WorldWideScience

Sample records for parametric single-trial eeg

  1. Group-Level EEG-Processing Pipeline for Flexible Single Trial-Based Analyses Including Linear Mixed Models.

    Science.gov (United States)

    Frömer, Romy; Maier, Martin; Abdel Rahman, Rasha

    2018-01-01

    Here we present an application of an EEG processing pipeline customizing EEGLAB and FieldTrip functions, specifically optimized to flexibly analyze EEG data based on single trial information. The key component of our approach is to create a comprehensive 3-D EEG data structure including all trials and all participants maintaining the original order of recording. This allows straightforward access to subsets of the data based on any information available in a behavioral data structure matched with the EEG data (experimental conditions, but also performance indicators, such accuracy or RTs of single trials). In the present study we exploit this structure to compute linear mixed models (LMMs, using lmer in R) including random intercepts and slopes for items. This information can easily be read out from the matched behavioral data, whereas it might not be accessible in traditional ERP approaches without substantial effort. We further provide easily adaptable scripts for performing cluster-based permutation tests (as implemented in FieldTrip), as a more robust alternative to traditional omnibus ANOVAs. Our approach is particularly advantageous for data with parametric within-subject covariates (e.g., performance) and/or multiple complex stimuli (such as words, faces or objects) that vary in features affecting cognitive processes and ERPs (such as word frequency, salience or familiarity), which are sometimes hard to control experimentally or might themselves constitute variables of interest. The present dataset was recorded from 40 participants who performed a visual search task on previously unfamiliar objects, presented either visually intact or blurred. MATLAB as well as R scripts are provided that can be adapted to different datasets.

  2. Decoding sequence learning from single-trial intracranial EEG in humans.

    Directory of Open Access Journals (Sweden)

    Marzia De Lucia

    Full Text Available We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep or a later consolidated phase (day 2, after sleep, whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence. Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.

  3. Attentional Selection in a Cocktail Party Environment Can Be Decoded from Single-Trial EEG

    Science.gov (United States)

    O'Sullivan, James A.; Power, Alan J.; Mesgarani, Nima; Rajaram, Siddharth; Foxe, John J.; Shinn-Cunningham, Barbara G.; Slaney, Malcolm; Shamma, Shihab A.; Lalor, Edmund C.

    2015-01-01

    How humans solve the cocktail party problem remains unknown. However, progress has been made recently thanks to the realization that cortical activity tracks the amplitude envelope of speech. This has led to the development of regression methods for studying the neurophysiology of continuous speech. One such method, known as stimulus-reconstruction, has been successfully utilized with cortical surface recordings and magnetoencephalography (MEG). However, the former is invasive and gives a relatively restricted view of processing along the auditory hierarchy, whereas the latter is expensive and rare. Thus it would be extremely useful for research in many populations if stimulus-reconstruction was effective using electroencephalography (EEG), a widely available and inexpensive technology. Here we show that single-trial (≈60 s) unaveraged EEG data can be decoded to determine attentional selection in a naturalistic multispeaker environment. Furthermore, we show a significant correlation between our EEG-based measure of attention and performance on a high-level attention task. In addition, by attempting to decode attention at individual latencies, we identify neural processing at ∼200 ms as being critical for solving the cocktail party problem. These findings open up new avenues for studying the ongoing dynamics of cognition using EEG and for developing effective and natural brain–computer interfaces. PMID:24429136

  4. Cortical activities of single-trial P300 amplitudes modulated by memory load using simultaneous EEG-fMRI

    Science.gov (United States)

    Zhang, Qiushi; Zhao, Xiaojie; Zhu, Chaozhe; Yang, Xueqian; Yao, Li

    2015-03-01

    The functional magnetic resonance imaging (fMRI) researches on working memory have found that activation of cortical areas appeared dependent on memory load, and event-related potentials (ERP) studies have demonstrated that amplitudes of P300 decreased significantly when working memory load increased. However, the cortical activities related with P300 amplitudes under different memory loads remains unclear. Joint fMRI and EEG analysis which fusions the time and spatial information in simultaneous EEG-fMRI recording can reveal the regional activation at each ERP time point. In this paper, we first used wavelet transform to obtain the single-trial amplitudes of P300 caused by a digital N-back task in the simultaneous EEG-fMRI recording as the ERP feature sequences. Then the feature sequences in 1-back condition and 3-back condition were introduced into general linear model (GLM) separately as parametric modulations to compare the cortical activation under different memory loads. The results showed that the average amplitudes of P300 in 3-back significantly decreased than that in 1-back, and the activities induced by ERP feature sequences in 3-back also significantly decreased than that in the 1-back, including the insular, anterior cingulate cortex, right inferior frontal gyrus, and medial frontal gyrus, which were relevant to the storage, monitoring, and manipulation of information in working memory task. Moreover, the difference in the activation caused by ERP feature showed a positive correlation with the difference in behavioral performance. These findings demonstrated the locations of P300 amplitudes differences modulated by the memory load and its relationship with the behavioral performance.

  5. Combining features from ERP components in single-trial EEG for discriminating four-category visual objects

    Science.gov (United States)

    Wang, Changming; Xiong, Shi; Hu, Xiaoping; Yao, Li; Zhang, Jiacai

    2012-10-01

    Categorization of images containing visual objects can be successfully recognized using single-trial electroencephalograph (EEG) measured when subjects view images. Previous studies have shown that task-related information contained in event-related potential (ERP) components could discriminate two or three categories of object images. In this study, we investigated whether four categories of objects (human faces, buildings, cats and cars) could be mutually discriminated using single-trial EEG data. Here, the EEG waveforms acquired while subjects were viewing four categories of object images were segmented into several ERP components (P1, N1, P2a and P2b), and then Fisher linear discriminant analysis (Fisher-LDA) was used to classify EEG features extracted from ERP components. Firstly, we compared the classification results using features from single ERP components, and identified that the N1 component achieved the highest classification accuracies. Secondly, we discriminated four categories of objects using combining features from multiple ERP components, and showed that combination of ERP components improved four-category classification accuracies by utilizing the complementarity of discriminative information in ERP components. These findings confirmed that four categories of object images could be discriminated with single-trial EEG and could direct us to select effective EEG features for classifying visual objects.

  6. How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters

    Science.gov (United States)

    Nunez, Michael D.; Vandekerckhove, Joachim; Srinivasan, Ramesh

    2016-01-01

    Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects. PMID:28435173

  7. How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters.

    Science.gov (United States)

    Nunez, Michael D; Vandekerckhove, Joachim; Srinivasan, Ramesh

    2017-02-01

    Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects.

  8. Spatiotemporal analysis of single-trial EEG of emotional pictures based on independent component analysis and source location

    Science.gov (United States)

    Liu, Jiangang; Tian, Jie

    2007-03-01

    The present study combined the Independent Component Analysis (ICA) and low-resolution brain electromagnetic tomography (LORETA) algorithms to identify the spatial distribution and time course of single-trial EEG record differences between neural responses to emotional stimuli vs. the neutral. Single-trial multichannel (129-sensor) EEG records were collected from 21 healthy, right-handed subjects viewing the emotion emotional (pleasant/unpleasant) and neutral pictures selected from International Affective Picture System (IAPS). For each subject, the single-trial EEG records of each emotional pictures were concatenated with the neutral, and a three-step analysis was applied to each of them in the same way. First, the ICA was performed to decompose each concatenated single-trial EEG records into temporally independent and spatially fixed components, namely independent components (ICs). The IC associated with artifacts were isolated. Second, the clustering analysis classified, across subjects, the temporally and spatially similar ICs into the same clusters, in which nonparametric permutation test for Global Field Power (GFP) of IC projection scalp maps identified significantly different temporal segments of each emotional condition vs. neutral. Third, the brain regions accounted for those significant segments were localized spatially with LORETA analysis. In each cluster, a voxel-by-voxel randomization test identified significantly different brain regions between each emotional condition vs. the neutral. Compared to the neutral, both emotional pictures elicited activation in the visual, temporal, ventromedial and dorsomedial prefrontal cortex and anterior cingulated gyrus. In addition, the pleasant pictures activated the left middle prefrontal cortex and the posterior precuneus, while the unpleasant pictures activated the right orbitofrontal cortex, posterior cingulated gyrus and somatosensory region. Our results were well consistent with other functional imaging

  9. Offline identification of imagined speed of wrist movements in paralyzed ALS patients from single-trial EEG

    Directory of Open Access Journals (Sweden)

    Ying Gu

    2009-08-01

    Full Text Available The study investigated the possibility of identifying the speed of an imagined movement from EEG recordings in amyotrophic lateral sclerosis (ALS patients. EEG signals were acquired from four ALS patients during imagination of wrist extensions at two speeds (fast and slow, each repeated up to 100 times in random order. The movement-related cortical potentials (MRCPs and averaged sensorimotor rhythm associated with the two tasks were obtained from the EEG recordings. Moreover, offline single-trial EEG classification was performed with discrete wavelet transform for feature extraction and support vector machine for classification. The speed of the task was encoded in the time delay of peak negativity in the MRCPs, which was shorter for faster than for slower movements. The average single-trial misclassification rate between speeds was 30.4 ± 3.5 % when the best scalp location and time interval were selected for each individual. The scalp location and time interval leading to the lowest misclassification rate varied among patients. The results indicate that the imagination of movements at different speeds is a viable strategy for controlling a brain-computer interface system by ALS patients.

  10. A fast and reliable method for simultaneous waveform, amplitude and latency estimation of single-trial EEG/MEG data.

    Directory of Open Access Journals (Sweden)

    Wouter D Weeda

    Full Text Available The amplitude and latency of single-trial EEG/MEG signals may provide valuable information concerning human brain functioning. In this article we propose a new method to reliably estimate single-trial amplitude and latency of EEG/MEG signals. The advantages of the method are fourfold. First, no a-priori specified template function is required. Second, the method allows for multiple signals that may vary independently in amplitude and/or latency. Third, the method is less sensitive to noise as it models data with a parsimonious set of basis functions. Finally, the method is very fast since it is based on an iterative linear least squares algorithm. A simulation study shows that the method yields reliable estimates under different levels of latency variation and signal-to-noise ratioÕs. Furthermore, it shows that the existence of multiple signals can be correctly determined. An application to empirical data from a choice reaction time study indicates that the method describes these data accurately.

  11. Classification of Single-Trial Auditory Events Using Dry-Wireless EEG During Real and Motion Simulated Flight

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2015-02-01

    Full Text Available Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound versus silent periods. Evaluation of Independent component analysis and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs 78.3%, Platform On (73.1% vs 71.6%, Biplane Engine Off (81.1% vs 77.4%, and Biplane Engine On (79.2% vs 66.1%. This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.

  12. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.

    Science.gov (United States)

    Delorme, Arnaud; Makeig, Scott

    2004-03-15

    We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation.

  13. Emotion Recognition from Single-Trial EEG Based on Kernel Fisher’s Emotion Pattern and Imbalanced Quasiconformal Kernel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liu

    2014-07-01

    Full Text Available Electroencephalogram-based emotion recognition (EEG-ER has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI. However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher’s discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher’s emotion pattern (KFEP, and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68% and arousal (84.79% among all testing methods.

  14. Feature Selection Strategy for Classification of Single-Trial EEG Elicited by Motor Imagery

    DEFF Research Database (Denmark)

    Prasad, Swati; Tan, Zheng-Hua; Prasad, Ramjee

    2011-01-01

    Brain-Computer Interface (BCI) provides new means of communication for people with motor disabilities by utilizing electroencephalographic activity. Selection of features from Electroencephalogram (EEG) signals for classification plays a key part in the development of BCI systems. In this paper, we...

  15. Single Trial Classification of Evoked EEG Signals Due to RGB Colors

    Directory of Open Access Journals (Sweden)

    Eman Alharbi

    2016-03-01

    Full Text Available Recently, the impact of colors on the brain signals has become one of the leading researches in BCI systems. These researches are based on studying the brain behavior after color stimulus, and finding a way to classify its signals offline without considering the real time. Moving to the next step, we present a real time classification model (online for EEG signals evoked by RGB colors stimuli, which is not presented in previous studies. In this research, EEG signals were recorded from 7 subjects through BCI2000 toolbox. The Empirical Mode Decomposition (EMD technique was used at the signal analysis stage. Various feature extraction methods were investigated to find the best and reliable set, including Event-related spectral perturbations (ERSP, Target mean with Feast Fourier Transform (FFT, Wavelet Packet Decomposition (WPD, Auto Regressive model (AR and EMD residual. A new feature selection method was created based on the peak's time of EEG signal when red and blue colors stimuli are presented. The ERP image was used to find out the peak's time, which was around 300 ms for the red color and around 450 ms for the blue color. The classification was performed using the Support Vector Machine (SVM classifier, LIBSVM toolbox being used for that purpose. The EMD residual was found to be the most reliable method that gives the highest classification accuracy with an average of 88.5% and with an execution time of only 14 seconds.

  16. Single-trial log transformation is optimal in frequency analysis of resting EEG alpha.

    Science.gov (United States)

    Smulders, Fren T Y; Ten Oever, Sanne; Donkers, Franc C L; Quaedflieg, Conny W E M; van de Ven, Vincent

    2018-02-01

    The appropriate definition and scaling of the magnitude of electroencephalogram (EEG) oscillations is an underdeveloped area. The aim of this study was to optimize the analysis of resting EEG alpha magnitude, focusing on alpha peak frequency and nonlinear transformation of alpha power. A family of nonlinear transforms, Box-Cox transforms, were applied to find the transform that (a) maximized a non-disputed effect: the increase in alpha magnitude when the eyes are closed (Berger effect), and (b) made the distribution of alpha magnitude closest to normal across epochs within each participant, or across participants. The transformations were performed either at the single epoch level or at the epoch-average level. Alpha peak frequency showed large individual differences, yet good correspondence between various ways to estimate it in 2 min of eyes-closed and 2 min of eyes-open resting EEG data. Both alpha magnitude and the Berger effect were larger for individual alpha than for a generic (8-12 Hz) alpha band. The log-transform on single epochs (a) maximized the t-value of the contrast between the eyes-open and eyes-closed conditions when tested within each participant, and (b) rendered near-normally distributed alpha power across epochs and participants, thereby making further transformation of epoch averages superfluous. The results suggest that the log-normal distribution is a fundamental property of variations in alpha power across time in the order of seconds. Moreover, effects on alpha power appear to be multiplicative rather than additive. These findings support the use of the log-transform on single epochs to achieve appropriate scaling of alpha magnitude. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Decoding auditory attention to instruments in polyphonic music using single-trial EEG classification

    DEFF Research Database (Denmark)

    Treder, Matthias S.; Purwins, Hendrik; Miklody, Daniel

    2014-01-01

    . Here, we explore polyphonic music as a novel stimulation approach for future use in a brain-computer interface. In a musical oddball experiment, we had participants shift selective attention to one out of three different instruments in music audio clips, with each instrument occasionally playing one...... 11 participants. This is a proof of concept that attention paid to a particular instrument in polyphonic music can be inferred from ongoing EEG, a finding that is potentially relevant for both brain-computer interface and music research....

  18. Single-trial EEG-informed fMRI reveals spatial dependency of BOLD signal on early and late IC-ERP amplitudes during face recognition.

    Science.gov (United States)

    Wirsich, Jonathan; Bénar, Christian; Ranjeva, Jean-Philippe; Descoins, Médéric; Soulier, Elisabeth; Le Troter, Arnaud; Confort-Gouny, Sylviane; Liégeois-Chauvel, Catherine; Guye, Maxime

    2014-10-15

    Simultaneous EEG-fMRI has opened up new avenues for improving the spatio-temporal resolution of functional brain studies. However, this method usually suffers from poor EEG quality, especially for evoked potentials (ERPs), due to specific artifacts. As such, the use of EEG-informed fMRI analysis in the context of cognitive studies has particularly focused on optimizing narrow ERP time windows of interest, which ignores the rich diverse temporal information of the EEG signal. Here, we propose to use simultaneous EEG-fMRI to investigate the neural cascade occurring during face recognition in 14 healthy volunteers by using the successive ERP peaks recorded during the cognitive part of this process. N170, N400 and P600 peaks, commonly associated with face recognition, were successfully and reproducibly identified for each trial and each subject by using a group independent component analysis (ICA). For the first time we use this group ICA to extract several independent components (IC) corresponding to the sequence of activation and used single-trial peaks as modulation parameters in a general linear model (GLM) of fMRI data. We obtained an occipital-temporal-frontal stream of BOLD signal modulation, in accordance with the three successive IC-ERPs providing an unprecedented spatio-temporal characterization of the whole cognitive process as defined by BOLD signal modulation. By using this approach, the pattern of EEG-informed BOLD modulation provided improved characterization of the network involved than the fMRI-only analysis or the source reconstruction of the three ERPs; the latter techniques showing only two regions in common localized in the occipital lobe. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Separability of motor imagery of the self from interpretation of motor intentions of others at the single trial level: an EEG study.

    Science.gov (United States)

    Andrade, João; Cecílio, José; Simões, Marco; Sales, Francisco; Castelo-Branco, Miguel

    2017-06-26

    We aimed to investigate the separability of the neural correlates of 2 types of motor imagery, self and third person (actions owned by the participant himself vs. another individual). If possible this would allow for the development of BCI interfaces to train disorders of action and intention understanding beyond simple imitation, such as autism. We used EEG recordings from 20 healthy participants, as well as electrocorticography (ECoG) in one, based on a virtual reality setup. To test feasibility of discrimination between each type of imagery at the single trial level, time-frequency and source analysis were performed and further assessed by data-driven statistical classification using Support Vector Machines. The main observed differences between self-other imagery conditions in topographic maps were found in Frontal and Parieto-Occipital regions, in agreement with the presence of 2 independent non μ related contributions in the low alpha frequency range. ECOG corroborated such separability. Source analysis also showed differences near the temporo-parietal junction and single-trial average classification accuracy between both types of motor imagery was 67 ± 1%, and raised above 70% when 3 trials were used. The single-trial classification accuracy was significantly above chance level for all the participants of this study (p Person MI use distinct electrophysiological mechanisms detectable at the scalp (and ECOG) at the single trial level, with separable levels of involvement of the mirror neuron system in different regions. These observations provide a promising step to develop new BCI training/rehabilitation paradigms for patients with neurodevelopmental disorders of action understanding beyond simple imitation, such as autism, who would benefit from training and anticipation of the perceived intention of others as opposed to own intentions in social contexts.

  20. Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.

    Science.gov (United States)

    Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling

    2017-07-01

    Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.

  1. Increased intra-participant variability in children with autistic spectrum disorder: Evidence from single trial analyses of evoked EEG.

    Directory of Open Access Journals (Sweden)

    Elizabeth eMilne

    2011-03-01

    Full Text Available Intra-participant variability in clinical conditions such as autistic spectrum disorder (ASD is an important indicator of pathophysiological processing. The data reported here illustrate that trial-by-trial variability can be reliably measured from EEG, and that intra-participant EEG variability is significantly greater in those with ASD than in neuro-typical matched controls. EEG recorded at the scalp is a linear mixture of activity arising from muscle artifacts and numerous concurrent brain processes. To minimise these additional sources of variability, EEG data were subjected to two different methods of spatial filtering. (i The data were decomposed using infomax Independent Component Analysis (ICA, a method of blind source separation which un-mixes the EEG signal into components with maximally independent time-courses, and (ii a surface Laplacian transform was performed (Current Source Density interpolation in order to reduce the effects of volume conduction. Data are presented from thirteen high functioning adolescents with ASD without co-morbid ADHD, and twelve neuro-typical age- IQ- and gender-matched controls. Comparison of variability between the ASD and neuro-typical groups indicated that intra-participant variability of P1 latency and P1 amplitude was greater in the participants with ASD, and inter-trial α-band phase coherence was lower in the participants with ASD. These data support the suggestion that individuals with ASD are less able to synchronise the activity of stimulus-related cell assemblies than neuro-typical individuals, and provide empirical evidence in support of theories of increased neural noise in ASD.

  2. Single Trial Decoding of Belief Decision Making from EEG and fMRI Data Using ICA Features

    Directory of Open Access Journals (Sweden)

    Pamela eDouglas

    2013-07-01

    Full Text Available The complex task of assessing the veracity of a statement is thought to activate uniquely distributed brain regions based on whether a subject believes or disbelieves a given assertion. In the current work, we present parallel machine learning methods for predicting a subject’s decision response to a given propositional statement based on independent component (IC features derived from EEG and fMRI data. Our results demonstrate that IC features outperformed features derived from event related spectral perturbations derived from any single spectral band, yet were similar to accuracy across all spectral bands combined. We compared our diagnostic IC spatial maps with our conventional general linear model (GLM results, and found that informative ICs had significant spatial overlap with our GLM results, yet also revealed unique regions like amygdala that were not statistically significant in GLM analyses. Overall, these results suggest that ICs may yield a parsimonious feature set that can be used along with a decision tree structure for interpretation of features used in classifying complex cognitive processes such as belief and disbelief across both fMRI and EEG neuroimaging modalities.

  3. Parametric and Nonparametric EEG Analysis for the Evaluation of EEG Activity in Young Children with Controlled Epilepsy

    Directory of Open Access Journals (Sweden)

    Vangelis Sakkalis

    2008-01-01

    Full Text Available There is an important evidence of differences in the EEG frequency spectrum of control subjects as compared to epileptic subjects. In particular, the study of children presents difficulties due to the early stages of brain development and the various forms of epilepsy indications. In this study, we consider children that developed epileptic crises in the past but without any other clinical, psychological, or visible neurophysiological findings. The aim of the paper is to develop reliable techniques for testing if such controlled epilepsy induces related spectral differences in the EEG. Spectral features extracted by using nonparametric, signal representation techniques (Fourier and wavelet transform and a parametric, signal modeling technique (ARMA are compared and their effect on the classification of the two groups is analyzed. The subjects performed two different tasks: a control (rest task and a relatively difficult math task. The results show that spectral features extracted by modeling the EEG signals recorded from individual channels by an ARMA model give a higher discrimination between the two subject groups for the control task, where classification scores of up to 100% were obtained with a linear discriminant classifier.

  4. [Detection of quadratic phase coupling between EEG signal components by nonparamatric and parametric methods of bispectral analysis].

    Science.gov (United States)

    Schmidt, K; Witte, H

    1999-11-01

    Recently the assumption of the independence of individual frequency components in a signal has been rejected, for example, for the EEG during defined physiological states such as sleep or sedation [9, 10]. Thus, the use of higher-order spectral analysis capable of detecting interrelations between individual signal components has proved useful. The aim of the present study was to investigate the quality of various non-parametric and parametric estimation algorithms using simulated as well as true physiological data. We employed standard algorithms available for the MATLAB. The results clearly show that parametric bispectral estimation is superior to non-parametric estimation in terms of the quality of peak localisation and the discrimination from other peaks.

  5. EEG

    Science.gov (United States)

    ... brain dead. EEG cannot be used to measure intelligence. Normal Results Brain electrical activity has a certain ... 2018, A.D.A.M., Inc. Duplication for commercial use must be authorized in writing by ADAM ...

  6. A Parametric Empirical Bayesian framework for the EEG/MEG inverse problem: generative models for multisubject and multimodal integration

    Directory of Open Access Journals (Sweden)

    Richard N Henson

    2011-08-01

    Full Text Available We review recent methodological developments within a Parametric Empirical Bayesian (PEB framework for reconstructing intracranial sources of extracranial electroencephalographic (EEG and magnetoencephalographic (MEG data under linear Gaussian assumptions. The PEB framework offers a natural way to integrate multiple constraints (spatial priors on this inverse problem, such as those derived from different modalities (e.g., from functional magnetic resonance imaging, fMRI or from multiple replications (e.g., subjects. Using variations of the same basic generative model, we illustrate the application of PEB to three cases: 1 symmetric integration (fusion of MEG and EEG; 2 asymmetric integration of MEG or EEG with fMRI, and 3 group-optimisation of spatial priors across subjects. We evaluate these applications on multimodal data acquired from 18 subjects, focusing on energy induced by face perception within a time-frequency window of 100-220ms, 8-18Hz. We show the benefits of multi-modal, multi-subject integration in terms of the model evidence and the reproducibility (over subjects of cortical responses to faces.

  7. EEG

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... However, very few studies have examined the use of EEG in developing countries, including Ni- ... of evoked potentials from brain neurons, referred to as .... Percentage. Gender. Male. 89. 62.7. Female. 53. 37.3. Age. 0-10. 59.

  8. LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data.

    Science.gov (United States)

    Pernet, Cyril R; Chauveau, Nicolas; Gaspar, Carl; Rousselet, Guillaume A

    2011-01-01

    Magnetic- and electric-evoked brain responses have traditionally been analyzed by comparing the peaks or mean amplitudes of signals from selected channels and averaged across trials. More recently, tools have been developed to investigate single trial response variability (e.g., EEGLAB) and to test differences between averaged evoked responses over the entire scalp and time dimensions (e.g., SPM, Fieldtrip). LIMO EEG is a Matlab toolbox (EEGLAB compatible) to analyse evoked responses over all space and time dimensions, while accounting for single trial variability using a simple hierarchical linear modelling of the data. In addition, LIMO EEG provides robust parametric tests, therefore providing a new and complementary tool in the analysis of neural evoked responses.

  9. Artificial bee colony algorithm for single-trial electroencephalogram analysis.

    Science.gov (United States)

    Hsu, Wei-Yen; Hu, Ya-Ping

    2015-04-01

    In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  10. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.

    Science.gov (United States)

    Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D

    2015-05-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical

  11. Kernel PLS Estimation of Single-trial Event-related Potentials

    Science.gov (United States)

    Rosipal, Roman; Trejo, Leonard J.

    2004-01-01

    Nonlinear kernel partial least squaes (KPLS) regressior, is a novel smoothing approach to nonparametric regression curve fitting. We have developed a KPLS approach to the estimation of single-trial event related potentials (ERPs). For improved accuracy of estimation, we also developed a local KPLS method for situations in which there exists prior knowledge about the approximate latency of individual ERP components. To assess the utility of the KPLS approach, we compared non-local KPLS and local KPLS smoothing with other nonparametric signal processing and smoothing methods. In particular, we examined wavelet denoising, smoothing splines, and localized smoothing splines. We applied these methods to the estimation of simulated mixtures of human ERPs and ongoing electroencephalogram (EEG) activity using a dipole simulator (BESA). In this scenario we considered ongoing EEG to represent spatially and temporally correlated noise added to the ERPs. This simulation provided a reasonable but simplified model of real-world ERP measurements. For estimation of the simulated single-trial ERPs, local KPLS provided a level of accuracy that was comparable with or better than the other methods. We also applied the local KPLS method to the estimation of human ERPs recorded in an experiment on co,onitive fatigue. For these data, the local KPLS method provided a clear improvement in visualization of single-trial ERPs as well as their averages. The local KPLS method may serve as a new alternative to the estimation of single-trial ERPs and improvement of ERP averages.

  12. Single-Trial Inference on Visual Attention

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Kyllingsbæk, Søren; Vangkilde, Signe Allerup

    2011-01-01

    In this paper we take a step towards single-trial behavioral modeling within a Theory of Visual Attention (TVA). In selective attention tasks, such as the Partial Report paradigm, the subject is asked to ignore distractors and only report stimuli that belong to the target class. Nothing about...... Report trial. This result retrodicts a latent attentional state of the subject using the observed response from that particular trial and thus differs from other predictions made with TVA which are based on expected values of observed variables. We show an example of the result in single-trial analysis...

  13. EEG biofeedback

    OpenAIRE

    Dvořáček, Michael

    2010-01-01

    Vznik EEG aktivity v mozku, rozdělení EEG vln podle frekvence, způsob měření EEG, přístroje pro měření EEG. Dále popis biofeedback metody, její možnosti a návrh biofeedback her. Popis zpracování naměřených EEG signálů. EEG generation, brain rhythms, methods of recording EEG, EEG recorder. Description of biofeedback, potentialities of biofeedback, proposal of biofeedback games. Description of processing measured EEG signals. B

  14. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  15. Single-Trial Evoked Potential Estimating Based on Sparse Coding under Impulsive Noise Environment

    Directory of Open Access Journals (Sweden)

    Nannan Yu

    2018-01-01

    Full Text Available Estimating single-trial evoked potentials (EPs corrupted by the spontaneous electroencephalogram (EEG can be regarded as signal denoising problem. Sparse coding has significant success in signal denoising and EPs have been proven to have strong sparsity over an appropriate dictionary. In sparse coding, the noise generally is considered to be a Gaussian random process. However, some studies have shown that the background noise in EPs may present an impulsive characteristic which is far from Gaussian but suitable to be modeled by the α-stable distribution 1<α≤2. Consequently, the performances of general sparse coding will degrade or even fail. In view of this, we present a new sparse coding algorithm using p-norm optimization in single-trial EPs estimating. The algorithm can track the underlying EPs corrupted by α-stable distribution noise, trial-by-trial, without the need to estimate the α value. Simulations and experiments on human visual evoked potentials and event-related potentials are carried out to examine the performance of the proposed approach. Experimental results show that the proposed method is effective in estimating single-trial EPs under impulsive noise environment.

  16. Decoding speech perception by native and non-native speakers using single-trial electrophysiological data.

    Directory of Open Access Journals (Sweden)

    Alex Brandmeyer

    Full Text Available Brain-computer interfaces (BCIs are systems that use real-time analysis of neuroimaging data to determine the mental state of their user for purposes such as providing neurofeedback. Here, we investigate the feasibility of a BCI based on speech perception. Multivariate pattern classification methods were applied to single-trial EEG data collected during speech perception by native and non-native speakers. Two principal questions were asked: 1 Can differences in the perceived categories of pairs of phonemes be decoded at the single-trial level? 2 Can these same categorical differences be decoded across participants, within or between native-language groups? Results indicated that classification performance progressively increased with respect to the categorical status (within, boundary or across of the stimulus contrast, and was also influenced by the native language of individual participants. Classifier performance showed strong relationships with traditional event-related potential measures and behavioral responses. The results of the cross-participant analysis indicated an overall increase in average classifier performance when trained on data from all participants (native and non-native. A second cross-participant classifier trained only on data from native speakers led to an overall improvement in performance for native speakers, but a reduction in performance for non-native speakers. We also found that the native language of a given participant could be decoded on the basis of EEG data with accuracy above 80%. These results indicate that electrophysiological responses underlying speech perception can be decoded at the single-trial level, and that decoding performance systematically reflects graded changes in the responses related to the phonological status of the stimuli. This approach could be used in extensions of the BCI paradigm to support perceptual learning during second language acquisition.

  17. Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging

    DEFF Research Database (Denmark)

    Fuglø, Dan; Pedersen, Henrik; Rostrup, Egill

    2012-01-01

    in different occipital and extraoccipital cortical areas not explained by the boxcar regressor. The results suggest that the P1-N2 regressor is the best EEG-based regressor to model the visual paradigm, but when looking for additional effects like habituation or attention modulation that cannot be modeled......To compare different electroencephalography (EEG)-based regressors and their ability to predict the simultaneously recorded blood oxygenation level dependent response during blocked visual stimulation, simultaneous EEG-functional magnetic resonance imaging in 10 healthy volunteers was performed....... The performance of different single-trial EEG regressors was compared in terms of predicting the measured blood oxygenation level dependent response. The EEG-based regressors were the amplitude and latency of the primary positive (P1) and negative (N2) peaks of the visual evoked potential, the combined P1-N2...

  18. A MISO-ARX-Based Method for Single-Trial Evoked Potential Extraction

    Directory of Open Access Journals (Sweden)

    Nannan Yu

    2017-01-01

    Full Text Available In this paper, we propose a novel method for solving the single-trial evoked potential (EP estimation problem. In this method, the single-trial EP is considered as a complex containing many components, which may originate from different functional brain sites; these components can be distinguished according to their respective latencies and amplitudes and are extracted simultaneously by multiple-input single-output autoregressive modeling with exogenous input (MISO-ARX. The extraction process is performed in three stages: first, we use a reference EP as a template and decompose it into a set of components, which serve as subtemplates for the remaining steps. Then, a dictionary is constructed with these subtemplates, and EPs are preliminarily extracted by sparse coding in order to roughly estimate the latency of each component. Finally, the single-trial measurement is parametrically modeled by MISO-ARX while characterizing spontaneous electroencephalographic activity as an autoregression model driven by white noise and with each component of the EP modeled by autoregressive-moving-average filtering of the subtemplates. Once optimized, all components of the EP can be extracted. Compared with ARX, our method has greater tracking capabilities of specific components of the EP complex as each component is modeled individually in MISO-ARX. We provide exhaustive experimental results to show the effectiveness and feasibility of our method.

  19. Working memory load-dependent spatio-temporal activity of single-trial P3 response detected with an adaptive wavelet denoiser.

    Science.gov (United States)

    Zhang, Qiushi; Yang, Xueqian; Yao, Li; Zhao, Xiaojie

    2017-03-27

    Working memory (WM) refers to the holding and manipulation of information during cognitive tasks. Its underlying neural mechanisms have been explored through both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Trial-by-trial coupling of simultaneously collected EEG and fMRI signals has become an important and promising approach to study the spatio-temporal dynamics of such cognitive processes. Previous studies have demonstrated a modulation effect of the WM load on both the BOLD response in certain brain areas and the amplitude of P3. However, much remains to be explored regarding the WM load-dependent relationship between the amplitude of ERP components and cortical activities, and the low signal-to-noise ratio (SNR) of the EEG signal still poses a challenge to performing single-trial analyses. In this paper, we investigated the spatio-temporal activities of P3 during an n-back verbal WM task by introducing an adaptive wavelet denoiser into the extraction of single-trial P3 features and using general linear model (GLM) to integrate simultaneously collected EEG and fMRI data. Our results replicated the modulation effect of the WM load on the P3 amplitude. Additionally, the activation of single-trial P3 amplitudes was detected in multiple brain regions, including the insula, the cuneus, the lingual gyrus (LG), and the middle occipital gyrus (MOG). Moreover, we found significant correlations between P3 features and behavioral performance. These findings suggest that the single-trial integration of simultaneous EEG and fMRI signals may provide new insights into classical cognitive functions. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Identification of Auditory Object-Specific Attention from Single-Trial Electroencephalogram Signals via Entropy Measures and Machine Learning

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2018-05-01

    Full Text Available Existing research has revealed that auditory attention can be tracked from ongoing electroencephalography (EEG signals. The aim of this novel study was to investigate the identification of peoples’ attention to a specific auditory object from single-trial EEG signals via entropy measures and machine learning. Approximate entropy (ApEn, sample entropy (SampEn, composite multiscale entropy (CmpMSE and fuzzy entropy (FuzzyEn were used to extract the informative features of EEG signals under three kinds of auditory object-specific attention (Rest, Auditory Object1 Attention (AOA1 and Auditory Object2 Attention (AOA2. The linear discriminant analysis and support vector machine (SVM, were used to construct two auditory attention classifiers. The statistical results of entropy measures indicated that there were significant differences in the values of ApEn, SampEn, CmpMSE and FuzzyEn between Rest, AOA1 and AOA2. For the SVM-based auditory attention classifier, the auditory object-specific attention of Rest, AOA1 and AOA2 could be identified from EEG signals using ApEn, SampEn, CmpMSE and FuzzyEn as features and the identification rates were significantly different from chance level. The optimal identification was achieved by the SVM-based auditory attention classifier using CmpMSE with the scale factor τ = 10. This study demonstrated a novel solution to identify the auditory object-specific attention from single-trial EEG signals without the need to access the auditory stimulus.

  1. Preterm EEG: a multimodal neurophysiological protocol.

    Science.gov (United States)

    Stjerna, Susanna; Voipio, Juha; Metsäranta, Marjo; Kaila, Kai; Vanhatalo, Sampsa

    2012-02-18

    Since its introduction in early 1950s, electroencephalography (EEG) has been widely used in the neonatal intensive care units (NICU) for assessment and monitoring of brain function in preterm and term babies. Most common indications are the diagnosis of epileptic seizures, assessment of brain maturity, and recovery from hypoxic-ischemic events. EEG recording techniques and the understanding of neonatal EEG signals have dramatically improved, but these advances have been slow to penetrate through the clinical traditions. The aim of this presentation is to bring theory and practice of advanced EEG recording available for neonatal units. In the theoretical part, we will present animations to illustrate how a preterm brain gives rise to spontaneous and evoked EEG activities, both of which are unique to this developmental phase, as well as crucial for a proper brain maturation. Recent animal work has shown that the structural brain development is clearly reflected in early EEG activity. Most important structures in this regard are the growing long range connections and the transient cortical structure, subplate. Sensory stimuli in a preterm baby will generate responses that are seen at a single trial level, and they have underpinnings in the subplate-cortex interaction. This brings neonatal EEG readily into a multimodal study, where EEG is not only recording cortical function, but it also tests subplate function via different sensory modalities. Finally, introduction of clinically suitable dense array EEG caps, as well as amplifiers capable of recording low frequencies, have disclosed multitude of brain activities that have as yet been overlooked. In the practical part of this video, we show how a multimodal, dense array EEG study is performed in neonatal intensive care unit from a preterm baby in the incubator. The video demonstrates preparation of the baby and incubator, application of the EEG cap, and performance of the sensory stimulations.

  2. The application of particle filters in single trial event-related potential estimation

    International Nuclear Information System (INIS)

    Mohseni, Hamid R; Nazarpour, Kianoush; Sanei, Saeid; Wilding, Edward L

    2009-01-01

    In this paper, an approach for the estimation of single trial event-related potentials (ST-ERPs) using particle filters (PFs) is presented. The method is based on recursive Bayesian mean square estimation of ERP wavelet coefficients using their previous estimates as prior information. To enable a performance evaluation of the approach in the Gaussian and non-Gaussian distributed noise conditions, we added Gaussian white noise (GWN) and real electroencephalogram (EEG) signals recorded during rest to the simulated ERPs. The results were compared to that of the Kalman filtering (KF) approach demonstrating the robustness of the PF over the KF to the added GWN noise. The proposed method also outperforms the KF when the assumption about the Gaussianity of the noise is violated. We also applied this technique to real EEG potentials recorded in an odd-ball paradigm and investigated the correlation between the amplitude and the latency of the estimated ERP components. Unlike the KF method, for the PF there was a statistically significant negative correlation between amplitude and latency of the estimated ERPs, matching previous neurophysiological findings

  3. Testing competing hypotheses about single trial fMRI

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Purushotham, Archana; Kim, Seong-Ge

    2002-01-01

    We use a Bayesian framework to compute probabilities of competing hypotheses about functional activation based on single trial fMRI measurements. Within the framework we obtain a complete probabilistic picture of competing hypotheses, hence control of both type I and type II errors....

  4. EEG (Electroencephalogram)

    Science.gov (United States)

    ... in diagnosing brain disorders, especially epilepsy or another seizure disorder. An EEG might also be helpful for diagnosing ... Sometimes seizures are intentionally triggered in people with epilepsy during the test, but appropriate medical care is ...

  5. Data-driven forward model inference for EEG brain imaging

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-01-01

    Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain......-of-concept study, we show that, even when anatomical knowledge is unavailable, a suitable forward model can be estimated directly from the EEG. We propose a data-driven approach that provides a low-dimensional parametrization of head geometry and compartment conductivities, built using a corpus of forward models....... Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging...

  6. Neural Signatures of Rational and Heuristic Choice Strategies: A Single Trial ERP Analysis

    Directory of Open Access Journals (Sweden)

    Szymon Wichary

    2017-08-01

    Full Text Available In multi-attribute choice, people use heuristics to simplify decision problems. We studied the use of heuristic and rational strategies and their electrophysiological correlates. Since previous work linked the P3 ERP component to attention and decision making, we were interested whether the amplitude of this component is associated with decision strategy use. To this end, we recorded EEG when participants performed a two-alternative choice task, where they could acquire decision cues in a sequential manner and use them to make choices. We classified participants’ choices as consistent with a rational Weighted Additive rule (WADD or a simple heuristic Take The Best (TTB. Participants differed in their preference for WADD and TTB. Using a permutation-based single trial approach, we analyzed EEG responses to consecutive decision cues and their relation to the individual strategy preference. The preference for WADD over TTB was associated with overall higher signal amplitudes to decision cues in the P3 time window. Moreover, the preference for WADD was associated with similar P3 amplitudes to consecutive cues, whereas the preference for TTB was associated with substantial decreases in P3 amplitudes to consecutive cues. We also found that the preference for TTB was associated with enhanced N1 component to cues that discriminated decision alternatives, suggesting very early attention allocation to such cues by TTB users. Our results suggest that preference for either WADD or TTB has an early neural signature reflecting differences in attentional weighting of decision cues. In light of recent findings and hypotheses regarding P3, we interpret these results as indicating the involvement of catecholamine arousal systems in shaping predecisional information processing and strategy selection.

  7. Neural Signatures of Rational and Heuristic Choice Strategies: A Single Trial ERP Analysis.

    Science.gov (United States)

    Wichary, Szymon; Magnuski, Mikołaj; Oleksy, Tomasz; Brzezicka, Aneta

    2017-01-01

    In multi-attribute choice, people use heuristics to simplify decision problems. We studied the use of heuristic and rational strategies and their electrophysiological correlates. Since previous work linked the P3 ERP component to attention and decision making, we were interested whether the amplitude of this component is associated with decision strategy use. To this end, we recorded EEG when participants performed a two-alternative choice task, where they could acquire decision cues in a sequential manner and use them to make choices. We classified participants' choices as consistent with a rational Weighted Additive rule (WADD) or a simple heuristic Take The Best (TTB). Participants differed in their preference for WADD and TTB. Using a permutation-based single trial approach, we analyzed EEG responses to consecutive decision cues and their relation to the individual strategy preference. The preference for WADD over TTB was associated with overall higher signal amplitudes to decision cues in the P3 time window. Moreover, the preference for WADD was associated with similar P3 amplitudes to consecutive cues, whereas the preference for TTB was associated with substantial decreases in P3 amplitudes to consecutive cues. We also found that the preference for TTB was associated with enhanced N1 component to cues that discriminated decision alternatives, suggesting very early attention allocation to such cues by TTB users. Our results suggest that preference for either WADD or TTB has an early neural signature reflecting differences in attentional weighting of decision cues. In light of recent findings and hypotheses regarding P3, we interpret these results as indicating the involvement of catecholamine arousal systems in shaping predecisional information processing and strategy selection.

  8. A comparative study between a simplified Kalman filter and Sliding Window Averaging for single trial dynamical estimation of event-related potentials

    DEFF Research Database (Denmark)

    Vedel-Larsen, Esben; Fuglø, Jacob; Channir, Fouad

    2010-01-01

    , are variable and depend on cognitive function. This study compares the performance of a simplified Kalman filter with Sliding Window Averaging in tracking dynamical changes in single trial P300. The comparison is performed on simulated P300 data with added background noise consisting of both simulated and real...... background EEG in various input signal to noise ratios. While both methods can be applied to track dynamical changes, the simplified Kalman filter has an advantage over the Sliding Window Averaging, most notable in a better noise suppression when both are optimized for faster changing latency and amplitude...

  9. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms

    Directory of Open Access Journals (Sweden)

    Mads Jochumsen

    2017-01-01

    Full Text Available Detection of single-trial movement intentions from EEG is paramount for brain-computer interfacing in neurorehabilitation. These movement intentions contain task-related information and if this is decoded, the neurorehabilitation could potentially be optimized. The aim of this study was to classify single-trial movement intentions associated with two levels of force and speed and three different grasp types using EEG rhythms and components of the movement-related cortical potential (MRCP as features. The feature importance was used to estimate encoding of discriminative information. Two data sets were used. 29 healthy subjects executed and imagined different hand movements, while EEG was recorded over the contralateral sensorimotor cortex. The following features were extracted: delta, theta, mu/alpha, beta, and gamma rhythms, readiness potential, negative slope, and motor potential of the MRCP. Sequential forward selection was performed, and classification was performed using linear discriminant analysis and support vector machines. Limited classification accuracies were obtained from the EEG rhythms and MRCP-components: 0.48±0.05 (grasp types, 0.41±0.07 (kinetic profiles, motor execution, and 0.39±0.08 (kinetic profiles, motor imagination. Delta activity contributed the most but all features provided discriminative information. These findings suggest that information from the entire EEG spectrum is needed to discriminate between task-related parameters from single-trial movement intentions.

  10. Meditation and the EEG

    OpenAIRE

    West, Michael

    1980-01-01

    Previous research on meditation and the EEG is described, and findings relating to EEG patterns during meditation are discussed. Comparisons of meditation with other altered states are reviewed and it is concluded that, on the basis of existing EEG evidence, there is some reason for differentiating between meditation and drowsing. Research on alpha-blocking and habituation of the blocking response during meditation is reviewed, and the effects of meditation on EEG patterns outside of meditati...

  11. Mobile EEG in epilepsy

    NARCIS (Netherlands)

    Askamp, Jessica; van Putten, Michel Johannes Antonius Maria

    2014-01-01

    The sensitivity of routine EEG recordings for interictal epileptiform discharges in epilepsy is limited. In some patients, inpatient video-EEG may be performed to increase the likelihood of finding abnormalities. Although many agree that home EEG recordings may provide a cost-effective alternative

  12. Highly Efficient Compression Algorithms for Multichannel EEG.

    Science.gov (United States)

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  13. Multi-Tasking and Choice of Training Data Influencing Parietal ERP Expression and Single-Trial Detection—Relevance for Neuroscience and Clinical Applications

    Science.gov (United States)

    Kirchner, Elsa A.; Kim, Su Kyoung

    2018-01-01

    Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive

  14. Comparison of different Kalman filter approaches in deriving time varying connectivity from EEG data.

    Science.gov (United States)

    Ghumare, Eshwar; Schrooten, Maarten; Vandenberghe, Rik; Dupont, Patrick

    2015-08-01

    Kalman filter approaches are widely applied to derive time varying effective connectivity from electroencephalographic (EEG) data. For multi-trial data, a classical Kalman filter (CKF) designed for the estimation of single trial data, can be implemented by trial-averaging the data or by averaging single trial estimates. A general linear Kalman filter (GLKF) provides an extension for multi-trial data. In this work, we studied the performance of the different Kalman filtering approaches for different values of signal-to-noise ratio (SNR), number of trials and number of EEG channels. We used a simulated model from which we calculated scalp recordings. From these recordings, we estimated cortical sources. Multivariate autoregressive model parameters and partial directed coherence was calculated for these estimated sources and compared with the ground-truth. The results showed an overall superior performance of GLKF except for low levels of SNR and number of trials.

  15. Recording human cortical population spikes non-invasively--An EEG tutorial.

    Science.gov (United States)

    Waterstraat, Gunnar; Fedele, Tommaso; Burghoff, Martin; Scheer, Hans-Jürgen; Curio, Gabriel

    2015-07-30

    Non-invasively recorded somatosensory high-frequency oscillations (sHFOs) evoked by electric nerve stimulation are markers of human cortical population spikes. Previously, their analysis was based on massive averaging of EEG responses. Advanced neurotechnology and optimized off-line analysis can enhance the signal-to-noise ratio of sHFOs, eventually enabling single-trial analysis. The rationale for developing dedicated low-noise EEG technology for sHFOs is unfolded. Detailed recording procedures and tailored analysis principles are explained step-by-step. Source codes in Matlab and Python are provided as supplementary material online. Combining synergistic hardware and analysis improvements, evoked sHFOs at around 600 Hz ('σ-bursts') can be studied in single-trials. Additionally, optimized spatial filters increase the signal-to-noise ratio of components at about 1 kHz ('κ-bursts') enabling their detection in non-invasive surface EEG. sHFOs offer a unique possibility to record evoked human cortical population spikes non-invasively. The experimental approaches and algorithms presented here enable also non-specialized EEG laboratories to combine measurements of conventional low-frequency EEG with the analysis of concomitant cortical population spike responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. EEG and Coma.

    Science.gov (United States)

    Ardeshna, Nikesh I

    2016-03-01

    Coma is defined as a state of extreme unresponsiveness, in which a person exhibits no voluntary movement or behavior even to painful stimuli. The utilization of EEG for patients in coma has increased dramatically over the last few years. In fact, many institutions have set protocols for continuous EEG (cEEG) monitoring for patients in coma due to potential causes such as subarachnoid hemorrhage or cardiac arrest. Consequently, EEG plays an important role in diagnosis, managenent, and in some cases even prognosis of coma patients.

  17. Parametric and Non-Parametric System Modelling

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg

    1999-01-01

    the focus is on combinations of parametric and non-parametric methods of regression. This combination can be in terms of additive models where e.g. one or more non-parametric term is added to a linear regression model. It can also be in terms of conditional parametric models where the coefficients...... considered. It is shown that adaptive estimation in conditional parametric models can be performed by combining the well known methods of local polynomial regression and recursive least squares with exponential forgetting. The approach used for estimation in conditional parametric models also highlights how...... networks is included. In this paper, neural networks are used for predicting the electricity production of a wind farm. The results are compared with results obtained using an adaptively estimated ARX-model. Finally, two papers on stochastic differential equations are included. In the first paper, among...

  18. EEG: Origin and measurement

    NARCIS (Netherlands)

    Lopes da Silva, F.; Mulert, C.; Lemieux, L.

    2010-01-01

    The existence of the electrical activity of the brain (i.e. the electroencephalogram or EEG) was discovered more than a century ago by Caton. After the demonstration that the EEG could be recorded from the human scalp by Berger in the 1920s, it made a slow start before it became accepted as a method

  19. SCoT: a Python toolbox for EEG source connectivity.

    Science.gov (United States)

    Billinger, Martin; Brunner, Clemens; Müller-Putz, Gernot R

    2014-01-01

    Analysis of brain connectivity has become an important research tool in neuroscience. Connectivity can be estimated between cortical sources reconstructed from the electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable results. However, some applications such as brain-computer interfaces (BCIs) require single-trial estimation methods. In this paper, we present SCoT-a source connectivity toolbox for Python. This toolbox implements routines for blind source decomposition and connectivity estimation with the MVARICA approach. Additionally, a novel extension called CSPVARICA is available for labeled data. SCoT estimates connectivity from various spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR models can be regularized to facilitate ill posed applications such as single-trial fitting. We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we show simulation results of utilizing SCoT for feature extraction in a BCI application. These results indicate that CSPVARICA and correct regularization can significantly improve MI classification. While SCoT was mainly designed for application in BCIs, it contains useful tools for other areas of neuroscience. SCoT is a software package that (1) brings combined source decomposition and connectivtiy estimation to the open Python platform, and (2) offers tools for single-trial connectivity estimation. The source code is released under the MIT license and is available online at github.com/SCoT-dev/SCoT.

