrance of the crude oil. Solvent extraction is an interestingly popular technique that is proposed for the fractionation of essential oils (once it can be performed under atmospheric pressure and ambient temperature) and contributes to the maintenance of the sensory quality of essential oils. The use of hydrous ethanol as a solvent for the (liquid + liquid) extraction process has shown advantages when the components of interest are completely soluble in ethanol, and their partition can be adjusted based on the level of hydration of the solvent. In addition, for some purposes, the fractions obtained from the separation process can be used without removing the solvent. Therefore, the primary goal of this study was to investigate the (liquid + liquid) equilibrium at T = (298.2 ± 0.1) K of model systems composed of (caryophyllene + eugenol + ethanol + water) (i.e., a clove essential oil model system) and (caryophyllene + methyl eugenol + eugenol + ethanol + water) (i.e., an allspice essential oil model system) to provide the information required for the proper design and optimization of the associated deterpenation processes. For both systems studied, it was noted that increased water content in the solvent decreases the extraction of the essential compounds and increases the selectivity of the

  20. Characterization and Quantification of the Compounds of the Ethanolic Extract from Caesalpinia ferrea Stem Bark and Evaluation of Their Mutagenic Activity

    Directory of Open Access Journals (Sweden)

    Carlos César Wyrepkowski

    2014-10-01

    Full Text Available Caesalpinia ferrea Martius has traditionally been used in Brazil for many medicinal purposes, such as the treatment of bronchitis, diabetes and wounds. Despite its use as a medicinal plant, there is still no data regarding the genotoxic effect of the stem bark. This present work aims to assess the qualitative and quantitative profiles of the ethanolic extract from the stem bark of C. ferrea and to evaluate its mutagenic activity, using a Salmonella/microsome assay for this species. As a result, a total of twenty compounds were identified by Flow Injection Analysis Electrospray Ionization Ion Trap Mass Spectrometry (FIA-ESI-IT-MS/MSn in the ethanolic extract from the stem bark of C. ferrea. Hydrolyzable tannins predominated, principally gallic acid derivatives. The HPLC-DAD method was developed for rapid quantification of six gallic acid compounds and ellagic acid derivatives. C. ferrea is widely used in Brazil, and the absence of any mutagenic effect in the Salmonella/microsome assay is important for pharmacological purposes and the safe use of this plant.

  1. Parenting

    Science.gov (United States)

    ... parents, people are always ready to offer advice. Parenting tips, parents' survival guides, dos, don'ts, shoulds ... right" way to be a good parent. Good parenting includes Keeping your child safe Showing affection and ...

  2. Anisotropy of the Seebeck and Nernst coefficients in parent compounds of the iron-based superconductors

    Science.gov (United States)

    Matusiak, Marcin; Babij, Michał; Wolf, Thomas

    2018-03-01

    In-plane longitudinal and transverse thermoelectric phenomena in two parent compounds of iron-based superconductors are studied. Namely, the Seebeck (S ) and Nernst (ν) coefficients were measured in the temperature range 10-300 K for BaF e2A s2 and CaF e2A s2 single crystals that were detwinned in situ. The thermoelectric response shows sizable anisotropy in the spin density wave (SDW) state for both compounds, while some dissimilarities in the vicinity of the SDW transition can be attributed to the different nature of the phase change in BaF e2A s2 and CaF e2A s2 . Temperature dependences of S and ν can be described within a two-band model that contains a contribution from highly mobile, probably Dirac, electrons. The Dirac band seems to be rather isotropic, whereas most of the anisotropy in the transport phenomena could be attributed to "regular" holelike charge carriers. We also observe that the off-diagonal element of the Peltier tensor αx y is not the same for the a and b orthorhombic axes, which indicates that the widely used Mott formula is not applicable to the SDW state of iron-based superconductors.

  3. Development of Ni-Based Catalysts Derived from Hydrotalcite-Like Compounds Precursors for Synthesis Gas Production via Methane or Ethanol Reforming

    Directory of Open Access Journals (Sweden)

    Ya-Li Du

    2017-02-01

    Full Text Available As a favorably clean fuel, syngas (synthesis gas production has been the focus of concern in past decades. Substantial literatures reported the syngas production by various catalytic reforming reactions particularly in methane or ethanol reforming. Among the developed catalysts in these reforming processes, Ni-based catalysts from hydrotalcite-like compounds (HTLcs precursors have drawn considerable attention for their preferable structural traits. This review covers the recent literature reporting syngas production with Ni-based catalysts from HTLc precursors via methane or ethanol reforming. The discussion was initiated with catalyst preparation (including conventional and novel means, followed by subsequent thermal treatment processes, then composition design and the addition of promoters in these catalysts. As Ni-based catalysts have thermodynamic potential to deactivate because of carbon deposition or metal sintering, measures for dealing with these problems were finally summarized. To obtain optimal catalytic performances and resultantly better syngas production, based on analyzing the achievements of the references, some perspectives were finally proposed.

  4. Synthesis, electrochemical, spectrophotometric and potentiometric studies of two azo-compounds derived from 4-amino-2-methylquinoline in ethanolic-aqueous buffered solutions

    Energy Technology Data Exchange (ETDEWEB)

    El-Attar, Mona A.; Ghoneim, Mohamed M. [Analytical Chemistry Research Unit, Chemistry Department, Tanta University (Egypt); Ismail, Iqbal M., E-mail: maema.2011@yahoo.com [Chemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah (Saudi Arabia)

    2012-08-15

    Two azo-compounds, 2-methyl-4-(5-amino-2-hydroxy-phenylazo)-quinoline (2) and 2-methyl-4-(2-hydroxy-5-nitrophenylazo)-quinoline, derived from 4-amino-2-methylquinoline were synthesized. Their chemical structures were characterized and confirmed by means of elemental chemical analysis, infrared (IR) spectroscopy, {sup 1}H nuclear magnetic resonance (NMR) and mass spectrometry (MS). The electrochemical behavior of the starting compound (4-amino-2-methylquinoline) and of the two synthesized azo-derivatives was studied at the mercury electrode in the B-R universal buffer at various pH values (2-11.5) containing 40% (v/v) ethanol using dc-polarography, cyclic voltammetry and controlled-potential coulometry. Their electrode reaction pathways were elucidated and discussed. The dissociation constants (pKa) of the examined compounds, stability constants and stoichiometry of their complexes in solution with some transition metal ions (Co(II), Ni(II), Cu(II), La(III) and UO{sup 2+}{sub 2}) were determined. (author)

  5. Rapid Determination of Major Compounds in the Ethanol Extract of Geopropolis from Malaysian Stingless Bees, Heterotrigona itama, by UHPLC-Q-TOF/MS and NMR.

    Science.gov (United States)

    Zhao, Lingling; Yu, Mengjiao; Sun, Minghui; Xue, Xiaofeng; Wang, Tongtong; Cao, Wei; Sun, Liping

    2017-11-10

    A reliable, rapid analytical method was established for the characterization of constituents of the ethanol extract of geopropolis (EEGP) produced by Malaysian stingless bees- Heterotrigona itama -by combining ultra-high-performance liquid chromatography with quadruple time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). Based on known standards, the online METLIN database, and published literature, 28 compounds were confirmed. Phenolic acids, flavones, triterpenes and phytosterol were identified or tentatively identified using characteristic diagnostic fragment ions. The results indicated that terpenoids were the main components of EEGP, accompanied by low levels of phenolic acids, flavonoids, and phytosterol. Two major components were further purified by preparative high-performance liquid chromatography (PHPLC) and identified by nuclear magnetic resonance (NMR) as 24( E )-cycloart-24-ene-26-ol-3-one and 20-hydroxy-24-dammaren-3-one. These two triterpenes, confirmed in this geopropolis for the first time, are potential chemical markers for the identification of geopropolis from Malaysian stingless bees, H. itama .

  6. Resonant two-magnon Raman scattering in parent compounds of high-Tc superconductors

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Frenkel, D.M.

    1995-01-01

    We propose a theory of two-magnon Raman scattering from the insulating parent compounds of high-T c superconductors, which contains information not only on magnetism, but also on the electronic properties in these materials. We use spin-density-wave formalism for the Hubbard model, and study diagrammatically the profile of the two-magnon scattering and its intensity dependence on the incoming photon frequency ω i both for ω i much-lt U and in the resonant regime, in which the energy of the incident photon is close to the gap between conduction and valence bands. In the nonresonant case, we identify the diagrams which contribute to the conventional Loudon-Fleury Hamiltonian. In the resonant regime, where most of the experiments have been done, we find that the dominant contribution to Raman intensity comes from a different diagram, one which allows for a simultaneous vanishing of all three of its dominators (i.e., a triple resonanc). We study this diagram in detail and show taht the triple resonance, combined with the spin-density-wave dispersion relation for the carriers, explains the unusual features found in the two-magnon profile and in the two-magnon peak intensity dependence on the incoming photon frequency. In particular, our theory predicts a maximum of the two-magnon peak intensity right at the upper edge of the features in the optical data, which has been one of the key experimental puzzles

  7. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells

    International Nuclear Information System (INIS)

    Gao Jiayu; Morgan, Winston A.; Sanchez-Medina, Alberto; Corcoran, Olivia

    2011-01-01

    Despite a lack of scientific authentication, Scutellaria baicalensis is clinically used in Chinese medicine as a traditional adjuvant to chemotherapy of lung cancer. In this study, cytotoxicity assays demonstrated that crude ethanolic extracts of S. baicalensis were selectively toxic to human lung cancer cell lines A549, SK-LU-1 and SK-MES-1 compared with normal human lung fibroblasts. The active compounds baicalin, baicalein and wogonin did not exhibit such selectivity. Following exposure to the crude extracts, cellular protein expression in the cancer cell lines was assessed using 2D gel electrophoresis coupled with MALDI-TOF-MS/Protein Fingerprinting. The altered protein expression indicated that cell growth arrest and apoptosis were potential mechanisms of cytotoxicity. These observations were supported by PI staining cell cycle analysis using flow cytometry and Annexin-V apoptotic analysis by fluorescence microscopy of cancer cells treated with the crude extract and pure active compounds. Moreover, specific immunoblotting identification showed the decreased expression of cyclin A results in the S phase arrest of A549 whereas the G 0 /G 1 phase arrest in SK-MES-1 cells results from the decreased expression of cyclin D1. Following treatment, increased expression in the cancer cells of key proteins related to the enhancement of apoptosis was observed for p53 and Bax. These results provide further insight into the molecular mechanisms underlying the clinical use of this herb as an adjuvant to lung cancer therapy. - Research highlights: → Scutellaria baicalensis is a clinical adjuvant to lung cancer chemotherapy in China. → Scutellaria ethanol extracts selectively toxic to A549, SK-LU-1 and SK-MES-1. → Baicalin, baicalein and wogonin were toxic to all lung cancer cell lines. → Proteomics identified increased p53 and BAX in response to Scutellaria extracts.

  8. Impact of bioaccessibility and bioavailability of phenolic compounds in biological systems upon the antioxidant activity of the ethanolic extract of Triplaris gardneriana seeds.

    Science.gov (United States)

    Neto, José Joaquim Lopes; de Almeida, Thiago Silva; de Medeiros, Jackeline Lima; Vieira, Leonardo Rogério; Moreira, Thaís Borges; Maia, Ana Isabel Vitorino; Ribeiro, Paulo Riceli Vasconcelos; de Brito, Edy Sousa; Farias, Davi Felipe; Carvalho, Ana Fontenele Urano

    2017-04-01

    The most studied bioactive potential of phenolic compounds corresponds to antioxidant activity, which in turn, is associated with a reduction in the incidence of various human diseases. However, the total quantity of these bioactive substances in foods and medicinal preparations does not reflect the amount absorbed and metabolized by the body. The present study aimed to investigate the bioaccessibility of Triplaris gardneriana seeds ethanolic extract (EETg) by determination of phenolic composition and antioxidant activities before and after in vitro digestion as well as to estimate its bioavailability by chemical analysis of plasma and urine in animal models after oral administration. The bioaccessibility indexes of phenolic compounds in EETg were 48.65 and 69.28% in the presence and absence of enzymes, respectively. Among the identified phenolics classes, flavonoids, represented by galloylated procyanidins type B, proved to be more bioaccessible, 81.48 and 96.29% in the post-intestinal phase with and without enzymes, respectively. The oral administration in Wistar rats resulted in a significant decrease in plasma of the total antioxidant capacity, TAC, by FRAP assay 4h after beginning the experiment. For urine samples, an increase in TAC by DPPH and FRAP was observed from 1 and 4h after administration, respectively. UPLC-QTOF analysis of urine detected 2 metabolites originated from the degradation of phenolic compounds, i.e. hippuric acid and phenylacetil glycine. These results suggest that phenolic compounds in T. gardneriana are unstable under gastrointestinal conditions, being flavonoids the components with higher bioaccessibility; besides that, they showed limited bioavailability due to their rapid biotransformation and urinary elimination. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. In silico analysis of compounds characterized from ethanolic extract of Cucurbita pepo with NF-κB-inhibitory potential

    Directory of Open Access Journals (Sweden)

    Solomon O. Rotimi

    2014-12-01

    Full Text Available NF-κB controls cellular growth properties of cells and its regulation is key to the management of disease like cancer. Although plant-derived bioactives have been reported to inhibit NF-κB, there is limited knowledge on the interactions between the phytochemicals and NF-κB. In this study, we identified the phytochemicals in ethanolic extract of Cucurbita pepo using Gas Chromatography-Mass Spectroscopy technique and used in silico approach to understand the interaction between the identified phytochemicals and NF-κB using Molegro Virtual Docker. The docking algorithm showed that nine phytochemicals fit well into the pocket on NF-κB. Our analysis showed that Lys144 is a prominent residue by involving in the binding of 9-octadecenoic acid (Z-, methyl ester, hexadecanoic acid, methyl ester and octadecanoic acid, methyl ester with the moldock score of -55.5264, -57.4634 and -61.1258 respectively. Hence, the binding of these phytochemicals to NF-κB could be responsible for the anti-inflammatory and anti-cancer property of C. pepo.

  10. Degradation of Transformer Oil (PCB Compounds by Microwave Radiation, Ethanol Solvent, Hydrogen Peroxide and Dioxide Titanium for Reducing Environmental Hazards

    Directory of Open Access Journals (Sweden)

    Reza Tajik

    2013-02-01

    Full Text Available Background: Poly chlorinated biphenyls (PCBs are a class of chlorinated organic chemicals that do not easily degrade in the environment. This study was conducted to determine the effect of microwave rays, hydrogen peroxide, dioxide titanium and ethanol solvent on the degradation of PCBs. Methods: A 900w domestic MW oven with a fixed frequency of 2450 MHZ was used to provide MW irradiation. Ray powers were used in 540, 720, and 900w. A hole was made on the top portion of the oven and a Pyrex vessel reactor (250ml volume was connected to condensing system with a Pyrex tube connector. The PCBs were analyzed by GC-ECD. Results: The degradation of total PCBs was 54.62%, 79.71%, and 95.76% in terms of their ratio to solvent with transformer oil at 1:1, 2:1, and 3:1, respectively. The degradation of total PCBs was 84.27%, 89.18%, and 96.1% when using 540, 720, and 900W microwave radiation, respectively. The degradation of total PCBs was 70.72%, 93.02%, 94.16, 95.23% and 96.1% when not using H2O2/ Tio2 and using 20% H2O2 and 0.05, 0.1, 0.15, and 0.2g Tio2, respectively. Conclusion: In the present study, the optimum conditions to decompose PCBs efficiently included 50 ml volume of ratio to solvent with transformer oil (3:1, sodium hydroxide solution (0.2N 1 cc, use of 20% hydrogen peroxide of total volume of samples, dioxide titanium (0.2g, and irradiation for 9 minutes. Under these optimum conditions, efficiency of PCBs decomposition increased.

  11. High Relative Abundance of Biofuel Sourced Ethanol in Precipitation in the US and Brazil Determined Using Compound Specific Stable Carbon Isotopes

    Science.gov (United States)

    Shimizu, M. S.; Felix, J. D. D.; Casas, M.; Avery, G. B., Jr.; Kieber, R. J.; Mead, R. N.; Willey, J. D.; Lane, C.

    2017-12-01

    Ethanol biofuel production and consumption have increased exponentially over the last two decades to help reduce greenhouse gas emissions. Currently, 85% of global ethanol production and consumption occurs in the US and Brazil. Increasing biofuel ethanol usage in these two countries enhances emissions of uncombusted ethanol to the atmosphere contributing to poor air quality. Although measurements of ethanol in the air and the precipitation reveal elevated ethanol concentrations in densely populated cities, other sources such as natural vegetation can contribute to emission to the atmosphere. Previous modeling studies indicated up to 12% of atmospheric ethanol is from anthropogenic emissions. Only one gas phase study in southern Florida attempted to constrain the two sources through direct isotopic measurements. The current study used a stable carbon isotope method to constrain sources of ethanol in rainwater from the US and Brazil. A method was developed using solid phase microextraction (SPME) with subsequent analysis by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Stable carbon isotope signatures (δ13C) of vehicle ethanol emission sources for both the US (-9.8‰) and Brazil (-12.7‰) represented C4 plants as feedstock (corn and sugarcane) for biofuel production. An isotope mixing model using biofuel from vehicles (C4 plants) and biogenic (C3 plants) end-members was implemented to estimate ethanol source apportionment in the rain. We found that stable carbon isotope ratio of ethanol in the rain ranged between -22.6‰ and -12.7‰. Our results suggest that the contribution of biofuel to atmospheric ethanol can be higher than previously estimated. As biofuel usage increasing globally, it is essential to determine the relative abundance of anthropogenic ethanol in other areas of the world.

  12. Rapid Determination of Major Compounds in the Ethanol Extract of Geopropolis from Malaysian Stingless Bees, Heterotrigona itama, by UHPLC-Q-TOF/MS and NMR

    Directory of Open Access Journals (Sweden)

    Lingling Zhao

    2017-11-01

    Full Text Available A reliable, rapid analytical method was established for the characterization of constituents of the ethanol extract of geopropolis (EEGP produced by Malaysian stingless bees—Heterotrigona itama—by combining ultra-high-performance liquid chromatography with quadruple time-of-flight mass spectrometry (UHPLC-Q-TOF/MS. Based on known standards, the online METLIN database, and published literature, 28 compounds were confirmed. Phenolic acids, flavones, triterpenes and phytosterol were identified or tentatively identified using characteristic diagnostic fragment ions. The results indicated that terpenoids were the main components of EEGP, accompanied by low levels of phenolic acids, flavonoids, and phytosterol. Two major components were further purified by preparative high-performance liquid chromatography (PHPLC and identified by nuclear magnetic resonance (NMR as 24(E-cycloart-24-ene-26-ol-3-one and 20-hydroxy-24-dammaren-3-one. These two triterpenes, confirmed in this geopropolis for the first time, are potential chemical markers for the identification of geopropolis from Malaysian stingless bees, H. itama.

  13. Effect of ASF (a Compound of Traditional Chinese Medicine on Behavioral Sensitization Induced by Ethanol and Conditioned Place Preference in Mice

    Directory of Open Access Journals (Sweden)

    Da-chao Wen

    2014-01-01

    Full Text Available ASF composed by semen and epimedium herbal is a traditional plant compound that is widely used in the treatment of insomnia. Studies have shown that saponins and flavonoids contained in semen can significantly decrease the content of excitatory neurotransmitter Glu in mice. And the total flavone of YinYangHuo can increase the release of GABA in the anterior periventricular system of rat and increase the affinity of GABA for the receptors GABAA. It can be inferred that their synergism may have effect on the neurotransmitter that causes behavioral sensitization and conditioned place preference in experimental animals and affects their drinking behaviors, which is the starting point of this research. The present study found that ASF can inhibit development and expression of behavioral sensitization induced by ethanol and the development of CPP in mice. We demonstrate the inhibition of ASF on behavioral sensitization partly due to its effect on the mesolimbic neurotransmitter system, including decreasing level of DA and Glu and increasing the content of GABA. It suggested that the ASF may have pharmacological effects in the treatment of alcohol addiction.

  14. Influence of different water-ethanol solvent systems on the spectroscopic and physico-chemical properties of the macrocyclic compounds pheophytin and chlorophyll a; Influencia de diferentes sistemas de solvente agua-etanol sobre as propriedades fisico-quimicas e espectroscopicas dos compostos macrociclicos feofitina e clorofila a

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Leonardo M.; Rodrigues, Maira R.; Oliveira, Hueder P. M. de [Universidade Camilo Castelo Branco, Sao Jose dos Campos, SP (Brazil); Lima, Adriana [Universidade do Vale do Paraiba, Sao Jose dos Campos, SP (Brazil); Soares, Rafael R. S.; Batistela, Vagner R.; Gerola, Adriana P.; Hioka, Noboru [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Quimica; Severino, Divinomar; Baptista, Mauricio S. [Universidade de Sao Paulo, (USP), SP (Brazil). Inst. de Quimica; Machado, Antonio Eduardo da Hora [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Quimica

    2010-07-01

    This work focus on the influence of solvent on the photophysical properties of chlorophyll a and pheophytin. Both compounds are related to the photosynthesis process and are considered prototypes of photosensitizers in Photodynamic Therapy. Fluorescence measurements were developed using water/ethanol mixtures at different compositions, since both solvents could be employed in biological applications. The spectroscopic properties of these compounds undergo profound changes depending on water content in the ethanol due to auto-aggregation processes. The major hydrophobicity and the lower dielectric constant of ethanol when compared with water precluded significantly the auto-aggregation process of these compounds. (author)

  15. Carbon-13 magnetic relaxation rates or iron (III) complexes of some biogenic amines and parent compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Lai, A.; Monduzzi, M.; Saba, G.

    1980-01-01

    Spin-lattice relaxation rates (R 1 ) from naturally occuring C-13 F.T. N.M.R. spectra of some catecholamines and parent compounds with Iron(III) at pD = 4 were determined in order to elucidate the molecular mechanism underlying their association in aqueous solutions. Complexation was observed only for catecholic ligands. The R 1 values were used to calculate iron-carbon scaled distances, and two complexation models were proposed where the catecholic function binds Fe(III) in the first and second coordination spheres respectively. The latter case was shown to be the consistent with the molecular geometries. (orig.)

  16. A triple-bridged azido-Cu(II) chain compound fine-tuned by mixed carboxylate/ethanol linkers displays slow-relaxation and ferromagnetic order: synthesis, crystal structure, magnetic properties and DFT calculations.

    Science.gov (United States)

    Liu, Xiangyu; Chen, Sanping; Grancha, Thais; Pardo, Emilio; Ke, Hongshan; Yin, Bing; Wei, Qing; Xie, Gang; Gao, Shengli

    2014-11-07

    A new azido-Cu(II) compound, [Cu(4-fba)(N3)(C2H5OH)] (4-fba = 4-fluorobenzoic acid) (1), has been synthesized and characterized. The X-ray crystal structure analysis demonstrates that only one crystallographically independent Cu(II) ion in the asymmetric unit of 1 exhibits a stretched octahedral geometry in which two azido N atoms and two carboxylic O atoms locate in the equatorial square, while two ethanol O atoms occupy the apical positions, forming a 1D Cu(II) chain with an alternating triple-bridge of EO-azido, syn,syn-carboxylate, and μ2-ethanol. The title compound consists of ferromagnetically interacting ferromagnetic chains, which exhibit ferromagnetic order (T(c) = 7.0 K). The strong ferromagnetic coupling between adjacent Cu(II) ions within each chain is due to the countercomplementarity of the super-exchange pathways, whereas the ferromagnetic interchain interactions--responsible for the long-range magnetic ordering--are most likely due to the presence of coordinated ethanol molecules establishing hydrogen bonds with neighboring chains. DFT calculations have been performed on compound 1 to offer a qualitative theoretical explanation of the magnetic behavior.

  17. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  18. Esters of Bendamustine Are by Far More Potent Cytotoxic Agents than the Parent Compound against Human Sarcoma and Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Stefan Huber

    Full Text Available The alkylating agent bendamustine is approved for the treatment of hematopoietic malignancies such as non-Hodgkin lymphoma, chronic lymphocytic leukemia and multiple myeloma. As preliminary data on recently disclosed bendamustine esters suggested increased cytotoxicity, we investigated representative derivatives in more detail. Especially basic esters, which are positively charged under physiological conditions, were in the crystal violet and the MTT assay up to approximately 100 times more effective than bendamustine, paralleled by a higher fraction of early apoptotic cancer cells and increased expression of p53. Analytical studies performed with bendamustine and representative esters revealed pronounced cellular accumulation of the derivatives compared to the parent compound. In particular, the pyrrolidinoethyl ester showed a high enrichment in tumor cells and inhibition of OCT1- and OCT3-mediated transport processes, suggesting organic cation transporters to be involved. However, this hypothesis was not supported by the differential expression of OCT1 (SLC22A1 and OCT3 (SLC22A3, comparing a panel of human cancer cells. Bendamustine esters proved to be considerably more potent cytotoxic agents than the parent compound against a broad panel of human cancer cell types, including hematologic and solid malignancies (e.g. malignant melanoma, colorectal carcinoma and lung cancer, which are resistant to bendamustine. Interestingly, spontaneously immortalized human keratinocytes, as a model of "normal" cells, were by far less sensitive than tumor cells against the most potent bendamustine esters.

  19. Parents.

    Science.gov (United States)

    Hurst, Hunter, Ed.; And Others

    1986-01-01

    This document contains the fifth volume of "Today's Delinquent," an annual publication of the National Center for Juvenile Justice. This volume deals with the issue of the family and delinquency, examining the impact of parental behavior on the production of delinquent behavior. "Parents: Neglectful and Neglected" (Laurence D. Steinberg) posits…

  20. Electronic structure studies of ferro-pnictide superconductors and their parent compounds using angle-resolved photoemission spectroscopy (ARPES)

    International Nuclear Information System (INIS)

    Setti, Thirupathaiah

    2011-01-01

    structure of the parent compounds Ba(Eu)Fe 2 As 2 (122) and their superconducting derivatives using ARPES. In this way it is possible to obtain the important information on the Fermi surface nesting conditions (between hole pockets at the Brillouin zone center and electron pockets at the zone corner) as a function of electron doping, hole doping, and isovalent substitution of P at the As site in Ba(Eu)Fe 2 As 2 . In particular, we studied in-plane and out-of-plane (with respect to the FeAs layer) band dispersions and Fermi surfaces. Our findings show that both electron and hole doping as well as isovalent substitution of the As atoms by P atoms in the parent compound Ba(Eu)Fe 2 As 2 reduces the nesting conditions which possibly leads to the disappearance of antiferromagnetic spin density wave order and to the emergence of superconductivity. Moreover, we have performed the photon energy dependent ARPES measurements along the zone center and the zone edge to reveal the dimensionality of the electronic structure as a function of doping. We observed that due to the rigid-band nature of the electronic structure upon charge doping into the parent 122 compounds, there is a transformation of the electronic structure from quasi-2D to more 3D upon electron doping and to a more 2D nature upon hole doping. Furthermore, we observe a non-rigid-type shift of the Fermi level upon isovalent substitution of P at the As site in EuFe 2 As 2 compound. We also performed ARPES measurements on FeTe(Se) superconductors where we observe a considerable difference in the electronic structure when compared to the 122 compounds, possibly related to a different crystal field splitting at the Fe atoms.

  1. Electronic structure studies of ferro-pnictide superconductors and their parent compounds using angle-resolved photoemission spectroscopy (ARPES)

    Energy Technology Data Exchange (ETDEWEB)

    Setti, Thirupathaiah

    2011-07-14

    studied the electronic structure of the parent compounds Ba(Eu)Fe{sub 2}As{sub 2} (122) and their superconducting derivatives using ARPES. In this way it is possible to obtain the important information on the Fermi surface nesting conditions (between hole pockets at the Brillouin zone center and electron pockets at the zone corner) as a function of electron doping, hole doping, and isovalent substitution of P at the As site in Ba(Eu)Fe{sub 2}As{sub 2}. In particular, we studied in-plane and out-of-plane (with respect to the FeAs layer) band dispersions and Fermi surfaces. Our findings show that both electron and hole doping as well as isovalent substitution of the As atoms by P atoms in the parent compound Ba(Eu)Fe{sub 2}As{sub 2} reduces the nesting conditions which possibly leads to the disappearance of antiferromagnetic spin density wave order and to the emergence of superconductivity. Moreover, we have performed the photon energy dependent ARPES measurements along the zone center and the zone edge to reveal the dimensionality of the electronic structure as a function of doping. We observed that due to the rigid-band nature of the electronic structure upon charge doping into the parent 122 compounds, there is a transformation of the electronic structure from quasi-2D to more 3D upon electron doping and to a more 2D nature upon hole doping. Furthermore, we observe a non-rigid-type shift of the Fermi level upon isovalent substitution of P at the As site in EuFe{sub 2}As{sub 2} compound. We also performed ARPES measurements on FeTe(Se) superconductors where we observe a considerable difference in the electronic structure when compared to the 122 compounds, possibly related to a different crystal field splitting at the Fe atoms.

  2. Environmental benefits of ethanol

    International Nuclear Information System (INIS)

    1998-11-01

    The environmental benefits of ethanol blended fuels in helping to reduce harmful emissions into the atmosphere are discussed. The use of oxygenated fuels such as ethanol is one way of addressing air pollution concerns such as ozone formation. The state of California has legislated stringent automobile emissions standards in an effort to reduce emissions that contribute to the formation of ground-level ozone. Several Canadian cities also record similar hazardous exposures to carbon monoxide, particularly in fall and winter. Using oxygenated fuels such as ethanol, is one way of addressing the issue of air pollution. The net effect of ethanol use is an overall decrease in ozone formation. For example, use of a 10 per cent ethanol blend results in a 25-30 per cent reduction in carbon monoxide emissions by promoting a more complete combustion of the fuel. It also results in a 6-10 per cent reduction of carbon dioxide, and a seven per cent overall decrease in exhaust VOCs (volatile organic compounds). The environmental implications of feedstock production associated with the production of ethanol for fuel was also discussed. One of the Canadian government's initiatives to address the climate change challenge is its FleetWise initiative, in which it has agreed to a phased-in acquisition of alternative fuel vehicles by the year 2005. 9 refs

  3. Unified one-band Hubbard model for magnetic and electronic spectra of the parent compounds of cuprate superconductors

    Science.gov (United States)

    Dalla Piazza, B.; Mourigal, M.; Guarise, M.; Berger, H.; Schmitt, T.; Zhou, K. J.; Grioni, M.; Rønnow, H. M.

    2012-03-01

    Using low-energy projection of the one-band t-t'-t'' Hubbard model we derive an effective spin Hamiltonian and its spin-wave expansion to order 1/S. We fit the spin-wave dispersion of several parent compounds to the high-temperature superconducting cuprates La2CuO4, Sr2CuO2Cl2, and Bi2Sr2YCu2O8. Our accurate quantitative determination of the one-band Hubbard model parameters allows prediction and comparison to experimental results. Among those we discuss the two-magnon Raman peak line shape, the K-edge resonant inelastic x-ray scattering 500-meV peak, and the high-energy kink in the angle-resolved photoemission spectroscopy quasiparticle dispersion, also known as the waterfall feature.

  4. Antiphase Fermi-surface modulations accompanying displacement excitation in a parent compound of iron-based superconductors

    Science.gov (United States)

    Okazaki, Kozo; Suzuki, Hakuto; Suzuki, Takeshi; Yamamoto, Takashi; Someya, Takashi; Ogawa, Yu; Okada, Masaru; Fujisawa, Masami; Kanai, Teruto; Ishii, Nobuhisa; Itatani, Jiro; Nakajima, Masamichi; Eisaki, Hiroshi; Fujimori, Atsushi; Shin, Shik

    2018-03-01

    We investigate the transient electronic structure of BaFe2As2 , a parent compound of iron-based superconductors, by time- and angle-resolved photoemission spectroscopy. In order to probe the entire Brillouin zone, we utilize extreme ultraviolet photons and observe photoemission intensity oscillation with the frequency of the A1 g phonon which is antiphase between the zone-centered hole Fermi surfaces (FSs) and zone-cornered electron FSs. We attribute the antiphase behavior to the warping in one of the zone-centered hole FSs accompanying the displacement of the pnictogen height and find that this displacement is the same direction as that induced by substitution of P for As, where superconductivity is induced by a structural modification without carrier doping in this system.

  5. Fact sheet: Ethanol from corn

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-31

    This fact sheet is intended to provide an overview of the advantages of ethanol from corn, emphasizing ethanol`s contribution to environmental protection and sustainable agriculture. Ethanol, an alternative fuel used as an octane enhancer is produced through the conversion of starch to sugars by enzymes, and fermentation of these sugars to ethanol by yeast. The production process may involve wet milling or dry milling. Both these processes produce valuable by-products, in addition to ethanol and carbon dioxide. Ethanol contains about 32,000 BTU per litre. It is commonly believed that using state-of-the-art corn farming and corn processing processes, the amount of energy contained in ethanol and its by-products would be more than twice the energy required to grow and process corn into ethanol. Ethanol represents the third largest market for Ontario corn, after direct use as animal feed and wet milling for starch, corn sweetener and corn oil. The environmental consequences of using ethanol are very significant. It is estimated that a 10 per cent ethanol blend in gasoline would result in a 25 to 30 per cent decrease in carbon monoxide emissions, a 6 to 10 per cent decrease in net carbon dioxide, a slight increase in nitrous oxide emissions which, however, would still result in an overall decrease in ozone formation, since the significant reduction in carbon monoxide emissions would compensate for any slight increase in nitrous oxide. Volatile organic compounds emission would also decrease by about 7 per cent with a 10 per cent ethanol blend. High level blends could reduce VOCs production by as much as 30 per cent. 7 refs.

  6. Colorimetric study of malvidin-3-O-glucoside copigmented by phenolic compounds: The effect of molar ratio, temperature, pH, and ethanol content on color expression of red wine model solutions.

    Science.gov (United States)

    Zhang, Bo; Yang, Xue-Shan; Li, Ning-Ning; Zhu, Xia; Sheng, Wen-Jun; He, Fei; Duan, Chang-Qing; Han, Shun-Yu

    2017-12-01

    In the recent research, the copigmentations of malvidin-3-O-glucoside with eight types of phenolic copigments have been investigated. The influence of the pigment/copigment molar ratio, the reaction temperature, the pH and the ethanol content of solutions has been examined. The results showed that the copigmentation effect was dependent on not only the particular structures of the phenolic compounds but also the factors of the reaction systems. The increase of the copigment concentration can strengthen the copigmentation effect, improve the solution color, and enhance the red-purple features. Different temperatures had different influences on the copigmentation reactions. The destruction of the copigmentation complexes can result in the hypsochromic shift of the reaction solution when the temperature was higher than 20°C. The bathochromic shift of the solution gradually progressed with the increase of the pH value. A significant copigmentation feature was spotted when pH reached 3.0, which demonstrates obvious red-purple characterization. The addition of the ethanol weakened the copigmentation effect. According to measurement through color analysis, it was found that the color differences caused by ethanol in red wine were typically attributed to quantitative changes. Remarkably, all of the above delicate color deviations caused by the structural or environmental factors can be precisely and conveniently depicted via the CIELAB space analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Phenolic compounds of ethanol extracts of Lemna minor L., Lemna trisulca L. and Lemna polyrrhiza L. Schleid and their immunomodulating activity

    Directory of Open Access Journals (Sweden)

    Sergazy M. Adekenov

    2017-01-01

    Full Text Available The purpose of the study is to determine the composition of the phenolic compounds of ethanol extracts isolated from three species of duckweed: Lemna minor L., Lemna trisulca L. and Lemna polyrrhiza L. (the synonym is Spirodella polyrrhiza Schleid. and to study its effect on immune system activation.Materials and methods. The objects of the study are: air-dried grass samples of Lemna minor L., Lemna trisuica L. and Lemna polyrrhiza L. collected during their growing season in 2010–2011 in low-flow and stagnant ponds of Kozhevnikovsky and Tomsk districts of Tomsk region. Isolation of polyphenolic complexes (PFC was carried out by extraction of air-dried raw material with ethyl alcohol. In qualitative and quantitative analysis of the samples studied the method of reversed-phase high-performance liquid chromatography on an Agilent 1100 Series instrument (USA was used in isocratic mode. In the experiments, 200 male C57BL / 6 and BALB / C mice aged 8–12 weeks were used to determine immunomodulatory activity. Cell proliferation was assessed by a colorimetric method. The absorption of the obtained solutions was measured with a multi-channel spectrophotometer at the wavelength of 540 nm. The determination of antibody-forming cells in the spleen was performed by local hemolysis. The titer of antibodies in serum was evaluated in the hemagglutination reaction. The local hypersensitivity reaction of immediate type was assessed by the author’s modification.Results. For the first time the study of the qualitative composition and quantitative content of PFC of Lemna minor L. (LM , Lemna trisulca L. (LT trisulkas, and Lemna polyrrhiza L. (LP : (4,7 ± 0,4%, (3,3 ± 0,3%, (12,8 ± 0,7% was carried out. The highest content of phenolic acids (10,76% and the sum of flavonoids, isoflavonoids and coumarins (14,7% were found in the LP sample. The content of chlorogenic and 3,5-dihydroxybenzoic acids was 2–9 times higher in LP than in other species of duckweed

  8. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  9. The metabolism and pharmacokinetics of isotretinoin in patients with acne and rosacea are not influenced by ethanol

    DEFF Research Database (Denmark)

    Grønhøj Larsen, F; Jakobsen, P; Grønhøj Larsen, C

    2009-01-01

    BACKGROUND: Isotretinoin is effective in the treatment of severe acne and rosacea. Both parent drug and its main metabolite 4-oxo-isotretinoin are potentially teratogenic compounds and contain a carboxylic acid moiety. In the presence of ethanol, naturally occurring as well as synthetic retinoids......-RA), and other possible metabolites in the presence or absence of ethanol are converted to their corresponding ethyl derivatives in patients with severe acne or rosacea after multiple isotretinoin dosing. In addition, pharmacokinetic parameters of the parent drug and its 4-oxo metabolite were determined....... PATIENTS/METHODS: Eleven patients with severe acne or rosacea were treated with isotretinoin daily for 3 months and investigated pharmacokinetically during 24 h after 1 month of treatment and for up to 28 days after discontinuation of therapy. A possible influence of ethanol was evaluated using a simple...

  10. Enhanced ethanol production, volatile compound biosynthesis and fungicide removal during growth of a newly isolated Saccharomyces cerevisiae strain on enriched pasteurized grape musts

    Energy Technology Data Exchange (ETDEWEB)

    Sarris, Dimitris; Kotseridis, Yorgos; Galiotou-Panayotou, Maria; Papanikolaou, Seraphim [Department of Food Science and Technology, Agricultural University of Athens (Greece); Linga, Maria [Oinognosia, Wine analysis and consulting, Kiato (Greece)

    2009-02-15

    The kinetic behavior of a newly isolated Saccharomyces cerevisiae strain, grown on pasteurized grape musts enriched with industrial sugars, was studied after the addition of various concentrations [0.0 (reference), 0.4 and 2.4 mg/L] of the fungicide quinoxyfen to the medium. Batch-flask cultures were carried out. Significant quantities of biomass (10.0{+-}0.8 g/L) were produced regardless of quinoxyfen addition to the medium; therefore, the addition of the fungicide did not seriously inhibit biomass production. Ethanol was synthesized in very high quantities in all trials (highest concentrations 106.4-119.2 g/L). A slight decrease of ethanol production in terms of both absolute value and conversion yield of ethanol produced per sugar consumed was, however, observed when the quinoxyfen concentration was increased. The addition of quinoxyfen led to significantly lower ethylic ester levels, which also pertains to the acetates analyzed in this study. Fusel alcohol synthesis seemed to be activated when 0.4 mg/L quinoxyfen was added, but at 2.4 mg/L of added fungicide, no statistically significant differences were observed compared with the control trial. Volatile acid levels did not present a uniform trend in relation with the added fungicide. Finally, the fermentation was accompanied by a significant reduction of the fungicide concentration (79-82 wt% fungicide removal). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Antiallergic Activity of Ethanol Extracts of Arctium lappa L. Undried Roots and Its Active Compound, Oleamide, in Regulating FcεRI-Mediated and MAPK Signaling in RBL-2H3 Cells.

    Science.gov (United States)

    Yang, Woong-Suk; Lee, Sung Ryul; Jeong, Yong Joon; Park, Dae Won; Cho, Young Mi; Joo, Hae Mi; Kim, Inhye; Seu, Young-Bae; Sohn, Eun-Hwa; Kang, Se Chan

    2016-05-11

    The antiallergic potential of Arctium lappa L. was investigated in Sprague-Dawley rats, ICR mice, and RBL-2H3 cells. Ethanol extract (90%) of A. lappa (ALE, 100 μg/mL) inhibited the degranulation rate by 52.9%, determined by the level of β-hexosaminidase. ALE suppressed passive cutaneous anaphylaxis (PCA) in rats and attenuated anaphylaxis and histamine release in mice. To identify the active compound of ALE, we subsequently fractionated and determined the level of β-hexosaminidase in all subfractions. Oleamide was identified as an active compound of ALE, which attenuated the secretion of histamine and the production of tumor necrosis factor (TNF)-α and interleukin-4 (IL-4) in cells treated with compound 48/80 or A23187/phorbol myristate acetate (PMA). Oleamide suppressed FcεRI-tyrosine kinase Lyn-mediated pathway, c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinases (p38-MAPKs). These results showed that ALE and oleamide attenuated allergic reactions and should serve as a platform to search for compounds with antiallergic activity.

  12. Defect formation and carrier doping in epitaxial films of the ''parent'' compound SrCuO2: Synthesis of two superconductors descendants

    International Nuclear Information System (INIS)

    Feenstra, R.; Norton, D.P.; Budai, J.D.; Jones, E.C.; Christen, D.K.; Kawai, T.

    1995-04-01

    The infinite layer or parent compounds ACuO 2 (A: Ca-Sr-Ba) constitute the simplest copper oxygen perovskites that contain the CuO 2 sheets essential for superconductivity. The stabilization of these basic ''building blocks'' as epitaxial films, therefore, provides alluring opportunities towards the search for new superconducting compounds and elucidation of the underlying mechanisms. In this work, general trends of the defect formation and carrier doping for epitaxial films of the intermediate endmember SrCuO 2 are reviewed. First results are presented from successful attempts to induce hole-doped superconductivity via the processing-controlled incorporation of charge reservoir layers

  13. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    Science.gov (United States)

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  14. Anion Gap Toxicity in Alloxan Induced Type 2 Diabetic Rats Treated with Antidiabetic Noncytotoxic Bioactive Compounds of Ethanolic Extract of Moringa oleifera

    Directory of Open Access Journals (Sweden)

    Maxwell Omabe

    2014-01-01

    Full Text Available Moringa oleifera (MO is used for a number of therapeutic purposes. This raises the question of safety and possible toxicity. The objective of the study was to ascertain the safety and possible metabolic toxicity in comparison with metformin, a known drug associated with acidosis. Animals confirmed with diabetes were grouped into 2 groups. The control group only received oral dose of PBS while the test group was treated with ethanolic extract of MO orally twice daily for 5-6 days. Data showed that the extract significantly lowered glucose level to normal values and did not cause any significant cytotoxicity compared to the control group (P=0.0698; there was no gain in weight between the MO treated and the control groups (P>0.8115. However, data showed that treatment with an ethanolic extract of MO caused a decrease in bicarbonate (P<0.0001, and more than twofold increase in anion gap (P<0.0001; metformin treatment also decreased bicarbonate (P<0.0001 and resulted in a threefold increase in anion gap (P<0.0001. Conclusively, these data show that while MO appears to have antidiabetic and noncytotoxic properties, it is associated with statistically significant anion gap acidosis in alloxan induced type 2 diabetic rats.

  15. Elektron energy-loss spectroscopy on p-type doped high-Tc superconductors and undoped parent compounds

    International Nuclear Information System (INIS)

    Romberg, H.

    1991-12-01

    In this work the electronic structure of HTSC, mainly La 2-x Sr x CuO 4+y and YBa 2 Cu 3 O 7-y , was investigated by electron energy-loss spectroscopy (EELS). Core-level spectroscopy on the O 1s level yields information on the quantity and character of unoccupied O 2p-states near the Fermi level. In the undoped parent compounds of the HTSC, an admixture of ≥ 10% unoccupied O 2p-states to the conduction band (Cu 3d 10 band or upper Hubbard band) is observed. These O 2p-states are polarized parallel to the CuO 2 -plane (La 2 CuO 4 and Nd 2 CuO 4 ). In La 2 CuO 4 , Nd 2 CuO 4 , YBa 2 Cu 3 O 6 , Bi 2 Sr 2 CaCu 2 O 8 and Tl 2 Ba 2 CaCu 2 O 8 , the unoccupied Cu 3d-states are mainly polarized in the CuO 2 plane an admixture of about 10% to 20% of probably Cu 3d 3z 2 -r 2 states. A similar behaviour in the planes and chains in YBa 2 Cu 3 O 7 is in accordance with the experimental data. The observation of unoccupied states polarized orthogonal to the CuO 2 plane demands consideration of these states in theoretical models. No difference in energetic positions of unoccupied Cu 3d x 2 -y 2 and Cu 3d 3z 2 -r 2 states was observed in disagreement with some X-ray absorption data. Thus, theoretical models which correlate T c -values with this energy difference, are disproved. There is evidence for some admixture of unoccupied Cu 3d 3z 2 -r 2 states but no sign of a separate Cu 3d 3z 2 -r 2 band which was proposed to cross the Fermi level upon doping. Low energy EELS data have provided the dielectric function between 0.5 and 50 eV. (orig./GSCH) [de

  16. 40 CFR 721.5356 - Ethanol, 2,2′2″-nitrilotris-, compound with alpha-2,4,6-tris (1-phenylethyl)phenyl]-omega...

    Science.gov (United States)

    2010-07-01

    ...-, compound with alpha-2,4,6-tris (1-phenylethyl)phenyl]-omega-hydroxypoly (oxy-1,2-ethanediyl) phosphate. 721...]-omega-hydroxypoly (oxy-1,2-ethanediyl) phosphate. (a) Chemical substance and significant new uses... alpha-[2,4,6-tris(1-phenylethyl)phenyl]-omega-hydroxypoly (oxy-1,2-ethanediyl) phosphate (PMN P-98-185...

  17. Ethanol dehydration

    OpenAIRE

    Ana María Uyazán; Iván Dario Gil; J L Aguilar; Gerardo Rodríguez Niño; Luis Alfonso Caicedo

    2004-01-01

    This review outlines ethanol dehydration processes and their most important characteristics. It also deals with the main operating variables and some criteria used in designing the separation scheme. A differentiation is made between processes involving liquid steam balance in separation operations and those doing it by screening the difference in molecule size. The last part presents a comparison between the three main industrial processes, stressing their stengths and weaknesses from the op...

  18. Ethanol dehydration

    Directory of Open Access Journals (Sweden)

    Ana María Uyazán

    2004-09-01

    Full Text Available This review outlines ethanol dehydration processes and their most important characteristics. It also deals with the main operating variables and some criteria used in designing the separation scheme. A differentiation is made between processes involving liquid steam balance in separation operations and those doing it by screening the difference in molecule size. The last part presents a comparison between the three main industrial processes, stressing their stengths and weaknesses from the operational, energy consumption and industrial services points of view.