  20. SCoT: A Python Toolbox for EEG Source Connectivity

    Directory of Open Access Journals (Sweden)

    Martin eBillinger

    2014-03-01

    Full Text Available Analysis of brain connectivity has become an important research tool in neuroscience. Connectivity can be estimated between cortical sources reconstructed from the electroencephalogram (EEG. Such analysis often relies on trial averaging to obtain reliable results. However, some applications such as brain-computer interfaces (BCIs require single-trial estimation methods.In this paper, we present SCoT – a source connectivity toolbox for Python. This toolbox implements routines for blind source decomposition and connectivity estimation with theMVARICA approach. Additionally, a novel extension called CSPVARICA is available for labeled data. SCoT estimates connectivity from various spectral measures relying on vector autoregressive (VAR models. Optionally, these VAR models can be regularized to facilitate ill posed applications such as single-trial fitting.We demonstrate basic usage of SCoT on motor imagery (MI data. Furthermore, we show simulation results of utilizing SCoT for feature extraction in a BCI application. These results indicate that CSPVARICA and correct regularization can significantly improve MI classification. While SCoT was mainly designed for application in BCIs, it contains useful tools for other areas of neuroscience. SCoT is a software package that (1 brings combined source decomposition and connectivtiy estimation to the open Python platform, and (2 offers tools for single-trial connectivity estimation. The source code is released under the MIT license and is available online at github.com/SCoT-dev/SCoT.

  1. Detection of User Independent Single Trial ERPs in Brain Computer Interfaces: An Adaptive Spatial Filtering Approach

    DEFF Research Database (Denmark)

    Leza, Cristina; Puthusserypady, Sadasivan

    2017-01-01

    Brain Computer Interfaces (BCIs) use brain signals to communicate with the external world. The main challenges to address are speed, accuracy and adaptability. Here, a novel algorithm for P300 based BCI spelling system is presented, specifically suited for single-trial detection of Event...

  2. EEG Controlled Wheelchair

    Directory of Open Access Journals (Sweden)

    Swee Sim Kok

    2016-01-01

    Full Text Available This paper describes the development of a brainwave controlled wheelchair. The main objective of this project is to construct a wheelchair which can be directly controlled by the brain without requires any physical feedback as controlling input from the user. The method employed in this project is the Brain-computer Interface (BCI, which enables direct communication between the brain and the electrical wheelchair. The best method for recording the brain’s activity is electroencephalogram (EEG. EEG signal is also known as brainwaves signal. The device that used for capturing the EEG signal is the Emotiv EPOC headset. This headset is able to transmit the EEG signal wirelessly via Bluetooth to the PC (personal computer. By using the PC software, the EEG signals are processed and converted into mental command. According to the mental command (e.g. forward, left... obtained, the output electrical signal is sent out to the electrical wheelchair to perform the desired movement. Thus, in this project, a computer software is developed for translating the EEG signal into mental commands and transmitting out the controlling signal wirelessly to the electrical wheelchair.

  3. On Parametric (and Non-Parametric Variation

    Directory of Open Access Journals (Sweden)

    Neil Smith

    2009-11-01

    Full Text Available This article raises the issue of the correct characterization of ‘Parametric Variation’ in syntax and phonology. After specifying their theoretical commitments, the authors outline the relevant parts of the Principles–and–Parameters framework, and draw a three-way distinction among Universal Principles, Parameters, and Accidents. The core of the contribution then consists of an attempt to provide identity criteria for parametric, as opposed to non-parametric, variation. Parametric choices must be antecedently known, and it is suggested that they must also satisfy seven individually necessary and jointly sufficient criteria. These are that they be cognitively represented, systematic, dependent on the input, deterministic, discrete, mutually exclusive, and irreversible.

  4. Prediction of subjective ratings of emotional pictures by EEG features

    Science.gov (United States)

    McFarland, Dennis J.; Parvaz, Muhammad A.; Sarnacki, William A.; Goldstein, Rita Z.; Wolpaw, Jonathan R.

    2017-02-01

    Objective. Emotion dysregulation is an important aspect of many psychiatric disorders. Brain-computer interface (BCI) technology could be a powerful new approach to facilitating therapeutic self-regulation of emotions. One possible BCI method would be to provide stimulus-specific feedback based on subject-specific electroencephalographic (EEG) responses to emotion-eliciting stimuli. Approach. To assess the feasibility of this approach, we studied the relationships between emotional valence/arousal and three EEG features: amplitude of alpha activity over frontal cortex; amplitude of theta activity over frontal midline cortex; and the late positive potential over central and posterior mid-line areas. For each feature, we evaluated its ability to predict emotional valence/arousal on both an individual and a group basis. Twenty healthy participants (9 men, 11 women; ages 22-68) rated each of 192 pictures from the IAPS collection in terms of valence and arousal twice (96 pictures on each of 4 d over 2 weeks). EEG was collected simultaneously and used to develop models based on canonical correlation to predict subject-specific single-trial ratings. Separate models were evaluated for the three EEG features: frontal alpha activity; frontal midline theta; and the late positive potential. In each case, these features were used to simultaneously predict both the normed ratings and the subject-specific ratings. Main results. Models using each of the three EEG features with data from individual subjects were generally successful at predicting subjective ratings on training data, but generalization to test data was less successful. Sparse models performed better than models without regularization. Significance. The results suggest that the frontal midline theta is a better candidate than frontal alpha activity or the late positive potential for use in a BCI-based paradigm designed to modify emotional reactions.

  5. Assessing a novel polymer-wick based electrode for EEG neurophysiological research.

    Science.gov (United States)

    Pasion, Rita; Paiva, Tiago O; Pedrosa, Paulo; Gaspar, Hugo; Vasconcelos, Beatriz; Martins, Ana C; Amaral, Maria H; Nóbrega, João M; Páscoa, Ricardo; Fonseca, Carlos; Barbosa, Fernando

    2016-07-15

    The EEG technique has decades of valid applications in clinical and experimental neurophysiology. EEG equipment and data analysis methods have been characterized by remarkable developments, but the skin-to-electrode signal transfer remains a challenge for EEG recording. A novel quasi-dry system - the polymer wick-based electrode - was developed to overcome the limitations of conventional dry and wet silver/silver-chloride (Ag/AgCl) electrodes for EEG recording. Nine participants completed an auditory oddball protocol with simultaneous EEG acquisition using both the conventional Ag/AgCl and the wick electrodes. Wick system successfully recorded the expected P300 modulation. Standard ERP analysis, residual random noise analysis, and single-trial analysis of the P300 wave were performed in order to compare signal acquired by both electrodes. It was found that the novel wick electrode performed similarly to the conventional Ag/AgCl electrodes. The developed wick electrode appears to be a reliable alternative for EEG research, representing a promising halfway alternative between wet and dry electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Supramodal parametric working memory processing in humans.

    Science.gov (United States)

    Spitzer, Bernhard; Blankenburg, Felix

    2012-03-07

    Previous studies of delayed-match-to-sample (DMTS) frequency discrimination in animals and humans have succeeded in delineating the neural signature of frequency processing in somatosensory working memory (WM). During retention of vibrotactile frequencies, stimulus-dependent single-cell and population activity in prefrontal cortex was found to reflect the task-relevant memory content, whereas increases in occipital alpha activity signaled the disengagement of areas not relevant for the tactile task. Here, we recorded EEG from human participants to determine the extent to which these mechanisms can be generalized to frequency retention in the visual and auditory domains. Subjects performed analogous variants of a DMTS frequency discrimination task, with the frequency information presented either visually, auditorily, or by vibrotactile stimulation. Examining oscillatory EEG activity during frequency retention, we found characteristic topographical distributions of alpha power over visual, auditory, and somatosensory cortices, indicating systematic patterns of inhibition and engagement of early sensory areas, depending on stimulus modality. The task-relevant frequency information, in contrast, was found to be represented in right prefrontal cortex, independent of presentation mode. In each of the three modality conditions, parametric modulations of prefrontal upper beta activity (20-30 Hz) emerged, in a very similar manner as recently found in vibrotactile tasks. Together, the findings corroborate a view of parametric WM as supramodal internal scaling of abstract quantity information and suggest strong relevance of previous evidence from vibrotactile work for a more general framework of quantity processing in human working memory.

  7. Hypnagogic imagery and EEG activity.

    Science.gov (United States)

    Hayashi, M; Katoh, K; Hori, T

    1999-04-01

    The relationships between hypnagogic imagery and EEG activity were studied. 7 subjects (4 women and 3 men) reported the content of hypnagogic imagery every minute and the hypnagogic EEGs were classified into 5 stages according to Hori's modified criteria. The content of the hypnagogic imagery changed as a function of the hypnagogic EEG stages.

  8. Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns.

    Science.gov (United States)

    Liao, Shih-Cheng; Wu, Chien-Te; Huang, Hao-Chuan; Cheng, Wei-Teng; Liu, Yi-Hung

    2017-06-14

    Major depressive disorder (MDD) has become a leading contributor to the global burden of disease; however, there are currently no reliable biological markers or physiological measurements for efficiently and effectively dissecting the heterogeneity of MDD. Here we propose a novel method based on scalp electroencephalography (EEG) signals and a robust spectral-spatial EEG feature extractor called kernel eigen-filter-bank common spatial pattern (KEFB-CSP). The KEFB-CSP first filters the multi-channel raw EEG signals into a set of frequency sub-bands covering the range from theta to gamma bands, then spatially transforms the EEG signals of each sub-band from the original sensor space to a new space where the new signals (i.e., CSPs) are optimal for the classification between MDD and healthy controls, and finally applies the kernel principal component analysis (kernel PCA) to transform the vector containing the CSPs from all frequency sub-bands to a lower-dimensional feature vector called KEFB-CSP. Twelve patients with MDD and twelve healthy controls participated in this study, and from each participant we collected 54 resting-state EEGs of 6 s length (5 min and 24 s in total). Our results show that the proposed KEFB-CSP outperforms other EEG features including the powers of EEG frequency bands, and fractal dimension, which had been widely applied in previous EEG-based depression detection studies. The results also reveal that the 8 electrodes from the temporal areas gave higher accuracies than other scalp areas. The KEFB-CSP was able to achieve an average EEG classification accuracy of 81.23% in single-trial analysis when only the 8-electrode EEGs of the temporal area and a support vector machine (SVM) classifier were used. We also designed a voting-based leave-one-participant-out procedure to test the participant-independent individual classification accuracy. The voting-based results show that the mean classification accuracy of about 80% can be achieved by the KEFP

  9. Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns

    Directory of Open Access Journals (Sweden)

    Shih-Cheng Liao

    2017-06-01

    Full Text Available Major depressive disorder (MDD has become a leading contributor to the global burden of disease; however, there are currently no reliable biological markers or physiological measurements for efficiently and effectively dissecting the heterogeneity of MDD. Here we propose a novel method based on scalp electroencephalography (EEG signals and a robust spectral-spatial EEG feature extractor called kernel eigen-filter-bank common spatial pattern (KEFB-CSP. The KEFB-CSP first filters the multi-channel raw EEG signals into a set of frequency sub-bands covering the range from theta to gamma bands, then spatially transforms the EEG signals of each sub-band from the original sensor space to a new space where the new signals (i.e., CSPs are optimal for the classification between MDD and healthy controls, and finally applies the kernel principal component analysis (kernel PCA to transform the vector containing the CSPs from all frequency sub-bands to a lower-dimensional feature vector called KEFB-CSP. Twelve patients with MDD and twelve healthy controls participated in this study, and from each participant we collected 54 resting-state EEGs of 6 s length (5 min and 24 s in total. Our results show that the proposed KEFB-CSP outperforms other EEG features including the powers of EEG frequency bands, and fractal dimension, which had been widely applied in previous EEG-based depression detection studies. The results also reveal that the 8 electrodes from the temporal areas gave higher accuracies than other scalp areas. The KEFB-CSP was able to achieve an average EEG classification accuracy of 81.23% in single-trial analysis when only the 8-electrode EEGs of the temporal area and a support vector machine (SVM classifier were used. We also designed a voting-based leave-one-participant-out procedure to test the participant-independent individual classification accuracy. The voting-based results show that the mean classification accuracy of about 80% can be

  10. Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients

    Science.gov (United States)

    Lahmiri, Salim

    2018-01-01

    The aim of our current study is to check whether multifractal patterns of the electroencephalographic (EEG) signals of normal and epileptic patients are statistically similar or different. In this regard, the generalized Hurst exponent (GHE) method is used for robust estimation of the multifractals in each type of EEG signals, and three powerful statistical tests are performed to check existence of differences between estimated GHEs from healthy control subjects and epileptic patients. The obtained results show that multifractals exist in both types of EEG signals. Particularly, it was found that the degree of fractal is more pronounced in short variations of normal EEG signals than in short variations of EEG signals with seizure free intervals. In contrary, it is more pronounced in long variations of EEG signals with seizure free intervals than in normal EEG signals. Importantly, both parametric and nonparametric statistical tests show strong evidence that estimated GHEs of normal EEG signals are statistically and significantly different from those with seizure free intervals. Therefore, GHEs can be efficiently used to distinguish between healthy and patients suffering from epilepsy.

  11. The role of auditory cortices in the retrieval of single-trial auditory-visual object memories.

    OpenAIRE

    Matusz, P.J.; Thelen, A.; Amrein, S.; Geiser, E.; Anken, J.; Murray, M.M.

    2015-01-01

    Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a ...

  12. Moving Beyond ERP Components: A Selective Review of Approaches to Integrate EEG and Behavior

    Science.gov (United States)

    Bridwell, David A.; Cavanagh, James F.; Collins, Anne G. E.; Nunez, Michael D.; Srinivasan, Ramesh; Stober, Sebastian; Calhoun, Vince D.

    2018-01-01

    Relationships between neuroimaging measures and behavior provide important clues about brain function and cognition in healthy and clinical populations. While electroencephalography (EEG) provides a portable, low cost measure of brain dynamics, it has been somewhat underrepresented in the emerging field of model-based inference. We seek to address this gap in this article by highlighting the utility of linking EEG and behavior, with an emphasis on approaches for EEG analysis that move beyond focusing on peaks or “components” derived from averaging EEG responses across trials and subjects (generating the event-related potential, ERP). First, we review methods for deriving features from EEG in order to enhance the signal within single-trials. These methods include filtering based on user-defined features (i.e., frequency decomposition, time-frequency decomposition), filtering based on data-driven properties (i.e., blind source separation, BSS), and generating more abstract representations of data (e.g., using deep learning). We then review cognitive models which extract latent variables from experimental tasks, including the drift diffusion model (DDM) and reinforcement learning (RL) approaches. Next, we discuss ways to access associations among these measures, including statistical models, data-driven joint models and cognitive joint modeling using hierarchical Bayesian models (HBMs). We think that these methodological tools are likely to contribute to theoretical advancements, and will help inform our understandings of brain dynamics that contribute to moment-to-moment cognitive function. PMID:29632480

  13. Single-trial multisensory memories affect later auditory and visual object discrimination.

    Science.gov (United States)

    Thelen, Antonia; Talsma, Durk; Murray, Micah M

    2015-05-01

    Multisensory memory traces established via single-trial exposures can impact subsequent visual object recognition. This impact appears to depend on the meaningfulness of the initial multisensory pairing, implying that multisensory exposures establish distinct object representations that are accessible during later unisensory processing. Multisensory contexts may be particularly effective in influencing auditory discrimination, given the purportedly inferior recognition memory in this sensory modality. The possibility of this generalization and the equivalence of effects when memory discrimination was being performed in the visual vs. auditory modality were at the focus of this study. First, we demonstrate that visual object discrimination is affected by the context of prior multisensory encounters, replicating and extending previous findings by controlling for the probability of multisensory contexts during initial as well as repeated object presentations. Second, we provide the first evidence that single-trial multisensory memories impact subsequent auditory object discrimination. Auditory object discrimination was enhanced when initial presentations entailed semantically congruent multisensory pairs and was impaired after semantically incongruent multisensory encounters, compared to sounds that had been encountered only in a unisensory manner. Third, the impact of single-trial multisensory memories upon unisensory object discrimination was greater when the task was performed in the auditory vs. visual modality. Fourth, there was no evidence for correlation between effects of past multisensory experiences on visual and auditory processing, suggestive of largely independent object processing mechanisms between modalities. We discuss these findings in terms of the conceptual short term memory (CSTM) model and predictive coding. Our results suggest differential recruitment and modulation of conceptual memory networks according to the sensory task at hand. Copyright

  14. Diagnostic Accuracy of microEEG: A Miniature, Wireless EEG Device

    OpenAIRE

    Grant, Arthur C.; Abdel-Baki, Samah G.; Omurtag, Ahmet; Sinert, Richard; Chari, Geetha; Malhotra, Schweta; Weedon, Jeremy; Fenton, Andre A.; Zehtabchi, Shahriar

    2014-01-01

    Measuring the diagnostic accuracy (DA) of an EEG device is unconventional and complicated by imperfect interrater reliability. We sought to compare the DA of a miniature, wireless, battery-powered EEG device (“microEEG”) to a reference EEG machine in emergency department (ED) patients with altered mental status (AMS). 225 ED patients with AMS underwent 3 EEGs. EEG1 (Nicolet Monitor, “reference”) and EEG2 (microEEG) were recorded simultaneously with EEG cup electrodes using a signal splitter. ...

  15. Motivations of parametric studies

    International Nuclear Information System (INIS)

    Birac, C.

    1988-01-01

    The paper concerns the motivations of parametric studies in connection with the Programme for the Inspection of Steel Components PISC II. The objective of the PISC II exercise is to evaluate the effectiveness of current and advanced NDT techniques for inspection of reactor pressure vessel components. The parametric studies were initiated to determine the influence of some parameters on defect detection and dimensioning, and to increase the technical bases of the Round Robin Tests. A description is given of the content of the parametric studies including:- the effect of the defects' characteristics, the effect of equipment characteristics, the effect of cladding, and possible use of electromagnetic techniques. (U.K.)

  16. Single Trial Brain Electrical Patterns of an Auditory and Visual Perceptuomotor Task.

    Science.gov (United States)

    1983-06-01

    approached this issue with scalp-recorded EEGs (Wolter and Shipton, 1951; Brazier and Casby, 1952; Callaway and Harris, 1974; Busk and Galbraith, 1975...autocorrelation studies of electroencephalographic potentials. Electroencephalorphv Clinical NourophvsioloQv, 1952, 4, 201-211. Busk , J. and Galbraith

  17. EEG analyses with SOBI.

    Energy Technology Data Exchange (ETDEWEB)

    Glickman, Matthew R.; Tang, Akaysha (University of New Mexico, Albuquerque, NM)

    2009-02-01

    The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.

  18. Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks

    Science.gov (United States)

    Rathee, Dheeraj; Cecotti, Hubert; Prasad, Girijesh

    2017-10-01

    Objective. The majority of the current approaches of connectivity based brain-computer interface (BCI) systems focus on distinguishing between different motor imagery (MI) tasks. Brain regions associated with MI are anatomically close to each other, hence these BCI systems suffer from low performances. Our objective is to introduce single-trial connectivity feature based BCI system for cognition imagery (CI) based tasks wherein the associated brain regions are located relatively far away as compared to those for MI. Approach. We implemented time-domain partial Granger causality (PGC) for the estimation of the connectivity features in a BCI setting. The proposed hypothesis has been verified with two publically available datasets involving MI and CI tasks. Main results. The results support the conclusion that connectivity based features can provide a better performance than a classical signal processing framework based on bandpass features coupled with spatial filtering for CI tasks, including word generation, subtraction, and spatial navigation. These results show for the first time that connectivity features can provide a reliable performance for imagery-based BCI system. Significance. We show that single-trial connectivity features for mixed imagery tasks (i.e. combination of CI and MI) can outperform the features obtained by current state-of-the-art method and hence can be successfully applied for BCI applications.

  19. Single-Trial Event-Related Potential Based Rapid Image Triage System

    Directory of Open Access Journals (Sweden)

    Ke Yu

    2011-06-01

    Full Text Available Searching for points of interest (POI in large-volume imagery is a challenging problem with few good solutions. In this work, a neural engineering approach called rapid image triage (RIT which could offer about a ten-fold speed up in POI searching is developed. It is essentially a cortically-coupled computer vision technique, whereby the user is presented bursts of images at a speed of 6–15 images per second and then neural signals called event-related potential (ERP is used as the ‘cue’ for user seeing images of high relevance likelihood. Compared to past efforts, the implemented system has several unique features: (1 it applies overlapping frames in image chip preparation, to ensure rapid image triage performance; (2 a novel common spatial-temporal pattern (CSTP algorithm that makes use of both spatial and temporal patterns of ERP topography is proposed for high-accuracy single-trial ERP detection; (3 a weighted version of probabilistic support-vector-machine (SVM is used to address the inherent unbalanced nature of single-trial ERP detection for RIT. High accuracy, fast learning, and real-time capability of the developed system shown on 20 subjects demonstrate the feasibility of a brainmachine integrated rapid image triage system for fast detection of POI from large-volume imagery.

  20. Single-trial lie detection using a combined fNIRS-polygraph system

    Science.gov (United States)

    Bhutta, M. Raheel; Hong, Melissa J.; Kim, Yun-Hee; Hong, Keum-Shik

    2015-01-01

    Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes) for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS) is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into “true” and “lie” classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph. PMID:26082733

  1. Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict

    Directory of Open Access Journals (Sweden)

    Michael X Cohen

    2011-02-01

    Full Text Available In most cognitive neuroscience experiments there are many behavioral and experimental dynamics, and many indices of brain activity, that vary from trial to trial. For example, in studies of response conflict, conflict is usually treated as a binary variable (i.e., response conflict exists or does not in any given trial, whereas some evidence and intuition suggests that conflict may vary in intensity from trial to trial. Here we demonstrate that single-trial multiple regression of time-frequency electrophysiological activity reveals neural mechanisms of cognitive control that are not apparent in cross-trial averages. We also introduce a novel extension to oscillation phase coherence and synchronization analyses, based on weighted phase modulation, that has advantages over standard coherence measures in terms of linking electrophysiological dynamics to trial-varying behavior and experimental variables. After replicating previous response conflict findings using trial-averaged data, we extend these findings using single trial analytic methods to provide novel evidence for the role of medial frontal-lateral prefrontal theta-band synchronization in conflict-induced response time dynamics, including a role for lateral prefrontal theta-band activity in biasing response times according to perceptual conflict. Given that these methods shed new light on the prefrontal mechanisms of response conflict, they are also likely to be useful for investigating other neurocognitive processes.

  2. Techniques for extracting single-trial activity patterns from large-scale neural recordings

    Science.gov (United States)

    Churchland, Mark M; Yu, Byron M; Sahani, Maneesh; Shenoy, Krishna V

    2008-01-01

    Summary Large, chronically-implanted arrays of microelectrodes are an increasingly common tool for recording from primate cortex, and can provide extracellular recordings from many (order of 100) neurons. While the desire for cortically-based motor prostheses has helped drive their development, such arrays also offer great potential to advance basic neuroscience research. Here we discuss the utility of array recording for the study of neural dynamics. Neural activity often has dynamics beyond that driven directly by the stimulus. While governed by those dynamics, neural responses may nevertheless unfold differently for nominally identical trials, rendering many traditional analysis methods ineffective. We review recent studies – some employing simultaneous recording, some not – indicating that such variability is indeed present both during movement generation, and during the preceding premotor computations. In such cases, large-scale simultaneous recordings have the potential to provide an unprecedented view of neural dynamics at the level of single trials. However, this enterprise will depend not only on techniques for simultaneous recording, but also on the use and further development of analysis techniques that can appropriately reduce the dimensionality of the data, and allow visualization of single-trial neural behavior. PMID:18093826

  3. Single-trial lie detection using a combined fNIRS-polygraph system

    Directory of Open Access Journals (Sweden)

    M. Raheel eBhutta

    2015-06-01

    Full Text Available Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into true and lie classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph.

  4. Rett syndrome: EEG presentation.

    Science.gov (United States)

    Robertson, R; Langill, L; Wong, P K; Ho, H H

    1988-11-01

    Rett syndrome, a degenerative neurological disorder of girls, has a classical presentation and typical EEG findings. The electroencephalograms (EEGs) of 7 girls whose records have been followed from the onset of symptoms to the age of 5 or more are presented. These findings are tabulated with the Clinical Staging System of Hagberg and Witt-Engerström (1986). The records show a progressive deterioration in background rhythms in waking and sleep. The abnormalities of the background activity may only become evident at 4-5 years of age or during stage 2--the Rapid Destructive Stage. The marked contrast between waking and sleep background may not occur until stage 3--the Pseudostationary Stage. In essence EEG changes appear to lag behind clinical symptomatology by 1-3 years. An unexpected, but frequent, abnormality was central spikes seen in 5 of 7 girls. They appeared to be age related and could be evoked by tactile stimulation in 2 patients. We hypothesize that the prominent 'hand washing' mannerism may be self-stimulating and related to the appearance of central spike discharges.

  5. Comparison of Amplitude-Integrated EEG and Conventional EEG in a Cohort of Premature Infants.

    Science.gov (United States)

    Meledin, Irina; Abu Tailakh, Muhammad; Gilat, Shlomo; Yogev, Hagai; Golan, Agneta; Novack, Victor; Shany, Eilon

    2017-03-01

    To compare amplitude-integrated EEG (aEEG) and conventional EEG (EEG) activity in premature neonates. Biweekly aEEG and EEG were simultaneously recorded in a cohort of infants born less than 34 weeks gestation. aEEG recordings were visually assessed for lower and upper border amplitude and bandwidth. EEG recordings were compressed for visual evaluation of continuity and assessed using a signal processing software for interburst intervals (IBI) and frequencies' amplitude. Ten-minute segments of aEEG and EEG indices were compared using regression analysis. A total of 189 recordings from 67 infants were made, from which 1697 aEEG/EEG pairs of 10-minute segments were assessed. Good concordance was found for visual assessment of continuity between the 2 methods. EEG IBI, alpha and theta frequencies' amplitudes were negatively correlated to the aEEG lower border while conceptional age (CA) was positively correlated to aEEG lower border ( P continuity and amplitude.

  6. Use of statistical parametric mapping of 18F-FDG-PET in frontal lobe epilepsy

    International Nuclear Information System (INIS)

    Plotkin, M.; Amthauer, H.; Luedemann, L.; Hartkop, E.; Ruf, J.; Gutberlet, M.; Bertram, H.; Felix, R.; Venz, St.; Merschhemke, M.; Meencke, H.-J.

    2003-01-01

    Aim: Evaluation of the use of statistical parametrical mapping (SPM) of FDG-PET for seizure lateralization in frontal lobe epilepsy. Patients: 38 patients with suspected frontal lobe epilepsy supported by clinical findings and video-EEG monitoring. Method: Statistical parametrical maps were generated by subtraction of individual scans from a control group, formed by 16 patients with negative neurological/psychiatric history and no abnormalities in the MR scan. The scans were also analyzed visually as well as semiquantitatively by manually drawn ROIs. Results: SPM showed a better accordance to the results of surface EEG monitoring compared with visual scan analysis and ROI quantification. In comparison with intracranial EEG recordings, the best performance was achieved by combining the ROI based quantification with SPM analysis. Conclusion: These findings suggest that SPM analysis of FDG-PET data could be a useful as complementary tool in the evaluation of seizure focus lateralization in patients with supposed frontal lobe epilepsy. (orig.)

  7. A jackknife approach to quantifying single-trial correlation between covariance-based metrics undefined on a single-trial basis.

    Science.gov (United States)

    Richter, Craig G; Thompson, William H; Bosman, Conrado A; Fries, Pascal

    2015-07-01

    The quantification of covariance between neuronal activities (functional connectivity) requires the observation of correlated changes and therefore multiple observations. The strength of such neuronal correlations may itself undergo moment-by-moment fluctuations, which might e.g. lead to fluctuations in single-trial metrics such as reaction time (RT), or may co-fluctuate with the correlation between activity in other brain areas. Yet, quantifying the relation between moment-by-moment co-fluctuations in neuronal correlations is precluded by the fact that neuronal correlations are not defined per single observation. The proposed solution quantifies this relation by first calculating neuronal correlations for all leave-one-out subsamples (i.e. the jackknife replications of all observations) and then correlating these values. Because the correlation is calculated between jackknife replications, we address this approach as jackknife correlation (JC). First, we demonstrate the equivalence of JC to conventional correlation for simulated paired data that are defined per observation and therefore allow the calculation of conventional correlation. While the JC recovers the conventional correlation precisely, alternative approaches, like sorting-and-binning, result in detrimental effects of the analysis parameters. We then explore the case of relating two spectral correlation metrics, like coherence, that require multiple observation epochs, where the only viable alternative analysis approaches are based on some form of epoch subdivision, which results in reduced spectral resolution and poor spectral estimators. We show that JC outperforms these approaches, particularly for short epoch lengths, without sacrificing any spectral resolution. Finally, we note that the JC can be applied to relate fluctuations in any smooth metric that is not defined on single observations. Copyright © 2015. Published by Elsevier Inc.

  8. Single-trial estimation of stimulus and spike-history effects on time-varying ensemble spiking activity of multiple neurons: a simulation study

    International Nuclear Information System (INIS)

    Shimazaki, Hideaki

    2013-01-01

    Neurons in cortical circuits exhibit coordinated spiking activity, and can produce correlated synchronous spikes during behavior and cognition. We recently developed a method for estimating the dynamics of correlated ensemble activity by combining a model of simultaneous neuronal interactions (e.g., a spin-glass model) with a state-space method (Shimazaki et al. 2012 PLoS Comput Biol 8 e1002385). This method allows us to estimate stimulus-evoked dynamics of neuronal interactions which is reproducible in repeated trials under identical experimental conditions. However, the method may not be suitable for detecting stimulus responses if the neuronal dynamics exhibits significant variability across trials. In addition, the previous model does not include effects of past spiking activity of the neurons on the current state of ensemble activity. In this study, we develop a parametric method for simultaneously estimating the stimulus and spike-history effects on the ensemble activity from single-trial data even if the neurons exhibit dynamics that is largely unrelated to these effects. For this goal, we model ensemble neuronal activity as a latent process and include the stimulus and spike-history effects as exogenous inputs to the latent process. We develop an expectation-maximization algorithm that simultaneously achieves estimation of the latent process, stimulus responses, and spike-history effects. The proposed method is useful to analyze an interaction of internal cortical states and sensory evoked activity

  9. Detection of movement intention from single-trial movement-related cortical potentials

    Science.gov (United States)

    Niazi, Imran Khan; Jiang, Ning; Tiberghien, Olivier; Feldbæk Nielsen, Jørgen; Dremstrup, Kim; Farina, Dario

    2011-10-01

    Detection of movement intention from neural signals combined with assistive technologies may be used for effective neurofeedback in rehabilitation. In order to promote plasticity, a causal relation between intended actions (detected for example from the EEG) and the corresponding feedback should be established. This requires reliable detection of motor intentions. In this study, we propose a method to detect movements from EEG with limited latency. In a self-paced asynchronous BCI paradigm, the initial negative phase of the movement-related cortical potentials (MRCPs), extracted from multi-channel scalp EEG was used to detect motor execution/imagination in healthy subjects and stroke patients. For MRCP detection, it was demonstrated that a new optimized spatial filtering technique led to better accuracy than a large Laplacian spatial filter and common spatial pattern. With the optimized spatial filter, the true positive rate (TPR) for detection of movement execution in healthy subjects (n = 15) was 82.5 ± 7.8%, with latency of -66.6 ± 121 ms. Although TPR decreased with motor imagination in healthy subject (n = 10, 64.5 ± 5.33%) and with attempted movements in stroke patients (n = 5, 55.01 ± 12.01%), the results are promising for the application of this approach to provide patient-driven real-time neurofeedback.

  10. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.

    Directory of Open Access Journals (Sweden)

    Arno Onken

    2016-11-01

    Full Text Available Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations, in their temporal dimension (temporal neural response variations, or in their combination (temporally coordinated neural population firing. Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together, temporal firing patterns (temporal activation of these groups of neurons and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial. We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine

  11. EEG predictors of covert vigilant attention

    Science.gov (United States)

    Martel, Adrien; Dähne, Sven; Blankertz, Benjamin

    2014-06-01

    Objective. The present study addressed the question whether neurophysiological signals exhibit characteristic modulations preceding a miss in a covert vigilant attention task which mimics a natural environment in which critical stimuli may appear in the periphery of the visual field. Approach. Subjective, behavioural and encephalographic (EEG) data of 12 participants performing a modified Mackworth Clock task were obtained and analysed offline. The stimulus consisted of a pointer performing regular ticks in a clockwise sequence across 42 dots arranged in a circle. Participants were requested to covertly attend to the pointer and press a response button as quickly as possible in the event of a jump, a rare and random event. Main results. Significant increases in response latencies and decreases in the detection rates were found as a function of time-on-task, a characteristic effect of sustained attention tasks known as the vigilance decrement. Subjective sleepiness showed a significant increase over the duration of the experiment. Increased activity in the α-frequency range (8-14 Hz) was observed emerging and gradually accumulating 10 s before a missed target. Additionally, a significant gradual attenuation of the P3 event-related component was found to antecede misses by 5 s. Significance. The results corroborate recent findings that behavioural errors are presaged by specific neurophysiological activity and demonstrate that lapses of attention can be predicted in a covert setting up to 10 s in advance reinforcing the prospective use of brain-computer interface (BCI) technology for the detection of waning vigilance in real-world scenarios. Combining these findings with real-time single-trial analysis from BCI may pave the way for cognitive states monitoring systems able to determine the current, and predict the near-future development of the brain's attentional processes.

  12. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo

    2014-12-01

    This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Trial latencies estimation of event-related potentials in EEG by means of genetic algorithms

    Science.gov (United States)

    Da Pelo, P.; De Tommaso, M.; Monaco, A.; Stramaglia, S.; Bellotti, R.; Tangaro, S.

    2018-04-01

    Objective. Event-related potentials (ERPs) are usually obtained by averaging thus neglecting the trial-to-trial latency variability in cognitive electroencephalography (EEG) responses. As a consequence the shape and the peak amplitude of the averaged ERP are smeared and reduced, respectively, when the single-trial latencies show a relevant variability. To date, the majority of the methodologies for single-trial latencies inference are iterative schemes providing suboptimal solutions, the most commonly used being the Woody’s algorithm. Approach. In this study, a global approach is developed by introducing a fitness function whose global maximum corresponds to the set of latencies which renders the trial signals most aligned as possible. A suitable genetic algorithm has been implemented to solve the optimization problem, characterized by new genetic operators tailored to the present problem. Main results. The results, on simulated trials, showed that the proposed algorithm performs better than Woody’s algorithm in all conditions, at the cost of an increased computational complexity (justified by the improved quality of the solution). Application of the proposed approach on real data trials, resulted in an increased correlation between latencies and reaction times w.r.t. the output from RIDE method. Significance. The above mentioned results on simulated and real data indicate that the proposed method, providing a better estimate of single-trial latencies, will open the way to more accurate study of neural responses as well as to the issue of relating the variability of latencies to the proper cognitive and behavioural correlates.

  14. PARAMETRIC DRAWINGS VS. AUTOLISP

    Directory of Open Access Journals (Sweden)

    PRUNĂ Liviu

    2015-06-01

    Full Text Available In this paper the authors make a critical analysis of the advantages offered by the parametric drawing use by comparison with the AutoLISP computer programs used when it comes about the parametric design. Studying and analysing these two work models the authors have got to some ideas and conclusions which should be considered in the moment in that someone must to decide if it is the case to elaborate a software, using the AutoLISP language, or to establish the base rules that must be followed by the drawing, in the idea to construct outlines or blocks which can be used in the projection process.

  15. PARAMETRIC DRAWINGS VS. AUTOLISP

    OpenAIRE

    PRUNĂ Liviu; SLONOVSCHI Andrei

    2015-01-01

    In this paper the authors make a critical analysis of the advantages offered by the parametric drawing use by comparison with the AutoLISP computer programs used when it comes about the parametric design. Studying and analysing these two work models the authors have got to some ideas and conclusions which should be considered in the moment in that someone must to decide if it is the case to elaborate a software, using the AutoLISP language, or to establish the base rules that must be followed...

  16. Bayesian learning for spatial filtering in an EEG-based brain-computer interface.

    Science.gov (United States)

    Zhang, Haihong; Yang, Huijuan; Guan, Cuntai

    2013-07-01

    Spatial filtering for EEG feature extraction and classification is an important tool in brain-computer interface. However, there is generally no established theory that links spatial filtering directly to Bayes classification error. To address this issue, this paper proposes and studies a Bayesian analysis theory for spatial filtering in relation to Bayes error. Following the maximum entropy principle, we introduce a gamma probability model for describing single-trial EEG power features. We then formulate and analyze the theoretical relationship between Bayes classification error and the so-called Rayleigh quotient, which is a function of spatial filters and basically measures the ratio in power features between two classes. This paper also reports our extensive study that examines the theory and its use in classification, using three publicly available EEG data sets and state-of-the-art spatial filtering techniques and various classifiers. Specifically, we validate the positive relationship between Bayes error and Rayleigh quotient in real EEG power features. Finally, we demonstrate that the Bayes error can be practically reduced by applying a new spatial filter with lower Rayleigh quotient.

  17. INTELLIGENT EEG ANALYSIS

    Directory of Open Access Journals (Sweden)

    M. Murugesan

    2011-04-01

    Full Text Available Brain is the wonderful organ of human body. It is the agent of information collection and transformation. The neural activity of the human brain starts between the 17th and 23rd week of prenatal development. It is believed that from this early stage and throughout life electrical signals are generated by the brain function but also the status of the whole body. Understanding of neuronal functions and neurophysiologic properties of the brain function together with the mechanisms underlying the generation of signals and their recording is, however, vital for those who deal with these signals for detection, diagnosis, and treatment of brain disorders and the related diseases. This research paper concentrated only on brain tumor detection. Using minimum electrode location the brain tumor possibility is detected. This paper is separated into two parts: the First part deals with electrode location on the scalp and the second part deals with how the fuzzy logic rule based algorithm is applied for estimation of brain tumor from EEG. Basically 8 locations are identified. After acquiring the pure EEG signal Fuzzy Logic Rule is applied to predict the possibility of brain tumor.

  18. Controlling Parametric Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Pettersen, Kristin Ytterstad

    2012-01-01

    the authors review the conditions for the onset of parametric resonance, and propose a nonlinear control strategy in order to both induce the resonant oscillations and to stabilize the unstable motion. Lagrange’s theory is used to derive the dynamics of the system and input–output feedback linearization...

  19. Educational simulation of the electroencephalogram (EEG)

    NARCIS (Netherlands)

    Beer, de N.A.M.; Meurs, van W.L.; Grit, M.B.M.; Good, M.L.; Gravenstein, D.

    2001-01-01

    We describe a model for simulating a spontaneous electroencephalogram (EEG) and for simulating the effects of anesthesia on the EEG, to allow anesthesiologists and EEG technicians to learn and practice intraoperative EEG monitoring. For this purpose, we developed a linear model to manipulate the

  20. EEG in connection with coma.

    Science.gov (United States)

    Wilson, John A; Nordal, Helge J

    2013-01-08

    Coma is a dynamic condition that may have various causes. Important changes may take place rapidly, often with consequences for treatment. The purpose of this article is to provide a brief overview of EEG patterns in comas with various causes, and indicate how EEG contributes in an assessment of the prognosis for coma patients. The article is based on many years of clinical and research-based experience of EEG used for patients in coma. A self-built reference database was supplemented by searches for relevant articles in PubMed. EEG reveals immediate changes in coma, and can provide early information on cause and prognosis. It is the only diagnostic tool for detecting a non-convulsive epileptic status. Locked-in- syndrome may be overseen without EEG. Repeated EEG scans increase diagnostic certainty and make it possible to monitor the development of coma. EEG reflects brain function continuously and therefore holds a key place in the assessment and treatment of coma.

  1. Classification rates: non‐parametric verses parametric models using ...

    African Journals Online (AJOL)

    This research sought to establish if non parametric modeling achieves a higher correct classification ratio than a parametric model. The local likelihood technique was used to model fit the data sets. The same sets of data were modeled using parametric logit and the abilities of the two models to correctly predict the binary ...

  2. Physiological responses at short distances from a parametric speaker

    Directory of Open Access Journals (Sweden)

    Lee Soomin

    2012-06-01

    Full Text Available Abstract In recent years, parametric speakers have been used in various circumstances. In our previous studies, we verified that the physiological burden of the sound of parametric speaker set at 2.6 m from the subjects was lower than that of the general speaker. However, nothing has yet been demonstrated about the effects of the sound of a parametric speaker at the shorter distance between parametric speakers the human body. Therefore, we studied this effect on physiological functions and task performance. Nine male subjects participated in this study. They completed three consecutive sessions: a 20-minute quiet period as a baseline, a 30-minute mental task period with general speakers or parametric speakers, and a 20-minute recovery period. We measured electrocardiogram (ECG photoplethysmogram (PTG, electroencephalogram (EEG, systolic and diastolic blood pressure. Four experiments, one with a speaker condition (general speaker and parametric speaker, the other with a distance condition (0.3 m and 1.0 m, were conducted respectively at the same time of day on separate days. To examine the effects of the speaker and distance, three-way repeated measures ANOVA (speaker factor x distance factor x time factor were conducted. In conclusion, we found that the physiological responses were not significantly different between the speaker condition and the distance condition. Meanwhile, it was shown that the physiological burdens increased with progress in time independently of speaker condition and distance condition. In summary, the effects of the parametric speaker at the 2.6 m distance were not obtained at the distance of 1 m or less.

  3. Electroencephalogy (EEG) Feedback in Decision-Making

    Science.gov (United States)

    2015-08-26

    Electroencephalogy ( EEG ) Feedback In Decision- Making The goal of this project is to investigate whether Electroencephalogy ( EEG ) can provide useful...feedback when training rapid decision-making. More specifically, EEG will allow us to provide online feedback about the neural decision processes...Electroencephalogy ( EEG ) Feedback In Decision-Making Report Title The goal of this project is to investigate whether Electroencephalogy ( EEG ) can provide useful

  4. Towards Stabilizing Parametric Active Contours

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor

    2014-01-01

    Numerical instability often occurs in evolving of parametric active contours. This is mainly due to the undesired change of parametrization during evolution. In this paper, we propose a new tangential diffusion term to compensate this undesired change. As a result, the parametrization will converge...

  5. Single-Trial Decoding of Bistable Perception Based on Sparse Nonnegative Tensor Decomposition

    Science.gov (United States)

    Wang, Zhisong; Maier, Alexander; Logothetis, Nikos K.; Liang, Hualou

    2008-01-01

    The study of the neuronal correlates of the spontaneous alternation in perception elicited by bistable visual stimuli is promising for understanding the mechanism of neural information processing and the neural basis of visual perception and perceptual decision-making. In this paper, we develop a sparse nonnegative tensor factorization-(NTF)-based method to extract features from the local field potential (LFP), collected from the middle temporal (MT) visual cortex in a macaque monkey, for decoding its bistable structure-from-motion (SFM) perception. We apply the feature extraction approach to the multichannel time-frequency representation of the intracortical LFP data. The advantages of the sparse NTF-based feature extraction approach lies in its capability to yield components common across the space, time, and frequency domains yet discriminative across different conditions without prior knowledge of the discriminating frequency bands and temporal windows for a specific subject. We employ the support vector machines (SVMs) classifier based on the features of the NTF components for single-trial decoding the reported perception. Our results suggest that although other bands also have certain discriminability, the gamma band feature carries the most discriminative information for bistable perception, and that imposing the sparseness constraints on the nonnegative tensor factorization improves extraction of this feature. PMID:18528515

  6. Role of multisensory stimuli in vigilance enhancement- a single trial event related potential study.

    Science.gov (United States)

    Abbasi, Nida Itrat; Bodala, Indu Prasad; Bezerianos, Anastasios; Yu Sun; Al-Nashash, Hasan; Thakor, Nitish V

    2017-07-01

    Development of interventions to prevent vigilance decrement has important applications in sensitive areas like transportation and defence. The objective of this work is to use multisensory (visual and haptic) stimuli for cognitive enhancement during mundane tasks. Two different epoch intervals representing sensory perception and motor response were analysed using minimum variance distortionless response (MVDR) based single trial ERP estimation to understand the performance dependency on both factors. Bereitschaftspotential (BP) latency L3 (r=0.6 in phase 1 (visual) and r=0.71 in phase 2 (visual and haptic)) was significantly correlated with reaction time as compared to that of sensory ERP latency L2 (r=0.1 in both phase 1 and phase 2). This implies that low performance in monotonous tasks is predominantly dependent on the prolonged neural interaction with the muscles to initiate movement. Further, negative relationship was found between the ERP latencies related to sensory perception and Bereitschaftspotential (BP) and occurrence of epochs when multisensory cues are provided. This means that vigilance decrement is reduced with the help of multisensory stimulus presentation in prolonged monotonous tasks.

  7. Enhanced brainstem and cortical evoked response amplitudes: single-trial covariance analysis.

    Science.gov (United States)

    Galbraith, G C

    2001-06-01

    The purpose of the present study was to develop analytic procedures that improve the definition of sensory evoked response components. Such procedures could benefit all recordings but would especially benefit difficult recordings where many trials are contaminated by muscle and movement artifacts. First, cross-correlation and latency adjustment analyses were applied to the human brainstem frequency-following response and cortical auditory evoked response recorded on the same trials. Lagged cross-correlation functions were computed, for each of 17 subjects, between single-trial data and templates consisting of the sinusoid stimulus waveform for the brainstem response and the subject's own smoothed averaged evoked response P2 component for the cortical response. Trials were considered in the analysis only if the maximum correlation-squared (r2) exceeded .5 (negatively correlated trials were thus included). Identical correlation coefficients may be based on signals with quite different amplitudes, but it is possible to assess amplitude by the nonnormalized covariance function. Next, an algorithm is applied in which each trial with negative covariance is matched to a trial with similar, but positive, covariance and these matched-trial pairs are deleted. When an evoked response signal is present in the data, the majority of trials positively correlate with the template. Thus, a residual of positively correlated trials remains after matched covariance trials are deleted. When these residual trials are averaged, the resulting brainstem and cortical responses show greatly enhanced amplitudes. This result supports the utility of this analysis technique in clarifying and assessing evoked response signals.

  8. MEMS digital parametric loudspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-03-23

    This paper reports on the design and fabrication of MEMS actuator arrays suitable for Digital Sound reconstruction and Parametric Directional Loudspeakers. Two distinct versions of the device were fabricated: one using the electrostatic principle actuation and the other one, the piezoelectric principle. Both versions used similar membrane dimensions, with a diameter of 500 μm. These devices are the smallest Micro-Machined Ultrasound Transducer (MUT) arrays that can be operated for both modes: Digital Sound Reconstruction and Parametric Loudspeaker. The chips consist of an array with 256 transducers, in a footprint of 12 mm by 12 mm. The total single chip size is: 2.3 cm by 2.3 cm, including the contact pads. © 2016 IEEE.

  9. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  10. MEMS digital parametric loudspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    This paper reports on the design and fabrication of MEMS actuator arrays suitable for Digital Sound reconstruction and Parametric Directional Loudspeakers. Two distinct versions of the device were fabricated: one using the electrostatic principle actuation and the other one, the piezoelectric principle. Both versions used similar membrane dimensions, with a diameter of 500 μm. These devices are the smallest Micro-Machined Ultrasound Transducer (MUT) arrays that can be operated for both modes: Digital Sound Reconstruction and Parametric Loudspeaker. The chips consist of an array with 256 transducers, in a footprint of 12 mm by 12 mm. The total single chip size is: 2.3 cm by 2.3 cm, including the contact pads. © 2016 IEEE.

  11. Macromechanical Parametric Amplification

    DEFF Research Database (Denmark)

    Neumeyer, Stefan

    between the two peaks can be altered. The first experimental bistable amplified steady-state responses are also reported. The derived analytical models and experimental setups can readily be extended to investigate other factors. Some of the results are also applicable to the more general field of systems...... for energy harvesting. Using analytical, numerical, and experimental methods, the thesis focuses on superthreshold pumping (above the systems parametric instability threshold), nonlinear effects, frequency response backbones, and frequency detuning effects for parametric amplifiers. Part one of the thesis...... covers superthreshold pumping and nonlinear effects. Superthresh-old pumping produces some useful characteristics. For instance, strong superthreshold pumping yields a high gain even though nonlinear effects tend to reduce it. In addition, a narrower excitation phase range is realized for which...

  12. Parametric Resonance in Dynamical Systems

    CERN Document Server

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  13. Physiological artifacts in scalp EEG and ear-EEG.

    Science.gov (United States)

    Kappel, Simon L; Looney, David; Mandic, Danilo P; Kidmose, Preben

    2017-08-11

    A problem inherent to recording EEG is the interference arising from noise and artifacts. While in a laboratory environment, artifacts and interference can, to a large extent, be avoided or controlled, in real-life scenarios this is a challenge. Ear-EEG is a concept where EEG is acquired from electrodes in the ear. We present a characterization of physiological artifacts generated in a controlled environment for nine subjects. The influence of the artifacts was quantified in terms of the signal-to-noise ratio (SNR) deterioration of the auditory steady-state response. Alpha band modulation was also studied in an open/closed eyes paradigm. Artifacts related to jaw muscle contractions were present all over the scalp and in the ear, with the highest SNR deteriorations in the gamma band. The SNR deterioration for jaw artifacts were in general higher in the ear compared to the scalp. Whereas eye-blinking did not influence the SNR in the ear, it was significant for all groups of scalps electrodes in the delta and theta bands. Eye movements resulted in statistical significant SNR deterioration in both frontal, temporal and ear electrodes. Recordings of alpha band modulation showed increased power and coherence of the EEG for ear and scalp electrodes in the closed-eyes periods. Ear-EEG is a method developed for unobtrusive and discreet recording over long periods of time and in real-life environments. This study investigated the influence of the most important types of physiological artifacts, and demonstrated that spontaneous activity, in terms of alpha band oscillations, could be recorded from the ear-EEG platform. In its present form ear-EEG was more prone to jaw related artifacts and less prone to eye-blinking artifacts compared to state-of-the-art scalp based systems.

  14. Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog

    Science.gov (United States)

    2013-01-01

    Background Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG. Methods We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation. Results Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications. Conclusions Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG. PMID:24059247

  15. Quantitative evaluation of muscle synergy models: a single-trial task decoding approach.

    Science.gov (United States)

    Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano

    2013-01-01

    Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system (CNS) uses to construct the patterns of muscle activity utilized for executing movements. Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG) signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little is known about the extent to which the combination of those synergies encodes task-discriminating variations of muscle activity in individual trials. To address this question, here we conceive and develop a novel computational framework to evaluate muscle synergy decompositions in task space. Unlike previous methods considering the total variance of muscle patterns (VAF based metrics), our approach focuses on variance discriminating execution of different tasks. The procedure is based on single-trial task decoding from muscle synergy activation features. The task decoding based metric evaluates quantitatively the mapping between synergy recruitment and task identification and automatically determines the minimal number of synergies that captures all the task-discriminating variability in the synergy activations. In this paper, we first validate the method on plausibly simulated EMG datasets. We then show that it can be applied to different types of muscle synergy decomposition and illustrate its applicability to real data by using it for the analysis of EMG recordings during an arm pointing task. We find that time-varying and synchronous synergies with similar number of parameters are equally efficient in task decoding, suggesting that in this experimental paradigm they are equally valid representations of muscle synergies. Overall, these findings stress the effectiveness of the decoding metric in systematically assessing muscle synergy decompositions in task space.

  16. Detection of movement intention from single-trial movement-related cortical potentials using random and non-random paradigms

    DEFF Research Database (Denmark)

    Aliakbaryhosseinabadi, Susan; Jiang, Ning; Vuckovic, Aleksandra

    2015-01-01

    Detection of motor intention with short latency from scalp electroencephalography (EEG) is essential for the development of brain-computer interface (BCI) systems for neuromodulation. This latency determines the temporal association between motor intention and the triggered afferent neurofeedback...

  17. EEG frequency PCA in EEG-ERP dynamics.

    Science.gov (United States)

    Barry, Robert J; De Blasio, Frances M

    2018-05-01

    Principal components analysis (PCA) has long been used to decompose the ERP into components, and these mathematical entities are increasingly accepted as meaningful and useful representatives of the electrophysiological components constituting the ERP. A similar expansion appears to be beginning in regard to decomposition of the EEG amplitude spectrum into frequency components via frequency PCA. However, to date, there has been no exploration of the brain's dynamic EEG-ERP linkages using PCA decomposition to assess components in each measure. Here, we recorded intrinsic EEG in both eyes-closed and eyes-open resting conditions, followed by an equiprobable go/no-go task. Frequency PCA of the EEG, including the nontask resting and within-task prestimulus periods, found seven frequency components within the delta to beta range. These differentially predicted PCA-derived go and no-go N1 and P3 ERP components. This demonstration suggests that it may be beneficial in future brain dynamics studies to implement PCA for the derivation of data-driven components from both the ERP and EEG. © 2017 Society for Psychophysiological Research.

  18. Analytic sensing for multi-layer spherical models with application to EEG source imaging

    OpenAIRE

    Kandaswamy, Djano; Blu, Thierry; Van De Ville, Dimitri

    2013-01-01

    Source imaging maps back boundary measurements to underlying generators within the domain; e. g., retrieving the parameters of the generating dipoles from electrical potential measurements on the scalp such as in electroencephalography (EEG). Fitting such a parametric source model is non-linear in the positions of the sources and renewed interest in mathematical imaging has led to several promising approaches. One important step in these methods is the application of a sensing principle that ...

  19. Brownian parametric oscillators

    Science.gov (United States)

    Zerbe, Christine; Jung, Peter; Hänggi, Peter

    1994-05-01

    We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).

  20. Effects of Inaccurate Identification of Interictal Epileptiform Discharges in Concurrent EEG-fMRI

    Science.gov (United States)

    Gkiatis, K.; Bromis, K.; Kakkos, I.; Karanasiou, I. S.; Matsopoulos, G. K.; Garganis, K.

    2017-11-01

    Concurrent continuous EEG-fMRI is a novel multimodal technique that is finding its way into clinical practice in epilepsy. EEG timeseries are used to identify the timing of interictal epileptiform discharges (IEDs) which is then included in a GLM analysis in fMRI to localize the epileptic onset zone. Nevertheless, there are still some concerns about its reliability concerning BOLD changes correlated with IEDs. Even though IEDs are identified by an experienced neurologist-epiliptologist, the reliability and concordance of the mark-ups is depending on many factors including the level of fatigue, the amount of time that he spent or, in some cases, even the screen that is being used for the display of timeseries. This investigation is aiming to unravel the effect of misidentification or inaccuracy in the mark-ups of IEDs in the fMRI statistical parametric maps. Concurrent EEG-fMRI was conducted in six subjects with various types of epilepsy. IEDs were identified by an experienced neurologist-epiliptologist. Analysis of EEG was performed with EEGLAB and analysis of fMRI was conducted in FSL. Preliminary results revealed lower statistical significance for missing events or larger period of IEDs than the actual ones and the introduction of false positives and false negatives in statistical parametric maps when random events were included in the GLM on top of the IEDs. Our results suggest that mark-ups in EEG for simultaneous EEG-fMRI should be done with caution from an experienced and restful neurologist as it affects the fMRI results in various and unpredicted ways.

  1. Parametric Linear Dynamic Logic

    Directory of Open Access Journals (Sweden)

    Peter Faymonville

    2014-08-01

    Full Text Available We introduce Parametric Linear Dynamic Logic (PLDL, which extends Linear Dynamic Logic (LDL by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL that is able to express all ω-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.

  2. Engagement Assessment Using EEG Signals

    Science.gov (United States)

    Li, Feng; Li, Jiang; McKenzie, Frederic; Zhang, Guangfan; Wang, Wei; Pepe, Aaron; Xu, Roger; Schnell, Thomas; Anderson, Nick; Heitkamp, Dean

    2012-01-01

    In this paper, we present methods to analyze and improve an EEG-based engagement assessment approach, consisting of data preprocessing, feature extraction and engagement state classification. During data preprocessing, spikes, baseline drift and saturation caused by recording devices in EEG signals are identified and eliminated, and a wavelet based method is utilized to remove ocular and muscular artifacts in the EEG recordings. In feature extraction, power spectrum densities with 1 Hz bin are calculated as features, and these features are analyzed using the Fisher score and the one way ANOVA method. In the classification step, a committee classifier is trained based on the extracted features to assess engagement status. Finally, experiment results showed that there exist significant differences in the extracted features among different subjects, and we have implemented a feature normalization procedure to mitigate the differences and significantly improved the engagement assessment performance.

  3. Neurofeedback-Based Enhancement of Single Trial Auditory Evoked Potentials: Feasibility in Healthy Subjects.

    Science.gov (United States)

    Rieger, Kathryn; Rarra, Marie-Helene; Moor, Nicolas; Diaz Hernandez, Laura; Baenninger, Anja; Razavi, Nadja; Dierks, Thomas; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Previous studies showed a global reduction of the event-related potential component N100 in patients with schizophrenia, a phenomenon that is even more pronounced during auditory verbal hallucinations. This reduction assumingly results from dysfunctional activation of the primary auditory cortex by inner speech, which reduces its responsiveness to external stimuli. With this study, we tested the feasibility of enhancing the responsiveness of the primary auditory cortex to external stimuli with an upregulation of the event-related potential component N100 in healthy control subjects. A total of 15 healthy subjects performed 8 double-sessions of EEG-neurofeedback training over 2 weeks. The results of the used linear mixed effect model showed a significant active learning effect within sessions ( t = 5.99, P < .001) against an unspecific habituation effect that lowered the N100 amplitude over time. Across sessions, a significant increase in the passive condition ( t = 2.42, P = .03), named as carry-over effect, was observed. Given that the carry-over effect is one of the ultimate aims of neurofeedback, it seems reasonable to apply this neurofeedback training protocol to influence the N100 amplitude in patients with schizophrenia. This intervention could provide an alternative treatment option for auditory verbal hallucinations in these patients.

  4. Review on solving the inverse problem in EEG source analysis

    Directory of Open Access Journals (Sweden)

    Fabri Simon G

    2008-11-01

    Full Text Available Abstract In this primer, we give a review of the inverse problem for EEG source localization. This is intended for the researchers new in the field to get insight in the state-of-the-art techniques used to find approximate solutions of the brain sources giving rise to a scalp potential recording. Furthermore, a review of the performance results of the different techniques is provided to compare these different inverse solutions. The authors also include the results of a Monte-Carlo analysis which they performed to compare four non parametric algorithms and hence contribute to what is presently recorded in the literature. An extensive list of references to the work of other researchers is also provided. This paper starts off with a mathematical description of the inverse problem and proceeds to discuss the two main categories of methods which were developed to solve the EEG inverse problem, mainly the non parametric and parametric methods. The main difference between the two is to whether a fixed number of dipoles is assumed a priori or not. Various techniques falling within these categories are described including minimum norm estimates and their generalizations, LORETA, sLORETA, VARETA, S-MAP, ST-MAP, Backus-Gilbert, LAURA, Shrinking LORETA FOCUSS (SLF, SSLOFO and ALF for non parametric methods and beamforming techniques, BESA, subspace techniques such as MUSIC and methods derived from it, FINES, simulated annealing and computational intelligence algorithms for parametric methods. From a review of the performance of these techniques as documented in the literature, one could conclude that in most cases the LORETA solution gives satisfactory results. In situations involving clusters of dipoles, higher resolution algorithms such as MUSIC or FINES are however preferred. Imposing reliable biophysical and psychological constraints, as done by LAURA has given superior results. The Monte-Carlo analysis performed, comparing WMN, LORETA, sLORETA and SLF

  5. Objective Audiometry using Ear-EEG

    DEFF Research Database (Denmark)

    Christensen, Christian Bech; Kidmose, Preben

    Recently, a novel electroencephalographic (EEG) method called ear-EEG [1], that enable recording of auditory evoked potentials (AEPs) from a personalized earpiece was introduced. Initial investigations show that well established AEPs, such as ASSR and P1-N1-P2 complex can be observed from ear-EEG...

  6. Hypnagogic EEG stages and polysomnogram

    OpenAIRE

    HAYASHI, Mitsuo; HIBINO, Kenji; HORI, Tadao

    1999-01-01

    The aim of this study is to show the polysomnogram of hypnagogic period. Sixteen subjects slept for two nights. Their EEGs (Fz, Cz, Pz, Oz), horizontal and vertical EOGs, submentalis EMG, thoracic and abdominal respiration were recorded. They pressed a button when pip tones (1000Hz, 50dB, max duration : 5s, ISI : 30-90s) were presented, and reported their psychological experiences, According to Hori et al. (1994), the hypnagogic EEGs just 5s before the pip tones were classified into 9 stages,...

  7. Nanoscale electromechanical parametric amplifier

    Science.gov (United States)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  8. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...

  9. Parametric Human Movements

    DEFF Research Database (Denmark)

    Herzog, Dennis

    adapt the primitives to the actual appearance of the tracked motion, since the appearance of actions depends on the object locations. From the recognition perspective, it is necessary to recognize a performed action, but the understanding requires also the recovery of the action parameters, which can......The thesis aims at the learning of action primitives and their application on the perceptive side (tracking/recognition) and the generative side (synthesizing for robot control). A motivation is to use a unified primitive representation applicable on both sides. The thesis considers arm actions...... with an investigation of PHMM training methods and structures to utilize the PHMM as a unified representation of parametric primitives, which is adequate for recognition and for synthesis. This is evaluated on a large motion data set. Main contributions of the thesis are the development and evaluation of approaches...

  10. EEG Findings in Burnout Patients

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Verbraak, M.J.P.M.; Bunt, P.M. van den; Keijsers, G.P.J.; Arns, M.W.

    2010-01-01

    The concept of burnout remains enigmatic since it is only determined by behavioral characteristics. Moreover, the differential diagnosis with depression and chronic fatigue syndrome is difficult. EEG-related variables in 13 patients diagnosed with burnout syndrome were compared with 13 healthy

  11. Non-parametric early seizure detection in an animal model of temporal lobe epilepsy

    Science.gov (United States)

    Talathi, Sachin S.; Hwang, Dong-Uk; Spano, Mark L.; Simonotto, Jennifer; Furman, Michael D.; Myers, Stephen M.; Winters, Jason T.; Ditto, William L.; Carney, Paul R.

    2008-03-01

    The performance of five non-parametric, univariate seizure detection schemes (embedding delay, Hurst scale, wavelet scale, nonlinear autocorrelation and variance energy) were evaluated as a function of the sampling rate of EEG recordings, the electrode types used for EEG acquisition, and the spatial location of the EEG electrodes in order to determine the applicability of the measures in real-time closed-loop seizure intervention. The criteria chosen for evaluating the performance were high statistical robustness (as determined through the sensitivity and the specificity of a given measure in detecting a seizure) and the lag in seizure detection with respect to the seizure onset time (as determined by visual inspection of the EEG signal by a trained epileptologist). An optimality index was designed to evaluate the overall performance of each measure. For the EEG data recorded with microwire electrode array at a sampling rate of 12 kHz, the wavelet scale measure exhibited better overall performance in terms of its ability to detect a seizure with high optimality index value and high statistics in terms of sensitivity and specificity.

  12. Neural network classifications and correlation analysis of EEG and MEG activity accompanying spontaneous reversals of the Necker cube.

    Science.gov (United States)

    Gaetz, M; Weinberg, H; Rzempoluck, E; Jantzen, K J

    1998-04-01

    It has recently been suggested that reentrant connections are essential in systems that process complex information [A. Damasio, H. Damasio, Cortical systems for the retrieval of concrete knowledge: the convergence zone framework, in: C. Koch, J.L. Davis (Eds.), Large Scale Neuronal Theories of the Brain, The MIT Press, Cambridge, 1995, pp. 61-74; G. Edelman, The Remembered Present, Basic Books, New York, 1989; M.I. Posner, M. Rothbart, Constructing neuronal theories of mind, in: C. Koch, J.L. Davis (Eds.), Large Scale Neuronal Theories of the Brain, The MIT Press, Cambridge, 1995, pp. 183-199; C. von der Malsburg, W. Schneider, A neuronal cocktail party processor, Biol. Cybem., 54 (1986) 29-40]. Reentry is not feedback, but parallel signalling in the time domain between spatially distributed maps, similar to a process of correlation between distributed systems. Accordingly, it was expected that during spontaneous reversals of the Necker cube, complex patterns of correlations between distributed systems would be present in the cortex. The present study included EEG (n=4) and MEG recordings (n=5). Two experimental questions were posed: (1) Can distributed cortical patterns present during perceptual reversals be classified differently using a generalised regression neural network (GRNN) compared to processing of a two-dimensional figure? (2) Does correlated cortical activity increase significantly during perception of a Necker cube reversal? One-second duration single trials of EEG and MEG data were analysed using the GRNN. Electrode/sensor pairings based on cortico-cortical connections were selected to assess correlated activity in each condition. The GRNN significantly classified single trials recorded during Necker cube reversals as different from single trials recorded during perception of a two-dimensional figure for both EEG and MEG. In addition, correlated cortical activity increased significantly in the Necker cube reversal condition for EEG and MEG compared

  13. The role of auditory cortices in the retrieval of single-trial auditory-visual object memories.

    Science.gov (United States)

    Matusz, Pawel J; Thelen, Antonia; Amrein, Sarah; Geiser, Eveline; Anken, Jacques; Murray, Micah M

    2015-03-01

    Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Multirapid Serial Visual Presentation Framework for EEG-Based Target Detection

    Directory of Open Access Journals (Sweden)

    Zhimin Lin

    2017-01-01

    Full Text Available Target image detection based on a rapid serial visual presentation (RSVP paradigm is a typical brain-computer interface system with various applications, such as image retrieval. In an RSVP paradigm, a P300 component is detected to determine target images. This strategy requires high-precision single-trial P300 detection methods. However, the performance of single-trial detection methods is relatively lower than that of multitrial P300 detection methods. Image retrieval based on multitrial P300 is a new research direction. In this paper, we propose a triple-RSVP paradigm with three images being presented simultaneously and a target image appearing three times. Thus, multitrial P300 classification methods can be used to improve detection accuracy. In this study, these mechanisms were extended and validated, and the characteristics of the multi-RSVP framework were further explored. Two different P300 detection algorithms were also utilized in multi-RSVP to demonstrate that the scheme is universally applicable. Results revealed that the detection accuracy of the multi-RSVP paradigm was higher than that of the standard RSVP paradigm. The results validate the effectiveness of the proposed method, and this method can provide a whole new idea in the field of EEG-based target detection.

  15. PyEEG: an open source Python module for EEG/MEG feature extraction.

    Science.gov (United States)

    Bao, Forrest Sheng; Liu, Xin; Zhang, Christina

    2011-01-01

    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.

  16. Parametric Mass Reliability Study

    Science.gov (United States)

    Holt, James P.

    2014-01-01

    The International Space Station (ISS) systems are designed based upon having redundant systems with replaceable orbital replacement units (ORUs). These ORUs are designed to be swapped out fairly quickly, but some are very large, and some are made up of many components. When an ORU fails, it is replaced on orbit with a spare; the failed unit is sometimes returned to Earth to be serviced and re-launched. Such a system is not feasible for a 500+ day long-duration mission beyond low Earth orbit. The components that make up these ORUs have mixed reliabilities. Components that make up the most mass-such as computer housings, pump casings, and the silicon board of PCBs-typically are the most reliable. Meanwhile components that tend to fail the earliest-such as seals or gaskets-typically have a small mass. To better understand the problem, my project is to create a parametric model that relates both the mass of ORUs to reliability, as well as the mass of ORU subcomponents to reliability.

  17. EEG use in a tertiary referral centre.

    LENUS (Irish Health Repository)

    O'Toole, O

    2011-11-15

    The aim of this study was to retrospectively audit all electroencephalograms (EEGs) done over a 2-month period in 2009 by the Neurophysiology Department at Cork University Hospital. There were 316 EEGs performed in total, of which 176\\/316 (56%) were done within 24 hours of request. Out of 316 EEGs, 208 (66%) were considered \\'appropriate\\' by SIGN and NICE guidelines; 79\\/208 (38%) had abnormal EEGs and 28 of these abnormal EEGs had epileptiform features. There were 108\\/316 (34%) \\'inappropriate\\' requests for EEG; of these 15\\/108 (14%) were abnormal. Of the 67\\/316 (21%) patients who had EEGs requested based on a history of syncope\\/funny turns: none of these patients had epileptiform abnormalities on their EEGs. Our audit demonstrates that EEGs are inappropriately over-requested in our institution in particular for cases with reported \\'funny turns\\' and syncope. The yield from EEGs in this cohort of patients was low as would be expected.

  18. Simulating real world functioning in schizophrenia using a naturalistic city environment and single-trial, goal-directed navigation

    Directory of Open Access Journals (Sweden)

    John A Zawadzki

    2013-11-01

    Full Text Available Objective: To develop a virtual reality platform that would serve as a functionally meaningful measure of cognition in schizophrenia that would complement standard batteries of cognitive tests during clinical trials for cognitive treatments in schizophrenia, be amenable to human neuroimaging research, yet lend itself to neurobiological comparison with rodent analogues.Method: Thirty-three patients with schizophrenia and 33 healthy controls matched for age, sex, video gaming experience and education completed eight rapid, single-trial virtual navigation tasks within a naturalistic virtual city. Four trials tested their ability to find different targets seen during the passive viewing of a closed path that led them around different city blocks. Four subsequent trials tested their ability to return to four different starting points after viewing a path that took them several blocks away from the starting position. Results: Individuals with schizophrenia had difficulties in way-finding, measured as distance travelled to find targets previously encountered within the virtual city. They were also more likely not to notice the target during passive viewing, less likely to find novel shortcuts to targets and more likely to become lost and fail completely in finding the target. Total travel distances across all eight trials strongly correlated (negatively with neurocognitive measures and, for 49 participants who completed the Quality of Life Scale, psychosocial functioning. Conclusion: Single-trial, goal-directed navigation in a naturalistic virtual environment is a functionally meaningful measure of cognitive functioning in schizophrenia.

  19. Automated single-trial assessment of laser-evoked potentials as an objective functional diagnostic tool for the nociceptive system.

    Science.gov (United States)

    Hatem, S M; Hu, L; Ragé, M; Gierasimowicz, A; Plaghki, L; Bouhassira, D; Attal, N; Iannetti, G D; Mouraux, A

    2012-12-01

    To assess the clinical usefulness of an automated analysis of event-related potentials (ERPs). Nociceptive laser-evoked potentials (LEPs) and non-nociceptive somatosensory electrically-evoked potentials (SEPs) were recorded in 37 patients with syringomyelia and 21 controls. LEP and SEP peak amplitudes and latencies were estimated using a single-trial automated approach based on time-frequency wavelet filtering and multiple linear regression, as well as a conventional approach based on visual inspection. The amplitudes and latencies of normal and abnormal LEP and SEP peaks were identified reliably using both approaches, with similar sensitivity and specificity. Because the automated approach provided an unbiased solution to account for average waveforms where no ERP could be identified visually, it revealed significant differences between patients and controls that were not revealed using the visual approach. The automated analysis of ERPs characterized reliably and objectively LEP and SEP waveforms in patients. The automated single-trial analysis can be used to characterize normal and abnormal ERPs with a similar sensitivity and specificity as visual inspection. While this does not justify its use in a routine clinical setting, the technique could be useful to avoid observer-dependent biases in clinical research. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Single-Trial Classification of Bistable Perception by Integrating Empirical Mode Decomposition, Clustering, and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Hualou Liang

    2008-04-01

    Full Text Available We propose an empirical mode decomposition (EMD- based method to extract features from the multichannel recordings of local field potential (LFP, collected from the middle temporal (MT visual cortex in a macaque monkey, for decoding its bistable structure-from-motion (SFM perception. The feature extraction approach consists of three stages. First, we employ EMD to decompose nonstationary single-trial time series into narrowband components called intrinsic mode functions (IMFs with time scales dependent on the data. Second, we adopt unsupervised K-means clustering to group the IMFs and residues into several clusters across all trials and channels. Third, we use the supervised common spatial patterns (CSP approach to design spatial filters for the clustered spatiotemporal signals. We exploit the support vector machine (SVM classifier on the extracted features to decode the reported perception on a single-trial basis. We demonstrate that the CSP feature of the cluster in the gamma frequency band outperforms the features in other frequency bands and leads to the best decoding performance. We also show that the EMD-based feature extraction can be useful for evoked potential estimation. Our proposed feature extraction approach may have potential for many applications involving nonstationary multivariable time series such as brain-computer interfaces (BCI.

  1. Selectivity of N170 for visual words in the right hemisphere: Evidence from single-trial analysis.

    Science.gov (United States)

    Yang, Hang; Zhao, Jing; Gaspar, Carl M; Chen, Wei; Tan, Yufei; Weng, Xuchu

    2017-08-01

    Neuroimaging and neuropsychological studies have identified the involvement of the right posterior region in the processing of visual words. Interestingly, in contrast, ERP studies of the N170 typically demonstrate selectivity for words more strikingly over the left hemisphere. Why is right hemisphere selectivity for words during the N170 epoch typically not observed, despite the clear involvement of this region in word processing? One possibility is that amplitude differences measured on averaged ERPs in previous studies may have been obscured by variation in peak latency across trials. This study examined this possibility by using single-trial analysis. Results show that words evoked greater single-trial N170s than control stimuli in the right hemisphere. Additionally, we observed larger trial-to-trial variability on N170 peak latency for words as compared to control stimuli over the right hemisphere. Results demonstrate that, in contrast to much of the prior literature, the N170 can be selective to words over the right hemisphere. This discrepancy is explained in terms of variability in trial-to-trial peak latency for responses to words over the right hemisphere. © 2017 Society for Psychophysiological Research.

  2. Planar Parametrization in Isogeometric Analysis

    DEFF Research Database (Denmark)

    Gravesen, Jens; Evgrafov, Anton; Nguyen, Dang-Manh

    2012-01-01

    Before isogeometric analysis can be applied to solving a partial differential equation posed over some physical domain, one needs to construct a valid parametrization of the geometry. The accuracy of the analysis is affected by the quality of the parametrization. The challenge of computing...... and maintaining a valid geometry parametrization is particularly relevant in applications of isogemetric analysis to shape optimization, where the geometry varies from one optimization iteration to another. We propose a general framework for handling the geometry parametrization in isogeometric analysis and shape...... are suitable for our framework. The non-linear methods we consider are based on solving a constrained optimization problem numerically, and are divided into two classes, geometry-oriented methods and analysis-oriented methods. Their performance is illustrated through a few numerical examples....

  3. Association between increased EEG signal complexity and cannabis dependence.

    Science.gov (United States)

    Laprevote, Vincent; Bon, Laura; Krieg, Julien; Schwitzer, Thomas; Bourion-Bedes, Stéphanie; Maillard, Louis; Schwan, Raymund

    2017-12-01

    Both acute and regular cannabis use affects the functioning of the brain. While several studies have demonstrated that regular cannabis use can impair the capacity to synchronize neural assemblies during specific tasks, less is known about spontaneous brain activity. This can be explored by measuring EEG complexity, which reflects the spontaneous variability of human brain activity. A recent study has shown that acute cannabis use can affect that complexity. Since the characteristics of cannabis use can affect the impact on brain functioning, this study sets out to measure EEG complexity in regular cannabis users with or without dependence, in comparison with healthy controls. We recruited 26 healthy controls, 25 cannabis users without cannabis dependence and 14 cannabis users with cannabis dependence, based on DSM IV TR criteria. The EEG signal was extracted from at least 250 epochs of the 500ms pre-stimulation phase during a visual evoked potential paradigm. Brain complexity was estimated using Lempel-Ziv Complexity (LZC), which was compared across groups by non-parametric Kruskall-Wallis ANOVA. The analysis revealed a significant difference between the groups, with higher LZC in participants with cannabis dependence than in non-dependent cannabis users. There was no specific localization of this effect across electrodes. We showed that cannabis dependence is associated to an increased spontaneous brain complexity in regular users. This result is in line with previous results in acute cannabis users. It may reflect increased randomness of neural activity in cannabis dependence. Future studies should explore whether this effect is permanent or diminishes with cannabis cessation. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  4. Parametric FEM for geometric biomembranes

    Science.gov (United States)

    Bonito, Andrea; Nochetto, Ricardo H.; Sebastian Pauletti, M.

    2010-05-01

    We consider geometric biomembranes governed by an L2-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.

  5. Independent EEG sources are dipolar.

    Directory of Open Access Journals (Sweden)

    Arnaud Delorme

    Full Text Available Independent component analysis (ICA and blind source separation (BSS methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR effected by each decomposition, and decomposition 'dipolarity' defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA; best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison.

  6. EEG correlates of virtual reality hypnosis.

    Science.gov (United States)

    White, David; Ciorciari, Joseph; Carbis, Colin; Liley, David

    2009-01-01

    The study investigated hypnosis-related electroencephalographic (EEG) coherence and power spectra changes in high and low hypnotizables (Stanford Hypnotic Clinical Scale) induced by a virtual reality hypnosis (VRH) induction system. In this study, the EEG from 17 participants (Mean age = 21.35, SD = 1.58) were compared based on their hypnotizability score. The EEG recording associated with a 2-minute, eyes-closed baseline state was compared to the EEG during a hypnosis-related state. This novel induction system was able to produce EEG findings consistent with previous hypnosis literature. Interactions of significance were found with EEG beta coherence. The high susceptibility group (n = 7) showed decreased coherence, while the low susceptibility group (n = 10) demonstrated an increase in coherence between medial frontal and lateral left prefrontal sites. Methodological and efficacy issues are discussed.

  7. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM.

    Science.gov (United States)

    López, J D; Litvak, V; Espinosa, J J; Friston, K; Barnes, G R

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. © 2013. Published by Elsevier Inc. All rights reserved.

  8. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆

    Science.gov (United States)

    López, J.D.; Litvak, V.; Espinosa, J.J.; Friston, K.; Barnes, G.R.

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. PMID:24041874

  9. Taking into account latency, amplitude, and morphology: improved estimation of single-trial ERPs by wavelet filtering and multiple linear regression.

    Science.gov (United States)

    Hu, L; Liang, M; Mouraux, A; Wise, R G; Hu, Y; Iannetti, G D

    2011-12-01

    Across-trial averaging is a widely used approach to enhance the signal-to-noise ratio (SNR) of event-related potentials (ERPs). However, across-trial variability of ERP latency and amplitude may contain physiologically relevant information that is lost by across-trial averaging. Hence, we aimed to develop a novel method that uses 1) wavelet filtering (WF) to enhance the SNR of ERPs and 2) a multiple linear regression with a dispersion term (MLR(d)) that takes into account shape distortions to estimate the single-trial latency and amplitude of ERP peaks. Using simulated ERP data sets containing different levels of noise, we provide evidence that, compared with other approaches, the proposed WF+MLR(d) method yields the most accurate estimate of single-trial ERP features. When applied to a real laser-evoked potential data set, the WF+MLR(d) approach provides reliable estimation of single-trial latency, amplitude, and morphology of ERPs and thereby allows performing meaningful correlations at single-trial level. We obtained three main findings. First, WF significantly enhances the SNR of single-trial ERPs. Second, MLR(d) effectively captures and measures the variability in the morphology of single-trial ERPs, thus providing an accurate and unbiased estimate of their peak latency and amplitude. Third, intensity of pain perception significantly correlates with the single-trial estimates of N2 and P2 amplitude. These results indicate that WF+MLR(d) can be used to explore the dynamics between different ERP features, behavioral variables, and other neuroimaging measures of brain activity, thus providing new insights into the functional significance of the different brain processes underlying the brain responses to sensory stimuli.

  10. Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm

    Directory of Open Access Journals (Sweden)

    Maren Stropahl

    2018-05-01

    Full Text Available Electroencephalography (EEG source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA. ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat. Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM. We then apply the method of dynamical statistical parametric mapping (dSPM to obtain

  11. Juvenile myoclonic epilepsy: clinical and EEG features

    DEFF Research Database (Denmark)

    Pedersen, S B; Petersen, K A

    1998-01-01

    We aimed to characterize the clinical profile and EEG features of 43 patients with juvenile myoclonic epilepsy. In a retrospective design we studied the records of, and re-interviewed, 43 patients diagnosed with JME from the epilepsy clinic data base. Furthermore, available EEGs were re...... were sleep deprivation (84%), stress (70%), and alcohol consumption (51%). EEG findings included rapid spike-wave and polyspike-wave....

  12. Juvenile myoclonic epilepsy: clinical and EEG features

    DEFF Research Database (Denmark)

    Pedersen, S B; Petersen, K A

    1998-01-01

    We aimed to characterize the clinical profile and EEG features of 43 patients with juvenile myoclonic epilepsy. In a retrospective design we studied the records of, and re-interviewed, 43 patients diagnosed with JME from the epilepsy clinic data base. Furthermore, available EEGs were re-evaluated...... were sleep deprivation (84%), stress (70%), and alcohol consumption (51%). EEG findings included rapid spike-wave and polyspike-wave....

  13. Parametric design using IGRIP

    International Nuclear Information System (INIS)

    Baker, C.

    1994-10-01

    The Department of Energy's (DOE) Hanford site near Richland, Washington is being cleaned up after 50 years of nuclear materials production. One of the most serious problems at the site is the waste stored in single-shell underground storage tanks. There are 149 of these tanks containing the spent fuel residue remaining after the fuel is dissolved in acid and the desired materials (primarily plutonium and uranium) are separated out. The tanks are upright cylinders 75 ft. in diameter with domed tops. They are made of reinforced concrete, have steel liners, and each tank is buried under 7--12 ft. of overburden. The tanks are up to 40-ft. high, and have capacities of 500,000, 750,000, or 1,000,000 gallons of waste. As many as one-third of these tanks are known or suspected to leak. The waste form contained in the tanks varies in consistency from liquid supernatant to peanut-butter-like gels and sludges to hard salt cake (perhaps as hard as low-grade concrete). The current waste retrieval plan is to insert a large long-reach manipulator through a hole cut in the top of the tank, and use a variety of end-effectors to mobilize the waste and remove it from the tank. PNL has, with the assistance of Deneb robotics employees, developed a means of using the IGRIP code to perform parametric design of mechanical systems. This method requires no modifications to the IGRIP code, and all design data are stored in the IGRIP workcell. The method is presented in the context of development of a passive articulated mechanism that is used to deliver down-arm services to a gantry robot. The method is completely general, however, and could be used to design a fully articulated manipulator. Briefly, the method involves using IGCALC expressions to control manipulator joint angles, and IGCALC variables to allow user control of link lengths and offsets. This paper presents the method in detail, with examples drawn from PNL's experience with the gantry robot service-providing mechanism

  14. Whitening of Background Brain Activity via Parametric Modeling

    Directory of Open Access Journals (Sweden)

    Nidal Kamel

    2007-01-01

    Full Text Available Several signal subspace techniques have been recently suggested for the extraction of the visual evoked potential signals from brain background colored noise. The majority of these techniques assume the background noise as white, and for colored noise, it is suggested to be whitened, without further elaboration on how this might be done. In this paper, we investigate the whitening capabilities of two parametric techniques: a direct one based on Levinson solution of Yule-Walker equations, called AR Yule-Walker, and an indirect one based on the least-squares solution of forward-backward linear prediction (FBLP equations, called AR-FBLP. The whitening effect of the two algorithms is investigated with real background electroencephalogram (EEG colored noise and compared in time and frequency domains.

  15. Test-retest reliability of cognitive EEG

    Science.gov (United States)

    McEvoy, L. K.; Smith, M. E.; Gevins, A.

    2000-01-01

    OBJECTIVE: Task-related EEG is sensitive to changes in cognitive state produced by increased task difficulty and by transient impairment. If task-related EEG has high test-retest reliability, it could be used as part of a clinical test to assess changes in cognitive function. The aim of this study was to determine the reliability of the EEG recorded during the performance of a working memory (WM) task and a psychomotor vigilance task (PVT). METHODS: EEG was recorded while subjects rested quietly and while they performed the tasks. Within session (test-retest interval of approximately 1 h) and between session (test-retest interval of approximately 7 days) reliability was calculated for four EEG components: frontal midline theta at Fz, posterior theta at Pz, and slow and fast alpha at Pz. RESULTS: Task-related EEG was highly reliable within and between sessions (r0.9 for all components in WM task, and r0.8 for all components in the PVT). Resting EEG also showed high reliability, although the magnitude of the correlation was somewhat smaller than that of the task-related EEG (r0.7 for all 4 components). CONCLUSIONS: These results suggest that under appropriate conditions, task-related EEG has sufficient retest reliability for use in assessing clinical changes in cognitive status.

  16. Tele-transmission of EEG recordings.

    Science.gov (United States)

    Lemesle, M; Kubis, N; Sauleau, P; N'Guyen The Tich, S; Touzery-de Villepin, A

    2015-03-01

    EEG recordings can be sent for remote interpretation. This article aims to define the tele-EEG procedures and technical guidelines. Tele-EEG is a complete medical act that needs to be carried out with the same quality requirements as a local one in terms of indications, formulation of the medical request and medical interpretation. It adheres to the same quality requirements for its human resources and materials. It must be part of a medical organization (technical and medical network) and follow all rules and guidelines of good medical practices. The financial model of this organization must include costs related to performing the EEG recording, operating and maintenance of the tele-EEG network and medical fees of the physician interpreting the EEG recording. Implementing this organization must be detailed in a convention between all parties involved: physicians, management of the healthcare structure, and the company providing the tele-EEG service. This convention will set rules for network operation and finance, and also the continuous training of all staff members. The tele-EEG system must respect all rules for safety and confidentiality, and ensure the traceability and storing of all requests and reports. Under these conditions, tele-EEG can optimize the use of human resources and competencies in its zone of utilization and enhance the organization of care management. Copyright © 2015. Published by Elsevier SAS.

  17. Relationship between speed and EEG activity during imagined and executed hand movements

    Science.gov (United States)

    Yuan, Han; Perdoni, Christopher; He, Bin

    2010-04-01

    The relationship between primary motor cortex and movement kinematics has been shown in nonhuman primate studies of hand reaching or drawing tasks. Studies have demonstrated that the neural activities accompanying or immediately preceding the movement encode the direction, speed and other information. Here we investigated the relationship between the kinematics of imagined and actual hand movement, i.e. the clenching speed, and the EEG activity in ten human subjects. Study participants were asked to perform and imagine clenching of the left hand and right hand at various speeds. The EEG activity in the alpha (8-12 Hz) and beta (18-28 Hz) frequency bands were found to be linearly correlated with the speed of imagery clenching. Similar parametric modulation was also found during the execution of hand movements. A single equation relating the EEG activity to the speed and the hand (left versus right) was developed. This equation, which contained a linear independent combination of the two parameters, described the time-varying neural activity during the tasks. Based on the model, a regression approach was developed to decode the two parameters from the multiple-channel EEG signals. We demonstrated the continuous decoding of dynamic hand and speed information of the imagined clenching. In particular, the time-varying clenching speed was reconstructed in a bell-shaped profile. Our findings suggest an application to providing continuous and complex control of noninvasive brain-computer interface for movement-impaired paralytics.

  18. Video-EEG epilepsian diagnostiikassa - milloin ja miksi?

    OpenAIRE

    Mervaala, Esa; Mäkinen, Riikka; Peltola, Jukka; Eriksson, Kai; Jutila, Leena; Immonen, Arto

    2009-01-01

    Aivosähkötoimintaa mittaava EEG on epilepsian spesifinen tutkimus. Video-EEG:llä (V-EEG) tarkoitetaan EEG:n ja videokuvan samanaikaista tallennusta. Valtaosa epilepsiapotilaista joudutaan diagnosoimaan ilman V-EEG:tä, varsinkin jos kohtauksia on esiintynyt vain muutama. Kohtausten toistuessa tavoite on päästä kohtauksenaikaiseen V-EEG-rekisteröintiin. V-EEG:n käyttöaiheista tärkein on epilepsian diagnostiikka ja erotusdiagnostiikka. V-EEG:llä pystytään erottamaan epileptiset kohtaukset esimer...

  19. STATCAT, Statistical Analysis of Parametric and Non-Parametric Data

    International Nuclear Information System (INIS)

    David, Hugh

    1990-01-01

    1 - Description of program or function: A suite of 26 programs designed to facilitate the appropriate statistical analysis and data handling of parametric and non-parametric data, using classical and modern univariate and multivariate methods. 2 - Method of solution: Data is read entry by entry, using a choice of input formats, and the resultant data bank is checked for out-of- range, rare, extreme or missing data. The completed STATCAT data bank can be treated by a variety of descriptive and inferential statistical methods, and modified, using other standard programs as required

  20. Ionospheric modification and parametric instabilities

    International Nuclear Information System (INIS)

    Fejer, J.A.

    1979-01-01

    Thresholds and linear growth rates for stimulated Brillouin and Raman scattering and for the parametric decay instability are derived by using arguments of energy transfer. For this purpose an expression for the ponderomotive force is derived. Conditions under which the partial pressure force due to differential dissipation exceeds the ponderomotive force are also discussed. Stimulated Brillouin and Raman scattering are weakly excited by existing incoherent backscatter radars. The parametric decay instability is strongly excited in ionospheric heating experiments. Saturation theories of the parametric decay instability are therefore described. After a brief discussion of the purely growing instability the effect of using several pumps is discussed as well as the effects of inhomogenicity. Turning to detailed theories of ionospheric heating, artificial spread F is discussed in terms of a purely growing instability where the nonlinearity is due to dissipation. Field-aligned short-scale striations are explained in terms of dissipation of the parametrically excited Langmuir waves (plasma oscillations): they might be further amplified by an explosive instability (except the magnetic equator). Broadband absorption is probably responsible for the 'overshoot' effect: the initially observed level of parametrically excited Langmuir waves is much higher than the steady state level

  1. Prediction of rhythmic and periodic EEG patterns and seizures on continuous EEG with early epileptiform discharges.

    Science.gov (United States)

    Koren, J; Herta, J; Draschtak, S; Pötzl, G; Pirker, S; Fürbass, F; Hartmann, M; Kluge, T; Baumgartner, C

    2015-08-01

    Continuous EEG (cEEG) is necessary to document nonconvulsive seizures (NCS), nonconvulsive status epilepticus (NCSE), as well as rhythmic and periodic EEG patterns of 'ictal-interictal uncertainty' (RPPIIU) including periodic discharges, rhythmic delta activity, and spike-and-wave complexes in neurological intensive care patients. However, cEEG is associated with significant recording and analysis efforts. Therefore, predictors from short-term routine EEG with a reasonably high yield are urgently needed in order to select patients for evaluation with cEEG. The aim of this study was to assess the prognostic significance of early epileptiform discharges (i.e., within the first 30 min of EEG recording) on the following: (1) incidence of ictal EEG patterns and RPPIIU on subsequent cEEG, (2) occurrence of acute convulsive seizures during the ICU stay, and (3) functional outcome after 6 months of follow-up. We conducted a separate analysis of the first 30 min and the remaining segments of prospective cEEG recordings according to the ACNS Standardized Critical Care EEG Terminology as well as NCS criteria and review of clinical data of 32 neurological critical care patients. In 17 patients with epileptiform discharges within the first 30 min of EEG (group 1), electrographic seizures were observed in 23.5% (n = 4), rhythmic or periodic EEG patterns of 'ictal-interictal uncertainty' in 64.7% (n = 11), and neither electrographic seizures nor RPPIIU in 11.8% (n = 2). In 15 patients with no epileptiform discharges in the first 30 min of EEG (group 2), no electrographic seizures were recorded on subsequent cEEG, RPPIIU were seen in 26.7% (n = 4), and neither electrographic seizures nor RPPIIU in 73.3% (n = 11). The incidence of EEG patterns on cEEG was significantly different between the two groups (p = 0.008). Patients with early epileptiform discharges developed acute seizures more frequently than patients without early epileptiform discharges (p = 0.009). Finally, functional

  2. Validity and reliability of the single-trial line drill test of anaerobic power in basketball players.

    Science.gov (United States)

    Fatouros, I G; Laparidis, K; Kambas, A; Chatzinikolaou, A; Techlikidou, E; Katrabasas, I; Douroudos, I; Leontsini, D; Berberidou, F; Draganidis, D; Christoforidis, C; Tsoukas, D; Kelis, S; Taxildaris, K

    2011-03-01

    This study evaluated the validity, reliability, and sensitivity of the single-trial line drill test (SLDT) for anaerobic power assessment. Twenty-four volunteers were assigned to either a control (C, N.=12) or an experimental (BP, N.=12 basketball players) group. SLDT's (time-to-complete) concurrent validity was evaluated against the Wingate testing (WAnT: mean [MP] and peak power [PP]) and a 30-sec vertical jump testing test (VJT: mean height and MP). Blood lactate concentration was measured at rest and immediately post-test. SLDT's reliability [test-retest intraclass correlation coefficients (ICC), coefficient of variation (CV), Bland-Altman plots] and sensitivity were determined (one-way ANOVA). Kendall's tau correlation analysis revealed correlations (Pbasketball players.

  3. Variance stabilization for computing and comparing grand mean waveforms in MEG and EEG.

    Science.gov (United States)

    Matysiak, Artur; Kordecki, Wojciech; Sielużycki, Cezary; Zacharias, Norman; Heil, Peter; König, Reinhard

    2013-07-01

    Grand means of time-varying signals (waveforms) across subjects in magnetoencephalography (MEG) and electroencephalography (EEG) are commonly computed as arithmetic averages and compared between conditions, for example, by subtraction. However, the prerequisite for these operations, homogeneity of the variance of the waveforms in time, and for most common parametric statistical tests also between conditions, is rarely met. We suggest that the heteroscedasticity observed instead results because waveforms may differ by factors and additive terms and follow a mixed model. We propose to apply the asinh-transformation to stabilize the variance in such cases. We demonstrate the homogeneous variance and the normal distributions of data achieved by this transformation using simulated waveforms, and we apply it to real MEG data and show its benefits. The asinh-transformation is thus an essential and useful processing step prior to computing and comparing grand mean waveforms in MEG and EEG. Copyright © 2013 Society for Psychophysiological Research.

  4. Inflammatory and vascular placental lesions are associated with neonatal amplitude integrated EEG recording in early premature neonates.

    Directory of Open Access Journals (Sweden)

    Dorit Paz-Levy

    Full Text Available Placental histologic examination can assist in revealing the mechanism leading to preterm birth. Accumulating evidence suggests an association between intrauterine pathological processes, morbidity and mortality of premature infants, and their long term outcome. Neonatal brain activity is increasingly monitored in neonatal intensive care units by amplitude integrated EEG (aEEG and indices of background activity and sleep cycling patterns were correlated with long term outcome. We hypothesized an association between types of placental lesions and abnormal neonatal aEEG patterns.To determine the association between the placental lesions observed in extreme preterm deliveries, and their neonatal aEEG patterns and survival.This prospective cohort study included extreme premature infants, who were born ≤ 28 weeks of gestation, their placentas were available for histologic examination, and had a continues aEEG, soon after birthn = 34. Infants and maternal clinical data were collected. aEEG data was assessed for percentage of depressed daily activity in the first 3 days of life and for sleep cycling. Associations of placental histology with clinical findings and aEEG activity were explored using parametric and non-parametric statistics.Twenty two out of the 34 newborns survived to discharge. Preterm prelabor rupture of membranes (PPROM or chorioamnionitis were associated with placental lesions consistent with fetal amniotic fluid infection (AFI or maternal under perfusion (MUP (P < 0.05. Lesions consistent with fetal response to AFI were associated with absence of SWC pattern during the 1st day of life. Fetal-vascular-thrombo-occlusive lesions of inflammatory type were negatively associated with depressed cerebral activity during the 1st day of life, and with aEEG cycling during the 2nd day of life (P<0.05. Placental lesions associated with MUP were associated with depressed neonatal cerebral activity during the first 3 days of life (P = 0

  5. Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG

    Science.gov (United States)

    Bleichner, Martin G.; Debener, Stefan

    2017-01-01

    Electroencephalography (EEG) is an important clinical tool and frequently used to study the brain-behavior relationship in humans noninvasively. Traditionally, EEG signals are recorded by positioning electrodes on the scalp and keeping them in place with glue, rubber bands, or elastic caps. This setup provides good coverage of the head, but is impractical for EEG acquisition in natural daily-life situations. Here, we propose the transparent EEG concept. Transparent EEG aims for motion tolerant, highly portable, unobtrusive, and near invisible data acquisition with minimum disturbance of a user's daily activities. In recent years several ear-centered EEG solutions that are compatible with the transparent EEG concept have been presented. We discuss work showing that miniature electrodes placed in and around the human ear are a feasible solution, as they are sensitive enough to pick up electrical signals stemming from various brain and non-brain sources. We also describe the cEEGrid flex-printed sensor array, which enables unobtrusive multi-channel EEG acquisition from around the ear. In a number of validation studies we found that the cEEGrid enables the recording of meaningful continuous EEG, event-related potentials and neural oscillations. Here, we explain the rationale underlying the cEEGrid ear-EEG solution, present possible use cases and identify open issues that need to be solved on the way toward transparent EEG. PMID:28439233

  6. Automatic seizure detection: going from sEEG to iEEG

    DEFF Research Database (Denmark)

    Henriksen, Jonas; Remvig, Line Sofie; Madsen, Rasmus Elsborg

    2010-01-01

    Several different algorithms have been proposed for automatic detection of epileptic seizures based on both scalp and intracranial electroencephalography (sEEG and iEEG). Which modality that renders the best result is hard to assess though. From 16 patients with focal epilepsy, at least 24 hours...... of ictal and non-ictal iEEG were obtained. Characteristics of the seizures are represented by use of wavelet transformation (WT) features and classified by a support vector machine. When implementing a method used for sEEG on iEEG data, a great improvement in performance was obtained when the high...... frequency containing lower levels in the WT were included in the analysis. We were able to obtain a sensitivity of 96.4% and a false detection rate (FDR) of 0.20/h. In general, when implementing an automatic seizure detection algorithm made for sEEG on iEEG, great improvement can be obtained if a frequency...

  7. EEG entropy measures in anesthesia

    Directory of Open Access Journals (Sweden)

    Zhenhu eLiang

    2015-02-01

    Full Text Available Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs’ effect is lacking. In this study, we compare the capability of twelve entropy indices for monitoring depth of anesthesia (DoA and detecting the burst suppression pattern (BSP, in anesthesia induced by GA-BAergic agents.Methods: Twelve indices were investigated, namely Response Entropy (RE and State entropy (SE, three wavelet entropy (WE measures (Shannon WE (SWE, Tsallis WE (TWE and Renyi WE (RWE, Hilbert-Huang spectral entropy (HHSE, approximate entropy (ApEn, sample entropy (SampEn, Fuzzy entropy, and three permutation entropy (PE measures (Shannon PE (SPE, Tsallis PE (TPE and Renyi PE (RPE. Two EEG data sets from sevoflurane-induced and isoflu-rane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, phar-macokinetic / pharmacodynamic (PK/PD modeling and prediction probability analysis were applied. The multifractal detrended fluctuation analysis (MDFA as a non-entropy measure was compared.Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline vari-ability, higher coefficient of determination and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an ad-vantage in computation efficiency compared with MDFA.Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA. Overall, it is suggested that the RPE index was a superior measure.Significance: Investigating the advantages and disadvantages of these entropy indices could help improve current clinical indices for monitoring DoA.

  8. Parametric Thinking in Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai

    2010-01-01

    The paper states that most applications of parametric mod- elling to architecture and urban design fall into one of two strands of either form for form’s sake, or the negotiation of environmental con- cerns, while approaches which allow scenarios to be easily tested and modified without the appli...... of the paper. The pros and cons of this simple approach is discussed, and the paper con- cludes, that while it does not represent a suitable solution in all cases, it fills a gap among the existing approaches to parametric urban de- sign.......The paper states that most applications of parametric mod- elling to architecture and urban design fall into one of two strands of either form for form’s sake, or the negotiation of environmental con- cerns, while approaches which allow scenarios to be easily tested and modified without...