  19. Production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-10

    Ethanol is produced by fermentation with a photohardening resin-immobilized yeast preparation. The ethanol producing yeast may be selected from Saccharomyces, Zygosaccharomyces, or Schizosaccharomyces. The photohardening resin for yeast immobilization is a hydrophilic unsaturated compound, especially polyurethane acrylate, with an average molecular weight of 300-80,000 and containing at least 2 photopolymerizable ethylene groups. The immobilized yeast preparation is prepared by irradiating an aqueous suspension of yeast and a photohardening resin with UV light; the average size of the immobilized yeast is 0.1-3.0 mm and with various shapes. Thus, an aqueous suspension containing Saccharomyces formosensis cells (5 parts), a poly(ethylene glycol)isopharone diisocyanate-2-hydroxyethyl methacrylate copolymer (50 parts), and benzoin ethyl ether (0.5 parts) was homogenized, spread on a polypropylene tray (1.0 mm depth), and irradiated with a 3600 A Hg lamp for 5-10 minutes to form a yeast-containing polyurethane acrylate sheet (1.0 mm thickness), which was then sliced into bits of approximately 1.0 mm. When a molasses substrate solution (pH 4.5-5.0) was passed through a column (200 x 20 mm) packed with the polyurethane acrylate-immobilized yeast preparation, eluates containing 7% (weight/volume) ethanol were produced for >3000 hours.

  20. Ethanol production using nuclear petite yeast mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, A.; Oliver, S.G. [Department of Biomolecular Sciences, UMIST, Manchester (United Kingdom)

    1998-12-31

    Two respiratory-deficient nuclear petites, FY23{Delta}pet191 and FY23{Delta}cox5a, of the yeast Saccharomyces cerevisiae were generated using polymerase-chain-reaction-mediated gene disruption, and their respective ethanol tolerance and productivity assessed and compared to those of the parental grande, FY23WT, and a mitochondrial petite, FY23{rho}{sup 0}. Batch culture studies demonstrated that the parental strain was the most tolerant to exogenously added ethanol with an inhibition constant. K{sub i}, of 2.3% (w/v) and a specific rate of ethanol production, q{sub p}, of 0.90 g ethanol g dry cells{sup -1} h{sup -1}. FY23{rho}{sup 0} was the most sensitive to ethanol, exhibiting a K{sub i} of 1.71% (w/v) and q{sub p} of 0.87 g ethanol g dry cells{sup -1} h{sup -1}. Analyses of the ethanol tolerance of the nuclear petites demonstrate that functional mitochondria are essential for maintaining tolerance to the toxin with the 100% respiratory-deficient nuclear petite, FY23{Delta}pet191, having a K{sub i} of 2.14% (w/v) and the 85% respiratory-deficient FY23{Delta}cox5a, having a K{sub i} of 1.94% (w/v). The retention of ethanol tolerance in the nuclear petites as compared to that of FY23{rho}{sup 0} is mirrored by the ethanol productivities of these nuclear mutants, being respectively 43% and 30% higher than that of the respiratory-sufficient parent strain. This demonstrates that, because of their respiratory deficiency, the nuclear petites are not subject of the Pasteur effect and so exhibit higher rates of fermentation. (orig.)

  1. Ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kolleurp, F; Daugulis, A J

    1985-05-01

    Extractive fermentation is a technique that can be used to reduce the effect of end-product inhibition through the use of a water-immiscible phase which removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation, and have developed a computer model predicting the productivity enhancement possible with this technique. The model predicts an ethanol productivity of 82.6 g/L-h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a dilution rate of 5.0 h . This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. In light of this, a systematic approach to extractive fermentation has been undertaken involving the screening of more than 1,000 solvents for their extractive properties. UNIFAC and UNIQUAC estimates of distribution coefficients and selectivities were compiled and ranked in a database, together with other important physical properties, such as density, surface tension and viscosity. Preliminary shake-flask and chemostat biocompatibility studies on the most promising solvents have been undertaken. The previous predictive, data base and experimental results are discussed.

  2. Cellulosic ethanol

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2.......5, 5 and 10 FPU g-1 dm pretreated straw) and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could...... be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher...

  3. Vasorelaxant and Hypotensive Effects of an Ethanolic Extract of Eulophia macrobulbon and Its Main Compound 1-(4′-Hydroxybenzyl-4,8-Dimethoxyphenanthrene-2,7-Diol

    Directory of Open Access Journals (Sweden)

    Sutthinee Wisutthathum

    2018-05-01

    Full Text Available Background: Ethnopharmacological studies demonstrated the potential for Eulophia species to treat inflammation, cancer, and cardio-metabolic diseases. The aim of the study was to investigate the vasorelaxant effect of ethanolic Eulophia macrobulbon (EM extract and its main phenanthrene on rat isolated mesenteric artery and to investigate the hypotensive effect of EM.Methods: The vasorelaxant effects of EM extract or phenanthrene and the underlying mechanisms were evaluated on second-order mesenteric arteries from Sprague Dawley rats. In addition, the acute hypotensive effect was evaluated in anesthetized rats infused with cumulative concentrations of the EM extract.Results: Both EM extract (10-4–1 mg/ml and phenanthrene (10-7–10-4 M relaxed endothelium-intact arteries, an effect that was partly reduced by endothelium removal (p < 0.001. A significant decrease in the relaxant effect of the extract and the phenanthrene was observed with L-NAME and apamin/charybdotoxin in endothelium-intact vessels, and with iberiotoxin in denuded vessels. SNP (sodium nitroprusside-induced relaxation was significantly enhanced by EM extract and phenanthrene. By contrast, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one, 4-aminopyridine and glibenclamide (endothelium-denuded vessels and indomethacin (endothelium-intact vessels had no effect. In calcium-free solution, both the EM extract and phenanthrene inhibited extracellular Ca2+-induced contraction in high KCl and phenylephrine (PE pre-contracted rings. They also inhibited the intracellular Ca2+ release sensitive to PE. The acute infusion of EM extract (20 and 70 mg/kg induced an immediate and transient dose-dependent hypotensive effect.Conclusion: The ethanolic extract of EM tubers and its main active compound, 1-(4′-hydroxybenzyl-4,8-dimethoxyphenanthrene-2,7-diol (phenanthrene induced vasorelaxant effects on rat resistance vessels, through pleiotropic effects including endothelium-dependent effects (NOS

  4. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang; Agrawal, Manoj; Harper, Justin; Chen, Rachel; Koros, William J.

    2011-01-01

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol

  5. Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes.

    Science.gov (United States)

    Tomás-Pejó, E; Ballesteros, M; Oliva, J M; Olsson, L

    2010-11-01

    An efficient fermenting microorganism for bioethanol production from lignocellulose is highly tolerant to the inhibitors released during pretreatment and is able to ferment efficiently both glucose and xylose. In this study, directed evolution was employed to improve the xylose fermenting Saccharomyces cerevisiae F12 strain for bioethanol production at high substrate loading. Adapted and parental strains were compared with respect to xylose consumption and ethanol production. Adaptation led to an evolved strain more tolerant to the toxic compounds present in the medium. When using concentrated prehydrolysate from steam-pretreated wheat straw with high inhibitor concentration, an improvement of 65 and 20% in xylose consumption and final ethanol concentration, respectively, were achieved using the adapted strain. To address the need of high substrate loadings, fed-batch SSF experiments were performed and an ethanol concentration as high as 27.4 g/l (61% of the theoretical) was obtained with 11.25% (w/w) of water insoluble solids (WIS).

  6. Fuel ethanol discussion paper

    International Nuclear Information System (INIS)

    1992-01-01

    In recognition of the potential benefits of ethanol and the merits of encouraging value-added agricultural development, a committee was formed to develop options for the role of the Ontario Ministry of Agriculture and Food in the further development of the ethanol industry in Ontario. A consultation with interested parties produced a discussion paper which begins with an outline of the role of ethanol as an alternative fuel. Ethanol issues which require industry consideration are presented, including the function of ethanol as a gasoline oxygenate or octane enhancer, environmental impacts, energy impacts, agricultural impacts, trade and fiscal implications, and regulation. The ethanol industry and distribution systems in Ontario are then described. The current industry consists of one ethanol plant and over 30 retail stations. The key issue for expanding the industry is the economics of producing ethanol. At present, production of ethanol in the short term depends on tax incentives amounting to 23.2 cents/l. In the longer term, a significant reduction in feedstock costs and a significant improvement in processing technology, or equally significant gasoline price increases, will be needed to create a sustainable ethanol industry that does not need incentives. Possible roles for the Ministry are identified, such as support for ethanol research and development, financial support for construction of ethanol plants, and active encouragement of market demand for ethanol-blended gasolines

  7. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  8. Interaction of biogenic amines with ethanol.

    Science.gov (United States)

    Smith, A A

    1975-01-01

    Ethanol through its primary catabolite, acetaldehyde, competitively inhibits oxidation of aldehyde dehydrogenase substrates. As a consequence biogenic amines form increased quantities of alcohols rather than the corresponding acids. During this biotransformation, condensation reactions between deaminated and intact amines may occur which can yield tetrahydropapaverolines. These compounds are closely related to precursors of opioids which is cause to link ethanol abuse to morphine addiction. There is, however, no pharmacological or clinical evidence suggesting similarities between ethanol dependence or opiod addiction. Acetaldehyde plays an additional role in alkaloidal formation in vitro. Biogenic amines may react with acetaldehyde to form isoquinoline or carboline compounds. Some of these substances have significant pharmacological activity. Furthermore, they may enter neural stores and displace the natural neurotransmitter. Thus, they can act as false neurotransmitters. Some investigators believe that chronic ethanol ingestion leads to significant formation of such aberrant compounds which may then upset autonomic nervous system balance. This disturbance may explain the abnormal sympathetic activity seen in withdrawal. While these ideas about the etiology of alcohol abuse have a definite appeal, they are naturally based on in vitro preliminary work. Much study of the quantitative pharmacology of these compounds in animals is required before judgement can be made as to the merits of the proposed hypotheses. In the meantime, pharmacological studies on the ability of ethanol to depress respiration in the mouse has revealed that unlike opioids or barbituates, respiratory depression induced by ethanol requires the presence in brain of serotonin. This neurotransmitter also mediates the respiratory effects of several other alcohols but curiously, not chloral hydrate, yet this compound is purported to alter biogenic amine metabolism much like ethanol. Thus, the response

  9. Greenprint on ethanol production in Saskatchewan

    International Nuclear Information System (INIS)

    2002-04-01

    Investment in Saskatchewan's ethanol industry is being actively promoted by the provincial government. This document represents the provincial strategy in support of the ethanol industry, which will result in significant environmental benefits for the province and the residents through the increased use of ethanol as an additive to conventional gasoline. The big advantage offered by ethanol is a more complete fuel combustion, thereby reducing emissions of greenhouse gases by as much as 30 per cent. The production costs of ethanol have decreased in the last twenty years by 50 per cent. The competitiveness of ethanol should increase due to ongoing research and development progress being made. The agricultural sector should benefit through the creation of meaningful jobs in the sector, as well as offering new marketing opportunities to the grain producers of the province and the wood-product companies. A renewable resource, ethanol reduces carbon dioxide exhaust emissions bu up to 20 per cent, reduces the smog-creating compounds up to 15 per cent, and achieves a net reduction of up to 10 per cent in carbon dioxide emissions. The abundance of raw materials and resources required for the production of ethanol, Saskatchewan possesses an obvious advantage for becoming a world leader in the field. The government of Saskatchewan has developed its strategy, outlined in this document. It calls for tax incentives, the mandating of ethanol blend, opening up markets, working with communities. The industry size, economic impact, export potential, and future opportunities were briefly discussed in the last section of the document. 1 tab., 3 figs

  10. Ethanol Transportation Backgrounder

    OpenAIRE

    Denicoff, Marina R.

    2007-01-01

    For the first 6 months of 2007, U.S. ethanol production totaled nearly 3 billion gallons—32 percent higher than the same period last year. As of August 29, there were 128 ethanol plants with annual production capacity totaling 6.78 billion gallons, and an additional 85 plants were under construction. U.S. ethanol production capacity is expanding rapidly and is currently expected to exceed 13 billion gallons per year by early 2009, if not sooner. Ethanol demand has increased corn prices and le...

  11. Detection and occurrence of chlorinated byproducts of bisphenol a, nonylphenol, and estrogens in drinking water of china: comparison to the parent compounds.

    Science.gov (United States)

    Fan, Zhanlan; Hu, Jianying; An, Wei; Yang, Min

    2013-10-01

    This study applied a sensitive dansylation LC-MS/MS method to the investigation on the occurrence of bisphenol A (BPA), nonylphenol (NP), estrogens (E1 and E2), and their 11 chlorinated byproducts in 62 drinking water treatment plants (DWTPs) of 31 major cities across China. BPA (4.7-512 ng/L), NP (8.2-918 ng/L), and E1 (ND-9.9 ng/L) were widely detected in source waters, E2 was detected in less than half of the samples (ND-3.2 ng/L), while chlorinated byproducts were only detected in source waters of two DWTPs. In drinking water, chlorinated BPAs and monochloro-NP (MCNP) were detected in more than half of the samples with concentrations of 0.2-26.7 ng/L for monochloro-BPA (MCBPA), ND-6.3 ng/L for dichloro-BPA (DCBPA), ND-7.7 ng/L for trichloro-BPA (TCBPA), ND-4.8 ng/L for tetrachloro-BPA (TBBPA), and ND-13.3 ng/L for MCNP, while dichloro-E1 (DCE1, ND-0.2 ng/L) and dichloro-NP (DCNP, ND-1.6 ng/L) were less frequently detected (10/62 and 4/62). The production of chlorinated NPs in DWTPs was mainly influenced by the amount of NP in source water and chlorine added, while the concentrations of chlorinated BPAs in drinking waters were only found to be significantly correlated with those of BPA in source waters. Advanced treatment processes could be effective techniques for reducing target chlorinated byproducts in drinking water. This is the first report on the occurrence of chlorinated byproducts of BPA, NP, and estrogens in drinking water, and these chemicals should be considered when assessing the human risk of their parent compounds.

  12. Angular-dependent magnetoresistance study in Ca0.73La0.27FeAs2: a 'parent' compound of 112-type iron pnictide superconductors.

    Science.gov (United States)

    Xing, Xiangzhuo; Xu, Chunqiang; Li, Zhanfeng; Feng, Jiajia; Zhou, Nan; Zhang, Yufeng; Sun, Yue; Zhou, Wei; Xu, Xiaofeng; Shi, Zhixiang

    2017-12-07

    We report a study of angular-dependent magnetoresistance (AMR) with the magnetic field rotated in the plane perpendicular to the current on a Ca 0.73 La 0.27 FeAs 2 single crystal, which is regarded as a 'parent' compound of 112-type iron pnictide superconductors. A pronounced AMR with twofold symmetry is observed, signifying the highly anisotropic Fermi surface. By further analyzing the AMR data, we find that the Fermi surface above the structural/antiferromagnetic (AFM) transition (T s /T N ) is quasi-two-dimensional (quasi-2D), as revealed by the 2D scaling behavior of the AMR, Δρ/ρ(0) (H, θ)  =  Δρ/ρ(0) (µ 0 Hcosθ), θ being the magnetic field angle with respect to the c axis. While such 2D scaling becomes invalid at temperatures below T s /T N , the three-dimensional (3D) scaling approach by inclusion of the anisotropy of the Fermi surface is efficient, indicating that the appearance of the 3D Fermi surface contributes to anisotropic electronic transport. Compared with other experimental observations, we suspect that the additional 3D hole pocket (generated by the Ca d orbital and As1 p z orbital) around the Γ point in CaFeAs 2 will disappear in the heavily electron doped regime, and moreover, the Fermi surface should be reconstructed across the structural/AFM transition. Besides, a quasi-linear in-plane magnetoresistance with H//ab is observed at low temperatures and its possible origins are also discussed. Our results provide more information to further understand the electronic structure of 112-type IBSs.

  13. Market penetration of ethanol

    International Nuclear Information System (INIS)

    Szulczyk, Kenneth R.; McCarl, Bruce A.; Cornforth, Gerald

    2010-01-01

    This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices. FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers' income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons. (author)

  14. Canadian ethanol retailers' directory

    International Nuclear Information System (INIS)

    1998-06-01

    This listing is a directory of all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listing includes the name and address of the retailer. Bulk purchase facilities of ethanol-blended fuels are also included, but in a separate listing

  15. Canada's ethanol retail directory

    International Nuclear Information System (INIS)

    1996-11-01

    A directory was published listing all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listings include the name and address of the retailer. A list of bulk purchase facilities of ethanol-blended fuels is also included

  16. Aktivitas Ekstrak Etanol Daun Alpukat Terhadap Zat Nefrotoksik Ginjal Tikus (ACTIVITIES STUDY OF ETHANOL EXTRACTS OF AVOCADO LEAVES (PERSEA AMERICANA MILL TO NEPHROTOXIC COMPOUND OF RAT’S KIDNEY

    Directory of Open Access Journals (Sweden)

    Ietje Wientarsih

    2014-08-01

    Full Text Available Based on WHO’s data, about 80% peoples in the word use plant’s extract as herbal medicine. Avocadoleaves has used as herbal medicine which is works as diuretikum, reduce stone in renal, and cure sprue.The purpose of this research is to study activities of ethanol extract of avocado leaves to ethylene glycolinduction on rat’s kidney by histopatologically. This experiment was continuing Adha’s research (2009with research design as follows: twenty male rats were divided into 4 groups, negative control group (KN,positive control group (KP, treated group I by ethanol extract of avocado leaves 100 mg/kg BW (E100, andtreated group 2 by 300 mg/kg BW (E300. Sampling kidney were fixed in BNF 10% for histopathologicalslide and stained by Hematoxylin-Eosin. The kidney histopathological changes were edema of glomerulus,and protein deposit in the lumen, hyalin droplet and necrotic tubules. The results showed that ethanolextract of avocado leaves can’t significantly to reduce glomerulus edema with percentage cases 31.9% and33.5% for E100 and E300 and tend not to reduce the occurrence of protein deposits in the lumen of thetubule. Ethanol extract of avocado leaves tend to reduce the incidence of tubular necrosis and it wassignificantly different from the KP group (p <0.05. It is caused by flavonoid in etanol extract of avocadoleaves works as diuretikum and antioxidant.

  17. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Teixeira Miguel C

    2012-07-01

    Full Text Available Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC Superfamily and Major Facilitator Superfamily (MFS in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to

  18. Phytochemical Screening and antimicrobial activity of ethanol and ...

    African Journals Online (AJOL)

    Furthermore, minimum inhibitory concentration (MIC) of the extracts was evaluated. Bioactive compounds from all the parts were found to contain tannin, flavonoids, steroids, glycosides and alkaloids in addition to certain other minor compounds. Maximum zone of inhibition was found with the ethanolic root extract against S.

  19. Observational constraints on the global atmospheric budget of ethanol

    Directory of Open Access Journals (Sweden)

    V. Naik

    2010-06-01

    Full Text Available Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC, as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr−1 from industrial sources and biofuels, 9.2 Tg yr−1 from terrestrial plants, ~0.5 Tg yr−1 from biomass burning, and 0.05 Tg yr−1 from atmospheric reactions of the ethyl peroxy radical (C2H5O2 with itself and with the methyl peroxy radical (CH3O2. The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH is the primary global sink of ethanol in the model (65%, followed by dry deposition (25%, and wet deposition (10%. Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel.

  20. Angular-dependent magnetoresistance study in Ca0.73La0.27FeAs2: a "parent" compound of 112-type iron pnictide superconductors.

    Science.gov (United States)

    Xing, Xiangzhuo; Xu, Chunqiang; Li, Zhanfeng; Feng, Jiajia; Zhou, Nan; Zhang, Yufeng; Sun, Yue; Zhou, Wei; Xu, Xiaofeng; Shi, Zhixiang

    2017-11-21

    We report a study of angular-dependent magnetoresistance (AMR) with the magnetic field rotated in the plane perpendicular to the current on a Ca0.73La0.27FeAs2 single crystal, which is regarded as a "parent" compound of 112-type iron pnictide superconductors. A pronounced AMR with twofold symmetry is observed, signifying the highly anisotropic Fermi surface. By further analyzing the AMR data, we find that the Fermi surface above the structural/antiferromagnetic (AFM) transition (Ts/TN) is quasi-two-dimensional (2D), as revealed by the 2D scaling behavior of the AMR, Δρ/ρ(0) (H, θ)=Δρ/ρ(0) (μ0Hcosθ), θ being the magnetic field angle with respect to the c axis. While such a 2D scaling becomes invalid at temperatures below Ts/TN, the three-dimensional (3D) scaling approach by inclusion of the anisotropy of Fermi surface is efficient, indicating that the appearance of 3D Fermi surface contributed to the anisotropic electronic transport. Compared with other experimental observations, we suspect that the additional 3D hole pocket (generated by the Ca d orbital and As1 pz orbital) around the Γ point in CaFeAs2 will disappear in the heavily electron doped regime, and moreover, the Fermi surface should be reconstructed across the structural/AFM transition. Besides, a quasi-linear in-plane magnetoresistance is observed at low temperatures and its possible origins are also discussed. Our results provide more information to further understand the electronic structure of 112-type IBSs. © 2017 IOP Publishing Ltd.

  1. The sustainability of ethanol production from sugarcane

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Coelho, Suani Teixeira; Guardabassi, Patricia

    2008-01-01

    The rapid expansion of ethanol production from sugarcane in Brazil has raised a number of questions regarding its negative consequences and sustainability. Positive impacts are the elimination of lead compounds from gasoline and the reduction of noxious emissions. There is also the reduction of CO 2 emissions, since sugarcane ethanol requires only a small amount of fossil fuels for its production, being thus a renewable fuel. These positive impacts are particularly noticeable in the air quality improvement of metropolitan areas but also in rural areas where mechanized harvesting of green cane is being introduced, eliminating the burning of sugarcane. Negative impacts such as future large-scale ethanol production from sugarcane might lead to the destruction or damage of high-biodiversity areas, deforestation, degradation or damaging of soils through the use of chemicals and soil decarbonization, water resources contamination or depletion, competition between food and fuel production decreasing food security and a worsening of labor conditions on the fields. These questions are discussed here, with the purpose of clarifying the sustainability aspects of ethanol production from sugarcane mainly in Sao Paulo State, where more than 60% of Brazil's sugarcane plantations are located and are responsible for 62% of ethanol production. (author)

  2. Chemical Reductive Transformations of Synthetic Organic Compounds

    National Research Council Canada - National Science Library

    Peyton, Gary

    2001-01-01

    Advanced Oxidation Processes (AOPs) can be used to selectively remove DNT (2,4-dinitrotoluene) from a complex waste stream by adding a precursor compound such as ethanol which forms a reducing radical upon reaction with hydroxyl radical...

  3. Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels

    Science.gov (United States)

    Poulopoulos, S. G.; Samaras, D. P.; Philippopoulos, C. J.

    In the present work, the effect of ethanol addition to gasoline on regulated and unregulated emissions is studied. A 4-cylinder OPEL 1.6 L internal combustion engine equipped with a hydraulic brake dynamometer was used in all the experiments. For exhaust emissions treatment a typical three-way catalyst was used. Among the various compounds detected in exhaust emissions, the following ones were monitored at engine and catalyst outlet: methane, hexane, ethylene, acetaldehyde, acetone, benzene, 1,3-butadiene, toluene, acetic acid and ethanol. Addition of ethanol in the fuel up to 10% w/w had as a result an increase in the Reid vapour pressure of the fuel, which indicates indirectly increased evaporative emissions, while carbon monoxide tailpipe emissions were decreased. For ethanol-containing fuels, acetaldehyde emissions were appreciably increased (up to 100%), especially for fuel containing 3% w/w ethanol. In contrast, aromatics emissions were decreased by ethanol addition to gasoline. Methane and ethanol were the most resistant compounds to oxidation while ethylene was the most degradable compound over the catalyst. Ethylene, methane and acetaldehyde were the main compounds present at engine exhaust while methane, acetaldehyde and ethanol were the main compounds in tailpipe emissions for ethanol fuels after the catalyst operation.

  4. Nucleus Accumbens MC4-R Stimulation Reduces Food and Ethanol Intake in Adult Rats Regardless of Binge-Like Ethanol Exposure during Adolescence

    Directory of Open Access Journals (Sweden)

    Francisca Carvajal

    2017-09-01

    three subgroups and given bilateral NAc infusions of the selective MC4-R agonist cyclo(NH-CH2-CH2-CO-His-D-Phe-Arg-Trp-Glu-NH2 (0, 0.75 or 1.5 μg. Results revealed that MC4-R stimulation within the NAc reduced feeding and ethanol intake in high ethanol-drinking adult rats, regardless of previous binge-like ethanol exposure during adolescence, which adds new evidence regarding the dual ability of MC compounds to control excessive ethanol and food intake.

  5. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    Science.gov (United States)

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  6. Speichim cuts ethanol energy

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-08

    France's Speichim has reported low-pressure steam consumption of only 0.7kg/l in the production of industrial-grade ethanol. Mechanical compression of distillation vapours can reduce this energy demand even more.

  7. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    Science.gov (United States)

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.

  8. Chemical and biological characterization of exhaust emissions from ethanol and ethanol blended diesel fuels in comparison with neat diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Westerholm, R.; Christensen, Anders [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry; Toernqvist, M. [Stockholm Univ. (Sweden). Dept. of Environmental Chemistry; Ehrenberg, L. [Stockholm Univ. (Sweden). Dept. of Radiobiology; Haupt, D. [Luleaa Univ. of Technology (Sweden)

    1997-12-01

    This report presents results from a project with the aim of investigating the potential environmental and health impact of emissions from ethanol, ethanol blended diesel fuels and to compare these with neat diesel fuels. The exhaust emissions were characterized regarding regulated exhaust components, particulate and semivolatile Polycyclic Aromatic Compounds (PAC) and with bioassays. The bioassays were mutagenicity and TCDD receptor affinity tests. Results: Neat ethanol fuels are `low emission` fuels, while European diesel fuel quality (EDF) and an ethanol blended EDF are `high emission` fuels. Other fuels, such as Swedish Environmental Class one (MK1) and an ethanol blended MK1, are `intermediate` fuels regarding emissions. When using an oxidizing catalyst exhaust after-treatment device a reduction of harmful substances in the exhaust emissions with respect to determined exhaust parameters was found. The relatively low emission of PAH from ethanol fuelled engines would indicate a lower cancer risk from ethanol than from diesel fuels due to this class of compounds. However, the data presented emphasize the importance of considering the PAH profile 27 refs, 3 figs, 19 tabs

  9. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol

    International Nuclear Information System (INIS)

    Crago, Christine L.; Khanna, Madhu; Barton, Jason; Giuliani, Eduardo; Amaral, Weber

    2010-01-01

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world's leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil and together with the cost competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of cost competitiveness and compares the greenhouse gas intensity of corn ethanol and sugarcane ethanol delivered to US ports. We find that while the cost of sugarcane ethanol production in Brazil is lower than that of corn ethanol in the US, the inclusion of transportation costs for the former and co-product credits for the latter changes their relative competitiveness. We also find that the relative cost of ethanol in the US and Brazil is highly sensitive to the prevailing exchange rate and prices of feedstocks. At an exchange rate of US1=R2.15 the cost of corn ethanol is 15% lower than the delivered cost of sugarcane ethanol at a US port. Sugarcane ethanol has lower GHG emissions than corn ethanol but a price of over $113 per ton of CO 2 is needed to affect competitiveness. (author)

  10. Flocculent killer yeast for ethanol fermentation of beet molasses

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kazuhito; Shimoii, Hitoshi; Sato, Shun' ichi; Saito, Kazuo; Tadenuma, Makoto

    1987-09-25

    When ethanol is produced using beet molasses, the concentration of ethanol is lower than that obtained using suger cane molasses. Yeast strain improvement was conducted to enhance ethanol production from beet molasses. The procedures and the results are as follows: (1) After giving ethanol tolerance to the flocculent yeast, strain 180 and the killer yeast, strain 909-1, strain 180-A-7, and strain 909-1-A-4 were isolated. These ethanol tolerant strains had better alcoholic fermentation capability and had more surviving cells in mash in the later process of fermentation than the parental strains. (2) Strain H-1 was bred by spore to cell mating between these two ethanol tolerant strains. Strain H-1 is both flocculent and killer and has better alcoholic fermentation capability than the parental strains. (3) In the fermentation test of beet molasses, strain H-1 showed 12.8% of alcoholic fermentation capability. It is equal to that of sugar cane molasses. Fermentation with reused cells were also successful. (5 figs, 21 refs)

  11. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  12. Chemical Reductive Transformations of Synthetic Organic Compounds. Probe Compound Studies and Mechanistic Modeling

    National Research Council Canada - National Science Library

    Peyton, Gary

    2001-01-01

    Advanced Oxidation Processes (AOPs) can be used to selectively remove DNT (2,4-dinitrotoluene) from a complex waste stream by adding a precursor compound such as ethanol, which forms a reducing radical upon reaction with hydroxyl radical...

  13. Ethanol fuels in Brazil

    International Nuclear Information System (INIS)

    Trindade, S.C.

    1993-01-01

    The largest alternative transportation fuels program in the world today is Brazil's Proalcool Program. About 6.0 million metric tons of oil equivalent (MTOE) of ethanol, derived mainly from sugar cane, were consumed as transportation fuels in 1991 (equivalent to 127,000 barrels of crude oil per day). Total primary energy consumed by the Brazilian economy in 1991 was 184.1 million MTOE, and approximately 4.3 million vehicles -- about one third of the total vehicle fleet or about 40 percent of the total car population -- run on hydrous or open-quotes neatclose quotes ethanol at the azeotropic composition (96 percent ethanol, 4 percent water, by volume). Additional transportation fuels available in the country are diesel and gasoline, the latter of which is defined by three grades. Gasoline A (regular, leaded gas)d has virtually been replaced by gasoline C, a blend of gasoline and up to 22 percent anhydrous ethanol by volume, and gasoline B (premium gasoline) has been discontinued as a result of neat ethanol market penetration

  14. The fate of atmospheric phosgene and the stratospheric chlorine loadings of its parent compounds: CCl4, C2Cl4, C2HCL3, CH3CCl3, and CHCl3

    Science.gov (United States)

    Kindler, T. P.; Chameides, W. L.; Wine, P. H.; Cunnold, D. M.; Alyea, F. N.; Franklin, J. A.

    1995-01-01

    A study of the tropospheric and stratospheric cycles of phosgene is carried out to determine its fate and ultimate role in controlling the ozone depletion potentials of its parent compounds. Tropospheric phosgene is produced from the OH-initiated oxidation of C2Cl4, CH3CCl3, CHCl3, and C2HCl3. Simulations using a two-dimensional model indicate that these processes produce about 90 pptv/yr of tropospheric phosgene with an average concentration of about 18 pptv, in reasonable agreement with observations. We estimate a residence time of about 70 days for tropospheric phosgene, with the vast majority being removed by hydrolysis in cloudwater. Only about 0.4% of the phosgene produced in the troposphere avoids wet removal and is transported to the stratosphere, where its chlorine can be released to participate in the catalytic destruction of ozone. Stratospheric phosgene is produced from the photochemical degradation of CCl4, C2Cl4, CHCl3, and CH3CCl3 and is removed by photolysis and downward transport to the troposphere. Model calculations, in good agreement with observations, indicate that these processes produce a peak stratospheric concentration of about 25-30 pptv at an altitude of about 25 km. In contrast to tropospheric phosgene, stratospheric phosgene is found to have a lifetime against photochemical removal of the order of years. As a result, a significant portion of the phosgene that is produced in the stratosphere is ultimately returned to the troposphere, where it is rapidly removed by clouds. This phenomenon effectively decreases the amount of reactive chlorine injected into the stratosphere and available for ozone depletion from phosgene's parent compounds. A similar phenomenon due to the downward transport of stratospheric COFCl produced from CFC-11 is estimated to cause a 7% decrease in the amount of reactive chlorine injected into the stratosphere from this compound. Our results are potentially sensitive to a variety of parameters, most notably the rate

  15. Footprint (A Screening Model for Estimating the Area of a Plume Produced from Gasoline Containing Ethanol

    Science.gov (United States)

    FOOTPRINT is a simple and user-friendly screening model to estimate the length and surface area of BTEX plumes in ground water produced from a spill of gasoline that contains ethanol. Ethanol has a potential negative impact on the natural biodegradation of BTEX compounds in groun...

  16. Implications of increased ethanol production

    International Nuclear Information System (INIS)

    1992-06-01

    The implications of increased ethanol production in Canada, assuming a 10% market penetration of a 10% ethanol/gasoline blend, are evaluated. Issues considered in the analysis include the provision of new markets for agricultural products, environmental sustainability, energy security, contribution to global warming, potential government cost (subsidies), alternative options to ethanol, energy efficiency, impacts on soil and water of ethanol crop production, and acceptance by fuel marketers. An economic analysis confirms that ethanol production from a stand-alone plant is not economic at current energy values. However, integration of ethanol production with a feedlot lowers the break-even price of ethanol by about 35 cents/l, and even further reductions could be achieved as technology to utilize lignocellulosic feedstock is commercialized. Ethanol production could have a positive impact on farm income, increasing cash receipts to grain farmers up to $53 million. The environmental impact of ethanol production from grain would be similar to that from crop production in general. Some concerns about ethanol/gasoline blends from the fuel industry have been reduced as those blends are now becoming recommended in some automotive warranties. However, the concerns of the larger fuel distributors are a serious constraint on an expansion of ethanol use. The economics of ethanol use could be improved by extending the federal excise tax exemption now available for pure alcohol fuels to the alcohol portion of alcohol/gasoline blends. 9 refs., 10 tabs

  17. PEI detoxification of pretreated spruce for high solids ethanol fermentation

    DEFF Research Database (Denmark)

    Cannella, David; Sveding, Per Viktor; Jørgensen, Henning

    2014-01-01

    .e. spruce) this has been difficult to reach. The main reason behind this difference is the higher recalcitrance of woody substrates which require harsher pretreatment conditions, thus generating higher amounts of inhibitory compounds, ultimately lowering fermentation performances. In this work we studied...... ethanol production from spruce performing the whole process, from pretreatment to hydrolysis and fermentation, at 30% dry matter (equivalent to similar to 20% WIS). Hydrolysis and fermentation was performed in a horizontal free fall mixing reactor enabling efficient mixing at high solids loadings....... In batch simultaneous saccharification and fermentation (SSF), up to 76% cellulose to ethanol conversion was achieved resulting in a concentration of 51 g/kg of ethanol. Key to obtaining this high ethanol yield at these conditions was the use of a detoxification technology based on applying a soluble...

  18. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...

  19. Ethanol Forensic Toxicology.

    Science.gov (United States)

    Perry, Paul J; Doroudgar, Shadi; Van Dyke, Priscilla

    2017-12-01

    Ethanol abuse can lead to negative consequences that oftentimes result in criminal charges and civil lawsuits. When an individual is suspected of driving under the influence, law enforcement agents can determine the extent of intoxication by measuring the blood alcohol concentration (BAC) and performing a standardized field sobriety test. The BAC is dependent on rates of absorption, distribution, and elimination, which are influenced mostly by the dose of ethanol ingested and rate of consumption. Other factors contributing to BAC are gender, body mass and composition, food effects, type of alcohol, and chronic alcohol exposure. Because of individual variability in ethanol pharmacology and toxicology, careful extrapolation and interpretation of the BAC is needed, to justify an arrest and assignment of criminal liability. This review provides a summary of the pharmacokinetic properties of ethanol and the clinical effects of acute intoxication as they relate to common forensic questions. Concerns regarding the extrapolation of BAC and the implications of impaired memory caused by alcohol-induced blackouts are discussed. © 2017 American Academy of Psychiatry and the Law.

  20. Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    , there is not enough biomass for 'everyone', not physically and not in terms of money to promote its use. This leads to the conclusion that any use of biomass for energy purposes will have to compare to the lost opportunity of using it for something else. In this perspective, the choice to use biomass for bio......-ethanol production will not lead to reduction but to increase in CO2 emission and fossil fuel dependency. Both first and second generation bio-ethanol suffer from a biomass-to-ethanol energy conversion efficiency as low as 30-40 %, and moreover external fossil fuels are used to run the conversion. There is only......, but they do not improve the energy balance enough for bio-ethanol to compete with alternative uses of the biomass. When using biomass to substitute fossil fuels in heat & power production, a close to 100% substitution efficiency is achieved. The best alternative for CO2 reduction and oil saving is, therefore...

  1. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeffrey A. [Univ. of California, Parlier, CA (United States). Kearney Research and Extension Center; Wolfrum, Edward J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Process and Analytical Engineering Group

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  2. Increased preference for ethanol in the infant rat after prenatal ethanol exposure, expressed on intake and taste reactivity tests.

    Science.gov (United States)

    Arias, Carlos; Chotro, M Gabriela

    2005-03-01

    Previous studies have shown that prenatal exposure during gestational days 17 to 20 to low or moderate doses of ethanol (1 or 2 g/kg) increases alcohol intake in infant rats. Taking into account that higher consumption does not necessarily suggest a preference for alcohol, in the present study, the hedonic nature of the prenatal experience was analyzed further with the use of a taste reactivity test. General activity, wall climbing, passive drips, paw licking, and mouthing in response to intraoral infusions of alcohol, water, and a sucrose-quinine solution (which resembles alcohol taste in rats) were tested in 161 preweanling 14-day-old rat pups that were prenatally exposed to 0, 1, or 2 g/kg of alcohol during gestational days 17 to 20. Consumption of those substances was measured during the taste reactivity test and on postnatal day 15. Pups that were prenatally exposed to both doses of ethanol displayed lower levels of general activity and wall climbing than controls in response to ethanol. Infant rats that were treated prenatally with both doses of ethanol showed higher intake of the drug and also more mouthing and paw licking in response to ethanol taste. Only pups that were exposed to the higher ethanol dose in utero generalized those responses to the sucrose-quinine compound. These results seem to indicate that for the infant rat, the palatability of ethanol is enhanced after exposure to the drug during the last days of gestation.

  3. Fate of ethanol during cooking of liquid foods prepared with alcoholic beverages

    DEFF Research Database (Denmark)

    Snitkjær, Pia; Ryapushkina, Julia; Skovenborg, Erik

    2017-01-01

    To obtain an understanding of the ethanol loss during cooking of liquid foods containing alcoholic beverages, ethanol concentration was measured as a function of time and remaining volume in meat stocks prepared with wine and beer. A mathematical model describing the decline in volatile compounds...... like pot dimensions and temperature. When using a lid to cover the pot during cooking, the model was still valid but the ethanol concentrations decreased more steeply, corresponding to a higher exponent. The results provide a theoretical and empirical guideline for predicting the ethanol concentration...... in cooked liquid foods...

  4. Methanol and ethanol vapor conversion in gas discharge with strongly non-uniform distribution of electric field on atmospheric pressure

    International Nuclear Information System (INIS)

    Golota, V.I.; Zavada, L.M.; Kotyukov, O.V.; Kudin, D.V.; Rodionov, S.V.; Pis'menetskoj, A.S.; Dotsenko, Yu.V.

    2010-01-01

    The barrierless gas discharge of negative polarity with strongly non-uniform distribution of electrical field in the methanol and ethanol vapour was studied. It is shown that level of methanol and ethanol conversion depended from power consumed by the discharge and exposition time for gas mixture in discharge zone. The condition for deep conversion of the methanol and ethanol vapours were determined. The water and carbon dioxide are the end products for the methanol and ethanol conversion. Formaldehyde and formic acid are the intermediates products in the conversion of methanol. And ethanol has a number of different compounds, including acetic acid, acetaldehyde, etc.

  5. Sweet and bitter taste of ethanol in C57BL/6J and DBA2/J mouse strains.

    Science.gov (United States)

    Blizard, David A

    2007-01-01

    Studies of inbred strains of rats and mice have suggested a positive association between strain variations in sweet taste and ethanol intake. However, strain associations by themselves are insufficient to support a functional link between taste and ethanol intake. We used conditioned taste aversion (CTA) to explore the sweet and bitter taste of ethanol and ability to detect sucrose, quinine and ethanol in C57BL/6J (B6) and DBA/2J (D2) mouse strains that are frequently used in alcohol research. The present study showed that C57BL/6J mice generalized taste aversions from sucrose and quinine solutions to 10% ethanol and, reciprocally, aversions to 10% ethanol generalized to each of these solutions presented separately. Only conditioned aversions to quinine generalized to ethanol in the DBA/2J strain but an aversion conditioned to ethanol did not generalize reciprocally to quinine. Thus, considering these two gustatory qualities, 10% ethanol tastes both sweet and bitter to B6 mice but only bitter to D2. Both strains were able to generalize taste aversions across different concentrations of the same compound. B6 were able to detect lower concentrations of quinine than D2 but both strains were able to detect sucrose and (in contrast to previous findings) ethanol at similar concentrations. The strain-dependent gustatory profiles for ethanol may make an important contribution to the understanding of the undoubtedly complex mechanisms influencing high ethanol preference of B6 and pronounced ethanol avoidance of D2 mice.

  6. Evaluation of chlorpyrifos toxicity through a 28-day study: Cholinesterase activity, oxidative stress responses, parent compound/metabolite levels, and primary DNA damage in blood and brain tissue of adult male Wistar rats.

    Science.gov (United States)

    Kopjar, Nevenka; Žunec, Suzana; Mendaš, Gordana; Micek, Vedran; Kašuba, Vilena; Mikolić, Anja; Lovaković, Blanka Tariba; Milić, Mirta; Pavičić, Ivan; Čermak, Ana Marija Marjanović; Pizent, Alica; Lucić Vrdoljak, Ana; Želježić, Davor

    2018-01-05

    In this 28 day-study, we evaluated the effects of the insecticide chlorpyrifos orally administered to Wistar rats at doses 0.160, 0.015, and 0.010 mg/kg b. w./day. Following treatment, total cholinesterase activity and activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were measured. Oxidative stress responses were evaluated using a battery of endpoints to establish lipid peroxidation, changes in total antioxidant capacity, level of reactive oxygen species (ROS), glutathione (GSH) level and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase. Using HPLC-UV DAD analysis, levels of the parent compound and its main metabolite 3,5,6-trichloro-2-pyridinol in plasma and brain tissue were measured. The genotoxic effect was estimated using alkaline comet assay in leukocytes and brain tissue. The exposure did not result in significant effects on total cholinesterase, AChE and BChE activity in plasma and brain tissue. Lipid peroxidation slightly increased both in plasma and brain tissue. Total antioxidant capacity, ROS and GSH levels were marginally influenced by the exposure. Treatment led to significant increases of GSH-Px activity in blood, SOD activity in erythrocytes and a slight increase of catalase activity in plasma. HPLC-UV DAD analysis revealed the presence of both the parent compound and its main metabolite in the plasma of all of the experimental animals and brain tissue of the animals treated at the two higher doses. All of the tested doses of chlorpyrifos were slightly genotoxic, both to leukocytes and brain tissue. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Operant ethanol self-administration in ethanol dependent mice.

    Science.gov (United States)

    Lopez, Marcelo F; Becker, Howard C

    2014-05-01

    While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependence. As reported in rats, studies using various operant conditioning procedures in mice have demonstrated significant escalation of ethanol self-administration behavior in mice rendered dependent via forced chronic ethanol exposure in comparison to nondependent mice. This paper also presents a summary of these findings, as well as suggestions for future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Innovative inexpensive ethanol

    International Nuclear Information System (INIS)

    Mackek, S.

    1991-01-01

    New Energy Company of Indiana which produces 70 million gallons of ethanol per year, avoids the headaches often associated with organic by-products by creating an efficient and profitable sideline business. This paper reports that stretching across 55 acres in South Bend, Ind., New Energy's plant is the largest in the U.S. built specifically for fuel alcohol. The $186-million complex is a dramatic advance in the art of producing ethanol and its co-products. As the demand grows in the coming years for fuel alcohol-proven as an octane booster and a clean-burning alternative fuel. New Energy looks forward to increase production and profits. At the company's six-year-old plant, fuel alcohol is made from 26 million bushels a year of No. 2 yellow dent corn. Left at the bottom of the first column, after the alcohol has been boiled off, is stillage that contains more than 90% of the corn's protein and fat content, and virtually all of its vitamins and minerals, along with the yeast used to make the ethanol. While technically a waste product of the fuel alcohol process, this material's quantity and organic content not only make it difficult and costly to dispose, but its nutritional quality makes it an excellent candidate to be further processed into animal feed

  9. Xylose fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  10. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    Full Text Available Abstract Background Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. Results A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. Conclusion Enriched background of transcription abundance

  11. Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3

    OpenAIRE

    Meza, Juan Carlos; Auria, Richard; Lomascolo, A.; Sigoillot, J. C.; Casalot, Laurence

    2007-01-01

    Laccase production by the strain Pycnoporus cinnabarinus ss3 was studied in a solid-state culture on sugar-cane bagasse using chemical compounds as inducers (ethanol, methanol, veratryl alcohol and ferulic acid). Laccase productions were about 5- to 8.5-fold higher than non-induced cultures. Liquid-culture experiments with "Glabeled ethanol were conducted. Ninety-eight percent of the initial amount of C-14 from ethanol was recovered as (CO2)-C-14, C-14-biomass and soluble C-14-compounds (main...

  12. Ethanol dehydration to ethylene in a stratified autothermal millisecond reactor.

    Science.gov (United States)

    Skinner, Michael J; Michor, Edward L; Fan, Wei; Tsapatsis, Michael; Bhan, Aditya; Schmidt, Lanny D

    2011-08-22

    The concurrent decomposition and deoxygenation of ethanol was accomplished in a stratified reactor with 50-80 ms contact times. The stratified reactor comprised an upstream oxidation zone that contained Pt-coated Al(2)O(3) beads and a downstream dehydration zone consisting of H-ZSM-5 zeolite films deposited on Al(2)O(3) monoliths. Ethanol conversion, product selectivity, and reactor temperature profiles were measured for a range of fuel:oxygen ratios for two autothermal reactor configurations using two different sacrificial fuel mixtures: a parallel hydrogen-ethanol feed system and a series methane-ethanol feed system. Increasing the amount of oxygen relative to the fuel resulted in a monotonic increase in ethanol conversion in both reaction zones. The majority of the converted carbon was in the form of ethylene, where the ethanol carbon-carbon bonds stayed intact while the oxygen was removed. Over 90% yield of ethylene was achieved by using methane as a sacrificial fuel. These results demonstrate that noble metals can be successfully paired with zeolites to create a stratified autothermal reactor capable of removing oxygen from biomass model compounds in a compact, continuous flow system that can be configured to have multiple feed inputs, depending on process restrictions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Specific Conditions for Resveratrol Neuroprotection against Ethanol-Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Brigitte Gonthier

    2012-01-01

    Full Text Available Aims. 3,5,4′-Trihydroxy-trans-stilbene, a natural polyphenolic compound present in wine and grapes and better known as resveratrol, has free radical scavenging properties and is a potent protector against oxidative stress induced by alcohol metabolism. Today, the mechanism by which ethanol exerts its toxicity is still not well understood, but it is generally considered that free radical generation plays an important role in the appearance of structural and functional alterations in cells. The aim of this study was to evaluate the protective action of resveratrol against ethanol-induced brain cell injury. Methods. Primary cultures of rat astrocytes were exposed to ethanol, with or without a pretreatment with resveratrol. We examined the dose-dependent effects of this resveratrol pretreatment on cytotoxicity and genotoxicity induced by ethanol. Cytotoxicity was assessed using the MTT reduction test. Genotoxicity was evidenced using single cell gel electrophoresis. In addition, DNA staining with fluorescent dyes allowed visualization of nuclear damage using confocal microscopy. Results. Cell pretreatment with low concentrations of trans-resveratrol (0.1–10 μM slowed down cell death and DNA damage induced by ethanol exposure, while higher concentrations (50–100 μM enhanced these same effects. No protection by cis-resveratrol was observed. Conclusion. Protection offered by trans-resveratrol against ethanol-induced neurotoxicity was only effective for low concentrations of this polyphenol.

  14. Is there a role for leukotrienes as mediators of ethanol-induced gastric mucosal damage?

    International Nuclear Information System (INIS)

    Wallace, J.L.; Beck, P.L.; Morris, G.P.

    1988-01-01

    The role of leukotriene (LT) C 4 as a mediator of ethanol-induced gastric mucosal damage was investigated. Rats were pretreated with a number of compounds, including inhibitors of leukotriene biosynthesis and agents that have previously been shown to reduce ethanol-induced damage prior to oral administration of absolute ethanol. Ethanol administration resulted in a fourfold increase in LTC 4 synthesis. LTC 4 synthesis could be reduced significantly by pretreatment with L651,392 or dexamethosone without altering the susceptibility of the gastric mucosa to ethanol-induced damage. Furthermore, changes in LBT 4 synthesis paralleled the changes in LTC 4 synthesis observed after ethanol administration. The effects of ethanol on gastric eicosanoid synthesis were further examined using an ex vivo gastric chamber preparation that allowed for application of ethanol to only one side of the stomach. These studies confirm that ethanol can stimulate gastric leukotriene synthesis independent of the production of hemorrhagic damage. Inhibition of LTC 4 synthesis does not confer protection to the mucosa, suggesting that LTC 4 does not play an important role in the etiology of ethanol-induced gastric damage

  15. A Bottom-Up Approach investigating the Potential Impacts of Ethanol in Atmospheric Waters

    Science.gov (United States)

    Mead, R. N.; Taylor, A.; Shimizu, M. S.; Avery, B.; Kieber, R. J.; Willey, J. D.

    2017-12-01

    Ethanol, an emerging biofuel primarily derived from corn, can enter the atmosphere through incomplete combustion as well as natural emissions. There is a paucity of knowledge on the impacts of ethanol with other organic compounds in atmospheric waters. In this study, Guaiacol (2-methoxy phenol) was chosen as a proxy to investigate photolytic reactions with ethanol in rainwater with subsequent measurements of optical properties and chemical composition. Solutions with equimolar concentrations of guaiacol, ethanol, and hydrogen peroxide (pH 4.5 deionized water) were reacted in artificial sunlight for 6 hours. Solutions kept in the dark over this time showed no change in absorbance while solutions exposed to light (without and with ethanol) had increases in absorbance indicating formation of new chromophoric compounds. Although, little difference was observed optically and by GC/MS between solutions prepared without and with ethanol, the rate of guaiacol loss decreased with ethanol present, suggesting that ethanol could act as a radical scavenger. To simulate more polluted air masses, NaNO2 was added to each reaction mixture to observe further changes. The presence of NaNO2 led to larger increases in absorbance than in earlier experiments. No differences were observed between non-ethanol and ethanol containing solutions both optically and when run by GC-MS. Following irradiation experiments, solutions were placed in the dark and allowed to react for prolonged periods of time. After a week, solutions prepared with ethanol exhibited higher absorbance than samples without added ethanol. This was the case for trials carried out in simulated clean air masses as well as ones carried out with NaNO2.

  16. Canada's directory of ethanol retailers

    International Nuclear Information System (INIS)

    1997-07-01

    This document is a directory listing all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listings include the name and address of the retailer by province from west to east. Appendices providing a list of bulk purchase facilities of ethanol-blended fuels was also included, as well as a list of ethanol-blended gasoline retailers

  17. Wood ethanol: a BC value-added opportunity

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, B. W.; O' Connor, D. V.

    1998-12-01

    The environmental, economic and social benefits to be derived from the conversion of woodwaste to ethanol are reviewed as part of the justification by the Greenhouse Gas Forum, a multi-stakeholder environmental advisory group, to recommend to the BC government to support the development and commercialization of technologies to produce ethanol fuel using waste from British Columbia's sawmills. The Greenhouse Gas Forum also recommended government support for the construction of a demonstration ethanol plant by the private sector. The principal arguments underlying the Greenhouse Gas Forum's recommendations are: (1) reduction in BC's greenhouse gas emissions by one mega tonne, or two per cent of BC's 1990 emissions, (2) reducing carbon monoxide , nitrogen oxides, volatile organic compounds and other toxic emissions that contribute to urban smog, and (3) accelerating the elimination of sawmill waste burners and providing a substitute for MMT (methylcyclopentadienyl manganese tricarbonyl, a fuel additive) and MTBE ( methyl tertiary butyl ether, a component used in gasoline), thus helping to reduce health hazards from fine particulate inhalation. Economic and social benefits envisaged include creation of leading edge technology at the University of British Columbia, a substantial number of new jobs, and the potential for the development of various co-products from wood ethanol conversion. The report examines five different technologies to produce ethanol (the processes developed by Iogen, BC International, and Arkenol Inc., the Paszner ACOS process and a gasification-fermentation process), the market demand for ethanol blended gasoline and concludes that there are strong environmental, health and economic reasons for BC to increase the use of wood-ethanol as a transportation fuel and to support the establishment of an ethanol plant using wood residue. 27 refs., 5 tabs., 6 figs., 1 glossary.

  18. Wood ethanol: a BC value-added opportunity

    International Nuclear Information System (INIS)

    McCloy, B. W.; O'Connor, D. V.

    1998-12-01

    The environmental, economic and social benefits to be derived from the conversion of woodwaste to ethanol are reviewed as part of the justification by the Greenhouse Gas Forum, a multi-stakeholder environmental advisory group, to recommend to the BC government to support the development and commercialization of technologies to produce ethanol fuel using waste from British Columbia's sawmills. The Greenhouse Gas Forum also recommended government support for the construction of a demonstration ethanol plant by the private sector. The principal arguments underlying the Greenhouse Gas Forum's recommendations are: (1) reduction in BC's greenhouse gas emissions by one mega tonne, or two per cent of BC's 1990 emissions, (2) reducing carbon monoxide , nitrogen oxides, volatile organic compounds and other toxic emissions that contribute to urban smog, and (3) accelerating the elimination of sawmill waste burners and providing a substitute for MMT (methylcyclopentadienyl manganese tricarbonyl, a fuel additive) and MTBE ( methyl tertiary butyl ether, a component used in gasoline), thus helping to reduce health hazards from fine particulate inhalation. Economic and social benefits envisaged include creation of leading edge technology at the University of British Columbia, a substantial number of new jobs, and the potential for the development of various co-products from wood ethanol conversion. The report examines five different technologies to produce ethanol (the processes developed by Iogen, BC International, and Arkenol Inc., the Paszner ACOS process and a gasification-fermentation process), the market demand for ethanol blended gasoline and concludes that there are strong environmental, health and economic reasons for BC to increase the use of wood-ethanol as a transportation fuel and to support the establishment of an ethanol plant using wood residue. 27 refs., 5 tabs., 6 figs., 1 glossary

  19. Ethanol fermentation of beet molasses by a yeast resistant to distillery waste water and 2-deoxyglucose

    Energy Technology Data Exchange (ETDEWEB)

    Tadenuma, Makoto; Shimoi, Hitoshi; Sato, Shun' ichi; Moriya, Kazuhito; Saito, Kazuo [National Research Inst. of Brewing, Tokyo, Japan Hokkaido Sugar Co., Ltd., Tokyo (Japan) Sendai Regional Taxation Bureau, Sendai (Japan)

    1989-05-25

    A flocculent killer yeast, strain H-1 selected for ethanol fermentation of beet molasses, has a tendency to lose its viability in distillery waste water (DWW) of beet molasses mash after ethanol fermentation. Through acclimations of strain H-1 in DWW, strain W-9, resistant to DWW, was isolated. Strain M-9, resistant to 2-deoxyglucose was further isolated through acclimations of strain W-9 in medium containing 150 ppm 2-deoxyglucose. A fermentaion test of beet molasses indicated that the ethanol productivity and suger consumption were improved by strain M-9 compared with the parental strain H-1 and strain W-9. The concentration of ethanol produced by strain M-9 was 107.2 g/1, and concentration of residual sugars, which were mainly composed of sucrose and fructose, were lower than those produced by the parental strain H-9 and strain W-9 at the end of fermentation of beet molasses. 6 refs., 2 figs., 2 tabs.

  20. Bio-Ethanol Production from Poultry Manure

    African Journals Online (AJOL)

    john

    ethanol. Fuel ethanol is known as bio-ethanol, since it is produced from plant materials by biological processes. Bioethanol is mainly produced by fermentation of sugar containing crops like corn, maize, wheat, sugar cane, sugar beet, potatoes, ...

  1. Alternative Fuels Data Center: Ethanol Fueling Stations

    Science.gov (United States)

    ... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure fueling stations by location or along a route. Infrastructure Development Learn about ethanol fueling infrastructure; codes, standards, and safety; and ethanol equipment options. Maps & Data E85 Fueling Station

  2. Brazilian third world ethanol pilot

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P

    1981-01-01

    A financial cost model has been developed in Brazil, under contract from th United Nations Industrial Development Organization, for fermentation ethanol production based on sugar cane molasses, sugar cane juice and cassava. The model is designed to help in analysing the feasibility and implementation of ethanol programs in developing countries.

  3. Ethanol from mixed waste paper

    International Nuclear Information System (INIS)

    Kerstetter, J.D.; Lyons, J.K.

    1991-01-01

    The technology, markets, and economics for converting mixed waste paper to ethanol in Washington were assessed. The status of enzymatic and acid hydrolysis projects were reviewed. The market for ethanol blended fuels in Washington shows room for expansion. The economics for a hypothetical plant using enzymatic hydrolysis were shown to be profitable

  4. Reactions of ethanol on Ru

    NARCIS (Netherlands)

    Sturm, Jacobus Marinus; Liu, Feng; Lee, Christopher James; Bijkerk, Frederik

    2012-01-01

    The adsorption and reactions of ethanol on Ru(0001) were studied with temperatureprogrammed desorption (TPD) and reflection-absorption infrared spectroscopy (RAIRS). Ethanol was found to adsorb intact onto Ru(0001) below 100 K. Heating to 250 K resulted in formation of ethoxy groups, which undergo

  5. TECHNOLOGICAL ADVANCES IN THE OBTAINING OF ETHANOL FROM Sweet sorghum (Sorghum bicolor (L. Moench

    Directory of Open Access Journals (Sweden)

    Sandro Pedroso Cunha

    2010-11-01

    Full Text Available ABSTRACT: Replacing the use of gasoline with ethanol in vehicles reduces by 90% CO2 emissions, this justifies the interest in the use of bioethanol as renewable energy. Besides sugar cane, cassava, maize and sugar beet special emphasis is being given to sorghum (Sorghum bicolor L. Moench to produce ethanol for its productivity and resistance. The sorghum is grown in Rio Grande do Sul with a production of about 70,000 tons / year. Embrapa has a program to develop cultivars of sorghum from the time the Pro-Alcohol and currently 25 new varieties of sorghum are being evaluated. Several factors are relevant in the optimization of production such as increased productivity and reduced costs in the production of ethanol. This study aimed to survey recent data that will assess production parameters of ethanol from sorghum. Factors such as reducing the risk of bacterial contamination, the means conducive to fermentation processes or grain sorghum stalk through the use of pretreatment of the sample, have been of great importance because it is basically turning cellulosic biomass into fermentable sugars. Superior genotypes of sweet sorghum for ethanol production are of utmost importance, as well as better ways to convert sugars into ethanol. Lignin, toxic against microorganisms, prevents the conversion of lignocellulose into ethanol. The conversion of lignocellulosic ethanol compounds based on the hydrolysis of cellulose producing simple sugars and fermenting those sugars into ethanol through microbiology.

  6. Phytoremediation potential of willow tress for aquifers contaminated with ethanol-blended gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Corseuil, H.X. [Universidade Federal de Santa Catarina, Florianopolis (Brazil). Departamento de Engenharia Sanitaria e Ambiental; Moreno, F.N. [Universidade do Sul de Santa Catarina, Palhoca (Brazil). Centro de Ciencias Agrarias e das Engenharias

    2001-07-01

    Ethanol-blended gasoline has been used in Brazil for 20 years and, probably, is going to be more widely used in North America due to the MtBE environmental effects on groundwater. The potential impacts caused by the presence of ethanol in UST spills are related to the co-solvency effect and the preferential degradation of ethanol over the BTEX compounds. These interactions may increase the length of dissolved hydrocarbon plumes and the costs associated with site remediation. This study investigates the advantages of phytoremediation to overcome the problems associated with the presence of ethanol in groundwater contaminated with gasoline-ethanol mixtures. Experiments were performed under lab conditions with cuttings of Willow tree (Salix babylonica) cultivated hydroponically. Results showed that the cuttings were able to reduce ethanol and benzene concentrations by more than 99% in less than a week. The uptake of both contaminants was confirmed by blank controls and was significantly related to cuttings transpiration capacity. Sorption onto roots biomass also markedly affected the behavior of contaminants in solution. Experiments to evaluate plants' toxicity to ethanol indicated that plants were only affected when aqueous ethanol concentration reached 2000mgl{sup -1}. Results suggest that phytoremediation can be a good complement to intrinsic remediation in shallow aquifer sites contaminated with ethanol-blended gasoline spills. (Author)

  7. The Role of Molecule Clustering by Hydrogen Bond in Hydrous Ethanol on Laminar Burning Velocity

    Directory of Open Access Journals (Sweden)

    I Made Suarta

    2016-01-01

    Full Text Available The role of hydrogen bond molecule clustering in laminar burning velocities was observed. The water in hydrous ethanol can change the interaction between water-ethanol molecules. A certain amount of water can become oxygenated which increases the burning velocity. The hydrogen bond interaction pattern of ethanol and water molecules was modeled. Based on the molecular model, azeotropic behavior emerges from ethanol-water hydrogen bond, which is at a 95.1%v composition. The interaction with water molecule causes the ethanol molecule to be clustered with centered oxygenated compound. So, it supplies extra oxygen and provides intermolecular empty spaces that are easily infiltrated by the air. In the azeotropic composition, the molecular bond chain is the shortest, so hypothetically the burning velocity is anticipated to increase. The laminar burning velocity of ethanol fuel was tested in a cylindrical explosion bomb in lean, stoichiometric, and rich mixtures. The experimental result showed that the maximum burning velocity occurred at hydrous ethanol of 95.5%v composition. This discrepancy is the result of the addition of energy from 7.7% free ethanol molecules that are not clustered. At the rich mixture, the burning velocity of this composition is higher than that of anhydrous ethanol.

  8. Lewis acid-catalyzed depolymerization of soda lignin in supercritical ethanol/water mixtures

    NARCIS (Netherlands)

    Güvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Emiel J M

    2016-01-01

    The depolymerization of lignin model compounds and soda lignin by super Lewis acidic metal triflates has been investigated in a mixture of ethanol and water at 400 °C. The strong Lewis acids convert representative model compounds for the structure-forming linkages in lignin, namely α-O-4, 5-O-4

  9. Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization

    DEFF Research Database (Denmark)

    Sand, K K; Yang, M; Makovicky, E

    2010-01-01

    The interaction of OH-containing compounds with calcite, CaCO(3), such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorp...

  10. The effects of nicotine on ethanol-induced conditioned taste aversions in Long-Evans rats.

    Science.gov (United States)

    Rinker, Jennifer A; Busse, Gregory D; Roma, Peter G; Chen, Scott A; Barr, Christina S; Riley, Anthony L

    2008-04-01

    Overall drug acceptability is thought to be a function of the balance between its rewarding and aversive effects, the latter of which is reportedly affected by polydrug use. Given that nicotine and alcohol are commonly co-used, the present experiments sought to assess nicotine's impact on ethanol's aversive effects within a conditioned taste aversion design. Experiment 1 examined various doses of nicotine (0, 0.4, 0.8, 1.2 mg/kg) to determine a behaviorally active dose, and experiment 2 examined various doses of ethanol (0, 0.5, 1.0, 1.5 g/kg) to determine a dose that produced intermediate aversions. Experiment 3 then examined the aversive effects of nicotine (0.8 mg/kg) and ethanol (1.0 g/kg) alone and in combination. Additionally, nicotine's effects on blood alcohol concentrations (BAC) and ethanol-induced hypothermia were examined. Nicotine and ethanol combined produced aversions significantly greater than those produced by either drug alone or the summed aversive effects of the individual compounds. These effects were unrelated to changes in BAC, but nicotine and ethanol combined produced a prolonged hypothermic effect which may contribute to the increased aversions induced by the combination. These data demonstrate that nicotine may interact with ethanol, increasing ethanol's aversive effects. Although the rewarding effects of concurrently administered nicotine and ethanol were not assessed, these data do indicate that the reported high incidence of nicotine and ethanol co-use is unlikely due to reductions in the aversiveness of ethanol with concurrently administered nicotine. It is more likely attributable to nicotine-related changes in ethanol's rewarding effects.

  11. Production, transport, and metabolism of ethanol in eastern cottonwood

    International Nuclear Information System (INIS)

    MacDonald, R.C.

    1991-01-01

    In plant tissues, the production of acetaldehyde and ethanol are usually thought to occur as a mechanism to allow tolerance of hypoxic conditions. Acetaldehyde and ethanol were found to be common in vascular cambium and the transpiration stream of trees. Ethanol concentrations in the vascular cambium of Populus deltoides were not changed by placing logs from nonflooded trees in a pure oxygen environment for as long as 96 h, but increased by almost 3 orders of magnitude when exposed to low external pO 2 s. Ethanol is present in the xylem sap of flooded and nonflooded trees. Because of the constitutive presence of alcohol dehydrogenase in the mature leaves of woody plants, it was hypothesized that the leaves and shoots of trees had the ability to metabolize ethanol supplied by the transpiration stream. 1-[ 14 C]ethanol was supplied to excised leaves and shoots of Populus deltoides Bartr. in short- and long-term experiments. Greater than 99% of the radiolabel was incorporated into plant tissue in short-term experiments, with more than 95% of the label remaining in plant tissue after 24 h. Very little label reached the leaf mesophyll cells of excised shoots, as revealed by autoradiography. Radiolabel appeared primarily in the water- and chloroform-soluble fractions in short-term experiments, while in long-term experiments, label was also incorporated into protein. When labelled ethanol was supplied to excised petioles in a 5 min pulse, 41% of the label was incorporated into organic acids. Some label was also incorporated into amino acids, protein, and the chloroform-soluble fraction, with very little appearing in neutral sugars, starch, or the insoluble pellet. Labelled organic acids were separated by HPLC, and were comprised of acetate, isocitrate, α-ketoglutarate, and succinate. There was no apparent incorporation of label into phosphorylated compounds

  12. Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Directory of Open Access Journals (Sweden)

    Peter H. McMurry

    2011-06-01

    Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential

  13. Parenting Perfectionism and Parental Adjustment

    OpenAIRE

    Lee, Meghan A.; Schoppe-Sullivan, Sarah J.; Kamp Dush, Claire M.

    2012-01-01

    The parental role is expected to be one of the most gratifying and rewarding roles in life. As expectations of parenting become ever higher, the implications of parenting perfectionism for parental adjustment warrant investigation. Using longitudinal data from 182 couples, this study examined the associations between societal- and self-oriented parenting perfectionism and new mothers’ and fathers’ parenting self-efficacy, stress, and satisfaction. For mothers, societal-oriented parenting perf...

  14. Ethanol emission from loose corn silage and exposed silage particles

    Science.gov (United States)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan; Mitloehner, Frank

    2010-11-01

    Silage on dairy farms has been identified as a major source of volatile organic compound (VOC) emissions. However, rates of VOC emission from silage are not accurately known. In this work, we measured ethanol (a dominant silage VOC) emission from loose corn silage and exposed corn silage particles using wind tunnel systems. Flux of ethanol was highest immediately after exposing loose silage samples to moving air (as high as 220 g m -2 h -1) and declined by as much as 76-fold over 12 h as ethanol was depleted from samples. Emission rate and cumulative 12 h emission increased with temperature, silage permeability, exposed surface area, and air velocity over silage samples. These responses suggest that VOC emission from silage on farms is sensitive to climate and management practices. Ethanol emission rates from loose silage were generally higher than previous estimates of total VOC emission rates from silage and mixed feed. For 15 cm deep loose samples, mean cumulative emission was as high as 170 g m -2 (80% of initial ethanol mass) after 12 h of exposure to an air velocity of 5 m s -1. Emission rates measured with an emission isolation flux chamber were lower than rates measured in a wind tunnel and in an open setting. Results show that the US EPA emission isolation flux chamber method is not appropriate for estimating VOC emission rates from silage in the field.

  15. Ethanol Production from Lignocellulose by the Dimorphic Fungus Mucor Indicus

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, P.R.; Taherzadeh, M.J. (School of Engineering, Univ. of Boraas, SE-50190, Boraas (Sweden)). e-mail: Patrik.Lennartsson@hb.se; Karimi, K. (Dept. of Chemical Engineering, Isfahan Univ. of Technology, 84156-83111, Isfahan (IR)); Edebo, L. (Dept. of Clinical Bacteriology, Univ. of Goeteborg, SE-41346, Goeteborg (Sweden))

    2008-10-15

    Ethanol production from dilute-acid lignocellulosic hydrolyzate by the dimorphic fungus Mucor indicus was investigated. A mixture of different forest wood chips dominated by spruce was hydrolyzed with 0.5 g/L sulfuric acid at 15 bar for 10 min, yielding different sugars including galactose, glucose, mannose, and xylose, but also different fermentation inhibitors such as acetic acid, furfural, hydroxymethyl furfural (HMF), and phenolic compounds. We induced different morphological growth of M. indicus from purely filamentous, mostly filamentous, mostly yeast-like to purely yeast-like. The different forms were then used to ferment the hydrolyzate. They tolerated the presence of the inhibitors under anaerobic batch cultivation well and the ethanol yield was 430-440 g/kg consumed sugars. The ethanol productivity depended on the morphology. Judging from these results, we conclude that M. indicus, is useful for ethanol production from toxic substrates independent of its morphology. Keywords: bio-ethanol, lignocellulosic materials, dilute acid hydrolysis, Mucor indicus, dimorphic fungi

  16. Development of nanosized electrocatalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohamedi, M. [Institut National de la Recherche Scientifique, Varennes, PQ (Canada). Centre de l' Energie, Materiaux et Telecommunications

    2008-07-01

    Fuel cells have been touted as a promising power supply for automotive, portable or stationary use. Although methanol is a strong contender as an alternative fuel, the extensive use of this toxic compound is not practical due to environmental hazards. Ethanol is a good substitute because it has a very positive environmental, health, and safety footprint with no major uncertainties or hazards. Ethanol is a hydrogen-rich liquid which has more energy density than methanol. The C-C bond has a determining effect on fuel cell efficiency and the theoretical energy yield. Therefore, a good electrocatalyst towards the complete oxidation of ethanol must activate the C-C bond breaking while avoiding the poisoning of the catalytic surface by carbon monoxide species that occurs with methanol oxidation. The objective of this study was to develop new catalyst nanoparticles of well-controlled shape, size, and composition with excellent stability and better electrocatalytic activity. This paper described the recent achievements regarding the development of a series of PtxSn100-x catalysts prepared by pulsed laser deposition (PLD). It reported on the effect of several deposition parameters on the structure and properties of the deposited catalysts. It also described how these deposition conditions affect the electrocatalytic response of the resulting materials toward ethanol oxidation. Some interesting periodic oscillations were observed at some catalysts during ethanol electrooxidation. 7 refs., 1 fig.

  17. In situ FTIRS study of ethanol electro-oxidation on anode catalysts in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sun, G.; Jiang, L.; Zhu, M.; Yan, S.; Wang, G.; Xin, Q. [Chinese Academy of Sciences, Dalian (China). Dalian Inst. of Chemical Physics; Chen, Q.; Li, J.; Jiang, Y.; Sun, S. [Xiamen Univ., Xiamen (China). State Key Lab. for Physical Chemistry of Solid Surfaces

    2006-07-01

    The low activation of ethanol oxidation at lower temperatures is an obstacle to the development of cost-effective direct ethanol fuel cells (DEFCs). This study used a modified polyol method to prepare carbon-supported platinum (Pt) based catalysts. Carbon supported Pt-based catalysts were fabricated by a modified polyol method and characterized through transmission electron spectroscopy (TEM) and X-ray diffraction (XRD). Results of the study showed that the particles in the Pt/C and PtRu/C and PtSn/C catalysts were distributed on the carbon support uniformly. Diffraction peaks of the Pt shifted positively in the PtRu/C catalysts and negatively in the PtSn/C catalysts. In situ Fourier Transform Infra-red spectroscopy (FTIR) was used to investigate the adsorption and oxidation process of ethanol on the catalysts. Results showed that the electrocatalytic activity of ethanol oxidation on the materials was enhanced. Linear bonded carbon monoxide (CO) was the most strongly absorbed species, and the main products produced by the catalysts were carbon dioxide (CO{sub 2}), acetaldehyde, and acetic acid. Results showed that the PtRu/C catalyst broke the C-C bond more easily than the Pt/C and PtSn/C compounds. However, the results of a linear sweep voltammogram analysis showed that ethanol oxidation of the PtSn/C was enhanced. Bands observed on the compound indicated the formation of acetic acid and acetaldehyde. It was concluded that the enhancement of PtSn/C for ethanol oxidation was due to the formation of acetic acid and acetaldehyde at lower potentials. 4 refs., 1 fig.

  18. Fate of ethanol during cooking of liquid foods prepared with alcoholic beverages: Theory and experimental studies.

    Science.gov (United States)

    Snitkjær, Pia; Ryapushkina, Julia; Skovenborg, Erik; Astrup, Arne; Bech, Lene Mølskov; Jensen, Morten Georg; Risbo, Jens

    2017-09-01

    To obtain an understanding of the ethanol loss during cooking of liquid foods containing alcoholic beverages, ethanol concentration was measured as a function of time and remaining volume in meat stocks prepared with wine and beer. A mathematical model describing the decline in volatile compounds during heating of simple liquid foods was derived. The experimental results and the model show that concentration of ethanol at any given time is determined by the initial concentration and a power law function of the remaining volume fraction. The power law function is found to be independent of factors like pot dimensions and temperature. When using a lid to cover the pot during cooking, the model was still valid but the ethanol concentrations decreased more steeply, corresponding to a higher exponent. The results provide a theoretical and empirical guideline for predicting the ethanol concentration in cooked liquid foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of ethanol and methanol on growth of ruminal bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens.

    Science.gov (United States)

    Patterson, J A; Ricke, S C

    2015-01-01

    The effect of ethanol and methanol on growth of several ruminal bacterial strains was examined. Ethanol concentrations as low as 0.2% had a significant, but moderate, inhibitory effect on lag time or growth over time and 3.3% ethanol significantly inhibited maximum optical density obtained by both Selenomonas ruminantium and Butyrivibrio fibrisolvens. Little growth of either strain occurred at 10% ethanol concentrations. Methanol concentrations below 0.5% had little effect on either growth or maximum optical density of Selenomonas ruminantium whereas methanol concentrations below 3.3% had little effect on growth or maximum optical density of Butyrivibrio fibrisolvens. Higher methanol concentrations increasingly inhibited growth of both strains and no growth occurred at a 10% methanol concentration. Concentrations of ethanol or methanol used to add hydrophobic compounds to culture media should be kept below 1%.

  20. Microbial fuel cell treatment of ethanol fermentation process water

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  1. Plant cell walls to ethanol.

    Science.gov (United States)

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  2. ENERGY CHARACTERISTICS OF ETHANOL CHARACTERISTICS ...

    African Journals Online (AJOL)

    eobe

    CHARACTERISTICS OF ETHANOL-DIESEL MIX FOR AUTOMOTIVE. DIESEL ... diesel engine and the engine speed, torque, power and specific fuel consumption (sfc) were determine .... heated on an electric stove and stirred continuously.

  3. Establishing an ethanol production business

    International Nuclear Information System (INIS)

    1993-01-01

    Many Saskatchewan communities are interested in the potential benefits of establishing an ethanol production facility. A guide is presented to outline areas that communities should consider when contemplating the development of an ethanol production facility. Political issues affecting the ethanol industry are discussed including environmental impacts, United States legislation, Canadian legislation, and government incentives. Key success factors in starting a business, project management, marketing, financing, production, physical requirements, and licensing and regulation are considered. Factors which must be taken into consideration by the project manager and team include markets for ethanol and co-products, competent business management staff, equity partners for financing, production and co-product utilization technologies, integration with another facility such as a feedlot or gluten plant, use of outside consultants, and feedstock, water, energy, labour, environmental and site size requirements. 2 figs., 2 tabs

  4. An IR investigation of solid amorphous ethanol - Spectra, properties, and phase changes

    Science.gov (United States)

    Hudson, Reggie L.

    2017-12-01

    Mid- and far-infrared spectra of condensed ethanol (CH3CH2OH) at 10-160 K are presented, with a special focus on amorphous ethanol, the form of greatest astrochemical interest, and with special attention given to changes at 155-160 K. Infrared spectra of amorphous and crystalline forms are shown. The refractive index at 670 nm of amorphous ethanol at 16 K is reported, along with three IR band strengths and a density. A comparison is made to recent work on the isoelectronic compound ethanethiol (CH3CH2SH), and several astrochemical applications are suggested for future study.

  5. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  6. Production of ethanol from cellulose (sawdust)

    OpenAIRE

    Otulugbu, Kingsley

    2012-01-01

    The production of ethanol from food such as corn, cassava etc. is the most predominate way of producing ethanol. This has led to a shortage in food, inbalance in food chain, increased food price and indirect land use. This thesis thus explores using another feed for the production of ethanol- hence ethanol from cellulose. Sawdust was used to carry out the experiment from the production of ethanol and two methods were considered: SHF (Separate Hydrolysis and Fermentation) and SSF (Simultaneous...

  7. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  8. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid : Growth profiles and catalase activities in relation to microbody proliferation

    NARCIS (Netherlands)

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two

  9. The H2O2 scavenger ebselen decreases ethanol-induced locomotor stimulation in mice.

    Science.gov (United States)

    Ledesma, Juan Carlos; Font, Laura; Aragon, Carlos M G

    2012-07-01

    In the brain, the enzyme catalase by reacting with H(2)O(2) forms Compound I (catalase-H(2)O(2) system), which is the main system of central ethanol metabolism to acetaldehyde. Previous research has demonstrated that acetaldehyde derived from central-ethanol metabolism mediates some of the psychopharmacological effects produced by ethanol. Manipulations that modulate central catalase activity or sequester acetaldehyde after ethanol administration modify the stimulant effects induced by ethanol in mice. However, the role of H(2)O(2) in the behavioral effects caused by ethanol has not been clearly addressed. The present study investigated the effects of ebselen, an H(2)O(2) scavenger, on ethanol-induced locomotion. Swiss RjOrl mice were pre-treated with ebselen (0-50mg/kg) intraperitoneally (IP) prior to administration of ethanol (0-3.75g/kg; IP). In another experiment, animals were pre-treated with ebselen (0 or 25mg/kg; IP) before caffeine (15mg/kg; IP), amphetamine (2mg/kg; IP) or cocaine (10mg/kg; IP) administration. Following these treatments, animals were placed in an open field to measure their locomotor activity. Additionally, we evaluated the effect of ebselen on the H(2)O(2)-mediated inactivation of brain catalase activity by 3-amino-1,2,4-triazole (AT). Ebselen selectively prevented ethanol-induced locomotor stimulation without altering the baseline activity or the locomotor stimulating effects caused by caffeine, amphetamine and cocaine. Ebselen reduced the ability of AT to inhibit brain catalase activity. Taken together, these data suggest that a decline in H(2)O(2) levels might result in a reduction of the ethanol locomotor-stimulating effects, indicating a possible role for H(2)O(2) in some of the psychopharmacological effects produced by ethanol. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Ethanol from lignocellulosic biomasses

    International Nuclear Information System (INIS)

    Ricci, E.; Viola, E.; Zimbardi, F.; Braccio, G.; Cuna, D.

    2001-01-01

    In this report are presented results achieved on the process optimisation of bioethanol production from wheat straw, carried out within the ENEA's project of biomass exploitation for renewable energy. The process consists of three main steps: 1) biomass pretreatment by means of steam explosion; 2) enzymatic hydrolysis of the cellulose fraction; 3) fermentation of glucose. To perform the hydrolysis step, two commercial enzymatic mixtures have been employed, mainly composed by β-glucosidase (cellobiase), endo-glucanase and exo-glucanase. The ethanologenic yeast Saccharomyces cerevisiae has been used to ferment the glucose in he hydrolyzates. Hydrolysis yield of 97% has been obtained with steam exploded wheat straw treated at 220 0 C for 3 minutes and an enzyme to substrate ratio of 4%. It has been pointed out the necessity of washing with water the pretreated what straw, in order to remove the biomass degradation products, which have shown an inhibition effect on the yeast. At the best process conditions, a fermentation yield of 95% has been achieved. In the Simultaneous Saccharification and Fermentation process, a global conversion of 92% has been obtained, which corresponds to the production of about 170 grams of ethanol per kilogram of exploded straw [it

  11. Synthesis of labeled compounds

    International Nuclear Information System (INIS)

    Whaley, T.W.

    1977-01-01

    Intermediate compounds labeled with 13 C included methane, sodium cyanide, methanol, ethanol, and acetonitrile. A new method for synthesizing 15 N-labeled 4-ethylsulfonyl-1-naphthalene-sulfonamide was developed. Studies were conducted on pathways to oleic-1- 13 C acid and a second pathway investigated was based on carbonation of 8-heptadecynylmagnesium bromide with CO 2 to prepare sterolic acid. Biosynthetic preparations included glucose- 13 C from starch isolated from tobacco leaves following photosynthetic incubation with 13 CO 2 and galactose- 13 C from galactosylglycerol- 13 C from kelp. Research on growth of organisms emphasized photosynthetic growth of algae in which all cellular carbon is labeled. Preliminary experiments were performed to optimize the growth of Escherichia coli on sodium acetate- 13 C

  12. Social opportunity and ethanol drinking in rats.

    Science.gov (United States)

    Tomie, Arthur; Burger, Kelly M; Di Poce, Jason; Pohorecky, Larissa A

    2004-11-01

    Two experiments were designed to evaluate the effects of pairings of ethanol sipper conditioned stimulus (CS) with social opportunity unconditioned stimulus (US) on ethanol sipper CS-directed drinking in rats. In both experiments, rats were deprived of neither food nor water, and initiation of drinking of unsweetened 3% ethanol was evaluated, as were the effects of increasing the concentration of unsweetened ethanol (3-10%) across sessions. In Experiment 1, Group Paired (n=8) received 35 trials per session wherein the ethanol sipper CS was presented for 10 s immediately prior to 15 s of social opportunity US. All rats initiated sipper CS-directed drinking of 3% ethanol. Increasing the concentration of ethanol in the sipper CS [(3%, 4%, 6%, 8%, 10% (vol./vol.)] across sessions induced escalation of daily g/kg ethanol intake. To evaluate the hypothesis that the drinking in Group Paired was due to autoshaping, Experiment 2 included a pseudoconditioning control that received sipper CS and social opportunity US randomly with respect to one another. All rats in Group Paired (n=6) and in Group Random (n=6) initiated sipper CS-directed drinking of 3% ethanol and daily mean g/kg ethanol intake in the two groups was comparable. Also comparable was daily g/kg ethanol intake, which increased for both groups with the availability of higher concentrations of ethanol in the sipper CS, up to a maximum of approximately 0.8 g/kg ethanol intake of 10% ethanol. Results indicate that random presentations of ethanol sipper CS and social opportunity US induced reliable initiation and escalation of ethanol intake, and close temporally contiguous presentations of CS and US did not induce still additional ethanol intake. This may indicate that autoshaping CR performance is not induced by these procedures, or that high levels of ethanol intake induced by factors related to pseudoconditioning produces a ceiling effect. Implications for ethanol drinking in humans are discussed.

  13. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.

    Science.gov (United States)

    Chen, Shuang; Xu, Yan

    2014-08-01

    High tolerance towards ethanol is a desirable property for the Saccharomyces cerevisiae strains used in the alcoholic beverage industry. To improve the ethanol tolerance of an industrial Chinese rice wine yeast, a sequential batch fermentation strategy was used to adaptively evolve a chemically mutagenized Chinese rice wine G85 strain. The high level of ethanol produced under Chinese rice wine-like fermentation conditions was used as the selective pressure. After adaptive evolution of approximately 200 generations, mutant G85X-8 was isolated and shown to have markedly increased ethanol tolerance. The evolved strain also showed higher osmotic and temperature tolerances than the parental strain. Laboratory Chinese rice wine fermentation showed that the evolved G85X-8 strain was able to catabolize sugars more completely than the parental G85 strain. A higher level of yeast cell activity was found in the fermentation mash produced by the evolved strain, but the aroma profiles were similar between the evolved and parental strains. The improved ethanol tolerance in the evolved strain might be ascribed to the altered fatty acids composition of the cell membrane and higher intracellular trehalose concentrations. These results suggest that adaptive evolution is an efficient approach for the non-recombinant modification of industrial yeast strains.

  14. Breeding and fermentation characterization of Pachysolen Tannophilus mutant with high ethanol productivity from xylose

    International Nuclear Information System (INIS)

    Pan Lijun; Chu Kaiqing; Yang Peizhou

    2011-01-01

    Currently, few strains can utilize xylose to produce ethanol with very low productivity. By the method of mutation breeding to these strains the rate of lignocellulosic utilization could be improved. In this study, the initial Pachysolen tannophilus As 2.1585 was treated by N + ions implantation of 15 keV. The survival curve showed a saddle model. Considering the survival rate and range of positive mutation, the N + ions implantation of 12.5 × 10 14 ions/cm for mutation breeding of Pachysolen tannophilus was selected. A Pachysolen tannophilus mutant mut-54, which had perfect genetic stability of producing ethanol was screened out after continuous 7 passages. The mut-54 had a higher xylose consumption rate, biomass accumulation and ability of ethanol-resistant than the parent strain. Compared with the parent strain, the ethanol concentration fermented by the mut-54 for 72 h increased by 12.74%, which was more suitable for producing ethanol from xylose than the parent strain. (authors)

  15. Ethanol injected into the hypothalamic arcuate nucleus induces behavioral stimulation in rats: an effect prevented by catalase inhibition and naltrexone.

    Science.gov (United States)

    Pastor, Raúl; Aragon, Carlos M G

    2008-10-01

    It is suggested that some of the behavioral effects of ethanol, including its psychomotor properties, are mediated by beta-endorphin and opioid receptors. Ethanol-induced increases in the release of hypothalamic beta-endorphin depend on the catalasemic conversion of ethanol to acetaldehyde. Here, we evaluated the locomotor activity in rats microinjected with ethanol directly into the hypothalamic arcuate nucleus (ArcN), the main site of beta-endorphin synthesis in the brain and a region with high levels of catalase expression. Intra-ArcN ethanol-induced changes in motor activity were also investigated in rats pretreated with the opioid receptor antagonist, naltrexone (0-2 mg/kg) or the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg). We found that ethanol microinjections of 64 or 128, but not 256 microg, produced locomotor stimulation. Intra-ArcN ethanol (128 microg)-induced activation was prevented by naltrexone and AT, whereas these compounds did not affect spontaneous activity. The present results support earlier evidence indicating that the ArcN and the beta-endorphinic neurons of this nucleus are necessary for ethanol to induce stimulation. In addition, our data suggest that brain structures that, as the ArcN, are rich in catalase may support the formation of ethanol-derived pharmacologically relevant concentrations of acetaldehyde and, thus be of particular importance for the behavioral effects of ethanol.

  16. PEI detoxification of pretreated spruce for high solids ethanol fermentation

    International Nuclear Information System (INIS)

    Cannella, David; Sveding, Per Viktor; Jørgensen, Henning

    2014-01-01

    Highlights: • High solids (30% dry matter) pretreatment, enzymatic hydrolysis and fermentation. • Horizontal rotary reactor for hydrolysis and fermentation. • In situ hydrolysates detoxification using inhibitors adsorbing PEI polymer. • 50% of inhibitors recovered as by-product, recyclability of PEI polymer up to 5 times. • 76% of maximum theoretical ethanol was fermented at final concentration of 51 g/kg. - Abstract: Performing the bioethanol production process at high solids loading is a requirement for economic feasibility at industrial scale. So far this has successfully been achieved using wheat straw and other agricultural residues at 30% of water insoluble solids (WIS), but for softwood species (i.e. spruce) this has been difficult to reach. The main reason behind this difference is the higher recalcitrance of woody substrates which require harsher pretreatment conditions, thus generating higher amounts of inhibitory compounds, ultimately lowering fermentation performances. In this work we studied ethanol production from spruce performing the whole process, from pretreatment to hydrolysis and fermentation, at 30% dry matter (equivalent to ∼20% WIS). Hydrolysis and fermentation was performed in a horizontal free fall mixing reactor enabling efficient mixing at high solids loadings. In batch simultaneous saccharification and fermentation (SSF), up to 76% cellulose to ethanol conversion was achieved resulting in a concentration of 51 g/kg of ethanol. Key to obtaining this high ethanol yield at these conditions was the use of a detoxification technology based on applying a soluble polyelectrolyte polymer (polyethylenimine, PEI) to absorb inhibitory compounds in the material. On average 50% removal and recovery of the main inhibitors (HMF, furfural, acetic acid and formic acid) was achieved dosing 1.5% w/w of soluble PEI. The use of PEI was compatible with operating the process at high solids loadings and enabled fermentation of hydrolysates, which

  17. Lignocellulosic ethanol: Technology design and its impact on process efficiency.

    Science.gov (United States)

    Paulova, Leona; Patakova, Petra; Branska, Barbora; Rychtera, Mojmir; Melzoch, Karel

    2015-11-01

    This review provides current information on the production of ethanol from lignocellulosic biomass, with the main focus on relationships between process design and efficiency, expressed as ethanol concentration, yield and productivity. In spite of unquestionable advantages of lignocellulosic biomass as a feedstock for ethanol production (availability, price, non-competitiveness with food, waste material), many technological bottlenecks hinder its wide industrial application and competitiveness with 1st generation ethanol production. Among the main technological challenges are the recalcitrant structure of the material, and thus the need for extensive pretreatment (usually physico-chemical followed by enzymatic hydrolysis) to yield fermentable sugars, and a relatively low concentration of monosaccharides in the medium that hinder the achievement of ethanol concentrations comparable with those obtained using 1st generation feedstocks (e.g. corn or molasses). The presence of both pentose and hexose sugars in the fermentation broth, the price of cellulolytic enzymes, and the presence of toxic compounds that can inhibit cellulolytic enzymes and microbial producers of ethanol are major issues. In this review, different process configurations of the main technological steps (enzymatic hydrolysis, fermentation of hexose/and or pentose sugars) are discussed and their efficiencies are compared. The main features, benefits and drawbacks of simultaneous saccharification and fermentation (SSF), simultaneous saccharification and fermentation with delayed inoculation (dSSF), consolidated bioprocesses (CBP) combining production of cellulolytic enzymes, hydrolysis of biomass and fermentation into one step, together with an approach combining utilization of both pentose and hexose sugars are discussed and compared with separate hydrolysis and fermentation (SHF) processes. The impact of individual technological steps on final process efficiency is emphasized and the potential for use

  18. Synthesis and evaluation of alpha-[[(2-haloethyl)amino]methyl]-2- nitro-1H-imidazole-1-ethanols as prodrugs of alpha-[(1-aziridinyl)methyl]-2- nitro-1H-imidazole-1-ethanol (RSU-1069) and its analogues which are radiosensitizers and bioreductively activated cytotoxins

    International Nuclear Information System (INIS)

    Jenkins, T.C.; Naylor, M.A.; O'Neill, P.; Threadgill, M.D.; Cole, S.; Stratford, I.J.; Adams, G.E.; Fielden, E.M.; Suto, M.J.; Stier, M.A.

    1990-01-01

    alpha-[(1-Aziridinyl)methyl]-2-nitro-1H-imidazole-1-ethanols, of general formula ImCH2CH(OH)CH2NCR1R2CR3R4, where Im = 2-nitroimidazole and R1, R2, R3, R4 = H, Me, are radiosensitizers and selective bioreductively activated cytotoxins toward hypoxic tumor cells in vitro and in vivo. Treatment of the aziridines with hydrogen halide in acetone or aqueous acetone gave the corresponding 2-haloethylamines of general formula ImCH2CH(OH)CH2(+)-NH2CR1R2CR3R4X X-, where R1, R2, R3, R4 = H, Me, and X = F, Cl, Br, I. These 2-haloethylamines were evaluated as prodrugs of the parent aziridines. The rates of ring closure in aqueous solution at pH approximately 6 were found to increase with increasing methyl substitution and to depend on the nature of the leaving group (I approximately Br greater than Cl much greater than F). A competing reaction of ImCH2CH(OH)CH2+NH2CH2CH2X X- (X = Cl, Br) with aqueous HCO3- ions gives 3-[2-hyroxy-3-(2-nitro-1H-imidazol-1-yl)propyl]-2-oxazolidinone. The activities of these prodrugs as radiosensitizers or as bioreductively activated cytotoxins were consistent with the proportion converted to the parent aziridine during the course of the experiment. alpha-[[(2-Bromoethyl)amino]methyl]-2-nitro-1H-imidazole-1- ethanol (RB 6145, 10), the prodrug of alpha-[(1-aziridinyl)methyl]-2-nitro-1H-imidazole-1-ethanol (RSU-1069, 3), is identified as the most useful compound in terms of biological activity and rate of ring closure under physiological conditions

  19. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    Energy Technology Data Exchange (ETDEWEB)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  20. Removal of benzaldehyde from a water/ethanol mixture by applying scavenging techniques

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Skov, Thomas; Gernaey, Krist V.

    2017-01-01

    A presence of carbonyl compounds is very common in the food industry. The nature of such compounds is to be reactive and thus many products involve aldehydes/ketones in their synthetic routes. By contrast, the high reactivity of carbonyl compounds could also lead to formation of undesired compounds......, such as genotoxic impurities. It can therefore be important to remove carbonyl compounds by implementing suitable removal techniques, with the aim of protecting final product quality. This work is focused on benzaldehyde as a model component, studying its removal from a water/ethanol mixture by applying different...

  1. “Drinking in the Dark” (DID) Procedures: A Model of Binge-Like Ethanol Drinking in Non-Dependent Mice

    Science.gov (United States)

    Thiele, Todd E.; Navarro, Montserrat

    2013-01-01

    This review provides an overview of an animal model of binge-like ethanol drinking that has come to be called “drinking in the dark” (DID), a procedure that promotes high levels of ethanol drinking and pharmacologically relevant blood ethanol concentrations (BECs) in ethanol-preferring strains of mice. Originally described by Rhodes et al. (2005), the most common variation of the DID procedure, using singly housed mice, involves replacing the water bottle with a bottle containing 20% ethanol for 2 to 4 hours, beginning 3 hours into the dark cycle. Using this procedure, high ethanol drinking strains of mice (e.g., C57BL/6J) typically consume enough ethanol to achieve BECs greater than 100 mg/dL and to exhibit behavioral evidence of intoxication. This limited access procedure takes advantage of the time in the animal’s dark cycle in which the levels of ingestive behaviors are high, yet high ethanol intake does not appear to stem from caloric need. Mice have the choice of drinking or avoiding the ethanol solution, eliminating the stressful conditions that are inherent in other models of binge-like ethanol exposure in which ethanol is administered by the experimenter, and in some cases, potentially painful. The DID procedure is a high throughput approach that does not require extensive training or the inclusion of sweet compounds to motivate high levels of ethanol intake. The high throughput nature of the DID procedure makes it useful for rapid screening of pharmacological targets that are protective against binge-like drinking and for identifying strains of mice that exhibit binge-like drinking behavior. Additionally, the simplicity of DID procedures allows for easy integration into other paradigms, such as prenatal ethanol exposure and adolescent ethanol drinking. It is suggested that the DID model is a useful tool for studying the neurobiology and genetics underlying binge-like ethanol drinking, and may be useful for studying the transition to ethanol

  2. Kinetic analysis of polyoxometalate (POM) oxidation of non-phenolic lignin model compound

    Science.gov (United States)

    Tomoya Yokoyama; Hou-min Chang; Ira A. Weinstock; Richard S. Reiner; John F. Kadla

    2003-01-01

    Kinetic and reaction mechanism of non-phenolic lignin model compounds under anaerobic polyoxometalate (POM), Na5(+1.9)[SiV1(-0.1)MoW10(+0.1) 40], bleaching conditions were examined. Analyses using a syringyl type model, 1-(3,4,5-trimethoxyphenyl)ethanol (1), a guaiacyl type, 1-(3,4- imethoxyphenyl)ethanol (2), and 1- (4-ethoxy-3,5-dimethoxyphenyl)ethanol (3) suggest...