  9. EEG entropy measures in anesthesia

    Science.gov (United States)

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation

  10. EEG applications for sport and performance.

    Science.gov (United States)

    Thompson, Trevor; Steffert, Tony; Ros, Tomas; Leach, Joseph; Gruzelier, John

    2008-08-01

    One approach to understanding processes that underlie skilled performing has been to study electrical brain activity using electroencephalography (EEG). A notorious problem with EEG is that genuine cerebral data is often contaminated by artifacts of non-cerebral origin. Unfortunately, such artifacts tend to be exacerbated when the subject is in motion, meaning that obtaining reliable data during exercise is inherently problematic. These problems may explain the limited number of studies using EEG as a methodological tool in the sports sciences. This paper discusses how empirical studies have generally tackled the problem of movement artifact by adopting alternative paradigms which avoid recording during actual physical exertion. Moreover, the specific challenges that motion presents to obtaining reliable EEG data are discussed along with practical and computational techniques to confront these challenges. Finally, as EEG recording in sports is often underpinned by a desire to optimise performance, a brief review of EEG-biofeedback and peak performance studies is also presented. A knowledge of practical aspects of EEG recording along with the advent of new technology and increasingly sophisticated processing models offer a promising approach to minimising, if perhaps not entirely circumventing, the problem of obtaining reliable EEG data during motion.

  11. Effects of oral amines on the EEG.

    Science.gov (United States)

    Scott, D F; Moffett, A M; Swash, M

    1977-02-01

    Oral tyramine activated pre-existing episodic EEG abnormalities--namely, sharp waves, spike and wave, and localised theta activity--in epileptic patients. Little change was found in the EEGs of migrainous subjects after chocolate or beta-phenylethylamine. The implications of the findings with tyramine are discussed.

  12. Source localization of rhythmic ictal EEG activity

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana

    2013-01-01

    Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal...... EEG activity using a distributed source model....

  13. Analysis of EEG Related Saccadic Eye Movement

    Science.gov (United States)

    Funase, Arao; Kuno, Yoshiaki; Okuma, Shigeru; Yagi, Tohru

    Our final goal is to establish the model for saccadic eye movement that connects the saccade and the electroencephalogram(EEG). As the first step toward this goal, we recorded and analyzed the saccade-related EEG. In the study recorded in this paper, we tried detecting a certain EEG that is peculiar to the eye movement. In these experiments, each subject was instructed to point their eyes toward visual targets (LEDs) or the direction of the sound sources (buzzers). In the control cases, the EEG was recorded in the case of no eye movemens. As results, in the visual experiments, we found that the potential of EEG changed sharply on the occipital lobe just before eye movement. Furthermore, in the case of the auditory experiments, similar results were observed. In the case of the visual experiments and auditory experiments without eye movement, we could not observed the EEG changed sharply. Moreover, when the subject moved his/her eyes toward a right-side target, a change in EEG potential was found on the right occipital lobe. On the contrary, when the subject moved his/her eyes toward a left-side target, a sharp change in EEG potential was found on the left occipital lobe.

  14. Changes of hypnagogic imagery and EEG stages

    OpenAIRE

    Hayashi, Mitsuo; Katoh, Kohichi; Hori, Tadao

    1998-01-01

    The aim of this study is to investigate the relationships between hypnagogic imagery and EEG stages. According to Hori, et al. (1994), the hypnagogic EEGs was classified into 9 stages, those were 1) alpha wave train, 2) alpha wave intermittent (>50%), 3) alpha wave intermittent (

  15. Continuous EEG Monitoring in Aneurysmal Subarachnoid Hemorrhage

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Friberg, Christian Kærsmose; Wellwood, Ian

    2015-01-01

    BACKGROUND: Continuous EEG (cEEG) may allow monitoring of patients with aneurysmal subarachnoid hemorrhage (SAH) for delayed cerebral ischemia (DCI) and seizures, including non-convulsive seizures (NCSz), and non-convulsive status epilepticus (NCSE). We aimed to evaluate: (a) the diagnostic...

  16. Entanglement in a parametric converter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su-Yong; Qamar, Shahid; Lee, Hai-Woong; Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)], E-mail: shahid_qamar@pieas.edu.pk, E-mail: zubairy@physics.tamu.edu

    2008-07-28

    In this paper, we consider a parametric converter as a source of entangled radiation. We examine recently derived conditions (Hillery and Zubairy 2006 Phys. Rev. Lett. 96 050503, Duan et al 2000 Phys. Rev. Lett. 84 2722) for determining when the two output modes in a parametric converter are entangled. We show that for different initial field states, the two criteria give different conditions that ensure that the output states are entangled. We also present an input-output calculation for the entanglement of the output field.

  17. Variance in parametric images: direct estimation from parametric projections

    International Nuclear Information System (INIS)

    Maguire, R.P.; Leenders, K.L.; Spyrou, N.M.

    2000-01-01

    Recent work has shown that it is possible to apply linear kinetic models to dynamic projection data in PET in order to calculate parameter projections. These can subsequently be back-projected to form parametric images - maps of parameters of physiological interest. Critical to the application of these maps, to test for significant changes between normal and pathophysiology, is an assessment of the statistical uncertainty. In this context, parametric images also include simple integral images from, e.g., [O-15]-water used to calculate statistical parametric maps (SPMs). This paper revisits the concept of parameter projections and presents a more general formulation of the parameter projection derivation as well as a method to estimate parameter variance in projection space, showing which analysis methods (models) can be used. Using simulated pharmacokinetic image data we show that a method based on an analysis in projection space inherently calculates the mathematically rigorous pixel variance. This results in an estimation which is as accurate as either estimating variance in image space during model fitting, or estimation by comparison across sets of parametric images - as might be done between individuals in a group pharmacokinetic PET study. The method based on projections has, however, a higher computational efficiency, and is also shown to be more precise, as reflected in smooth variance distribution images when compared to the other methods. (author)

  18. A simple system for detection of EEG artifacts in polysomnographic recordings.

    Science.gov (United States)

    Durka, P J; Klekowicz, H; Blinowska, K J; Szelenberger, W; Niemcewicz, Sz

    2003-04-01

    We present an efficient parametric system for automatic detection of electroencephalogram (EEG) artifacts in polysomnographic recordings. For each of the selected types of artifacts, a relevant parameter was calculated for a given epoch. If any of these parameters exceeded a threshold, the epoch was marked as an artifact. Performance of the system, evaluated on 18 overnight polysomnographic recordings, revealed concordance with decisions of human experts close to the interexpert agreement and the repeatability of expert's decisions, assessed via a double-blind test. Complete software (Matlab source code) for the presented system is freely available from the Internet at http://brain.fuw.edu.pl/artifacts.

  19. PARAMETRIC MODEL OF LUMBAR VERTEBRA

    Directory of Open Access Journals (Sweden)

    CAPPETTI Nicola

    2010-11-01

    Full Text Available The present work proposes the realization of a parametric/variational CAD model of a normotype lumbar vertebra, which could be used for improving the effectiveness of actual imaging techniques in informational augmentation of the orthopaedic and traumatological diagnosis. In addition it could be used for ergonomic static and dynamical analysis of the lumbar region and vertebral column.

  20. Parametric programming of industrial robots

    Directory of Open Access Journals (Sweden)

    Szulczyński Paweł

    2015-06-01

    Full Text Available This article proposes the use of parametric design software, commonly used by architects, in order to obtain complex trajectory and program code for industrial robots. The paper describes the drawbacks of existing solutions and proposes a new script to obtain a correct program. The result of the algorithm was verified experimentally.

  1. Relational Parametricity and Separation Logic

    DEFF Research Database (Denmark)

    Birkedal, Lars; Yang, Hongseok

    2008-01-01

    Separation logic is a recent extension of Hoare logic for reasoning about programs with references to shared mutable data structures. In this paper, we provide a new interpretation of the logic for a programming language with higher types. Our interpretation is based on Reynolds's relational...... parametricity, and it provides a formal connection between separation logic and data abstraction. Udgivelsesdato: 2008...

  2. Application of modern tests for stationarity to single-trial MEG data: transferring powerful statistical tools from econometrics to neuroscience.

    Science.gov (United States)

    Kipiński, Lech; König, Reinhard; Sielużycki, Cezary; Kordecki, Wojciech

    2011-10-01

    Stationarity is a crucial yet rarely questioned assumption in the analysis of time series of magneto- (MEG) or electroencephalography (EEG). One key drawback of the commonly used tests for stationarity of encephalographic time series is the fact that conclusions on stationarity are only indirectly inferred either from the Gaussianity (e.g. the Shapiro-Wilk test or Kolmogorov-Smirnov test) or the randomness of the time series and the absence of trend using very simple time-series models (e.g. the sign and trend tests by Bendat and Piersol). We present a novel approach to the analysis of the stationarity of MEG and EEG time series by applying modern statistical methods which were specifically developed in econometrics to verify the hypothesis that a time series is stationary. We report our findings of the application of three different tests of stationarity--the Kwiatkowski-Phillips-Schmidt-Schin (KPSS) test for trend or mean stationarity, the Phillips-Perron (PP) test for the presence of a unit root and the White test for homoscedasticity--on an illustrative set of MEG data. For five stimulation sessions, we found already for short epochs of duration of 250 and 500 ms that, although the majority of the studied epochs of single MEG trials were usually mean-stationary (KPSS test and PP test), they were classified as nonstationary due to their heteroscedasticity (White test). We also observed that the presence of external auditory stimulation did not significantly affect the findings regarding the stationarity of the data. We conclude that the combination of these tests allows a refined analysis of the stationarity of MEG and EEG time series.

  3. Stable Sparse Classifiers Identify qEEG Signatures that Predict Learning Disabilities (NOS) Severity.

    Science.gov (United States)

    Bosch-Bayard, Jorge; Galán-García, Lídice; Fernandez, Thalia; Lirio, Rolando B; Bringas-Vega, Maria L; Roca-Stappung, Milene; Ricardo-Garcell, Josefina; Harmony, Thalía; Valdes-Sosa, Pedro A

    2017-01-01

    In this paper, we present a novel methodology to solve the classification problem, based on sparse (data-driven) regressions, combined with techniques for ensuring stability, especially useful for high-dimensional datasets and small samples number. The sensitivity and specificity of the classifiers are assessed by a stable ROC procedure, which uses a non-parametric algorithm for estimating the area under the ROC curve. This method allows assessing the performance of the classification by the ROC technique, when more than two groups are involved in the classification problem, i.e., when the gold standard is not binary. We apply this methodology to the EEG spectral signatures to find biomarkers that allow discriminating between (and predicting pertinence to) different subgroups of children diagnosed as Not Otherwise Specified Learning Disabilities (LD-NOS) disorder. Children with LD-NOS have notable learning difficulties, which affect education but are not able to be put into some specific category as reading (Dyslexia), Mathematics (Dyscalculia), or Writing (Dysgraphia). By using the EEG spectra, we aim to identify EEG patterns that may be related to specific learning disabilities in an individual case. This could be useful to develop subject-based methods of therapy, based on information provided by the EEG. Here we study 85 LD-NOS children, divided in three subgroups previously selected by a clustering technique over the scores of cognitive tests. The classification equation produced stable marginal areas under the ROC of 0.71 for discrimination between Group 1 vs. Group 2; 0.91 for Group 1 vs. Group 3; and 0.75 for Group 2 vs. Group1. A discussion of the EEG characteristics of each group related to the cognitive scores is also presented.

  4. Stable Sparse Classifiers Identify qEEG Signatures that Predict Learning Disabilities (NOS Severity

    Directory of Open Access Journals (Sweden)

    Jorge Bosch-Bayard

    2018-01-01

    Full Text Available In this paper, we present a novel methodology to solve the classification problem, based on sparse (data-driven regressions, combined with techniques for ensuring stability, especially useful for high-dimensional datasets and small samples number. The sensitivity and specificity of the classifiers are assessed by a stable ROC procedure, which uses a non-parametric algorithm for estimating the area under the ROC curve. This method allows assessing the performance of the classification by the ROC technique, when more than two groups are involved in the classification problem, i.e., when the gold standard is not binary. We apply this methodology to the EEG spectral signatures to find biomarkers that allow discriminating between (and predicting pertinence to different subgroups of children diagnosed as Not Otherwise Specified Learning Disabilities (LD-NOS disorder. Children with LD-NOS have notable learning difficulties, which affect education but are not able to be put into some specific category as reading (Dyslexia, Mathematics (Dyscalculia, or Writing (Dysgraphia. By using the EEG spectra, we aim to identify EEG patterns that may be related to specific learning disabilities in an individual case. This could be useful to develop subject-based methods of therapy, based on information provided by the EEG. Here we study 85 LD-NOS children, divided in three subgroups previously selected by a clustering technique over the scores of cognitive tests. The classification equation produced stable marginal areas under the ROC of 0.71 for discrimination between Group 1 vs. Group 2; 0.91 for Group 1 vs. Group 3; and 0.75 for Group 2 vs. Group1. A discussion of the EEG characteristics of each group related to the cognitive scores is also presented.

  5. Quantitative topographic differentiation of the neonatal EEG.

    Science.gov (United States)

    Paul, Karel; Krajca, Vladimír; Roth, Zdenek; Melichar, Jan; Petránek, Svojmil

    2006-09-01

    To test the discriminatory topographic potential of a new method of the automatic EEG analysis in neonates. A quantitative description of the neonatal EEG can contribute to the objective assessment of the functional state of the brain, and may improve the precision of diagnosing cerebral dysfunctions manifested by 'disorganization', 'dysrhythmia' or 'dysmaturity'. 21 healthy, full-term newborns were examined polygraphically during sleep (EEG-8 referential derivations, respiration, ECG, EOG, EMG). From each EEG record, two 5-min samples (one from the middle of quiet sleep, the other from the middle of active sleep) were subject to subsequent automatic analysis and were described by 13 variables: spectral features and features describing shape and variability of the signal. The data from individual infants were averaged and the number of variables was reduced by factor analysis. All factors identified by factor analysis were statistically significantly influenced by the location of derivation. A large number of statistically significant differences were also established when comparing the effects of individual derivations on each of the 13 measured variables. Both spectral features and features describing shape and variability of the signal are largely accountable for the topographic differentiation of the neonatal EEG. The presented method of the automatic EEG analysis is capable to assess the topographic characteristics of the neonatal EEG, and it is adequately sensitive and describes the neonatal electroencephalogram with sufficient precision. The discriminatory capability of the used method represents a promise for their application in the clinical practice.

  6. Towards a parametrization of multiparticle hadronic reactions

    International Nuclear Information System (INIS)

    Giffon, M.; Hama, Y.; Predazzi, E.

    1979-11-01

    An explicit parametrization of high energy exclusive production cross-sections is shown to give a reasonable account of inclusive data. This is a first step towards a phenomenological parametrization of multiparticle hadronic amplitudes

  7. Bianchi surfaces: integrability in an arbitrary parametrization

    International Nuclear Information System (INIS)

    Nieszporski, Maciej; Sym, Antoni

    2009-01-01

    We discuss integrability of normal field equations of arbitrarily parametrized Bianchi surfaces. A geometric definition of the Bianchi surfaces is presented as well as the Baecklund transformation for the normal field equations in an arbitrarily chosen surface parametrization.

  8. Contribution of EEG in transient neurological deficits.

    Science.gov (United States)

    Lozeron, Pierre; Tcheumeni, Nadine Carole; Turki, Sahar; Amiel, Hélène; Meppiel, Elodie; Masmoudi, Sana; Roos, Caroline; Crassard, Isabelle; Plaisance, Patrick; Benbetka, Houria; Guichard, Jean-Pierre; Houdart, Emmanuel; Baudoin, Hélène; Kubis, Nathalie

    2018-01-01

    Identification of stroke mimics and 'chameleons' among transient neurological deficits (TND) is critical. Diagnostic workup consists of a brain imaging study, for a vascular disease or a brain tumour and EEG, for epileptiform discharges. The precise role of EEG in this diagnostic workup has, however, never been clearly delineated. However, this could be crucial in cases of atypical or incomplete presentation with consequences on disease management and treatment. We analysed the EEG patterns on 95 consecutive patients referred for an EEG within 7 days of a TND with diagnostic uncertainty. Patients were classified at the discharge or the 3-month follow-up visit as: 'ischemic origin', 'migraine aura', 'focal seizure', and 'other'. All patients had a brain imaging study. EEG characteristics were correlated to the TND symptoms, imaging study, and final diagnosis. Sixty four (67%) were of acute onset. Median symptom duration was 45 min. Thirty two % were 'ischemic', 14% 'migraine aura', 19% 'focal seizure', and 36% 'other' cause. EEGs were recorded with a median delay of 1.6 day after symptoms onset. Forty EEGs (42%) were abnormal. Focal slow waves were the most common finding (43%), also in the ischemic group (43%), whether patients had a typical presentation or not. Epileptiform discharges were found in three patients, one with focal seizure and two with migraine aura. Non-specific EEG focal slowing is commonly found in TND, and may last several days. We found no difference in EEG presentation between stroke mimics and stroke chameleons, and between other diagnoses.

  9. Signal Quality Evaluation of Emerging EEG Devices

    Directory of Open Access Journals (Sweden)

    Thea Radüntz

    2018-02-01

    Full Text Available Electroencephalogram (EEG registration as a direct measure of brain activity has unique potentials. It is one of the most reliable and predicative indicators when studying human cognition, evaluating a subject's health condition, or monitoring their mental state. Unfortunately, standard signal acquisition procedures limit the usability of EEG devices and narrow their application outside the lab. Emerging sensor technology allows gel-free EEG registration and wireless signal transmission. Thus, it enables quick and easy application of EEG devices by users themselves. Although a main requirement for the interpretation of an EEG is good signal quality, there is a lack of research on this topic in relation to new devices. In our work, we compared the signal quality of six very different EEG devices. On six consecutive days, 24 subjects wore each device for 60 min and completed tasks and games on the computer. The registered signals were evaluated in the time and frequency domains. In the time domain, we examined the percentage of artifact-contaminated EEG segments and the signal-to-noise ratios. In the frequency domain, we focused on the band power variation in relation to task demands. The results indicated that the signal quality of a mobile, gel-based EEG system could not be surpassed by that of a gel-free system. However, some of the mobile dry-electrode devices offered signals that were almost comparable and were very promising. This study provided a differentiated view of the signal quality of emerging mobile and gel-free EEG recording technology and allowed an assessment of the functionality of the new devices. Hence, it provided a crucial prerequisite for their general application, while simultaneously supporting their further development.

  10. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.

    Science.gov (United States)

    Winkler, Irene; Debener, Stefan; Müller, Klaus-Robert; Tangermann, Michael

    2015-01-01

    Standard artifact removal methods for electroencephalographic (EEG) signals are either based on Independent Component Analysis (ICA) or they regress out ocular activity measured at electrooculogram (EOG) channels. Successful ICA-based artifact reduction relies on suitable pre-processing. Here we systematically evaluate the effects of high-pass filtering at different frequencies. Offline analyses were based on event-related potential data from 21 participants performing a standard auditory oddball task and an automatic artifactual component classifier method (MARA). As a pre-processing step for ICA, high-pass filtering between 1-2 Hz consistently produced good results in terms of signal-to-noise ratio (SNR), single-trial classification accuracy and the percentage of `near-dipolar' ICA components. Relative to no artifact reduction, ICA-based artifact removal significantly improved SNR and classification accuracy. This was not the case for a regression-based approach to remove EOG artifacts.

  11. Assessment of preconscious sucrose perception using EEG

    DEFF Research Database (Denmark)

    Rotvel, Camilla; Møller, Stine; Nielsen, Rene R

    The objective of the current study is to develop a methodology for food ingredient screening based on Electro-Encephalo-Graphy (EEG). EEG measures electrical activity in the central nervous system, allowing assessment of activity in the ascending gustatory pathway from the taste buds on the tongue...... stimulus. The EEG was recorded using a 64 electrode setup, and gustatory evoked potentials (GEP) were estimated by coherent averaging across all 60 stimulations for each concentration. Cortical source localization based on the GEP was performed using a low resolution electromagnetic tomography (LORETA...

  12. Analyzing Electroencephalogram Signal Using EEG Lab

    Directory of Open Access Journals (Sweden)

    Mukesh BHARDWAJ

    2009-01-01

    Full Text Available The EEG is composed of electrical potentials arising from several sources. Each source (including separate neural clusters, blink artifact or pulse artifact forms a unique topography onto the scalp – ‘scalp map‘. Scalp map may be 2-D or 3-D.These maps are mixed according to the principle of linear superposition. Independent component analysis (ICA attempts to reverse the superposition by separating the EEG into mutually independent scalp maps, or components. MATLAB toolbox and graphic user interface, EEGLAB is used for processing EEG data of any number of channels. Wavelet toolbox has been used for 2-D signal analysis.

  13. Trial-by-trial variations in subjective attentional state are reflected in ongoing prestimulus EEG alpha oscillations

    Directory of Open Access Journals (Sweden)

    James Stuart Peter Macdonald

    2011-05-01

    Full Text Available Parieto-occipital EEG alpha power and subjective reports of attentional state are both associated with visual attention and awareness, but little is currently known about the relationship between these two measures. Here, we bring together these two literatures to explore the relationship between alpha activity and participants’ introspective judgements of attentional state as each varied from trial to trial during performance of a visual detection task. We collected participants’ subjective ratings of perceptual decision confidence and attentional state on continuous scales on each trial of a rapid serial visual presentation (RSVP detection task while recording EEG. We found that confidence and attentional state ratings were largely uncorrelated with each other, but both were strongly associated with task performance and post-stimulus decision-related EEG activity. Crucially, attentional state ratings were also negatively associated with prestimulus EEG alpha power. Attesting to the robustness of this association, we were able to classify attentional state ratings via prestimulus alpha power on a single-trial basis. Moreover, when we repeated these analyses after smoothing the time series of attentional state ratings and alpha power with increasingly large sliding windows, both the correlations and classification performance improved considerably, with the peaks occurring at a sliding window size of approximately seven minutes worth of trials. Our results therefore suggest that slow fluctuations in attentional state in the order of minutes are reflected in spontaneous alpha power. Since these subjective attentional state ratings were associated with objective measures of both behaviour and neural activity, we suggest that they provide a simple and effective estimate of task engagement that could prove useful in operational settings that require human operators to maintain a sustained focus of visual attention.

  14. Combining Cryptography with EEG Biometrics.

    Science.gov (United States)

    Damaševičius, Robertas; Maskeliūnas, Rytis; Kazanavičius, Egidijus; Woźniak, Marcin

    2018-01-01

    Cryptographic frameworks depend on key sharing for ensuring security of data. While the keys in cryptographic frameworks must be correctly reproducible and not unequivocally connected to the identity of a user, in biometric frameworks this is different. Joining cryptography techniques with biometrics can solve these issues. We present a biometric authentication method based on the discrete logarithm problem and Bose-Chaudhuri-Hocquenghem (BCH) codes, perform its security analysis, and demonstrate its security characteristics. We evaluate a biometric cryptosystem using our own dataset of electroencephalography (EEG) data collected from 42 subjects. The experimental results show that the described biometric user authentication system is effective, achieving an Equal Error Rate (ERR) of 0.024.

  15. Detection of Parametric Roll on Ships

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad

    2012-01-01

    phenomenon could make the navigator change ship’s speed and heading, and these remedial actions could make the vessel escape the bifurcation. This chapter proposes non-parametric methods to detect the onset of parametric roll resonance. Theoretical conditions for parametric resonance are re...... on experimental data from towing tank tests and data from a container ship passing an Atlantic storm....

  16. Comparison of data transformation procedures to enhance topographical accuracy in time-series analysis of the human EEG.

    Science.gov (United States)

    Hauk, O; Keil, A; Elbert, T; Müller, M M

    2002-01-30

    We describe a methodology to apply current source density (CSD) and minimum norm (MN) estimation as pre-processing tools for time-series analysis of single trial EEG data. The performance of these methods is compared for the case of wavelet time-frequency analysis of simulated gamma-band activity. A reasonable comparison of CSD and MN on the single trial level requires regularization such that the corresponding transformed data sets have similar signal-to-noise ratios (SNRs). For region-of-interest approaches, it should be possible to optimize the SNR for single estimates rather than for the whole distributed solution. An effective implementation of the MN method is described. Simulated data sets were created by modulating the strengths of a radial and a tangential test dipole with wavelets in the frequency range of the gamma band, superimposed with simulated spatially uncorrelated noise. The MN and CSD transformed data sets as well as the average reference (AR) representation were subjected to wavelet frequency-domain analysis, and power spectra were mapped for relevant frequency bands. For both CSD and MN, the influence of noise can be sufficiently suppressed by regularization to yield meaningful information, but only MN represents both radial and tangential dipole sources appropriately as single peaks. Therefore, when relating wavelet power spectrum topographies to their neuronal generators, MN should be preferred.

  17. PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction

    OpenAIRE

    Bao, Forrest Sheng; Liu, Xin; Zhang, Christina

    2011-01-01

    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting ...

  18. A single trial of transcutaneous electrical nerve stimulation (TENS) improves spasticity and balance in patients with chronic stroke.

    Science.gov (United States)

    Cho, Hwi-young; In, Tae Sung; Cho, Ki Hun; Song, Chang Ho

    2013-03-01

    Spasticity management is pivotal for achieving functional recovery of stroke patients. The purpose of this study was to investigate the effects of a single trial of transcutaneous electrical nerve stimulation (TENS) on spasticity and balance in chronic stroke patients. Forty-two chronic stroke patients were randomly allocated into the TENS (n = 22) or the placebo-TENS (n = 20) group. TENS stimulation was applied to the gastrocnemius for 60 min at 100 Hz, 200 µs with 2 to 3 times the sensory threshold (the minimal threshold in detecting electrical stimulation for subjects) after received physical therapy for 30 min. In the placebo-TENS group, electrodes were placed but no electrical stimulation was administered. For measuring spasticity, the resistance encountered during passive muscle stretching of ankle joint was assessed using the Modified Ashworth Scale, and the Hand held dynamometer was used to assess the resistive force caused by spasticity. Balance ability was measured using a force platform that measures postural sway generated by postural imbalance. The TENS group showed a significantly greater reduction in spasticity of the gastrocnemius, compared to the placebo-TENS group (p TENS resulted in greater balance ability improvements, especially during the eyes closed condition (p TENS provides an immediately effective means of reducing spasticity and of improving balance in chronic stroke patients. The present data may be useful to establish the standard parameters for TENS application in the clinical setting of stroke.

  19. Gap junctions and memory: an investigation using a single trial discrimination avoidance task for the neonate chick.

    Science.gov (United States)

    Verwey, L J; Edwards, T M

    2010-02-01

    Gap junctions are important to how the brain functions but are relatively under-investigated with respect to their contribution towards behaviour. In the present study a single trial discrimination avoidance task was used to investigate the effect of the gap junction inhibitor 18-alpha-glycyrrhetinic acid (alphaGA) on retention. Past studies within our research group have implied a potential role for gap junctions during the short-term memory (STM) stage which decays by 15 min post-training. A retention function study comparing 10 microM alphaGA and vehicle given immediately post-training demonstrated a significant main effect for drug with retention loss at all times of test (10-180 min post-training). Given that the most common gap junction in the brain is that forming the astrocytic network it is reasonable to conclude that alphaGA was acting upon these. To confirm this finding and interpretation two additional investigations were undertaken using endothelin-1 (ET-1) and ET-1+tolbutamide. Importantly, a retention function study using 10nM ET-1 replicated the retention loss observed for alphaGA. In order to confirm that ET-1 was acting on astrocytic gap junctions the amnestic action of ET-1 was effectively challenged with increasing concentrations of tolbutamide. The present findings suggest that astrocytic gap junctions are important for memory processing. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.

    2015-06-22

    We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models.

  1. Parametric Optimization of Hospital Design

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning; Christoffersen, L.D.

    2013-01-01

    Present paper presents a parametric performancebased design model for optimizing hospital design. The design model operates with geometric input parameters defining the functional requirements of the hospital and input parameters in terms of performance objectives defining the design requirements...... and preferences of the hospital with respect to performances. The design model takes point of departure in the hospital functionalities as a set of defined parameters and rules describing the design requirements and preferences....

  2. Parametric decay of the curvaton

    International Nuclear Information System (INIS)

    Enqvist, K; Nurmi, S; Rigopoulos, G I

    2008-01-01

    We argue that the curvaton decay takes place most naturally by way of a broad parametric resonance. The mechanism is analogous to resonant inflaton decay but does not require any tuning of the curvaton coupling strength to other scalar fields. For low scale inflation and a correspondingly low mass scale for the curvaton, we speculate on observable consequences including the possibility of stochastic gravitational waves

  3. Mobile EEG on the bike: disentangling attentional and physical contributions to auditory attention tasks

    Science.gov (United States)

    Zink, Rob; Hunyadi, Borbála; Van Huffel, Sabine; De Vos, Maarten

    2016-08-01

    Objective. In the past few years there has been a growing interest in studying brain functioning in natural, real-life situations. Mobile EEG allows to study the brain in real unconstrained environments but it faces the intrinsic challenge that it is impossible to disentangle observed changes in brain activity due to increase in cognitive demands by the complex natural environment or due to the physical involvement. In this work we aim to disentangle the influence of cognitive demands and distractions that arise from such outdoor unconstrained recordings. Approach. We evaluate the ERP and single trial characteristics of a three-class auditory oddball paradigm recorded in outdoor scenario’s while peddling on a fixed bike or biking freely around. In addition we also carefully evaluate the trial specific motion artifacts through independent gyro measurements and control for muscle artifacts. Main results. A decrease in P300 amplitude was observed in the free biking condition as compared to the fixed bike conditions. Above chance P300 single-trial classification in highly dynamic real life environments while biking outdoors was achieved. Certain significant artifact patterns were identified in the free biking condition, but neither these nor the increase in movement (as derived from continuous gyrometer measurements) can explain the differences in classification accuracy and P300 waveform differences with full clarity. The increased cognitive load in real-life scenarios is shown to play a major role in the observed differences. Significance. Our findings suggest that auditory oddball results measured in natural real-life scenarios are influenced mainly by increased cognitive load due to being in an unconstrained environment.

  4. ORIGINAL ARTICLE EEG changes and neuroimaging abnormalities ...

    African Journals Online (AJOL)

    salah

    Clinical Genetics Department, Human Genetics & Genome Research Division, ... neuroimaging changes of the brain and EEG abnormalities in correlation to the ... level and by developmental changes2. .... for IQ as a confounding factor.30.

  5. Two channel EEG thought pattern classifier.

    Science.gov (United States)

    Craig, D A; Nguyen, H T; Burchey, H A

    2006-01-01

    This paper presents a real-time electro-encephalogram (EEG) identification system with the goal of achieving hands free control. With two EEG electrodes placed on the scalp of the user, EEG signals are amplified and digitised directly using a ProComp+ encoder and transferred to the host computer through the RS232 interface. Using a real-time multilayer neural network, the actual classification for the control of a powered wheelchair has a very fast response. It can detect changes in the user's thought pattern in 1 second. Using only two EEG electrodes at positions O(1) and C(4) the system can classify three mental commands (forward, left and right) with an accuracy of more than 79 %

  6. Correlation between intra- and extracranial background EEG

    DEFF Research Database (Denmark)

    Duun-Henriksen, Jonas; Kjaer, Troels W.; Madsen, Rasmus E.

    2012-01-01

    Scalp EEG is the most widely used modality to record the electrical signals of the brain. It is well known that the volume conduction of these brain waves through the brain, cerebrospinal fluid, skull and scalp reduces the spatial resolution and the signal amplitude. So far the volume conduction...... has primarily been investigated by realistic head models or interictal spike analysis. We have set up a novel and more realistic experiment that made it possible to compare the information in the intra- and extracranial EEG. We found that intracranial EEG channels contained correlated patterns when...... placed less than 30 mm apart, that intra- and extracranial channels were partly correlated when placed less than 40 mm apart, and that extracranial channels probably were correlated over larger distances. The underlying cortical area that influences the extracranial EEG is found to be up to 45 cm2...

  7. Amplitude-Integrated EEG in the Newborn

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-11-01

    Full Text Available Th value of amplitude-integrated electroencephalography (aEEG in the newborn is explored by researchers at Washington University, St Louis; Wilhelmina Children’s Hospital, Utrecht, Netherlands; and Uppsala University Hospital, Sweden.

  8. Predictive Values of Electroencephalography (EEG) in Epilepsy ...

    African Journals Online (AJOL)

    Predictive Values of Electroencephalography (EEG) in Epilepsy Patients with Abnormal Behavioural Symptoms. OR Obiako, SO Adeyemi, TL Sheikh, LF Owolabi, MA Majebi, MO Gomina, F Adebayo, EU Iwuozo ...

  9. EEG analysis in a telemedical virtual world

    NARCIS (Netherlands)

    Jovanov, E.; Starcevic, D.; Samardzic, A.; Marsh, A.; Obrenovic, Z.

    1999-01-01

    Telemedicine creates virtual medical collaborative environments. We propose here a novel concept of virtual medical devices (VMD) for telemedical applications. VMDs provide different views on biomedical recordings and efficient signal analysis. In this paper we present a telemedical EEG analysis

  10. Parametric Fires for Structural Design

    DEFF Research Database (Denmark)

    Hertz, Kristian

    2012-01-01

    The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants and contra......The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants...... and contractors have asked for a reference in English in order to make the guide-lines and the background for them available internationally. The paper therefore presents recommendations from the design guide especially concerning how to assess parametric design fires based on the opening factor method for large...... compartments. Findings leading to the guide-lines are discussed, and it is indicated what a safe design fire model means for structural design and how it differs from a safe design fire model for evacuation. Furthermore, the paper includes some experiences from the application of the design guide in practise...

  11. Connectivity Measures in EEG Microstructural Sleep Elements.

    Science.gov (United States)

    Sakellariou, Dimitris; Koupparis, Andreas M; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an "EEG-element connectivity" methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence

  12. The EEG 2017 in the overview

    International Nuclear Information System (INIS)

    Altrock, Martin; Vollprecht, Jens

    2016-01-01

    On 08.07.2016, the German Bundestag, the German Renewable Energies Act (EEG) in 2017 passed together with the wind-at-sea law. At the same time, the legislature changed 22 other energy legislation, inter alia, also the EnWG. Here, the law de facto a law amending the EEG 2014 is: The EEG is thus not total re-promulgated. Rather essentially part 3 (''Payment of market premium and feed in rate'') of the EEG 2014 renewed, notably Section 3 supplemented by regulations on the newly introduced procurements. But beyond the framework of support is further developed in various details, like the definition of a plant, the promotion of storage facilities and of course, in the again very ambitious and complicated transitional arrangements. Other notable individual changes concern the introduction of regional evidence of directly marketed electricity from renewable sources, the increase of liability for balancing group deviations in paragraph 60 para. 1 EEG 2017 or readjustments in the special equalization scheme, paragraph 64 para. 2 no. 2 EEG. [de

  13. Sleep EEG of Microcephaly in Zika Outbreak.

    Science.gov (United States)

    Kanda, Paulo Afonso Medeiros; Aguiar, Aline de Almeida Xavier; Miranda, Jose Lucivan; Falcao, Alexandre Loverde; Andrade, Claudia Suenia; Reis, Luigi Neves Dos Santos; Almeida, Ellen White R Bacelar; Bello, Yanes Brum; Monfredinho, Arthur; Kanda, Rafael Guimaraes

    2018-01-01

    Microcephaly (MC), previously considered rare, is now a health emergency of international concern because of the devastating Zika virus pandemic outbreak of 2015. The authors describe the electroencephalogram (EEG) findings in sleep EEG of epileptic children who were born with microcephaly in areas of Brazil with active Zika virus transmission between 2014 and 2017. The authors reviewed EEGs from 23 children. Nine were females (39.2%), and the age distribution varied from 4 to 48 months. MC was associated with mother positive serology to toxoplasmosis (toxo), rubella (rub), herpes, and dengue (1 case); toxo (1 case); chikungunya virus (CHIKV) (1 case); syphilis (1 case); and Zika virus (ZIKV) (10 cases). In addition, 1 case was associated with perinatal hypoxia and causes of 9 cases remain unknown. The main background EEG abnormality was diffuse slowing (10 cases), followed by classic (3 cases) and modified (5 cases) hypsarrhythmia. A distinct EEG pattern was seen in ZIKV (5 cases), toxo (2 cases), and undetermined cause (1 case). It was characterized by runs of frontocentrotemporal 4.5-13 Hz activity (7 cases) or diffuse and bilateral runs of 18-24 Hz (1 case). In ZIKV, this rhythmic activity was associated with hypsarrhythmia or slow background. Further studies are necessary to determine if this association is suggestive of ZIKV infection. The authors believe that EEG should be included in the investigation of all newly diagnosed congenital MC, especially those occurring in areas of autochthonous transmission of ZIKV.

  14. EEG Based Inference of Spatio-Temporal Brain Dynamics

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese

    Electroencephalography (EEG) provides a measure of brain activity and has improved our understanding of the brain immensely. However, there is still much to be learned and the full potential of EEG is yet to be realized. In this thesis we suggest to improve the information gain of EEG using three...... different approaches; 1) by recovery of the EEG sources, 2) by representing and inferring the propagation path of EEG sources, and 3) by combining EEG with functional magnetic resonance imaging (fMRI). The common goal of the methods, and thus of this thesis, is to improve the spatial dimension of EEG...... recovery ability. The forward problem describes the propagation of neuronal activity in the brain to the EEG electrodes on the scalp. The geometry and conductivity of the head layers are normally required to model this path. We propose a framework for inferring forward models which is based on the EEG...

  15. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  16. Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces

    International Nuclear Information System (INIS)

    Gutierrez, David

    2008-01-01

    Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEG data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation

  17. Toward FRP-Based Brain-Machine Interfaces-Single-Trial Classification of Fixation-Related Potentials.

    Directory of Open Access Journals (Sweden)

    Andrea Finke

    Full Text Available The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant's body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction.

  18. The added value of simultaneous EEG and amplitude-integrated EEG recordings in three newborn infants

    NARCIS (Netherlands)

    de Vries, Nathalie K. S.; ter Horst, Hendrik J.; Bos, Arend F.

    2007-01-01

    Amplitude-integrated electroencephalograms (aEEGs) recorded by cerebral function monitors (CFMs) are used increasingly to monitor the cerebral activity of newborn infants with encephalopathy. Recently, new CFM devices became available which also reveal the original EEG signals from the same leads.

  19. Drug Treated Schizophrenia, Schizoaffective and Bipolar Disorder Patients Evaluated by qEEG Absolute Spectral Power and Mean Frequency Analysis.

    Science.gov (United States)

    Wix-Ramos, Richard; Moreno, Xiomara; Capote, Eduardo; González, Gilbert; Uribe, Ezequiel; Eblen-Zajjur, Antonio

    2014-04-01

    Research of electroencephalograph (EEG) power spectrum and mean frequency has shown inconsistent results in patients with schizophrenic, schizoaffective and bipolar disorders during medication when compared to normal subjects thus; the characterization of these parameters is an important task. We applied quantitative EEG (qEEG) to investigate 38 control, 15 schizophrenic, 7 schizoaffective and 11 bipolar disorder subjects which remaine under the administration of psychotropic drugs (except control group). Absolute spectral power (ASP), mean frequency and hemispheric electrical asymmetry were measured by 19 derivation qEEG. Group mean values were compared with non parametrical Mann-Whitney test and spectral EEG maps with z-score method at p Schizoaffective patients received neuroleptic+benzodiazepine (71.4%) and for bipolar disorder patients neuroleptic+antiepileptic (81.8%). Schizophrenic (at all derivations except for Fp1, Fp2, F8 and T6) and schizoaffective (only at C3) show higher values of ASP (+57.7% and +86.1% respectively) compared to control group. ASP of bipolar disorder patients did not show differences against control group. The mean frequency was higher at Fp1 (+14.2%) and Fp2 (+17.4%) in bipolar disorder patients than control group, but no differences were found in frequencies between schizophrenic or schizoaffective patients against the control group. Majority of spectral differences were found at the left hemisphere in schizophrenic and schizoaffective but not in bipolar disorder subjects. The present report contributes to characterize quantitatively the qEEG in drug treated schizophrenic, schizoaffective or bipolar disorder patients.

  20. Seizure-Onset Mapping Based on Time-Variant Multivariate Functional Connectivity Analysis of High-Dimensional Intracranial EEG: A Kalman Filter Approach.

    Science.gov (United States)

    Lie, Octavian V; van Mierlo, Pieter

    2017-01-01

    The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.

  1. EEG II. Annexes and regulations. Comment; EEG II. Anlagen und Verordnungen. Kommentar

    Energy Technology Data Exchange (ETDEWEB)

    Frenz, Walter (ed.) [Rheinisch-Westfaelische Technische Hochschule Aachen (Germany). Berg-, Umwelt- und Europarecht

    2016-11-01

    Berlin commentary EEG II: safe through the paraphernalia Like hardly any other law, the Renewable Energies Act (EEG) is subject to constant changes. With the 2014 amendment, the EEG was fundamentally redesigned. This makes the application of the complex rules a challenge even for experts. In addition, the sub-rules contain important statements in the form of numerous annexes and regulations - with the EEG amendment 2014, this has become even more detailed. In it, many calculations are only defined in detail and the legal provisions of the EEG are made more definite and supplemented. The Berlin commentary EEG II accompanies you expertly through this complex matter. Experts explain the widely divergent rules in practice. If necessary for a better understanding, the provisions of the EEG 2014 are also explained. Consistently designed for your practice As a buyer of the work, you also benefit from access to an extensive, regularly updated database. This contains important legal energy regulations of the EU, the federal government and the countries. Even earlier legal positions remain searchable and can be conveniently compared with current versions. So you can see at a glance what has changed. [German] Berliner Kommentar EEG II: sicher durch den Paragrafengeflecht Wie kaum ein anderes Gesetz ist das Erneuerbare-Energien-Gesetz (EEG) staendigen Aenderungen unterworfen. Mit der Novelle 2014 wurde das EEG grundlegend umgestaltet. Dies macht die Anwendung der komplexen Regeln selbst fuer Experten zu einer Herausforderung. Zudem enthaelt auch das untergesetzliche Regelwerk wichtige Aussagen in Form zahlreicher Anlagen und Verordnungen - mit der EEG-Novelle 2014 ist dieses noch ausfuehrlicher geworden. In ihm werden viele Berechnungen erst naeher festgelegt und gesetzliche Bestimmungen des EEG entscheidend konkretisiert und ergaenzt. Der Berliner Kommentar EEG II begleitet Sie fachkundig durch diese komplexe Materie. Experten erlaeutern Ihnen praxisorientiert die

  2. Bayesian model selection of template forward models for EEG source reconstruction.

    Science.gov (United States)

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-06-01

    Several EEG source reconstruction techniques have been proposed to identify the generating neuronal sources of electrical activity measured on the scalp. The solution of these techniques depends directly on the accuracy of the forward model that is inverted. Recently, a parametric empirical Bayesian (PEB) framework for distributed source reconstruction in EEG/MEG was introduced and implemented in the Statistical Parametric Mapping (SPM) software. The framework allows us to compare different forward modeling approaches, using real data, instead of using more traditional simulated data from an assumed true forward model. In the absence of a subject specific MR image, a 3-layered boundary element method (BEM) template head model is currently used including a scalp, skull and brain compartment. In this study, we introduced volumetric template head models based on the finite difference method (FDM). We constructed a FDM head model equivalent to the BEM model and an extended FDM model including CSF. These models were compared within the context of three different types of source priors related to the type of inversion used in the PEB framework: independent and identically distributed (IID) sources, equivalent to classical minimum norm approaches, coherence (COH) priors similar to methods such as LORETA, and multiple sparse priors (MSP). The resulting models were compared based on ERP data of 20 subjects using Bayesian model selection for group studies. The reconstructed activity was also compared with the findings of previous studies using functional magnetic resonance imaging. We found very strong evidence in favor of the extended FDM head model with CSF and assuming MSP. These results suggest that the use of realistic volumetric forward models can improve PEB EEG source reconstruction. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Parametric Verification of Weighted Systems

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Hansen, Mikkel; Mariegaard, Anders

    2015-01-01

    are themselves indexed with linear equations. The parameters change the model-checking problem into a problem of computing a linear system of inequalities that characterizes the parameters that guarantee the satisfiability. To address this problem, we use parametric dependency graphs (PDGs) and we propose...... a global update function that yields an assignment to each node in a PDG. For an iterative application of the function, we prove that a fixed point assignment to PDG nodes exists and the set of assignments constitutes a well-quasi ordering, thus ensuring that the fixed point assignment can be found after...

  4. Parametric Sensibility in Lixiviation Reactors

    Directory of Open Access Journals (Sweden)

    Dra. Margarita Rivera-Soto

    2015-11-01

    Full Text Available This work presents the results obtained in an analysis of the parametric sensibility, on the base of a mathematical model, which describes the behavior a lixiviation reactors battery inside the limits of the habitual work of the industrial plant, in a concrete process and of high complexity. The analysis was carried out with the purpose of determining the effect that the changes in different operation variables have on the behavior of the system and it gave as result that the most important variables are: the mineral-acid relationship, the concentration of magnesium and of nickel.

  5. The "when" and the "where" of single-trial allocentric spatial memory performance in young children: Insights into the development of episodic memory.

    Science.gov (United States)

    Ribordy Lambert, Farfalla; Lavenex, Pierre; Banta Lavenex, Pamela

    2017-03-01

    Allocentric spatial memory, "where" with respect to the surrounding environment, is one of the three fundamental components of episodic memory: what, where, when. Whereas basic allocentric spatial memory abilities are reliably observed in children after 2 years of age, coinciding with the offset of infantile amnesia, the resolution of allocentric spatial memory acquired over repeated trials improves from 2 to 4 years of age. Here, we first show that single-trial allocentric spatial memory performance improves in children from 3.5 to 7 years of age, during the typical period of childhood amnesia. Second, we show that large individual variation exists in children's performance at this age. Third, and most importantly, we show that improvements in single-trial allocentric spatial memory performance are due to an increasing ability to spatially and temporally separate locations and events. Such improvements in spatial and temporal processing abilities may contribute to the gradual offset of childhood amnesia. © 2016 Wiley Periodicals, Inc.

  6. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  7. Parametric Study of Sealant Nozzle

    Science.gov (United States)

    Yamamoto, Yoshimi

    It has become apparent in recent years the advancement of manufacturing processes in the aerospace industry. Sealant nozzles are a critical device in the use of fuel tank applications for optimal bonds and for ground service support and repair. Sealants has always been a challenging area for optimizing and understanding the flow patterns. A parametric study was conducted to better understand geometric effects of sealant flow and to determine whether the sealant rheology can be numerically modeled. The Star-CCM+ software was used to successfully develop the parametric model, material model, physics continua, and simulate the fluid flow for the sealant nozzle. The simulation results of Semco sealant nozzles showed the geometric effects of fluid flow patterns and the influences from conical area reduction, tip length, inlet diameter, and tip angle parameters. A smaller outlet diameter induced maximum outlet velocity at the exit, and contributed to a high pressure drop. The conical area reduction, tip angle and inlet diameter contributed most to viscosity variation phenomenon. Developing and simulating 2 different flow models (Segregated Flow and Viscous Flow) proved that both can be used to obtain comparable velocity and pressure drop results, however; differences are seen visually in the non-uniformity of the velocity and viscosity fields for the Viscous Flow Model (VFM). A comprehensive simulation setup for sealant nozzles was developed so other analysts can utilize the data.

  8. EEG Correlates of Ten Positive Emotions.

    Science.gov (United States)

    Hu, Xin; Yu, Jianwen; Song, Mengdi; Yu, Chun; Wang, Fei; Sun, Pei; Wang, Daifa; Zhang, Dan

    2017-01-01

    Compared with the well documented neurophysiological findings on negative emotions, much less is known about positive emotions. In the present study, we explored the EEG correlates of ten different positive emotions (joy, gratitude, serenity, interest, hope, pride, amusement, inspiration, awe, and love). A group of 20 participants were invited to watch 30 short film clips with their EEGs simultaneously recorded. Distinct topographical patterns for different positive emotions were found for the correlation coefficients between the subjective ratings on the ten positive emotions per film clip and the corresponding EEG spectral powers in different frequency bands. Based on the similarities of the participants' ratings on the ten positive emotions, these emotions were further clustered into three representative clusters, as 'encouragement' for awe, gratitude, hope, inspiration, pride, 'playfulness' for amusement, joy, interest, and 'harmony' for love, serenity. Using the EEG spectral powers as features, both the binary classification on the higher and lower ratings on these positive emotions and the binary classification between the three positive emotion clusters, achieved accuracies of approximately 80% and above. To our knowledge, our study provides the first piece of evidence on the EEG correlates of different positive emotions.

  9. Resting state EEG correlates of memory consolidation.

    Science.gov (United States)

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A general approach to optomechanical parametric instabilities

    International Nuclear Information System (INIS)

    Evans, M.; Barsotti, L.; Fritschel, P.

    2010-01-01

    We present a simple feedback description of parametric instabilities which can be applied to a variety of optical systems. Parametric instabilities are of particular interest to the field of gravitational-wave interferometry where high mechanical quality factors and a large amount of stored optical power have the potential for instability. In our use of Advanced LIGO as an example application, we find that parametric instabilities, if left unaddressed, present a potential threat to the stability of high-power operation.

  11. Connections between classical and parametric network entropies.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available This paper explores relationships between classical and parametric measures of graph (or network complexity. Classical measures are based on vertex decompositions induced by equivalence relations. Parametric measures, on the other hand, are constructed by using information functions to assign probabilities to the vertices. The inequalities established in this paper relating classical and parametric measures lay a foundation for systematic classification of entropy-based measures of graph complexity.