  3. Grain sorghum is a viable feedstock for ethanol production.

    Science.gov (United States)

    Wang, D; Bean, S; McLaren, J; Seib, P; Madl, R; Tuinstra, M; Shi, Y; Lenz, M; Wu, X; Zhao, R

    2008-05-01

    Sorghum is a major cereal crop in the USA. However, sorghum has been underutilized as a renewable feedstock for bioenergy. The goal of this research was to improve the bioconversion efficiency for biofuels and biobased products from processed sorghum. The main focus was to understand the relationship among "genetics-structure-function-conversion" and the key factors impacting ethanol production, as well as to develop an energy life cycle analysis model (ELCAM) to quantify and prioritize the saving potential from factors identified in this research. Genetic lines with extremely high and low ethanol fermentation efficiency and some specific attributes that may be manipulated to improve the bioconversion rate of sorghum were identified. In general, ethanol yield increased as starch content increased. However, no linear relationship between starch content and fermentation efficiency was found. Key factors affecting the ethanol fermentation efficiency of sorghum include protein digestibility, level of extractable proteins, protein and starch interaction, mash viscosity, amount of phenolic compounds, ratio of amylose to amylopectin, and formation of amylose-lipid complexes in the mash. A platform ELCAM with a base case showed a positive net energy value (NEV) = 25,500 Btu/gal EtOH. ELCAM cases were used to identify factors that most impact sorghum use. For example, a yield increase of 40 bu/ac resulted in NEV increasing from 7 million to 12 million Btu/ac. An 8% increase in starch provided an incremental 1.2 million Btu/ac.

  4. High-pressure density measurements for the binary system ethanol plus heptane

    DEFF Research Database (Denmark)

    Watson, G.; Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.

    2006-01-01

    The density of the asymmetrical binary system composed of ethanol and heptane has been measured (630 points) for nine different compositions including the pure compounds at five temperatures in the range (293.15 to 333.15) K and 14 isobars up to 65 MPa with a vibrating-tube densimeter, The experi......The density of the asymmetrical binary system composed of ethanol and heptane has been measured (630 points) for nine different compositions including the pure compounds at five temperatures in the range (293.15 to 333.15) K and 14 isobars up to 65 MPa with a vibrating-tube densimeter...

  5. Quantifying MTBE biodegradation in the Vandenberg Air Force Base ethanol release study using stable carbon isotopes

    Science.gov (United States)

    McKelvie, Jennifer R.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2007-12-01

    Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The δ 13C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of - 31.3 ± 0.5‰ ( n = 40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in 13C of MTBE by 40.6‰, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 μg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of δ 13C for TBA in groundwater samples in the "With ethanol lane" was - 26.0 ± 1.0‰ ( n = 32). Uniform δ 13C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of - 9.2‰ to - 15.6‰, and values of δ 13C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year - 1 ( n = 18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year - 1 calculated using contaminant mass-discharge for the "With ethanol lane".

  6. Fermentation of hexoses to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lena [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology]|[Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Chemical Reaction Engineering

    2000-06-01

    The Goals of the project has been: to increase the ethanol yield by reducing the by-product formation, primarily biomass and glycerol, and to prevent stuck fermentations, i.e. to maintain a high ethanol production rate simultaneously with a high ethanol yield. The studies have been performed both in defined laboratory media and in a mixture of wood- and wheat hydrolysates. The yeast strains used have been both industrial strains of bakers yeast, Saccharomyces cerevisiae, and haploid laboratory strains. The Relevance of these studies with respect to production of ethanol to be used as fuel is explained by: With the traditional process design used today, it is very difficult to reach a yield of more than 90 % of the theoretical maximal value of ethanol based on fermented hexose. During 'normal' growth and fermentation conditions in either anaerobic batch or chemostat cultures, substrate is lost as biomass and glycerol in the range of 8 to 11 % and 6 to 11 % of the substrate consumed (kg/kg). It is essential to reduce these by-products. Traditional processes are mostly batch processes, in which there is a risk that the biocatalyst, i.e. the yeast, may become inactivated. If for example yeast biomass production is avoided by use of non-growing systems, the ethanol production rate is instantaneously reduced by at least 50%. Unfortunately, even if yeast biomass production is not avoided on purpose, it is well known that stuck fermentations caused by cell death is a problem in large scale yeast processes. The main reason for stuck fermentations is nutrient imbalances. For a good process economy, it is necessary to ensure process accessibility, i.e. to maintain a high and reproducible production rate. This will both considerably reduce the necessary total volume of the fermentors (and thereby the investment costs), and moreover minimize undesirable product fall-out.

  7. Ethanol fuel gets the hangover

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Corn, wheat, sugar cane.. The multiplication of biofuel refineries has led to a rise of the prices of agriculture products. The question is: do we need ethanol? The US situation gives an answer: the offer exceeds the demand and ethanol prices have dropped down. Other environmental and socio-economical consequences of biofuels development are put forward by the UNO, the IMF and by non-governmental organizations who foresee a dramatic rise of food products prices and an aggravation of starvation in developing countries. (J.S.)

  8. A Quantitative Gas Chromatographic Ethanol Determination.

    Science.gov (United States)

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  9. Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: influence of the fusel.

    Science.gov (United States)

    Hu, Yaochi; Zhan, Nina; Dou, Chang; Huang, He; Han, Yuwang; Yu, Dinghua; Hu, Yi

    2010-11-01

    Bio-ethanol dehydration to ethylene is an attractive alternative to oil-based ethylene. The influence of fusel, main byproducts in the fermentation process of bio-ethanol production, on the bio-ethanol dehydration should not be ignored. We studied the catalytic dehydration of bio-ethanol to ethylene over parent and modified HZSM-5 at 250°C, with weight hourly space velocity (WHSV) equal to 2.0/h. The influences of a series of fusel, such as isopropanol, isobutanol and isopentanol, on the ethanol dehydration over the catalysts were investigated. The 0.5%La-2%PHZSM-5 catalyst exhibited higher ethanol conversion (100%), ethylene selectivity (99%), and especially enhanced stability (more than 70 h) than the parent and other modified HZSM-5. We demonstrated that the introduction of lanthanum and phosphorous to HZSM-5 could weaken the negative influence of fusel on the formation of ethylene. The physicochemical properties of the catalysts were characterized by ammonia temperature-programmed desorption (NH(3)-TPD), nitrogen adsorption and thermogravimetry (TG)/differential thermogravimetry (DTG)/differential thermal analysis (DTA) (TG/DTG/DTA) techniques. The results indicated that the introduction of lanthanum and phosphorous to HZSM-5 could inhibit the formation of coking during the ethanol dehydration to ethylene in the presence of fusel. The development of an efficient catalyst is one of the key technologies for the industrialization of bio-ethylene.

  10. Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene.

    Science.gov (United States)

    Raamsdonk, L M; Diderich, J A; Kuiper, A; van Gaalen, M; Kruckeberg, A L; Berden, J A; Van Dam, K; Kruckberg, A L

    2001-08-01

    In previous studies it was shown that deletion of the HXK2 gene in Saccharomyces cerevisiae yields a strain that hardly produces ethanol and grows almost exclusively oxidatively in the presence of abundant glucose. This paper reports on physiological studies on the hxk2 deletion strain on mixtures of glucose/sucrose, glucose/galactose, glucose/maltose and glucose/ethanol in aerobic batch cultures. The hxk2 deletion strain co-consumed galactose and sucrose, together with glucose. In addition, co-consumption of glucose and ethanol was observed during the early exponential growth phase. In S.cerevisiae, co-consumption of ethanol and glucose (in the presence of abundant glucose) has never been reported before. The specific respiration rate of the hxk2 deletion strain growing on the glucose/ethanol mixture was 900 micromol.min(-1).(g protein)(-1), which is four to five times higher than that of the hxk2 deletion strain growing oxidatively on glucose, three times higher than its parent growing on ethanol (when respiration is fully derepressed) and is almost 10 times higher than its parent growing on glucose (when respiration is repressed). This indicates that the hxk2 deletion strain has a strongly enhanced oxidative capacity when grown on a mixture of glucose and ethanol. Copyright 2001 John Wiley & Sons, Ltd.

  11. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  12. Organolanthanoid compounds

    International Nuclear Information System (INIS)

    Schumann, H.

    1984-01-01

    Up to little more than a decade ago organolanthanoid compounds were still a curiosity. Apart from the description of an isolated number of cyclopentadienyl and indenyl derivatives, very few significant contributions had been made to this interesting sector of organometallic chemistry. However, subsequent systematic studies using modern preparative and analytical techniques, together with X-ray single crystal structure determinations, enabled the isolation and characterization of a large number of very interesting homoleptic and heteroleptic compounds in which the lanthanoid is bound to hydrogen, to substituted or unsubstituted cyclopentadienyl groups, to allyl or alkynyl groups, or even to phosphorus ylides, trimethylsilyl, and carbonylmetal groups. These compounds, which are all extremely sensitive to oxygen and water, open up new possibilities in the field of catalysis and have great potential in organic synthesis - as recent studies with pentamethylcyclopentadienyl derivatives, organolanthanoid(II) compounds, and hexamethyllanthanoid complexes have already shown. (orig.) [de

  13. Synergistic toxicity of ethanol and MDMA towards primary cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Pontes, Helena; Sousa, Carla; Silva, Renata; Fernandes, Eduarda; Carmo, Helena; Remiao, Fernando; Carvalho, Felix; Bastos, Maria Lourdes

    2008-01-01

    Ethanol is frequently consumed along with 3,4-methylenedioxymethamphetamine (MDMA; ecstasy). Since both compounds are hepatotoxic and are metabolized in the liver, an increased deleterious interaction resulting from the concomitant use of these two drugs seems plausible. Another important feature of MDMA-induced toxicity is hyperthermia, an effect known to be potentiated after continuous exposure to ethanol. Considering the potential deleterious interaction, the aim of the present study was to evaluate the hepatotoxic effects of ethanol and MDMA mixtures to primary cultured rat hepatocytes and to elucidate the mechanism(s) underlying this interaction. For this purpose, the toxicity induced by MDMA to primary cultured rat hepatocytes in absence or in presence of ethanol was evaluated, under normothermic (36.5 deg. C) and hyperthermic (40.5 deg. C) conditions. While MDMA and ethanol, by themselves, had discrete effects on the analysed parameters, which were slightly aggravated under hyperthermia, the simultaneous incubation of MDMA and ethanol for 24 h, resulted in high cell death ratios accompanied by a significant disturbance of cellular redox status and decreased energy levels. Evaluation of apoptotic/necrotic features provided clear evidences that the cell death occurs preferentially through a necrotic pathway. All the evaluated parameters were dramatically aggravated when cells were incubated under hyperthermia. In conclusion, co-exposure of hepatocytes to ethanol and MDMA definitely results in a synergism of the hepatotoxic effects, through a disruption of the cellular redox status and enhanced cell death by a necrotic pathway in a temperature-dependent extent

  14. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde

    Directory of Open Access Journals (Sweden)

    Laura eFont

    2013-07-01

    Full Text Available Significant evidence implicates the endogenous opioid system (opioid peptides and receptors in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference. Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc, which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine. The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: 1 implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and 2 the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR.

  15. Production of ethanol from mesquite [Prosopis juliflora (SW) D.C.] pods mash by Zymomonas mobilis in submerged fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Celiane Gomes Maia da [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Ciencias Domesticas; Andrade, Samara Alvachian Cardoso; Schuler, Alexandre Ricardo Pereira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica; Souza, Evandro Leite de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Nutricao; Stamford, Tania Lucia Montenegro [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Nutricao], E-mail: tlmstamford@yahoo.com.br

    2011-01-15

    Mesquite [Prosopis juliflora (SW) D.C.], a perennial tropical plant commonly found in Brazilian semi-arid region, is a viable raw material for fermentative processes because of its low cost and production of pods with high content of hydrolyzable sugars which generate many compounds, including ethanol. This study aimed to evaluate the use of mesquite pods as substrate for ethanol production by Z. mobilis UFPEDA- 205 in a submerged fermentation. The fermentation was assessed for rate of substrate yield to ethanol, rate of ethanol production and efficiency of fermentation. The very close theoretical (170 g L{sup -1}) and experimental (165 g L{sup -1}) maximum ethanol yields were achieved at 36 h of fermentation. The highest counts of Z. mobilis UFEPEDA-205 (both close to 6 Log cfu mL{sup -1}) were also noted at 36 h. Highest rates of substrate yield to ethanol (0.44 g ethanol g glucose{sup -1}), of ethanol production (4.69 g L{sup -1} h{sup -1}) and of efficiency of fermentation (86.81%) were found after 30 h. These findings suggest mesquite pods as an interesting substrate for ethanol production using submerged fermentation by Z. mobilis. (author)

  16. A luminescent metal-organic framework for sensing methanol in ethanol solution.

    Science.gov (United States)

    Jin, Zhao; He, Hongming; Zhao, Huanyu; Borjigin, Tsolmon; Sun, Fuxing; Zhang, Daming; Zhu, Guangshan

    2013-10-07

    A new luminescent Zn-MOF has been synthesized under hydrothermal condition using a semi-rigid ligand H3pcoip (4-(2-carboxyphenoxy)isophthalic acid) is reported. The luminescence properties of 1 in methanol, ethanol, and water have been investigated. Interestingly, compound 1 has a unique response to methanol compared to ethanol and water. Moreover, 1 displays a turn-on switching property triggered by methanol solvent molecules and a high sensitivity towards methanol concentration as low as 2 × 10(-7) (V(MeOH)/V(total)) in ethanol solution. The results indicate that the Zn-MOF has potential application as a sensor for detecting methanol in ethanol solution with excellent selectivity and high sensitivity.

  17. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity.

    Science.gov (United States)

    Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan

    2017-03-01

    A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang

    2011-12-21

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol production. In this study, commercial and polymer-derived activated carbons were utilized to selectively remove the model fermentation inhibitor, furfural, from water solution during bioethanol production. The oxygen functional groups on the carbon surface were found to influence the selectivity of sorbents between inhibitors and sugars during the separation. After inhibitors were selectively removed from the broth, the cell growth and ethanol production efficiency was recovered noticeably in the fermentation. A sorption/desorption cycle was designed, and the sorbents were regenerated in a fixed-bed column system using ethanol-containing standard solution. Dynamic mass balance was obtained after running four or five cycles, and regeneration results were stable even after twenty cycles. © 2011 American Chemical Society.

  19. Big increase in US ethanol

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-10

    US ethanol capacity is expected to reach 600 million US gal/year by the end of 1982, according to a report from the AIChE. Although this is a six-fold increase over capacity installed in 1979 it is still less than 1% of US domestic motor fuel supply.

  20. Philippines sugar cane ethanol plant

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-06

    The Philippines' National Alcohol Commission has called for international tenders for the construction of ethanol from sugar cane plants. Interested companies have been asked to quote for capacities of 60,000, 120,000 and 180,000 litre per day. The initial tender calls for three plants but the figure could rise to ten which would then be worth about $20 million.

  1. Heat integrated ethanol dehydration flowsheets

    Energy Technology Data Exchange (ETDEWEB)

    Hutahaean, L.S.; Shen, W.H.; Brunt, V. Van [Univ. of South Carolina, Columbia, SC (United States)

    1995-04-01

    zA theoretical evaluation of heat-integrated heterogeneous-azeotropic ethanol-water distillation flowsheets is presented. Simulations of two column flowsheets using several different hydrocarbon entrainers reveal a region of potential heat integration and substantial reduction in operating energy. In this paper, methods for comparing hydrocarbon entrainers are shown. Two aspects of entrainers are related to operating and capital costs. The binary azeotropic composition of the entrainer-ethanol mixture is related to the energy requirements of the flowsheet. A temperature difference in the azeotrophic column is related to the size of the column and overall process staging requirements. Although the hydrophobicity of an entrainer is essential for specification of staging in the dehydration column, no substantial increase in operating energy results from an entrainer that has a higher water content. Likewise, liquid-liquid equilibria between several entrainer-ethanol-water mixtures have no substantial effect on either staging or operation. Rather, increasing the alcohol content of the entrainer-ethanol azeotrope limits its recovery in the dehydration column, and increases the recycle and reflux streams. These effects both contribute to increasing the separation energy requirements and reducing the region of potential heat integration. A cost comparison with a multieffect extractive distillation flowsheet reveals that the costs are comparable; however, the extractive distillation flowsheet is more cost effective as operating costs increase.

  2. The ontogeny of ethanol aversion.

    Science.gov (United States)

    Saalfield, Jessica; Spear, Linda

    2016-03-15

    Recent work has suggested separate developmental periods within the broader framework of adolescence, with data suggesting distinct alterations and vulnerabilities within these intervals. While previous research has suggested reduced sensitivity to the aversive effects of alcohol in adolescence relative to adults, a more detailed ontogeny of this effect has yet to be conducted. The adolescent brain undergoes significant transitions throughout adolescence, including in regions linked with drug reward and aversion. The current study aimed to determine the ontogeny of ethanol aversion by utilizing a conditioned taste aversion procedure at six different ages to test the hypothesis that the transitions into, through, and out of adolescence are associated with ontogenetic alterations in sensitivity to the aversive properties of ethanol. Non-deprived animals given Boost® as the conditioned stimulus (CS) were used in Experiment 1, whereas Experiment 2 used water-restricted animals provided with a saccharin/sucrose solution as the CS. In both experiments, an attenuated sensitivity to the aversive properties of ethanol was evident in adolescents compared to adults, although more age differences were apparent in water deprived animals than when a highly palatable CS was given to ad libitum animals. Overall, the data suggest an attenuated sensitivity to the aversive properties of ethanol that is most pronounced during pre- and early adolescence, declining thereafter to reach the enhanced aversive sensitivity of adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Phytochemical and Pharmacological Investigation of Ethanol Extract of Cissampelos pareira.

    Science.gov (United States)

    Reza, H M; Shohel, M; Aziz, Sadia B; Pinaz, Farzana I; Uddin, M F; Al-Amin, M; Khan, I N; Jain, Preeti

    2014-09-01

    In this study, the ethanol extract of Cissampelos pareira has been evaluated. The extract was tested for analgesic properties using both hot plate and acetic acid-induced writhing methods. Antiinflammatory effect was investigated using two different doses of 250 and 500 mg/kg body weight on Evans rats by carrageenan-induced paw edema test. The antipyretic activity was evaluated using Brewer's yeast-induced pyrexia in Wistar rats. The phytochemical screening of the extract of Cissampelos pareira exhibited the presence of several phytochemical compounds including saponins, gums and carbohydrates, reducing sugars, alkaloids and terpenoids. Ethanol extract of Cissampelos pareira exhibited significant analgesic, antiinflammatory and antipyretic activity in a dose-dependent manner. The results obtained from these studies confirm its therapeutic value against diseases caused by various pain and fever.

  4. Spittlebug impacts on sugarcane quality and ethanol production

    Directory of Open Access Journals (Sweden)

    Gisele Cristina Ravaneli

    2011-02-01

    Full Text Available The objective of this work was to evaluate the impacts of spittlebug (Mahanarva fimbriolata attack on sugarcane quality and ethanol production. Technological and microbiological parameters of juice and fermentation process were evaluated in ten fermentation cycles and two harvest seasons. Treatments consisted of different spittlebug stalk damage levels: control, with 100% of apparently healthy stalks; medium, with 15% of damaged or dry stalks (DDS; high, with 30% of DDS; and very high, with 60% of DDS. Spittlebug attack caused significant losses in cane quality, reducing total soluble solids, sucrose content, total reducing sugars, and pH, and increasing total phenolic compounds, and total and volatile juice acidity. The fermentation process was also significantly affected, resulting in lower ethanol content in wine. There was an increase in acetaldehyde concentration in the distillate. The spittlebug attack caused negative impacts on sugarcane quality and fermentation process, and these impacts are stronger in late season harvests.

  5. Molecular ordering of ethanol at the calcite surface

    DEFF Research Database (Denmark)

    Pasarín, I. S.; Yang, M.; Bovet, Nicolas Emile

    2012-01-01

    To produce biominerals, such as shells, bones, and teeth, living beings create organic compounds that control the growth of the solid phase. Investigating the atomic scale behavior of individual functional groups at the mineral-fluid interface provides fundamental information that is useful...... for constructing accurate predictive models for natural systems. Previous investigations of the activity of coccolith-associated polysaccharides (CAP) on calcite, using atomic force microscopy (AFM) [ Henriksen, K., Young, J. R., Bown, P. R., and Stipp, S. L. S.Palentology 2004, 43 (Part 3), 725...... dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH 3-CH2-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol...

  6. Crystal structure of an apremilast ethanol hemisolvate hemihydrate solvatomorph

    Directory of Open Access Journals (Sweden)

    Yun-Deng Wu

    2017-06-01

    Full Text Available The title compound, C22H24N2O7S·0.5C2H5OH·0.5H2O {systematic name: (S-4-acetamido-2-[1-(3-ethoxy-4-methoxyphenyl-2-(methylsulfonylethyl]isoindoline-1,3-dione ethanol hemisolvate hemihydrate}, is a novel solvatomorph of apremilast (AP, which is an inhibitor of phosphodiesterase 4 (PDE4 and is indicated for the treatment of adult patients with active psoriatic arthritis. The asymmetric unit contains one molecule of AP and disordered molecules of ethanol and water, both with half occupancy. The dihedral angle between the planes of the phenyl ring and the isoindole ring is 67.9 (2°. Extensive intra- and intermolecular hydrogen bonds help to stabilize the molecular conformation and sustain the crystal packing.

  7. Molecular ordering of ethanol at the calcite surface.

    Science.gov (United States)

    Pasarín, I S; Yang, M; Bovet, N; Glyvradal, M; Nielsen, M M; Bohr, J; Feidenhans'l, R; Stipp, S L S

    2012-02-07

    To produce biominerals, such as shells, bones, and teeth, living beings create organic compounds that control the growth of the solid phase. Investigating the atomic scale behavior of individual functional groups at the mineral-fluid interface provides fundamental information that is useful for constructing accurate predictive models for natural systems. Previous investigations of the activity of coccolith-associated polysaccharides (CAP) on calcite, using atomic force microscopy (AFM) [Henriksen, K., Young, J. R., Bown, P. R., and Stipp, S. L. S. Palentology 2004, 43 (Part 3), 725-743] and molecular dynamics (MD) modeling [Yang, M., Stipp, S. L. S., and Harding, J. H. Cryst. Growth Des. 2008, 8 (11), 4066-4074], have suggested that OH functional groups control polysaccharide attachment. The purpose of this work was to characterize, using X-ray reflectivity (XR) combined with molecular dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH(3)-CH(2)-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol molecules stand up perpendicularly at the interface or nearly so. As a consequence, the fatty, CH(3) ends form a new surface, about 6 Å from the termination of the bulk calcite, and beyond that, there is a thin gap where ethanol density is low. Following is a more disordered layer that is two to three ethanol molecules thick, about 14 Å, where density more resembles that of bulk liquid ethanol. The good agreement between theory and experiment gives confidence that a theoretical approach can offer information about behavior in more complex systems.

  8. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis.

    Science.gov (United States)

    Canilha, Larissa; Carvalho, Walter; Felipe, Maria das Graças de Almeida; Silva, João Batista de Almeida e; Giulietti, Marco

    2010-05-01

    The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).

  9. Parenting Seminars for Divorcing Parents.

    Science.gov (United States)

    Frieman, Barry B.

    1995-01-01

    Profiles the parenting seminars and counseling services for divorcing parents offered by the Children of Separation and Divorce Center, a community service agency in Maryland. The seminars are designed to help parents adjust to divorce and understand the needs of their children during and after the divorce process. (MDM)

  10. Carcinogenic compounds in alcoholic beverages: an update.

    Science.gov (United States)

    Pflaum, Tabea; Hausler, Thomas; Baumung, Claudia; Ackermann, Svenja; Kuballa, Thomas; Rehm, Jürgen; Lachenmeier, Dirk W

    2016-10-01

    The consumption of alcoholic beverages has been classified as carcinogenic to humans by the International Agency for Research on Cancer (IARC) since 1988. More recently, in 2010, ethanol as the major constituent of alcoholic beverages and its metabolite acetaldehyde were also classified as carcinogenic to humans. Alcoholic beverages as multi-component mixtures may additionally contain further known or suspected human carcinogens as constituent or contaminant. This review will discuss the occurrence and toxicology of eighteen carcinogenic compounds (acetaldehyde, acrylamide, aflatoxins, arsenic, benzene, cadmium, ethanol, ethyl carbamate, formaldehyde, furan, glyphosate, lead, 3-MCPD, 4-methylimidazole, N-nitrosodimethylamine, pulegone, ochratoxin A, safrole) occurring in alcoholic beverages as identified based on monograph reviews by the IARC. For most of the compounds of alcoholic beverages, quantitative risk assessment provided evidence for only a very low risk (such as margins of exposure above 10,000). The highest risk was found for ethanol, which may reach exposures in ranges known to increase the cancer risk even at moderate drinking (margin of exposure around 1). Other constituents that could pose a risk to the drinker were inorganic lead, arsenic, acetaldehyde, cadmium and ethyl carbamate, for most of which mitigation by good manufacturing practices is possible. Nevertheless, due to the major effect of ethanol, the cancer burden due to alcohol consumption can only be reduced by reducing alcohol consumption in general or by lowering the alcoholic strength of beverages.

  11. Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons

    Directory of Open Access Journals (Sweden)

    Ullah Ikram

    2012-01-01

    Full Text Available Abstract Background Exposure to ethanol during early development triggers severe neuronal death by activating multiple stress pathways and causes neurological disorders, such as fetal alcohol effects or fetal alcohol syndrome. This study investigated the effect of ethanol on intracellular events that predispose developing neurons for apoptosis via calcium-mediated signaling. Although the underlying molecular mechanisms of ethanol neurotoxicity are not completely determined, mitochondrial dysfunction, altered calcium homeostasis and apoptosis-related proteins have been implicated in ethanol neurotoxicity. The present study was designed to evaluate the neuroprotective mechanisms of metformin (Met and thymoquinone (TQ during ethanol toxicity in rat prenatal cortical neurons at gestational day (GD 17.5. Results We found that Met and TQ, separately and synergistically, increased cell viability after ethanol (100 mM exposure for 12 hours and attenuated the elevation of cytosolic free calcium [Ca2+]c. Furthermore, Met and TQ maintained normal physiological mitochondrial transmembrane potential (ΔψM, which is typically lowered by ethanol exposure. Increased cytosolic free [Ca2+]c and lowered mitochondrial transmembrane potential after ethanol exposure significantly decreased the expression of a key anti-apoptotic protein (Bcl-2, increased expression of Bax, and stimulated the release of cytochrome-c from mitochondria. Met and TQ treatment inhibited the apoptotic cascade by increasing Bcl-2 expression. These compounds also repressed the activation of caspase-9 and caspase-3 and reduced the cleavage of PARP-1. Morphological conformation of cell death was assessed by TUNEL, Fluoro-Jade-B, and PI staining. These staining methods demonstrated more cell death after ethanol treatment, while Met, TQ or Met plus TQ prevented ethanol-induced apoptotic cell death. Conclusion These findings suggested that Met and TQ are strong protective agents against ethanol

  12. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    Science.gov (United States)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  13. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, Birgitte Kiær

    2004-01-01

    for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar......An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible...... degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (Q...

  14. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    Science.gov (United States)

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30–45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance. PMID:22698870

  15. Renewable corn-ethanol and energy security

    International Nuclear Information System (INIS)

    Eaves, James

    2007-01-01

    Though corn-ethanol is promoted as renewable, models of the production process assume fossil fuel inputs. Moreover, ethanol is promoted as a means of increasing energy security, but there is little discussion of the dependability of its supply. This study investigates the sensibility of promoting corn-ethanol as an automobile fuel, assuming a fully renewable production process. We then use historical data to estimate the supply risk of ethanol relative to imported petroleum. We find that devoting 100% of US corn to ethanol would displace 3.5% of gasoline consumption and the annual supply of the ethanol would be inherently more risky than that of imported oil. Finally, because large temperature increases can simultaneously increase fuel demand and the cost of growing corn, the supply responses of ethanol producers to temperature-induced demand shocks would likely be weaker than those of gasoline producers. (author)

  16. Multipurpose Compound

    Science.gov (United States)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  17. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1...... to exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration of 5...

  18. Characterization of Ethanolic Extract of Streptomyces sp. as a Pancreatic Lipase Inhibitors Produced by Endophytic Streptomyces sp. AEBg12

    Directory of Open Access Journals (Sweden)

    Lenni Fitri

    2017-07-01

    Full Text Available Endophytic Streptomyces sp. AEBg12 isolated from Zingiber cassumunar (Bangle is known to produce pancreatic lipase inhibitory compound. However, the characteristics of this active compound has not been reported yet. This study aimed to determine the characteristics of pancreatics inhibitory compound produced by Streptomyces sp. AEBg12 and to assess the role of endophytic actinobacteria in producing pancreatic lipase inhibitor using endophytic-free bangle tissue culture, wild bangle and compared with the activity of Streptomyces sp. AEBg12 endophytes. Supernatant of Streptomyces sp. AEBg12 was extracted using ethanol, ethyl acetate, and n-hexane solvents. Toxicity test was performed using larvae of shrimp Artemia salina. The results showed that the best solvent to obtain pancreatic lipase inhibitor compounds was ethanol. Phytochemical analysis showed that ethanolic extract of endophytic Streptomyces sp. AEBg12 contained flavonoids. IC50 value of ethanol extract was 180.83 µg/ml. The result of TLC showed that ethanolic extract of Streptomyces AEBg12 had a blue luminescence band indicated that there were either flavone, flavanones, flavonols or isoflavones. Inhibitory activity of Streptomyces sp. AEBg12 was higher than wild bangle and bangle tissue culture. The information from this study can be be used as a basic data for further characterization of the active compound, which might be developed as an antiobesity agent through its pancreatic lipase inhibitory activity.

  19. Phytochemical screening and In vivo anti-ulcer activity of Ethanolic extract of Heliotropium indicum L

    OpenAIRE

    S.Nethaji; T. Ushadevi; C.Manoharan

    2013-01-01

    The phytochemical compounds and anti-ulcer activity of leaves and root extracts of Heliotropium indicum Linn. The preliminary phytochemical screening was performed by in vitromethod and anti-ulcer activity was conducted by in vivomethod. The phytochemical analysis revealed the presence of alkaloids, carbohydrates and glycosides, phytosterols, fixed oils and fats, phenolic compounds and tannins, flavonoids, terpenoids,proteins and amino acids. The ethanolic extract of Heliotropium indicumleaf ...

  20. Delta receptor antagonism, ethanol taste reactivity, and ethanol consumption in outbred male rats.

    Science.gov (United States)

    Higley, Amanda E; Kiefer, Stephen W

    2006-11-01

    Naltrexone, a nonspecific opioid antagonist, produces significant changes in ethanol responsivity in rats by rendering the taste of ethanol aversive as well as producing a decrease in voluntary ethanol consumption. The present study investigated the effect of naltrindole, a specific antagonist of delta opioid receptors, on ethanol taste reactivity and ethanol consumption in outbred rats. In the first experiment, rats received acute treatment of naltrexone, naltrindole, or saline followed by the measurement of ethanol consumption in a short-term access period. The second experiment involved the same treatments and investigated ethanol palatability (using the taste-reactivity test) as well as ethanol consumption. Results indicated that treatment with 3 mg/kg naltrexone significantly affected palatability (rendered ethanol more aversive, Experiment 2) and decreased voluntary ethanol consumption (Experiments 1 and 2). The effects of naltrindole were inconsistent. In Experiment 1, 8 mg/kg naltrindole significantly decreased voluntary ethanol consumption but this was not replicated in Experiment 2. The 8 mg/kg dose produced a significant increase in aversive responding (Experiment 2) but did not affect ingestive responding. Lower doses of naltrindole (2 and 4 mg/kg) were ineffective in altering rats' taste-reactivity response to and consumption of ethanol. While these data suggest that delta receptors are involved in rats' taste-reactivity response to ethanol and rats' ethanol consumption, it is likely that multiple opioid receptors mediate both behavioral responses.

  1. Effects of cold temperature and ethanol content on VOC emissions from light-duty gasoline vehicles

    Science.gov (United States)

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle...

  2. Polymer compound

    NARCIS (Netherlands)

    1995-01-01

    A Polymer compound comprising a polymer (a) that contains cyclic imidesgroups and a polymer (b) that contains monomer groups with a 2,4-diamino-1,3,5-triazine side group. According to the formula (see formula) whereby themole percentage ratio of the cyclic imides groups in the polymer compoundwith

  3. Mesoionic Compounds

    Indian Academy of Sciences (India)

    Organic Chemistry. Kamatak University,. Dharwad. Her research interests are synthesis, reactions and synthetic utility of sydnones. She is currently working on electrochemical and insecticidal/antifungal activities for some of these compounds. Keywords. Aromaticity, mesoionic hetero- cycles, sydnones, tandem re- actions.

  4. [Parenting styles].

    Science.gov (United States)

    Torío López, Susana; Peña Calvo, José Vicente; Inda Caro, Mercedes

    2008-02-01

    Parental educational styles constitute one of the key elements of family socialization. The aim of the present essay is to present the results of a research project carried out in the Principality of Asturias (Spain) among 2,965 families with children of infant and primary-school age (5-8 years old). This research attempts to analyse, among other aspects, parental behaviour tendencies in child upbringing. The analysis of the results obtained allows us to: 1) identify the most common attitudinal and behavioural tendencies of parents in the upbringing of their children; 2) determine how many people have a well defined parental style, and delimit their socio-educational characteristics. Lastly, we consider the need to change some parental behaviour patterns and stress the importance of family education programmes, with the aim of promoting appropriate parenting models and modifying or improving current practices.

  5. Adoptive parenting.

    Science.gov (United States)

    Grotevant, Harold D; Lo, Albert Yh

    2017-06-01

    Challenges in adoptive parenting continue to emerge as adoption policies and practices evolve. We review three areas of research in adoptive parenting that reflect contemporary shifts in adoption. First, we highlight recent findings concerning openness in adoption contact arrangements, or contact between a child's families of birth and rearing. Second, we examine research regarding racial and cultural socialization in transracial and international adoptions. Finally, we review investigations of parenting experiences of lesbian and gay adoptive parents. Overall, parenting processes (e.g., supportive vs. problematic family interaction) are better predictors of child adjustment than are group differences (e.g., open vs. closed adoptions; adoption by heterosexual vs. same-sex parents). The distinctive needs of adopted children call for preparation of adoption-competent mental health, casework, education, and health care professionals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 2. Intermetallic compounds with lanthanides

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    Theoretical considerations are given concerning the structures of intermetallic compounds of the lanthanides and thorium (R) on the one hand, and with Fe, Co or Ni (M) on the other. They all derive from the parent composition RM 5 with the CaCu 5 hexagonal structure. This consists of alternate layers in which the M atoms are distinguished as M 1 and M 2 . The other compounds whose structures are studied are obtained by systematic replacement of R by M, or vice versa. In the first type, every third R is replaced by two M's yielding R 2 M 17 compounds. The substitution may be truly random or structured in two ways: so that either the hexagonal structure is maintained or that it is converted into a rhombihedral one. In the second type, one M (in a M 1 position) out of every five is replaced by one R, giving rise to RM 2 compounds which form Laves phases. In the third type, the M 1 's are replaced by R's, resulting in compounds RM 3 . In the fourth type, every third M is replaced by R, yielding R 2 M 7 compounds. With M = Co and R a light lanthanide, the compounds are ferromagnets; with R yttrium, thorium, or a heavy lanthanide, they are ferrimagnets. The preparation of the compounds in an arc-melting apparatus under an Ar-atmosphere followed by annealing is described

  7. Phytochemical screening and antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf (Ocimum basilicum L.) by DPPH radical scavenging method

    Science.gov (United States)

    Warsi; Sholichah, A. R.

    2017-11-01

    Basil leaf (Ocimum basilicum L.) contains various compounds such as flavonoid, alkaloid, phenol and essential oil, so it needs to be fractionated to find out the flavonoid compound with the greatest potential as an antioxidant. This research was aimed to know the chemical compound, antioxidant potential of ethanolic extract and ethyl acetate fraction from basil leaf. The basil leaf was extracted by maceration using ethanol 70 %. The crude extract was fractionated with ethyl acetate. The ethanolic extract and ethyl acetate fraction were screened of phytochemical content including identification of flavonoids, alkaloids and polyphenolics. The antioxidant activity of the ethanolic extract and ethyl acetate fraction were tested qualitatively with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdate. Its antioxidant activity was determined quantitatively using DPPH radical scavenging method. Phytochemical screening test showed that ethanolic extract and ethyl acetate fraction from basil leaf contain flavonoids, polyphenolics, and alkaloids. The qualitative analysis of antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf showed an antioxidant activity. The IC50 value of ethanolic extract, ethyl acetate fraction and quercetin were 1,374.00±6.20 389.00±1.00 2.10±0.01μg/mL, respectively. The research showed that antioxidant activity of the ethyl acetate fraction more potential than the ethanol extract of the basil leaf, but less than quercetin.

  8. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  9. Modifications in adrenal hormones response to ethanol by prior ethanol dependence.

    Science.gov (United States)

    Guaza, C; Borrell, S

    1985-03-01

    Ethanol was administered to rats by means of a liquid diet for 16 days; after an ethanol-free interval of four weeks, animals received a test (IP) dose of ethanol (2 g/kg), and the adrenocortical and adrenomedullary responses were evaluated. Chronically ethanol-exposed animals showed tolerance to the stimulatory effect of ethanol in the pituitary-adrenal axis. Likewise, previously dependent rats showed tolerance to the increase in the activity of the adrenomedullary function induced by acute administration of the drug. Our results indicate that chronic ethanol ingestion can induce persistent changes after complete alcohol abstinence.

  10. Ethanol annual report FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Texeira, R.H.; Goodman, B.J. (eds.)

    1991-01-01

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  11. Sugarcane bio ethanol and bioelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luiz Augusto Horta; Leal, Manoel Regis Lima Verde

    2012-07-01

    This chapter approaches the Brazilian sugar cane production and processing model, sugarcane processing, sugarcane reception, sugarcane preparation and juice extraction, juice treatment, fermentation, distillation, sector efficiencies and future improvement - 2007, 2015 and 2025, present situation (considering the 2007/2008 harvesting season), prospective values for 2015 and for 2025, bioelectricity generation, straw recovery, bagasse availability, energy balance, present situation, perspective for improvements in the GHG mitigation potential, bio ethanol production chain - from field to tank, and surplus electricity generation.

  12. Anhydrous ethanol: A renewable source of energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh; Singh, Neetu; Prasad, Ram [Department of Chemical Engineering, H. B. Technological Institute, Kanpur 208002 (India)

    2010-09-15

    Anhydrous ethanol is one of the biofuels produced today and it is a subset of renewable energy. It is considered to be an excellent alternative clean-burning fuel to gasoline. Anhydrous ethanol is commercially produced by either catalytic hydration of ethylene or fermentation of biomass. Any biological material that has sugar, starch or cellulose can be used as biomass for producing anhydrous ethanol. Since ethanol-water solution forms a minimum-boiling azeotrope of composition of 89.4 mol% ethanol and 10.6 mol% water at 78.2 C and standard atmospheric pressure, the dilute ethanol-water solutions produced by fermentation process can be continuously rectified to give at best solutions containing 89.4 mol% ethanol at standard atmospheric pressure. Therefore, special process for removal of the remaining water is required for manufacture of anhydrous ethanol. Various processes for producing anhydrous ethanol have been used/suggested. These include: (i) chemical dehydration process, (ii) dehydration by vacuum distillation process, (iii) azeotropic distillation process, (iv) extractive distillation processes, (v) membrane processes, (vi) adsorption processes and (vii) diffusion distillation process. These processes of manufacturing anhydrous ethanol have been improved continuously due to the increasingly strict requirements for quantity and quality of this product. The literature available on these processes is reviewed. These processes are also compared on the basis of energy requirements. (author)

  13. Processing method for drained water containing ethanol amine

    International Nuclear Information System (INIS)

    Wakuta, Kuniharu; Ogawa, Naoki; Sagawa, Hiroshi; Kamiyoshi, Hideki; Fukunaga, Kazuo; Iwamoto, Ken; Miki, Tsuyoshi; Hirata, Toshio

    1998-01-01

    Drained water containing ethanol amine is processed with microorganisms such as hydrazine resistant denitrification bacteria in a biodegrading vessel (A) in the coexistence of nitrous ions and/or nitric ions under an anaerobic condition, and then it is processed with microorganisms such as nitrification bacteria in another biotic oxidation vessel (B) under an aerobic condition to generate the coexistent nitrate ion and/or nitric ion, and returned to the biodegrading vessel (A). Further, they are exposed to air or incorporated with an oxidant and optionally a copper compound such as copper sulfate as a catalyst is added in a step of removing hydrazine. (T.M.)

  14. Plasma-Assisted Pretreatment of Wheat Straw for Ethanol Production

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Kádár, Zsófia; Thomsen, Anne Belinda

    2011-01-01

    (0–7 h), e.g., oxalic acid and acetovanillon. Interestingly, washing had no effect on the ethanol production with pretreatment times up to 1 h. Washing improved the glucose availability with pretreatment times of more than 2 h. One hour of ozonisation was found to be optimal for the use of washed...... carboxylic acids and phenolic compounds were found, e.g., vanillic acid, acetic acid, and formic acid. Some components had the highest concentration at the beginning of the ozonisation process (0.5, 1 h), e.g., 4-hydroxybenzladehyde, while the concentration of others increased during the entire pretreatment...

  15. Parental divorce and parental death

    DEFF Research Database (Denmark)

    Marcussen, Jette; Thuen, Frode; Poul, Bruun

    2015-01-01

    The aim of this review was to identify research on children and adolescents who experience double bereavement, i.e. the experience of loss through parental divorce followed by either parental death or critical illness with imminent death. This knowledge may identify evidence to underpin knowledge......; challenges in both custodial and non-custodial parental death; risk of mental health problems, and the need of support and interventions....

  16. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes.

    Science.gov (United States)

    Nolden, Alissa A; McGeary, John E; Hayes, John E

    2016-03-15

    To date, the majority of research exploring associations with genetic variability in bitter taste receptors has understandably focused on compounds and foods that are predominantly or solely perceived as bitter. However, other chemosensory stimuli are also known to elicit bitterness as a secondary sensation. Here we investigated whether TAS2R variation explains individual differences in bitterness elicited by chemesthetic stimuli, including capsaicin, piperine and ethanol. We confirmed that capsaicin, piperine and ethanol elicit bitterness in addition to burning/stinging sensations. Variability in perceived bitterness of capsaicin and ethanol were significantly associated with TAS2R38 and TAS2R3/4/5 diplotypes. For TAS2R38, PAV homozygotes perceived greater bitterness from capsaicin and ethanol presented on circumvallate papillae, compared to heterozygotes and AVI homozygotes. For TAS2R3/4/5, CCCAGT homozygotes rated the greatest bitterness, compared to heterozygotes and TTGGAG homozygotes, for both ethanol and capsaicin when presented on circumvallate papillae. Additional work is needed to determine how these and other chemesthetic stimuli differ in bitterness perception across concentrations and presentation methods. Furthermore, it would be beneficial to determine which TAS2R receptors are activated in vitro by chemesthetic compounds. Copyright © 2016. Published by Elsevier Inc.

  17. Compound odontoma

    Directory of Open Access Journals (Sweden)

    Monica Yadav

    2012-01-01

    Full Text Available Odontomas have been extensively reported in the dental literature, and the term refers to tumors of odontogenic origin. Though the exact etiology is still unknown, the postulated causes include: local trauma, infection, inheritance and genetic mutation. The majority of the lesions are asymptomatic; however, may be accompanied with pain and swelling as secondary complaints in some cases. Here, we report a case of a compound odontome in a 14 year old patient.

  18. Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.

    Science.gov (United States)

    Mohagheghi, Ali; Schell, Daniel J

    2010-04-01

    Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. (c) 2009 Wiley Periodicals, Inc.

  19. Production of ethanol from thin stillage by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Gonzalez, Ramon; Campbell, Paul; Wong, Matthew

    2010-03-01

    Thin stillage is a by-product generated in large amounts during the production of ethanol that is rich in carbon sources like glycerol, glucose and maltose. Unfortunately, the fermentation of thin stillage results in a mixture of organic acids and ethanol and minimum utilization of glycerol, the latter a compound that can represent up to 80% of the available substrates in this stream. We report here the efficient production of ethanol from thin stillage by a metabolically engineered strain of Escherichia coli. Simultaneous utilization of glycerol and sugars was achieved by overexpressing either the fermentative or the respiratory glycerol-utilization pathway. However, amplification of the fermentative pathway (encoded by gldA and dhaKLM) led to more efficient consumption of glycerol and promoted the synthesis of reduced products, including ethanol. A previously constructed strain, EH05, containing mutations that prevented the accumulation of competing by-products (i.e. lactate, acetate, and succinate) and overexpressing the fermentative pathway for glycerol utilization [i.e. strain EH05 (pZSKLMgldA)], efficiently converted thin stillage supplemented with only mineral salts to ethanol at yields close to 85% of the theoretical maximum. Ethanol accounted for about 90% (w/w) of the product mixture. These results, along with the comparable performance of strain EH05 (pZSKLMgldA) in 0.5 and 5 l fermenters, indicate a great potential for the adoption of this process by the biofuels industry.

  20. Ethanol production of banana shell and cassava starch

    International Nuclear Information System (INIS)

    Monsalve G, John F; Medina de Perez, Victoria Isabel; Ruiz colorado, Angela Adriana

    2006-01-01

    In this work the acid hydrolysis of the starch was evaluated in cassava and the cellulose shell banana and its later fermentation to ethanol, the means of fermentation were adjusted for the microorganisms saccharomyces cerevisiae nrrl y-2034 and zymomonas mobilis cp4. The banana shell has been characterized, which possesses a content of starch, cellulose and hemicelluloses that represent more than 80% of the shell deserve the study of this as source of carbon. The acid hydrolysis of the banana shell yield 20g/l reducing sugar was obtained as maximum concentration. For the cassava with 170 g/l of starch to ph 0.8 in 5 hours complete conversion is achieved to you reducing sugars and any inhibitory effect is not noticed on the part of the cultivations carried out with banana shell and cassava by the cyanide presence in the cassava and for the formation of toxic compounds in the acid hydrolysis the cellulose in banana shell. For the fermentation carried out with saccharomyces cerevisiae a concentration of ethanol of 7.92± 0.31% it is achieved and a considerable production of ethanol is not appreciated (smaller than 0.1 g/l) for none of the means fermented with zymomonas mobilis

  1. Antibacterial effects of Solanum tuberosum peel ethanol extract in vitro

    Directory of Open Access Journals (Sweden)

    Amanpour Raana

    2015-04-01

    Full Text Available Introduction: Today, medicinal plants are being widely used due to being natural, available, and cheaper than synthetic drugs and having minimum side effects. Since there were reports about the antibacterial properties of Solanum tuberosum (SE, the aim of this study was to investigate the antibacterial effects of SE ethanol extract in vitro condition on Streptococcus pyogenes, Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae. Methods: Ethanol extract of SE peel was prepared by maceration method. Initially, antibacterial activity of ethanol extract of SE was qualitatively determined by disk diffusion test; then, the minimum inhibitory concentration and minimum bactericidal concentration were qualitatively determined by micro-dilution method. Results: SE peel extract had antibacterial properties and its effect was more pronounced on gram-positive bacteria, especially S. aureus (0.62±0.00 mg/ml. The extract had antibacterial activity on gram-negative bacteria, P. aeruginosa, too (8.33±2.88 mg/ml. Conclusion: SE peel extract has antibacterial activity and its effect on gram-positive bacteria was more pronounced than the investigated gram-negative bacteria. Therefore, it is suggested that SE peel constituent compounds be determined and to determine the exact mechanism of its antibacterial properties, and more comprehensive research be done to apply it, clinically.

  2. Parent Management

    DEFF Research Database (Denmark)

    Knudsen, Hanne

    2007-01-01

    and parents say given these assumptions? Which management responsibility is addressed through such training of the difficult conversation?  My conclusions are, briefly, that the difficult conversation is more correctly to be called an impossible conversation. It is an asking for the parent's consent...

  3. Process for producing ethanol from syngas

    Science.gov (United States)

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  4. The Role of Cellulosic Ethanol in Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  5. Electrocatalysis of anodic oxidation of ethanol

    Science.gov (United States)

    Tarasevich, M. R.; Korchagin, O. V.; Kuzov, A. V.

    2013-11-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references.

  6. Ethanol demand in Brazil: Regional approach

    International Nuclear Information System (INIS)

    Freitas, Luciano Charlita de; Kaneko, Shinji

    2011-01-01

    Successive studies attempting to clarify national aspects of ethanol demand have assisted policy makers and producers in defining strategies, but little information is available on the dynamic of regional ethanol markets. This study aims to analyze the characteristics of ethanol demand at the regional level taking into account the peculiarities of the developed center-south and the developing north-northeast regions. Regional ethanol demand is evaluated based on a set of market variables that include ethanol price, consumer's income, vehicle stock and prices of substitute fuels; i.e., gasoline and natural gas. A panel cointegration analysis with monthly observations from January 2003 to April 2010 is employed to estimate the long-run demand elasticity. The results reveal that the demand for ethanol in Brazil differs between regions. While in the center-south region the price elasticity for both ethanol and alternative fuels is high, consumption in the north-northeast is more sensitive to changes in the stock of the ethanol-powered fleet and income. These, among other evidences, suggest that the pattern of ethanol demand in the center-south region most closely resembles that in developed nations, while the pattern of demand in the north-northeast most closely resembles that in developing nations. - Research highlights: → Article consists of a first insight on regional demand for ethanol in Brazil. → It proposes a model with multiple fuels, i.e., hydrous ethanol, gasohol and natural gas. → Results evidence that figures for regional demand for ethanol differ amongst regions and with values reported for national demand. → Elasticities for the center-south keep similarities to patterns for fuel demand in developed nations while coefficients for the north-northeast are aligned to patterns on developing countries.

  7. Electrocatalysis of anodic oxidation of ethanol

    International Nuclear Information System (INIS)

    Tarasevich, M R; Korchagin, O V; Kuzov, A V

    2013-01-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references

  8. Ethanol demand in Brazil: Regional approach

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Luciano Charlita de, E-mail: lucianofreitas@hiroshima-u.ac.j [Graduate School for International Development and Cooperation, Development Policy, Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529 (Japan); Kaneko, Shinji [Graduate School for International Development and Cooperation, Development Policy, Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529 (Japan)

    2011-05-15

    Successive studies attempting to clarify national aspects of ethanol demand have assisted policy makers and producers in defining strategies, but little information is available on the dynamic of regional ethanol markets. This study aims to analyze the characteristics of ethanol demand at the regional level taking into account the peculiarities of the developed center-south and the developing north-northeast regions. Regional ethanol demand is evaluated based on a set of market variables that include ethanol price, consumer's income, vehicle stock and prices of substitute fuels; i.e., gasoline and natural gas. A panel cointegration analysis with monthly observations from January 2003 to April 2010 is employed to estimate the long-run demand elasticity. The results reveal that the demand for ethanol in Brazil differs between regions. While in the center-south region the price elasticity for both ethanol and alternative fuels is high, consumption in the north-northeast is more sensitive to changes in the stock of the ethanol-powered fleet and income. These, among other evidences, suggest that the pattern of ethanol demand in the center-south region most closely resembles that in developed nations, while the pattern of demand in the north-northeast most closely resembles that in developing nations. - Research highlights: {yields} Article consists of a first insight on regional demand for ethanol in Brazil. {yields} It proposes a model with multiple fuels, i.e., hydrous ethanol, gasohol and natural gas. {yields} Results evidence that figures for regional demand for ethanol differ amongst regions and with values reported for national demand. {yields} Elasticities for the center-south keep similarities to patterns for fuel demand in developed nations while coefficients for the north-northeast are aligned to patterns on developing countries.

  9. Autoshaping of ethanol drinking in rats: effects of ethanol concentration and trial spacing.

    Science.gov (United States)

    Tomie, Arthur; Wong, Karlvin; Apor, Khristine; Patterson-Buckendahl, Patricia; Pohorecky, Larissa A

    2003-11-01

    In two studies, we evaluated the effects of ethanol concentration and trial spacing on Pavlovian autoshaping of ethanol drinking in rats. In these studies, the brief insertion of an ethanol sipper conditioned stimulus (CS) was followed by the response-independent presentation of food unconditioned stimulus (US), inducing sipper CS-directed drinking conditioned responses (CRs) in all rats. In Experiment 1, the ethanol concentration in the sipper CS [0%-16% volume/volume (vol./vol.), in increments of 1%] was systematically increased within subjects across autoshaping sessions. Groups of rats received sipper CS-food US pairings (Paired/Ethanol), a CS-US random procedure (Random/Ethanol), or water sipper CS paired with food US (Paired/Water). In Experiment 2, saccharin-fading procedures were used to initiate, in the Ethanol group, drinking of 6% (vol./vol.) ethanol in 0.1% saccharin or, in the Water group, drinking of tap water in 0.1% saccharin. After elimination of saccharin, and across days, the duration of access to the sipper CS during each autoshaping trial was increased (5, 10, 12.5, 15, 17.5, and 20 s), and subsequently, across days, the duration of the mean intertrial interval (ITI) was increased (60, 90, 120, and 150 s). In Experiment 1, Paired/Ethanol and Random/Ethanol groups showed higher intake of ethanol, in terms of grams per kilogram of body weight, at higher ethanol concentrations, with more ethanol intake recorded in the Paired/Ethanol group. In Experiment 2, the Ethanol group drank more than was consumed by the Water group, and, for both groups, fluid intake increased with longer ITIs. Results support the suggestion that autoshaping contributes to sipper CS-directed ethanol drinking.

  10. Ethanol-Induced Upregulation of 10-Formyltetrahydrofolate Dehydrogenase Helps Relieve Ethanol-Induced Oxidative Stress

    OpenAIRE

    Hsiao, Tsun-Hsien; Lin, Chia-Jen; Chung, Yi-Shao; Lee, Gang-Hui; Kao, Tseng-Ting; Chang, Wen-Ni; Chen, Bing-Hung; Hung, Jan-Jong; Fu, Tzu-Fun

    2014-01-01

    Alcoholism induces folate deficiency and increases the risk for embryonic anomalies. However, the interplay between ethanol exposure and embryonic folate status remains unclear. To investigate how ethanol exposure affects embryonic folate status and one-carbon homeostasis, we incubated zebrafish embryos in ethanol and analyzed embryonic folate content and folate enzyme expression. Exposure to 2% ethanol did not change embryonic total folate content but increased the tetrahydrofolate level app...

  11. Mixed waste paper to ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  12. Characterization of wine yeasts for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Benitez, T.

    1986-11-01

    Selected wine yeasts were tested for their ethanol and sugar tolerance, and for their fermentative capacity. Growth (..mu..) and fermentation rates (..nu..) were increasingly inhibited by increasing ethanol and glucose concentrations, ''flor'' yeasts being the least inhibited. Except in the latter strains, the ethanol production rate was accelerated by adding the glucose stepwise. The best fermenting strains selected in laboratory medium were also the best at fermenting molasses. Invertase activity was not a limiting step in ethanol production, ..nu.. being accelerated by supplementing molasses with ammonia and biotine, and by cell recycle.

  13. Gestational Exposure to Inhaled Vapors of Ethanol and Gasoline-Ethanol Blends in Rats

    Science.gov (United States)

    The US automotive fleet is powered primarily by gasoline-ethanol fuel blends containing up to 10% ethanol (ElO). Uncertainties regarding the health risks associated with exposure to ElO prompted assessment of the effects of prenatal exposure to inhaled vapors of gasoline-ethanol ...

  14. Quantification of methanol in the presence of ethanol by selected ion flow tube mass spectrometry.

    Science.gov (United States)

    Chambers-Bédard, Catherine; Ross, Brian M

    The quantification of trace compounds in alcoholic beverages is a useful means to both investigate the chemical basis of beverage flavor and to facilitate quality control during the production process. One compound of interest is methanol which, due to it being toxic, must not exceed regulatory limits. The analysis of headspace gases is a desirable means to do this since it does not require direct sampling of the liquid material. One established means to conduct headspace analysis is selected ion flow tube mass spectrometry (SIFT-MS). The high concentration of ethanol present in the headspace of alcoholic drinks complicates the analysis, however, via reacting with the precursor ions central to this technique. We therefore investigated whether methanol could be quantified in the presence of a large excess of ethanol using SIFT-MS. We found that methanol reacted with ionized ethanol to generate product ions that could be used to quantify methanol concentrations and used this technique to quantify methanol in beverages containing different quantities of ethanol. We conclude that SIFT-MS can be used to quantify trace compounds in alcoholic beverages by determining the relevant reaction chemistry.

  15. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates

    Science.gov (United States)

    An industrial ethanol-producing Saccharomyces cerevisiae strain with genes needed for xylose-fermentation integrated into its genome was used to obtain haploids and diploid isogenic strains. The isogenic strains were more effective in metabolizing xylose than their parental strain (p < 0.05) and abl...

  16. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds

    Directory of Open Access Journals (Sweden)

    Hawkins Gary M

    2011-11-01

    Full Text Available Abstract Background Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using softwoods, which is particularly acute with pine, is that the pretreatment process produces inhibitory compounds detrimental to the growth and metabolic activity of fermenting organisms. To overcome the challenge of bioconversion in the presence of inhibitory compounds, especially at high solids loading, a strain of Saccharomyces cerevisiae was subjected to evolutionary engineering and adaptation for fermentation of pretreated pine wood (Pinus taeda. Results An industrial strain of Saccharomyces, XR122N, was evolved using pretreated pine; the resulting daughter strain, AJP50, produced ethanol much more rapidly than its parent in fermentations of pretreated pine. Adaptation, by preculturing of the industrial yeast XR122N and the evolved strains in 7% dry weight per volume (w/v pretreated pine solids prior to inoculation into higher solids concentrations, improved fermentation performance of all strains compared with direct inoculation into high solids. Growth comparisons between XR122N and AJP50 in model hydrolysate media containing inhibitory compounds found in pretreated biomass showed that AJP50 exited lag phase faster under all conditions tested. This was due, in part, to the ability of AJP50 to rapidly convert furfural and hydroxymethylfurfural to their less toxic alcohol derivatives, and to recover from reactive oxygen species damage more quickly than XR122N. Under industrially relevant conditions of 17.5% w/v pretreated pine solids loading, additional evolutionary engineering was required to decrease the pronounced lag phase. Using a combination of adaptation by inoculation first into a solids loading of 7% w/v for 24 hours, followed by a 10% v/v inoculum (approximately equivalent to 1 g/L dry cell weight into 17

  17. Biofilm reactors for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J L; Clausen, E C; Gaddy, J L

    1988-07-01

    Whole cell immobilization has been studied in the laboratory during the last few years as a method to improve the performance and economics of most fermentation processes. Among the various techniques available for cell immobilization, methods that provide generation of a biofilm offer reduced diffusional resistance, high productivities, and simple operation. This paper reviews some of the important aspects of biofilm reactors for ethanol production, including reactor start-up, steady state behavior, process stability, and mathematical modeling. Special emphasis is placed on covalently bonded Saccharomyces cerevisiae in packed bed reactors.

  18. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  19. Titanium zirconium and hafnium coordination compounds with vanillin thiosemicarbazone

    International Nuclear Information System (INIS)

    Konunova, Ts.B.; Kudritskaya, S.A.

    1987-01-01

    Coordination compounds of titanium zirconium and hafnium tetrachlorides with vanillin thiosemicarbazone of MCl 4 x nLig composition, where n=1.5, 4 for titanium and 1, 2, 4 for zirconium and hafnium, are synthesized. Molar conductivity of ethanol solutions is measured; IR spectroscopic and thermochemical investigation are carried out. The supposition about ligand coordination via sulfur and azomethine nitrogen atoms is made. In all cases hafnium forms stable compounds than zirconium

  20. Modified SPEEK membranes for direct ethanol fuel cell

    KAUST Repository

    Maab, Husnul; Nunes, Suzana Pereira

    2010-01-01

    /PI homogeneous blends. The membranes were characterized concerning their water and ethanol solution uptake, water and ethanol permeability in pervaporation experiments and their performance in DEFC tests. The ethanol permeabilities for the CMS-coated (180 nm

  1. Parental involvement

    Directory of Open Access Journals (Sweden)

    Ezra S Simon

    2005-01-01

    Full Text Available Parent-Teacher Associations and other community groups can play a significant role in helping to establish and run refugee schools; their involvement can also help refugee adults adjust to their changed circumstances.

  2. Parenting Conflicts

    Science.gov (United States)

    ... Home Family Dynamics Adoption & Foster Care Communication & Discipline Types of Families Media Work & Play Getting Involved in Your Community Healthy Children > Family Life > Family Dynamics > Parenting Conflicts Family Life Listen Español Text Size Email Print ...

  3. Compound odontoma

    Directory of Open Access Journals (Sweden)

    José Marcelo Vargas Pinto

    2008-01-01

    Full Text Available Odontomas are the most common types of odontogenic tumors, as they are considered more as a developmental anomaly (hamartoma than as a true neoplasia. The aim of the present study is to describe a clinical case of compound odontoma, analyzing its most commonsigns, its region of location, the decade of life and patient’s gender, disorders that may occur as well as the treatment proposed. In order to attain this objective, the method was description of the present clinical case and bibliographic revision, arriving at the result that the treatment for this type of lesion invariably is surgical removal (enucleation and curettage and the prognosis is excellent. The surgical result was followed up in the post-operative period by radiographic exam, and it was possible to conclude that there was complete cicatrization and tissue repair.

  4. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  5. Ethanol production using engineered mutant E. coli

    Science.gov (United States)

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  6. Water-induced ethanol dewetting transition.

    Science.gov (United States)

    Ren, Xiuping; Zhou, Bo; Wang, Chunlei

    2012-07-14

    The dewetting transitions of two hydrophobic plates immersed in pure water, aqueous ethanol solutions with concentrations from 25% to 90%, and pure ethanol were investigated by molecular dynamics simulations, where the dewetting transition was analogous to a first-order phase transition from liquid to vapor. It was found that the dewetting transitions occurred except that in the pure ethanol system. Although the ethanol molecules prefer to locate in the vicinity of the two plates, the inter-plate region is unfavorable for water molecules, due to losing more than one hydrogen bond. Moreover, each inter-plate water molecule forms hydrogen bonds on average with about two ethanol molecules. These intermolecular hydrogen bonds cause water and ethanol to cooperatively fill or exit the inter-plate region. Thus, water molecules play a more important role in the inter-plate filling/empty process, and induce the ethanol dewetting transition. Our results provide insight into the effect of water on the ethanol dewetting phenomena.

  7. Characterization of ethanol concentrations at ultraviolet wavelength ...

    African Journals Online (AJOL)

    This paper presents the measurement of optical absorption spectrum for different concentrations of ethanol at ultraviolet wavelength. Ethanol absorption spectrum was measured using portable spectroscopy setup from Avantes. It consists of Balanced Deuterium Halogen light source and spectrometer. The light source can ...

  8. Beyond commonplace biofuels: Social aspects of ethanol

    International Nuclear Information System (INIS)

    Ribeiro, Barbara Esteves

    2013-01-01

    Biofuels policies and projects may lead to environmental, economic and social impacts. A number of studies point out the need to deliver comprehensive sustainability assessments regarding biofuels, with some presenting analytical frameworks that claim to be exhaustive. However, what is often found in the literature is an overexploitation of environmental and economic concerns, by contrast to a limited appraisal of the social aspects of biofuels. Building on a systematic review of the peer-reviewed literature, this paper discusses the social constraints and strengths of ethanol, with regard to the product's lifecycle stages and the actors involved. Its objective is to contribute to the development of social frameworks to be used in assessing the impact of ethanol. Main findings indicate that ethanol developments can increase the levels of social vulnerability, although there is little evidence in the literature regarding the positive and negative social impacts of 1st-generation ethanol and potential impacts of cellulosic ethanol. Further work is needed on the formulation of social criteria and indicators for a comprehensive sustainability assessment of this biofuel. Policy makers need to internalise the social dimension of ethanol in decision-making to prevent public opposition and irreversible social costs in the future. - Highlights: ► The literature lacks evidence on the social impacts of ethanol. ► Further work is needed on social criteria and indicators for assessment. ► Ethanol developments can increase the levels of social vulnerability. ► Decision-making should internalise the social dimension of biofuels sustainability

  9. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    15% ethanol tolerance. High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential application in ethanologenic fermentations. Data presented in this study revealed that Orc 6 yeast isolate tolerated osmotic stress above 12% (w/v) sorbitol and 15% (w/v) sucrose equivalent of osmotic pressure ...

  10. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    Juliana

    2015-02-11

    Feb 11, 2015 ... The use of vegetable biomass as substrate for ethanol production could reduce the ... Fermentation was performed in a laboratory scale using the J10 and FT858 ... Key words: Hydrolysis of sugarcane straw and pointers, sugarcane juice, ..... Ethanol: An Overview about Composition, Pretreatment Methods,.

  11. Pavlovian conditioning with ethanol: sign-tracking (autoshaping), conditioned incentive, and ethanol self-administration.

    Science.gov (United States)

    Krank, Marvin D

    2003-10-01

    Conditioned incentive theories of addictive behavior propose that cues signaling a drug's reinforcing effects activate a central motivational state. Incentive motivation enhances drug-taking and drug-seeking behavior. We investigated the behavioral response to cues associated with ethanol and their interaction with operant self-administration of ethanol. In two experiments, rats received operant training to press a lever for a sweetened ethanol solution. After operant training, the animals were given Pavlovian pairings of a brief and localized cue light with the sweetened ethanol solution (no lever present). Lever pressing for ethanol was then re-established, and the behavioral effects of the cue light were tested during an ethanol self-administration session. The conditioned responses resulting from pairing cue lights with the opportunity to ingest ethanol had three main effects: (1) induction of operant behavior reinforced by ethanol, (2) stimulation of ethanol-seeking behavior (magazine entries), and (3) signal-directed behavior (i.e., autoshaping, or sign-tracking). Signal-directed behavior interacted with the other two effects in a manner predicted by the location of the cue light. These conditioned responses interact with operant responding for ethanol reinforcement. These findings demonstrate the importance of Pavlovian conditioning effects on ethanol self-administration and are consistent with conditioned incentive theories of addictive behavior.

  12. Acute effects of ethanol and ethanol plus furosemide on pancreatic capillary blood flow in rats.

    Science.gov (United States)

    Dib, J A; Cooper-Vastola, S A; Meirelles, R F; Bagchi, S; Caboclo, J L; Holm, C; Eisenberg, M M

    1993-07-01

    The effects of intravenous ethanol and ethanol plus furosemide on pancreatic capillary blood flow (PCBF) were investigated using a laser-Doppler flowmeter. Forty Sprague-Dawley male rats were divided into 4 groups: (1) control, (2) 80% ethanol, (3) 80% ethanol plus furosemide, and (4) furosemide. Mean arterial blood pressure and heart rate were monitored. Levels of serum amylase, calcium, electrolytes, ethanol, and furosemide (groups 3 and 4) were measured, and samples of pancreatic tissue were obtained. The ethanol and furosemide levels were statistically different (p 0.05) between groups 1 and 4. Histopathologic analysis revealed swollen acini in group 2 and sparse focal necrosis without acinar swelling in group 3. The depressant effect of ethanol on PCBF may be the result of its direct action on pancreatic cells causing edema and capillary compression rather than on primary vascular control mechanisms that adjust blood flow. Furosemide counters this effect.

  13. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

    Science.gov (United States)

    Hon, Shuen; Olson, Daniel G; Holwerda, Evert K; Lanahan, Anthony A; Murphy, Sean J L; Maloney, Marybeth I; Zheng, Tianyong; Papanek, Beth; Guss, Adam M; Lynd, Lee R

    2017-07-01

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their co-fermentations.

    Science.gov (United States)

    da Cunha-Pereira, Fernanda; Hickert, Lilian Raquel; Sehnem, Nicole Teixeira; de Souza-Cruz, Priscila Brasil; Rosa, Carlos Augusto; Ayub, Marco Antônio Záchia

    2011-03-01

    The production of ethanol by the new yeast Spathaspora arborariae using rice hull hydrolysate (RHH) as substrate, either alone or in co-cultures with Saccharomyces cerevisiae is presented. Cultivations were also carried out in synthetic medium to gather physiological information on these systems, especially concerning their ability to grow and produce ethanol in the presence of acetic acid, furfural, and hydroxymethylfurfural, which are toxic compounds usually present in lignocellulosic hydrolysates. S. arborariae was able to metabolize xilose and glucose present in the hydrolysate, with ethanol yields (Y(P/S)(et)) of 0.45. In co-cultures, ethanol yields peaked to 0.77 and 0.62 in the synthetic medium and in RHH, respectively. When the toxic compounds were added to the synthetic medium, their presence produced negative effects on biomass formation and ethanol productivity. This work shows good prospects for the use of the new yeast S. arborariae alone and in co-cultures with S. cerevisiae for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Robert E. [Downstream Alternatives, Inc., South Bend, IN (United States)

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  16. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function.

    Science.gov (United States)

    Shiroma, Shodai; Jayakody, Lahiru Niroshan; Horie, Kenta; Okamoto, Koji; Kitagaki, Hiroshi

    2014-02-01

    Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.

  17. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  18. African perspective on cellulosic ethanol production

    DEFF Research Database (Denmark)

    Bensah, Edem Cudjoe; Kemausuor, Francis; Miezah, Kodwo

    2015-01-01

    A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars...... to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from...... widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most...

  19. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only...... small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase...... genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  20. Wood ethanol and synthetic natural gas pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-30

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs.

  1. Policy Uncertainty and the US Ethanol Industry

    Directory of Open Access Journals (Sweden)

    Jason P. H. Jones

    2017-11-01

    Full Text Available The Renewable Fuel Standard (RFS2, as implemented, has introduced uncertainty into US ethanol producers and the supporting commodity market. First, the fixed mandate for what is mainly cornstarch-based ethanol has increased feedstock price volatility and exerts a general effect across the agricultural sector. Second, the large discrepancy between the original Energy Independence and Security Act (EISA intentions and the actual RFS2 implementation for some fuel classes has increased the investment uncertainty facing investors in biofuel production, distribution, and consumption. Here we discuss and analyze the sources of uncertainty and evaluate the effect of potential RFS2 adjustments as they influence these uncertainties. This includes the use of a flexible, production dependent mandate on corn starch ethanol. We find that a flexible mandate on cornstarch ethanol relaxed during drought could significantly reduce commodity price spikes and alleviate the decline of livestock production in cases of feedstock production shortfalls, but it would increase the risk for ethanol investors.

  2. Wood ethanol and synthetic natural gas pathways

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs

  3. Conversion of Carbon Dioxide to Ethanol by Electrochemical Synthesis Method Using Brass as A Cathode

    Directory of Open Access Journals (Sweden)

    Septian Ramadan

    2017-09-01

    Full Text Available The effect of potential and gas flow rate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide to ethanol. The conversion process is carried out using a NaHCO3 electrolyte solution in an electrochemical reactor equipped with a cathode and anode. As cathode is used brass, while as anode is used carbon. The result of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced qualitatively and quantitatively. The optimum electrochemical synthesis conditions to convert carbon dioxide to ethanol are potential and gas flow rate are 3 volts and 0.5 L/minutes with ethanol concentration yielded 1.32%.

  4. Catalase induction in normal and tumorigenic mice using x-rays, clofibrate, ethanol, or hydrogen peroxide

    International Nuclear Information System (INIS)

    Alexander, L.; Oberley, L.

    1985-01-01

    The authors studied catalase induction in normal male Swiss mice as well as in male mice harboring H-6 hepatomas. The induction patterns many suggest reasons why tumor cells have lower catalase activity than normal cells. X-rays, hydrogen peroxide, ethanol, and clofibrate were used as inducing agents. X-rays interact with tissue and cause free radical formation. This results in an increase in hydrogen peroxide concentration, which ought to induce catalase. Oral administration of hydrogen peroxide should induce catalase similarly. Ethanol can be a substrate for catalase, forming acetalehyde; and as such may induce catalase. Ethanol can also restore inactive catalase compound II to useful catalase. Clofibrate is a hypolipidemic agent which induces catalase, most likely because of its ability to accelerate lipid breakdown, which raises peroxide concentration

  5. Hepatoprotective effect of leaves of aqueous ethanol extract of Cestrum nocturnum against paracetamol-induced hepatotoxicity

    Directory of Open Access Journals (Sweden)

    M. Imran Qadir

    2014-06-01

    Full Text Available The hepatoprotective activities of Cestrum nocturnum (Queen of Night was evaluated against the paracetamol induced hepatotoxicity in the mice. Aqueous ethanol (30:70 extract of plant was obtained by maceration. Results showed that aqueous ethanol extract of C. nocturnum (250 mg/kg and 500 mg/kg produced significant (p<0.05 hepatoprotective activities against paracetamol induced liver injury in Swiss albino mice. Histopathalogical studied of liver further supported the hepatoprotective effects of C. notrunum. Phyto-chemical screening showed the presence of alkaloids, flavonoids, saponins, terpenes, phenolic compounds, carbohydrates and volatile oils. Most of the flavonoids have hepatoprotective activity. Therefore, the hepatoprotective activity of C. nocturnum may be due to the presence of flavonoids and phenolic components. It was concluded from the present study that aqueous ethanol extract of leaves of C. nocturnum has hepatoprotective activity against the paracetamol-induced hepatotoxicity in albino mice.

  6. Perspectives on fuel ethanol consumption and trade

    International Nuclear Information System (INIS)

    Walter, Arnaldo; Dolzan, Paulo; Piacente, Erik; Borges da Cunha, Kamyla; Rosillo-Calle, Frank

    2008-01-01

    Since the year 2000 or so there has been a rapid growth on fuel ethanol production and consumption, particularly in US and Brazil. Ethanol trade represented about 10% of world consumption in 2005, Brazil being the main exporter. The most important consumer markets - US and European Union (EU) - have trade regimes that constrained the comparative advantages of the most efficient producers, such as Brazil. This paper evaluates the fuel ethanol market up to 2030 together with the potential for international biotrade. Based on forecasts of gasoline consumption and on targets and mandates of fuel ethanol use, it is estimated that demand could reach 272 Gl in 2030, displacing 10% of the estimated demand of gasoline (Scenario 1), or even 566 Gl in the same year, displacing about 20% of the gasoline demand (Scenario 2). The analysis considers fuel ethanol consumption and production in US, EU-25, Japan, China, Brazil and the rest of the world (ROW-BR). Without significant production of ethanol from cellulosic materials in this period, displacing 10% of the gasoline demand in 2030, at reasonable cost, can only be accomplished by fostering fuel ethanol production in developing countries and enhancing ethanol trade. If the US and EU-25 reach their full production potential (based on conventional routes), the minimum amount that could be traded in 2030 would be about 34 Gl. Displacing 20% of the gasoline demand by 2030 will require the combined development of second-generation technologies and large-scale international trade in ethanol fuel. Without second-generation technologies, Scenario 2 could become a reality only with large-scale production of ethanol from sugarcane in developing countries, e.g., Brazil and ROW-BR could be able to export at least 14.5 Gl in 2010, 73.9 Gl in 2020 and 71.8 Gl in 2030. (author)

  7. Calculation of ethanol refining by means of extractive distillation with water using simulated data on phase equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Rosak, J; Mertl, I; Huml, M; Wichterle, I

    1980-01-01

    Available data on phase equilibria in binary mixtures pertaining to the system ethanol - water - impurities (7 compounds that represent the main impurities present in raw synthetic or fermentation ethanol) have been gathered for the computer calculation of a column to be used for the refining of ethanol. Missing experimental data on phase equilibria were supplied by simulation using the increment method UNIFAC which predicts phase equilibria on the basis of the chemical structure. All data about the behavior of binary mixtures were correlated by means of the NRTL method and the sets of constants thus obtained were then used in calculations of the column for the refining of ethanol. The results were compared with reality verified on industrial scale.

  8. Autoshaping induces ethanol drinking in nondeprived rats: evidence of long-term retention but no induction of ethanol preference.

    Science.gov (United States)

    Tomie, Arthur; Kuo, Teresa; Apor, Khristine R; Salomon, Kimberly E; Pohorecky, Larissa A

    2004-04-01

    The effects of autoshaping procedures (paired vs. random) and sipper fluid (ethanol vs. water) on sipper-directed drinking were evaluated in male Long-Evans rats maintained with free access to food and water. For the paired/ethanol group (n=16), autoshaping procedures consisted of presenting the ethanol sipper (containing 0% to 28% unsweetened ethanol) conditioned stimulus (CS) followed by the response-independent presentation of food unconditioned stimulus (US). The random/ethanol group (n=8) received the sipper CS and food US randomly with respect to one another. The paired/water group (n=8) received only water in the sipper CS. The paired/ethanol group showed higher grams per kilogram ethanol intake than the random/ethanol group did at ethanol concentrations of 8% to 28%. The paired/ethanol group showed higher sipper CS-directed milliliter fluid consumption than the paired/water group did at ethanol concentrations of 1% to 6%, and 15%, 16%, 18%, and 20%. Following a 42-day retention interval, the paired/ethanol group showed superior retention of CS-directed drinking of 18% ethanol, relative to the random/ethanol group, and superior retention of CS-directed milliliter fluid drinking relative to the paired/water group. When tested for home cage ethanol preference using limited access two-bottle (28% ethanol vs. water) procedures, the paired/ethanol and random/ethanol groups did not differ on any drinking measures.

  9. Synthesis and pharmacological properties of new antihypertensive compounds, the [(benzodioxan - 1,4,)yl-5]-1 alkylamino-2 ethanols. Synthesis and properties of reversible ligands of central serotoninergic receptors: oxygenated isosteres of hydroxy-8 di-n-propylamino- 3 tetralin

    International Nuclear Information System (INIS)

    Perdicakis, Christine

    1988-01-01

    After some recalls on hypertension and on its various treatments, the first part of this thesis in pharmaceutical sciences addresses the synthesis of new molecules, the [(benzodioxan - 1,4,)yl-5]-1 alkylamino-2 ethanols. The author also explains the choice for this structure, and addresses the pharmacological activity of these molecules. The experimental study notably comprises the study of proton NMR spectra and of mass spectra, percentage analyses, fusion point measurements, and liquid-solid chromatography. Pharmacological tests have been performed on rats and on dogs, and did not completely gave the expected results. Therefore, the second part reports other researches related to the central nervous system with the study of the synthesis of radioactive ligands which allows a better knowledge on central serotoninergic receptors. The author reports the development of a new radio-ligand which selectively labels receptor sites of serotonin in the central nervous system [fr

  10. [Effect of phenolic ketones on ethanol fermentation and cellular lipid composition of Pichia stipitis].

    Science.gov (United States)

    Yang, Jinlong; Cheng, Yichao; Zhu, Yuanyuan; Zhu, Junjun; Chen, Tingting; Xu, Yong; Yong, Qiang; Yu, Shiyuan

    2016-02-01

    Lignin degradation products are toxic to microorganisms, which is one of the bottlenecks for fuel ethanol production. We studied the effects of phenolic ketones (4-hydroxyacetophenone, 4-hydroxy-3-methoxy-acetophenone and 4-hydroxy-3,5-dimethoxy-acetophenone) derived from lignin degradation on ethanol fermentation of xylose and cellular lipid composition of Pichia stipitis NLP31. Ethanol and the cellular fatty acid of yeast were analyzed by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Results indicate that phenolic ketones negatively affected ethanol fermentation of yeast and the lower molecular weight phenolic ketone compound was more toxic. When the concentration of 4-hydroxyacetophenone was 1.5 g/L, at fermentation of 24 h, the xylose utilization ratio, ethanol yield and ethanol concentration decreased by 42.47%, 5.30% and 9.76 g/L, respectively, compared to the control. When phenolic ketones were in the medium, the ratio of unsaturated fatty acids to saturated fatty acids (UFA/SFA) of yeast cells was improved. When 1.5 g/L of three aforementioned phenolic ketones was added to the fermentation medium, the UFA/SFA ratio of yeast cells increased to 3.03, 3.06 and 3.61, respectively, compared to 2.58 of the control, which increased cell membrane fluidity and instability. Therefore, phenolic ketones can reduce the yeast growth, increase the UFA/SFA ratio of yeast and lower ethanol productivity. Effectively reduce or remove the content of lignin degradation products is the key to improve lignocellulose biorefinery.

  11. Cellulosic ethanol: status and innovation

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, Lee R.; Liang, Xiaoyu; Biddy, Mary J.; Allee, Andrew; Cai, Hao; Foust, Thomas; Himmel, Michael E.; Laser, Mark S.; Wang, Michael; Wyman, Charles E.

    2017-06-01

    Although the purchase price of cellulosic feedstocks is competitive with petroleum on an energy basis, the cost of lignocellulose conversion to ethanol using today’s technology is high. Cost reductions can be pursued via either in-paradigm or new-paradigm innovation. As an example of new-paradigm innovation, consolidated bioprocessing using thermophilic bacteria combined with milling during fermentation (cotreatment) is analyzed. Acknowledging the nascent state of this approach, our analysis indicates potential for radically improved cost competitiveness and feasibility at smaller scale compared to current technology, arising from (a) R&D-driven advances (consolidated bioprocessing with cotreatment in lieu of thermochemical pretreatment and added fungal cellulase), and (b) configurational changes (fuel pellet coproduction instead of electricity, gas boiler(s) in lieu of a solid fuel boiler).

  12. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol.

    Science.gov (United States)

    Lopez, M F; Becker, H C; Chandler, L J

    2014-11-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Bioconversion of cellulose to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B; Mandenius, C F; Mattiasson, B; Nilsson, B; Axelsson, J P; Hagander, P

    1985-06-20

    Enzymatic hydrolysis of steam pretreated sallow gives highest yields of soluble sugars when hemicellulose is degraded already in the pretreatment step. The steam pretreatment equipment is rebuilt so that 75 g (dry matter) material instead of 7 g can be treated each time. The cellulose production has been increased 123% by the utilization of aqueous two-phase systems as compared to regular growth medium. The cellulase activity per gram of cellulose has been increased from 42 FPU in regular growth medium to 156 FPU in aqueous two-phase systems. Crude dextran can be used for enzyme production. Enzyme recovery up to 75% has been achieved by combining aqueous two-phase technique with membrane technique. Using the enzyme glucose isomerase in combination with S. cerevisiae theoretical yields in pentose fermentations have been achieved, with a product concentration of 60 g/L and a productivity of 2 g/L x h. Yeast and enzyme can be recirculated using membrane technique. Computer simulation shows that the rate equation for enzymatic hydrolysis with respect to inhibiting sugar concentrations can be used to interpolate with respect to sugar concentrations. Computer simulations show that hydrolysis experiments should focus on high substrate concentrations (>10%) using fed-batch technique and enzyme concentrations in the range of 2-8% in relation to substrate dry matter. The combined 'flow injection analysis', FIA, and enzyme reactor probe has been adapted to enzymatic saccarifications of sodium hydroxide pretreated sallow. The gas membrane sensor for ethanol has been utilized in simultaneous saccharification and fermentation of sodium hydroxide pretreated sallow. A literature study concerning pervaporation for ethanol up-grading has been made.(Author).

  14. HPLC mapping of second generation ethanol production with lignocelluloses wastes and diluted sulfuric hydrolysis

    Directory of Open Access Journals (Sweden)

    Diogo José Horst

    2014-09-01

    Full Text Available Wood wastes are potential material for second generation ethanol production within the concept of residual forest bio-refinery. Current paper reports on ethanol production employing an HPLC method for monitoring the chemical content dispersed in the hydrolysate liquor after fermented. The proton-exchange technique was the analytical method employed. Twelve types of wood chips were used as biomass, including Hymenolobium petraeum, Tabebuia cassinoides, Myroxylon peruiferum, Nectandra lanceolata, Ocotea catharinensis, Cedrelinga catenaeformis, Cedrela fissilis Vell, Ocotea porosa, Laurus nobilis, Balfourodendron riedelianum, Pinus Elliotti and Brosimum spp. The influence of diluted sulfuric hydrolysis on the yeast Saccharomyces cerevisiae during the fermentation assay was also investigated. Standard compounds mapped in the analysis comprised fructose, lactic acid, acetic acid, glycerol, glucose and ethanol. The yeast showed ethanol productivity between 0.75 and 1.91 g L-1 h-1, respectively, without the addition of supplementary nutrients or detoxification. The use of these materials for the bioconversion of cellulose into ethanol has been proved. Current analysis contributes towards the production of biofuels by wastes recovery and by process monitoring and optimization.

  15. Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection.

    Science.gov (United States)

    Shishov, Andrey; Penkova, Anastasia; Zabrodin, Andrey; Nikolaev, Konstantin; Dmitrenko, Maria; Ermakov, Sergey; Bulatov, Andrey

    2016-02-01

    A novel vapor permeation-stepwise injection (VP-SWI) method for the determination of methanol and ethanol in biodiesel samples is discussed. In the current study, stepwise injection analysis was successfully combined with voltammetric detection and vapor permeation. This method is based on the separation of methanol and ethanol from a sample using a vapor permeation module (VPM) with a selective polymer membrane based on poly(phenylene isophtalamide) (PA) containing high amounts of a residual solvent. After the evaporation into the headspace of the VPM, methanol and ethanol were transported, by gas bubbling, through a PA membrane to a mixing chamber equipped with a voltammetric detector. Ethanol was selectively detected at +0.19 V, and both compounds were detected at +1.20 V. Current subtractions (using a correction factor) were used for the selective determination of methanol. A linear range between 0.05 and 0.5% (m/m) was established for each analyte. The limits of detection were estimated at 0.02% (m/m) for ethanol and methanol. The sample throughput was 5 samples h(-1). The method was successfully applied to the analysis of biodiesel samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system.

    Science.gov (United States)

    Pagnoncelli, Kamila C; Pereira, Andressa R; Sedenho, Graziela C; Bertaglia, Thiago; Crespilho, Frank N

    2018-08-01

    Integrating in situ biofuel production and energy conversion into a single system ensures the production of more robust networks as well as more renewable technologies. For this purpose, identifying and developing new biocatalysts is crucial. Herein, is reported a bioelectrochemical system consisting of alcohol dehydrogenase (ADH) and Saccharomyces cerevisiae, wherein both function cooperatively for ethanol production and its bioelectrochemical oxidation. Here, it is shown that it is possible to produce ethanol and use it as a biofuel in a tandem manner. The strategy is to employ flexible carbon fibres (FCF) electrode that could adsorb both the enzyme and the yeast cells. Glucose is used as a substrate for the yeast for the production of ethanol, while the enzyme is used to catalyse the oxidation of ethanol to acetaldehyde. Regarding the generation of reliable electricity based on electrochemical systems, the biosystem proposed in this study operates at a low temperature and ethanol production is proportional to the generated current. With further optimisation of electrode design, we envision the use of the cooperative biofuel cell for energy conversion and management of organic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effect of ethanol on γ-aminobutyric acid in the brain

    International Nuclear Information System (INIS)

    Lassanova, M.; Tursky, T.; Homerova, D.

    1989-01-01

    The effect of acute and chronic ethanol administration on the level of γ-aminobutyric acid (GABA), glutamate, aspartate, and glutamine was investigated using 14 C-labelled compounds. The level of GABA rose after both acute and chronic ethanol administration. In chronic experiments also the levels of glutamate, aspartate and glutamine were increased. In acute experiments the incorporation from glucose into the studied amino acids (neuronal compartment) increased, while in chronic experiments a decreasing trend was observed. In the glial compartment the incorporation increased only into glutamate and glutamine in acute experiments, while in chronic experiments a decreased incorporation into glutamine was recorded. The activities of three enzymes were studied in seven parts of the brain after acute ethanol administration. The activity of glutamic acid decarboxylase increased in the hypothalamus and brain cortex and decreased in the medulla oblongata. The activity of GABA transaminase did not change and the activity of glutamine synthetase decreased only in the hippocampus. In accordance with several other studies, the presented results show that ethanol interferes with the GABA system in the brain. It is suggested that the primary effect of ethanol is exerted on the cell membranes with preference for the regions connected with the GABA system. (author). 3 figs., 6 tabs., 18 refs

  18. Sustainably produced ethanol. A premium fuel component; Nachhaltig produziertes Ethanol. Eine Premium Kraftstoffkomponente

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Joerg [Suedzucker AG, Obrigheim/Pfalz (Germany)

    2012-07-01

    Ethanol is the most used biofuel in the world. It is part of the European biofuel strategy, which is intended to preserve finite fossil resources, reduce greenhouse gas emissions and strengthen European agriculture. In addition to its traditional use in E5 fuel, ethanol most recently features in new fuels for petrol engines in Europe: as E10 as an expansion of the already existing concept of ethanol blends, such as in E5, or as ethanol fuel E85, a blend made up primarily of ethanol. There is already extensive international experience for both types of fuel for example in the USA or Brazil. The use of ethanol as a biofuel is linked to sustainability criteria in Europe which must be proven through a certification scheme. In addition to ethanol, the integrated production process also provides vegetable protein which is used in food as well as in animal feed and therefore provides the quality products of processed plants used for sustainable energy and in animal and human food. Ethanol has an effect on the vapour pressure, boiling behaviour and octane number of the fuel blend. Adjusting the blend stock petrol to fulfil the quality requirements of the final fuel is therefore necessary. Increasing the antiknock properties, increasing the heat of evaporation of the fuel using ethanol and the positive effects this has on the combustion efficiency of the petrol engine are particularly important. Investigations on cars or engines that were specifically designed for fuel with a higher ethanol content show significant improvements in using the energy from the fuel and the potential to reduce carbon dioxide emissions if fuels containing ethanol are used. The perspective based purely on an energy equivalent replacement of fossil fuels with ethanol is therefore misleading. Ethanol can also contribute to increasing the energy efficiency of petrol engines as well as being a replacement source of energy. (orig.)

  19. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    Jia Luo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  20. Lithium protects ethanol-induced neuronal apoptosis

    International Nuclear Information System (INIS)

    Zhong Jin; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-01-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3β, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3β (ser9). In addition, the selective GSK-3β inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits

  1. Parental Power and Adolescents' Parental Identification.

    Science.gov (United States)

    Acock, Alan C.; Yang, Wen Shan

    1984-01-01

    Combines McDonald's social power of parental identification with sex-linked models of parental identification to account for the identification of daughters (N=199) and sons (N=147) with their parents. Found that because of a halo effect, a gain in identification with one parent is not at the other parent's expense. (JAC)

  2. Molecular pathways underpinning ethanol-induced neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dan eGoldowitz*

    2014-07-01

    Full Text Available While genetics impacts the type and severity of damage following developmental ethanol exposure, little is currently known about the molecular pathways that mediate these effects. Traditionally, research in this area has used a candidate gene approach and evaluated effects on a gene-by-gene basis. Recent studies, however, have begun to use unbiased approaches and genetic reference populations to evaluate the roles of genotype and epigenetic modifications in phenotypic changes following developmental ethanol exposure, similar to studies that evaluated numerous alcohol-related phenotypes in adults. Here, we present work assessing the role of genetics and chromatin-based alterations in mediating ethanol-induced apoptosis in the developing nervous system. Utilizing the expanded family of BXD recombinant inbred mice, animals were exposed to ethanol at postnatal day 7 via subcutaneous injection (5.0 g/kg in 2 doses. Tissue was collected 7 hours after the initial ethanol treatment and analyzed by activated caspase-3 immunostaining to visualize dying cells in the cerebral cortex and hippocampus. In parallel, the levels of two histone modifications relevant to apoptosis, γH2AX and H3K14 acetylation, were examined in the cerebral cortex using protein blot analysis. Activated caspase-3 staining identified marked differences in cell death across brain regions between different mouse strains. Genetic analysis of ethanol susceptibility in the hippocampus led to the identification of a quantitative trait locus on chromosome 12, which mediates, at least in part, strain-specific differential vulnerability to ethanol-induced apoptosis. Furthermore, analysis of chromatin modifications in the cerebral cortex revealed a global increase in γH2AX levels following ethanol exposure, but did not show any change in H3K14 acetylation levels. Together, these findings provide new insights into the molecular mechanisms and genetic contributions underlying ethanol

  3. The role of ethanol in heroin deaths.

    Science.gov (United States)

    Levine, B; Green, D; Smialek, J E

    1995-09-01

    The purpose of this study was to evaluate the role of ethanol in deaths due to heroin intoxication. Over a 12 month period, all cases investigated by the Office of the Chief Medical Examiner, State of Maryland where a blood screen by Roche Abuscreen radioimmunoassay (RIA) was positive at a cutoff of 100 ng/mL were included in the study. Free morphine was quantitated using the Coat-A-Count RIA and ethanol was quantitated by head space gas chromatography. All presumptive morphine positive cases were confirmed by gas chromatography/mass spectrometry. Seventy of the 119 cases where death was attributed to narcotic or alcohol and narcotic intoxication had blood ethanol concentrations (BAC) greater than or equal to 0.02 g/dL; 48 had BAC > or = 0.10 g/dL. Only 3 of 45 cases where morphine was identified but was unrelated to death had BAC > or = 0.02 g/dL. At all ranges of free morphine concentrations, there was a greater percentage of narcotic deaths when ethanol was present. From the data, we conclude that 1) the use of even small amounts of ethanol with heroin is clearly a risk factor in deaths due to heroin, 2) there are some heroin deaths where no free morphine is identified in the blood. In these deaths, ethanol is unlikely to be present, 3) at blood ethanol concentrations between 0.20 and 0.29 g/dL, the morphine concentrations in heroin deaths increased significantly, 4) at blood ethanol concentrations greater than 0.30 g/dL, morphine became less of a factor than the ethanol in causing death.

  4. Degradation of ethyl alcohol on niobium hydraxide compounds

    International Nuclear Information System (INIS)

    Artem'eva, M.A.; Maslova, E.S.; Artem'ev, Yu.M.