  12. Sequential inhibitory control processes assessed through simultaneous EEG-fMRI.

    Science.gov (United States)

    Baumeister, Sarah; Hohmann, Sarah; Wolf, Isabella; Plichta, Michael M; Rechtsteiner, Stefanie; Zangl, Maria; Ruf, Matthias; Holz, Nathalie; Boecker, Regina; Meyer-Lindenberg, Andreas; Holtmann, Martin; Laucht, Manfred; Banaschewski, Tobias; Brandeis, Daniel

    2014-07-01

    Inhibitory response control has been extensively investigated in both electrophysiological (ERP) and hemodynamic (fMRI) studies. However, very few multimodal results address the coupling of these inhibition markers. In fMRI, response inhibition has been most consistently linked to activation of the anterior insula and inferior frontal cortex (IFC), often also the anterior cingulate cortex (ACC). ERP work has established increased N2 and P3 amplitudes during NoGo compared to Go conditions in most studies. Previous simultaneous EEG-fMRI imaging reported association of the N2/P3 complex with activation of areas like the anterior midcingulate cortex (aMCC) and anterior insula. In this study we investigated inhibitory control in 23 healthy young adults (mean age=24.7, n=17 for EEG during fMRI) using a combined Flanker/NoGo task during simultaneous EEG and fMRI recording. Separate fMRI and ERP analysis yielded higher activation in the anterior insula, IFG and ACC as well as increased N2 and P3 amplitudes during NoGo trials in accordance with the literature. Combined analysis modelling sequential N2 and P3 effects through joint parametric modulation revealed correlation of higher N2 amplitude with deactivation in parts of the default mode network (DMN) and the cingulate motor area (CMA) as well as correlation of higher central P3 amplitude with activation of the left anterior insula, IFG and posterior cingulate. The EEG-fMRI results resolve the localizations of these sequential activations. They suggest a general role for allocation of attentional resources and motor inhibition for N2 and link memory recollection and internal reflection to P3 amplitude, in addition to previously described response inhibition as reflected by the anterior insula. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Data-driven analysis of simultaneous EEG/fMRI reveals neurophysiological phenotypes of impulse control.

    Science.gov (United States)

    Schmüser, Lena; Sebastian, Alexandra; Mobascher, Arian; Lieb, Klaus; Feige, Bernd; Tüscher, Oliver

    2016-09-01

    Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto-striatal network is involved in these processes. Between-subject differences in the intra-individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single-trial EEG/fMRI analysis allows to increase sensitivity for inter-individual differences by incorporating intra-individual variability. Thirty-eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo-related ICs (Nogo-IC-positive) while 17 subjects (Nogo-IC-negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo-IC-negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra-individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo-IC-negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data-driven approach for IC classification and the resulting presence or absence of early Nogo-specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter-individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter-individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo-IC-positive phenotype possibly providing

  14. EEG and Eye Tracking Signatures of Target Encoding during Structured Visual Search

    Directory of Open Access Journals (Sweden)

    Anne-Marie Brouwer

    2017-05-01

    Full Text Available EEG and eye tracking variables are potential sources of information about the underlying processes of target detection and storage during visual search. Fixation duration, pupil size and event related potentials (ERPs locked to the onset of fixation or saccade (saccade-related potentials, SRPs have been reported to differ dependent on whether a target or a non-target is currently fixated. Here we focus on the question of whether these variables also differ between targets that are subsequently reported (hits and targets that are not (misses. Observers were asked to scan 15 locations that were consecutively highlighted for 1 s in pseudo-random order. Highlighted locations displayed either a target or a non-target stimulus with two, three or four targets per trial. After scanning, participants indicated which locations had displayed a target. To induce memory encoding failures, participants concurrently performed an aurally presented math task (high load condition. In a low load condition, participants ignored the math task. As expected, more targets were missed in the high compared with the low load condition. For both conditions, eye tracking features distinguished better between hits and misses than between targets and non-targets (with larger pupil size and shorter fixations for missed compared with correctly encoded targets. In contrast, SRP features distinguished better between targets and non-targets than between hits and misses (with average SRPs showing larger P300 waveforms for targets than for non-targets. Single trial classification results were consistent with these averages. This work suggests complementary contributions of eye and EEG measures in potential applications to support search and detect tasks. SRPs may be useful to monitor what objects are relevant to an observer, and eye variables may indicate whether the observer should be reminded of them later.

  15. Correlation of BOLD Signal with Linear and Nonlinear Patterns of EEG in Resting State EEG-Informed fMRI

    Directory of Open Access Journals (Sweden)

    Galina V. Portnova

    2018-01-01

    Full Text Available Concurrent EEG and fMRI acquisitions in resting state showed a correlation between EEG power in various bands and spontaneous BOLD fluctuations. However, there is a lack of data on how changes in the complexity of brain dynamics derived from EEG reflect variations in the BOLD signal. The purpose of our study was to correlate both spectral patterns, as linear features of EEG rhythms, and nonlinear EEG dynamic complexity with neuronal activity obtained by fMRI. We examined the relationships between EEG patterns and brain activation obtained by simultaneous EEG-fMRI during the resting state condition in 25 healthy right-handed adult volunteers. Using EEG-derived regressors, we demonstrated a substantial correlation of BOLD signal changes with linear and nonlinear features of EEG. We found the most significant positive correlation of fMRI signal with delta spectral power. Beta and alpha spectral features had no reliable effect on BOLD fluctuation. However, dynamic changes of alpha peak frequency exhibited a significant association with BOLD signal increase in right-hemisphere areas. Additionally, EEG dynamic complexity as measured by the HFD of the 2–20 Hz EEG frequency range significantly correlated with the activation of cortical and subcortical limbic system areas. Our results indicate that both spectral features of EEG frequency bands and nonlinear dynamic properties of spontaneous EEG are strongly associated with fluctuations of the BOLD signal during the resting state condition.

  16. Investigating reading comprehension through EEG

    Directory of Open Access Journals (Sweden)

    Luciane Baretta

    2012-12-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2012n63p69   Experimental studies point that different factors can influence reading comprehension, such as the topic, text type, reading task, and others. The advances in technologies for the past decades have provided researchers with several possibilities to investigate what goes on in one’s brain since their eyes meet the page until comprehension is achieved. Since the mid-80’s, numerous studies have been conducted with the use of the electroencephalogram (EEG to investigate the process of reading, through the analysis of different components – n400, n100 or n1, P2, among others. These components reveal, for example, how the brain integrates the meaning of a specific word in the semantic context of a given sentence.  based on previous studies, which demonstrate that different types of words affect cognitive load, this paper aims at investigating how the brain processes function and content words inserted in expository and narrative texts with suitable / unsuitable conclusions. results showed that the type of text and word influence the cognitive load in different scalp areas (midline, right and left hemispheres. The  n1s were more pronounced to the content words inserted in narrative texts and to the function words inserted in the expository type of texts, corroborating former studies.

  17. Identifying the effects of microsaccades in tripolar EEG signals.

    Science.gov (United States)

    Bellisle, Rachel; Steele, Preston; Bartels, Rachel; Lei Ding; Sunderam, Sridhar; Besio, Walter

    2017-07-01

    Microsaccades are tiny, involuntary eye movements that occur during fixation, and they are necessary to human sight to maintain a sharp image and correct the effects of other fixational movements. Researchers have theorized and studied the effects of microsaccades on electroencephalography (EEG) signals to understand and eliminate the unwanted artifacts from EEG. The tripolar concentric ring electrode (TCRE) sensors are used to acquire TCRE EEG (tEEG). The tEEG detects extremely focal signals from directly below the TCRE sensor. We have noticed a slow wave frequency found in some tEEG recordings. Therefore, we conducted the current work to determine if there was a correlation between the slow wave in the tEEG and the microsaccades. This was done by analyzing the coherence of the frequency spectrums of both tEEG and eye movement in recordings where microsaccades are present. Our preliminary findings show that there is a correlation between the two.

  18. Removal of ocular artifacts from the REM sleep EEG

    NARCIS (Netherlands)

    Waterman, D.; Woestenburg, J.C.; Elton, M.; Hofman, W.; Kok, A.

    1992-01-01

    The present report concerns the first study in which electrooculographic (EOG) contamination of electroencephalographic (EEG) recordings in rapid eye movement (REM) sleep is systematically investigated. Contamination of REM sleep EEG recordings in six subjects was evaluated in the frequency domain.

  19. Extended seizure detection algorithm for intracranial EEG recordings

    DEFF Research Database (Denmark)

    Kjaer, T. W.; Remvig, L. S.; Henriksen, J.

    2010-01-01

    Objective: We implemented and tested an existing seizure detection algorithm for scalp EEG (sEEG) with the purpose of improving it to intracranial EEG (iEEG) recordings. Method: iEEG was obtained from 16 patients with focal epilepsy undergoing work up for resective epilepsy surgery. Each patient...... had 4 or 5 recorded seizures and 24 hours of non-ictal data were used for evaluation. Data from three electrodes placed at the ictal focus were used for the analysis. A wavelet based feature extraction algorithm delivered input to a support vector machine (SVM) classifier for distinction between ictal...... and non-ictal iEEG. We compare our results to a method published by Shoeb in 2004. While the original method on sEEG was optimal with the use of only four subbands in the wavelet analysis, we found that better seizure detection could be made if all subbands were used for iEEG. Results: When using...

  20. [EEG changes in symptomatic headache caused by bruxism].

    Science.gov (United States)

    Wieselmann, G; Grabmair, W; Logar, C; Permann, R; Moser, F

    1987-02-20

    EEG recordings were carried out on 36 patients with the verified diagnosis of bruxism and unilateral headache. Occlusal splints were applied in the long-term management of these patients. Initial EEG recordings showed pathological changes in 56% of the patients. The EEG recordings were repeated two and six weeks later in these patients and following improvement in the clinical symptomatology pathological EEG patterns were detected in only 22% of all cases. This decrease is of statistical significance.

  1. Temporal lobe deficits in murderers: EEG findings undetected by PET.

    Science.gov (United States)

    Gatzke-Kopp, L M; Raine, A; Buchsbaum, M; LaCasse, L

    2001-01-01

    This study evaluates electroencephalography (EEG) and positron emission tomography (PET) in the same subjects. Fourteen murderers were assessed by using both PET (while they were performing the continuous performance task) and EEG during a resting state. EEG revealed significant increases in slow-wave activity in the temporal, but not frontal, lobe in murderers, in contrast to prior PET findings that showed reduced prefrontal, but not temporal, glucose metabolism. Results suggest that resting EEG shows empirical utility distinct from PET activation findings.

  2. The Mozart Effect: A quantitative EEG study.

    Science.gov (United States)

    Verrusio, Walter; Ettorre, Evaristo; Vicenzini, Edoardo; Vanacore, Nicola; Cacciafesta, Mauro; Mecarelli, Oriano

    2015-09-01

    The aim of this study is to investigate the influence of Mozart's music on brain activity through spectral analysis of the EEG in young healthy adults (Adults), in healthy elderly (Elderly) and in elderly with Mild Cognitive Impairment (MCI). EEG recording was performed at basal rest conditions and after listening to Mozart's K448 or "Fur Elise" Beethoven's sonatas. After listening to Mozart, an increase of alpha band and median frequency index of background alpha rhythm activity (a pattern of brain wave activity linked to memory, cognition and open mind to problem solving) was observed both in Adults and in Elderly. No changes were observed in MCI. After listening to Beethoven, no changes in EEG activity were detected. This results may be representative of the fact that said Mozart's music is able to "activate" neuronal cortical circuits related to attentive and cognitive functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. EEG-guided meditation: A personalized approach.

    Science.gov (United States)

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Kallio-Tamminen, Tarja

    2015-12-01

    The therapeutic potential of meditation for physical and mental well-being is well documented, however the possibility of adverse effects warrants further discussion of the suitability of any particular meditation practice for every given participant. This concern highlights the need for a personalized approach in the meditation practice adjusted for a concrete individual. This can be done by using an objective screening procedure that detects the weak and strong cognitive skills in brain function, thus helping design a tailored meditation training protocol. Quantitative electroencephalogram (qEEG) is a suitable tool that allows identification of individual neurophysiological types. Using qEEG screening can aid developing a meditation training program that maximizes results and minimizes risk of potential negative effects. This brief theoretical-conceptual review provides a discussion of the problem and presents some illustrative results on the usage of qEEG screening for the guidance of mediation personalization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Widespread EEG changes precede focal seizures.

    Directory of Open Access Journals (Sweden)

    Piero Perucca

    Full Text Available The process by which the brain transitions into an epileptic seizure is unknown. In this study, we investigated whether the transition to seizure is associated with changes in brain dynamics detectable in the wideband EEG, and whether differences exist across underlying pathologies. Depth electrode ictal EEG recordings from 40 consecutive patients with pharmacoresistant lesional focal epilepsy were low-pass filtered at 500 Hz and sampled at 2,000 Hz. Predefined EEG sections were selected immediately before (immediate preictal, and 30 seconds before the earliest EEG sign suggestive of seizure activity (baseline. Spectral analysis, visual inspection and discrete wavelet transform were used to detect standard (delta, theta, alpha, beta and gamma and high-frequency bands (ripples and fast ripples. At the group level, each EEG frequency band activity increased significantly from baseline to the immediate preictal section, mostly in a progressive manner and independently of any modification in the state of vigilance. Preictal increases in each frequency band activity were widespread, being observed in the seizure-onset zone and lesional tissue, as well as in remote regions. These changes occurred in all the investigated pathologies (mesial temporal atrophy/sclerosis, local/regional cortical atrophy, and malformations of cortical development, but were more pronounced in mesial temporal atrophy/sclerosis. Our findings indicate that a brain state change with distinctive features, in the form of unidirectional changes across the entire EEG bandwidth, occurs immediately prior to seizure onset. We postulate that these changes might reflect a facilitating state of the brain which enables a susceptible region to generate seizures.

  5. EEG. Renewables Act. Comment. 3. new rev. and enl. ed.; EEG. Erneuerbare-Energien-Gesetz. Kommentar

    Energy Technology Data Exchange (ETDEWEB)

    Frenz, Walter [Rheinisch-Westfaelische Technische Hochschule (RWTH), Aachen (Germany). Lehr- und Forschungsgebiet Berg-, Umwelt- und Europarecht; Mueggenborg, Hans-Juergen (eds.) [Kassel Univ. (Germany)

    2013-05-01

    Like hardly any other law, the Renewable Energy Sources Law (EEG) is a subject to continuing modifications. This makes the application of the already complicated regulations even for experts to a special challenge. With the proven Berliner comment EEG, now a reliable companion through the bureaucratic jungle is available. All regulations of the EEG are commented precisely and easily to understand by profound experts. An extensive selection of terminology enables a rapid orientation within this book. In addition to the excursions to renewable energy technologies, this book also describes the structural aspects in the establishment of a photovoltaic system.

  6. The colorful brain: Visualization of EEG background patterns

    NARCIS (Netherlands)

    van Putten, Michel Johannes Antonius Maria

    2008-01-01

    This article presents a method to transform routine clinical EEG recordings to an alternative visual domain. The method is intended to support the classic visual interpretation of the EEG background pattern and to facilitate communication about relevant EEG characteristics. In addition, it provides

  7. A comparison of EEG spectral entropy with conventional quantitative ...

    African Journals Online (AJOL)

    A comparison of EEG spectral entropy with conventional quantitative EEG at varying depths of sevoflurane anaesthesia. PR Bartel, FJ Smith, PJ Becker. Abstract. Background and Aim: Recently an electroencephalographic (EEG) spectral entropy module (M-ENTROPY) for an anaesthetic monitor has become commercially ...

  8. Improving the Specificity of EEG for Diagnosing Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    François-B. Vialatte

    2011-01-01

    Full Text Available Objective. EEG has great potential as a cost-effective screening tool for Alzheimer's disease (AD. However, the specificity of EEG is not yet sufficient to be used in clinical practice. In an earlier study, we presented preliminary results suggesting improved specificity of EEG to early stages of Alzheimer's disease. The key to this improvement is a new method for extracting sparse oscillatory events from EEG signals in the time-frequency domain. Here we provide a more detailed analysis, demonstrating improved EEG specificity for clinical screening of MCI (mild cognitive impairment patients. Methods. EEG data was recorded of MCI patients and age-matched control subjects, in rest condition with eyes closed. EEG frequency bands of interest were θ (3.5–7.5 Hz, α1 (7.5–9.5 Hz, α2 (9.5–12.5 Hz, and β (12.5–25 Hz. The EEG signals were transformed in the time-frequency domain using complex Morlet wavelets; the resulting time-frequency maps are represented by sparse bump models. Results. Enhanced EEG power in the θ range is more easily detected through sparse bump modeling; this phenomenon explains the improved EEG specificity obtained in our previous studies. Conclusions. Sparse bump modeling yields informative features in EEG signal. These features increase the specificity of EEG for diagnosing AD.

  9. Analysis of routine EEG usage in a general adult ICU.

    LENUS (Irish Health Repository)

    McHugh, J C

    2009-09-01

    Non-convulsive seizures and status epilepticus are common in brain-injured patients in intensive care units. Continuous electroencephalography (cEEG) monitoring is the most sensitive means of their detection. In centres where cEEG is unavailable, routine EEG is often utilized for diagnosis although its sensitivity is lower.

  10. Design of parametric software tools

    DEFF Research Database (Denmark)

    Sabra, Jakob Borrits; Mullins, Michael

    2011-01-01

    The studies investigate the field of evidence-based design used in architectural design practice and propose a method using 2D/3D CAD applications to: 1) enhance integration of evidence-based design knowledge in architectural design phases with a focus on lighting and interior design and 2) assess...... fulfilment of evidence-based design criterion regarding light distribution and location in relation to patient safety in architectural health care design proposals. The study uses 2D/3D CAD modelling software Rhinoceros 3D with plug-in Grasshopper to create parametric tool prototypes to exemplify...... the operations and functions of the design method. To evaluate the prototype potentials, surveys with architectural and healthcare design companies are conducted. Evaluation is done by the administration of questionnaires being part of the development of the tools. The results show that architects, designers...

  11. Parametric instabilities in large plasmas

    International Nuclear Information System (INIS)

    Brambilla, Marco; Liberman, Bernardo.

    1979-01-01

    Parametric decay processes in large plasmas are considered as the linear stage of a three wave interaction (pump, sideband and beat wave) in which the amplitude of the externally excited pump is sufficiently large to neglect pump depletion to first order, yet sufficiently small to allow a linearized treatment of the pump propagation to zeroth order. The coupling coefficients are then obtained from an iterative solution of Vlasov equation, and a compact expression is derived, in which the multiple series over Bessel functions is explicitly summed. Even in the limit of a very long wavelength pump, the dispersion relation obtained in this way does not coincide with the one obtained using the well-known ''dipole'' approximation, unless both the sideband and beat wave are resonant modes of the plasma. An analysis of the origin of this discrepancy allows us to conclude that ''quasimodes'' (evanescent waves driven absolutely unstable by the pump) are more correctly described by the iterative approach

  12. Parametric embedding for class visualization.

    Science.gov (United States)

    Iwata, Tomoharu; Saito, Kazumi; Ueda, Naonori; Stromsten, Sean; Griffiths, Thomas L; Tenenbaum, Joshua B

    2007-09-01

    We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.

  13. Parametric studies on automotive radiators

    International Nuclear Information System (INIS)

    Oliet, C.; Oliva, A.; Castro, J.; Perez-Segarra, C.D.

    2007-01-01

    This paper presents a set of parametric studies performed on automotive radiators by means of a detailed rating and design heat exchanger model developed by the authors. This numerical tool has been previously verified and validated using a wide experimental data bank. A first part of the analysis focuses on the influence of working conditions on both fluids (mass flows, inlet temperatures) and the impact of the selected coolant fluid. Following these studies, the influence of some geometrical parameters is analysed (fin pitch, louver angle) as well as the importance of coolant flow lay-out on the radiator global performance. This work provides an overall behaviour report of automobile radiators working at usual range of operating conditions, while significant knowledge-based design conclusions have also been reported. The results show the utility of this numerical model as a rating and design tool for heat exchangers manufacturers, being a reasonable compromise between classic ε - NTU methods and CFD

  14. Parametric instabilities in inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nicholson, D.R.

    1975-01-01

    The nonlinear coupling of three waves in a plasma is considered. One of the waves is assumed large and constant; its amplitude is the parameter of the parametric instability. The spatial-temporal evolution of the other two waves is treated theoretically, in one dimension, by analytic methods and by direct numerical integration of the basic equations. Various monotonic forms of inhomogeneity are considered; agreement with previous work is found and new results are established. Nonmonotonic inhomogeneities are considered, in the form of turbulence and, as a model problem, in the form of a simple sinusoidal modulation. Relatively small amounts of nonmonotonic inhomogeneity, in the presence of a linear density gradient, are found to destabilize the well-known convective saturation, absolute growth occurring instead. (U.S.)

  15. Integrable multi parametric SU(N) chain

    International Nuclear Information System (INIS)

    Foerster, Angela; Roditi, Itzhak; Rodrigues, Ligia M.C.S.

    1996-03-01

    We analyse integrable models associated to a multi parametric SU(N) R-matrix. We show that the Hamiltonians describe SU(N) chains with twisted boundary conditions and that the underlying algebraic structure is the multi parametric deformation of SU(N) enlarged by the introduction of a central element. (author). 15 refs

  16. Observation of Parametric Instability in Advanced LIGO.

    Science.gov (United States)

    Evans, Matthew; Gras, Slawek; Fritschel, Peter; Miller, John; Barsotti, Lisa; Martynov, Denis; Brooks, Aidan; Coyne, Dennis; Abbott, Rich; Adhikari, Rana X; Arai, Koji; Bork, Rolf; Kells, Bill; Rollins, Jameson; Smith-Lefebvre, Nicolas; Vajente, Gabriele; Yamamoto, Hiroaki; Adams, Carl; Aston, Stuart; Betzweiser, Joseph; Frolov, Valera; Mullavey, Adam; Pele, Arnaud; Romie, Janeen; Thomas, Michael; Thorne, Keith; Dwyer, Sheila; Izumi, Kiwamu; Kawabe, Keita; Sigg, Daniel; Derosa, Ryan; Effler, Anamaria; Kokeyama, Keiko; Ballmer, Stefan; Massinger, Thomas J; Staley, Alexa; Heinze, Matthew; Mueller, Chris; Grote, Hartmut; Ward, Robert; King, Eleanor; Blair, David; Ju, Li; Zhao, Chunnong

    2015-04-24

    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress.

  17. Parametric Methods for Order Tracking Analysis

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm

    2017-01-01

    Order tracking analysis is often used to find the critical speeds at which structural resonances are excited by a rotating machine. Typically, order tracking analysis is performed via non-parametric methods. In this report, however, we demonstrate some of the advantages of using a parametric method...

  18. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we ...

  19. On the parametric approximation in quantum optics

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Pavia Univ. (Italy). Dipt. di Fisica ' Alessandro Volta'

    1999-03-01

    The authors perform the exact numerical diagonalization of Hamiltonians that describe both degenerate and nondegenerate parametric amplifiers, by exploiting the conservation laws pertaining each device. It is clarify the conditions under which the parametric approximation holds, showing that the most relevant requirements is the coherence of the pump after the interaction, rather than its un depletion.

  20. On the parametric approximation in quantum optics

    International Nuclear Information System (INIS)

    D'Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F.; Pavia Univ.

    1999-01-01

    The authors perform the exact numerical diagonalization of Hamiltonians that describe both degenerate and nondegenerate parametric amplifiers, by exploiting the conservation laws pertaining each device. It is clarify the conditions under which the parametric approximation holds, showing that the most relevant requirements is the coherence of the pump after the interaction, rather than its un depletion

  1. Parametric form of QCD travelling waves

    OpenAIRE

    Peschanski, R.

    2005-01-01

    We derive parametric travelling-wave solutions of non-linear QCD equations. They describe the evolution towards saturation in the geometric scaling region. The method, based on an expansion in the inverse of the wave velocity, leads to a solvable hierarchy of differential equations. A universal parametric form of travelling waves emerges from the first two orders of the expansion.

  2. Developing a Parametric Urban Design Tool

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Obeling, Esben

    2014-01-01

    Parametric urban design is a potentially powerful tool for collaborative urban design processes. Rather than making one- off designs which need to be redesigned from the ground up in case of changes, parametric design tools make it possible keep the design open while at the same time allowing...... for a level of detailing which is high enough to facilitate an understan- ding of the generic qualities of proposed designs. Starting from a brief overview of parametric design, this paper presents initial findings from the development of a parametric urban design tool with regard to developing a structural...... logic which is flexible and expandable. It then moves on to outline and discuss further development work. Finally, it offers a brief reflection on the potentials and shortcomings of the software – CityEngine – which is used for developing the parametric urban design tool....

  3. Modification of EEG power spectra and EEG connectivity in autobiographical memory: a sLORETA study.

    Science.gov (United States)

    Imperatori, Claudio; Brunetti, Riccardo; Farina, Benedetto; Speranza, Anna Maria; Losurdo, Anna; Testani, Elisa; Contardi, Anna; Della Marca, Giacomo

    2014-08-01

    The aim of the present study was to explore the modifications of scalp EEG power spectra and EEG connectivity during the autobiographical memory test (AM-T) and during the retrieval of an autobiographical event (the high school final examination, Task 2). Seventeen healthy volunteers were enrolled (9 women and 8 men, mean age 23.4 ± 2.8 years, range 19-30). EEG was recorded at baseline and while performing the autobiographical memory (AM) tasks, by means of 19 surface electrodes and a nasopharyngeal electrode. EEG analysis was conducted by means of the standardized LOw Resolution Electric Tomography (sLORETA) software. Power spectra and lagged EEG coherence were compared between EEG acquired during the memory tasks and baseline recording. The frequency bands considered were as follows: delta (0.5-4 Hz); theta (4.5-7.5 Hz); alpha (8-12.5 Hz); beta1 (13-17.5 Hz); beta2 (18-30 Hz); gamma (30.5-60 Hz). During AM-T, we observed a significant delta power increase in left frontal and midline cortices (T = 3.554; p < 0.05) and increased EEG connectivity in delta band in prefrontal, temporal, parietal, and occipital areas, and for gamma bands in the left temporo-parietal regions (T = 4.154; p < 0.05). In Task 2, we measured an increased power in the gamma band located in the left posterior midline areas (T = 3.960; p < 0.05) and a significant increase in delta band connectivity in the prefrontal, temporal, parietal, and occipital areas, and in the gamma band involving right temporo-parietal areas (T = 4.579; p < 0.05). These results indicate that AM retrieval engages in a complex network which is mediated by both low- (delta) and high-frequency (gamma) EEG bands.

  4. EEG. Renewables Act. Comment. 4. new rev. and enl. ed.; EEG. Erneuerbare-Energien-Gesetz. Kommentar

    Energy Technology Data Exchange (ETDEWEB)

    Frenz, Walter [RWTH Aachen Univ. (Germany). Lehr- und Forschungsgebiet Berg-, Umwelt- und Europarecht; Mueggenborg, Hans-Juergen [Technische Hochschule Aachen (Germany); Kassel Univ. (Germany); Cosack, Tilman [Hochschule Trier, Umwelt-Campus Birkenfeld (Germany). IREK - Inst. fuer das Recht der Erneuerbaren Energien, Energieeffizienzrecht und Klimaschutzrecht; Ekardt, Felix (ed.) [Forschungsstelle Nachhaltigkeit und Klimapolitik, Leipzig (Germany)

    2015-07-01

    Unlike any other Act, the Renewable Energy Sources Act (EEG) changes continuously. Recently it has been fundamentally transformed with the amendment 2014. Comprehensive, readable and practice-oriented. The proven Berliner comment EEG is your reliable companion through the new regulatory regime. All provisions of the EEG 2014 thorough and easy to understand commented by experts of the matter. 2. The EEG Amending Act of 29.6.2015 has already been considered. A detailed introduction and contributions to the relevant European law and the antitrust aspects of the renewable energy sources to guarantee you a broad understanding of the rules. Valuable background information you provide, the digressions of the most important renewable energy technologies, will explain the pictures thanks to numerous the scientific and technical foundations. Moreover you the construction law aspects in the construction of photovoltaic and wind turbines are explained clearly. [German] Wie kaum ein anderes Gesetz veraendert sich das Erneuerbare-Energien-Gesetz (EEG) laufend. Zuletzt wurde es mit der Novelle 2014 grundlegend umgestaltet. Umfassend, verstaendlich und praxisgerecht Der bewaehrte Berliner Kommentar EEG ist Ihr verlaesslicher Begleiter durch das neue Regelungsregime. Alle Vorschriften des EEG 2014 werden gruendlich und leicht verstaendlich von Kennern der Materie kommentiert. Das 2. EEG-Aenderungsgesetz vom 29.06.2015 ist bereits beruecksichtigt. Eine ausfuehrliche Einleitung sowie Beitraege zum einschlaegigen europaeischen Recht und zu den kartellrechtlichen Aspekten der erneuerbaren Energien verhelfen Ihnen zu einem breiten Verstaendnis der Vorschriften. Wertvolles Hintergrundwissen liefern Ihnen auch die Exkurse zu den wichtigsten Erneuerbare-Energien-Technologien, die Ihnen dank zahlreicher Abbildungen die naturwissenschaftlich-technischen Grundlagen erlaeutern. Zudem werden Ihnen die baurechtlichen Aspekte bei der Errichtung von Photovoltaik- und Windenergieanlagen

  5. Random matrix analysis of human EEG data

    Czech Academy of Sciences Publication Activity Database

    Šeba, Petr

    2003-01-01

    Roč. 91, - (2003), s. 198104-1 - 198104-4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0088 Institutional research plan: CEZ:AV0Z1010914 Keywords : random matrix theory * EEG signal Subject RIV: BE - Theoretical Physics Impact factor: 7.035, year: 2003

  6. Illumination influences working memory: an EEG study.

    Science.gov (United States)

    Park, Jin Young; Min, Byoung-Kyong; Jung, Young-Chul; Pak, Hyensou; Jeong, Yeon-Hong; Kim, Eosu

    2013-09-05

    Illumination conditions appear to influence working efficacy in everyday life. In the present study, we obtained electroencephalogram (EEG) correlates of working-memory load, and investigated how these waveforms are modulated by illumination conditions. We hypothesized that illumination conditions may affect cognitive performance. We designed an EEG study to monitor and record participants' EEG during the Sternberg working memory task under four different illumination conditions. Illumination conditions were generated with a factorial design of two color-temperatures (3000 and 7100 K) by two illuminance levels (150 and 700 lx). During a working memory task, we observed that high illuminance led to significantly lower frontal EEG theta activity than did low illuminance. These differences persisted despite no significant difference in task performance between illumination conditions. We found that the latency of an early event-related potential component, such as N1, was significantly modulated by the illumination condition. The fact that the illumination condition affects brain activity but not behavioral performance suggests that the lighting conditions used in the present study did not influence the performance stage of behavioral processing. Nevertheless, our findings provide objective evidence that illumination conditions modulate brain activity. Further studies are necessary to refine the optimal lighting parameters for facilitating working memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Discriminant Multitaper Component Analysis of EEG

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Sajda, Paul

    the method for predicting the handedness of a subject’s button press given multivariate EEG data. We show that our method learns multitapers sensitive to oscillatory activity in the 8–12 Hz range with spatial filters selective for lateralized motor cortex. This finding is consistent with the well-known mu...

  8. EEG-based characterization of flicker perception

    NARCIS (Netherlands)

    Lazo, M.; Tsoneva, T.; Garcia Molina, G.

    2013-01-01

    Steady-State Visual Evoked Potential (SSVEP) is an oscillatory electrical response appearing in the electroencephalogram (EEG) in response to flicker stimulation. The SSVEP manifests more prominently in electrodes located near the visual cortex and has oscillatory components at the stimulation

  9. EEG source imaging during two Qigong meditations.

    Science.gov (United States)

    Faber, Pascal L; Lehmann, Dietrich; Tei, Shisei; Tsujiuchi, Takuya; Kumano, Hiroaki; Pascual-Marqui, Roberto D; Kochi, Kieko

    2012-08-01

    Experienced Qigong meditators who regularly perform the exercises "Thinking of Nothing" and "Qigong" were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during "Qigong" than "Thinking of Nothing," forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during "Thinking of Nothing" than "Qigong," forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial-final no-task resting, "Qigong" showed activation in posterior areas whereas "Thinking of Nothing" showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during "Qigong" and anterior (left) prefrontal areas during "Thinking of Nothing" may reflect a predominance of self-reference, attention and input-centered processing in the "Qigong" meditation, and of control-centered processing in the "Thinking of Nothing" meditation.

  10. 3D Printed Dry EEG Electrodes.

    Science.gov (United States)

    Krachunov, Sammy; Casson, Alexander J

    2016-10-02

    Electroencephalography (EEG) is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI). A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  11. 3D Printed Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    Sammy Krachunov

    2016-10-01

    Full Text Available Electroencephalography (EEG is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI. A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  12. An overview of an amplitude integrated EEG

    Directory of Open Access Journals (Sweden)

    Setyo Handryastuti

    2007-05-01

    for neurodevelopmental problem in conditions such as hypoxic-ischemic encephalopathy (HIE, prematurity, neonatal seizures, central nervous system infection, metabolic disorders, intraventricular or intracranial bleeding and brain malformation. This article gives an overview about aEEG and its role in newborn.

  13. Microneedle array electrode for human EEG recording.

    NARCIS (Netherlands)

    Lüttge, Regina; van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; van Putten, Michel Johannes Antonius Maria; Vander Sloten, Jos; Verdonck, Pascal; Nyssen, Marc; Haueisen, Jens

    2009-01-01

    Microneedle array electrodes for EEG significantly reduce the mounting time, particularly by circumvention of the need for skin preparation by scrubbing. We designed a new replication process for numerous types of microneedle arrays. Here, polymer microneedle array electrodes with 64 microneedles,

  14. Simultaneous recording of EEG and electromyographic polygraphy increases the diagnostic yield of video-EEG monitoring.

    Science.gov (United States)

    Hill, Aron T; Briggs, Belinda A; Seneviratne, Udaya

    2014-06-01

    To investigate the usefulness of adjunctive electromyographic (EMG) polygraphy in the diagnosis of clinical events captured during long-term video-EEG monitoring. A total of 40 patients (21 women, 19 men) aged between 19 and 72 years (mean 43) investigated using video-EEG monitoring were studied. Electromyographic activity was simultaneously recorded with EEG in four patients selected on clinical grounds. In these patients, surface EMG electrodes were placed over muscles suspected to be activated during a typical clinical event. Of the 40 patients investigated, 24 (60%) were given a diagnosis, whereas 16 (40%) remained undiagnosed. All four patients receiving adjunctive EMG polygraphy obtained a diagnosis, with three of these diagnoses being exclusively reliant on the EMG recordings. Specifically, one patient was diagnosed with propriospinal myoclonus, another patient was diagnosed with facio-mandibular myoclonus, and a third patient was found to have bruxism and periodic leg movements of sleep. The information obtained from surface EMG recordings aided the diagnosis of clinical events captured during video-EEG monitoring in 7.5% of the total cohort. This study suggests that EEG-EMG polygraphy may be used as a technique of improving the diagnostic yield of video-EEG monitoring in selected cases.

  15. Serial EEG findings in anti-NMDA receptor encephalitis: correlation between clinical course and EEG.

    Science.gov (United States)

    Ueda, Jun; Kawamoto, Michi; Hikiami, Ryota; Ishii, Junko; Yoshimura, Hajime; Matsumoto, Riki; Kohara, Nobuo

    2017-12-01

    Anti-NMDA receptor encephalitis is a paraneoplastic encephalitis characterised by psychiatric features, involuntary movement, and autonomic instability. Various EEG findings in patients with anti-NMDA receptor encephalitis have been reported, however, the correlation between the EEG findings and clinical course of anti-NMDA receptor encephalitis remains unclear. We describe a patient with anti-NMDA receptor encephalitis with a focus on EEG findings, which included: status epilepticus, generalised rhythmic delta activity, excess beta activity, extreme delta brush, and paroxysmal alpha activity upon arousal from sleep, which we term"arousal alpha pattern". Initially, status epilepticus was observed on the EEG when the patient was comatose with conjugate deviation. The EEG then indicated excess beta activity, followed by the emergence of continuous slow activity, including generalised rhythmic delta activity and extreme delta brush, in the most severe phase. Slow activity gradually faded in parallel with clinical amelioration. Excess beta activity persisted, even after the patient became almost independent in daily activities, and finally disappeared with full recovery. In summary, our patient with anti-NMDA receptor encephalitis demonstrated slow activity on the EEG, including extreme delta brush during the most severe phase, which gradually faded in parallel with clinical amelioration, with excess beta activity persisting into the recovery phase.

  16. Interrater variability of EEG interpretation in comatose cardiac arrest patients

    DEFF Research Database (Denmark)

    Westhall, Erik; Rosén, Ingmar; Rossetti, Andrea O

    2015-01-01

    OBJECTIVE: EEG is widely used to predict outcome in comatose cardiac arrest patients, but its value has been limited by lack of a uniform classification. We used the EEG terminology proposed by the American Clinical Neurophysiology Society (ACNS) to assess interrater variability in a cohort...... who were blinded for patient outcome. Percent agreement and kappa (κ) for the categories in the ACNS EEG terminology and for prespecified malignant EEG-patterns were calculated. RESULTS: There was substantial interrater agreement (κ 0.71) for highly malignant patterns and moderate agreement (κ 0.......42) for malignant patterns. Substantial agreement was found for malignant periodic or rhythmic patterns (κ 0.72) while agreement for identifying an unreactive EEG was fair (κ 0.26). CONCLUSIONS: The ACNS EEG terminology can be used to identify highly malignant EEG-patterns in post cardiac arrest patients...

  17. Use Case Analysis: The Ambulatory EEG in Navy Medicine for Traumatic Brain Injuries

    Science.gov (United States)

    2016-12-01

    science of binaural beats . Retrieved from http://binauralbrains.com/the-science-of- binaural - beats / Biosignal. (2016). MicroEEG. Retrieved from http...Cap. Source: Binaural Brains (n.d.). ....................................4  Figure 3.  EEG Machine. Source: Refine Medical Technology (n.d...EEG. Figures 2, 3, and 4 display images of a standard EEG cap, EEG machine, and an EEG recording. Figure 2. Standard EEG Cap. Source: Binaural Brains

  18. Ionization Cooling using Parametric Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  19. Ionization Cooling using Parametric Resonances

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  20. Increased reaction time variability in attention-deficit hyperactivity disorder as a response-related phenomenon: evidence from single-trial event-related potentials.

    Science.gov (United States)

    Saville, Christopher W N; Feige, Bernd; Kluckert, Christian; Bender, Stephan; Biscaldi, Monica; Berger, Andrea; Fleischhaker, Christian; Henighausen, Klaus; Klein, Christoph

    2015-07-01

    Increased intra-subject variability (ISV) in reaction times (RTs) is a promising endophenotype for attention-deficit hyperactivity disorder (ADHD) and among the most robust hallmarks of the disorder. ISV has been assumed to represent an attentional deficit, either reflecting lapses in attention or increased neural noise. Here, we use an innovative single-trial event-related potential approach to assess whether the increased ISV associated with ADHD is indeed attributable to attention, or whether it is related to response-related processing. We measured electroencephalographic responses to working memory oddball tasks in patients with ADHD (N = 20, aged 11.3 ± 1.1) and healthy controls (N = 25, aged 11.7 ± 1.1), and analysed these data with a recently developed method of single-trial event-related potential analysis. Estimates of component latency variability were computed for the stimulus-locked and response-locked forms of the P3b and the lateralised readiness potential (LRP). ADHD patients showed significantly increased ISV in behavioural ISV. This increased ISV was paralleled by an increase in variability in response-locked event-related potential latencies, while variability in stimulus-locked latencies was equivalent between groups. This result held across the P3b and LRP. Latency of all components predicted RTs on a single-trial basis, confirming that all were relevant for speed of processing. These data suggest that the increased ISV found in ADHD could be associated with response-end, rather than stimulus-end processes, in contrast to prevailing conceptions about the endophenotype. This mental chronometric approach may also be useful for exploring whether the existing lack of specificity of ISV to particular psychiatric conditions can be improved upon. © 2014 Association for Child and Adolescent Mental Health.

  1. Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy - A comparison with scalp EEG monitoring.

    Science.gov (United States)

    Zibrandtsen, I C; Kidmose, P; Christensen, C B; Kjaer, T W

    2017-12-01

    Ear-EEG is recording of electroencephalography from a small device in the ear. This is the first study to compare ictal and interictal abnormalities recorded with ear-EEG and simultaneous scalp-EEG in an epilepsy monitoring unit. We recorded and compared simultaneous ear-EEG and scalp-EEG from 15 patients with suspected temporal lobe epilepsy. EEGs were compared visually by independent neurophysiologists. Correlation and time-frequency analysis was used to quantify the similarity between ear and scalp electrodes. Spike-averages were used to assess similarity of interictal spikes. There were no differences in sensitivity or specificity for seizure detection. Mean correlation coefficient between ear-EEG and nearest scalp electrode was above 0.6 with a statistically significant decreasing trend with increasing distance away from the ear. Ictal morphology and frequency dynamics can be observed from visual inspection and time-frequency analysis. Spike averages derived from ear-EEG electrodes yield a recognizable spike appearance. Our results suggest that ear-EEG can reliably detect electroencephalographic patterns associated with focal temporal lobe seizures. Interictal spike morphology from sufficiently large temporal spike sources can be sampled using ear-EEG. Ear-EEG is likely to become an important tool in clinical epilepsy monitoring and diagnosis. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  2. Controlling flexible rotor vibrations using parametric excitation

    Energy Technology Data Exchange (ETDEWEB)

    Atepor, L, E-mail: katepor@yahoo.co [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom)

    2009-08-01

    This paper presents both theoretical and experimental studies of an active vibration controller for vibration in a flexible rotor system. The paper shows that the vibration amplitude can be modified by introducing an axial parametric excitation. The perturbation method of multiple scales is used to solve the equations of motion. The steady-state responses, with and without the parametric excitation terms, is investigated. An experimental test machine uses a piezoelectric exciter mounted on the end of the shaft. The results show a reduction in the rotor response amplitude under principal parametric resonance, and some good correlation between theory and experiment.

  3. Linear Parametric Model Checking of Timed Automata

    DEFF Research Database (Denmark)

    Hune, Tohmas Seidelin; Romijn, Judi; Stoelinga, Mariëlle

    2001-01-01

    We present an extension of the model checker Uppaal capable of synthesize linear parameter constraints for the correctness of parametric timed automata. The symbolic representation of the (parametric) state-space is shown to be correct. A second contribution of this paper is the identication...... of a subclass of parametric timed automata (L/U automata), for which the emptiness problem is decidable, contrary to the full class where it is know to be undecidable. Also we present a number of lemmas enabling the verication eort to be reduced for L/U automata in some cases. We illustrate our approach...

  4. Causality within the Epileptic Network: An EEG-fMRI Study Validated by Intracranial EEG.

    Science.gov (United States)

    Vaudano, Anna Elisabetta; Avanzini, Pietro; Tassi, Laura; Ruggieri, Andrea; Cantalupo, Gaetano; Benuzzi, Francesca; Nichelli, Paolo; Lemieux, Louis; Meletti, Stefano

    2013-01-01

    Accurate localization of the Seizure Onset Zone (SOZ) is crucial in patients with drug-resistance focal epilepsy. EEG with fMRI recording (EEG-fMRI) has been proposed as a complementary non-invasive tool, which can give useful additional information in the pre-surgical work-up. However, fMRI maps related to interictal epileptiform activities (IED) often show multiple regions of signal change, or "networks," rather than highly focal ones. Effective connectivity approaches like Dynamic Causal Modeling (DCM) applied to fMRI data potentially offers a framework to address which brain regions drives the generation of seizures and IED within an epileptic network. Here, we present a first attempt to validate DCM on EEG-fMRI data in one patient affected by frontal lobe epilepsy. Pre-surgical EEG-fMRI demonstrated two distinct clusters of blood oxygenation level dependent (BOLD) signal increases linked to IED, one located in the left frontal pole and the other in the ipsilateral dorso-lateral frontal cortex. DCM of the IED-related BOLD signal favored a model corresponding to the left dorso-lateral frontal cortex as driver of changes in the fronto-polar region. The validity of DCM was supported by: (a) the results of two different non-invasive analysis obtained on the same dataset: EEG source imaging (ESI), and "psycho-physiological interaction" analysis; (b) the failure of a first surgical intervention limited to the fronto-polar region; (c) the results of the intracranial EEG monitoring performed after the first surgical intervention confirming a SOZ located over the dorso-lateral frontal cortex. These results add evidence that EEG-fMRI together with advanced methods of BOLD signal analysis is a promising tool that can give relevant information within the epilepsy surgery diagnostic work-up.

  5. Causality within the epileptic network: an EEG-fMRI study validated by intracranial EEG.

    Directory of Open Access Journals (Sweden)

    Anna Elisabetta eVaudano

    2013-11-01

    Full Text Available Accurate localization of the Seizure Onset Zone (SOZ is crucial in patients with drug-resistance focal epilepsy. EEG with fMRI recording (EEG-fMRI has been proposed as a complementary non-invasive tool, which can give useful additional information in the pre-surgical workup. However, fMRI maps related to interictal epileptiform activities (IED often show multiple regions of signal change, or networks, rather than highly focal ones. Effective connectivity approaches like Dynamic Causal Modelling (DCM applied to fMRI data potentially offers a framework to address which brain regions drives the generation of seizures and IED within an epileptic network. Here we present a first attempt to validate DCM on EEG-fMRI data in one patient affected by frontal lobe epilepsy. Pre-surgical EEG-fMRI demonstrated two distinct clusters of BOLD signal increases linked to IED, one located in the left frontal pole and the other in the ipsilateral dorso-lateral frontal cortex. DCM of the IED-related BOLD signal favoured a model corresponding to the left dorsolateral frontal cortex as driver of changes in the fronto-polar region. The validity of DCM was supported by: (a the results of two different non-invasive analysis obtained on the same dataset: EEG source imaging (ESI, and psychophysiological interaction analysis (PPI; (b the failure of a first surgical intervention limited to the fronto-polar region; (c the results of the intracranial EEG monitoring performed after the first surgical intervention confirming a SOZ located over the dorso-lateral frontal cortex. These results add evidence that EEG-fMRI together with advanced methods of BOLD signal analysis is a promising tool that can give relevant information within the epilepsy surgery diagnostic work-up.

  6. Screening EEG in Aircrew Selection: Clinical Aerospace Neurology Perspective

    Science.gov (United States)

    Clark, Jonathan B.; Riley, Terrence

    2001-01-01

    As clinical aerospace neurologists we do not favor using screening EEG in pilot selection on unselected and otherwise asymptomatic individuals. The role of EEG in aviation screening should be as an adjunct to diagnosis, and the decision to disqualify a pilot should never be based solely on the EEG. Although a policy of using a screening EEG in an unselected population might detect an individual with a potentially increased relative risk, it would needlessly exclude many applicants who would probably never have a seizure. A diagnostic test performed on an asymptomatic individual without clinical indications, in a population with a low prevalence of disease (seizure) may be of limited or possibly detrimental value. We feel that rather than do EEGs on all candidates, a better approach would be to perform an EEG for a specific indication, such as family history of seizure, single convulsion (seizure) , history of unexplained loss of consciousness or head injury. Routine screening EEGs in unselected aviation applications are not done without clinical indication in the U.S. Air Force, Navy, or NASA. The USAF discontinued routine screening EEGs for selection in 1978, the U.S. Navy discontinued it in 1981 , and NASA discontinued it in 1995. EEG as an aeromedical screening tool in the US Navy dates back to 1939. The US Navy routinely used EEGs to screen all aeromedical personnel from 1961 to 1981. The incidence of epileptiform activity on EEG in asymptomatic flight candidates ranges from 0.11 to 2.5%. In 3 studies of asymptomatic flight candidates with epileptiform activity on EEG followed for 2 to 15 years, 1 of 31 (3.2%), 1 of 30 (3.3%), and 0 of 14 (0%) developed a seizure, for a cumulative risk of an individual with an epileptiform EEG developing a seizure of 2.67% (2 in 75). Of 28,658 student naval aviation personnel screened 31 had spikes and/or slow waves on EEG, and only 1 later developed a seizure. Of the 28,627 who had a normal EEG, 4 later developed seizures, or

  7. The role of the standard EEG in clinical psychiatry.

    LENUS (Irish Health Repository)

    O'Sullivan, S S

    2012-02-03

    BACKGROUND: The EEG is a commonly requested test on patients attending psychiatric services, predominantly to investigate for a possible organic brain syndrome causing behavioural changes. AIMS: To assess referrals for EEG from psychiatric services in comparison with those from other sources. We determine which clinical factors were associated with an abnormal EEG in patients referred from psychiatric sources. METHODS: A retrospective review of EEG requests in a 1-year period was performed. Analysis of referral reasons for psychiatric patients was undertaken, and outcome of patients referred from psychiatric services post-EEG was reviewed. RESULTS: One thousand four hundred and seventy EEGs were reviewed, of which 91 (6.2%) were referred from psychiatry. Neurology service referrals had detection rates of abnormal EEGs of 27%, with psychiatric referrals having the lowest abnormality detection rate of 17.6% (p < 0.1). In psychiatric-referred patients the only significant predictors found of an abnormal EEG were a known history of epilepsy (p < 0.001), being on clozapine (p < 0.05), and a possible convulsive seizure (RR = 6.51). Follow-up data of 53 patients did not reveal a significant clinical impact of EEG results on patient management. CONCLUSIONS: Many patients are referred for EEG from psychiatric sources despite a relatively low index of suspicion of an organic brain disorders, based on reasons for referral documented, with an unsurprising low clinical yield.

  8. Parametric optimization of inverse trapezoid oleophobic surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2012-01-01

    In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure...

  9. Parametric decay below the upper hybrid frequency

    Energy Technology Data Exchange (ETDEWEB)

    Albers, E; Krause, K; Schlueter, H [Bochum Univ. (Germany, F.R.). Inst. fuer Experimentalphysik 2

    1977-03-21

    Parametric decay of the upper hybrid mode is observed between the electron cyclotron frequency and its first two harmonics. The decay products are identified as electron Bernstein and ion acoustic mode. The diagnostic results confirm the relevant dispersion relations.

  10. Optimal parametric modelling of measured short waves

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    the importance of selecting a suitable sampling interval for better estimates of parametric modelling and also for better statistical representation. Implementation of the above algorithms in a structural monitoring system has the potential advantage of storing...