    1992-01-01

    Samples of niobium hydroxide were prepared from niobium(5) chloride solutions in anhydrous ethanol. Niobium hydroxide groups were applied on the surface of dispersed silica-airsilogel. Pulse microcatalytic method was used to reveal, that synthesized hydroxide catalysed ethanol decomposition at 573 K only along the direction of dehydration with formation of ethylene. Ethylene was also the main product of alcohol degradation on applied samples, and procedure of dehydration reactions was noticeable. Spectra of temperature programmed surface reactions demonstrate the similarity of acidic surface properties of these two types of samples. Hydroxide compounds of niobium and bismuth were tested for correlation. They were active during ethyl alcohol dehydrogenation

  5. Preliminary study on fractions' activities of red betel vine (Piper crocatum Ruiz & Pav) leaves ethanol extract toward Mycobacterium tuberculosis

    Science.gov (United States)

    Rachmawaty, Farida Juliantina; Julianto, Tatang Shabur; Tamhid, Hady Anshory

    2018-04-01

    This research aims to identify the antimycobacterial activity of fraction of red betel vine leaves ethanol extract (methanol fraction, ethyl acetate, and chloroform) toward M. tuberculosis. Red betel vine leaves ethanol extract was made with maceration method using ethanol solvent 70%. Resulted extract was then fractionated using Liquid Vacuum Chromatography (LVC) with methanol, ethyl acetate, and chloroform solvent. Each fractionation was exposed to M. tuberculosis with serial dilution method. Controls of fraction, media, bacteria, and isoniazid as standard drug were included in this research. The group of compound from the most active fraction was then identified. The research found that the best fraction for antimycobacterial activity toward M. tuberculosisis chloroform fraction. The compound group of chloroform fraction was then identified. The fraction contains flavonoid, tannin, alkaloid, and terpenoid. The fraction of methanol, ethyl acetate, and chloroform from red betel vine leaves has antimycobacterial activity toward M. tuberculosis. Chloroform fraction has the best antimycobacterial activity and it contains flavonoid, tannin, alkaloid, and terpenoid.

  6. Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase.

    Science.gov (United States)

    Moreno, Antonio D; Ibarra, David; Ballesteros, Ignacio; González, Alberto; Ballesteros, Mercedes

    2013-05-01

    In this study, the thermotolerant yeast Kluyveromyces marxianus CECT 10875 was compared to the industrial strain Saccharomyces cerevisiae Ethanol Red for lignocellulosic ethanol production. For it, whole slurry from steam-exploded wheat straw was used as raw material, and two process configurations, simultaneous saccharification and fermentation (SSF) and presaccharification and simultaneous saccharification and fermentation (PSSF), were evaluated. Compared to S. cerevisiae, which was able to produce ethanol in both process configurations, K. marxianus was inhibited, and neither growth nor ethanol production occurred during the processes. However, laccase treatment of the whole slurry removed specifically lignin phenols from the overall inhibitory compounds present in the slurry and triggered the fermentation by K. marxianus, attaining final ethanol concentrations and yields comparable to those obtained by S. cerevisiae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  8. Sweet future? Brazil's ethanol fuel programme

    International Nuclear Information System (INIS)

    Calle, F.R.

    1999-01-01

    This article traces the history of Brazil's ethanol fuel programme from 1975 to the present, and considers Brazil's energy policy, and the implications of price liberalisation and privatisation aimed at reducing prices to control inflation. The achievements of ProAlcool which was established in 1975 with the aim of replacing petrol with ethanol, costs and investment in ProAlcool, environmental implications, and policy initiatives to boost ProAlcool are examined. Details of typical emissions from a 6-year old car in Brazil are tabulated illustrating the reduced emissions due to ethanol fuels

  9. Ethanol dehydration on doped cadmium oxide

    International Nuclear Information System (INIS)

    Abd El-Salaam, K.M.

    1975-01-01

    The vapour phase catalytic dehydration of ethanol over Fe impregnated cadmium oxide was investigated between 200-450 0 C in atmospheric pressure. Electron transfer mechanisms involved in adsorption and catalytic dehydration reaction were investigated. The change in electrical conductivity of the catalyst resulting from calcination, adsorption and surface reaction processes were studied. Adsorption conductivity at low temperature ( 0 C) indicates that ethanol adsorbs as an electron donor. A mechanism of creation of interstitial Cd atoms responsible for the catalytic dehydration of ethanol on the catalyst surface was suggested. (orig.) [de

  10. Ethanol as radon storage: applications for measurement

    International Nuclear Information System (INIS)

    Winter, I.; Philipsborn, H. von

    1997-01-01

    Ethanol as Radon Storage: Applications for Measurement Ethanol has a solubility for radon of 6 Bq/l per kBq/m 3 air, 24 times higher than water. On filtration of ethanol, radon decay products are completely adsorbed on glass fiber filters, as previously reported for water. Hence: 1. A new simple method for measuring radon in soil air, without expensive equipment. 2. The production of mailable radon calibration sources ('radonol') with 50-100 kBq/l in PET-bottles with 3.8 days half-life, using uraniferous rocks as primary source. (orig.) [de

  11. Deletion of the hfsB gene increases ethanol production in Thermoanaerobacterium saccharolyticum and several other thermophilic anaerobic bacteria.

    Science.gov (United States)

    Eminoğlu, Ayşenur; Murphy, Sean Jean-Loup; Maloney, Marybeth; Lanahan, Anthony; Giannone, Richard J; Hettich, Robert L; Tripathi, Shital A; Beldüz, Ali Osman; Lynd, Lee R; Olson, Daniel G

    2017-01-01

    With the discovery of interspecies hydrogen transfer in the late 1960s (Bryant et al. in Arch Microbiol 59:20-31, 1967), it was shown that reducing the partial pressure of hydrogen could cause mixed acid fermenting organisms to produce acetate at the expense of ethanol. Hydrogen and ethanol are both more reduced than glucose. Thus there is a tradeoff between production of these compounds imposed by electron balancing requirements; however, the mechanism is not fully known. Deletion of the hfsA or B subunits resulted in a roughly 1.8-fold increase in ethanol yield. The increase in ethanol production appears to be associated with an increase in alcohol dehydrogenase activity, which appears to be due, at least in part, to increased expression of the adhE gene, and may suggest a regulatory linkage between hfsB and adhE . We studied this system most intensively in the organism Thermoanaerobacterium saccharolyticum ; however, deletion of hfsB also increases ethanol production in other thermophilic bacteria suggesting that this could be used as a general technique for engineering thermophilic bacteria for improved ethanol production in organisms with hfs -type hydrogenases. Since its discovery by Shaw et al. (JAMA 191:6457-64, 2009), the hfs hydrogenase has been suspected to act as a regulator due to the presence of a PAS domain. We provide additional support for the presence of a regulatory phenomenon. In addition, we find a practical application for this scientific insight, namely increasing ethanol yield in strains that are of interest for ethanol production from cellulose or hemicellulose. In two of these organisms ( T. xylanolyticum and T. thermosaccharolyticum ), the ethanol yields are the highest reported to date.

  12. Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase.

    Science.gov (United States)

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A

    2014-05-15

    The production of ethyl alcohol by fermentation represents the largest scale application of Saccharomyces cerevisiae in industrial biotechnology. Increased worldwide demand for fuel bioethanol is anticipated over the next decade and will exceed 200 billion liters from further expansions. Our working hypothesis was that the drop in ATP level in S. cerevisiae cells during alcoholic fermentation should lead to an increase in ethanol production (yield and productivity) with a greater amount of the utilized glucose converted to ethanol. Our approach to achieve this goal is to decrease the intracellular ATP level via increasing the unspecific alkaline phosphatase activity. Intact and truncated versions of the S. cerevisiae PHO8 gene coding for vacuolar or cytosolic forms of alkaline phosphatase were fused with the alcohol dehydrogenase gene (ADH1) promoter. The constructed expression cassettes used for transformation vectors also contained the dominant selective marker kanMX4 and S. cerevisiae δ-sequence to facilitate multicopy integration to the genome. Laboratory and industrial ethanol producing strains BY4742 and AS400 overexpressing vacuolar form of alkaline phosphatase were characterized by a slightly lowered intracellular ATP level and biomass accumulation and by an increase in ethanol productivity (13% and 7%) when compared to the parental strains. The strains expressing truncated cytosolic form of alkaline phosphatase showed a prolonged lag-phase, reduced biomass accumulation and a strong defect in ethanol production. Overexpression of vacuolar alkaline phosphatase leads to an increased ethanol yield in S. cerevisiae.

  13. Extraterrestrial Organic Compounds in Meteorites

    Science.gov (United States)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  14. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  15. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells

    NARCIS (Netherlands)

    Silveira, da M.G.; Golovina, E.A.; Hoekstra, F.A.; Rombouts, F.M.; Abee, T.

    2003-01-01

    The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells.

  16. Fundus albipunctatus associated with compound heterozygous mutations in RPE65

    DEFF Research Database (Denmark)

    Schatz, Patrik; Preising, Markus; Lorenz, Birgit

    2011-01-01

    To describe a family with an 18-year-old woman with fundus albipunctatus and compound heterozygous mutations in RPE65 whose unaffected parents and 1 female sibling harbored single heterozygous RPE65 mutations.......To describe a family with an 18-year-old woman with fundus albipunctatus and compound heterozygous mutations in RPE65 whose unaffected parents and 1 female sibling harbored single heterozygous RPE65 mutations....

  17. On the Use of Potential Denaturing Agents for Ethanol in Direct Ethanol Fuel Cells

    OpenAIRE

    Domnik Bayer; Florina Jung; Birgit Kintzel; Martin Joos; Carsten Cremers; Dierk Martin; Jörg Bernard; Jens Tübke

    2011-01-01

    Acidic or alkaline direct ethanol fuel cells (DEFCs) can be a sustainable alternative for power generation if they are fuelled with bio-ethanol. However, in order to keep the fuel cheap, ethanol has to be exempted from tax on spirits by denaturing. In this investigation the potential denaturing agents fusel oil, tert-butyl ethyl ether, and Bitrex were tested with regard to their compatibility with fuel cells. Experiments were carried out both in sulphuric acid and potassium hydroxide solution...

  18. Examination of Ethanol Marketing and Input Procurement Practices of the U.S. Ethanol Producers

    OpenAIRE

    Spaulding, Aslihan D.; Schmidgall, Timothy J.

    2008-01-01

    Growing concerns about the dependence on foreign oil and high prices of gasoline have led to rapid growth in ethanol production in the past decade. Unlike earlier development of the ethanol industry which was highly concentrated in a few large corporations, recent ownership of the ethanol plants has been by farmer-owned cooperatives. Not much is known about the marketing and purchasing practices and plants’ flexibility with respect to adapting new technologies. The purpose of this research is...

  19. Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Schultz-Jensen, Nadja; Jensen, J. S.

    2015-01-01

    as with Scanning Electron Microscopy (SEM) imaging. Compounds resulting from wax degradation were analyzed in the washing water of PAP wheat straw. The wax removal enhanced enzymatic hydrolysis yield and, consequently, the efficiency of wheat straw conversion into ethanol. In total, PAP increased the conversion...

  20. Report of the PRI biofuel-ethanol; Rapport du PRI biocarburant-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This evaluation report presents three research programs in the framework of the physiological behavior of the yeast ''Saccharomyces cerevisiae'', with high ethanol content. These studies should allowed to select an efficient yeast for the ethanol production. The first study concerns the development of an enzymatic process for the hydrolysis and the fermentation. The second study deals with the molecular and dynamical bases for the yeast metabolic engineering for the ethanol fuel production. The third research concerns the optimization of performance of microbial production processes of ethanol. (A.L.B.)

  1. Derived thermodynamic properties for the (ethanol + decane) and (carbon dioxide + ethanol + decane) systems at high pressures

    International Nuclear Information System (INIS)

    Zamora-López, Héctor S.; Galicia-Luna, Luis A.; Elizalde-Solis, Octavio; Hernández-Rosales, Irma P.; Méndez-Lango, Edgar

    2012-01-01

    Highlights: ► Experimental density data are reported for (ethanol + decane) and (ethanol + decane + CO 2 ) mixtures. ► Compressed liquid densities were measured in a vibrating tube densimeter from (313 to 363) K. ► Excess molar volumes for (ethanol + decane) mixtures are positive. ► The presence of carbon dioxide in the (ethanol + decane) mixture causes negative excess molar volumes. - Abstract: Volumetric properties for the binary (ethanol + decane) and ternary (ethanol + decane + carbon dioxide) systems are reported from (313 to 363) K and pressures up to 20 MPa. Compressed liquid densities of both systems were measured in a vibrating tube densimeter at different compositions. Binary mixtures {x 1 ethanol + (1-x 1 ) decane} were prepared at x 1 = 0.0937, 0.1011, 0.2507, 0.4963, 0.7526, 0.9014. Compositions for the ternary system were prepared by varying the ethanol/decane relation and trying to keep constant the presence of carbon dioxide at about 0.2 mole fraction. These were {x 1 ethanol + x 2 decane + (1-x 1 -x 2 ) carbon dioxide} x 1 = 0.0657, 0.1986, 0.4087, 0.6042, 0.7109. Density results were correlated using an empirical model with five parameters. Deviations between experimental and calculated values agree and are within the experimental uncertainty. Isobaric expansivity, isothermal compressibility, thermal pressure coefficient, and internal pressure have been calculated for both binary and ternary systems using the empirical model.

  2. Report of the PRI biofuel-ethanol; Rapport du PRI biocarburant-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This evaluation report presents three research programs in the framework of the physiological behavior of the yeast ''Saccharomyces cerevisiae'', with high ethanol content. These studies should allowed to select an efficient yeast for the ethanol production. The first study concerns the development of an enzymatic process for the hydrolysis and the fermentation. The second study deals with the molecular and dynamical bases for the yeast metabolic engineering for the ethanol fuel production. The third research concerns the optimization of performance of microbial production processes of ethanol. (A.L.B.)

  3. Chronic ethanol consumption impairs learning and memory after cessation of ethanol.

    Science.gov (United States)

    Farr, Susan A; Scherrer, Jeffrey F; Banks, William A; Flood, James F; Morley, John E

    2005-06-01

    Acute consumption of ethanol results in reversible changes in learning and memory whereas chronic ethanol consumption of six or more months produces permanent deficits and neural damage in rodents. The goal of the current paper was determine whether shorter durations of chronic ethanol ingestion in mice would produce long-term deficits in learning and memory after the cessation of ethanol. We first examined the effects of four and eight weeks of 20% ethanol followed by a three week withdrawal period on learning and memory in mice. We determined that three weeks after eight, but not four, weeks of 20% ethanol consumption resulted in deficits in learning and long-term memory (seven days) in T-maze footshock avoidance and Greek Cross brightness discrimination, step-down passive avoidance and shuttlebox active avoidance. Short-term memory (1 hr) was not affected. The deficit was not related to changes in thiamine status, caloric intake, or nonmnemonic factors, such as, activity or footshock sensitivity. Lastly, we examined if the mice recovered after longer durations of withdrawal. After eight weeks of ethanol, we compared mice after three and 12 weeks of withdrawal. Mice that had been off ethanol for both three and 12 weeks were impaired in T-maze footshock avoidance compared to the controls. The current results indicate that a duration of ethanol consumption as short as eight weeks produces deficits in learning and memory that are present 12 weeks after withdrawal.

  4. Lignans from Opuntia ficus-indica seeds protect rat primary hepatocytes and HepG2 cells against ethanol-induced oxidative stress.

    Science.gov (United States)

    Kim, Jung Wha; Yang, Heejung; Kim, Hyeon Woo; Kim, Hong Pyo; Sung, Sang Hyun

    2017-01-01

    Bioactivity-guided isolation of Opuntia ficus-indica (Cactaceae) seeds against ethanol-treated primary rat hepatocytes yielded six lignan compounds. Among the isolates, furofuran lignans 4-6, significantly protected rat hepatocytes against ethanol-induced oxidative stress by reducing intracellular reactive oxygen species levels, preserving antioxidative defense enzyme activities, and maintaining the glutathione content. Moreover, 4 dose-dependently induced the heme oxygenase-1 expression in HepG2 cells.

  5. Ethanol content in different gasohol blend spills influences the decision-making on remediation technologies.

    Science.gov (United States)

    Vilela Steiner, Leonardo; Toledo Ramos, Débora; Rubini Liedke, Ana Maria; Serbent, Maria Pilar; Corseuil, Henry Xavier

    2018-04-15

    Gasohol blend spills with variable ethanol content exert different electron acceptor demands in groundwater and the distinct dynamics undergone by these blends underscores the need for field-based information to aid decision-making on suitable remediation technologies for each gasohol blend spill. In this study, a comparison of two gasohol releases (E10 (10:90 ethanol and gasoline, v/v) and E25 (25:75 ethanol and gasoline, v/v) under monitored natural attenuation (MNA) and nitrate biostimulation, respectively) was conducted to assess the most effective remediation strategy for each gasohol release. Microbial communities were assessed to support geochemical data as well as to enable the characterization of important population shifts that evolve during biodegradation processes in E25 and E10 field experiments. Results revealed that natural attenuation processes sufficiently supported ethanol and BTEX compounds biodegradation in E10 release, due to the lower biochemical oxygen demand they exert relative to E25 blend. In E25 release, nitrate reduction was largely responsible for BTEX and ethanol biodegradation, as intended. First-order decay constants demonstrated that ethanol degradation rates were similar (p remediation technologies (2.05 ± 0.15 and 2.22 ± 0.23, for E25 and E10, respectively) whilst BTEX compounds exhibited different degradation rates (p > 0.05) that were higher for the experiment under MNA (0.33 ± 0.06 and 0.43 ± 0.03, for E25 and E10, respectively). Therefore, ethanol content in different gasohol blends can influence the decision-making on the most suitable remediation technology, as MNA processes can be applied for the remediation of gasohol blends with lower ethanol content (i.e., 10% v/v), once the aquifer geochemical conditions provide a sufficient electron acceptor pool. To the best of our knowledge, this is the first field study to monitor two long-term gasohol releases over various time scales in order to assess

  6. Treatment of biomass to obtain ethanol

    Science.gov (United States)

    Dunson, Jr., James B.; Elander, Richard T [Evergreen, CO; Tucker, III, Melvin P.; Hennessey, Susan Marie [Avondale, PA

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  7. Radiolytic decomposition of water-ethanol mixtures

    International Nuclear Information System (INIS)

    Baquey, Charles

    1968-07-01

    This research thesis addresses the study of the behaviour of binary mixtures submitted to ionizing radiations, and notably aims, by studying the case of water-ethanol mixtures, at verifying solutions proposed by previously published works on the origin of hydrogen atoms and of molecular hydrogen, on the intervention of excited atoms, and on the origin of products appearing under radiolysis. The experimental part of this work consists in the dosing of products formed in water-ethanol mixtures irradiated in presence or absence of nitrate, hydrogen, hydrocarbon, acetaldehyde, 2-3 butanediol and nitrite. Results are discussed and interpreted in terms of acetaldehyde efficiency, 2-3 butanediol efficiencies, and hydrocarbon efficiencies in pure ethanol, and in water-ethanol mixtures. The influence of the presence of nitrate ions in mixtures is also discussed

  8. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential application ... sources include cashew, apple juice (Osho, 2005), palm ... choice for fermentation (Chandra and Panchal, 2003). Yeasts ...

  9. Northeastern California Ethanol Manufacturing Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    1997-11-01

    This report is a compilation of work by several different organizations and includes the NREL researched report, 'Biomass to Ethanol, Facility Design, Cost Estimate, and Financial Evaluation' Volumes I and II.

  10. Aqueous ethanolic extract of Cochlospermum planchonii rhizome ...

    African Journals Online (AJOL)

    DR. ABU

    2012-07-03

    Jul 3, 2012 ... This study was designed to investigate the effects of aqueous ethanolic ... Key words: Cochlospermum planchonii, sperm characteristics, reproduction, Wistar rats. ... extract was stored in air-tight container at 4°C until needed.

  11. Remetabolism of transpired ethanol by Populus deltoides

    International Nuclear Information System (INIS)

    MacDonald, R.C.; Kimmerer, T.W.

    1990-01-01

    Ethanol is present in the transpiration stream of flooded and unflooded trees in concentrations up to 0.5mM. Transpired ethanol does not evaporate but is remetabolized by foliage and upper stems in Populus deltoides. 14 C-ethanol was supplied in the transpiration stream to excised leaves and shoots; more than 98% was incorporated. Less than 1% was respired as CO 2 . Organic and amino acids were labelled initially, with eventual accumulations in water- and chloroform-soluble fractions and into protein. Much of the label was incorporated into stem tissue, with little reaching the lamina. These experiments suggest that ethanol is not lost transpirationally through the leaves, but is efficiently recycled in a manner resembling lactate recycling in mammals

  12. Effects of Vigabatrin, an Irreversible GABA Transaminase Inhibitor, on Ethanol Reinforcement and Ethanol Discriminative Stimuli in Mice

    Science.gov (United States)

    Griffin, William C.; Nguyen, Shaun A.; Deleon, Christopher P.; Middaugh, Lawrence D.

    2012-01-01

    We tested the hypothesis that the irreversible gamma-amino butyric acid (GABA) transaminase inhibitor, γ-vinyl GABA (Vigabatrin; VGB) would reduce ethanol reinforcement and enhance the discriminative stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity and ethanol discrimination procedures, to examine comprehensively the effects of VGB on ethanol-supported behaviors. VGB dose-dependently reduced operant responding for ethanol as well as ethanol consumption for long periods of time. Importantly, a low dose (200 mg/kg) of VGB was selective for reducing ethanol responding without altering intake of food or water reinforcement. Higher VGB doses (>200 mg/kg) still reduced ethanol intake, but also significantly increased water consumption and, more modestly, increased food consumption. While not affecting locomotor activity on its own, VGB interacted with ethanol to reduce the stimulatory effects of ethanol on locomotion. Finally, VGB (200 mg/kg) significantly enhanced the discriminative stimulus effects of ethanol as evidenced by significant left-ward and up-ward shifts in ethanol generalization curves. Interestingly, VGB treatment was associated with slight increases in blood ethanol concentrations. The reduction in ethanol intake by VGB appears to be related to the ability of VGB to potentiate the pharmacological effects of ethanol. PMID:22336593

  13. Magnetic properties of Nd3(Fe,Mo)29 compound and its nitride

    International Nuclear Information System (INIS)

    Pan Hongge

    1998-01-01

    The iron-rich ternary intermetallic compound Nd 3 (Fe,Mo) 29 with the Nd 3 (Fe,Ti) 29 -type monoclinic structure and its nitride were prepared. After nitrogenation, the nitride retains the structure of the parent compound, but the unit-cell volume of the nitride is 5.9% greater than that of the parent compound. The Curie temperature of Nd 3 (Fe,Mo) 29 nitride is 70.9% higher than that of the parent compound and the saturation magnetization of the nitride is about 6.6% (at 4.2 K) and 23.7% (at 300 K) higher than that of the parent compound. The anisotropy of the nitride is similar to that of parent compound, which exhibits plane anisotropy. (orig.)

  14. Antioxidant activity and antiaging gel formulation grapefruit peel (Citrus maxima Merr.) ethanolic extract

    OpenAIRE

    Nazliniwaty; Karsono; Zebua, Nilsya Febrika; Febrika, Nilsya

    2017-01-01

    This study aims to conduct the antioxidant activity test of grapefruit peel ethanolic extracts and gel formulation. Grapefruit (Citrus maxima Merr.) is a plant of the Rutaceae family, which has been known to contain ph enolic compounds (flavonoids and tannins). Grapefruit skin was very thick (>30% of the total weight of the fr uit) and always considered as waste that has not been utiliz ed properly....

  15. State and Kinetic Parameters Estimation of Bio-Ethanol Production with Immobilized Cells

    OpenAIRE

    Mihaylova, Iva; Popova, Silviya; Kostov, Georgi; Ignatova, Maya; Lubenova, Velislava; Naydenova, Vessela; Pircheva, Desislava; Angelov, Mihail

    2013-01-01

    In this paper, state and kinetic parameters estimation based on extended Kalman filter (EKF) is proposed. Experimental data from alcoholic fermentation process with immobilized cells is used. The measurements of glucose and ethanol concentration are used as on-line measurements for observers design and biomass concentration is used for results verification. Biomass, substrate and product concentrations inside immobilized compounds are estimated using the proposed algorithm. Monitoring of the ...

  16. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    Ester Foppa Pedretti

    2014-11-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the Viticulture Research Centre (CRA-VIT Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. Life cycle assessment (LCA of grape ethanol energy chain was performed following two different methods: i using the spreadsheet BioGrace, developed within the Intelligent Energy Europe program to support and to ease the Renewable Energy Directive 2009/28/EC implementation; ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. These two tools gave very similar results. The overall emissions impact of ethanol production from grapes on average is about 33 g CO2eq MJ–1 of ethanol if prunings are used for steam production and 53 g CO2eq MJ–1 of ethanol if methane is used. The comparison with other bio-energy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy.

  17. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  18. Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol

    Energy Technology Data Exchange (ETDEWEB)

    You, Qiao; Chen, Liang [College of Environmental Science and Engineering, Hunan University, Changsha (China); Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Changsha (China)

    2011-01-15

    Thermochemical liquefaction characteristics of Spirulina, a kind of high-protein microalgae, were investigated with the sub- and supercritical ethanol as solvent in a 1000 mL autoclave. The influences of various liquefaction parameters on the yields of products (bio-oil and residue) from the liquefaction of Spirulina were studied, such as the reaction temperature (T), the S/L ratio (R{sub 1}, solid: Spirulina, liquid: ethanol), the solvent filling ratio (R{sub 2}) and the type and dosage of catalyst. Without catalyst, the bio-oil yields were in the range of 35.4 wt.% and 45.3 wt.% depending on the changes of T, R{sub 1} and R{sub 2}. And the bio-oil yields increased generally with increasing T and R{sub 2}, while the bio-oil yields reduced with increasing R{sub 1}. The FeS catalyst was certified to be an ideal catalyst for the liquefaction of Spirulina microalgae for its advantages on promoting bio-oil production and suppressing the formation of residue. The optimal dosage of catalyst (FeS) was ranging from 5-7 wt.%. The elemental analyses and FT-IR and GC-MS measurements for the bio-oils revealed that the liquid products have much higher heating values than the crude Spirulina sample and fatty acid ethyl ester compounds were dominant in the bio-oils, irrespective of whether catalyst was used. (author)

  19. Tritium effect in peroxidation of ethanol by liver catalase

    International Nuclear Information System (INIS)

    Damgaard, S.E.

    1977-01-01

    Simultaneous determination of the rate of appearance of 3 H in water from [(1 R)-1- 3 H 1 ]-ethanol and the rate of acetaldehyde formation in the presence of rat or ox liver catalase under conditions of steady-state generation of H 2 O 2 allowed calculation of the 3 H isotope effect. The mean value of 2.52 obtained for rat liver catalase at 37 0 C and pH 6.3 to 7.7 was independent of both ethanol concentration and the rate of H 2 O 2 generation over a wide range. At 25 0 C a slightly lower mean value of 2.40 was obtained with the ox liver catalase. Neither the product, acetaldehyde, nor 4-methylpyrazole influenced the two rates measured in the assay. Relating the value obtained for the 3 H isotope effect to a known value for the 2 H isotope effect strongly supports the view that both values are close to the true isotope effect with the respective substituted compounds on the rate constant in the catalytic step involving scission of the C-H bond. The constancy of the isotope effect under various conditions makes it possible to use it for interpretations in vivo. It was established that β-D-galactose dehydrogenase exhibits B-specificity towards the nicotinamide ring in NAD. (author)

  20. Production of 16% ethanol from 35% sucrose

    International Nuclear Information System (INIS)

    Breisha, Gaber Z.

    2010-01-01

    A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g -1 of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l -1 together with thiamine at a level of 0.2 g l -1 led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm 3 min -1 m 3 of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production.

  1. The expanding U. S. ethanol industry

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, B

    1991-01-01

    American experience in the ethanol industry is discussed. Archer Daniel Midlands Co. (ADM) is a large agri-processing company that is the largest processor of grains and oilseeds, and processes ca 400,000 bushels of corn per day at its Decateur facility. Waste water and heat from the plant is used to grow vegetables hydroponically, with carbon dioxide from distillation used to speed growing at night. About 40,000 heads of lettuce per day are harvested, with cucumbers and tomatoes grown as premium crops. The plant includes a state-of-the-art fluidized bed power plant that burns high sulfur coal without sulfur emission. Approval has recently been granted by the Environmental Protection Agency to burn used tires, and payback for the process is expected to take 3-4 years. Ethanol is produced by steeping corn and separating germ and starch, with the starch used to make corn sweeteners. As well as ethanol, byproducts include animal feed, hydroponics, oils and margarines. ADM is the largest barging company in the U.S., with 14,000 rail cars, 1,200 dedicated to fuel ethanol. The Clean Air Act will mandate a 2.7% oxygen gasoline, and 10% ethanol additive gives 3.3% oxygen. The high octane rating of ethanol-blend gasoline is a strong selling point, and is a good deal for refiners, especially at octane-poor refineries.

  2. Modeling bacterial contamination of fuel ethanol fermentation.

    Science.gov (United States)

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Copyright 2008 Wiley Periodicals, Inc.

  3. Production of 16% ethanol from 35% sucrose

    Energy Technology Data Exchange (ETDEWEB)

    Breisha, Gaber Z. [Department of Agricultural Microbiology, Faculty of Agriculture, Minia University, Minia (Egypt)

    2010-08-15

    A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g{sup -1} of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l{sup -1} together with thiamine at a level of 0.2 g l{sup -1} led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm{sup 3} min{sup -1} m{sup 3} of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production. (author)

  4. Carbon nanotube-based ethanol sensors

    International Nuclear Information System (INIS)

    Brahim, Sean; Colbern, Steve; Gump, Robert; Moser, Alex; Grigorian, Leonid

    2009-01-01

    Sensors containing metal-carbon nanotube (CNT) hybrid materials as the active sensing layer were demonstrated for ethanol vapor detection at room temperature. The metal-CNT hybrid materials were synthesized by infiltrating single wall carbon nanotubes (SWNTs) with the transition metals Ti, Mn, Fe, Co, Ni, Pd or Pt. Each sensor was prepared by drop-casting dilute dispersions of a metal-CNT hybrid onto quartz substrate electrodes and the impedimetric responses to varying ethanol concentration were recorded. Upon exposure to ethanol vapor, the ac impedance (Z') of the sensors was found to decrease to different extents. The sensor containing pristine CNT material was virtually non-responsive at low ethanol concentrations (<50 ppm). In contrast, all metal-CNT hybrid sensors showed extremely high sensitivity to trace ethanol levels with 100-fold or more gains in sensitivity relative to the starting SWNT sensor. All hybrid sensors, with the exception of Ni filled CNT, exhibited significantly larger sensor responses to ethanol vapor up to 250 ppm compared to the starting SWNT sensor.

  5. [Insights into engineering of cellulosic ethanol].

    Science.gov (United States)

    Yue, Guojun; Wu, Guoqing; Lin, Xin

    2014-06-01

    For energy security, air pollution concerns, coupled with the desire to sustain the agricultural sector and revitalize the rural economy, many countries have applied ethanol as oxygenate or fuel to supplement or replace gasoline in transportation sector. Because of abundant feedstock resources and effective reduction of green-house-gas emissions, the cellulosic ethanol has attracted great attention. With a couple of pioneers beginning to produce this biofuel from biomass in commercial quantities around the world, it is necessary to solve engineering problems and complete the economic assessment in 2015-2016, gradually enter the commercialization stage. To avoid "competing for food with humans and competing for land with food", the 1st generation fuel ethanol will gradually transit to the 2nd generation cellulosic ethanol. Based on the overview of cellulosic ethanol industrialization from domestic and abroad in recent years, the main engineering application problems encountered in pretreatment, enzymes and enzymatic hydrolysis, pentose/hexose co-fermentation strains and processes, equipment were discussed from chemical engineering and biotechnology perspective. The development direction of cellulosic ethanol technology in China was addressed.

  6. Sorption equilibria of ethanol on cork.

    Science.gov (United States)

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Bellat, Jean-Pierre

    2013-06-05

    We report here for the first time a thermodynamic study of gaseous ethanol sorption on raw cork powder and plate. Our study aims at a better understanding of the reactivity of this material when used as a stopper under enological conditions, thus in close contact with a hydroethanolic solution, wine. Sorption−desorption isotherms were accurately measured by thermogravimetry at 298 K in a large range of relative pressures. Sorption enthalpies were determined by calorimetry as a function of loading. Sorption−desorption isotherms exhibit a hysteresis loop probably due to the swelling of the material and the absorption of ethanol. Surprisingly, the sorption enthalpy of ethanol becomes lower than the liquefaction enthalpy as the filling increases. This result could be attributed to the swelling of the material, which would generate endothermic effects. Sorption of SO₂ on cork containing ethanol was also studied. When the ethanol content in cork is 2 wt %, the amount of SO₂ sorbed is divided by 2. Thus, ethanol does not enhance the sorption rate for SO₂ but, on the contrary, decreases the SO₂ sorption activity onto cork, probably because of competitive sorption mechanisms.

  7. Mosquito Larvicidal Constituents from the Ethanol Extract of Inula racemosa Hook. f. Roots against Aedes albopictus

    Directory of Open Access Journals (Sweden)

    Qing He

    2014-01-01

    Full Text Available The aim of this research was to determine larvicidal activity of the ethanol extract of Inula racemosa Hook. f. (Compositae roots against the larvae of the Culicidae mosquito Aedes albopictus and to isolate any larvicidal constituents from the extract. Based on bioactivity-guided fractionation, 11,13-dihydroisoalantolactone (1, macrophyllilactone E (2, 5α-epoxyalantolactone (3, and epoxyisoalantolactone (4 were isolated and identified as the active constituents. Compounds 1 and 2 exhibited strong larvicidal activity against the early fourth-instar larvae of A. albopictus with LC50 values of 21.86 μg/mL and 18.65 μg/mL, respectively, while the ethanol extract had a LC50 value of 25.23 μg/mL. Compounds 3 and 4 also possessed larvicidal activity against the Asian tiger mosquitoes with LC50 values of 29.37 μg/mL and 35.13 μg/mL, respectively. The results indicated that the ethanol extract of I. racemosa and the four isolated constituents have potential for use in the control of A. albopictus larvae and could be useful in the search of newer, safer, and more effective natural compounds as larvicides.

  8. Ethanol research with representatives of provincial/territorial governments and ethanol retailers : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    This paper provided the results of a survey conducted to obtain feedback from retailers and provincial and territorial governments concerning the promotion of ethanol use. A key objective of the research was to determine whether local and provincial governments and retailers are interested in cooperating with the federal government in promoting ethanol use. Thirteen government representatives were interviewed as well as 11 retailers. Results of the study suggested that approaches to collaboration with the diverse stakeholders involved in the promotion of ethanol will require a tailored approach. The needs and interests of jurisdictions and provinces varied widely. Outlets selling ethanol-blended gasoline were concentrated in Ontario, Quebec, and Saskatchewan. Retailers who embraced the alternative fuel tended to be well-established in the ethanol market, and did not require assistance from the Government of Canada. Retailers who were reluctant to embrace ethanol stated that they were only likely to enter the market when required to do so by law. Many stakeholders felt that consumers entertained common misperceptions concerning ethanol, and that consumers were unsure of the effect of ethanol on their vehicles. Many retailers had taken steps to communicate with consumers about the relative benefits of ethanol-blended gasoline. Results indicated that the federal government can assist provinces and retailers by providing promotional tools such as flyers, pamphlets and brochures. Interest among retailers in collaborating with the government was only moderate. It was recommended that retailers be provided with accurate information on ethanol. It was concluded that strategies should be developed by the federal government to increase public awareness of ethanol use.

  9. Ligno-ethanol in competition with food-based ethanol in Germany

    International Nuclear Information System (INIS)

    Poganietz, Witold-Roger

    2012-01-01

    First-generation biofuels are often challenged over their potentially adverse impact on food prices. Biofuels that use nonfood biomass such as lignocellulose are being promoted to ease the conflict between fuels and food. However, their complex processes mean that the total costs of lignocellulosic ethanol may be high in comparison. This might undermine the economic soundness of plans for its use. Another potential advantage of lignocellulosic ethanol is seen in an enhanced contribution to a reduction in greenhouse gas emissions. Yet the increasing attractiveness of lignocellulosic biofuels may also lead to changes in land use that induce additional carbon emissions. For this reason, the environmental impacts of such plans are not straightforward and depend on the affected category of land. The objective of this paper is to compare the economic perspectives and environmental impact of lignocellulosic ethanol with food-based ethanol taking into account market constraints and policy measures. The analysis of the environmental impact focuses on carbon dioxide emissions. In the medium run, i.e., by 2020, lignocellulosic ethanol could enter the gasoline market, crowding out inter alia food-based ethanol. In terms of carbon dioxide emissions, lignocellulosic ethanol seems to be environmentally desirable in each of the analyzed cases. The findings depend crucially on the market conditions, which are influenced inter alia by crude oil, the exchange rate, and technology conditions. -- Highlights: ► Competition of ligno-ethanol with competing energy carriers is analyzed. ► In medium-term ligno-ethanol could crowd out food-based ethanol. ► In terms of CO 2 ligno-ethanol seems to be environmentally desirable. ► The environmental impacts include by land use change induced CO 2 emissions. ► The findings depend crucially on market conditions.

  10. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood.

    Science.gov (United States)

    Varlinskaya, Elena I; Truxell, Eric; Spear, Linda P

    2014-08-01

    This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25 and 45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45 and P65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later

  11. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    OpenAIRE

    G. Morais-Silva; J. Fernandes-Santos; D. Moreira-Silva; M.T. Marin

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex int...

  12. Thermo tolerant and ethanol producing saccharomyces cerevisiae mutants using gamma radiation

    International Nuclear Information System (INIS)

    Karima, H.M.; Ismail, A.A.; El-Batal, A.I.

    1997-01-01

    Gene manipulation now plays the main role in fermentation industries. However, throughout ethanol production processes, it appeared the requirements for the selection of higher-producing isolate(s) associated, at the same time, with heat-resistant to overcome higher degrees above 30-35 degree, a step which, actually, will reduce final - producing costs. A total of 43 yeast isolates were selected, after exposure of the strain saccharomyces cervisiae to different doses of gamma radiation. Isolated varied in colony size from the original strain as well as among themselves. These isolates were screened for their ability to grow on glucose and supplemented cane molasses media at 30 degree and 40 degree. Out fo them, only 13 isolates proved to grow well on 40 degree. Furthermore, determination of ethanol production by each of these mutants revealed that yielded in general, 16 to 52.0% increase in alcohol production at 40 degree on cane molasses medium (17.5% w/v initial sugars), compared to the original strain. At 40 degree, maximum ethanol yield was 0.63 coupled with 9.5% ethanol concentration and 85.1% sugar conversion which represents 40, 46.2 and 3.4% increase, respectively from the parental strain

  13. Air quality impacts of increased use of ethanol under the United States’ Energy Independence and Security Act

    Science.gov (United States)

    Cook, Rich; Phillips, Sharon; Houyoux, Marc; Dolwick, Pat; Mason, Rich; Yanca, Catherine; Zawacki, Margaret; Davidson, Ken; Michaels, Harvey; Harvey, Craig; Somers, Joseph; Luecken, Deborah

    2011-12-01

    Increased use of ethanol in the United States fuel supply will impact emissions and ambient concentrations of greenhouse gases, "criteria" pollutants for which the U. S. EPA sets ambient air quality standards, and a variety of air toxic compounds. This paper focuses on impacts of increased ethanol use on ozone and air toxics under a potential implementation scenario resulting from mandates in the U. S. Energy Independence and Security Act (EISA) of 2007. The assessment of impacts was done for calendar year 2022, when 36 billion gallons of renewable fuels must be used. Impacts were assessed relative to a baseline which assumed ethanol volumes mandated by the first renewable fuels standard promulgated by U. S. EPA in early 2007. This assessment addresses both impacts of increased ethanol use on vehicle and other engine emissions, referred to as "downstream" emissions, and "upstream" impacts, i.e., those connected with fuel production and distribution. Air quality modeling was performed for the continental United States using the Community Multi-scale Air Quality Model (CMAQ), version 4.7. Pollutants included in the assessment were ozone, acetaldehyde, ethanol, formaldehyde, acrolein, benzene, and 1,3-butadiene. Results suggest that increased ethanol use due to EISA in 2022 will adversely increase ozone concentrations over much of the U.S., by as much as 1 ppb. However, EISA is projected to improve ozone air quality in a few highly-populated areas that currently have poor air quality. Most of the ozone improvements are due to our assumption of increases in nitrogen oxides (NO x) in volatile organic compound (VOC)-limited areas. While there are some localized impacts, the EISA renewable fuel standards have relatively little impact on national average ambient concentrations of most air toxics, although ethanol concentrations increase substantially. Significant uncertainties are associated with all results, due to limitations in available data. These uncertainties are

  14. Prominent ethanol sensing with Cr2O3 nanoparticle-decorated ZnS nanorods sensors

    Science.gov (United States)

    Sun, Gun-Joo; Kheel, Hyejoon; Ko, Tae-Gyung; Lee, Chongmu; Kim, Hyoun Woo

    2016-08-01

    ZnS nanorods and Cr2O3 nanoparticle-decorated ZnS nanorods were synthesized by using facile hydrothermal techniques, and their ethanol sensing properties were examined. X-ray diffraction and scanning electron microscopy revealed good crystallinity and size uniformity for the ZnS nanorods. The Cr2O3 nanoparticle-decorated ZnS nanorod sensor showed a stronger response to ethanol than the pristine ZnS nanorod sensor. The responses of the pristine and the decorated nanorod sensors to 200 ppm of ethanol at 300 °C were 2.9 and 13.8, respectively. Furthermore, under these conditions, the decorated nanorod sensor showed a longer response time (23 s) and a shorter recovery time (20 s) than the pristine one did (19 and 35 s, respectively). Consequently, the total sensing time of the decorated nanorod sensor (42 s) was shorter than that of the pristine one (55 s). The decorated nanorod sensor showed excellent selectivity to ethanol over other volatile organic compound gases including acetone, methanol, benzene, and toluene whereas the pristine one failed to show selectivity to ethanol over acetone. The improved sensing performance of the decorated nanorod sensor is attributed to a modulation of the width of the conduction channel and the height of the potential barrier at the ZnS-Cr2O3 interface accompanying the adsorption and the desorption of ethanol gas, and the greater surface-to-volume ratio of the decorated nanorods which was greater than that of the pristine one due to the existence of the ZnS-Cr2O3 interface.

  15. Long-lasting effect of NMDA receptor antagonist memantine on ethanol-cue association and relapse.

    Science.gov (United States)

    Vengeliene, Valentina; Olevska, Anastasia; Spanagel, Rainer

    2015-12-01

    It is well known that the glutamatergic system plays a crucial role in alcohol addiction and especially in relapse-like behaviour. However, results of clinical studies on compounds that influence the activity of the glutamatergic system have been disappointing so far. The aim of our study was to establish treatment conditions under which the N-methyl-d-aspartate receptor (NMDAR) antagonist memantine may produce more reliable treatment effect with respect to alcohol relapse-like behaviour. For this purpose, male Wistar rats were trained to associate several discrete stimuli with ethanol delivery. Thereafter, half of the animals received a brief memory reactivation session followed by two administrations of 20 mg/kg of memantine, while the other half received the same treatment without memory reactivation. Afterwards, a cue-induced ethanol-seeking behaviour test was performed followed by repeated extinction sessions and a reacquisition test. Our data show that administration of memantine reduced responding on the ethanol-associated lever in a cue-induced ethanol-seeking test. This reduction did not depend on whether or not a memory reactivation session was introduced prior to memantine administration. Following extinction, however, reacquisition of ethanol self-administration was only impaired in the group where memantine was given after a short memory reactivation session, showing that this schedule of drug administration produced a long-lasting disruption of the association between the conditioned stimuli and the delivery of ethanol. In conclusion, we show that memantine disrupted the drug-cue association, which consequently interfered with relapse-like behaviour supporting the possibility that memantine is a treatment option for alcoholism. Our data supports the possibility that memantine is a treatment option for alcoholism. However, the effectiveness of this drug seems to lie in its ability to disrupt conditioned behaviours and should be given in conjunction

  16. Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026.

    Science.gov (United States)

    Zhao, Xin-Mei; Wang, Zhang-Qian; Shu, Shao-Hua; Wang, Wen-Juan; Xu, Hai-Jie; Ahn, Young-Joon; Wang, Mo; Hu, Xuebo

    2013-01-01

    Huperzine A (HupA) is a plant alkaloid that is of great interest as a therapeutic candidate for the treatment of Alzheimer's disease. However, the current production of HupA from plants in large quantity is unsustainable because the plant resource is scarce and the content of HupA in plants is extremely low. Surprisingly, this compound was recently found to be produced by various endophytic fungi, which are much more controllable than the plants due to simpler genetics and ease of manipulation. However, it might be due to the innate properties of endophytic symbiosis, that production of this chemical in large quantity from endophytes has not yet been put into practice. Endophytic Colletotrichum gloeosporioides ES026 was previously isolated from a HupA producing plant and the fungi also proved to produce HupA. In this study, various fermentation conditions were tried to optimize the production of HupA from C. gloeosporioides ES026. Optimization of these parameters resulted in a 25.58% increase in HupA yield. Potato extracts supplemented with glucose or sucrose but not maltose facilitated HupA producing from the fungi. A final concentration of 0.5-2% ethanol stimulated the growth of fungi while methanol with the same treatment slightly inhibited the growth. However, both methanol and ethanol greatly increased the HupA production with the highest yield of HupA (51.89% increment) coming from ethanol treatment. Further analysis showed that both ethanol and methanol were strong inducers of HupA production, while ethanol was partially used as a carbon source during fermentation. It was noticed that the color of that ethanol treated mycelia gradually became dark while methanol treated ones stayed grey during fermentation. The present study sheds light on the importance of optimizing the fermentation process, which, combined with effective inducers, maximizes production of chemicals of important economic interest from endophytic fungi.

  17. Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026.

    Directory of Open Access Journals (Sweden)

    Xin-Mei Zhao

    Full Text Available Huperzine A (HupA is a plant alkaloid that is of great interest as a therapeutic candidate for the treatment of Alzheimer's disease. However, the current production of HupA from plants in large quantity is unsustainable because the plant resource is scarce and the content of HupA in plants is extremely low. Surprisingly, this compound was recently found to be produced by various endophytic fungi, which are much more controllable than the plants due to simpler genetics and ease of manipulation. However, it might be due to the innate properties of endophytic symbiosis, that production of this chemical in large quantity from endophytes has not yet been put into practice. Endophytic Colletotrichum gloeosporioides ES026 was previously isolated from a HupA producing plant and the fungi also proved to produce HupA. In this study, various fermentation conditions were tried to optimize the production of HupA from C. gloeosporioides ES026. Optimization of these parameters resulted in a 25.58% increase in HupA yield. Potato extracts supplemented with glucose or sucrose but not maltose facilitated HupA producing from the fungi. A final concentration of 0.5-2% ethanol stimulated the growth of fungi while methanol with the same treatment slightly inhibited the growth. However, both methanol and ethanol greatly increased the HupA production with the highest yield of HupA (51.89% increment coming from ethanol treatment. Further analysis showed that both ethanol and methanol were strong inducers of HupA production, while ethanol was partially used as a carbon source during fermentation. It was noticed that the color of that ethanol treated mycelia gradually became dark while methanol treated ones stayed grey during fermentation. The present study sheds light on the importance of optimizing the fermentation process, which, combined with effective inducers, maximizes production of chemicals of important economic interest from endophytic fungi.

  18. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-12-01

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol-Water Mixtures

    NARCIS (Netherlands)

    Bowden, Nathan A.; Sanders, Johan P.M.; Bruins, Marieke E.

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water-ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline,

  20. Parenting Styles and Beliefs about Parental Authority.

    Science.gov (United States)

    Smetana, Judith G.

    1994-01-01

    Suggests that models of parenting style, such as Baumrind's popular model, are insensitive to variations in parenting resulting from characteristics of the different situations in which the parenting is expressed. Argues that considering parenting in context adds greater specificity to the model and enhances the potential for predicting child…

  1. Market penetration of biodiesel and ethanol

    Science.gov (United States)

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  2. Presentation to the Manitoba ethanol advisory panel

    International Nuclear Information System (INIS)

    2002-01-01

    The Manitoba Chambers of Commerce, representing the entire spectrum of businesses from all regions of Manitoba, has long advocated for alternative fuels based on agricultural products. Some of the major questions that must be answered in this debate on the ethanol industry in Manitoba are: (1) What are the benefits of a vibrant ethanol industry? (2) What are the facts about ethanol, and are those facts getting out to the public? (3) and How do we foster a vibrant ethanol industry in Manitoba? This document places the emphasis on the third issue raised. The Manitoba Chambers of Commerce endorses the idea of a mandated blend of ethanol. It also believes that Manitoba should maintain its gasoline tax-gasohol preference. The Manitoba Chambers of Commerce recommends against the government controlling the size and number of ethanol facilities in the province. It also recommends that funding not be afforded to the creation of new programs designed for the specific purpose of providing financial assistance to the ethanol industry. Government awareness campaigns should be limited to issues within the public interest, dealing with environmental and consumer issues and benefits. The government should commit to the enhancement of the vitality of new generation cooperatives (NGCs) in Manitoba. Emphasis by the government should be placed on ensuring that the required infrastructure and partnerships are in place to foster the development and commercialization of innovations in this field. The Manitoba Chambers of Commerce recommended that the provincial government facilitate partnerships through the sponsoring of provincial conferences, while pursuing its partnership efforts with the federal and other provincial governments

  3. Ethanol: the promise and the peril : Should Manitoba expand ethanol subsidies?

    International Nuclear Information System (INIS)

    Sopuck, R.D.

    2002-01-01

    Ethanol is produced through the fermentation of wheat. Blending ethanol with gasoline results in an ethanol-blended gasoline (EBG). Manitoba has already established an ethanol industry in the province and the government of the province is studying the feasibility of expansion. Every year in Manitoba, approximately 90 million litres of EBG are consumed, and the province's ethanol facility also produces a high protein cattle feed called distillers dry grain. Controversies surround the ethanol industry over both the economics and the environmental benefits and impacts. At issue is the economic efficiency of the production of ethanol, where opponents claim that the final product contains less energy than that required to produce it. A small gain is obtained, as revealed by a recent study. It is difficult to quantify the environmental effects of the ethanol industry, whether they be negative or positive. The author indicates that no matter what happens, the gasoline market in Manitoba is so small when compared to the rest of the world that the effect will not be significant. The three methods for the production of ethanol are: (1) the most risky and expensive method is the stand alone ethanol production facility, (2) integrated facilities where other products are produced, such as wet mash or nutraceuticals, and (3) integrated facilities where dry mash can be exported as a high protein feed. The production of a wide range of products is clearly the best option to be considered during the design of an ethanol facility. Price collapse and the capitalizing of subsidies into prices are the main risks facing the expansion of ethanol production in Manitoba. The author states that direct subsidies and price supports should be avoided, since subsidies would encourage the conversion of more feed grain into ethanol. The feed shortage would worsen especially as Manitoba does not currently produce enough feed to support its growing livestock industry. The author concludes that

  4. Rubber compounding and processing

    CSIR Research Space (South Africa)

    John, MJ

    2014-06-01

    Full Text Available This chapter presents an overview on the compounding and processing techniques of natural rubber compounds. The introductory portion deals with different types of rubbers and principles of rubber compounding. The primary and secondary fillers used...

  5. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  6. Effect of operating conditions on direct liquefaction of low-lipid microalgae in ethanol-water co-solvent for bio-oil production

    International Nuclear Information System (INIS)

    Ji, Changhao; He, Zhixia; Wang, Qian; Xu, Guisheng; Wang, Shuang; Xu, Zhixiang; Ji, Hengsong

    2017-01-01

    Highlights: • Low-lipid microalgae was selected as feedstock for DL in ethanol-water co-solvent. • Operating conditions had great influence on product yields and conversion rate. • Bio-oil could be obtained from all three main components. • Ethanol and water showed obviously synergistic effect during the DL of microalgae. • Bio-oil composition from DL of microalgae was different from lignocellulose biomass. - Abstract: In this work, the direct liquefaction (DL) of low-lipid microalgae Spirulina was investigated in a 50 ml autoclave reactor with ethanol and water as co-solvent. The objective of this research was carried out to examine the effect of operating conditions such as reaction temperature, reaction time, solvent/microalgae (S/M) ratio and ethanol-water co-solvent (EWCS) composition on product distribution and bio-oil characterization. The results revealed that the optimal operating conditions for bio-oil yield and conversion rate were reaction temperature of 300 °C, reaction time of 45 min, ethanol content of 50 vol.% and S/M ratio of 40/4 ml/g, which gave the bio-oil yield of 59.5% and conversion rate of 94.73%. Conversion rate in EWCS was significantly higher than that in pure water or ethanol, suggesting the synergistic effect between ethanol and water during microalgae DL. Distinct difference in composition and relative content of compound among bio-oils in different solvents were observed by GC–MS and FT-IR. Compared with hydrothermal liquefaction, the most abundant compounds in bio-oil from both EWCS and pure ethanol were esters. The presence of ethanol could enhance the bio-oil yield and improve bio-oil quality by promoting the formation of esters.

  7. Environemtnal benefits of the Brazilian Ethanol Programme

    International Nuclear Information System (INIS)

    La Rovere, E.L.; Audinet, P.

    1993-01-01

    After nearly twenty years since it was first launched, the Brazilian Ethanol Programme to data remains the largest commercial application of biomass for energy production and use in the world. It succeeded in demonstrating the technical feasibility of large scale ethanol production from sugar cane and its use to fuel car engines. On social and economic grounds, however, its evaluation is less positive. The purpose of this study is to provide an updated overview of the perspectives for the Ethanol Programme under the light of increasingly important local and global environmental concerns. Major results show that after oil prices supported upon the basis of its contribution to curb the increase of air pollution in Brazilian cities and of the greenhouse effect. It is concluded that the very survival of the Ethanol Programme, depends upon adequate economic compensation considering its global environmental benefits. These are appraised with two scenarios based on the use of a Markal-like model to define the range and costs of curbing greenhouse gases with a policy aiming at extending the Ethanol Programme

  8. An Indirect Route for Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Eggeman, T.; Verser, D.; Weber, E.

    2005-04-29

    The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

  9. Opioid system of the brain and ethanol.

    Science.gov (United States)

    Gogichadze, M; Mgaloblishvili-Nemsadze, M; Oniani, N; Emukhvary, N; Basishvili, T

    2009-04-01

    Influence of blocking of opioid receptors with concomitant intraperitoneal injections of Naloxone (20 mg/kg) (non-selective antagonist of opioid system) on the outcomes of anesthetic dose of ethanol (4,25 ml /kg 25% solution) was investigated in the rats. The sleep-wakefulness cycle (SWC) was used as a model for identification of the effects. Alterations of the SWC structure adequately reflect the neuro-chemical changes, which may develop during pharmacological and non-pharmacological impact. Administration of anesthetic dose of ethanol evoked considerable modification of spontaneous EEG activity of the neocortex. The EEG activity was depressed and full inhibition of spinal reflexes and somatic muscular relaxation did occur. During EEG depression regular SWC did not develop. All phases of SWC were reduced. The disturbances of SWC, such as decrease of slow wave sleep and paradoxical sleep duration and increase of wakefulness, remained for several days. At concomitant administration of Naloxone and ethanol, duration of EEG depression decreased significantly. Generation of normal SWC was observed on the same experimental day. However, it should be noted that complete abolishment of ethanol effects by Naloxone was not observed. The results obtained suggest that Naloxone partially blocks ethanol depressogenic effects and duration of this effect is mediated by GABA-ergic system of the brain.

  10. Cooperative effects in (ethanol)3-water heterotetramers

    International Nuclear Information System (INIS)

    Mejia, Sol; Espinal, Juan F; Mondragon, Fanor

    2009-01-01

    Density Functional Theory (DFT: B3LYP/6-31 + G(d)) was used for the optimization of clusters on the potential energy surface of (ethanol)3-water heterotetramers. The tetramerization energies can reach values up to -21.00 kcal/ mol. This energy can not be obtained by just considering the contributions from interactions between two cluster molecules, which suggests of the presence of global cooperative effects (positive). These effects are reflected in smaller hydrogen bond distances and smaller oxygen-oxygen distances, as well as in greater elongations of the O-H proton donor bond with a stronger red-shift in the heterotetramers compared to the ethanol-water heterodimers and the ethanol dimer. The largest cooperativity effect was observed in the four hydrogen bonds arranged in the largest possible cyclic geometric pattern, where all the molecules act as proton acceptor and donor simultaneously. A similar analysis to the characterization of (ethanol)3-water heterotetramers was carried out on (methanol)3-water heterotetramers, and ethanol and methanol tetramers, whose comparison showed a great similarity between all evaluated parameters for the clusters with equal geometric pattern.

  11. Ethanol embolization of auricular arteriovenous malformations

    International Nuclear Information System (INIS)

    Fan Xindong; Zheng Lianzhou; Yi Hongying; Su Lixin; Zheng Jiawei

    2009-01-01

    Objective: To present the authors' initial experience of treating auricular arteriovenous malformations(AVMs) with ethanol embolization and to assess the clinical effectiveness of this therapeutic method. Methods: Twenty-two patients with AVMs were enrolled in this study. Through local puncturing or super-selective catheterization the absolute ethanol,or diluted alcohol (based on the pattern of the AVMs), was manually injected into the abnormal vascular plexus of the auricular lesion. The clinical results were estimated with physical examination or angiography at intervals of 3-4 month, and telephone questionnaire was made at monthly intervals for all patients. Results: Thirty-eight ethanol embolization procedures were performed, the amount of ethanol used during the procedure ranged from 4 ml to 65 ml. After the treatment the clinical symptoms were improved, which were manifested as healing of the ulceration, stop of bleeding, disappearing or alleviation of tinnitus. Angiographic examination showed that the abnormal vascular lesion was completely vanished in 9 cases, decreased by 50%-75% in 8 cases and decreased less than 50% in remaining 5 cases. The common complications included irreversible local necrosis and vesiculation. Conclusion: For the treatment of auricular AVMs ethanol embolization is an effective and safe method,which might become the therapy of first choice. (authors)

  12. Ethanol embolization of auricular arteriovenous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Xindong, Fan; Lianzhou, Zheng [Department of Interventional Radiology, the Ninth People' s Hospital, School of Medicine, Shanghai Jiaotong Univ., Shanghai (China); Hongying, Yi; Lixin, Su; Jiawei, Zheng

    2009-11-15

    Objective: To present the authors' initial experience of treating auricular arteriovenous malformations(AVMs) with ethanol embolization and to assess the clinical effectiveness of this therapeutic method. Methods: Twenty-two patients with AVMs were enrolled in this study. Through local puncturing or super-selective catheterization the absolute ethanol,or diluted alcohol (based on the pattern of the AVMs), was manually injected into the abnormal vascular plexus of the auricular lesion. The clinical results were estimated with physical examination or angiography at intervals of 3-4 month, and telephone questionnaire was made at monthly intervals for all patients. Results: Thirty-eight ethanol embolization procedures were performed, the amount of ethanol used during the procedure ranged from 4 ml to 65 ml. After the treatment the clinical symptoms were improved, which were manifested as healing of the ulceration, stop of bleeding, disappearing or alleviation of tinnitus. Angiographic examination showed that the abnormal vascular lesion was completely vanished in 9 cases, decreased by 50%-75% in 8 cases and decreased less than 50% in remaining 5 cases. The common complications included irreversible local necrosis and vesiculation. Conclusion: For the treatment of auricular AVMs ethanol embolization is an effective and safe method,which might become the therapy of first choice. (authors)

  13. Prospects for ethanol production from whey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, K R

    1978-05-01

    Whey is a by-product of the manufacture of cheese and casein. Casein whey is not as fully utilized as cheese whey although in the last five years commercial processes have been developed to recover the whey proteins, either in denatured form as lactalbumin or in their soluble form as Solac. The removal of the whey proteins makes little difference to the polluting strength or volume of the whey and a crude lactose solution - serum or permeate - remains to be processed. Many processes have been evaluated for the use of this crude lactose solution; one is microbial transformation to produce products such as methane, ethanol, acetone and butanol and etc. The technologies for these processes are well known and it is the economic evaluation which ultimately determines the feasibility of the process being considered. For the purposes of this paper, the prospects for ethanol production have been evaluated. Unless there is a significant reduction in capital costs, it is concluded that ethanol production from whey is not a viable proposition as an energy source for New Zealand. Industrial ethanol (annual imports; 3.5 x 10/sup 6/ 1 CIF value 32 c/1) and potable ethanol production may be worth contemplating.

  14. Unregulated gaseous exhaust emission from modern ethanol fuelled light duty vehicles in cold ambient condition

    Science.gov (United States)

    Clairotte, M.; Adam, T. W.; Zardini, A. A.; Astorga, C.

    2011-12-01

    According to Directive 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, all petrol and diesel used for transport purpose available on the market since the 1st of January 2011 must contain a reference value of 5.75% of renewable energy. Ethanol in gasoline could be a promising alternative to comply with this objective, and is actually available in higher proportion in Sweden and Brazil. In addition to a lower dependence on fossil fuel, it is well established that ethanol contributes to reduce air pollutant emissions during combustion (CO, THC), and presents a beneficial effect on the greenhouse gas emissions. However, these statements rely on numerous chassis dynamometer emission studies performed in warm condition (22°C), and very few emission data are available at cold ambient condition encountered in winter, particularly in the north of Europe. In this present study, the effects of ethanol (E75-E85) versus gasoline (E5) have been investigated at cold ambient temperature (-7°C). Experiments have been carried out in a chassis dynamometer at the Vehicle Emission Laboratory (VELA) of the European Commission's Joint Research Centre (JRC - Ispra, Italy). Emissions of modern passenger cars complying with the latest European standard (Euro4 and Euro5a) were tracked over the New European Driving Cycle (NEDC). Unregulated gaseous compounds like greenhouse gases (carbon dioxide, methane, nitrous oxide), and air quality related compounds (ammonia, formaldehyde, acetaldehyde) were monitored by an online Fourier Transformed Infra-Red spectrometer with 1 Hz acquisition frequency. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected in order to assess the ozone formation potential (OFP) of the exhaust. Results showed higher unregulated emissions at -7°C, regardless of the ethanol content in the fuel blend. Most of the emissions occurred during

  15. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    Directory of Open Access Journals (Sweden)

    G. Morais-Silva

    2016-01-01

    Full Text Available Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol, but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  16. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    Science.gov (United States)

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  17. Spatiotemporal distribution of carbonyl compounds in China

    International Nuclear Information System (INIS)

    Ho, K.F.; Ho, Steven Sai Hang; Huang, R.-J.; Dai, W.T.; Cao, J.J.; Tian, Linwei; Deng, W.J.

    2015-01-01

    A sampling campaign was carried out at nine Chinese cities in 2010/2011. Fifteen monocarbonyls (C#= 1–9) were quantified. Temperature is the rate-determining factor of the summertime carbonyl levels. The carbonyl emissions in winter are mainly driven by the primary anthropogenic sources like automobile. A molar ratio of propionaldehyde to nonaldehyde is a barometer of the impact of atmospheric vegetation emission which suggesting that strong vegetation emissions exist in summer and high propionaldehyde abundance is caused by fossil fuel combustion in winter. Potential health risk assessment of formaldehyde and acetaldehyde was conducted and the highest cumulative risks were observed at Chengdu in summer and Wuhan in winter. Because of the strong photochemical reaction and large amount of anthropogenic emissions, high concentrations of carbonyl compounds were observed in Chengdu. The use of ethanol-blended gasoline in Wuhan is the key reason of acetaldehyde emission and action should be taken to avoid potential health risks. - Highlights: • A national wide survey of ambient carbonyl compounds were conducted in China. • Using ethanol-blended gasoline can lead to higher cancer risks. • High concentrations of HMW carbonyls (C6, C7, C8 and C9) were observed in all cities. • HMW carbonyls (C6–C9) species show a very consistent seasonal variation. • C 3 /C 9 acts as an indicator for the impact of vegetation emission in the atmosphere. - Capsule abstract: Strong vegetation emission occurs in summer atmosphere and high acetaldehyde emission due to ethanol-blended gasoline consumption in 9 Chinese cities is discouraged

  18. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    Science.gov (United States)

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  19. Ethanol fermentation of HTST extruded rye grain by bacteria and yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Czarnecki, Z [Univ. of Agriculture, Poznan (Poland). Inst. of Food Technology; Nowak, J [Univ. of Agriculture, Poznan (Poland). Inst. of Food Technology

    1997-09-01

    High temperature extrusion cooking of rye was used as a pretreatment for ethanol fermentation, and yeasts and bacteria were compared for their fermentation rates. Extrusion cooking caused, on average, a 7.5% increase in ethanol yield in comparison to autoclaved samples. The best results were achieved for grain with a moisture of 21-23% which was extruded at temperatures of 160-180 C. Extrusion decreased the relative viscosity of rye grain water extracts, so it was possible to mash it without {alpha}-amylase. The efficiency of fermentation of extruded rye without Termamyl was equal to that of autoclaved and traditionally mashed rye (using {alpha}-amylase). The rate of fermentation of extruded rye grain by Zymomonas was higher during the first stage, but the final ethanol yield was similar for the bacterium and the yeast. Through both microorganisms gave good quality distillates, the concentration of compounds other than ethanol achieved from extruded rye mashes, which were fermented by Z. mobilis, was five times lower than for yeasts. (orig.)

  20. Effect of Artemisia annua L. leaves essential oil and ethanol extract on behavioral assays

    Directory of Open Access Journals (Sweden)

    Fabio F. Perazzo

    Full Text Available Artemisia annua has been used as a traditional plant for the treatment of malaria and fever in China because of the presence of its active compound, artemisinin. The present study evaluated the central activity of the essential oil and the crude ethanol extract of A. annua L. in animals as a part of a psychopharmacological screening of this plant. The extract was prepared in ethanol (AEE and the essential oil (AEO obtained by hydrodistillation, both with fresh leaves. Induced immobility, the forced swimming test (FST and the open-field test (OFT are well-known animal models to study drug-induced depression. The administration of A. annua essential oil or crude ethanol extract increased the immobility time in the FST and decreased other activities (ambulation, exploration, rearing and grooming in the OFT in animals. Both AEO and AEE prolonged pentobarbital-induced sleep as well, but the essential oil had a marked effect. Observing these results, it is possible to suggest that A. annua crude ethanol extract and essential oil could act as depressors on the Central Nervous System (CNS.

  1. Inhibition of rat mammary microsomal oxidation of ethanol to acetaldehyde by plant polyphenols.

    Science.gov (United States)

    Maciel, María Eugenia; Castro, José Alberto; Castro, Gerardo Daniel

    2011-07-01

    We previously reported that the microsomal fraction from rat mammary tissue is able to oxidize ethanol to acetaldehyde, a mutagenic-carcinogenic metabolite, depending on the presence of NADPH and oxygen but not inhibited by carbon monoxide or other cytochrome P450 inhibitors. The process was strongly inhibited by diphenyleneiodonium, a known inhibitor of NADPH oxidase, and by nordihydroguaiaretic acid, an inhibitor of lipoxygenases. This led us to suggest that both enzymes could be involved. With the purpose of identifying natural compounds present in food with the ability to decrease the production of acetaldehyde in mammary tissue, in the present studies, several plant polyphenols having inhibitory effects on lipoxygenases and of antioxidant nature were tested as potential inhibitors of the rat mammary tissue microsomal pathway of ethanol oxidation. We included in the present screening study 32 polyphenols having ready availability and that were also tested against the rat mammary tissue cytosolic metabolism of ethanol to acetaldehyde. Several polyphenols were also able to inhibit the microsomal ethanol oxidation at concentrations as low was 10-50 μM. The results of these screening experiments suggest the potential of several plant polyphenols to prevent in vivo production and accumulation of acetaldehyde in mammary tissue.

  2. Gastroprotective effect of diligustilide isolated from roots of Ligusticum porteri coulter & rose (Apiaceae) on ethanol-induced lesions in rats.

    Science.gov (United States)

    Velázquez-Moyado, Josué A; Martínez-González, Alejandro; Linares, Edelmira; Bye, Robert; Mata, Rachel; Navarrete, Andrés

    2015-11-04

    The rhizome of Ligusticum porteri Coulter& Rose (LP) has been traditionally used by the ethnic group Raramuri in the North of México for treatment of diabetes, tuberculosis, stomachaches, diarrhea and ritual healing ceremonies. It is use as antiulcer remedy has been extended to all Mexico. To evaluate the gastroprotective activity of LP organic extracts and the major natural product diligustilide (DLG),using as experimental model the inhibition of the ethanol-induced lesions in rats. Gastric ulcers were induced by intragastric instillation of absolute ethanol (1 mL). We tested the gastroprotective activity of the organic extracts of LP and the pure compound DLG. The ulcer index (UI) was determined to measure the activity. In order to elucidate the action mechanism of DLG the animals were treated with L-NAME, N-ethylmalemide, Forskolin, 2',5'-dideoxyadenosine, Indomethacin, Glibenclameide, Diazoxide, NaHS and DL-Propargylglycine. The pylorus-ligated rat model was used to measure gastric secretion. The oral administration of organic extracts of Ligusticum porteri showed gastroprotective effect at 30 mg/Kg on ethanol induced gastric lesions; hexane and dichloromethane extracts were the most active. DLG was the major compound in the hexane extract. This compound at 10 mg/kg prevented significantly the gastric injuries induced by ethanol. The alkylation of endogenous non-protein-SH groups with N-ethylmaleimide abolished the gastroprotective effect of DLG and blocking the formation of endogenous prostaglandins by the pretreatment with indomethacin attenuated the gastroprotective effect of DLG. The gastroprotective activity demonstrated in this study tends to support the ethnomedical use of Ligusticum porteri roots. DLG, isolated as major compound of this medicinal plant has a clear gastroprotective effect on the ethanol-induced gastric lesions. The results suggest that the antiulcer activity of DLG depends on the participation of the endogenous non-protein -SH groups

  3. The NILE Project - Advances in the Conversion of Lignocellulosic Materials into Ethanol

    International Nuclear Information System (INIS)

    Monot, F.; Margeot, A.; Hahn-Haegerdal, B.; Lindstedt, J.; Slade, R.

    2013-01-01

    NILE ('New Improvements for Lignocellulosic Ethanol') was an integrated European project (2005-2010) devoted to the conversion of lignocellulosic raw materials to ethanol. The main objectives were to design novel enzymes suitable for the hydrolysis of cellulose to glucose and new yeast strains able to efficiently converting all the sugars present in lignocellulose into ethanol. The project also included testing these new developments in an integrated pilot plant and evaluating the environmental and socio-economic impacts of implementing lignocellulosic ethanol on a large scale. Two model raw materials - spruce and wheat straw - both preconditioned with similar pretreatments, were used. Several approaches were explored to improve the saccharification of these pretreated raw materials such as searching for new efficient enzymes and enzyme engineering. Various genetic engineering methods were applied to obtain stable xylose- and arabinose-fermenting Saccharomyces cerevisiae strains that tolerate the toxic compounds present in lignocellulosic hydrolysates. The pilot plant was able to treat 2 tons of dry matter per day, and hydrolysis and fermentation could be run successively or simultaneously. A global model integrating the supply chain was used to assess the performance of lignocellulosic ethanol from an economical and environmental perspective. It was found that directed evolution of a specific enzyme of the cellulolytic cocktail produced by the industrial fungus, Trichoderma reesei, and modification of the composition of this cocktail led to improvements of the enzymatic hydrolysis of pretreated raw material. These results, however, were difficult to reproduce at a large scale. A substantial increase in the ethanol conversion yield and in specific ethanol productivity was obtained through a combination of metabolic engineering of yeast strains and fermentation process development. Pilot trials confirmed the good behaviour of the yeast strains in industrial

  4. Effect of the presence of initial ethanol on ethanol production in sugar cane juice fermented by Zymomonas mobilis

    OpenAIRE

    Tano,Marcia Sadae; Buzato,João Batista

    2003-01-01

    Ethanol production in sugar cane juice in high initial sugar concentration, fermented by Z. mobilis in the presence and absence of ethanol, was evaluated. Ethanol production was low in both media. The presence of initial ethanol in the sugar cane juice reduced ethanol production by 48.8%, biomass production by 25.0% and the total sugar consumption by 28.3%. The presence of initial ethanol in the medium did not affect significantly levan production and biomass yield coefficient (g biomass/g su...

  5. Compounds of addition between yttrium and rare-earths (III) nitrates and the N,N,N'N'-tetramethyladipamide (TMAA)

    International Nuclear Information System (INIS)

    Lima, W.N. de.

    1974-01-01

    The synthesis of addition compounds between hydrated rare-earths and yttrium nitrates with the diamine N,N,N',N'-tetramethyladipamide (TMAA) in ethanol, is described. The compounds were characterized by elemental analisys, infrared, Raman, visible and near infrared spectra, molar conductance and molecular weight measurements, conductometric titrations and X-ray powder patterns. (Author) [pt

  6. Ethanol is a strategic raw material

    Directory of Open Access Journals (Sweden)

    Baras Josip K.

    2002-01-01

    Full Text Available The first part of this review article considers general data about ethanol as an industrial product, its qualities and uses. It is emphasized that, if produced from biomass as a renewable raw material, its perspectives as a chemical raw material and energent are brilliant. Starchy grains, such as corn, must be used as the main raw materials for ethanol production. The production of bioethanol by the enzyme-catalyzed conversion of starch followed by (yeast fermentation, distillation is the process of choice. If used as a motor fuel, anhydrous ethanol can be directly blended with gasoline or converted into an oxygenator such as ETBE. Finally, bioethanol production in Yugoslavia and the possibilities for its further development are discussed.

  7. Recovery of ethanol from municipal solid waste

    International Nuclear Information System (INIS)

    Ackerson, M.D.; Clausen, E.C.; Gaddy, J.L.

    1992-01-01

    Methods for disposal of MSW that reduce the potential for groundwater or air pollution will be essential in the near future. Seventy percent of MSW consists of paper, food waste, yard waste, wood and textiles. These lignocellulosic components may be hydrolyzed to sugars with mineral acids, and the sugars may be subsequently fermented to ethanol or other industrial chemicals. This chapter presents data on the hydrolysis of the lignocellulosic fraction of MSW with concentrated HC1 and the fermentation of the sugars to ethanol. Yields, kinetics, and rates are presented and discussed. Design and economic projections for a commercial facility to produce 20 MM gallons of ethanol per year are developed. Novel concepts to enhance the economics are discussed

  8. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  9. Permeability of cork for water and ethanol.

    Science.gov (United States)

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-09

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  10. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Hitron, John Andrew [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Wise, James T.F. [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Son, Young-Ok; Roy, Ram Vinod [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Xu, Mei; Luo, Jia [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@uky.edu [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2015-10-15

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  11. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    International Nuclear Information System (INIS)

    Wang, Lei; Hitron, John Andrew; Wise, James T.F.; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Xu, Mei; Luo, Jia; Shi, Xianglin

    2015-01-01

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  12. Parental Influences on Adolescent Adjustment: Parenting Styles Versus Parenting Practices

    Science.gov (United States)

    Lee, Sang Min; Daniels, M. Harry; Kissinger, Daniel B.

    2006-01-01

    The study identified distinct patterns of parental practices that differentially influence adolescent behavior using the National Educational Longitudinal Survey (NELS:88) database. Following Brenner and Fox's research model (1999), the cluster analysis was used to classify the four types of parental practices. The clusters of parenting practices…

  13. Incubation of ethanol reinstatement depends on test conditions and how ethanol consumption is reduced

    Science.gov (United States)

    Ginsburg, Brett C.; Lamb, R. J.

    2015-01-01

    In reinstatement studies (a common preclinical procedure for studying relapse), incubation occurs (longer abstinence periods result in more responding). This finding is discordant with the clinical literature. Identifying determinants of incubation could aid in interpreting reinstatement and identifying processes involved in relapse. Reinstated responding was examined in rats trained to respond for ethanol and food under a multiple concurrent schedule (Component 1: ethanol FR5, food FR150; Component 2: ethanol FR5, food FR5–alternating across the 30-min session). Ethanol consumption was then reduced for 1 or 16 sessions either by suspending training (rats remained in home cage) or by providing alternative reinforcement (only Component 2 stimuli and contingencies were presented throughout the session). In the next session, stimuli associated with Component 1 were presented and responses recorded but ethanol and food were never delivered. Two test conditions were studied: fixed-ratio completion either produced ethanol- or food-associated stimuli (signaled) or had no programmed consequence (unsignaled). Incubation of ethanol responding was observed only after suspended training during signaled test sessions. Incubation of food responding was also observed after suspended training. These results are most consistent with incubation resulting from a degradation of feedback functions limiting extinction responding, rather than an increased motivation. PMID:25595114

  14. Proactive Parent Communication.

    Science.gov (United States)

    Babcock, Sharel; Backlund, Judy

    2001-01-01

    Presents examples of teacher-parent interactions designed to help teachers communicate with parents. The scenarios involve a teacher communicating with parents about a struggling student, a teacher communicating with parents about a student's behavior problems, and a teacher attempting to communicate with a confrontational parent. Teacher prompts…

  15. Ethanol production in China: Potential and technologies

    International Nuclear Information System (INIS)

    Li, Shi-Zhong; Chan-Halbrendt, Catherine

    2009-01-01

    Rising oil demand in China has resulted in surging oil imports and mounting environmental pollution. It is projected that by 2030 the demand for fossil fuel oil will be 250 million tons. Ethanol seems to be an attractive renewable alternative to fossil fuel. This study assesses China's ethanol supply potential by examining potential non-food crops as feedstock; emerging conversion technologies; and cost competitiveness. Results of this study show that sweet sorghum among all the non-food feedstocks has the greatest potential. It grows well on the available marginal lands and the ASSF technology when commercialized will shorten the fermentation time which will lower the costs. Other emerging technologies such as improved saccharification and fermentation; and cellulosic technologies will make China more competitive in ethanol production in the future. Based on the estimated available marginal lands for energy crop production and conversion yields of the potential feedstocks, the most likely and optimistic production levels are 19 and 50 million tons of ethanol by 2020. In order to achieve those levels, the roadmap for China is to: select the non-food feedstock most suitable to grow on the available marginal land; provide funding to support the high priority conversion technologies identified by the scientists; provide monetary incentives to new and poor farmers to grow the feedstocks to revitalize rural economy; less market regulation and gradual reduction of subsidies to producers for industry efficiency; and educate consumers on the impact of fossil fuel on the environment to reduce consumption. Since the share of ethanol in the overall fuel demand is small, the impact of ethanol on lowering pollution and enhancing fuel security will be minimal. (author)

  16. Life-Stage PBPK Models for Multiple Routes of Ethanol Exposure in the Rat

    Science.gov (United States)

    Ethanol is commonly blended with gasoline (10% ethanol) in the US, and higher ethanol concentrations are being considered. While the pharmacokinetics and toxicity of orally-ingested ethanol are widely reported, comparable work is limited for inhalation exposure (IE), particularly...

  17. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  18. Saw palmetto ethanol extract inhibits adipocyte differentiation.

    Science.gov (United States)

    Villaverde, Nicole; Galvis, Adriana; Marcano, Adriana; Priestap, Horacio A; Bennett, Bradley C; Barbieri, M Alejandro

    2013-07-01

    The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.

  19. Ethanol as an alternative source of energy

    International Nuclear Information System (INIS)

    Haroon, M.; Benjamin, S.E.

    2011-01-01

    Pakistan, at present facades huge shortage of energy that has disabled several industries and has worsened the living standards of a common man. Its economy mainly depends upon agriculture but relies heavily on imported petroleum to meet the necessities. The importance of national resources as an alternative energy resource is thus greatly felt. The sugar cane industry of Pakistan holds a potential to provide such an alternative fuel as bio ethanol that can be produced entirely from molasses. This paper looks deeper into scope of ethanol as one replacement that can reduce the financial and environmental cost of petroleum based fuels. (author)

  20. Pulse radiolysis of 6-aminophenalenone ethanolic solutions

    International Nuclear Information System (INIS)

    Semenova, G.V.; Kartasheva, L.I.; Ryl'kov, V.V.; Pikaev, A.K.

    1986-01-01

    Intermediates of 6-aminophenalenone radiolytic transformations in ethanol are investigated using pulse radiolysis method (5 and 8 MeV energy electrons, pulse duration is 2.3 μs and 15 ns respectively). Constants of reaction rate of e s and α-ethanolic radical with dye are measured (they are equal to (9.3±1.0)x10 9 and (1.1±0.2)x10 8 l/(molxs) respectively); optical and kinetic characteristics of products of their interaction are investigated. Mechanism of radiolytic transformations of this dye is proposed

  1. Nanocatalysts for Ethanol Oxidation: Synthesis and Characterisation

    OpenAIRE

    Bonesi, A.; Triaca, W. E.; Luna, A. M. Castro

    2009-01-01

    Carb on-supported binary PtSn/C and ternary PtSnNi/C catalysts were prepared for the electro-oxidation of ethanol. The carbon-supported nanoparticles were synthesised by employing a modified polyol methodology and characterised in terms of structure, morphology and composition by using XRD, EDX and TEM techniques. Their electro-catalytic behaviour for ethanol oxidation (EO) was investigated by employing a disc-composite electrode covered by a thin layer of catalyst imbedded in a Nafion polyme...

  2. Pervaporation : membranes and models for the dehydration of ethanol

    NARCIS (Netherlands)

    Spitzen, Johannes Wilhelmus Franciscus

    1988-01-01

    In this thesis the dehydration of ethanol/water mixtures by pervaporation using homogeneous membranes is studied. Both the general transport mechanism as well as the development of highly selective membranes for ethanol/water separation are investigated.

  3. Potential feedstock sources for ethanol production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Mohammad [Univ. of Florida, Gainesville, FL (United States); Hodges, Alan [Univ. of Florida, Gainesville, FL (United States)

    2015-10-01

    This study presents information on the potential feedstock sources that may be used for ethanol production in Florida. Several potential feedstocks for fuel ethanol production in Florida are discussed, such as, sugarcane, corn, citrus byproducts and sweet sorghum. Other probable impacts need to be analyzed for sugarcane to ethanol production as alternative uses of sugarcane may affect the quantity of sugar production in Florida. While citrus molasses is converted to ethanol as an established process, the cost of ethanol is higher, and the total amount of citrus molasses per year is insignificant. Sorghum cultivars have the potential for ethanol production. However, the agricultural practices for growing sweet sorghum for ethanol have not been established, and the conversion process must be tested and developed at a more expanded level. So far, only corn shipped from other states to Florida has been considered for ethanol production on a commercial scale. The economic feasibility of each of these crops requires further data and technical analysis.

  4. State-level workshops on ethanol for transportaton

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Angela [BBI International, Cotopaxi, CO (United States)

    2004-01-01

    The Ethanol Workshop Series (EWS) was intended to provide a forum for interest groups to gather and discuss what needs to be accomplished to facilitate ethanol production in-state using local biomass resources.

  5. optimization of the ethanol fermentation of cassava wastewater

    African Journals Online (AJOL)

    Umo

    production would improve the ethanol yield, and thereby reduce the cost of production. KEYWORDS: Ethanol, cassava ... biomass sources are receiving attention globally. .... HYDROLYZED CASSAVA WASTEWATER. A blank solution ..... A Global Overview of Biomass Potentials ... Pretreatment of Lignocellulosic Wastes.

  6. Effect of Ethanol Chemistry on SCC of Carbon Steel

    Science.gov (United States)

    2011-02-22

    Pipeline companies have a keen interest in assessing the feasibility of transporting fuel grade ethanol (FGE) and ethanol blends in existing pipelines. Previous field experience and laboratory research, funded by PRCI and API, has shown that steel ca...

  7. Study of growth kinetic and modeling of ethanol production by ...

    African Journals Online (AJOL)

    ... coefficient (0.96299). Based on Leudking-Piret model, it could be concluded that ethanol batch fermentation is a non-growth associated process. Key words: Kinetic parameters, simulation, cell growth, ethanol, Saccharomyces cerevisiae.

  8. Techno-economic analysis of fuel ethanol production from cassava ...

    African Journals Online (AJOL)

    Moncada Botero, J. (Jonathan)

    Key words: Fuel-ethanol, cassava, Tanzania, process modelling. INTRODUCTION ..... mathematical calculations such as Matlab, Octave and Polymath were also ... models. To start the different simulation procedures in ethanol production, a.

  9. Integrative approach for utilization of olive mill wastewater and lebna's whey for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, M A; Hayek, B O; Al-Hmoud, N; Al-Gogazeh, L

    2009-09-15

    The industry of olive oil extraction in Jordan involves an intensive consumption of water and generates large quantities of olive mill wastewater (OMW). This wastewater has a high pollution risk with biological oxygen demand (BOD). The organic fraction of OMW includes sugars, tannins, polyphenols, polyalcohols, pectins and lipids. The presence of remarkable amounts of aromatic compounds in OMW is responsible for its phytotoxic and antimicrobial effects. The environmental problems and potential hazards caused by OMW had led olive oil producing countries to limit their discharge and to propose and develop new technologies for OMW treatments, such as physicochemical and biological treatments. In the present investigation lebna's whey a local byproduct of widely consumed local yogurt was used with OMW for ethanol production. The obtained results showed that the proteins of lebna's whey can remove substantial amounts of aromatic compounds present in OMW. This was reflected on the reduction of the intensity of black color of OMW and removal of 37% polyphenols. Moreover, the production of ethanol was ascertained in fermentation media composed of whey and in presence of various concentrations of OMW up to 20% OMW. The obtained results showed the possibility to develop a process for improvement and enhancement of ethanol production from whey and olive oil waste in mixed yeast cultures. (au)

  10. Ethanol Fermentation of Various Pretreated and Hydrolyzed Substrates at Low Initial pH

    Science.gov (United States)

    Kádár, Zsófia; Maltha, San Feng; Szengyel, Zsolt; Réczey, Kati; de Laat, Wim

    Lignocellulosic materials represent an abundant feedstock for bioethanol production. Because of their complex structure pretreatment is necessary to make it accessible for enzymatic attack. Steam pretreatment with or without acid catalysts seems to be one of the most promising techniques, which has already been applied for large variety of lignocellulosics in order to improve enzymatic digestibility. During this process a range of toxic compounds (lignin and sugar degradation products) are formed which inhibit ethanol fermentation. In this study, the toxicity of hemicellulose hydrolysates obtained in the steam pretreatment of spruce, willow, and corn stover were investigated in ethanol fermentation tests using a yeast strain, which has been previously reported to have a resistance to inhibitory compounds generated during steam pretreatment. To overcome bacterial contamination, fermentations were carried out at low initial pH. The fermentability of hemicellulose hydrolysates of pretreated lignocellulosic substrates at low pH gave promising results with the economically profitable final 5 vol% ethanol concentration corresponding to 85% of theoretical. Adaptation experiments have shown that inhibitor tolerance of yeast strain can be improved by subsequent transfer of the yeast to inhibitory medium.

  11. How 'ground-picked' olive fruits affect virgin olive oil ethanol content, ethyl esters and quality.

    Science.gov (United States)

    Beltran, Gabriel; Sánchez, Raquel; Sánchez-Ortiz, Araceli; Aguilera, Maria P; Bejaoui, Mohamed A; Jimenez, Antonio

    2016-08-01

    Olives dropped on the ground naturally sometimes are not separated from those fresh and healthy collected from the tree for harvest and processing. In this work we compared the quality, ethanol content and bioactive components of virgin olive oils from ground-picked olives, tree-picked fruits and their mixture. Ground-picked olives produced 'Lampante' virgin olive oils; these are of a lower quality category, because of important alterations in chemical and sensory characteristics. Ethyl esters showed the highest values, although under the regulated limit. The mixture of ground and tree-picked olives gave oils classified as 'virgin' because of sensory defects, although the quality parameters did not exceed the limits for the 'extra' category. Ethanol content showed a significant increase in the oils from ground- picked olives and their mixture with respect to those from tree-picked fruits. Furthermore, bioactive compounds showed a significant decrease as fruit quality was poorer. Ground-picked olives must be harvested and processed separately since they produce low-quality virgin olive oils with sensory defects and lower concentrations of bioactive compounds. The higher acidity and ethanol concentration observed in oils from ground-picked fruits or their mixture may help ethyl ester synthesis during storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Development of Ethanol Withdrawal-Related Sensitization and Relapse Drinking in Mice Selected for High or Low Ethanol Preference

    Science.gov (United States)

    Lopez, Marcelo F.; Grahame, Nicholas J.; Becker, Howard C.

    2010-01-01

    Background Previous studies have shown that high alcohol consumption is associated with low withdrawal susceptiblility, while at the same time, other studies have shown that exposure to ethanol vapor increases alcohol drinking in rats and mice. In the present studies, we sought to shed light on this seeming contradiction by using mice selectively bred for High- (HAP) and Low- (LAP) Alcohol Preference, first, assessing these lines for differences in signs of ethanol withdrawal and second, for differences in the efficacy of intermittent alcohol vapor exposure on elevating subsequent ethanol intake. Methods Experiment 1 examined whether these lines of mice differed in ethanol withdrawal-induced CNS hyperexcitability and the development of sensitization to this effect following intermittent ethanol vapor exposure. Adult HAP and LAP lines (replicates 1 and 2), and the C3H/HeNcr inbred strain (included as a control genotype for comparison purposes) received intermittent exposure to ethanol vapor and were evaluated for ethanol withdrawal-induced seizures assessed by scoring handling-induced convulsions (HIC). Experiment 2 examined the influence of chronic intermittent ethanol exposure on voluntary ethanol drinking. Adult male and female HAP-2 and LAP-2 mice, along with male C57BL/6J (included as comparative controls) were trained to drink 10% ethanol using a limited access (2 hr/day) 2-bottle choice paradigm. After stable baseline daily intake was established, mice received chronic intermittent ethanol vapor exposure in inhalation chambers. Ethanol intake sessions resumed 72 hr after final ethanol (or air) exposure for 5 consecutive days. Results Following chronic ethanol treatment, LAP mice exhibited overall greater withdrawal seizure activity compared to HAP mice. In Experiment 2, chronic ethanol exposure/withdrawal resulted in a significant increase in ethanol intake in male C57BL/6J, and modestly elevated intake in HAP-2 male mice. Ethanol intake for male control mice

  13. Sanskrit Compound Processor

    Science.gov (United States)

    Kumar, Anil; Mittal, Vipul; Kulkarni, Amba

    Sanskrit is very rich in compound formation. Typically a compound does not code the relation between its components explicitly. To understand the meaning of a compound, it is necessary to identify its components, discover the relations between them and finally generate a paraphrase of the compound. In this paper, we discuss the automatic segmentation and type identification of a compound using simple statistics that results from the manually annotated data.

  14. Characterization of persistent colors and decolorization of effluent from biologically treated cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Liu, Junfeng; Yu, Yanling; Ambuchi, John J; Feng, Yujie

    2016-05-01

    The high chroma of cellulosic ethanol production wastewater poses a serious environmental concern; however, color-causing compounds are still not fully clear. The characteristics of the color compounds and decolorization of biologically treated effluent by electro-catalytic oxidation were investigated in this study. Excitation-emission matrix (EEM), fourier transform infrared spectrometer (FTIR), UV-Vis spectra, and ultrafiltration (UF) fractionation were used to analyze color compounds. High chroma of wastewater largely comes from humic materials, which exhibited great fluorescence proportion (67.1 %) in the biologically treated effluent. Additionally, the color compounds were mainly distributed in the molecular weight fractions with 3-10 and 10-30 kDa, which contributed 53.5 and 34.6 % of the wastewater color, respectively. Further decolorization of biologically treated effluent by electro-catalytic oxidation was investigated, and 98.3 % of color removal accompanied with 97.3 % reduction of humic acid-like matter was achieved after 180 min. The results presented herein will facilitate the development of a well decolorization for cellulosic ethanol production wastewater and better understanding of the biological fermentation.

  15. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea

  16. Ethanol Production from Different Intermediates of Sugar Beet Processing

    OpenAIRE

    Mladen Pavlečić; Ivna Vrana; Kristijan Vibovec; Mirela Ivančić Šantek; Predrag Horvat; Božidar Šantek

    2010-01-01

    In this investigation, the production of ethanol from the raw sugar beet juice and raw sugar beet cossettes has been studied. For ethanol production from the raw sugar beet juice, batch and fed-batch cultivation techniques in the stirred tank bioreactor were used, while batch ethanol production from the raw sugar beet cossettes was carried out in horizontal rotating tubular bioreactor (HRTB). In both cases, Saccharomyces cerevisiae was used as a production microorganism. During batch ethanol ...

  17. Ethanol Wet-bonding Technique Sensitivity Assessed by AFM

    OpenAIRE

    Osorio, E.; Toledano, M.; Aguilera, F.S.; Tay, F.R.; Osorio, R.

    2010-01-01

    In ethanol wet bonding, water is replaced by ethanol to maintain dehydrated collagen matrices in an extended state to facilitate resin infiltration. Since short ethanol dehydration protocols may be ineffective, this study tested the null hypothesis that there are no differences in ethanol dehydration protocols for maintaining the surface roughness, fibril diameter, and interfibrillar spaces of acid-etched dentin. Polished human dentin surfaces were etched with phosphoric acid and water-rinsed...

  18. High ethanol yields using Aspergillus oryzae koji and corn media

    Energy Technology Data Exchange (ETDEWEB)

    Ziffer, J.; Iosif, M.C.

    1982-01-01

    High ethanol and stillage solids were achieved using whole corn mashes. Ethanol yields of 14% (98.5% of theory) and stillage levels of approximately 23% were obtained in 74-90 hours using mild acid pretreatment with A. oryzae wheat bran koji saccharification. High ethanol yields were also obtained with bacterial amylase, instead of the acid treatment, when the sterilization step was omitted. The implications of ethanol fermentation process modifications are explored.

  19. Ethanol from lignocellulose - Fermentation inhibitors, detoxification and genetic engineering of Saccharomyces cerevisiae for enhanced resistance

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Simona

    2000-07-01

    Ethanol can be produced from lignocellulose by first hydrolysing the material to sugars, and then fermenting the hydrolysate with the yeast Saccharomyces cerevisiae. Hydrolysis using dilute sulphuric acid has advantages over other methods, however, compounds which inhibit fermentation are generated during this kind of hydrolysis. The inhibitory effect of aliphatic acids, furans, and phenolic compounds was investigated. The generation of inhibitors during hydrolysis was studied using Norway spruce as raw material. It was concluded that the decrease in the fermentability coincided with increasing harshness of the hydrolysis conditions. The decrease in fermentability was not correlated solely to the content of aliphatic acids or furan derivatives. To increase the fermentability, detoxification is often employed. Twelve detoxification methods were compared with respect to the chemical composition of the hydrolysate and the fermentability after treatment. The most efficient detoxification methods were anion-exchange at pH 10.0, overliming and enzymatic detoxification with the phenol-oxidase laccase. Detailed analyses of ion exchange revealed that anion exchange and unspecific hydrophobic interactions greatly contributed to the detoxification effect, while cation exchange did not. The comparison of detoxification methods also showed that phenolic compounds are very important fermentation inhibitors, as their selective removal with laccase had a major positive effect on the fermentability. Selected compounds; aliphatic acids, furans and phenolic compounds, were characterised with respect to their inhibitory effect on ethanolic fermentation by S. cerevisiae. When aliphatic acids or furans were compared, the inhibitory effects were found to be in the same range, but the phenolic compounds displayed widely different inhibitory effects. The possibility of genetically engineering S. cerevisiae to achieve increased inhibitor resistance was explored by heterologous expression of

  20. Parenting while Being Homeless

    Science.gov (United States)

    Swick, Kevin J.; Williams, Reginald; Fields, Evelyn

    2014-01-01

    This article explores the dynamics of parenting while being in a homeless context. The mosaic of stressors involved in this homeless parenting process are explicated and discussed. In addition, resources and strategies that may support parenting are presented and discussed.