  11. Robust and Efficient Parametric Face Alignment

    NARCIS (Netherlands)

    Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja

    2011-01-01

    We propose a correlation-based approach to parametric object alignment particularly suitable for face analysis applications which require efficiency and robustness against occlusions and illumination changes. Our algorithm registers two images by iteratively maximizing their correlation coefficient

  12. Ranking Forestry Investments With Parametric Linear Programming

    Science.gov (United States)

    Paul A. Murphy

    1976-01-01

    Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.

  13. A Parametric k-Means Algorithm

    Science.gov (United States)

    Tarpey, Thaddeus

    2007-01-01

    Summary The k points that optimally represent a distribution (usually in terms of a squared error loss) are called the k principal points. This paper presents a computationally intensive method that automatically determines the principal points of a parametric distribution. Cluster means from the k-means algorithm are nonparametric estimators of principal points. A parametric k-means approach is introduced for estimating principal points by running the k-means algorithm on a very large simulated data set from a distribution whose parameters are estimated using maximum likelihood. Theoretical and simulation results are presented comparing the parametric k-means algorithm to the usual k-means algorithm and an example on determining sizes of gas masks is used to illustrate the parametric k-means algorithm. PMID:17917692

  14. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    specific phase relationships has an interesting property that it can accumulate if the matter .... In Д 3 we discuss the physical interpretation of the parametric reso- nance in neutrino ..... long-baseline accelerator and reactor experiments [12,29].

  15. Evidence for an All-Or-None Perceptual Response: Single-Trial Analyses of Magnetoencephalography Signals Indicate an Abrupt Transition Between Visual Perception and Its Absence

    Science.gov (United States)

    Sekar, Krithiga; Findley, William M.; Llinás, Rodolfo R.

    2014-01-01

    Whether consciousness is an all-or-none or graded phenomenon is an area of inquiry that has received considerable interest in neuroscience and is as of yet, still debated. In this magnetoencephalography (MEG) study we used a single stimulus paradigm with sub-threshold, threshold and supra-threshold duration inputs to assess whether stimulus perception is continuous with or abruptly differentiated from unconscious stimulus processing in the brain. By grouping epochs according to stimulus identification accuracy and exposure duration, we were able to investigate whether a high-amplitude perception-related cortical event was (1) only evoked for conditions where perception was most probable (2) had invariant amplitude once evoked and (3) was largely absent for conditions where perception was least probable (criteria satisfying an all-on-none hypothesis). We found that averaged evoked responses showed a gradual increase in amplitude with increasing perceptual strength. However, single trial analyses demonstrated that stimulus perception was correlated with an all-or-none response, the temporal precision of which increased systematically as perception transitioned from ambiguous to robust states. Due to poor signal-to-noise resolution of single trial data, whether perception-related responses, whenever present, were invariant in amplitude could not be unambiguously demonstrated. However, our findings strongly suggest that visual perception of simple stimuli is associated with an all-or-none cortical evoked response the temporal precision of which varies as a function of perceptual strength. PMID:22020091

  16. Donepezil impairs memory in healthy older subjects: behavioural, EEG and simultaneous EEG/fMRI biomarkers.

    Directory of Open Access Journals (Sweden)

    Joshua H Balsters

    Full Text Available Rising life expectancies coupled with an increasing awareness of age-related cognitive decline have led to the unwarranted use of psychopharmaceuticals, including acetylcholinesterase inhibitors (AChEIs, by significant numbers of healthy older individuals. This trend has developed despite very limited data regarding the effectiveness of such drugs on non-clinical groups and recent work indicates that AChEIs can have negative cognitive effects in healthy populations. For the first time, we use a combination of EEG and simultaneous EEG/fMRI to examine the effects of a commonly prescribed AChEI (donepezil on cognition in healthy older participants. The short- and long-term impact of donepezil was assessed using two double-blind, placebo-controlled trials. In both cases, we utilised cognitive (paired associates learning (CPAL and electrophysiological measures (resting EEG power that have demonstrated high-sensitivity to age-related cognitive decline. Experiment 1 tested the effects of 5 mg/per day dosage on cognitive and EEG markers at 6-hour, 2-week and 4-week follow-ups. In experiment 2, the same markers were further scrutinised using simultaneous EEG/fMRI after a single 5 mg dose. Experiment 1 found significant negative effects of donepezil on CPAL and resting Alpha and Beta band power. Experiment 2 replicated these results and found additional drug-related increases in the Delta band. EEG/fMRI analyses revealed that these oscillatory differences were associated with activity differences in the left hippocampus (Delta, right frontal-parietal network (Alpha, and default-mode network (Beta. We demonstrate the utility of simple cognitive and EEG measures in evaluating drug responses after acute and chronic donepezil administration. The presentation of previously established markers of age-related cognitive decline indicates that AChEIs can impair cognitive function in healthy older individuals. To our knowledge this is the first study to identify

  17. Parametric resonance in an expanding universe

    International Nuclear Information System (INIS)

    Zlatev, I.; Huey, G.; Steinhardt, P.J.

    1998-01-01

    Parametric resonance has been discussed as a mechanism for copious particle production following inflation. Here we present a simple and intuitive calculational method for estimating the efficiency of parametric amplification as a function of parameters. This is important for determining whether resonant amplification plays an important role in the reheating process. We find that significant amplification occurs only for a limited range of couplings and interactions. copyright 1998 The American Physical Society

  18. Efficiency Analysis of German Electricity Distribution Utilities : Non-Parametric and Parametric Tests

    OpenAIRE

    von Hirschhausen, Christian R.; Cullmann, Astrid

    2005-01-01

    Abstract This paper applies parametric and non-parametric and parametric tests to assess the efficiency of electricity distribution companies in Germany. We address traditional issues in electricity sector benchmarking, such as the role of scale effects and optimal utility size, as well as new evidence specific to the situation in Germany. We use labour, capital, and peak load capacity as inputs, and units sold and the number of customers as output. The data cover 307 (out of 553) ...

  19. Biogas plants in EEG. 4. new rev. and enl. ed.; Biogasanlagen im EEG

    Energy Technology Data Exchange (ETDEWEB)

    Loibl, Helmut; Maslaton, Martin; Bredow, Hartwig von; Walter, Rene (eds.)

    2016-08-01

    With the EEG 2014, the legislature has created a complete revision of all the RES plants. Specifically for biogas plants fundamental changes have been made with the maximum rated power or a new landscape conservation concept. For new biogas plants the legislator arranges not only a much lower remuneration, but also the direct marketing as a rule, which entails fundamental changes in the overall compensation system by itself. The new edition of this highly regarded standard work revives the extensive practical experience to EEG 2009, 2012 and 2014 in detail and in particular and takes into account the large number of newly issued clearinghouses decisions and judgments. All current legal issues and challenges of biogas plants can be found comprehensively presented here. [German] Mit dem EEG 2014 hat der Gesetzgeber eine komplette Neuregelung fuer alle EEG-Anlagen geschaffen. Speziell fuer Biogasanlagen wurden mit der Hoechstbemessungsleistung oder einem neuen Landschaftspflegebegriff grundlegende Aenderungen vorgenommen. Fuer neue Biogasanlagen ordnet der Gesetzgeber nicht nur eine deutlich geringere Verguetung, sondern zudem die Direktvermarktung als Regelfall an, was grundlegende Veraenderungen des gesamten Verguetungssystems nach sich zieht. Die Neuauflage dieses vielbeachteten Standardwerks greift die umfangreichen Praxiserfahrungen zum EEG 2009, 2012 und 2014 detailliert auf und beruecksichtigt insbesondere auch die Vielzahl der neu ergangenen Clearingstellenentscheidungen und Urteile. Alle aktuellen rechtlichen Themen und Herausforderungen bei Biogasanlagen finden Sie hier umfassend dargestellt.

  20. Classifying Drivers' Cognitive Load Using EEG Signals.

    Science.gov (United States)

    Barua, Shaibal; Ahmed, Mobyen Uddin; Begum, Shahina

    2017-01-01

    A growing traffic safety issue is the effect of cognitive loading activities on traffic safety and driving performance. To monitor drivers' mental state, understanding cognitive load is important since while driving, performing cognitively loading secondary tasks, for example talking on the phone, can affect the performance in the primary task, i.e. driving. Electroencephalography (EEG) is one of the reliable measures of cognitive load that can detect the changes in instantaneous load and effect of cognitively loading secondary task. In this driving simulator study, 1-back task is carried out while the driver performs three different simulated driving scenarios. This paper presents an EEG based approach to classify a drivers' level of cognitive load using Case-Based Reasoning (CBR). The results show that for each individual scenario as well as using data combined from the different scenarios, CBR based system achieved approximately over 70% of classification accuracy.

  1. Mean-field thalamocortical modeling of longitudinal EEG acquired during intensive meditation training.

    Science.gov (United States)

    Saggar, Manish; Zanesco, Anthony P; King, Brandon G; Bridwell, David A; MacLean, Katherine A; Aichele, Stephen R; Jacobs, Tonya L; Wallace, B Alan; Saron, Clifford D; Miikkulainen, Risto

    2015-07-01

    Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain processes associated with such training are poorly understood and a computational modeling framework is lacking. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic anatomical and physiological constraints can provide a unique opportunity to generate concrete and testable hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied the mean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collected at three assessment points from meditating participants during two separate 3-month-long shamatha meditation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assessments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the retreat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat, two model parameters were found to replicably change across both meditation retreats. First, after training, we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be associated with increased dynamical stability of the model. Altogether, this paper presents the first computational approach, taking core aspects of physiology and

  2. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    Science.gov (United States)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  3. EEG-based characterization of flicker perception

    OpenAIRE

    Lazo, M.; Tsoneva, T.; Garcia Molina, G.

    2013-01-01

    Steady-State Visual Evoked Potential (SSVEP) is an oscillatory electrical response appearing in the electroencephalogram (EEG) in response to flicker stimulation. The SSVEP manifests more prominently in electrodes located near the visual cortex and has oscillatory components at the stimulation frequency and/or harmonics. The phase and amplitude of the SSVEP are sensitive to stimulus parameters such as frequency, modu-lation depth, and spatial frequency. Research related to SSVEP and the human...

  4. An EEG Data Investigation Using Only Artifacts

    Science.gov (United States)

    2017-02-22

    hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...some conditions, an automation feature was implemented to help the participants find the HVT. When the HVT was within the sensor footprint, a tone...EEG Data Investigation Using Only Artifacts 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1 Chelsey

  5. Detection of EEG electrodes in brain volumes.

    Science.gov (United States)

    Graffigna, Juan P; Gómez, M Eugenia; Bustos, José J

    2010-01-01

    This paper presents a method to detect 128 EEG electrodes in image study and to merge with the Nuclear Magnetic Resonance volume for better diagnosis. First we propose three hypotheses to define a specific acquisition protocol in order to recognize the electrodes and to avoid distortions in the image. In the second instance we describe a method for segmenting the electrodes. Finally, registration is performed between volume of the electrodes and NMR.

  6. Wearable ear EEG for brain interfacing

    Science.gov (United States)

    Schroeder, Eric D.; Walker, Nicholas; Danko, Amanda S.

    2017-02-01

    Brain-computer interfaces (BCIs) measuring electrical activity via electroencephalogram (EEG) have evolved beyond clinical applications to become wireless consumer products. Typically marketed for meditation and neu- rotherapy, these devices are limited in scope and currently too obtrusive to be a ubiquitous wearable. Stemming from recent advancements made in hearing aid technology, wearables have been shrinking to the point that the necessary sensors, circuitry, and batteries can be fit into a small in-ear wearable device. In this work, an ear-EEG device is created with a novel system for artifact removal and signal interpretation. The small, compact, cost-effective, and discreet device is demonstrated against existing consumer electronics in this space for its signal quality, comfort, and usability. A custom mobile application is developed to process raw EEG from each device and display interpreted data to the user. Artifact removal and signal classification is accomplished via a combination of support matrix machines (SMMs) and soft thresholding of relevant statistical properties.

  7. Robust power spectral estimation for EEG data.

    Science.gov (United States)

    Melman, Tamar; Victor, Jonathan D

    2016-08-01

    Typical electroencephalogram (EEG) recordings often contain substantial artifact. These artifacts, often large and intermittent, can interfere with quantification of the EEG via its power spectrum. To reduce the impact of artifact, EEG records are typically cleaned by a preprocessing stage that removes individual segments or components of the recording. However, such preprocessing can introduce bias, discard available signal, and be labor-intensive. With this motivation, we present a method that uses robust statistics to reduce dependence on preprocessing by minimizing the effect of large intermittent outliers on the spectral estimates. Using the multitaper method (Thomson, 1982) as a starting point, we replaced the final step of the standard power spectrum calculation with a quantile-based estimator, and the Jackknife approach to confidence intervals with a Bayesian approach. The method is implemented in provided MATLAB modules, which extend the widely used Chronux toolbox. Using both simulated and human data, we show that in the presence of large intermittent outliers, the robust method produces improved estimates of the power spectrum, and that the Bayesian confidence intervals yield close-to-veridical coverage factors. The robust method, as compared to the standard method, is less affected by artifact: inclusion of outliers produces fewer changes in the shape of the power spectrum as well as in the coverage factor. In the presence of large intermittent outliers, the robust method can reduce dependence on data preprocessing as compared to standard methods of spectral estimation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Rhythms of EEG and cognitive processes

    Directory of Open Access Journals (Sweden)

    Novikova S.I.

    2015-06-01

    Full Text Available The study of cognitive processes is regarded to be more effective if it combines a psychological approach with a neurophysiological one. This approach makes it possible to come closer to understanding of the basic mechanisms of different cognitive processes, to describe the patterns of forming these mechanisms in ontogenesis, to investigate the origin of cognitive impairments, and to develop intervention techniques. The promising way of investigating the mechanisms of cognitive functions is the electroencephalography (EEG. This is a non-invasive, safe, and relatively cheap method of research of the functional condition of the brain. The characteristics of EEG rhythms, recorded with different cognitive loads, reflect the processes of functional modulation of neural network activity of the cortex, which serves the neurophysiologic basis for attention, memory and other cognitive processes. The article provides an overview of works containing the analysis of the alpha and theta rhythms’ dynamics in various states of wakefulness. It also introduces the substantiation of methodology of functional regulatory approach to the interpretation of behaviors of EEG rhythms.

  9. Memories of attachment hamper EEG cortical connectivity in dissociative patients.

    Science.gov (United States)

    Farina, Benedetto; Speranza, Anna Maria; Dittoni, Serena; Gnoni, Valentina; Trentini, Cristina; Vergano, Carola Maggiora; Liotti, Giovanni; Brunetti, Riccardo; Testani, Elisa; Della Marca, Giacomo

    2014-08-01

    In this study, we evaluated cortical connectivity modifications by electroencephalography (EEG) lagged coherence analysis, in subjects with dissociative disorders and in controls, after retrieval of attachment memories. We asked thirteen patients with dissociative disorders and thirteen age- and sex-matched healthy controls to retrieve personal attachment-related autobiographical memories through adult attachment interviews (AAI). EEG was recorded in the closed eyes resting state before and after the AAI. EEG lagged coherence before and after AAI was compared in all subjects. In the control group, memories of attachment promoted a widespread increase in EEG connectivity, in particular in the high-frequency EEG bands. Compared to controls, dissociative patients did not show an increase in EEG connectivity after the AAI. Conclusions: These results shed light on the neurophysiology of the disintegrative effect of retrieval of traumatic attachment memories in dissociative patients.

  10. EEG activity during estral cycle in the rat.

    Science.gov (United States)

    Corsi-Cabrera, M; Juárez, J; Ponce-de-León, M; Ramos, J; Velázquez, P N

    1992-10-01

    EEG activity was recorded from right and left parietal cortex in adult female rats daily during 6 days. Immediately after EEG recording vaginal smears were taken and were microscopically analyzed to determine the estral stage. Absolute and relative powers and interhemispheric correlation of EEG activity were calculated and compared between estral stages. Interhemispheric correlation was significantly lower during diestrous as compared to proestrous and estrous. Absolute and relative powers did not show significant differences between estral stages. Absolute powers of alpha1, alpha2, beta1 and beta2 bands were significantly higher at the right parietal cortex. Comparisons of the same EEG records with estral stages randomly grouped showed no significant differences for any of the EEG parameters. EEG activity is a sensitive tool to study functional changes related to the estral cycle.

  11. PHAZE, Parametric Hazard Function Estimation

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: Phaze performs statistical inference calculations on a hazard function (also called a failure rate or intensity function) based on reported failure times of components that are repaired and restored to service. Three parametric models are allowed: the exponential, linear, and Weibull hazard models. The inference includes estimation (maximum likelihood estimators and confidence regions) of the parameters and of the hazard function itself, testing of hypotheses such as increasing failure rate, and checking of the model assumptions. 2 - Methods: PHAZE assumes that the failures of a component follow a time-dependent (or non-homogenous) Poisson process and that the failure counts in non-overlapping time intervals are independent. Implicit in the independence property is the assumption that the component is restored to service immediately after any failure, with negligible repair time. The failures of one component are assumed to be independent of those of another component; a proportional hazards model is used. Data for a component are called time censored if the component is observed for a fixed time-period, or plant records covering a fixed time-period are examined, and the failure times are recorded. The number of these failures is random. Data are called failure censored if the component is kept in service until a predetermined number of failures has occurred, at which time the component is removed from service. In this case, the number of failures is fixed, but the end of the observation period equals the final failure time and is random. A typical PHAZE session consists of reading failure data from a file prepared previously, selecting one of the three models, and performing data analysis (i.e., performing the usual statistical inference about the parameters of the model, with special emphasis on the parameter(s) that determine whether the hazard function is increasing). The final goals of the inference are a point estimate

  12. Burst suppression in sleep in a routine outpatient EEG

    Directory of Open Access Journals (Sweden)

    Ammar Kheder

    2014-01-01

    Full Text Available Burst suppression (BS is an electroencephalogram (EEG pattern that is characterized by brief bursts of spikes, sharp waves, or slow waves of relatively high amplitude alternating with periods of relatively flat EEG or isoelectric periods. The pattern is usually associated with coma, severe encephalopathy of various etiologies, or general anesthesia. We describe an unusual case of anoxic brain injury in which a BS pattern was seen during behaviorally defined sleep during a routine outpatient EEG study.

  13. Transfer function between EEG and BOLD signals of epileptic activity

    Directory of Open Access Journals (Sweden)

    Marco eLeite

    2013-01-01

    Full Text Available Simultaneous EEG-fMRI recordings have seen growing application in the evaluation of epilepsy, namely in the characterization of brain networks related to epileptic activity. In EEG-correlated fMRI studies, epileptic events are usually described as boxcar signals based on the timing information retrieved from the EEG, and subsequently convolved with a heamodynamic response function to model the associated BOLD changes. Although more flexible approaches may allow a higher degree of complexity for the haemodynamics, the issue of how to model these dynamics based on the EEG remains an open question. In this work, a new methodology for the integration of simultaneous EEG-fMRI data in epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD signal. Independent component analysis (ICA of the EEG is performed, and a number of metrics expressing different models of the EEG-BOLD transfer function are extracted from the resulting time courses. These metrics are then used to predict the fMRI data and to identify brain areas associated with the EEG epileptic activity. The methodology was tested on both ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma. When compared to the conventional analysis approach, plausible, consistent and more significant activations were obtained. Importantly, frequency-weighted EEG metrics yielded superior results than those weighted solely on the EEG power, which comes in agreement with previous literature. Reproducibility, specificity and sensitivity should be addressed in an extended group of patients in order to further validate the proposed methodology and generalize the presented proof of concept.

  14. EEG simulation by 2D interconnected chaotic oscillators

    International Nuclear Information System (INIS)

    Kubany, Adam; Mhabary, Ziv; Gontar, Vladimir

    2011-01-01

    Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  15. EEG Signal Decomposition and Improved Spectral Analysis Using Wavelet Transform

    National Research Council Canada - National Science Library

    Bhatti, Muhammad

    2001-01-01

    EEG (Electroencephalograph), as a noninvasive testing method, plays a key role in the diagnosing diseases, and is useful for both physiological research and medical applications. Wavelet transform (WT...

  16. Synchronization of EEG activity in patients with bipolar disorder

    International Nuclear Information System (INIS)

    Panischev, O Yu; Demin, S A; Muhametshin, I G; Yu Demina, N

    2015-01-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome. (paper)

  17. Synchronization of EEG activity in patients with bipolar disorder

    Science.gov (United States)

    Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu

    2015-12-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.

  18. Deep Neural Architectures for Mapping Scalp to Intracranial EEG.

    Science.gov (United States)

    Antoniades, Andreas; Spyrou, Loukianos; Martin-Lopez, David; Valentin, Antonio; Alarcon, Gonzalo; Sanei, Saeid; Took, Clive Cheong

    2018-03-19

    Data is often plagued by noise which encumbers machine learning of clinically useful biomarkers and electroencephalogram (EEG) data is no exemption. Intracranial EEG (iEEG) data enhances the training of deep learning models of the human brain, yet is often prohibitive due to the invasive recording process. A more convenient alternative is to record brain activity using scalp electrodes. However, the inherent noise associated with scalp EEG data often impedes the learning process of neural models, achieving substandard performance. Here, an ensemble deep learning architecture for nonlinearly mapping scalp to iEEG data is proposed. The proposed architecture exploits the information from a limited number of joint scalp-intracranial recording to establish a novel methodology for detecting the epileptic discharges from the sEEG of a general population of subjects. Statistical tests and qualitative analysis have revealed that the generated pseudo-intracranial data are highly correlated with the true intracranial data. This facilitated the detection of IEDs from the scalp recordings where such waveforms are not often visible. As a real-world clinical application, these pseudo-iEEGs are then used by a convolutional neural network for the automated classification of intracranial epileptic discharges (IEDs) and non-IED of trials in the context of epilepsy analysis. Although the aim of this work was to circumvent the unavailability of iEEG and the limitations of sEEG, we have achieved a classification accuracy of 68% an increase of 6% over the previously proposed linear regression mapping.

  19. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  20. Altered resting state EEG in chronic pancreatitis patients: toward a marker for chronic pain

    NARCIS (Netherlands)

    Vries, M. de; Wilder-Smith, O.H.G.; Jongsma, M.L.A.; Broeke, E.N. van den; Arns, M.W.; Goor, H. van; Rijn, C.M. van

    2013-01-01

    OBJECTIVES: Electroencephalography (EEG) may be a promising source of physiological biomarkers accompanying chronic pain. Several studies in patients with chronic neuropathic pain have reported alterations in central pain processing, manifested as slowed EEG rhythmicity and increased EEG power in

  1. Altered resting state EEG in chronic pancreatitis patients: toward a marker for chronic pain

    NARCIS (Netherlands)

    Vries, M. de; Wilder-Smith, O.H.G.; Jongsma, M.L.A.; Broeke, E.N. van den; Arns, M.W.; Goor, H. van; Rijn, C.M. van

    2013-01-01

    Objectives: Electroencephalography (EEG) may be a promising source of physiological biomarkers accompanying chronic pain. Several studies in patients with chronic neuropathic pain have reported alterations in central pain processing, manifested as slowed EEG rhythmicity and increased EEG power in

  2. Assessing pupil and school performance by non-parametric and parametric techniques

    NARCIS (Netherlands)

    de Witte, K.; Thanassoulis, E.; Simpson, G.; Battisti, G.; Charlesworth-May, A.

    2010-01-01

    This paper discusses the use of the non-parametric free disposal hull (FDH) and the parametric multi-level model (MLM) as alternative methods for measuring pupil and school attainment where hierarchical structured data are available. Using robust FDH estimates, we show how to decompose the overall

  3. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison

    NARCIS (Netherlands)

    Verrelst, Jochem; Rivera, Juan Pablo; Veroustraete, Frank; Muñoz-Marí, Jordi; Clevers, J.G.P.W.; Camps-Valls, Gustau; Moreno, José

    2015-01-01

    Given the forthcoming availability of Sentinel-2 (S2) images, this paper provides a systematic comparison of retrieval accuracy and processing speed of a multitude of parametric, non-parametric and physically-based retrieval methods using simulated S2 data. An experimental field dataset (SPARC),

  4. Parametric models to relate spike train and LFP dynamics with neural information processing.

    Science.gov (United States)

    Banerjee, Arpan; Dean, Heather L; Pesaran, Bijan

    2012-01-01

    Spike trains and local field potentials (LFPs) resulting from extracellular current flows provide a substrate for neural information processing. Understanding the neural code from simultaneous spike-field recordings and subsequent decoding of information processing events will have widespread applications. One way to demonstrate an understanding of the neural code, with particular advantages for the development of applications, is to formulate a parametric statistical model of neural activity and its covariates. Here, we propose a set of parametric spike-field models (unified models) that can be used with existing decoding algorithms to reveal the timing of task or stimulus specific processing. Our proposed unified modeling framework captures the effects of two important features of information processing: time-varying stimulus-driven inputs and ongoing background activity that occurs even in the absence of environmental inputs. We have applied this framework for decoding neural latencies in simulated and experimentally recorded spike-field sessions obtained from the lateral intraparietal area (LIP) of awake, behaving monkeys performing cued look-and-reach movements to spatial targets. Using both simulated and experimental data, we find that estimates of trial-by-trial parameters are not significantly affected by the presence of ongoing background activity. However, including background activity in the unified model improves goodness of fit for predicting individual spiking events. Uncovering the relationship between the model parameters and the timing of movements offers new ways to test hypotheses about the relationship between neural activity and behavior. We obtained significant spike-field onset time correlations from single trials using a previously published data set where significantly strong correlation was only obtained through trial averaging. We also found that unified models extracted a stronger relationship between neural response latency and trial

  5. Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF).

    Science.gov (United States)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R

    2018-01-01

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.

  6. Standardized Computer-based Organized Reporting of EEG: SCORE

    Science.gov (United States)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C; Fuglsang-Frederiksen, Anders; Martins-da-Silva, António; Trinka, Eugen; Visser, Gerhard; Rubboli, Guido; Hjalgrim, Helle; Stefan, Hermann; Rosén, Ingmar; Zarubova, Jana; Dobesberger, Judith; Alving, Jørgen; Andersen, Kjeld V; Fabricius, Martin; Atkins, Mary D; Neufeld, Miri; Plouin, Perrine; Marusic, Petr; Pressler, Ronit; Mameniskiene, Ruta; Hopfengärtner, Rüdiger; Emde Boas, Walter; Wolf, Peter

    2013-01-01

    The electroencephalography (EEG) signal has a high complexity, and the process of extracting clinically relevant features is achieved by visual analysis of the recordings. The interobserver agreement in EEG interpretation is only moderate. This is partly due to the method of reporting the findings in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings). A working group of EEG experts took part in consensus workshops in Dianalund, Denmark, in 2010 and 2011. The faculty was approved by the Commission on European Affairs of the International League Against Epilepsy (ILAE). The working group produced a consensus proposal that went through a pan-European review process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice. The main elements of SCORE are the following: personal data of the patient, referral data, recording conditions, modulators, background activity, drowsiness and sleep, interictal findings, “episodes” (clinical or subclinical events), physiologic patterns, patterns of uncertain significance, artifacts, polygraphic channels, and diagnostic significance. The following specific aspects of the neonatal EEGs are scored: alertness, temporal organization, and spatial organization. For each EEG finding, relevant features are scored using predefined terms. Definitions are provided for all EEG terms and features. SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make

  7. Parametric pendulum based wave energy converter

    Science.gov (United States)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  8. Parametric methods for spatial point processes

    DEFF Research Database (Denmark)

    Møller, Jesper

    is studied in Section 4, and Bayesian inference in Section 5. On one hand, as the development in computer technology and computational statistics continues,computationally-intensive simulation-based methods for likelihood inference probably will play a increasing role for statistical analysis of spatial...... inference procedures for parametric spatial point process models. The widespread use of sensible but ad hoc methods based on summary statistics of the kind studied in Chapter 4.3 have through the last two decades been supplied by likelihood based methods for parametric spatial point process models......(This text is submitted for the volume ‘A Handbook of Spatial Statistics' edited by A.E. Gelfand, P. Diggle, M. Fuentes, and P. Guttorp, to be published by Chapmand and Hall/CRC Press, and planned to appear as Chapter 4.4 with the title ‘Parametric methods'.) 1 Introduction This chapter considers...

  9. Parametric Conversion Using Custom MOS Varactors

    Directory of Open Access Journals (Sweden)

    Iniewski Krzysztof (Kris

    2006-01-01

    Full Text Available The possible role of customized MOS varactors in amplification, mixing, and frequency control of future millimeter wave CMOS RFICs is outlined. First, the parametric conversion concept is revisited and discussed in terms of modern RF communications systems. Second, the modeling, design, and optimization of MOS varactors are reconsidered in the context of their central role in parametric circuits. Third, a balanced varactor structure is proposed for robust oscillator frequency control in the presence of large extrinsic noise expected in tightly integrated wireless communicators. Main points include the proposal of a subharmonic pumping scheme based on the MOS varactor, a nonequilibrium elastance-voltage model, optimal varactor layout suggestions, custom m-CMOS varactor design and measurement, device-level balanced varactor simulations, and parametric circuit evaluation based on measured device characteristics.

  10. Piezoelectric energy harvesting with parametric uncertainty

    International Nuclear Information System (INIS)

    Ali, S F; Friswell, M I; Adhikari, S

    2010-01-01

    The design and analysis of energy harvesting devices is becoming increasing important in recent years. Most of the literature has focused on the deterministic analysis of these systems and the problem of uncertain parameters has received less attention. Energy harvesting devices exhibit parametric uncertainty due to errors in measurement, errors in modelling and variability in the parameters during manufacture. This paper investigates the effect of parametric uncertainty in the mechanical system on the harvested power, and derives approximate explicit formulae for the optimal electrical parameters that maximize the mean harvested power. The maximum of the mean harvested power decreases with increasing uncertainty, and the optimal frequency at which the maximum mean power occurs shifts. The effect of the parameter variance on the optimal electrical time constant and optimal coupling coefficient are reported. Monte Carlo based simulation results are used to further analyse the system under parametric uncertainty

  11. Parametric analysis of ATM solar array.

    Science.gov (United States)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  12. Detecting interictal discharges in first seizure patients: ambulatory EEG or EEG after sleep deprivation?

    NARCIS (Netherlands)

    Geut, I.; Weenink, S.; Knottnerus, I.L.H.; van Putten, Michel J.A.M.

    2017-01-01

    Purpose Uncertainty about recurrence after a first unprovoked seizure is a significant psychological burden for patients, and motivates the need for diagnostic tools with high sensitivity and specificity to assess recurrence risk. As the sensitivity of a routine EEG after a first unprovoked seizure

  13. Hippocampal EEG and behaviour in dog. I. Hippocampal EEG correlates of gross motor behaviour

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    It was shown that rewarding spectral shifts (i.e. increase in amplitude or peak frequency of the hippocampal EEG) causes a solitary dog to show increased motor behaviour. Rewarded spectral shifts concurred with a variety of behavioural transitions. It was found that statistically significant

  14. Long-term EEG in children.

    Science.gov (United States)

    Montavont, A; Kaminska, A; Soufflet, C; Taussig, D

    2015-03-01

    Long-term video-EEG corresponds to a recording ranging from 1 to 24 h or even longer. It is indicated in the following situations: diagnosis of epileptic syndromes or unclassified epilepsy, pre-surgical evaluation for drug-resistant epilepsy, follow-up of epilepsy or in cases of paroxysmal symptoms whose etiology remains uncertain. There are some specificities related to paediatric care: a dedicated pediatric unit; continuous monitoring covering at least a full 24-hour period, especially in the context of pre-surgical evaluation; the requirement of presence by the parents, technician or nurse; and stronger attachment of electrodes (cup electrodes), the number of which is adapted to the age of the child. The chosen duration of the monitoring also depends on the frequency of seizures or paroxysmal events. The polygraphy must be adapted to the type and topography of movements. It is essential to have at least an electrocardiography (ECG) channel, respiratory sensor and electromyography (EMG) on both deltoids. There is no age limit for performing long-term video-EEG even in newborns and infants; nevertheless because of scalp fragility, strict surveillance of the baby's skin condition is required. In the specific context of pre-surgical evaluation, long-term video-EEG must record all types of seizures observed in the child. This monitoring is essential in order to develop hypotheses regarding the seizure onset zone, based on electroclinical correlations, which should be adapted to the child's age and the psychomotor development. Copyright © 2015. Published by Elsevier SAS.

  15. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  16. Universal parametrization for quark and lepton substructure

    International Nuclear Information System (INIS)

    Akama, Keiichi; Terazawa, Hidezumi.

    1994-01-01

    A universal parametrization for possible quark and lepton substructure is advocated in terms of quark and lepton form factors. It is emphasized that the lower bounds on compositeness scale, Λ c , to be determined experimentally strongly depend on their definitions in composite models. From the recent HERA data, it is estimated to be Λ c > 50 GeV, 0.4 TeV and 10 TeV, depending on the parametrizations with a single-pole form factor, a contact interaction and a logarithmic form factor, respectively. (author)

  17. Parametric number covariance in quantum chaotic spectra.

    Science.gov (United States)

    Vinayak; Kumar, Sandeep; Pandey, Akhilesh

    2016-03-01

    We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.

  18. Parametric frequency conversion in long Josephson junctions

    International Nuclear Information System (INIS)

    Irie, F.; Ashihara, S.; Yoshida, K.

    1976-01-01

    Current steps at voltages corresponding to the parametric coupling between an applied r.f. field and junction resonant modes have been observed in long Josephson tunnel junctions in the flux-flow state. The observed periodic variations of the step height due to the applied magnetic field are explained quantitatively by a perturbational analysis using Josephson phase equations. The present study demonstrates that the moving vortex array can serve as a coherent pump wave for signal waves propagating in the barrier region, which indicates, as a result, the possibility of traveling-wave parametric devices with long Josephson tunnel junctions. (author)

  19. EEG-Annotate: Automated identification and labeling of events in continuous signals with applications to EEG.

    Science.gov (United States)

    Su, Kyung-Min; Hairston, W David; Robbins, Kay

    2018-01-01

    In controlled laboratory EEG experiments, researchers carefully mark events and analyze subject responses time-locked to these events. Unfortunately, such markers may not be available or may come with poor timing resolution for experiments conducted in less-controlled naturalistic environments. We present an integrated event-identification method for identifying particular responses that occur in unlabeled continuously recorded EEG signals based on information from recordings of other subjects potentially performing related tasks. We introduce the idea of timing slack and timing-tolerant performance measures to deal with jitter inherent in such non-time-locked systems. We have developed an implementation available as an open-source MATLAB toolbox (http://github.com/VisLab/EEG-Annotate) and have made test data available in a separate data note. We applied the method to identify visual presentation events (both target and non-target) in data from an unlabeled subject using labeled data from other subjects with good sensitivity and specificity. The method also identified actual visual presentation events in the data that were not previously marked in the experiment. Although the method uses traditional classifiers for initial stages, the problem of identifying events based on the presence of stereotypical EEG responses is the converse of the traditional stimulus-response paradigm and has not been addressed in its current form. In addition to identifying potential events in unlabeled or incompletely labeled EEG, these methods also allow researchers to investigate whether particular stereotypical neural responses are present in other circumstances. Timing-tolerance has the added benefit of accommodating inter- and intra- subject timing variations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.

    Science.gov (United States)

    Sawan, Mohamad; Salam, Muhammad T; Le Lan, Jérôme; Kassab, Amal; Gelinas, Sébastien; Vannasing, Phetsamone; Lesage, Frédéric; Lassonde, Maryse; Nguyen, Dang K

    2013-04-01

    In this paper, we present the design and implementation of a wireless wearable electronic system dedicated to remote data recording for brain monitoring. The reported wireless recording system is used for a) simultaneous near-infrared spectrometry (NIRS) and scalp electro-encephalography (EEG) for noninvasive monitoring and b) intracerebral EEG (icEEG) for invasive monitoring. Bluetooth and dual radio links were introduced for these recordings. The Bluetooth-based device was embedded in a noninvasive multichannel EEG-NIRS system for easy portability and long-term monitoring. On the other hand, the 32-channel implantable recording device offers 24-bit resolution, tunable features, and a sampling frequency up to 2 kHz per channel. The analog front-end preamplifier presents low input-referred noise of 5 μ VRMS and a signal-to-noise ratio of 112 dB. The communication link is implemented using a dual-band radio frequency transceiver offering a half-duplex 800 kb/s data rate, 16.5 mW power consumption and less than 10(-10) post-correction Bit-Error Rate (BER). The designed system can be accessed and controlled by a computer with a user-friendly graphical interface. The proposed wireless implantable recording device was tested in vitro using real icEEG signals from two patients with refractory epilepsy. The wirelessly recorded signals were compared to the original signals recorded using wired-connection, and measured normalized root-mean square deviation was under 2%.

  1. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest

    NARCIS (Netherlands)

    Westhall, Erik; Rossetti, Andrea O.; van Rootselaar, Anne-Fleur; Wesenberg Kjaer, Troels; Horn, Janneke; Ullén, Susann; Friberg, Hans; Nielsen, Niklas; Rosén, Ingmar; Åneman, Anders; Erlinge, David; Gasche, Yvan; Hassager, Christian; Hovdenes, Jan; Kjaergaard, Jesper; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wanscher, Michael; Wetterslev, Jørn; Wise, Matt P.; Cronberg, Tobias; Saxena, Manoj; Miller, Jennene; Inskip, Deborah; Macken, Lewis; Finfer, Simon; Eatough, Noel; Hammond, Naomi; Bass, Frances; Yarad, Elizabeth; O'Connor, Anne; Bird, Simon; Jewell, Timothy; Davies, Gareth; Ng, Karl; Coward, Sharon; Stewart, Antony; Micallef, Sharon; Parker, Sharyn; Cortado, Dennis; Gould, Ann; Harward, Meg; Thompson, Kelly; Glass, Parisa; Myburgh, John; Smid, Ondrej; Belholavek, Jan; Juffermans, Nicole P.; Boerma, EC

    2016-01-01

    To identify reliable predictors of outcome in comatose patients after cardiac arrest using a single routine EEG and standardized interpretation according to the terminology proposed by the American Clinical Neurophysiology Society. In this cohort study, 4 EEG specialists, blinded to outcome,

  2. Convolutive ICA for Spatio-Temporal Analysis of EEG

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Makeig, Scott; Hansen, Lars Kai

    2007-01-01

    in the convolutive model can be correctly detected using Bayesian model selection. We demonstrate a framework for deconvolving an EEG ICA subspace. Initial results suggest that in some cases convolutive mixing may be a more realistic model for EEG signals than the instantaneous ICA model....

  3. Using EEG to Study Cognitive Development: Issues and Practices

    Science.gov (United States)

    Bell, Martha Ann; Cuevas, Kimberly

    2012-01-01

    Developmental research is enhanced by use of multiple methodologies for examining psychological processes. The electroencephalogram (EEG) is an efficient and relatively inexpensive method for the study of developmental changes in brain-behavior relations. In this review, we highlight some of the challenges for using EEG in cognitive development…

  4. Correlations of CT and EEG findings in brain affections

    International Nuclear Information System (INIS)

    Roth, B.; Nevsimalova, S.; Kvicala, V.

    1984-01-01

    The results were compared of electroencephalography (EEG) and computerized tomography (CT) examinations of 250 patients with different brain affections. In intracranial expansive processes the pre-operative CT findings were positive in 100% cases, the EEG findings in 89.7% of cases. In severe traumatic affections the EEG and CT findings were positive in all cases, in mild injuries and post-traumatic conditions the EEG findings were more frequently positive than the CT. In focal and diffuse vascular affections the EEG and CT findings were consistent, in transitory ischemic conditions the EEG findings were more frequently positive. In inflammatory cerebral affections and in paroxymal diseases the EEG findings were positive more frequently than the CT. The same applies for demyelinating and degenerative affections. Findings of other authors were confirmed to the effect that CT very reliably reveals morphological changes in cerebral tissue while EEG records the functional state of the central nervous system and its changes. The two methods are complementary. (author)

  5. EOG Artifacts Removal in EEG Measurements for Affective Interaction

    NARCIS (Netherlands)

    Qi, Wen

    2014-01-01

    A brain-computer interface (BCI) is a direct link between the brain and a computer. Multi-modal input with BCI forms a promising solution for creating rich gaming experience. Electroencephalography (EEG) measurement is the sole necessary component for a BCI system. EEG signals have the

  6. EEG Signal Classification With Super-Dirichlet Mixture Model

    DEFF Research Database (Denmark)

    Ma, Zhanyu; Tan, Zheng-Hua; Prasad, Swati

    2012-01-01

    Classification of the Electroencephalogram (EEG) signal is a challengeable task in the brain-computer interface systems. The marginalized discrete wavelet transform (mDWT) coefficients extracted from the EEG signals have been frequently used in researches since they reveal features related...

  7. Quantitative EEG Applying the Statistical Recognition Pattern Method

    DEFF Research Database (Denmark)

    Engedal, Knut; Snaedal, Jon; Hoegh, Peter

    2015-01-01

    BACKGROUND/AIM: The aim of this study was to examine the discriminatory power of quantitative EEG (qEEG) applying the statistical pattern recognition (SPR) method to separate Alzheimer's disease (AD) patients from elderly individuals without dementia and from other dementia patients. METHODS...

  8. A computerised EEG-analyzing system for small laboratory animals

    NARCIS (Netherlands)

    Kropveld, D.; Chamuleau, R. A.; Popken, R. J.; Smith, J.

    1983-01-01

    The experimental setup, including instrumentation and software packaging, is described for the use of a minicomputer as an on-line analyzing system of the EEG in rats. Complete fast Fourier transformation of the EEG sampled in 15 episodes of 10 s each is plotted out within 7 min after the start of

  9. Diagnostic Role of ECG Recording Simultaneously With EEG Testing.

    Science.gov (United States)

    Kendirli, Mustafa Tansel; Aparci, Mustafa; Kendirli, Nurten; Tekeli, Hakan; Karaoglan, Mustafa; Senol, Mehmet Guney; Togrol, Erdem

    2015-07-01

    Arrhythmia is not uncommon in the etiology of syncope which mimics epilepsy. Data about the epilepsy induced vagal tonus abnormalities have being increasingly reported. So we aimed to evaluate what a neurologist may gain by a simultaneous electrocardiogram (ECG) and electroencephalogram (EEG) recording in the patients who underwent EEG testing due to prediagnosis of epilepsy. We retrospectively evaluated and detected ECG abnormalities in 68 (18%) of 376 patients who underwent EEG testing. A minimum of 20 of minutes artifact-free recording were required for each patient. Standard 1-channel ECG was simultaneously recorded in conjunction with the EEG. In all, 28% of females and 14% of males had ECG abnormalities. Females (mean age 49 years, range 18-88 years) were older compared with the male group (mean age 28 years, range 16-83 years). Atrial fibrillation was more frequent in female group whereas bradycardia and respiratory sinus arrhythmia was higher in male group. One case had been detected a critical asystole indicating sick sinus syndrome in the female group and treated with a pacemaker implantation in the following period. Simultaneous ECG recording in conjunction with EEG testing is a clinical prerequisite to detect and to clarify the coexisting ECG and EEG abnormalities and their clinical relevance. Potentially rare lethal causes of syncope that mimic seizure or those that could cause resistance to antiepileptic therapy could effectively be distinguished by detecting ECG abnormalities coinciding with the signs and abnormalities during EEG recording. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  10. A comparison of EEG spectral entropy with conventional quantitative ...

    African Journals Online (AJOL)

    Adele

    and decrease with increasing depth of anaesthesia. Spectral en- tropy yields two scales: Response Entropy (RE), ranging between. 0 to100, is an amalgam of EEG and frontal muscle activity while. State Entropy (SE), consisting mainly of EEG activity in a lower frequency band, ranges from 0 to 91.2 Initial reports have pro-.

  11. Analysis of Small Muscle Movement Effects on EEG Signals

    Science.gov (United States)

    2016-12-22

    different conditions are recorded in this experiment. These conditions are the resting state, left finger keyboard press, right finger keyboard...51 4.3.2. Right and Left Finger Keyboard Press Conditions ..................................... 57 4.4. Detection of Hand...solving Gamma 30 Hz and higher Blending of multiple brain functions ; Muscle related artifacts 2.2. EEG Artifacts EEG recordings are intended to

  12. Recording EEG In Young Children Without Sedation | Curuneaux ...

    African Journals Online (AJOL)

    Background Although it has been considered that sedation in children undergoing EEG tests is effective and safe and complications are infrequent, occasionally adverse sedation-related events are presented. Objective The aim of this work was to determine if it is possible to carry out EEG in children up to 4 years old ...

  13. The effect of CPAP treatment on EEG of OSAS patients.

    Science.gov (United States)

    Zhang, Cheng; Lv, Jun; Zhou, Junhong; Su, Li; Feng, Liping; Ma, Jing; Wang, Guangfa; Zhang, Jue

    2015-12-01

    Continuous positive airway pressure (CPAP) is currently the most effective treatment method for obstructive sleep apnea syndrome (OSAS). The purpose of this study was to compare the sleep electroencephalogram (EEG) changes before and after the application of CPAP to OSAS patients. A retrospective study was conducted and 45 sequential patients who received both polysomnography (PSG) and CPAP titration were included. The raw data of sleep EEG were extracted and analyzed by engineers using two main factors: fractal dimension (FD) and the zero-crossing rate of detrended FD (zDFD). FD was an effective indicator reflecting the EEG complexity and zDFD was useful to reflect the variability of the EEG complexity. The FD and zDFD indexes of sleep EEG of 45 OSAS patients before and after CPAP titration were analyzed. The age of 45 OSAS patients was 52.7 ± 5.6 years old and the patients include 12 females and 33 males. After CPAP treatment, FD of EEG in non-rapid eye movement (NREM) sleep decreased significantly (P CPAP therapy (P CPAP therapy had a significant influence on sleep EEG in patients with OSAHS, which lead to a more stable EEG pattern. This may be one of the mechanisms that CPAP could improve sleep quality and brain function of OSAS patients.

  14. Global Manufacturing Research: Experience Exchange Group (EEG) contributions

    DEFF Research Database (Denmark)

    Bruun, Peter

    1998-01-01

    of preliminary studies found interesting to set upan EEG composed of representatives from industry and a researcher. Inthe paper some general research methods pertinent to the areaindustrial management is discussed. The EEG concept is introduced andcharacterised in comparison with the other methods. EEG...... activities aredescribed and a tentative coupling to the phases in a research processis proposed. Following this is a discussion of methodological andquality requirements. It is considered how EEG activities couldpossible contribute to an industrial rooted research. The paper endsup looking at future research......The intention of this paper is to clarify if and how an ExperienceExchange Group (EEG) can be involved in a research process in the areaof industrial management. For exemplification of the topic an ongoingresearch in global manufacturing is referred to. In this research itwas after a series...

  15. Standardized computer-based organized reporting of EEG:SCORE

    DEFF Research Database (Denmark)

    Beniczky, Sandor; H, Aurlien,; JC, Brøgger,

    2013-01-01

    process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice...... in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings....... SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make possible the build-up of a multinational database, and it will help in training young neurophysiologists....

  16. EEG as an Indicator of Cerebral Functioning in Postanoxic Coma.

    Science.gov (United States)

    Juan, Elsa; Kaplan, Peter W; Oddo, Mauro; Rossetti, Andrea O

    2015-12-01

    Postanoxic coma after cardiac arrest is one of the most serious acute cerebral conditions and a frequent cause of admission to critical care units. Given substantial improvement of outcome over the recent years, a reliable and timely assessment of clinical evolution and prognosis is essential in this context, but may be challenging. In addition to the classic neurologic examination, EEG is increasingly emerging as an important tool to assess cerebral functions noninvasively. Although targeted temperature management and related sedation may delay clinical assessment, EEG provides accurate prognostic information in the early phase of coma. Here, the most frequently encountered EEG patterns in postanoxic coma are summarized and their relations with outcome prediction are discussed. This article also addresses the influence of targeted temperature management on brain signals and the implication of the evolution of EEG patterns over time. Finally, the article ends with a view of the future prospects for EEG in postanoxic management and prognostication.

  17. EEG Suppression Associated with Apneic Episodes in a Neonate

    Directory of Open Access Journals (Sweden)

    Evonne Low

    2012-01-01

    Full Text Available We describe the EEG findings from an ex-preterm neonate at term equivalent age who presented with intermittent but prolonged apneic episodes which were presumed to be seizures. A total of 8 apneic episodes were captured (duration 23–376 seconds during EEG monitoring. The baseline EEG activity was appropriate for corrected gestational age and no electrographic seizure activity was recorded. The average baseline heart rate was 168 beats per minute (bpm and the baseline oxygen saturation level was in the mid-nineties. Periods of complete EEG suppression lasting 68 and 179 seconds, respectively, were recorded during 2 of these 8 apneic episodes. Both episodes were accompanied by bradycardia less than 70 bpm and oxygen saturation levels of less than 20%. Short but severe episodes of apnea can cause complete EEG suppression in the neonate.

  18. Frontal EEG asymmetry as a moderator and mediator of emotion.

    Science.gov (United States)

    Coan, James A; Allen, John J B

    2004-10-01

    Frontal EEG asymmetry appears to serve as (1) an individual difference variable related to emotional responding and emotional disorders, and (2) a state-dependent concomitant of emotional responding. Such findings, highlighted in this review, suggest that frontal EEG asymmetry may serve as both a moderator and a mediator of emotion- and motivation-related constructs. Unequivocal evidence supporting frontal EEG asymmetry as a moderator and/or mediator of emotion is lacking, as insufficient attention has been given to analyzing the frontal EEG asymmetries in terms of moderators and mediators. The present report reviews the frontal EEG asymmetry literature from the framework of moderators and mediators, and overviews data analytic strategies that would support claims of moderation and mediation.

  19. Combined process automation for large-scale EEG analysis.

    Science.gov (United States)

    Sfondouris, John L; Quebedeaux, Tabitha M; Holdgraf, Chris; Musto, Alberto E

    2012-01-01

    Epileptogenesis is a dynamic process producing increased seizure susceptibility. Electroencephalography (EEG) data provides information critical in understanding the evolution of epileptiform changes throughout epileptic foci. We designed an algorithm to facilitate efficient large-scale EEG analysis via linked automation of multiple data processing steps. Using EEG recordings obtained from electrical stimulation studies, the following steps of EEG analysis were automated: (1) alignment and isolation of pre- and post-stimulation intervals, (2) generation of user-defined band frequency waveforms, (3) spike-sorting, (4) quantification of spike and burst data and (5) power spectral density analysis. This algorithm allows for quicker, more efficient EEG analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Information-Theoretical Analysis of EEG Microstate Sequences in Python

    Directory of Open Access Journals (Sweden)

    Frederic von Wegner

    2018-06-01

    Full Text Available We present an open-source Python package to compute information-theoretical quantities for electroencephalographic data. Electroencephalography (EEG measures the electrical potential generated by the cerebral cortex and the set of spatial patterns projected by the brain's electrical potential on the scalp surface can be clustered into a set of representative maps called EEG microstates. Microstate time series are obtained by competitively fitting the microstate maps back into the EEG data set, i.e., by substituting the EEG data at a given time with the label of the microstate that has the highest similarity with the actual EEG topography. As microstate sequences consist of non-metric random variables, e.g., the letters A–D, we recently introduced information-theoretical measures to quantify these time series. In wakeful resting state EEG recordings, we found new characteristics of microstate sequences such as periodicities related to EEG frequency bands. The algorithms used are here provided as an open-source package and their use is explained in a tutorial style. The package is self-contained and the programming style is procedural, focusing on code intelligibility and easy portability. Using a sample EEG file, we demonstrate how to perform EEG microstate segmentation using the modified K-means approach, and how to compute and visualize the recently introduced information-theoretical tests and quantities. The time-lagged mutual information function is derived as a discrete symbolic alternative to the autocorrelation function for metric time series and confidence intervals are computed from Markov chain surrogate data. The software package provides an open-source extension to the existing implementations of the microstate transform and is specifically designed to analyze resting state EEG recordings.

  1. EEG source imaging assists decoding in a face recognition task

    DEFF Research Database (Denmark)

    Andersen, Rasmus S.; Eliasen, Anders U.; Pedersen, Nicolai

    2017-01-01

    of face recognition. This task concerns the differentiation of brain responses to images of faces and scrambled faces and poses a rather difficult decoding problem at the single trial level. We implement the pipeline using spatially focused features and show that this approach is challenged and source...

  2. Optimizing microsurgical skills with EEG neurofeedback

    Directory of Open Access Journals (Sweden)

    Benjamin Larry

    2009-07-01

    Full Text Available Abstract Background By enabling individuals to self-regulate their brainwave activity in the field of optimal performance in healthy individuals, neurofeedback has been found to improve cognitive and artistic performance. Here we assessed whether two distinct EEG neurofeedback protocols could develop surgical skill, given the important role this skill plays in medicine. Results National Health Service trainee ophthalmic microsurgeons (N = 20 were randomly assigned to either Sensory Motor Rhythm-Theta (SMR or Alpha-Theta (AT groups, a randomized subset of which were also part of a wait-list 'no-treatment' control group (N = 8. Neurofeedback groups received eight 30-minute sessions of EEG training. Pre-post assessment included a skills lab surgical procedure with timed measures and expert ratings from video-recordings by consultant surgeons, together with state/trait anxiety self-reports. SMR training demonstrated advantages absent in the control group, with improvements in surgical skill according to 1 the expert ratings: overall technique (d = 0.6, p Conclusion SMR-Theta neurofeedback training provided significant improvement in surgical technique whilst considerably reducing time on task by 26%. There was also evidence that AT training marginally reduced total surgery time, despite suboptimal training efficacies. Overall, the data set provides encouraging evidence of optimised learning of a complex medical specialty via neurofeedback training.

  3. Anterior EEG asymmetries and opponent process theory.

    Science.gov (United States)

    Kline, John P; Blackhart, Ginette C; Williams, William C

    2007-03-01

    The opponent process theory of emotion [Solomon, R.L., and Corbit, J.D. (1974). An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review, 81, 119-143.] predicts a temporary reversal of emotional valence during the recovery from emotional stimulation. We hypothesized that this affective contrast would be apparent in asymmetrical activity patterns in the frontal lobes, and would be more apparent for left frontally active individuals. The present study tested this prediction by examining EEG asymmetries during and after blocked presentations of aversive pictures selected from the International Affective Picture System (IAPS). 12 neutral images, 12 aversive images, and 24 neutral images were presented in blocks. Participants who were right frontally active at baseline did not show changes in EEG asymmetry while viewing aversive slides or after cessation. Participants left frontally active at baseline, however, exhibited greater relative left frontal activity after aversive stimulation than before stimulation. Asymmetrical activity patterns in the frontal lobes may relate to affect regulatory processes, including contrasting opponent after-reactions to aversive stimuli.

  4. Using Parametrics to Facilitate Collaborative Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Benbih, Karima; Obeling, Esben

    2013-01-01

    in the context of the urban South which is characterized by high urban growth rates, weak planning systems and modest means. The current state of planning and urban development in Morocco is introduced as a context for discussing collaborative urban design and parametric urban design, and some tentative...

  5. Parametric Architectural Design with Point-clouds

    DEFF Research Database (Denmark)

    Zwierzycki, Mateusz; Evers, Henrik Leander; Tamke, Martin

    2016-01-01

    This paper investigates the efforts and benefits of the implementation of point clouds into architectural design processes and tools. Based on a study on the principal work processes of designers with point clouds the prototypical plugin/library - Volvox - was developed for the parametric modelling...

  6. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which ...

  7. Interdisciplinary parametric design : The XXL experience

    NARCIS (Netherlands)

    Turrin, M.; Sariyildiz, I.S.; Paul, J.C.

    2015-01-01

    Focusing on large span structures for sport buildings, the paper tackles the role of parametric modelling and performance simulations, to enhance the integration between architectural and engineering design. The general approach contrasts post-engineering processes. In post-engineering, technical

  8. The parametrized simulation of electromagnetic showers

    International Nuclear Information System (INIS)

    Peters, S.

    1992-09-01

    The simulation of electromagnetic showers in calorimeters by detailed tracking of all secondary particles is extremely computer time consuming. Without loosing considerably in precision, the use of parametrizations for global shower properties may reduce the computing time by factors of 10 1 to 10 4 , depending on the energy, the degree of parametrization, and the complexity in the material description and the cut off energies in the detailed simulation. To arrive at a high degree of universality, parametrizations of individual electromagnetic showers in homogeneous media are developed, taking the dependence of the shower development on the material into account. In sampling calorimeters, the inhomogeneous material distribution leads to additional effects which can be taken into account by geometry dependent terms in the parametrization of the longitudinal and radial energy density distributions. Comparisons with detailed simulations of homogeneous and sampling calorimeters show very good agreement in the fluctuations, correlations, and signal averages of spatial energy distributions. Verifications of the algorithms for the simulation of the H1 detector are performed using calorimeter test data for different moduls of the H1 liquid argon calorimeter. Special attention has been paid to electron pion separation, which is of great importance for physics analysis. (orig.) [de

  9. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grating and etalon in combination, grazing angle of incidence, entangled cavity ...

  10. Consequences of hadron-nucleus multiplicity parametrization

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.

    1986-01-01

    Some interesting consequences are analyzed of a new parametrization for the hadron-nucleus multiplicity distributions and they are compared with the experimental data. Further, it is illustrated how the scaling property for the average multiplicity will be modified and it is found that the experimental data support this behaviour. (orig.)

  11. Simple parametrization of nucleon form factors

    International Nuclear Information System (INIS)

    Kelly, J.J.

    2004-01-01

    This Brief Report provides simple parametrizations of the nucleon electromagnetic form factors using functions of Q 2 that are consistent with dimensional scaling at high Q 2 . Good fits require only four parameters each for G Ep , G Mp , and G Mn and only two for G En

  12. Parametric studies of tandem mirror reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Boghosian, B.M.; Fink, J.H.; Myall, J.O.; Neef, W.S. Jr.

    1979-01-01

    This report, along with its companion, An Improved Tandem Mirror Reactor, discusses the recent progress and present status of our tandem mirror reactor studies. This report presents the detailed results of parametric studies up to, but not including, the very new ideas involving thermal barriers

  13. Path integral quantization of parametrized field theory

    International Nuclear Information System (INIS)

    Varadarajan, Madhavan

    2004-01-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory

  14. Statistical prediction of parametric roll using FORM

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Choi, Ju-hyuck; Nielsen, Ulrik Dam

    2017-01-01

    Previous research has shown that the First Order Reliability Method (FORM) can be an efficient method for estimation of outcrossing rates and extreme value statistics for stationary stochastic processes. This is so also for bifurcation type of processes like parametric roll of ships. The present...

  15. Probabilistic Reachability for Parametric Markov Models

    DEFF Research Database (Denmark)

    Hahn, Ernst Moritz; Hermanns, Holger; Zhang, Lijun

    2011-01-01

    Given a parametric Markov model, we consider the problem of computing the rational function expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression...

  16. Non-Parametric Estimation of Correlation Functions

    DEFF Research Database (Denmark)

    Brincker, Rune; Rytter, Anders; Krenk, Steen

    In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are point...

  17. A parametric reconstruction of the deceleration parameter

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamon, Abdulla [Manipal University, Manipal Centre for Natural Sciences, Manipal (India); Visva-Bharati, Department of Physics, Santiniketan (India); Das, Sudipta [Visva-Bharati, Department of Physics, Santiniketan (India)

    2017-07-15

    The present work is based on a parametric reconstruction of the deceleration parameter q(z) in a model for the spatially flat FRW universe filled with dark energy and non-relativistic matter. In cosmology, the parametric reconstruction technique deals with an attempt to build up a model by choosing some specific evolution scenario for a cosmological parameter and then estimate the values of the parameters with the help of different observational datasets. In this paper, we have proposed a logarithmic parametrization of q(z) to probe the evolution history of the universe. Using the type Ia supernova, baryon acoustic oscillation and the cosmic microwave background datasets, the constraints on the arbitrary model parameters q{sub 0} and q{sub 1} are obtained (within 1σ and 2σ confidence limits) by χ{sup 2}-minimization technique. We have then reconstructed the deceleration parameter, the total EoS parameter ω{sub tot}, the jerk parameter and have compared the reconstructed results of q(z) with other well-known parametrizations of q(z). We have also shown that two model selection criteria (namely, the Akaike information criterion and Bayesian information criterion) provide a clear indication that our reconstructed model is well consistent with other popular models. (orig.)

  18. Parametric Primitives for Hand Gesture Recognition

    DEFF Research Database (Denmark)

    Baby, Sanmohan; Krüger, Volker

    2009-01-01

    Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper  an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding...

  19. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...... on the geometrical size of the system is demonstrated even in the case of large-scale systems....

  20. Parametric instabilities in advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Gras, S; Zhao, C; Blair, D G; Ju, L

    2010-01-01

    As the LIGO interferometric gravitational wave detectors have finished gathering a large observational data set, an intense effort is underway to upgrade these observatories to improve their sensitivity by a factor of ∼10. High circulating power in the arm cavities is required, which leads to the possibility of parametric instability due to three-mode opto-acoustic resonant interactions between the carrier, transverse optical modes and acoustic modes. Here, we present detailed numerical analysis of parametric instability in a configuration that is similar to Advanced LIGO. After examining parametric instability for a single three-mode interaction in detail, we examine instability for the best and worst cases, as determined by the resonance condition of transverse modes in the power and signal recycling cavities. We find that, in the best case, the dual recycling detector is substantially less susceptible to instability than a single cavity, but its susceptibility is dependent on the signal recycling cavity design, and on tuning for narrow band operation. In all cases considered, the interferometer will experience parametric instability at full power operation, but the gain varies from 3 to 1000, and the number of unstable modes varies between 7 and 30 per test mass. The analysis focuses on understanding the detector complexity in relation to opto-acoustic interactions, on providing insights that can enable predictions of the detector response to transient disturbances, and of variations in thermal compensation conditions.

  1. Parametric instabilities in magnetized bi-ion and dusty plasmas

    Indian Academy of Sciences (India)

    -ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and parametrically excited transverse modes propagating along the magnetic field are found.

  2. Wireless and wearable EEG system for evaluating driver vigilance.

    Science.gov (United States)

    Lin, Chin-Teng; Chuang, Chun-Hsiang; Huang, Chih-Sheng; Tsai, Shu-Fang; Lu, Shao-Wei; Chen, Yen-Hsuan; Ko, Li-Wei

    2014-04-01

    Brain activity associated with attention sustained on the task of safe driving has received considerable attention recently in many neurophysiological studies. Those investigations have also accurately estimated shifts in drivers' levels of arousal, fatigue, and vigilance, as evidenced by variations in their task performance, by evaluating electroencephalographic (EEG) changes. However, monitoring the neurophysiological activities of automobile drivers poses a major measurement challenge when using a laboratory-oriented biosensor technology. This work presents a novel dry EEG sensor based mobile wireless EEG system (referred to herein as Mindo) to monitor in real time a driver's vigilance status in order to link the fluctuation of driving performance with changes in brain activities. The proposed Mindo system incorporates the use of a wireless and wearable EEG device to record EEG signals from hairy regions of the driver conveniently. Additionally, the proposed system can process EEG recordings and translate them into the vigilance level. The study compares the system performance between different regression models. Moreover, the proposed system is implemented using JAVA programming language as a mobile application for online analysis. A case study involving 15 study participants assigned a 90 min sustained-attention driving task in an immersive virtual driving environment demonstrates the reliability of the proposed system. Consistent with previous studies, power spectral analysis results confirm that the EEG activities correlate well with the variations in vigilance. Furthermore, the proposed system demonstrated the feasibility of predicting the driver's vigilance in real time.

  3. Standardized computer-based organized reporting of EEG

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C.

    2017-01-01

    Standardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted in the se......Standardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted...... in the second, revised version of SCORE (Standardized Computer-based Organized Reporting of EEG), which is presented in this paper. The revised terminology was implemented in a software package (SCORE EEG), which was tested in clinical practice on 12,160 EEG recordings. Standardized terms implemented in SCORE....... In the end, the diagnostic significance is scored, using a standardized list of terms. SCORE has specific modules for scoring seizures (including seizure semiology and ictal EEG patterns), neonatal recordings (including features specific for this age group), and for Critical Care EEG Terminology. SCORE...

  4. FFT transformed quantitative EEG analysis of short term memory load.

    Science.gov (United States)

    Singh, Yogesh; Singh, Jayvardhan; Sharma, Ratna; Talwar, Anjana

    2015-07-01

    The EEG is considered as building block of functional signaling in the brain. The role of EEG oscillations in human information processing has been intensively investigated. To study the quantitative EEG correlates of short term memory load as assessed through Sternberg memory test. The study was conducted on 34 healthy male student volunteers. The intervention consisted of Sternberg memory test, which runs on a version of the Sternberg memory scanning paradigm software on a computer. Electroencephalography (EEG) was recorded from 19 scalp locations according to 10-20 international system of electrode placement. EEG signals were analyzed offline. To overcome the problems of fixed band system, individual alpha frequency (IAF) based frequency band selection method was adopted. The outcome measures were FFT transformed absolute powers in the six bands at 19 electrode positions. Sternberg memory test served as model of short term memory load. Correlation analysis of EEG during memory task was reflected as decreased absolute power in Upper alpha band in nearly all the electrode positions; increased power in Theta band at Fronto-Temporal region and Lower 1 alpha band at Fronto-Central region. Lower 2 alpha, Beta and Gamma band power remained unchanged. Short term memory load has distinct electroencephalographic correlates resembling the mentally stressed state. This is evident from decreased power in Upper alpha band (corresponding to Alpha band of traditional EEG system) which is representative band of relaxed mental state. Fronto-temporal Theta power changes may reflect the encoding and execution of memory task.

  5. Higher-Order Spectrum in Understanding Nonlinearity in EEG Rhythms

    Directory of Open Access Journals (Sweden)

    Cauchy Pradhan

    2012-01-01

    Full Text Available The fundamental nature of the brain's electrical activities recorded as electroencephalogram (EEG remains unknown. Linear stochastic models and spectral estimates are the most common methods for the analysis of EEG because of their robustness, simplicity of interpretation, and apparent association with rhythmic behavioral patterns in nature. In this paper, we extend the use of higher-order spectrum in order to indicate the hidden characteristics of EEG signals that simply do not arise from random processes. The higher-order spectrum is an extension Fourier spectrum that uses higher moments for spectral estimates. This essentially nullifies all Gaussian random effects, therefore, can reveal non-Gaussian and nonlinear characteristics in the complex patterns of EEG time series. The paper demonstrates the distinguishing features of bispectral analysis for chaotic systems, filtered noises, and normal background EEG activity. The bispectrum analysis detects nonlinear interactions; however, it does not quantify the coupling strength. The squared bicoherence in the nonredundant region has been estimated to demonstrate nonlinear coupling. The bicoherence values are minimal for white Gaussian noises (WGNs and filtered noises. Higher bicoherence values in chaotic time series and normal background EEG activities are indicative of nonlinear coupling in these systems. The paper shows utility of bispectral methods as an analytical tool in understanding neural process underlying human EEG patterns.

  6. Discovering EEG resting state alterations of semantic dementia.

    Science.gov (United States)

    Grieder, Matthias; Koenig, Thomas; Kinoshita, Toshihiko; Utsunomiya, Keita; Wahlund, Lars-Olof; Dierks, Thomas; Nishida, Keiichiro

    2016-05-01

    Diagnosis of semantic dementia relies on cost-intensive MRI or PET, although resting EEG markers of other dementias have been reported. Yet the view still holds that resting EEG in patients with semantic dementia is normal. However, studies using increasingly sophisticated EEG analysis methods have demonstrated that slightest alterations of functional brain states can be detected. We analyzed the common four resting EEG microstates (A, B, C, and D) of 8 patients with semantic dementia in comparison with 8 healthy controls and 8 patients with Alzheimer's disease. Topographical differences between the groups were found in microstate classes B and C, while microstate classes A and D were comparable. The data showed that the semantic dementia group had a peculiar microstate E, but the commonly found microstate C was lacking. Furthermore, the presence of microstate E was significantly correlated with lower MMSE and language scores. Alterations in resting EEG can be found in semantic dementia. Topographical shifts in microstate C might be related to semantic memory deficits. This is the first study that discovered resting state EEG abnormality in semantic dementia. The notion that resting EEG in this dementia subtype is normal has to be revised. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Pump to signal noise transfer in parametric fiber amplifiers

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe

    2010-01-01

    Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....

  8. Hyperbolic and semi-parametric models in finance

    Science.gov (United States)

    Bingham, N. H.; Kiesel, Rüdiger

    2001-02-01

    The benchmark Black-Scholes-Merton model of mathematical finance is parametric, based on the normal/Gaussian distribution. Its principal parametric competitor, the hyperbolic model of Barndorff-Nielsen, Eberlein and others, is briefly discussed. Our main theme is the use of semi-parametric models, incorporating the mean vector and covariance matrix as in the Markowitz approach, plus a non-parametric part, a scalar function incorporating features such as tail-decay. Implementation is also briefly discussed.

  9. Study on non-linear bistable dynamics model based EEG signal discrimination analysis method.

    Science.gov (United States)

    Ying, Xiaoguo; Lin, Han; Hui, Guohua

    2015-01-01

    Electroencephalogram (EEG) is the recording of electrical activity along the scalp. EEG measures voltage fluctuations generating from ionic current flows within the neurons of the brain. EEG signal is looked as one of the most important factors that will be focused in the next 20 years. In this paper, EEG signal discrimination based on non-linear bistable dynamical model was proposed. EEG signals were processed by non-linear bistable dynamical model, and features of EEG signals were characterized by coherence index. Experimental results showed that the proposed method could properly extract the features of different EEG signals.

  10. Automated approach to detecting behavioral states using EEG-DABS

    Directory of Open Access Journals (Sweden)

    Zachary B. Loris

    2017-07-01

    Full Text Available Electrocorticographic (ECoG signals represent cortical electrical dipoles generated by synchronous local field potentials that result from simultaneous firing of neurons at distinct frequencies (brain waves. Since different brain waves correlate to different behavioral states, ECoG signals presents a novel strategy to detect complex behaviors. We developed a program, EEG Detection Analysis for Behavioral States (EEG-DABS that advances Fast Fourier Transforms through ECoG signals time series, separating it into (user defined frequency bands and normalizes them to reduce variability. EEG-DABS determines events if segments of an experimental ECoG record have significantly different power bands than a selected control pattern of EEG. Events are identified at every epoch and frequency band and then are displayed as output graphs by the program. Certain patterns of events correspond to specific behaviors. Once a predetermined pattern was selected for a behavioral state, EEG-DABS correctly identified the desired behavioral event. The selection of frequency band combinations for detection of the behavior affects accuracy of the method. All instances of certain behaviors, such as freezing, were correctly identified from the event patterns generated with EEG-DABS. Detecting behaviors is typically achieved by visually discerning unique animal phenotypes, a process that is time consuming, unreliable, and subjective. EEG-DABS removes variability by using defined parameters of EEG/ECoG for a desired behavior over chronic recordings. EEG-DABS presents a simple and automated approach to quantify different behavioral states from ECoG signals.

  11. A STUDY ON EEG ABNORMALITIES IN CHILDREN WITH MIGRAINE

    Directory of Open Access Journals (Sweden)

    Subinay Mandal

    2017-04-01

    Full Text Available BACKGROUND Migraine is one of the common causes of headache in children. Migraine and epilepsy are both common episodic neurological disorders. The comorbidity of these two conditions is well known. Many researcher have pointed out that neuronal hyperexcitability is the initiating event for occurrence of migraine attack. The aim of the paper was to evaluate the EEG in children with migraine. MATERIALS AND METHODS We retrospectively analysed records of children who attended our paediatric outpatient department with diagnoses as suffering from migraine based on International Headache Society (IHS diagnostic criteria. Apart from detailed clinical history, EEG of every patient was collected and analysed. EEG was performed interictally at least 24 hours after the last episode of headache attack in all the cases. RESULTS 56 children (age range, 4-14 years constituted our study group. 64.3% children had migraine without aura (common type and in 23.2% cases had migraine with aura (classic type other were with migraine variants. Abnormal EEG was reported in 30.3% children. 17% of children with migraine without history of seizure had abnormal EEG. Sixty one percent of patients with aura had abnormal EEG. History of either febrile fits or afebrile fits was present in total 17.1% of cases. The type of paroxysmal discharges we came across was- a Sharp waves, b Spikes and c Spike and slow wave complexes. Abnormal paroxysmal sharp and spike-wave complexes (also called spike-and-slow-wave complexes were the most common EEG abnormality. CONCLUSION EEG abnormality was found in significant number of children with migraine both with and without history of seizure in our study. This indicates neuronal hyperexcitability during episodes of migraine. So, EEG should be considered in patients with clinical diagnoses of migraine to exclude association of any seizure activity.

  12. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  13. Parametric Audio Based Decoder and Music Synthesizer for Mobile Applications

    NARCIS (Netherlands)

    Oomen, A.W.J.; Szczerba, M.Z.; Therssen, D.

    2011-01-01

    This paper reviews parametric audio coders and discusses novel technologies introduced in a low-complexity, low-power consumption audiodecoder and music synthesizer platform developed by the authors. Thedecoder uses parametric coding scheme based on the MPEG-4 Parametric Audio standard. In order to

  14. Brain Functional Connectivity in MS: An EEG-NIRS Study

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0582 TITLE: Brain Functional Connectivity in MS: An EEG -NIRS Study PRINCIPAL INVESTIGATOR: Heather Wishart...Functional Connectivity in MS: An EEG -NIRS Study 5b. GRANT NUMBER W81XWH-14-1-0582 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Heather...electrical ( EEG ) and blood volume and blood oxygen-based (NIRS and fMRI) signals, and to use the results to help optimize blood oxygen level

  15. EEG Artifact Removal Using a Wavelet Neural Network

    Science.gov (United States)

    Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom

    2011-01-01

    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.

  16. EEG Clearing Office strengthened by EEG 2012. Alternative dispute resolution in the renewable energies industry; Aufwertung der Clearingstelle EEG durch das EEG 2012. Alternative Dispute Resolution im Bereich der Erneuerbaren Energien

    Energy Technology Data Exchange (ETDEWEB)

    Chatzinerantzis, Alexandros; Fach, Martin [Linklaters LLP, Frankfurt am Main (Germany). Praxisgruppe Litigation and Arbitration

    2012-11-14

    The EEG Clearing Office is a special arbitration forum for the purpose of facilitating quick and inexpensive out-of-court dispute resolutions and resolving cases of legal uncertainty in connection with the regulations of the EEG (Renewable Energy Law). The Clearing Office has developed dynamically over the past years, as the numbers of newly registered potential and ongoing procedures impressively show. In the 2012 amendment to the EEG the legislature has fundamentally revised and substantially widened the legal basis for the work of the Clearing Office. This provides the motivation for presenting the Clearing Office and its procedural rules in the following article.

  17. Added clinical value of the inferior temporal EEG electrode chain

    DEFF Research Database (Denmark)

    Bach Justesen, Anders; Eskelund Johansen, Ann Berit; Martinussen, Noomi Ida

    2018-01-01

    Objective To investigate the diagnostic added value of supplementing the 10–20 EEG array with six electrodes in the inferior temporal chain. Methods EEGs were recorded with 25 electrodes: 19 positions of the 10–20 system, and six additional electrodes in the inferior temporal chain (F9/10, T9/10, P...... in the inferior chain) and 6% (only seen at the inferior chain). Conclusions Adding six electrodes in the inferior temporal electrode chain to the 10–20 array improves the localization and identification of EEG abnormalities, especially those located in the temporal region. Significance Our results suggest...

  18. Rational manipulation of digital EEG: pearls and pitfalls.

    Science.gov (United States)

    Seneviratne, Udaya

    2014-12-01

    The advent of digital EEG has provided greater flexibility and more opportunities in data analysis to optimize the diagnostic yield. Changing the filter settings, sensitivity, montages, and time-base are possible rational manipulations to achieve this goal. The options to use polygraphy, video, and quantification are additional useful features. Aliasing and loss of data are potential pitfalls in the use of digital EEG. This review illustrates some common clinical scenarios where rational manipulations can enhance the diagnostic EEG yield and potential pitfalls in the process.

  19. A Preliminary Study of Muscular Artifact Cancellation in Single-Channel EEG

    OpenAIRE

    Chen, Xun; Liu, Aiping; Peng, Hu; Ward, Rabab K.

    2014-01-01

    Electroencephalogram (EEG) recordings are often contaminated with muscular artifacts that strongly obscure the EEG signals and complicates their analysis. For the conventional case, where the EEG recordings are obtained simultaneously over many EEG channels, there exists a considerable range of methods for removing muscular artifacts. In recent years, there has been an increasing trend to use EEG information in ambulatory healthcare and related physiological signal monitoring systems. For pra...

  20. Emotional responses as independent components in EEG

    DEFF Research Database (Denmark)

    Jensen, Camilla Birgitte Falk; Petersen, Michael Kai; Larsen, Jakob Eg

    2014-01-01

    susceptible to noise if captured in a mobile context. Hypothesizing that retrieval of emotional responses in mobile usage scenarios could be enhanced through spatial filtering, we compare a standard EEG electrode based analysis against an approach based on independent component analysis (ICA). By clustering...... or unpleasant images; early posterior negativity (EPN) and late positive potential (LPP). Recent studies suggest that several time course components may be modulated by emotional content in images or text. However these neural signatures are characterized by small voltage changes that would be highly...... by emotional content. We propose that similar approaches to spatial filtering might allow us to retrieve more robust signals in real life mobile usage scenarios, and potentially facilitate design of cognitive interfaces that adapt the selection of media to our emotional responses....

  1. Random ensemble learning for EEG classification.

    Science.gov (United States)

    Hosseini, Mohammad-Parsa; Pompili, Dario; Elisevich, Kost; Soltanian-Zadeh, Hamid

    2018-01-01

    Real-time detection of seizure activity in epilepsy patients is critical in averting seizure activity and improving patients' quality of life. Accurate evaluation, presurgical assessment, seizure prevention, and emergency alerts all depend on the rapid detection of seizure onset. A new method of feature selection and classification for rapid and precise seizure detection is discussed wherein informative components of electroencephalogram (EEG)-derived data are extracted and an automatic method is presented using infinite independent component analysis (I-ICA) to select independent features. The feature space is divided into subspaces via random selection and multichannel support vector machines (SVMs) are used to classify these subspaces. The result of each classifier is then combined by majority voting to establish the final output. In addition, a random subspace ensemble using a combination of SVM, multilayer perceptron (MLP) neural network and an extended k-nearest neighbors (k-NN), called extended nearest neighbor (ENN), is developed for the EEG and electrocorticography (ECoG) big data problem. To evaluate the solution, a benchmark ECoG of eight patients with temporal and extratemporal epilepsy was implemented in a distributed computing framework as a multitier cloud-computing architecture. Using leave-one-out cross-validation, the accuracy, sensitivity, specificity, and both false positive and false negative ratios of the proposed method were found to be 0.97, 0.98, 0.96, 0.04, and 0.02, respectively. Application of the solution to cases under investigation with ECoG has also been effected to demonstrate its utility. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Parametric Study Of Window Frame Geometry

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    This paper describes a parametric study on window frame geometry with the goal of designing frames with very good thermal properties. Three different parametric frame models are introduced, deseribed by a number of variables. In the first part of the study, a process of sensitivity analysis...... is conducted to determine which of the parameters describing the frame have the highest impact on its thermal performance. Afterwards, an optimization process is conducted on each frame in order to optimize the design with regard to three objectives: minimizing the thermal transmittance, maxim izing the net...... energy gain factor and minimizing the material use. Since the objectives contradiet each other, it was found that it is not possible to identifY a single solution that satisfies all these goals. lnstead, a compromise between the objectives has to be found....

  3. Parametric structural modeling of insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-01-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  4. Casas-Ibarra parametrization and leptogenesis

    International Nuclear Information System (INIS)

    Xing Zhizhong

    2010-01-01

    The Casas-Ibarra parametrization is a description of the Dirac neutrino mass matrix M D in terms of the neutrino mixing matrix V, an orthogonal matrix O and the diagonal mass matrices of light and heavy Majorana neutrinos in the type-I seesaw mechanism. Because M D + M D is apparently independent of V but dependent on O in this parametrization, a number of authors have claimed that unflavored leptogenesis has nothing to do with CP violation at low energies. Here we question this logic by clarifying the physical meaning of O. We establish a clear relationship between O and the observable quantities, and find that O does depend on V. We show that both unflavored leptogenesis and flavored leptogenesis have no direct connection with low-energy CP violation. (authors)

  5. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  6. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  7. Parametric instability in GEO 600 interferometer

    International Nuclear Information System (INIS)

    Gurkovsky, A.G.; Vyatchanin, S.P.

    2007-01-01

    We present analysis of undesirable effect of parametric instability in signal recycled GEO 600 interferometer. The basis for this effect is provided by excitation of additional (Stokes) optical mode, having frequency ω 1 , and mirror elastic mode, having frequency ω m , when the optical energy stored in the main FP cavity mode, having frequency ω 0 , exceeds a certain threshold and detuning Δ=ω 0 -ω 1 -ω m is small. We discuss the potential of observing parametric instability and its precursors in GEO 600 interferometer. This approach provides the best option to get familiar with this phenomenon, to develop experimental methods to depress it and to test the effectiveness of these methods in situ

  8. Parametric Immunization in Bond Portfolio Management

    OpenAIRE

    Bravo, Jorge; Fonseca, José

    2012-01-01

    In this paper, we evaluate the relative immunization performance of the multifactor parametric interest rate risk model based on the Nelson-Siegel-Svensson specification of the yield curve with that of standard benchmark investment strategies, using European Central Bank yield curve data in the period between January 3, 2005 and December 31, 2011. In addition, we examine the role of portfolio design in the success of immunization strategies, particularly the role of the maturit...

  9. Parametric study of laser photovoltaic energy converters

    Science.gov (United States)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  10. Acoustic parametric pumping of spin waves

    Science.gov (United States)

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2014-11-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  11. Acoustic parametric pumping of spin waves

    OpenAIRE

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2013-01-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  12. Parametric motivation bases of floranimic nomination

    Directory of Open Access Journals (Sweden)

    Olga P. Ryabko

    2016-09-01

    Full Text Available The period of further development in the cognitive theory of nomination has been extensive in recent years. Our research has been concentrated on the formation of conceptual foundations in cognitive theory of flora nomination. The macrofield of flora namings embraces three microfields: parametric, pragmatic and locative-temporal ones. They determine motivation processes in cognitive theory of flora nomination, i.e., the presentation of systematic qualities in flora namings in the English language. The description and characterization of such qualities presupposes the existence of their taxonomic organization and methodology criteria, both general and practical ones. Flora namings on the phenomenological level are considered to be the products of naöve-cognitive consciousness of language speakers. They are determined, from the one hand, by the external perceptive adaptations (parametric nomination and, from the other hand, by practical needs (pure pragmatic nomination and local-temporal nomination. In this article we have concentrated on the complex parametric motivated basis of flora nomination. It is presented by a number of qualities, firstly, by dominative qualities («form», «appearance and manner of growth», «color», secondly, by peripheral qualities («odour», «taste», «size» and, finally, by minor qualities («sound», «weight», «genger». In the structure of complex parametric nomination the only one conerete qualitative element from the whole combination of qualities becomes the leading one. The cultural-archetypal dominant element determines. In each concrete situation, the choice of preferable prototypal motivated quality.

  13. Multidimensional Scaling Visualization using Parametric Similarity Indices

    OpenAIRE

    Machado, J. A. Tenreiro; Lopes, António M.; Galhano, A.M.

    2015-01-01

    In this paper, we apply multidimensional scaling (MDS) and parametric similarity indices (PSI) in the analysis of complex systems (CS). Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, an...

  14. On Algebraic Approach for MSD Parametric Estimation

    OpenAIRE

    Oueslati , Marouene; Thiery , Stéphane; Gibaru , Olivier; Béarée , Richard; Moraru , George

    2011-01-01

    This article address the identification problem of the natural frequency and the damping ratio of a second order continuous system where the input is a sinusoidal signal. An algebra based approach for identifying parameters of a Mass Spring Damper (MSD) system is proposed and compared to the Kalman-Bucy filter. The proposed estimator uses the algebraic parametric method in the frequency domain yielding exact formula, when placed in the time domain to identify the unknown parameters. We focus ...

  15. Supercritical nonlinear parametric dynamics of Timoshenko microbeams

    Science.gov (United States)

    Farokhi, Hamed; Ghayesh, Mergen H.

    2018-06-01

    The nonlinear supercritical parametric dynamics of a Timoshenko microbeam subject to an axial harmonic excitation force is examined theoretically, by means of different numerical techniques, and employing a high-dimensional analysis. The time-variant axial load is assumed to consist of a mean value along with harmonic fluctuations. In terms of modelling, a continuous expression for the elastic potential energy of the system is developed based on the modified couple stress theory, taking into account small-size effects; the kinetic energy of the system is also modelled as a continuous function of the displacement field. Hamilton's principle is employed to balance the energies and to obtain the continuous model of the system. Employing the Galerkin scheme along with an assumed-mode technique, the energy terms are reduced, yielding a second-order reduced-order model with finite number of degrees of freedom. A transformation is carried out to convert the second-order reduced-order model into a double-dimensional first order one. A bifurcation analysis is performed for the system in the absence of the axial load fluctuations. Moreover, a mean value for the axial load is selected in the supercritical range, and the principal parametric resonant response, due to the time-variant component of the axial load, is obtained - as opposed to transversely excited systems, for parametrically excited system (such as our problem here), the nonlinear resonance occurs in the vicinity of twice any natural frequency of the linear system; this is accomplished via use of the pseudo-arclength continuation technique, a direct time integration, an eigenvalue analysis, and the Floquet theory for stability. The natural frequencies of the system prior to and beyond buckling are also determined. Moreover, the effect of different system parameters on the nonlinear supercritical parametric dynamics of the system is analysed, with special consideration to the effect of the length-scale parameter.

  16. Quantum theory of novel parametric devices

    International Nuclear Information System (INIS)

    Drummond, P.D.; Reid, M.D.; Dechoum, K.; Chaturvedi, S.; Olsen, M.; Kheruntsyan, K.; Bradley, A.

    2005-01-01

    While the parametric amplifier is a widely used and important source of entangled and squeezed photons, there are many possible ways to investigate the physics of intracavity parametric devices. Novel quantum theory of parametric devices in this talk will cover several new types of unconventional devices, including the following topics:- Critical intracavity paramp - We calculate intrinsic limits to entanglement of a quantum paramp, caused by nonlinear effects originating in phase noise of the pump. - Degenerate planar paramp - We obtain universal quantum critical fluctuations in a planar paramp device by mapping to the equations of magnetic Lifshitz points Nondegenerate planar paramp - The Mermin-Wagner theorem is used to demonstrate that there is no phase transition in the case of a nondegenerate planar device - Coupled channel paramp - A robust and novel integrated entanglement source can be generated using type I waveguides coupled inside a cavity to generate spatial entanglement - Cascade paramps - This possible 'GHZ-type' source is obtained by cascading successive down conversion crystals inside the same cavity, giving two thresholds Parallel paramps - Tripartite entanglement can be generated if three intracavity paramp crystals are operated in parallel, each idler mode acting as a signal for the next. Finally, we briefly treat the relevant experimental developments. (author)

  17. Parametric Architecture in the Urban Space

    Science.gov (United States)

    Januszkiewicz, Krystyna; Kowalski, Karol G.

    2017-10-01

    The paper deals with the parametric architecture which is trying to introduce a new spatial language in the context for urban tissue that correspond to the artistic consciousness and the attitude of information and digital technologies era. The first part of the paper defines the main features of parametric architecture (such as: folding, continuity and curvilinearity) which are are characteristic of the new style of named the “parametricism”. This architecture is a strong emphasis on geometry, materiality, feasibility and sustainability, what emerges is an explicit agenda promoting material ornamentation, spatial spectacle and formal theatricality. The second part presents result of case study, especially parametric public use buildings, within the tissue of city. The analyzed objects are: The Sage Gateshead (1998-2004) in Gateshead, Kunsthaus in Graz (2000-2003), the Weltstadthaus (2003-2005) in Cologne, The Golden Terraces in Warsaw (2000-2007), the Metropol Parasol in Seville (2005-2011) the King Cross Station (2005-2012) in London, the headquarters of the Pathé Foundation (2006-2014) in Paris. Each of the enumerated examples shows a diverse approach to designing in the urban space, which reflect the age of digital technologies and the information society. In conclusion emphasizes, that new concept of the spatialization of architecture is the equivalent of the democratization of the political system, the liberalization of the economy, among other examples.

  18. Sgr A* Emission Parametrizations from GRMHD Simulations

    Science.gov (United States)

    Anantua, Richard; Ressler, Sean; Quataert, Eliot

    2018-06-01

    Galactic Center emission near the vicinity of the central black hole, Sagittarius (Sgr) A*, is modeled using parametrizations involving the electron temperature, which is found from general relativistic magnetohydrodynamic (GRMHD) simulations to be highest in the disk-outflow corona. Jet-motivated prescriptions generalizing equipartition of particle and magnetic energies, e.g., by scaling relativistic electron energy density to powers of the magnetic field strength, are also introduced. GRMHD jet (or outflow)/accretion disk/black hole (JAB) simulation postprocessing codes IBOTHROS and GRMONTY are employed in the calculation of images and spectra. Various parametric models reproduce spectral and morphological features, such as the sub-mm spectral bump in electron temperature models and asymmetric photon rings in equipartition-based models. The Event Horizon Telescope (EHT) will provide unprecedentedly high-resolution 230+ GHz observations of the "shadow" around Sgr A*'s supermassive black hole, which the synthetic models presented here will reverse-engineer. Both electron temperature and equipartition-based models can be constructed to be compatible with EHT size constraints for the emitting region of Sgr A*. This program sets the groundwork for devising a unified emission parametrization flexible enough to model disk, corona and outflow/jet regions with a small set of parameters including electron heating fraction and plasma beta.

  19. Parametric Cost Models for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  20. Parametric cost models for space telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtnay

    2017-11-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  1. Nonscaling parametrization of hadronic spectra and dual parton model

    International Nuclear Information System (INIS)

    Gaponenko, O.N.

    2001-01-01

    Using the popular Wdowczyk-Wolfendale parametrization (WW-parametrization) as an example one studies restrictions imposed by a dual parton model for different nonscaling parametrizations of the pulsed hadron spectra in soft hadron-hadron and hadron-nuclear interactions. One derived a new parametrization free from basic drawback of the WW-formulae. In the central range the determined parametrization show agreement with the Wdowczyk-Wolfendale formula, but in contrast to the last-named one it does not result in contradiction with the experiment due to fast reduction of inelastic factor reduction with energy increase [ru

  2. SVM detection of epileptiform activity in routine EEG.

    LENUS (Irish Health Repository)

    Kelleher, Daniel

    2010-01-01

    Routine electroencephalogram (EEG) is an important test in aiding the diagnosis of patients with suspected epilepsy. These recordings typically last 20-40 minutes, during which signs of abnormal activity (spikes, sharp waves) are looked for in the EEG trace. It is essential that events of short duration are detected during the routine EEG test. The work presented in this paper examines the effect of changing a range of input values to the detection system on its ability to distinguish between normal and abnormal EEG activity. It is shown that the length of analysis window in the range of 0.5s to 1s are well suited to the task. Additionally, it is reported that patient specific systems should be used where possible due to their better performance.

  3. EEG. Renewables Act. Comment. 4. new rev. and enl. ed.

    International Nuclear Information System (INIS)

    Frenz, Walter; Cosack, Tilman

    2015-01-01

    Unlike any other Act, the Renewable Energy Sources Act (EEG) changes continuously. Recently it has been fundamentally transformed with the amendment 2014. Comprehensive, readable and practice-oriented. The proven Berliner comment EEG is your reliable companion through the new regulatory regime. All provisions of the EEG 2014 thorough and easy to understand commented by experts of the matter. 2. The EEG Amending Act of 29.6.2015 has already been considered. A detailed introduction and contributions to the relevant European law and the antitrust aspects of the renewable energy sources to guarantee you a broad understanding of the rules. Valuable background information you provide, the digressions of the most important renewable energy technologies, will explain the pictures thanks to numerous the scientific and technical foundations. Moreover you the construction law aspects in the construction of photovoltaic and wind turbines are explained clearly. [de

  4. ECG contamination of EEG signals: effect on entropy.

    Science.gov (United States)

    Chakrabarti, Dhritiman; Bansal, Sonia

    2016-02-01

    Entropy™ is a proprietary algorithm which uses spectral entropy analysis of electroencephalographic (EEG) signals to produce indices which are used as a measure of depth of hypnosis. We describe a report of electrocardiographic (ECG) contamination of EEG signals leading to fluctuating erroneous Entropy values. An explanation is provided for mechanism behind this observation by describing the spread of ECG signals in head and neck and its influence on EEG/Entropy by correlating the observation with the published Entropy algorithm. While the Entropy algorithm has been well conceived, there are still instances in which it can produce erroneous values. Such erroneous values and their cause may be identified by close scrutiny of the EEG waveform if Entropy values seem out of sync with that expected at given anaesthetic levels.

  5. EEG feature selection method based on decision tree.

    Science.gov (United States)

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  6. Generalized periodic EEG activity in two cases of neurosyphilis

    Directory of Open Access Journals (Sweden)

    Anghinah Renato

    2006-01-01

    Full Text Available Neurosyphilis is a recognized cause of epileptic seizures and cognitive impairment, but is not usually associated with the finding of generalized periodic activity in the EEG. We report two similar cases characterized by progressive cognitive impairment followed by partial complex seizures, in whom the EEG showed generalized periodic activity. Both cerebrospinal fluid and the response to penicillin therapy confirmed the diagnoses of neurosyphilis in the two cases. The finding of EEG generalized periodic activity in patients with cognitive or behavioral disorders is usually associated with Creutzfeldt-Jakob disease, although there are other conditions, some of them potentially reversible, which may also present this EEG abnormality. Neurosyphilis has tended not to be included among them, and our present findings support the importance of first ruling out neurosyphilis in those patients with cognitive or behavioral disorders associated with generalized periodic epileptiform discharges.

  7. Unified triminimal parametrizations of quark and lepton mixing matrices

    International Nuclear Information System (INIS)

    He Xiaogang; Li Shiwen; Ma Boqiang

    2009-01-01

    We present a detailed study on triminimal parametrizations of quark and lepton mixing matrices with different basis matrices. We start with a general discussion on the triminimal expansion of the mixing matrix and on possible unified quark and lepton parametrization using quark-lepton complementarity. We then consider several interesting basis matrices and compare the triminimal parametrizations with the Wolfenstein-like parametrizations. The usual Wolfenstein parametrization for quark mixing is a triminimal expansion around the unit matrix as the basis. The corresponding quark-lepton complementarity lepton mixing matrix is a triminimal expansion around the bimaximal basis. Current neutrino oscillation data show that the lepton mixing matrix is very well represented by the tribimaximal mixing. It is natural to take it as an expanding basis. The corresponding zeroth order basis for quark mixing in this case makes the triminimal expansion converge much faster than the usual Wolfenstein parametrization. The triminimal expansion based on tribimaximal mixing can be converted to the Wolfenstein-like parametrizations discussed in the literature. We thus have a unified description between different kinds of parametrizations for quark and lepton sectors: the standard parametrizations, the Wolfenstein-like parametrizations, and the triminimal parametrizations.

  8. Detection of artifacts from high energy bursts in neonatal EEG.

    Science.gov (United States)

    Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar

    2013-11-01

    Detection of non-cerebral activities or artifacts, intermixed within the background EEG, is essential to discard them from subsequent pattern analysis. The problem is much harder in neonatal EEG, where the background EEG contains spikes, waves, and rapid fluctuations in amplitude and frequency. Existing artifact detection methods are mostly limited to detect only a subset of artifacts such as ocular, muscle or power line artifacts. Few methods integrate different modules, each for detection of one specific category of artifact. Furthermore, most of the reference approaches are implemented and tested on adult EEG recordings. Direct application of those methods on neonatal EEG causes performance deterioration, due to greater pattern variation and inherent complexity. A method for detection of a wide range of artifact categories in neonatal EEG is thus required. At the same time, the method should be specific enough to preserve the background EEG information. The current study describes a feature based classification approach to detect both repetitive (generated from ECG, EMG, pulse, respiration, etc.) and transient (generated from eye blinking, eye movement, patient movement, etc.) artifacts. It focuses on artifact detection within high energy burst patterns, instead of detecting artifacts within the complete background EEG with wide pattern variation. The objective is to find true burst patterns, which can later be used to identify the Burst-Suppression (BS) pattern, which is commonly observed during newborn seizure. Such selective artifact detection is proven to be more sensitive to artifacts and specific to bursts, compared to the existing artifact detection approaches applied on the complete background EEG. Several time domain, frequency domain, statistical features, and features generated by wavelet decomposition are analyzed to model the proposed bi-classification between burst and artifact segments. A feature selection method is also applied to select the

  9. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masayuki, E-mail: kimura.masayuki.8c@kyoto-u.ac.jp [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsushita, Yasuo [Advanced Mathematical Institute, Osaka City University, 3-3-138 Sughimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Hikihara, Takashi [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2016-08-19

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.

  10. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    International Nuclear Information System (INIS)

    Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi

    2016-01-01

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.

  11. A probabilistic strategy for parametric catastrophe insurance

    Science.gov (United States)

    Figueiredo, Rui; Martina, Mario; Stephenson, David; Youngman, Benjamin

    2017-04-01

    Economic losses due to natural hazards have shown an upward trend since 1980, which is expected to continue. Recent years have seen a growing worldwide commitment towards the reduction of disaster losses. This requires effective management of disaster risk at all levels, a part of which involves reducing financial vulnerability to disasters ex-ante, ensuring that necessary resources will be available following such events. One way to achieve this is through risk transfer instruments. These can be based on different types of triggers, which determine the conditions under which payouts are made after an event. This study focuses on parametric triggers, where payouts are determined by the occurrence of an event exceeding specified physical parameters at a given location, or at multiple locations, or over a region. This type of product offers a number of important advantages, and its adoption is increasing. The main drawback of parametric triggers is their susceptibility to basis risk, which arises when there is a mismatch between triggered payouts and the occurrence of loss events. This is unavoidable in said programmes, as their calibration is based on models containing a number of different sources of uncertainty. Thus, a deterministic definition of the loss event triggering parameters appears flawed. However, often for simplicity, this is the way in which most parametric models tend to be developed. This study therefore presents an innovative probabilistic strategy for parametric catastrophe insurance. It is advantageous as it recognizes uncertainties and minimizes basis risk while maintaining a simple and transparent procedure. A logistic regression model is constructed here to represent the occurrence of loss events based on certain loss index variables, obtained through the transformation of input environmental variables. Flood-related losses due to rainfall are studied. The resulting model is able, for any given day, to issue probabilities of occurrence of loss

  12. Novel artefact removal algorithms for co-registered EEG/fMRI based on selective averaging and subtraction

    NARCIS (Netherlands)

    de Munck, J.C.; van Houdt, P.J.; Goncalves, S.I.; van Wegen, E.E.H.; Ossenblok, P.P.W.

    2013-01-01

    Co-registered EEG and functional MRI (EEG/fMRI) is a potential clinical tool for planning invasive EEG in patients with epilepsy. In addition, the analysis of EEG/fMRI data provides a fundamental insight into the precise physiological meaning of both fMRI and EEG data. Routine application of

  13. Measurement and modification of the EEG and related behavior

    Science.gov (United States)

    Sterman, M. B.