  1. Nursemaid's Elbow (For Parents)

    Science.gov (United States)

    ... Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & ... For Parents / Nursemaid's Elbow Print About Nursemaid's Elbow Toddlers and preschoolers are at risk for a common ...

  2. Wheel running, voluntary ethanol consumption, and hedonic substitution.

    Science.gov (United States)

    Ozburn, Angela Renee; Harris, R Adron; Blednov, Yuri A

    2008-08-01

    Few studies have examined the relationship between naturally rewarding behaviors and ethanol drinking behaviors in mice. Although natural and drug reinforcers activate similar brain circuitry, there is behavioral evidence suggesting food and drug rewards differ in perceived value. The primary goal of the present study was to investigate the relationships between naturally reinforcing stimuli and consumption of ethanol in ethanol preferring C57BL/6J mice. Mouse behaviors were observed after the following environmental manipulations: standard or enhanced environment, accessible or inaccessible wheel, and presence or absence of ethanol. Using a high-resolution volumetric drinking monitor and wheel running monitor, we evaluated whether alternating access to wheel running modified ethanol-related behaviors and whether alternating access to ethanol modified wheel running or subsequent ethanol-related behaviors. We found that ethanol consumption remains stable with alternating periods of wheel running. Wheel running increases in the absence of ethanol and decreases upon reintroduction of ethanol. Upon reintroduction of ethanol, an alcohol deprivation effect was seen. Collectively, the results support theories of hedonic substitution and suggest that female C57BL/6J mice express ethanol seeking and craving under these specific conditions.

  3. Effects of ethanol extract of Radix Sophorae Flavescentis on activity ...

    African Journals Online (AJOL)

    This paper mainly studied the inhibitory effect of total ethanol extract of Radix Sophorae Flavescentis on proliferation of colon cancer HT29 cells. By reflux extraction method and with ethanol as extraction solvent, different extracts were obtained at different ethanol concentrations, different solid-liquid ratios, and at different ...

  4. Ethanol production potential of local yeast strains isolated from ripe ...

    African Journals Online (AJOL)

    The ability of different yeast strains isolated from ripe banana peels to produce ethanol was investigated. Of the 8 isolates screened for their fermentation ability, 5 showed enhanced performance and were subsequently identified and assessed for important ethanol fermentation attributes such as ethanol producing ability, ...

  5. How do yeast cells become tolerant to high ethanol concentrations?

    DEFF Research Database (Denmark)

    Snoek, Tim; Verstrepen, Kevin J.; Voordeckers, Karin

    2016-01-01

    The brewer’s yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast’s exceptional ethanol...... and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance....

  6. Nonrenewable energy cost of corn-ethanol in China

    International Nuclear Information System (INIS)

    Yang, Q.; Chen, G.Q.

    2012-01-01

    Nonrenewable energy cost is accounted for the believed renewable biofuel of corn-ethanol in China. By a process-based energy analysis, nonrenewable energy cost in the corn-ethanol production process incorporating agricultural crop production, industrial conversion and wastewater treatment is conservatively estimated as 1.70 times that of the ethanol energy produced, corresponding to a negative energy return in contrast to the positive ones previously reported. Nonrenewable energy cost associated with wastewater treatment usually ignored in previous researches is shown important in the energy balance. Denoting the heavy nonrenewability of the produced corn-ethanol, the calculated nonrenewable energy cost would rise to 3.64 folds when part of the nonrenewable energy cost associated with water consumption, transportation and environmental remediation is included. Due to the coal dominated nonrenewable energy structure in China, corn-ethanol processes in China are mostly a conversion of coal to ethanol. Validations and discussions are also presented to reveal policy implications against corn based ethanol as an alternative energy in long term energy security planning. - Highlights: ► Nonrenewable energy (NE) cost is conservatively accounted for corn-ethanol in China. ► Corn cultivation, ethanol conversion and wastewater treatment are included. ► NE cost is estimated as 1.70 times that of the ethanol energy produced. ► Corn-ethanol processes in China are mostly a conversion of coal to ethanol.

  7. Preparation, assay and certification of aqueous ethanol reference solutions

    CSIR Research Space (South Africa)

    Archer, M

    2007-04-01

    Full Text Available with traceability to the SI. Ethanol solutions in the concentration range 10 mg/100 g to 20 g/100 g are prepared gravimetrically by mixing ethanol and reagent quality water. To verify the concentration of the ethanol it is oxidized to acetic acid with potassium...

  8. Antitumor effect of the ethanol extract of Scutellaria baicalensis on ...

    African Journals Online (AJOL)

    user6

    2012-03-22

    Mar 22, 2012 ... In our study, two kinds of ethanol extract of S. baicalensis were used in U14 cervical cancer .... On day 15, all of the mice were killed, and then transplanted tumors .... George and the 30% ethanol and 50% ethanol were used.

  9. Determination of ulcer protecting effect of ethanol extract of ...

    African Journals Online (AJOL)

    Ethanol extract of dietary vegetable, Gongronema latifolium, was evaluated for anti-ulcer activity. The extract was obtained from air-dried, pulverized leaves of the plant following its maceration in ethanol, filteration with Whatman No. 1 filter paper and drying at 110°C. Fractionation of the dry crude ethanol extract was ...

  10. Parental overprotection revisited.

    Science.gov (United States)

    Thomasgard, M; Metz, W P

    1993-01-01

    Dimensions of parental overprotection are clarified in a critical review of the research and clinical literature. An indulgent style of parenting is distinguished from an overprotective parent-child relationship. Differential antecedents and outcomes are proposed for each of these forms of parent-child interaction. Measures of protection are reviewed. A new conceptual model of parental overprotection is presented which takes into account child, parent, family, socio-cultural, environmental and resiliency factors. Directions for future research are suggested.

  11. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study

    Science.gov (United States)

    Suaniti, Ni Made; Manurung, Manuntun

    2016-03-01

    Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.

  12. Field evaluation of 3-hydroxy-2-hexanone and ethanol as attractants for the cerambycid beetle pest of vineyards, Xylotrechus arvicola.

    Science.gov (United States)

    Rodríguez-González, Álvaro; Sánchez-Maíllo, Esteban; Peláez, Horacio J; González-Núñez, Manuel; Hall, David R; Casquero, Pedro A

    2017-08-01

    The beetle Xylotrechus arvicola (Coleoptera: Cerambycidae) is a serious pest of vineyards in the Iberian Peninsula. In previous work, the male beetles, but not females, were shown to produce (R)-3-hydroxy-2-hexanone, and female beetles were attracted to this compound in a laboratory bioassay. In this study, release rates of 3-hydroxy-2-hexanone from different dispensers were measured in the laboratory, and the attractiveness of these to X. arvicola adults was determined in trapping tests in three traditional wine-growing regions in Spain. As a result of laboratory experiments, for field experiments 3-hydroxy-2-hexanone was formulated as 100 μL in a polyethylene sachet (50 mm × 50 mm × 250 µm), and ethanol was formulated as 1 mL in a polyethylene press-seal bag (76 mm × 57 mm ×50 µm). Field catches were similar at all three study sites. Catches in traps baited with 3-hydroxy-2-hexanone alone were not significantly different from those in unbaited control traps, but catches in traps baited with 3-hydroxy-2-hexanone and ethanol in separate sachets, with 3-hydroxy-2-hexanone and ethanol in the same sachet or with ethanol alone were significantly greater than those in control traps. These results confirm that the beetles are attracted to ethanol, and the addition of 3-hydroxy-2-hexanone does not seem to make any difference. Attraction of females for the male-produced compound (R)-3-hydroxy-2-hexanone has been observed in laboratory but not in field experiments. Traps baited with ethanol are highly attractive to both sexes of adults of X. arvicola, and these can be used for improved monitoring of the adult emergence and for population control by mass trapping. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Experimental and Theoretical Investigation of Effects of Ethanol and Acetic Acid on Carcinogenic NDMA Formation in Simulated Gastric Fluid.

    Science.gov (United States)

    Zhang, Ou; Zou, Xuan; Li, Qi-Hong; Sun, Zhi; Liu, Yong Dong; Zhong, Ru Gang

    2016-07-07

    N-nitrosodimethylamine (NDMA), as a representative of endogenously formed N-nitroso compounds (NOCs), has become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, effects of ethanol and acetic acid on the formation of NDMA from dimethylamine (DMA) and nitrite in simulated gastric fluid (SGF) were investigated. Experimental results showed that ethanol in the concentrations of 1-8% (v/v) and acetic acid in the concentrations of 0.01-8% (v/v) exhibit inhibitory and promotion effects on the formation of NDMA, respectively. Moreover, they are both in a dose-dependent manner with the largest inhibition/promotion rate reaching ∼70%. Further experimental investigations indicate that ethanol and acetic acid are both able to scavenge nitrite in SGF. It implies that there are interactions of ethanol and acetic acid with nitrite or nitrite-related nitrosating agents rather than DMA. Theoretical calculations confirm the above experimental results and demonstrate that ethanol and acetic acid can both react with nitrite-related nitrosating agents to produce ethyl nitrite (EtONO) and acetyl nitrite (AcONO), respectively. Furthermore, the reactivities of ethyl nitrite, acetyl nitrite, and dinitrogen trioxide reacting with DMA were found in the order of AcONO > N2O3 ≫ EtONO. This is probably the main reason why there are completely different effects of ethanol and acetic acid on NDMA formation. On the basis of the above results, two requirements for a potential inhibitor of NOCs formation in SGF were provided. The results obtained in this study will be helpful in better understanding the inhibition/promotion mechanisms of compounds on NDMA formation in SGF and searching for protective substances to prevent carcinogenic NOCs formation.

  14. On the Use of Potential Denaturing Agents for Ethanol in Direct Ethanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Domnik Bayer

    2011-01-01

    Full Text Available Acidic or alkaline direct ethanol fuel cells (DEFCs can be a sustainable alternative for power generation if they are fuelled with bio-ethanol. However, in order to keep the fuel cheap, ethanol has to be exempted from tax on spirits by denaturing. In this investigation the potential denaturing agents fusel oil, tert-butyl ethyl ether, and Bitrex were tested with regard to their compatibility with fuel cells. Experiments were carried out both in sulphuric acid and potassium hydroxide solution. Beside, basic electrochemical tests, differential electrochemical mass spectrometry (DEMS and fuel cell tests were conducted. It was found that fusel oil is not suitable as denaturing agent for DEFC. However, tert-butyl ethyl ether does not seem to hinder the ethanol conversion as much. Finally, a mixture of tert-butyl ethyl ether and Bitrex can be proposed as promising candidate as denaturing agent for use in acidic and alkaline DEFC.

  15. Inhibitor y effect on key enzymes relevant to acute type-2 diabetes and antioxidative activity of ethanolic extract of Artocarpus heterophyllus stem bark

    Directory of Open Access Journals (Sweden)

    Basiru Olaitan Ajiboye

    2016-09-01

    Full Text Available Objective: To investigate the in vitro antioxidant activity of ethanolic extract of Artocarpus heterophyllus (A. heterophyllus stem bark and its inhibitory effect on a-amylase and a-glucosidase. Methods: The A. heterophyllus stem bark was extracted using methanol and tested for antioxidative activity. Results: The results revealed that the ethanolic extract has polyphenolics and free radical scavenging compounds which were significantly higher (P < 0.05 than their respective standard, at concentration dependent manner. The ethanolic extract of A. heterophyllus stem bark was observed to show inhibitory activities on a-amylase and a-glucosidase with IC50 of (4.18 ± 0.01 and (3.53 ± 0.03 mg/mL, respectively. The Lineweaver-Burk plot revealed that ethanolic extract of A. heterophyllus stem bark exhibited non-competitive inhibition for a-amylase and uncompetitive inhibition for a-glucosidase activities. Also, gas chromatography–mass spectrometry showed the presence of different bioactive compounds in extract. Conclusions: Therefore, it can be inferred from this study that ethanolic extract of A. heterophyllus stem bark may be useful in the management of diabetes mellitus probably due to bioactive compounds observed in the extract.

  16. Amblyopia (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  17. When Parents Argue

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  18. Chlamydia (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  19. Oral Thrush (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  20. Diabetes Movie (For Parents)

    Medline Plus

    Full Text Available [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  1. Syphilis (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  2. Chemotherapy (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  3. Yersiniosis (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  4. Amebiasis (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  5. Infant Botulism (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  6. Scarlet Fever (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  7. Headaches (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  8. Strep Throat (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  9. Tourette Syndrome (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  10. Diabetes Movie (For Parents)

    Medline Plus

    Full Text Available ... for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family Life First Aid & ...

  11. Sinusitis (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  12. Laryngoscopy (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  13. Ultrasound: Head (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  14. Ultrasound: Pelvis (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  15. Eczema (For Parents)

    Science.gov (United States)

    [Skip to Content] for Parents Parents site Sitio para padres General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family ...

  16. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    The use of vegetable biomass as substrate for ethanol production could reduce the existing usage of fossil fuels, thereby minimizing negative environmental impacts. Due to mechanical harvesting of sugarcane, the amount of pointer and straw has increased in sugarcane fields, becoming inputs of great energy potential.

  17. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    Juliana

    2015-02-11

    Feb 11, 2015 ... Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License · 4.0 International .... Statistical analysis. The results of cell viability and ethanol production were subjected to analysis of variance by the F test, and the comparison of the means.

  18. Yeast metabolic engineering for hemicellulosic ethanol production

    Science.gov (United States)

    Jennifer Van Vleet; Thomas W. Jeffries

    2009-01-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...

  19. Metabolic response to exogenous ethanol in yeast

    Indian Academy of Sciences (India)

    In this study, we applied this approach to evaluate the effects of increasing concentration of exogenous ethanol on the Saccharomyces cerevisiae fermentative metabolism. We show that the STOCSY analysis correctly identifies the different types of correlations among the enriched metabolites involved in the fermentation, ...

  20. Bio ethanol use in light vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luiz Augusto Horta; Leal, Manoel Regis Lima Verde

    2012-07-01

    This chapter approaches vehicles emissions and air quality, Unite States context, Brazilian context, bio ethanol impact on engine emissions, bioethanol and engine technologies for emission control, bioethanol impact on engine emissions, flex-fuel vehicles, impact of bioethanol use in light vehicles, evolution perspectives for light vehicles: energy issues, and hybrid vehicles.

  1. Antihypercholesterolemic activity of ethanolic extract of Buchholzia ...

    African Journals Online (AJOL)

    Background: Hypercholesterolemia is a condition characterised with high level of cholesterol in the blood. Objectives: The effect of ethanolic extract of Buchholzia coriacea (EEBC) on the lipid profile levels and extent of lipid peroxidation in hypercholesterolemic albino rats was investigated in this study. Methods: Thirty ...

  2. Catalytic depolymerization of lignin in supercritical ethanol

    NARCIS (Netherlands)

    Huang, X.; Koranyi, T.I.; Boot, M.D.; Hensen, E.J.M.

    2014-01-01

    One-step valorization of soda lignin in supercritical ethanol using a CuMgAlOx catalyst results in high monomer yield (23 wt¿%) without char formation. Aromatics are the main products. The catalyst combines excellent deoxygenation with low ring-hydrogenation activity. Almost half of the monomer

  3. Urine ethanol concentration and alcohol hangover severity

    NARCIS (Netherlands)

    Brookhuis, Karel; Van De Loo, Aurora; Mackus, M.; Verster, Joris

    Background The aim of this study was to examine the relationship between urine ethanol concentration and alcohol hangover severity. Methods N = 36 healthy social drinkers participated in a naturalistic study, comprising a hangover day and a control day. N = 18 of them have regular hangovers (the

  4. ANTIFUNGAL ACTIVITY OF ETHANOLIC LEAF EXTRACT OF ...

    African Journals Online (AJOL)

    Ethanolic leaf extract of Eucalyptus camaldulensis, dispersed in a concentrated sugar solution had marked fungicidal effect against clinical dermatophytic fungal isolates; Microsporium gypseum and Trichophyton mentagrophytes. Microsporium gypseum at an inoculum level of 4.8 x 103 cfu/ml and T. mentagrophytes at ...

  5. Antihypercholesterolemic activity of ethanolic extract of Buchholzia ...

    African Journals Online (AJOL)

    EB

    Department of Biochemistry, University of Ibadan, Ibadan, Nigeria. Abstract ... Objectives: The effect of ethanolic extract of Buchholzia coriacea (EEBC) on the lipid profile levels and extent of lipid peroxidation in ..... in the pathogenesis of increased membrane rigidity, reduced ... lipoprotein cholesterol in plasma without use.

  6. Catalytic dehydration of ethanol to ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ying; Jin, Zhaosheng; Shen, Wei [SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai (China)

    2011-07-01

    The different routes of ethylene production were briefly introduced and the advantage of ethanol to ethylene (ETE) route was explained. Followed by that, the upgraded catalyst applied in this route developed by SINOPEC Shanghai Research Institute of Petrochemical Technology (SRIPT) was introduced together with the development of the ethanol to ethylene process. The core technologies involved in this process development were discussed, such as isothermal fixed-bed reactor, water scrubber and alkaline wash column, two columns of low-temperature separation as well as process heat integration. Furthermore, the performance of one of ethanol industrial plants licensed by SRIPT was reviewed. It is as follows, conversion of ethanol reaches 99% while selectivity of ethylene is over 96% at the reaction temperature of 350{approx}450 C, the liquid hourly space velocity (LHSV)of 0.5{approx}1.0 h{sup -1} and atmosphere pressure. Meanwhile, the catalyst shows its life time of one year. This route is considered not only as an economical and practical process but also as an environmentfriendly path to ethylene production. (orig.)

  7. Softening and elution of monomers in ethanol

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, Erik; Munksgaard, E Christian

    2009-01-01

    The purpose of this study was to investigate the effect of light-curing protocol on softening and elution of monomers in ethanol as measured on a model polymer. It was a further aim to correlate the measured values with previously reported data on degree of conversion and glass transition...

  8. Production of Biocellulosic Ethanol from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  9. Evaluation of semiconductor gas sensor system for ethanol determination during fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Picque, D; Corrieu, G

    1988-10-01

    Using commercial gas sensitive semi-conductors, an ethanol sensor has been constructed which operates by direct immersion in fermentation media. The calibration range of 0.1 to 10 or 13 % depending on the component. However, they are very often subjected to considerable drift (in the same case up to 10 %/h of the measured value). The electrical resistance of component may vary by a factor of 1 to 5 for a well-defined ethanol concentration. The effects of temperature changes in fermentation media are easily compensated. Other volatile compounds (methanol, ammonia,...) substantially affect component responses. Thus, all work on sensors requires careful calibration. Wine fermentation processes can be monitored satisfactorily, providing the sensor is recalibrated about every six hours.

  10. Crude ethanolic extract from spent coffee grounds: Volatile and functional properties.

    Science.gov (United States)

    Page, Julio C; Arruda, Neusa P; Freitas, Suely P

    2017-11-01

    Espresso capsule consumption and spent coffee ground (SCG) generation have increased, and the present study was undertaken to evaluate the volatile profile (VP), the antioxidant activity (AA) and the sun protection factor (SPF) of the Crude ethanolic extract obtained from the SCG in capsules. The extract yield was superior to the ether yield because a higher unsaponifiable matter (U.M.) amount was recovered by ethanol. The obtained VP (70 compounds) was typical of roasted coffee oil. Furthermore, chemometric analysis using principal components (PCA) discriminated the extracts and grouped the replicates for each sample, which showed the repeatability of the extraction process. The AA ranged from 18.4 to 23.6 (mg extract mg DPPH -1 ) and the SPF from 2.27 to 2.76. The combination of the coffee VP, AA and SPF gave the espresso SCG's crude ethanolicextract, desirable properties that can be used in cosmetic and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Chinese Parenting Reconsideration: Parenting Practices in Taiwan.

    Science.gov (United States)

    Chen, Fu-mei; Luster, Tom

    This study examined authoritative and authoritarian parenting and specific parenting practices among Chinese mothers with preschoolers. The final sample consisted of 463 mothers with their 3 to 7 year-olds from 11 preschools, in Taiwan. Mothers completed a Chinese translation of the Parenting Behavior Questionnaire that assessed their parenting…

  12. Ethanol Fuels Reference Guide: A Decision-Makers Guide to Ethanol Fuels

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-01

    This guide is a compendium of information on alcohol fuel production and use. Chapter titles are: facts about ethanol; gasohol-answers to the basic questions; feedstocks and their coproducts; ethanol production processes; and vehicle fuel use and performance. In addition, there are 8 appendices which include fermentation guides for common grains and potatoes, component and enzyme manufacturers, and information on regulations and permits. (DMC)

  13. Comparison of Different Solvents and Extraction Methods for Isolation of Phenolic Compounds from Horseradish Roots (Armoracia rusticana)

    OpenAIRE

    Lolita Tomsone; Zanda Kruma; Ruta Galoburda

    2012-01-01

    Horseradish (Armoracia rusticana) is a perennial herb belonging to the Brassicaceae family and contains biologically active substances. The aim of the current research was to determine best method for extraction of phenolic compounds from horseradish roots showing high antiradical activity. Three genotypes (No. 105; No. 106 and variety ‘Turku’) of horseradish roots were extracted with eight different solvents: n-hexane, ethyl acetate, diethyl ether, 2-propanol, acetone, ethanol (95%), ethanol...

  14. Anaerobic biodegradation of dissolved ethanol in a pilot-scale sand aquifer: Variability in plume (redox) biogeochemistry

    Science.gov (United States)

    McLeod, Heather C.; Roy, James W.; Slater, Gregory F.; Smith, James E.

    2018-01-01

    The use of ethanol in alternative fuels has led to contamination of groundwater with high concentrations of this easily biodegradable organic compound. Previous laboratory and field studies have shown vigorous biodegradation of ethanol plumes, with prevalence of reducing conditions and methanogenesis. The objective of this study was to further our understanding of the dynamic biogeochemistry processes, especially dissolved gas production, that may occur in developing and aging plume cores at sites with ethanol or other organic contamination of groundwater. The experiment performed involved highly-detailed spatial and temporal monitoring of ethanol biodegradation in a 2-dimensional (175 cm high × 525 cm long) sand aquifer tank for 330 days, with a vertical shift in plume position and increased nutrient inputs occurring at Day 100. Rapid onset of fermentation, denitrification, sulphate-reduction and iron(III)-reduction occurred following dissolved ethanol addition, with the eventual widespread development of methanogenesis. The detailed observations also demonstrate a redox zonation that supports the plume fringe concept, secondary reactions resulting from a changing/moving plume, and time lags for the various biodegradation processes. Additional highlights include: i) the highest dissolved H2 concentrations yet reported for groundwater, possibly linked to vigorous fermentation in the absence of common terminal electron-acceptors (i.e., dissolved oxygen, nitrate, and sulphate, and iron(III)-minerals) and methanogenesis; ii) evidence of phosphorus nutrient limitation, which stalled ethanol biodegradation and perhaps delayed the onset of methanogenesis; and iii) the occurrence of dissimilatory nitrate reduction to ammonium, which has not been reported for ethanol biodegradation to date.

  15. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    Science.gov (United States)

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  16. Final Report on Development of Thermoanaerobacterium saccharolyticum for the conversion of lignocellulose to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Christopher D.; Kenealy, William R.; Shaw, A. Joe; Raman, Babu; Tschaplinski, Timothy J.; Brown, Steven D.; Davison, Brian H.; Covalla, Sean F.; Sillers, W. Ryan; Xu, Haowen; Tsakraklides, Vasiliki; Hogsett, David A.

    2012-01-24

    This project addressed the need for economical technology for the conversion of lignocellulosic biomass to fuels, specifically the conversion of pretreated hardwood to ethanol. The technology developed is a set of strains of the bacterium Thermoanaerobacterium saccharolyticum and an associated fermentation process for pretreated hardwood. Tools for genetic engineering and analysis of the organism were developed, including a markerless mutation method, a complete genome sequence and a set of gene expression profiles that show the activity of its genes under a variety of conditions relevant to lignocellulose conversion. Improved strains were generated by selection and genetic engineering to be able to produce higher amounts of ethanol (up to 70 g/L) and to be able to better tolerate inhibitory compounds from pretreated hardwood. Analysis of these strains has generated useful insight into the genetic basis for desired properties of biofuel producing organisms. Fermentation conditions were tested and optimized to achieve ethanol production targets established in the original project proposal. The approach proposed was to add cellulase enzymes to the fermentation, a method called Simultaneous Saccharification and Fermentation (SSF). We had reason to think SSF would be an efficient approach because the optimal temperature and pH for the enzymes and bacterium are very close. Unfortunately, we discovered that commercially available cellulases are inactivated in thermophilic SSF by a combination of low redox potential and ethanol. Despite this, progress was made against the fermentation targets using bacterial cellulases. Thermoanaerobacterium saccharolyticum may still prove to be a commercially viable technology should cellulase enzyme issues be addressed. Moreover, the organism was demonstrated to produce ethanol at approximately theoretical yield from oligomeric hemicellulose extracts, an ability that may prove to be uniquely valuable in pretreatment configurations in

  17. Computational study of ethanol adsorption and reaction over rutile TiO2 (110) surfaces

    KAUST Repository

    Muir, J. N.

    2012-01-01

    Studies of the modes of adsorption and the associated changes in electronic structures of renewable organic compounds are needed in order to understand the fundamentals behind surface reactions of catalysts for future energies. Using planewave density functional theory (DFT) calculations, the adsorption of ethanol on perfect and O-defected TiO 2 rutile (110) surfaces was examined. On both surfaces the dissociative adsorption mode on five-fold coordinated Ti cations (Ti 4+ 5c) was found to be more favourable than the molecular adsorption mode. On the stoichiometric surface E ads was found to be equal to 0.85 eV for the ethoxide mode and equal to 0.76 eV for the molecular mode. These energies slightly increased when adsorption occurred on the Ti 4+ 5c closest to the O-defected site. However, both considerably increased when adsorption occurred at the removed bridging surface O; interacting with Ti 3+ cations. In this case the dissociative adsorption becomes strongly favoured (E ads = 1.28 eV for molecular adsorption and 2.27 eV for dissociative adsorption). Geometry and electronic structures of adsorbed ethanol were analysed in detail on the stoichiometric surface. Ethanol does not undergo major changes in its structure upon adsorption with its C-O bond rotating nearly freely on the surface. Bonding to surface Ti atoms is a σ type transfer from the O2p of the ethanol-ethoxide species. Both ethanol and ethoxide present potential hole traps on O lone pairs. Charge density and work function analyses also suggest charge transfer from the adsorbate to the surface, in which the dissociative adsorptions show a larger charge transfer than the molecular adsorption mode. This journal is © 2012 the Owner Societies.

  18. The Metastability and Nucleation Thresholds of Ibuprofen in Ethanol and Water-Ethanol Mixtures

    Directory of Open Access Journals (Sweden)

    Abdur Rashid

    2015-01-01

    Full Text Available To investigate the crystallization of ibuprofen [((RS-2-(4-(2-methylpropyl phenyl propanoic acid] from ethanol and water-ethanol mixtures it is necessary to know the nucleation limits of its solutions. In the absence of crystals, nucleation will seldom occur below the PNT (primary nucleation threshold. If crystals are present, nucleation will seldom occur until below the lower SNT (secondary nucleation threshold. Below the SNT, crystals will still grow with negligible nucleation. PNT and SNT values (expressed as relative supersaturation σ have been measured at 10, 25, and 40°C for ibuprofen in ethanol and in a range of mixtures of different ethanol (E/water (W ratios. The induction times were determined from observing the times to nucleate for a range of different supersaturated solutions at a given temperature and E/W ratio. As expected, lowering the supersaturation leads to longer induction times. In ethanol, the SNT values are small and thus the secondary metastable zone width (MSZW is relatively narrow with a 1 h SNT relative supersaturation typically about σ ~ 0.05. The 1 h PNT values are much larger with values for σ around 0.3. In aqueous ethanolic mixtures at 25°C, both the PNT and SNT decrease as the water content increases.

  19. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  20. Ethanol cellular defense induce unfolded protein response in yeast

    Directory of Open Access Journals (Sweden)

    Elisabet eNavarro-Tapia

    2016-02-01

    Full Text Available Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two Saccharomyces cerevisiae strains, CECT10094 and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus

  1. Transcriptome profiling of Zymomonas mobilis under ethanol stress

    Directory of Open Access Journals (Sweden)

    He Ming-xiong

    2012-10-01

    Full Text Available Abstract Background High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli. However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress. Results We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair, transport, transcriptional regulation, some universal stress response, etc. Conclusion In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic

  2. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    G. Riva

    2013-09-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the CRA-VIT (Viticulture Research Centre Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. LCA (Life Cycle Assessment of grape ethanol energy chain was performed following two different methods: (i using the spreadsheet “BioGrace, developed within the “Intelligent Energy Europe” program to support and to ease the RED (Directive 2009/28/EC implementation; (ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy. The comparison with other bioenergy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains.

  3. Measurements and modeling of quaternary (liquid + liquid) equilibria for mixtures of (methanol or ethanol + water + toluene + n-dodecane)

    International Nuclear Information System (INIS)

    Mohammad Doulabi, F.S.; Mohsen-Nia, M.; Modarress, H.

    2006-01-01

    The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol) (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography. The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents. The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents

  4. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii.

    Science.gov (United States)

    Ra, Chae Hun; Jeong, Gwi-Taek; Shin, Myung Kyo; Kim, Sung-Koo

    2013-07-01

    The seaweed, Gelidium amansii, was fermented to produce bioethanol. Optimal pretreatment condition was determined as 94 mM H2SO4 and 10% (w/v) seaweed slurry at 121°C for 60 min. The mono sugars of 43.5 g/L with 57.4% of conversion from total carbohydrate of 75.8 g/L with G. amansii slurry 100g dcw/L were obtained by thermal acid hydrolysis pretreatment and enzymatic saccharification. G. amansii hydrolysate was used as the substrate for ethanol production by separate hydrolysis and fermentation (SHF). The ethanol concentration of 20.5 g/L was produced by Scheffersomyces stipitis KCTC 7228. The effect of HMF on ethanol production by S. stipitis KCTC 7228 was evaluated and 5-hydroxymethylfurfural (HMF) was converted to 2,5-bis-hydroxymethylfuran. The accumulated 2,5-bis-hydroxymethylfuran in the medium did not affect galactose and glucose uptakes and ethanol production. Biotransformation of HMF to less inhibitory compounds by S. stipitis KCTC 7228 could enhance overall fermentation yields of seaweed hydrolysates to ethanol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wendell M.; Marques, Aldalea L.B., E-mail: aldalea.ufma@hotmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Quimica Tecnologica; Cardoso, William S.; Marques, Edmar P.; Bezerra, Cicero W.B. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Qumica; Ferreira, Antonio Ap. P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Song, Chaojie; Zhang, Jiujun [Energy, Mining and Environment Portfolio, National Research Council of Canada, Vancouver, BC (Canada)

    2013-04-15

    Ruthenium-based hexacyanoferrate (RuHCF) thin film modified glassy carbon electrode was prepared by drop evaporation method. The RuHCF modified electrode exhibited four redox couples in strong acidic solution (pH 1.5) attributed to Fe(CN){sub 6}{sup 3-} ion and three ruthenium forms (Ru(II), Ru(III) and Ru(IV)), characteristic of ruthenium oxide compounds. The modified electrode displayed excellent electrocatalytic activity towards ethanol oxidation in the potential region where electrochemical processes Ru(III)-O-Ru(IV) and Ru(IV)-O-Ru(VI) occur. Impedance spectroscopy data indicated that the charge transfer resistance decreased with the increase of the applied potential and ethanol concentration, indicating the use of the RuHCF modified electrode as an ethanol sensor. Under optimized conditions, the sensor responded linearly and rapidly to ethanol concentration between 0.03 and 0.4 mol L{sup -1} with a limit of detection of 0.76 mmol L{sup -1}, suggesting an adequate sensitivity in ethanol analyses. (author)

  6. Properties of filmogen solutions and films of hafnium compounds

    International Nuclear Information System (INIS)

    Sviridova, A.I.

    1986-01-01

    Study on hafnium hydrolizing compound solutions, used for hafnium oxide homogeneous layer formation, is conducted. In particular, electric conductivity, acidity and refractive index were investigated depending on the sal on ether concentration and the storage time. Oxyhafnium nitrate, hafnium chloride in ethanol, dichlorodiethoxyhafnium, hafnium oxychloride were used as initial compounds. Hydrolysis of hafnium compounds in solution occurs partially; further process occurs in the thin layer on the optical element surface; final decomposition is performed under heat treatment. It is ascertained, that alcoholic-aqueous solutions of inorganic salts can be filmogen only at definite acidity, density and viscosity (1.33-2.5 cp.). It is also ascertained that refractive index values and transmission spectral boundary of coatings, produced from alkoxy compound solutions and from chloride salt solutions, are practically the same. Transmittance boundary in ultraviolet region of spectrum of oxide films produced from nitrate and chloride solutions, varies with the heating temperature increase differently

  7. Chronic intermittent ethanol exposure in early adolescent and adult male rats: effects on tolerance, social behavior, and ethanol intake.

    Science.gov (United States)

    Broadwater, Margaret; Varlinskaya, Elena I; Spear, Linda P

    2011-08-01

    Given the prevalence of alcohol use in adolescence, it is important to understand the consequences of chronic ethanol exposure during this critical period in development. The purpose of this study was to assess possible age-related differences in susceptibility to tolerance development to ethanol-induced sedation and withdrawal-related anxiety, as well as voluntary ethanol intake after chronic exposure to relatively high doses of ethanol during adolescence or adulthood. Juvenile/adolescent and adult male Sprague-Dawley rats were assigned to one of five 10-day exposure conditions: chronic ethanol (4 g/kg every 48 hours), chronic saline (equivalent volume every 24 hours), chronic saline/acutely challenged with ethanol (4 g/kg on day 10), nonmanipulated/acutely challenged with ethanol (4 g/kg on day 10), or nonmanipulated. For assessment of tolerance development, duration of the loss of righting reflex (LORR) and blood ethanol concentrations (BECs) upon regaining of righting reflex (RORR) were tested on the first and last ethanol exposure days in the chronic ethanol group, with both saline and nonmanipulated animals likewise challenged on the last exposure day. Withdrawal-induced anxiety was indexed in a social interaction test 24 hours after the last ethanol exposure, with ethanol-naïve chronic saline and nonmanipulated animals serving as controls. Voluntary intake was assessed 48 hours after the chronic exposure period in chronic ethanol, chronic saline and nonmanipulated animals using an 8-day 2 bottle choice, limited-access ethanol intake procedure. In general, adolescent animals showed shorter durations of LORR and higher BECs upon RORR than adults on the first and last ethanol exposure days, regardless of chronic exposure condition. Adults, but not adolescents, developed chronic tolerance to the sedative effects of ethanol, tolerance that appeared to be metabolic in nature. Social deficits were observed after chronic ethanol in both adolescents and adults

  8. Self-Administered Ethanol Enema Causing Accidental Death

    Directory of Open Access Journals (Sweden)

    Thomas Peterson

    2014-01-01

    Full Text Available Excessive ethanol consumption is a leading preventable cause of death in the United States. Much of the harm from ethanol comes from those who engage in excessive or hazardous drinking. Rectal absorption of ethanol bypasses the first pass metabolic effect, allowing for a higher concentration of blood ethanol to occur for a given volume of solution and, consequently, greater potential for central nervous system depression. However, accidental death is extremely rare with rectal administration. This case report describes an individual with klismaphilia whose death resulted from acute ethanol intoxication by rectal absorption of a wine enema.

  9. Determination of total phenolic compound contents and antioxidant capacity of persimmon skin

    Directory of Open Access Journals (Sweden)

    M Mohamadi

    2012-05-01

    Full Text Available Due to the adverse side effects of synthetic antioxidants, the search for natural and safe antioxidants has become crucial. In this study, the total phenolic compound contents and antioxidants activity of persimmon skin was investigated. The extraction was carried out by means of maceration method using ethanol and methanol solvents with ratio of 1 part persimmon skin to 5 parts of solvents. Afterwards, the total phenolic compounds and antioxidants activity was measured. According to the results, ethanolic and methanolic extracts contained 255.6 and 214.15 mg gallic acid per 100 g of persimmon skin, respectively. Moreover, ethanolic extracts showed a higher activity for scavenging free radicals compared to methanolic extracts.

  10. Selecting ethanol as an ideal organic solvent probe in radiation chemistry γ-radiolysis of acetone-ethanol system and acetophenone-ethanol system

    International Nuclear Information System (INIS)

    Jin Haofang; Wu Jilan; Fang Xingwang; Zhang Xujia

    1995-01-01

    Radiolysis of acetone-ethanol solution and acetophenone-ethanol solution has been studied in this work. The dependences of G values of the final γ radiolysis products such as H 2 . 2,3-butanediol and acetaldehyde on additive concentration in liquid ethanol have been obtained. There are two kinds of new final products, isopropanol and 2-methyl-2,3-butanediol are detected in irradiated acetone-ethanol solution. As for acetophenone-ethanol system, more new final products are found. In addition, experiments of pulse radiolysis upon acetophenone-ethanol solution have also been performed. The absorption spectrum with λ max at 315nm and 440nm is observed, which is assigned to ketyl radical ion C 6 H 5 (CH 3 )CO - . And the reaction mechanism of the two systems is proposed respectively with a moderate success. (author)

  11. ANTIOXIDANT ACTIVITY OF ETHANOLIC EXTRACT AND FRACTION OF SALAK FRUIT SEEDS ( Salacca zalacca (Gaertn. Voss. USING DPPH (2,2-diphenyl-1-picrylhydrazyl METHOD

    Directory of Open Access Journals (Sweden)

    Sista Werdyani

    2017-09-01

    Full Text Available Salak seeds have been developed as a beverage, but there was still a little amount of research that focused on salak seeds. This research was conducted to find out the chemical compounds and the antioxidant activity of ethanolic extract and fraction of salak fruits seeds ( Salacca zalacca (Gaertn. Voss. which have been grown extensively in Sleman Yogyakarta. Extraction was conducted using maceration, followed by fractionation using vacuum liquid chromatography. The identification of the chemical compounds contained in the ethanolic extract and fraction was performed by thin layer chromatography method, while the antioxidant activity was performed by DPPH method. Comparison of antioxidant activity was seen using IC50 values. The results showed that ethanol extract and fraction contained phenol, flavonoid, and tannin. The largest antioxidant activity was found in F7 with an IC50 value of 110.16 μg / ml.

  12. The effects of continuous and intermittent ethanol exposure in adolesence on the aversive properties of ethanol during adulthood.

    Science.gov (United States)

    Diaz-Granados, Jaime L; Graham, Danielle L

    2007-12-01

    Alcohol abuse among adolescents is prevalent. Epidemiological studies suggest that alcohol abuse during the adolescent developmental period may result in long-term changes such as an increased susceptibility to alcohol-related problems in adulthood. Laboratory findings suggest that alcohol exposure during the adolescent developmental period, as compared with adulthood, may differentially impact subsequent neurobehavioral responses to alcohol. The present study was designed to examine whether ethanol exposure, continuous versus intermittent, during the adolescent developmental period would alter the aversive properties of ethanol in adult C3H mice. Periadolescent (PD28) male C3H mice were exposed to 64 hours of continuous or intermittent ethanol vapor. As a comparison, adult (PD70) C3H mice were also exposed to 64 hours of continuous or intermittent ethanol vapor. Six weeks after ethanol exposure, taste aversion conditioning was carried out on both ethanol pre-exposed and ethanol-naive animals using a 1-trial, 1-flavor taste-conditioning procedure. Ethanol exposure during the periadolescent period significantly attenuated a subsequent ethanol-induced conditioned taste aversion, as compared with control animals. Adult animals exposed to chronic ethanol vapor during adolescence showed less of an aversion to an ethanol-paired flavor than ethanol-naive adults. Intermittent exposure to ethanol vapor during periadolescence produced a greater attenuation. It is suggested that ethanol exposure during the periadolescent period results in long-term neurobehavioral changes, which lessen a conditioned aversion to ethanol in adulthood. It is suggested that this age-related effect may underlie the increased susceptibility to alcohol-related problems which is negatively correlated with the age of onset for alcohol abuse.

  13. Ethanol wet-bonding technique sensitivity assessed by AFM.

    Science.gov (United States)

    Osorio, E; Toledano, M; Aguilera, F S; Tay, F R; Osorio, R

    2010-11-01

    In ethanol wet bonding, water is replaced by ethanol to maintain dehydrated collagen matrices in an extended state to facilitate resin infiltration. Since short ethanol dehydration protocols may be ineffective, this study tested the null hypothesis that there are no differences in ethanol dehydration protocols for maintaining the surface roughness, fibril diameter, and interfibrillar spaces of acid-etched dentin. Polished human dentin surfaces were etched with phosphoric acid and water-rinsed. Tested protocols were: (1) water-rinse (control); (2) 100% ethanol-rinse (1-min); (3) 100% ethanol-rinse (5-min); and (4) progressive ethanol replacement (50-100%). Surface roughness, fibril diameter, and interfibrillar spaces were determined with atomic force microscopy and analyzed by one-way analysis of variance and the Student-Newman-Keuls test (α = 0.05). Dentin roughness and fibril diameter significantly decreased when 100% ethanol (1-5 min) was used for rinsing (p ethanol produced collapse and shrinkage of collagen fibrils. Ascending ethanol concentrations did not collapse the matrix and shrank the fibrils less than absolute ethanol-rinses.

  14. Recurring ethanol exposure induces disinhibited courtship in Drosophila.

    Directory of Open Access Journals (Sweden)

    Hyun-Gwan Lee

    Full Text Available Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a male's sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity.

  15. Temperature dependence of heat sensitization and thermotolerance induction with ethanol

    International Nuclear Information System (INIS)

    Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    Cytoxicity of 1 M ethanol was strongly temperature dependent; survival curves between 34 0 and 39 0 C were similar to heat survival curves between 40 and 45 0 without ethanol. Ethanol was non-toxic at 22 0 ; at 34.5 0 and 35.5 0 ethanol survival curves were biphasic. The major effect of 1 M ethanol was an effective temperature shift of 6.4 Celsius degrees, although temperatures between 34 0 and 36 0 caused additional sensitization reminiscent of the stepdown heating phenomenon. Induction of thermotolerance with equitoxic ethanol exposures at 35.5 0 and 37 0 or with heat alone (10 min, 45 0 ) resulted in tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance to hyperthermia. These data provide a rationale for conflicting reports in the literature regarding thermotolerance induction by ethanol and suggest that ethanol causes ''heat'' stress at temperatures that are generally considered to be physiological. This interpretation predicts that the use of ethanol and other organic solvents in high concentrations will cause effects at 37 0 that normally occur only at hyperthermic temperatures, including membrane perturbations and HSP synthesis, and that ''physiological'' temperatures must be precisely controlled under those conditions

  16. Water-insoluble fractions of botanical foods lower blood ethanol levels in rats by physically maintaining the ethanol solution after ethanol administration

    Directory of Open Access Journals (Sweden)

    Shunji Oshima

    2015-11-01

    Full Text Available Background: Several studies have analyzed the functions of foods and dietary constituents in the dynamics of alcohol metabolism. However, few studies have reported the function of dietary fibers in the dynamics of alcohol metabolism. Objective: We assessed the effects of botanical foods that contain dietary fibers on alcohol metabolism. Methods: The ability of the water-insoluble fraction (WIF of 18 kinds of botanical foods to maintain 15% (v/v ethanol solution was examined using easily handled filtration. A simple linear regression analysis was performed to examine the correlation between the filtered volumes and blood ethanol concentration (BEC in F344 rats 4 h after the ingestion of 4.0 g/kg of ethanol following dosage of 2.5% (w/v WIF of the experimental botanical foods. Furthermore, the supernatant (6.3 Brix; water-soluble fraction and precipitate (WIF of tomato, with a strong ethanol-maintaining ability, were obtained and BEC and the residual gastric ethanol in rats were determined 2 h after the administration of 4.0 g/kg of ethanol and the individuals fractions. Results: The filtered volumes of dropped ethanol solutions containing all the botanical foods tested except green peas were decreased compared with the ethanol solution without WIF (control. There was a significant correlation between the filtered volumes and blood ethanol concentration (BEC. There was no significant difference in the residual gastric ethanol between controls and the supernatant group; however, it was increased significantly in the WIF group than in controls or the supernatant group. Consistent with this, BEC reached a similar level in controls and the supernatant group but significantly decreased in the WIF group compared with controls or the supernatant group. Conclusions: These findings suggest that WIFs of botanical foods, which are mostly water-insoluble dietary fibers, possess the ability to absorb ethanol-containing solutions, and this ability correlates

  17. An experimental study on renal infarction with ethanol

    International Nuclear Information System (INIS)

    Han, Man Chung; Choi, Byung Ihn; Park, Jae Hyung; Ha, Sung Whan; Chang, Kee Hyun

    1982-01-01

    Renal infarction with ethanol was induced experimentally in rabbits and selective renal angiography was performed to evaluate the effectiveness of ethanol as embolic material. The results were as follows: 1. Complete obstruction of renal artery was produced in all cases within 1 week after injection of absolute ethanol (0.5 ml/Kg). 2. Incomplete obstruction of renal artery was produced in majority after injection of absolute ethanol (0.2 ml/Kg) and changed to complete obstruction above half cases with time. 3. Incomplete obstructive of renal artery was produced in minority after injection of 60% ethanol (0.2 ml/Kg) and complete obstruction of renal artery was not produced. It was consider that ethanol is an effective agent for complete renal infarction and 0.2 to 0.5 ml/Kg of absolute ethanol is effective dose for complete renal infarction

  18. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny.

    Science.gov (United States)

    March, Samanta M; Abate, P; Molina, Juan C

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption.

  19. An economic assessment of potential ethanol production pathways in Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Deverell, Rory; McDonnell, Kevin; Ward, Shane; Devlin, Ger [Department of Biosystems Engineering, Agriculture and Food Science Building, University College Dublin 4, Belfield (Ireland)

    2009-10-15

    An economic assessment was conducted on five biomass-to-ethanol production pathways utilising the feedstock: wheat, triticale, sugarbeet, miscanthus and straw. The analysis includes the costs and margins for all the stakeholders along the economic chain. This analysis reveals that under current market situations in Ireland, the production of ethanol under the same tax regime as petrol makes it difficult to compete against that fuel, with tax breaks, however, it can compete against petrol. On the other hand, even under favourable tax breaks it will be difficult for indigenously produced ethanol to compete against cheaper sources of imported ethanol. Therefore, the current transport fuel market has no economic reason to consume indigenously produced ethanol made from the indigenously grown feedstock analysed at a price that reflects all the stakeholders' costs. To deliver a significant penetration of indigenous ethanol into the market would require some form of compulsory inclusion or else considerable financial supports to feedstock and ethanol producers. (author)

  20. The turmeric protective properties at ethanol-induced behavioral disorders.

    Directory of Open Access Journals (Sweden)

    Goldina I.A.

    2017-03-01

    Full Text Available The aim of the study was to determine the effect of mechanically modified turmeric extract on the parameters of orienting-exploratory behavior in mice with chronic ethanol consumption. Material and methods. Mice behavior was assessed in the "open field" test. In the both control groups the animals received water or 10% ethanol solution; in the test group — turmeric extract in 10% ethanol solution. Amount of blood mononuclear cells, thymocytes, and splenocytes were estimated. Results. Analysis of the behavioral parameters in animals after chronic exposure to ethanol showed suppression of motor and exploratory components of the behavior. In mice that received both ethanol and turmeric extract recorded behavior parameters were significantly higher than in the group of animals who received ethanol only. It was shown that the turmeric extract enhances the amount of blood immune cells. Conclusion. Mechanically modified turmeric extract possesses protective properties against ethanol-induced behavioral disorders.