    1991-01-01

    Electrophysiological changes in the sensorimotor pathways were found to accompany the effect of rhythmic EEG patterns in the sensorimotor cortex. Additionally, several striking behavioral changes were seen, including in particular an enhancement of sleep and an elevation of seizure threshold to epileptogenic agents. This raised the possibility that human seizure disorders might be influenced therapeutically by similar training. Our objective in human EEG feedback training became not only the facilitation of normal rhythmic patterns, but also the suppression of abnormal activity, thus requiring complex contingencies directed to the normalization of the sensorimotor EEG. To achieve this, a multicomponent frequency analysis was developed to extract and separate normal and abnormal elements of the EEG signal. Each of these elements was transduced to a specific component of a visual display system, and these were combined through logic circuits to present the subject with a symbolic display. Variable criteria provided for the gradual shaping of EEG elements towards the desired normal pattern. Some 50-70% of patients with poorly controlled seizure disorders experienced therapeutic benefits from this approach in our laboratory, and subsequently in many others. A more recent application of this approach to the modification of human brain function in our lab has been directed to the dichotomous problems of task overload and underload in the contemporary aviation environment. At least 70% of all aviation accidents have been attributed to the impact of these kinds of problems on crew performance. The use of EEG in this context has required many technical innovations and the application of the latest advances in EEG signal analysis. Our first goal has been the identification of relevant EEG characteristics. Additionally, we have developed a portable recording and analysis system for application in this context. Findings from laboratory and in-flight studies suggest that we

  14. EEG in the classroom: Synchronised neural recordings during video presentation

    DEFF Research Database (Denmark)

    Poulsen, Andreas Trier; Kamronn, Simon Due; Dmochowski, Jacek

    2017-01-01

    We performed simultaneous recordings of electroencephalography (EEG) from multiple students in a classroom, and measured the inter-subject correlation (ISC) of activity evoked by a common video stimulus. The neural reliability, as quantified by ISC, has been linked to engagement and attentional......-evoked neural responses, known to be modulated by attention, can be tracked for groups of students with synchronized EEG acquisition. This is a step towards real-time inference of engagement in the classroom....

  15. Bayesian Correlated Component Analysis for inference of joint EEG activation

    DEFF Research Database (Denmark)

    Poulsen, Andreas Trier; Kamronn, Simon Due; Parra, Lucas

    2014-01-01

    We propose a probabilistic generative multi-view model to test the representational universality of human information processing. The model is tested in simulated data and in a well-established benchmark EEG dataset.......We propose a probabilistic generative multi-view model to test the representational universality of human information processing. The model is tested in simulated data and in a well-established benchmark EEG dataset....

  16. Multifractal analysis of real and imaginary movements: EEG study

    Science.gov (United States)

    Pavlov, Alexey N.; Maksimenko, Vladimir A.; Runnova, Anastasiya E.; Khramova, Marina V.; Pisarchik, Alexander N.

    2018-04-01

    We study abilities of the wavelet-based multifractal analysis in recognition specific dynamics of electrical brain activity associated with real and imaginary movements. Based on the singularity spectra we analyze electroencephalograms (EEGs) acquired in untrained humans (operators) during imagination of hands movements, and show a possibility to distinguish between the related EEG patterns and the recordings performed during real movements or the background electrical brain activity. We discuss how such recognition depends on the selected brain region.

  17. Prognostic value of EEG in different etiological types of coma.

    Science.gov (United States)

    Khaburzania, M; Beridze, M

    2013-06-01

    Study aimed at evaluation of prognostic value of standard EEG in different etiology of coma and the influence of etiological factor on the EEG patterns and coma outcome. Totally 175 coma patients were investigated. Patients were evaluated by Glasgow Coma Scale (GCS), clinically and by 16 channel electroencephalography. Auditory evoked potentials studied by EEG -regime for evoked potentials in patients with vegetative state (VS). Patients divided in 8 groups according to coma etiology. All patients were studied for photoreaction, brainstem reflexes, localization of sound and pain, length of coma state and outcome. Brain injury visualized by conventional CT. Outcome defined as death, VS, recovery with disability and without disability. Disability was rated by Disability Rating Scale (DRS). Recovered patients assessed by Mini Mental State Examination (MMSE) scale. Statistics performed by SPSS-11.0. From 175 coma patients 55 patients died, 23 patients found in VS, 97 patients recovered with and without disability. In all etiological groups of coma the background EEG patterns were established. Correspondence analysis of all investigated factors revealed that sound localization had the significant association with EEG delta and theta rhythms and with recovery from coma state (Chi-sqr. =31.10493; p= 0.000001). Among 23 VS patients 9 patients had the signs of MCS and showed the long latency waves (p300) after binaural stimulation. The high amplitude theta frequencies in frontal and temporal lobes significantly correlated with prolongation of latency of cognitive evoked potentials (r=+0.47; pEEG patterns' association with coma outcome only in hemorrhagic and traumatic coma (chi-sqr.=12.95; pEEG patterns and coma outcome. Low amplitude decreased power delta and theta frequencies correlated with SND in survived coma patients (r=+0.21; pEEG is the useful tool for elucidation of coma patients with a high probability to recover as well as those patients, who are at high risk of

  18. Burst suppression in sleep in a routine outpatient EEG ?

    OpenAIRE

    Kheder, Ammar; Bianchi, Matt T.; Westover, M. Brandon

    2014-01-01

    Burst suppression (BS) is an electroencephalogram (EEG) pattern that is characterized by brief bursts of spikes, sharp waves, or slow waves of relatively high amplitude alternating with periods of relatively flat EEG or isoelectric periods. The pattern is usually associated with coma, severe encephalopathy of various etiologies, or general anesthesia. We describe an unusual case of anoxic brain injury in which a BS pattern was seen during behaviorally defined sleep during a routine outpatient...

  19. Developmental changes in brain connectivity assessed using the sleep EEG.

    OpenAIRE

    Tarokh L; Carskadon M A; Achermann P

    2010-01-01

    Adolescence represents a time of significant cortical restructuring. Current theories posit that during this period connections between frequently utilized neural networks are strengthened while underutilized synaptic connections are discarded. The aim of the present study was to examine the developmental evolution of connectivity between brain regions using the sleep EEG. All night sleep EEG recordings in two longitudinal cohorts (children and teens) followed at 1.5 3 year intervals and one ...

  20. Topographical characteristics and principal component structure of the hypnagogic EEG.

    Science.gov (United States)

    Tanaka, H; Hayashi, M; Hori, T

    1997-07-01

    The purpose of the present study was to identify the dominant topographic components of electroencephalographs (EEG) and their behavior during the waking-sleeping transition period. Somnography of nocturnal sleep was recorded on 10 male subjects. Each recording, from "lights-off" to 5 minutes after the appearance of the first sleep spindle, was analyzed. The typical EEG patterns during hypnagogic period were classified into nine EEG stages. Topographic maps demonstrated that the dominant areas of alpha-band activity moved from the posterior areas to anterior areas along the midline of the scalp. In delta-, theta-, and sigma-band activities, the differences of EEG amplitude between the focus areas (the dominant areas) and the surrounding areas increased as a function of EEG stage. To identify the dominant topographic components, a principal component analysis was carried out on a 12-channel EEG data set for each of six frequency bands. The dominant areas of alpha 2- (9.6-11.4 Hz) and alpha 3- (11.6-13.4 Hz) band activities moved from the posterior to anterior areas, respectively. The distribution of alpha 2-band activity on the scalp clearly changed just after EEG stage 3 (alpha intermittent, < 50%). On the other hand, alpha 3-band activity became dominant in anterior areas after the appearance of vertex sharp-wave bursts (EEG stage 7). For the sigma band, the amplitude of extensive areas from the frontal pole to the parietal showed a rapid rise after the onset of stage 7 (the appearance of vertex sharp-wave bursts). Based on the results, sleep onset process probably started before the onset of sleep stage 1 in standard criteria. On the other hand, the basic sleep process may start before the onset of sleep stage 2 or the manually scored spindles.

  1. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance

    OpenAIRE

    Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical a...

  2. Brain oscillations in sport: toward EEG biomakers of performance

    OpenAIRE

    Guy eCheron; Guy eCheron; Geraldine ePetit; Julian eCheron; Axelle eLeroy; Axelle eLeroy; Ana Maria Cebolla; Carlos eCevallos; Mathieu ePetieau; David eZarka; Thomas eHoellinger; Anne-Marie eClarinval; Bernard eDan; Bernard eDan

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The noninvasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical ap...

  3. Correlation of EEG with neuropsychological status in children with epilepsy.

    Science.gov (United States)

    Hsu, David A; Rayer, Katherine; Jackson, Daren C; Stafstrom, Carl E; Hsu, Murielle; Ferrazzano, Peter A; Dabbs, Kevin; Worrell, Gregory A; Jones, Jana E; Hermann, Bruce P

    2016-02-01

    To determine correlations of the EEG frequency spectrum with neuropsychological status in children with idiopathic epilepsy. Forty-six children ages 8-18 years old with idiopathic epilepsy were retrospectively identified and analyzed for correlations between EEG spectra and neuropsychological status using multivariate linear regression. In addition, the theta/beta ratio, which has been suggested as a clinically useful EEG marker of attention-deficit hyperactivity disorder (ADHD), and an EEG spike count were calculated for each subject. Neuropsychological status was highly correlated with posterior alpha (8-15 Hz) EEG activity in a complex way, with both positive and negative correlations at lower and higher alpha frequency sub-bands for each cognitive task in a pattern that depends on the specific cognitive task. In addition, the theta/beta ratio was a specific but insensitive indicator of ADHD status in children with epilepsy; most children both with and without epilepsy have normal theta/beta ratios. The spike count showed no correlations with neuropsychological status. (1) The alpha rhythm may have at least two sub-bands which serve different purposes. (2) The theta/beta ratio is not a sensitive indicator of ADHD status in children with epilepsy. (3) The EEG frequency spectrum correlates more robustly with neuropsychological status than spike count analysis in children with idiopathic epilepsy. (1) The role of posterior alpha rhythms in cognition is complex and can be overlooked if EEG spectral resolution is too coarse or if neuropsychological status is assessed too narrowly. (2) ADHD in children with idiopathic epilepsy may involve different mechanisms from those in children without epilepsy. (3) Reliable correlations with neuropsychological status require longer EEG samples when using spike count analysis than when using frequency spectra. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

  4. Mutual information measures applied to EEG signals for sleepiness characterization

    OpenAIRE

    Melia, Umberto Sergio Pio; Guaita, Marc; Vallverdú Ferrer, Montserrat; Embid, Cristina; Vilaseca, I; Salamero, Manuel; Santamaria, Joan

    2015-01-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep lat...

  5. Predicting EEG complexity from sleep macro and microstructure

    International Nuclear Information System (INIS)

    Chouvarda, I; Maglaveras, N; Mendez, M O; Rosso, V; Parrino, L; Grassi, A; Terzano, M; Bianchi, A M; Cerutti, S

    2011-01-01

    This work investigates the relation between the complexity of electroencephalography (EEG) signal, as measured by fractal dimension (FD), and normal sleep structure in terms of its macrostructure and microstructure. Sleep features are defined, encoding sleep stage and cyclic alternating pattern (CAP) related information, both in short and long term. The relevance of each sleep feature to the EEG FD is investigated, and the most informative ones are depicted. In order to quantitatively assess the relation between sleep characteristics and EEG dynamics, a modeling approach is proposed which employs subsets of the sleep macrostructure and microstructure features as input variables and predicts EEG FD based on these features of sleep micro/macrostructure. Different sleep feature sets are investigated along with linear and nonlinear models. Findings suggest that the EEG FD time series is best predicted by a nonlinear support vector machine (SVM) model, employing both sleep stage/transitions and CAP features at different time scales depending on the EEG activation subtype. This combination of features suggests that short-term and long-term history of macro and micro sleep events interact in a complex manner toward generating the dynamics of sleep

  6. Standardized computer-based organized reporting of EEG

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C.

    2017-01-01

    Standardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted in the se......Standardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted...... in the second, revised version of SCORE (Standardized Computer-based Organized Reporting of EEG), which is presented in this paper. The revised terminology was implemented in a software package (SCORE EEG), which was tested in clinical practice on 12,160 EEG recordings. Standardized terms implemented in SCORE...... are used to report the features of clinical relevance, extracted while assessing the EEGs. Selection of the terms is context sensitive: initial choices determine the subsequently presented sets of additional choices. This process automatically generates a report and feeds these features into a database...

  7. Artifact removal from EEG signals using adaptive filters in cascade

    Science.gov (United States)

    Garcés Correa, A.; Laciar, E.; Patiño, H. D.; Valentinuzzi, M. E.

    2007-11-01

    Artifacts in EEG (electroencephalogram) records are caused by various factors, like line interference, EOG (electro-oculogram) and ECG (electrocardiogram). These noise sources increase the difficulty in analyzing the EEG and to obtaining clinical information. For this reason, it is necessary to design specific filters to decrease such artifacts in EEG records. In this paper, a cascade of three adaptive filters based on a least mean squares (LMS) algorithm is proposed. The first one eliminates line interference, the second adaptive filter removes the ECG artifacts and the last one cancels EOG spikes. Each stage uses a finite impulse response (FIR) filter, which adjusts its coefficients to produce an output similar to the artifacts present in the EEG. The proposed cascade adaptive filter was tested in five real EEG records acquired in polysomnographic studies. In all cases, line-frequency, ECG and EOG artifacts were attenuated. It is concluded that the proposed filter reduces the common artifacts present in EEG signals without removing significant information embedded in these records.

  8. Artifact removal from EEG signals using adaptive filters in cascade

    International Nuclear Information System (INIS)

    Garces Correa, A; Laciar, E; Patino, H D; Valentinuzzi, M E

    2007-01-01

    Artifacts in EEG (electroencephalogram) records are caused by various factors, like line interference, EOG (electro-oculogram) and ECG (electrocardiogram). These noise sources increase the difficulty in analyzing the EEG and to obtaining clinical information. For this reason, it is necessary to design specific filters to decrease such artifacts in EEG records. In this paper, a cascade of three adaptive filters based on a least mean squares (LMS) algorithm is proposed. The first one eliminates line interference, the second adaptive filter removes the ECG artifacts and the last one cancels EOG spikes. Each stage uses a finite impulse response (FIR) filter, which adjusts its coefficients to produce an output similar to the artifacts present in the EEG. The proposed cascade adaptive filter was tested in five real EEG records acquired in polysomnographic studies. In all cases, line-frequency, ECG and EOG artifacts were attenuated. It is concluded that the proposed filter reduces the common artifacts present in EEG signals without removing significant information embedded in these records

  9. [EEG-markers of vertical postural organization in healthy persons].

    Science.gov (United States)

    Zhavoronkova, L A; Zharikova, A V; Kushnir, E M; Mikhalkova, A A

    2012-01-01

    In 10 healthy persons (22.8 +/- 0.67 years) spectral-coherence parameters of EEG were analyzed in different steps of verticalizations--from gorizontal position to seat and stand one. Maximal changes of all EEG parameters were observed in state with absence of visual control. We observed an increase of power for fast spectral bands of EEG (beta- and gamma-bands) in all conditions and additional increase of these EEG parameters was observed at situation of complication of conditions of vertical pose supporting. Results of EEG coherent analysis in conditions of human verticalization showed specific increase of coherence for the majority of rhythm ranges in the right hemisphere especially in the central-frontal and in occipital-parietal areas and for interhemispheric pairs for these leads. This fact can reflect participation of cortical as well as subcortical structures in these processes. In conditions of complicate conditions of vertical pose supporting the additional increase of EEG coherence in fast bands (beta-rhythm) was observed at the frontal areas. This fact can testify about increasing of executive functions in this conditions.

  10. Methodological aspects of EEG and Body dynamics measurements during motion.

    Directory of Open Access Journals (Sweden)

    Pedro eReis

    2014-03-01

    Full Text Available EEG involves recording, analysis, and interpretation of voltages recorded on the human scalp originating from brain grey matter. EEG is one of the favorite methods to study and understand processes that underlie behavior. This is so, because EEG is relatively cheap, easy to wear, light weight and has high temporal resolution. In terms of behavior, this encompasses actions, such as movements, that are performed in response to the environment. However, there are methodological difficulties when recording EEG during movement such as movement artifacts. Thus, most studies about the human brain have examined activations during static conditions. This article attempts to compile and describe relevant methodological solutions that emerged in order to measure body and brain dynamics during motion. These descriptions cover suggestions of how to avoid and reduce motion artifacts, hardware, software and techniques for synchronously recording EEG, EMG, kinematics, kinetics and eye movements during motion. Additionally, we present various recording systems, EEG electrodes, caps and methods for determination of real/custom electrode positions. In the end we will conclude that it is possible to record and analyze synchronized brain and body dynamics related to movement or exercise tasks.

  11. Generalized Information Equilibrium Approaches to EEG Sleep Stage Discrimination

    Directory of Open Access Journals (Sweden)

    Todd Zorick

    2016-01-01

    Full Text Available Recent advances in neuroscience have raised the hypothesis that the underlying pattern of neuronal activation which results in electroencephalography (EEG signals is via power-law distributed neuronal avalanches, while EEG signals are nonstationary. Therefore, spectral analysis of EEG may miss many properties inherent in such signals. A complete understanding of such dynamical systems requires knowledge of the underlying nonequilibrium thermodynamics. In recent work by Fielitz and Borchardt (2011, 2014, the concept of information equilibrium (IE in information transfer processes has successfully characterized many different systems far from thermodynamic equilibrium. We utilized a publicly available database of polysomnogram EEG data from fourteen subjects with eight different one-minute tracings of sleep stage 2 and waking and an overlapping set of eleven subjects with eight different one-minute tracings of sleep stage 3. We applied principles of IE to model EEG as a system that transfers (equilibrates information from the time domain to scalp-recorded voltages. We find that waking consciousness is readily distinguished from sleep stages 2 and 3 by several differences in mean information transfer constants. Principles of IE applied to EEG may therefore prove to be useful in the study of changes in brain function more generally.

  12. Corrected Four-Sphere Head Model for EEG Signals.

    Science.gov (United States)

    Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V; Dale, Anders M; Einevoll, Gaute T; Wójcik, Daniel K

    2017-01-01

    The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.

  13. Corrected Four-Sphere Head Model for EEG Signals

    Directory of Open Access Journals (Sweden)

    Solveig Næss

    2017-10-01

    Full Text Available The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF, skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM. We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.

  14. Categorisation of Mobile EEG: A Researcher’s Perspective

    Directory of Open Access Journals (Sweden)

    Anthony D. Bateson

    2017-01-01

    Full Text Available Researchers are increasingly attempting to undertake electroencephalography (EEG recordings in novel environments and contexts outside of the traditional static laboratory setting. The term “mobile EEG,” although commonly used to describe many of these undertakings, is ambiguous, since it attempts to encompass a wide range of EEG device mobility, participant mobility, and system specifications used across investigations. To provide quantitative parameters for “mobile EEG,” we developed a Categorisation of Mobile EEG (CoME scheme based upon scoring of device mobility (D, from 0, off-body, to 5, head-mounted with no additional equipment, participant mobility (P, from 0, static, to 5, unconstrained running, system specification (S, from 4, lowest, to 20, highest, and number of channels (C used. The CoME scheme was applied to twenty-nine published mobile EEG studies. Device mobility scores ranged from 0D to 4D, participant mobility scores from 0P to 4P, and system specification scores from 6S to 17S. The format of the scores for the four parameters is given, for example, as (2D, 4P, 17S, 32C and readily enables comparisons across studies. Our CoME scheme enables researchers to quantify the degree of device mobility, participant mobility, and system specification used in their “mobile EEG” investigations in a standardised way.

  15. Artifact removal from EEG signals using adaptive filters in cascade

    Energy Technology Data Exchange (ETDEWEB)

    Garces Correa, A [Gabinete de TecnologIa Medica, Facultad de Ingenieria, Universidad Nacional de San Juan (Argentina); Laciar, E [Gabinete de TecnologIa Medica, Facultad de Ingenieria, Universidad Nacional de San Juan (Argentina); Patino, H D [Instituto de Automatica, Facultad de Ingenieria, Universidad Nacional de San Juan (Argentina); Valentinuzzi, M E [Instituto Superior de Investigaciones Biologicas (INSIBIO), UNT-CONICET, Tucuman (Argentina)

    2007-11-15

    Artifacts in EEG (electroencephalogram) records are caused by various factors, like line interference, EOG (electro-oculogram) and ECG (electrocardiogram). These noise sources increase the difficulty in analyzing the EEG and to obtaining clinical information. For this reason, it is necessary to design specific filters to decrease such artifacts in EEG records. In this paper, a cascade of three adaptive filters based on a least mean squares (LMS) algorithm is proposed. The first one eliminates line interference, the second adaptive filter removes the ECG artifacts and the last one cancels EOG spikes. Each stage uses a finite impulse response (FIR) filter, which adjusts its coefficients to produce an output similar to the artifacts present in the EEG. The proposed cascade adaptive filter was tested in five real EEG records acquired in polysomnographic studies. In all cases, line-frequency, ECG and EOG artifacts were attenuated. It is concluded that the proposed filter reduces the common artifacts present in EEG signals without removing significant information embedded in these records.

  16. EEG dynamical correlates of focal and diffuse causes of coma.

    Science.gov (United States)

    Kafashan, MohammadMehdi; Ryu, Shoko; Hargis, Mitchell J; Laurido-Soto, Osvaldo; Roberts, Debra E; Thontakudi, Akshay; Eisenman, Lawrence; Kummer, Terrance T; Ching, ShiNung

    2017-11-15

    Rapidly determining the causes of a depressed level of consciousness (DLOC) including coma is a common clinical challenge. Quantitative analysis of the electroencephalogram (EEG) has the potential to improve DLOC assessment by providing readily deployable, temporally detailed characterization of brain activity in such patients. While used commonly for seizure detection, EEG-based assessment of DLOC etiology is less well-established. As a first step towards etiological diagnosis, we sought to distinguish focal and diffuse causes of DLOC through assessment of temporal dynamics within EEG signals. We retrospectively analyzed EEG recordings from 40 patients with DLOC with consensus focal or diffuse culprit pathology. For each recording, we performed a suite of time-series analyses, then used a statistical framework to identify which analyses (features) could be used to distinguish between focal and diffuse cases. Using cross-validation approaches, we identified several spectral and non-spectral EEG features that were significantly different between DLOC patients with focal vs. diffuse etiologies, enabling EEG-based classification with an accuracy of 76%. Our findings suggest that DLOC due to focal vs. diffuse injuries differ along several electrophysiological parameters. These results may form the basis of future classification strategies for DLOC and coma that are more etiologically-specific and therefore therapeutically-relevant.

  17. Added clinical value of the inferior temporal EEG electrode chain.

    Science.gov (United States)

    Bach Justesen, Anders; Eskelund Johansen, Ann Berit; Martinussen, Noomi Ida; Wasserman, Danielle; Terney, Daniella; Meritam, Pirgit; Gardella, Elena; Beniczky, Sándor

    2018-01-01

    To investigate the diagnostic added value of supplementing the 10-20 EEG array with six electrodes in the inferior temporal chain. EEGs were recorded with 25 electrodes: 19 positions of the 10-20 system, and six additional electrodes in the inferior temporal chain (F9/10, T9/10, P9/10). Five-hundred consecutive standard and sleep EEG recordings were reviewed using the 10-20 array and the extended array. We identified the recordings with EEG abnormalities that had peak negativities at the inferior temporal electrodes, and those that only were visible at the inferior temporal electrodes. From the 286 abnormal recordings, the peak negativity was at the inferior temporal electrodes in 81 cases (28.3%) and only visible at the inferior temporal electrodes in eight cases (2.8%). In the sub-group of patients with temporal abnormalities (n = 134), these represented 59% (peak in the inferior chain) and 6% (only seen at the inferior chain). Adding six electrodes in the inferior temporal electrode chain to the 10-20 array improves the localization and identification of EEG abnormalities, especially those located in the temporal region. Our results suggest that inferior temporal electrodes should be added to the EEG array, to increase the diagnostic yield of the recordings. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Bluetooth Communication Interface for EEG Signal Recording in Hyperbaric Chambers.

    Science.gov (United States)

    Pastena, Lucio; Formaggio, Emanuela; Faralli, Fabio; Melucci, Massimo; Rossi, Marco; Gagliardi, Riccardo; Ricciardi, Lucio; Storti, Silvia F

    2015-07-01

    Recording biological signals inside a hyperbaric chamber poses technical challenges (the steel walls enclosing it greatly attenuate or completely block the signals as in a Faraday cage), practical (lengthy cables creating eddy currents), and safety (sparks hazard from power supply to the electronic apparatus inside the chamber) which can be overcome with new wireless technologies. In this technical report we present the design and implementation of a Bluetooth system for electroencephalographic (EEG) recording inside a hyperbaric chamber and describe the feasibility of EEG signal transmission outside the chamber. Differently from older systems, this technology allows the online recording of amplified signals, without interference from eddy currents. In an application of this technology, we measured EEG activity in professional divers under three experimental conditions in a hyperbaric chamber to determine how oxygen, assumed at a constant hyperbaric pressure of 2.8 ATA , affects the bioelectrical activity. The EEG spectral power estimated by fast Fourier transform and the cortical sources of the EEG rhythms estimated by low-resolution brain electromagnetic analysis were analyzed in three different EEG acquisitions: breathing air at sea level; breathing oxygen at a simulated depth of 18 msw, and breathing air at sea level after decompression.

  19. Rapidly Learned Identification of Epileptic Seizures from Sonified EEG

    Directory of Open Access Journals (Sweden)

    Psyche eLoui

    2014-10-01

    Full Text Available Sonification refers to a process by which data are converted into sound, providing an auditory alternative to visual display. Currently, the prevalent method for diagnosing seizures in epilepsy is by visually reading a patient’s electroencephalogram (EEG. However, sonification of the EEG data provides certain advantages due to the nature of human auditory perception. We hypothesized that human listeners will be able to identify seizures from EEGs using the auditory modality alone, and that accuracy of seizure identification will increase after a short training session. Here we describe an algorithm we have used to sonify EEGs of both seizure and non-seizure activity, followed by a training study in which subjects listened to short clips of sonified EEGs and determine whether each clip was of seizure or normal activity, both before and after a short training session. Results show that before training subjects performed at chance level in differentiating seizures vs. non-seizures, but there was a significant improvement of accuracy after the training session. After training, subjects successfully distinguished seizures from non-seizures using the auditory modality alone. Further analyses using signal detection theory demonstrated improvement in sensitivity and reduction in response bias as a result of training. This study demonstrates the potential of sonified EEGs to be used for the detection of seizures. Future studies will attempt to increase accuracy using novel training and sonification modifications, with the goals of managing, predicting, and ultimately controlling seizures using sonification as a possible biofeedback-based intervention for epilepsy.

  20. A three domain covariance framework for EEG/MEG data.

    Science.gov (United States)

    Roś, Beata P; Bijma, Fetsje; de Gunst, Mathisca C M; de Munck, Jan C

    2015-10-01

    In this paper we introduce a covariance framework for the analysis of single subject EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. Our covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, like in combined EEG-fMRI experiments in which the correlation between EEG and fMRI signals is investigated. We use a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. We apply our method to real EEG and MEG data sets. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Altered glucose metabolism in juvenile myoclonic epilepsy: a PET study with statistical parametric mapping

    International Nuclear Information System (INIS)

    Lim, G. C.; Kim, J. H.; Kang, J. G.; Kim, J. S.; Yeo, J. S.; Lee, S. A.; Moon, D. H

    2004-01-01

    Juvenile myoclonic epilepsy (JME) is a hereditary, age-dependent epilepsy syndrome, characterized by myoclonic jerks on awakening and generalized tonic-clonic seizures. Although there have been considerable studies on the mechanism to elucidate pathogenesis of JME, the accurate pathogenesis of JME remains obscure. The aim of this study was to investigate alterations of cerebral glucose metabolism in patients with JME. We studied 16 JME patients (Mean age: 22 yrs, M/F: 9/7) with brain FDG-PET and simultaneous EEG recording. On the basis of the number of generalized spike-and-wave (GSW) discharges on the 30 min EEG recording after the injection of FDG (370MBq), we classified patients into two groups (patients in group A had 10 or more GSW and group B. 9 or less). We applied the automated and objective technique of statistical parametric mapping (SPM) to the analysis of FDG-PET to determine the significant hyper- and hypometabolic regions compared with those of 19 age matched normal control subjects. We found significant hypermetabolic regions in bilateral thalamus and central portion of upper brainstem in 16 patients with JME at a statistical threshold of uncorrected P < 0.05. These changes were also shown in group A (n=8), but not in group B (n=8). Additionally, we found significant hypometabolism in bilateral, widespread cortical regions in 16 patients with JME at a threshold of uncorrected P < 0.01. Similar hypometabolic patterns were also observed in both group A and group B, being more prominent in group A. This study provides evidence for the key role of the thalamus and brainstem reticular activating system in generating spontaneous GSW discharge, which is considered as a fundamental pathogenesis underlying JME. This study also suggests that patients with JME might suffer from subtle abnormalities of cognitive and executive cortical functions

  2. Altered glucose metabolism in juvenile myoclonic epilepsy: a PET study with statistical parametric mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lim, G. C.; Kim, J. H.; Kang, J. G.; Kim, J. S.; Yeo, J. S.; Lee, S. A.; Moon, D. H [Asan Medical Center, Seoul (Korea, Republic of)

    2004-07-01

    Juvenile myoclonic epilepsy (JME) is a hereditary, age-dependent epilepsy syndrome, characterized by myoclonic jerks on awakening and generalized tonic-clonic seizures. Although there have been considerable studies on the mechanism to elucidate pathogenesis of JME, the accurate pathogenesis of JME remains obscure. The aim of this study was to investigate alterations of cerebral glucose metabolism in patients with JME. We studied 16 JME patients (Mean age: 22 yrs, M/F: 9/7) with brain FDG-PET and simultaneous EEG recording. On the basis of the number of generalized spike-and-wave (GSW) discharges on the 30 min EEG recording after the injection of FDG (370MBq), we classified patients into two groups (patients in group A had 10 or more GSW and group B. 9 or less). We applied the automated and objective technique of statistical parametric mapping (SPM) to the analysis of FDG-PET to determine the significant hyper- and hypometabolic regions compared with those of 19 age matched normal control subjects. We found significant hypermetabolic regions in bilateral thalamus and central portion of upper brainstem in 16 patients with JME at a statistical threshold of uncorrected P < 0.05. These changes were also shown in group A (n=8), but not in group B (n=8). Additionally, we found significant hypometabolism in bilateral, widespread cortical regions in 16 patients with JME at a threshold of uncorrected P < 0.01. Similar hypometabolic patterns were also observed in both group A and group B, being more prominent in group A. This study provides evidence for the key role of the thalamus and brainstem reticular activating system in generating spontaneous GSW discharge, which is considered as a fundamental pathogenesis underlying JME. This study also suggests that patients with JME might suffer from subtle abnormalities of cognitive and executive cortical functions.

  3. Tremor Detection Using Parametric and Non-Parametric Spectral Estimation Methods: A Comparison with Clinical Assessment

    Science.gov (United States)

    Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.

    2016-01-01

    In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration

  4. Amplitude Integrated Electroencephalography Compared With Conventional Video EEG for Neonatal Seizure Detection: A Diagnostic Accuracy Study.

    Science.gov (United States)

    Rakshasbhuvankar, Abhijeet; Rao, Shripada; Palumbo, Linda; Ghosh, Soumya; Nagarajan, Lakshmi

    2017-08-01

    This diagnostic accuracy study compared the accuracy of seizure detection by amplitude-integrated electroencephalography with the criterion standard conventional video EEG in term and near-term infants at risk of seizures. Simultaneous recording of amplitude-integrated EEG (2-channel amplitude-integrated EEG with raw trace) and video EEG was done for 24 hours for each infant. Amplitude-integrated EEG was interpreted by a neonatologist; video EEG was interpreted by a neurologist independently. Thirty-five infants were included in the analysis. In the 7 infants with seizures on video EEG, there were 169 seizure episodes on video EEG, of which only 57 were identified by amplitude-integrated EEG. Amplitude-integrated EEG had a sensitivity of 33.7% for individual seizure detection. Amplitude-integrated EEG had an 86% sensitivity for detection of babies with seizures; however, it was nonspecific, in that 50% of infants with seizures detected by amplitude-integrated EEG did not have true seizures by video EEG. In conclusion, our study suggests that amplitude-integrated EEG is a poor screening tool for neonatal seizures.

  5. Usefulness of a simple sleep-deprived EEG protocol for epilepsy diagnosis in de novo subjects.

    Science.gov (United States)

    Giorgi, Filippo S; Perini, Daria; Maestri, Michelangelo; Guida, Melania; Pizzanelli, Chiara; Caserta, Anna; Iudice, Alfonso; Bonanni, Enrica

    2013-11-01

    In case series concerning the role of EEG after sleep deprivation (SD-EEG) in epilepsy, patients' features and protocols vary dramatically from one report to another. In this study, we assessed the usefulness of a simple SD-EEG method in well characterized patients. Among the 963 adult subjects submitted to SD-EEG at our Center, in the period 2003-2010, we retrospectively selected for analysis only those: (1) evaluated for suspected epileptic seizures; (2) with a normal/non-specific baseline EEG; (3) still drug-free at the time of SD-EEG; (4) with an MRI analysis; (5) with at least 1 year follow-up. SD-EEG consisted in SD from 2:00 AM and laboratory EEG from 8:00 AM to 10:30 AM. We analyzed epileptic interictal abnormalities (IIAs) and their correlations with patients' features. Epilepsy was confirmed in 131 patients. SD-EEG showed IIAs in 41.2% of all patients with epilepsy, and a 91.1% specificity for epilepsy diagnosis; IIAs types observed during SD-EEG are different in generalized versus focal epilepsies; for focal epilepsies, the IIAs yield in SD-EEG is higher than in second routine EEG. This simple SD-EEG protocol is very useful in de novo patients with suspected seizures. This study sheds new light on the role of SD-EEG in specific epilepsy populations. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Design and optimization of an EEG-based brain machine interface (BMI to an upper-limb exoskeleton for stroke survivors

    Directory of Open Access Journals (Sweden)

    Nikunj Arunkumar Bhagat

    2016-03-01

    Full Text Available This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG-based brain machine interface (BMI. Intent was inferred from movement related cortical potentials (MRCPs measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II, to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: 1 an adaptive time window was used for extracting features during BMI calibration; 2 training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and 3 BMI predictions were gated by residual electromyography (EMG activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR = 62.7 +/- 21.4 % on day 4 and 67.1 +/- 14.6 % on day 5. The overall false positive rate (FPR across subjects was 27.74 +/- 37.46 % on day 4 and 27.5 +/- 35.64 % on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10 %. On average, motor intent was detected -367 +/- 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration.

  7. Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors

    Science.gov (United States)

    Bhagat, Nikunj A.; Venkatakrishnan, Anusha; Abibullaev, Berdakh; Artz, Edward J.; Yozbatiran, Nuray; Blank, Amy A.; French, James; Karmonik, Christof; Grossman, Robert G.; O'Malley, Marcia K.; Francisco, Gerard E.; Contreras-Vidal, Jose L.

    2016-01-01

    This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected −367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration. PMID:27065787

  8. Thorough specification of the neurophysiologic processes underlying behavior and of their manifestation in EEG - demonstration with the go/no-go task.

    Science.gov (United States)

    Shahaf, Goded; Pratt, Hillel

    2013-01-01

    In this work we demonstrate the principles of a systematic modeling approach of the neurophysiologic processes underlying a behavioral function. The modeling is based upon a flexible simulation tool, which enables parametric specification of the underlying neurophysiologic characteristics. While the impact of selecting specific parameters is of interest, in this work we focus on the insights, which emerge from rather accepted assumptions regarding neuronal representation. We show that harnessing of even such simple assumptions enables the derivation of significant insights regarding the nature of the neurophysiologic processes underlying behavior. We demonstrate our approach in some detail by modeling the behavioral go/no-go task. We further demonstrate the practical significance of this simplified modeling approach in interpreting experimental data - the manifestation of these processes in the EEG and ERP literature of normal and abnormal (ADHD) function, as well as with comprehensive relevant ERP data analysis. In-fact we show that from the model-based spatiotemporal segregation of the processes, it is possible to derive simple and yet effective and theory-based EEG markers differentiating normal and ADHD subjects. We summarize by claiming that the neurophysiologic processes modeled for the go/no-go task are part of a limited set of neurophysiologic processes which underlie, in a variety of combinations, any behavioral function with measurable operational definition. Such neurophysiologic processes could be sampled directly from EEG on the basis of model-based spatiotemporal segregation.

  9. Average effect estimates remain similar as evidence evolves from single trials to high-quality bodies of evidence: a meta-epidemiologic study.

    Science.gov (United States)

    Gartlehner, Gerald; Dobrescu, Andreea; Evans, Tammeka Swinson; Thaler, Kylie; Nussbaumer, Barbara; Sommer, Isolde; Lohr, Kathleen N

    2016-01-01

    The objective of our study was to use a diverse sample of medical interventions to assess empirically whether first trials rendered substantially different treatment effect estimates than reliable, high-quality bodies of evidence. We used a meta-epidemiologic study design using 100 randomly selected bodies of evidence from Cochrane reports that had been graded as high quality of evidence. To determine the concordance of effect estimates between first and subsequent trials, we applied both quantitative and qualitative approaches. For quantitative assessment, we used Lin's concordance correlation and calculated z-scores; to determine the magnitude of differences of treatment effects, we calculated standardized mean differences (SMDs) and ratios of relative risks. We determined qualitative concordance based on a two-tiered approach incorporating changes in statistical significance and magnitude of effect. First trials both overestimated and underestimated the true treatment effects in no discernible pattern. Nevertheless, depending on the definition of concordance, effect estimates of first trials were concordant with pooled subsequent studies in at least 33% but up to 50% of comparisons. The pooled magnitude of change as bodies of evidence advanced from single trials to high-quality bodies of evidence was 0.16 SMD [95% confidence interval (CI): 0.12, 0.21]. In 80% of comparisons, the difference in effect estimates was smaller than 0.5 SMDs. In first trials with large treatment effects (>0.5 SMD), however, estimates of effect substantially changed as new evidence accrued (mean change 0.68 SMD; 95% CI: 0.50, 0.86). Results of first trials often change, but the magnitude of change, on average, is small. Exceptions are first trials that present large treatment effects, which often dissipate as new evidence accrues. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Comparative Study of Parametric and Non-parametric Approaches in Fault Detection and Isolation

    DEFF Research Database (Denmark)

    Katebi, S.D.; Blanke, M.; Katebi, M.R.

    This report describes a comparative study between two approaches to fault detection and isolation in dynamic systems. The first approach uses a parametric model of the system. The main components of such techniques are residual and signature generation for processing and analyzing. The second...... approach is non-parametric in the sense that the signature analysis is only dependent on the frequency or time domain information extracted directly from the input-output signals. Based on these approaches, two different fault monitoring schemes are developed where the feature extraction and fault decision...

  11. Short analysis of the increase of the EEG apportionment 2013; Kurzanalyse des Anstiegs der EEG-Umlage 2013

    Energy Technology Data Exchange (ETDEWEB)

    Loreck, Charlotte; Matthes, Felix C.; Hermann, Hauke; Jung, Frederieke; Emele, Lukas

    2012-10-15

    At 15th October, 2012 the transmission system operators had published the EEG apportionment (EEG - Energy Economy Law). For the year 2013. This apportionment amounts 5,277 ct/kWh for non-privileged consumers in comparison to 3,59 ct/kWh for the year 2012. The ongoing enhancement of the renewable energies increases the EEG apportionment by an amount of 0.74 ct/kWh. With 0.26 ct/kWh the photovoltaics has the largest proportion in comparison to photovoltaics. The power generation from biomass as well as from wind energy at onshore sites contribute with 0.21 ct/kWh to the EEG apportionment. The greatest item of 0.48 ct/kWh is the debit balancing of the EEG account. The liquidity reserve for the year 2013 will be enhanced to 10% of the budget deficit. The expansion of the privileged status of the power consumption increases the EEG apportionment by 0.12 ct/kWh.

  12. Markovian Dynamics of Josephson Parametric Amplification

    Directory of Open Access Journals (Sweden)

    W. Kaiser

    2017-09-01

    Full Text Available In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA. The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.

  13. Non-parametric smoothing of experimental data

    International Nuclear Information System (INIS)

    Kuketayev, A.T.; Pen'kov, F.M.

    2007-01-01

    Full text: Rapid processing of experimental data samples in nuclear physics often requires differentiation in order to find extrema. Therefore, even at the preliminary stage of data analysis, a range of noise reduction methods are used to smooth experimental data. There are many non-parametric smoothing techniques: interval averages, moving averages, exponential smoothing, etc. Nevertheless, it is more common to use a priori information about the behavior of the experimental curve in order to construct smoothing schemes based on the least squares techniques. The latter methodology's advantage is that the area under the curve can be preserved, which is equivalent to conservation of total speed of counting. The disadvantages of this approach include the lack of a priori information. For example, very often the sums of undifferentiated (by a detector) peaks are replaced with one peak during the processing of data, introducing uncontrolled errors in the determination of the physical quantities. The problem is solvable only by having experienced personnel, whose skills are much greater than the challenge. We propose a set of non-parametric techniques, which allows the use of any additional information on the nature of experimental dependence. The method is based on a construction of a functional, which includes both experimental data and a priori information. Minimum of this functional is reached on a non-parametric smoothed curve. Euler (Lagrange) differential equations are constructed for these curves; then their solutions are obtained analytically or numerically. The proposed approach allows for automated processing of nuclear physics data, eliminating the need for highly skilled laboratory personnel. Pursuant to the proposed approach is the possibility to obtain smoothing curves in a given confidence interval, e.g. according to the χ 2 distribution. This approach is applicable when constructing smooth solutions of ill-posed problems, in particular when solving

  14. Markovian Dynamics of Josephson Parametric Amplification

    Science.gov (United States)

    Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian

    2017-09-01

    In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.

  15. Massively multi-parametric immunoassays using ICPMS

    International Nuclear Information System (INIS)

    Tanner, S.D.; Ornatsky, O.; Bandura, D.R.; Baranov, V.I.

    2009-01-01

    The use of stable isotopes as tags in immunoassays, and their determination by ICPMS, is poised to have a huge impact on multi-parametric bioanalysis. A new technology, which we term 'mass cytometry', enables high throughput, highly multiplexed individual cell analysis. Preliminary results for T-cell immunophenotyping in peripheral blood mononuclear cells (PBMC), agonist influence on concomitant phosphorylation pathways, and sub-classification of acute myeloid leukemia patients' samples will be presented. The significance of individual cell analysis is demonstrated by the identification of populations of rogue cells in PBMC samples through the use of multidimensional neural network cluster analysis. (author)

  16. A parametric evaluation of supersonic STOVL

    Science.gov (United States)

    Kidwell, G. H.; Rapp, D. C.

    1985-01-01

    This paper describes the results of a study to evaluate parametric variations to a single engine short-takeoff vertical-landing fighter/attack aircraft design. The variables considered involved thrust vectoring, thrust degradation, maximum lift, and other changes to determine the impact on short-takeoff performance, but subject to a vertical-landing capability. The results indicate that there are certain parameters that have a significant effect on short-field performance. Also, the optimal control strategies for transitions from a short-takeoff to forward flight and from forward flight to hover are determined. The results have applicability beyond the configuration evaluated.

  17. Semi-parametric estimation for ARCH models

    Directory of Open Access Journals (Sweden)

    Raed Alzghool

    2018-03-01

    Full Text Available In this paper, we conduct semi-parametric estimation for autoregressive conditional heteroscedasticity (ARCH model with Quasi likelihood (QL and Asymptotic Quasi-likelihood (AQL estimation methods. The QL approach relaxes the distributional assumptions of ARCH processes. The AQL technique is obtained from the QL method when the process conditional variance is unknown. We present an application of the methods to a daily exchange rate series. Keywords: ARCH model, Quasi likelihood (QL, Asymptotic Quasi-likelihood (AQL, Martingale difference, Kernel estimator

  18. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  19. Parametric resonance in acoustically levitated water drops

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Wei, B.

    2010-01-01

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  20. Parametric resonance in acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Shen, C.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.c [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-05-10

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  1. Parametric systems analysis for tandem mirror hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U 3 O 8 cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions

  2. Molecular and parametric imaging with iron oxides

    International Nuclear Information System (INIS)

    Matuszewski, L.; Bremer, C.; Tombach, B.; Heindel, W.

    2007-01-01

    Superparamagnetic iron oxide (SPIO) contrast agents, clinically established for high resolution magnetic resonance imaging of reticuloendothelial system containing anatomical structures, can additionally be exploited for the non-invasive characterization and quantification of pathology down to the molecular level. In this context, SPIOs can be applied for non-invasive cell tracking, quantification of tissue perfusion and target specific imaging, as well as for the detection of gene expression. This article provides an overview of new applications for clinically approved iron oxides as well of new, modified SPIO contrast agents for parametric and molecular imaging. (orig.) [de

  3. Parametric Cherenkov radiation (development of idea)

    International Nuclear Information System (INIS)

    Buts, V.A.

    2004-01-01

    Some physical results of researches about charged particles radiation in mediums with a periodic heterogeneity and in periodic potential are reported. The development of ideas Parametric Cherenkov Radiation has shown, that in mediums, which have even a weak degree of a periodic heterogeneity of an permittivity or potential, the nonrelativistic oscillators can radiated as relativistic. They effectively radiate the high numbers of harmonics. In particular, in the carried out experiments the ultra-violet radiation was excited at action on a crystal of intensive ten-centimetric radiation. These results give the reasons to hope for making of nonrelativistic lasers on free electrons

  4. Parametrization relating the fermionic mass spectra

    International Nuclear Information System (INIS)

    Kleppe, A.

    1993-01-01

    When parametrizing the fermionic mass spectra in terms of the unit matrix and a recursive matrix scrR 0 , which corresponds to an underlying scaling pattern in the mass spectra, each fermionic sector is characterized by three parameters: k, α, and R. Using the set of relations displayed by the parameters of the different sectors, it is possible to formulate a ''family Lagrangian'' which for each sector encompasses all the families. Relations between quark masses are furthermore deduced from these ''family Lagrangians.'' Using the relations between the parameters of the different charge sectors, it is also possible to ''derive'' the quark mass spectra from the (charged) leptonic mass spectrum

  5. Parametric Portfolio Policies with Common Volatility Dynamics

    DEFF Research Database (Denmark)

    Ergemen, Yunus Emre; Taamouti, Abderrahim

    A parametric portfolio policy function is considered that incorporates common stock volatility dynamics to optimally determine portfolio weights. Reducing dimension of the traditional portfolio selection problem significantly, only a number of policy parameters corresponding to first- and second......-order characteristics are estimated based on a standard method-of-moments technique. The method, allowing for the calculation of portfolio weight and return statistics, is illustrated with an empirical application to 30 U.S. industries to study the economic activity before and after the recent financial crisis....

  6. Exercise in Configurable Products using Creo parametric

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2017-01-01

    Family tables is a long know method with ProEngineer/Creo parametric to make families of products – like families of bolts and roller bearings. Configurable Products expand these possibilities in two major ways: First it makes configurable assemblies possible where one topologically different com...... been available as: configurable assemblies in earlier versions of Creo) An example of a practical application of configurable products is shown below where an outdoor Play/Exercise system is transferred from AutoCAD 2D to a 3D configurable product in Creo 3.0....

  7. Quantum phase from s-parametrized quasidistributions

    International Nuclear Information System (INIS)

    Perinova, V; Luks, A

    2005-01-01

    It is familiar that a well behaved operator of the harmonic oscillator phase does not exist. Therefore, Turski's phase operator and the operator of Garrison and Wong may be at most defined in an interesting fashion and yield useful quantum expectation values. In this paper we touch on a recent incomplete definition of a phase operator which has also failed in the respect that it can be completed only to a definition of an 'incomplete' phase operator. We discuss, however, a possibility of completion of the definition and a relationship to the phase operator from an s-parametrized quasidistribution

  8. White-light parametric instabilities in plasmas.

    Science.gov (United States)

    Santos, J E; Silva, L O; Bingham, R

    2007-06-08

    Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.

  9. Parametric Amplification of Gravitational Fluctuations during Reheating

    International Nuclear Information System (INIS)

    Finelli, F.; Brandenberger, R.; Finelli, F.

    1999-01-01

    Cosmological perturbations can undergo amplification by parametric resonance during preheating even on scales larger than the Hubble radius, without violating causality. A unified description of gravitational and matter fluctuations is crucial to determine the strength of the instability. To extract specific signatures of the oscillating inflaton field during reheating, it is essential to focus on a variable describing metric fluctuations which is constant in the standard analyses of inflation. For a massive inflaton without self-coupling, we find no additional growth of superhorizon modes during reheating beyond the usual predictions. For a massless self-coupled inflaton, there is a sub-Hubble scale resonance. copyright 1999 The American Physical Society

  10. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  11. Preparing Schrodinger cat states by parametric pumping

    Science.gov (United States)

    Leghtas, Zaki; Touzard, Steven; Pop, Ioan; Vlastakis, Brian; Zalys-Geller, Evan; Albert, Victor V.; Jiang, Liang; Frunzio, Luigi; Schoelkopf, Robert J.; Mirrahimi, Mazyar; Devoret, Michel H.

    2014-03-01

    Maintaining a quantum superposition state of light in a cavity has important applications for quantum error correction. We present an experimental protocol based on parametric pumping and Josephson circuits, which could prepare a Schrodinger cat state in a cavity. This is achieved by engineering a dissipative environment, which exchanges only pairs or quadruples of photons with our cavity mode. The dissipative nature of this preparation would lead to the observation of a dynamical Zeno effect, where the competition between a coherent drive and the dissipation reveals non trivial dynamics. Work supported by: IARPA, ARO, and NSF.

  12. Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy

    OpenAIRE

    Marics, Gábor; Csekő, Anna; Vásárhelyi, Barna; Zakariás, Dávid; Schuster, György; Szabó, Miklós

    2013-01-01

    Background Amplitude-integrated electroencephalography (aEEG) is a useful tool to determine the severity of neonatal hypoxic-ischemic encephalopathy (HIE). Our aim was to assess the prevalence and study the origin of false normal aEEG recordings based on 85 aEEG recordings registered before six hours of age. Methods Raw EEG recordings were reevaluated retrospectively with Fourier analysis to identify and describe the frequency patterns of the raw EEG signal, in cases with inconsistent aEEG re...

  13. Dealing with noise and physiological artifacts in human EEG recordings: empirical mode methods

    Science.gov (United States)

    Runnova, Anastasiya E.; Grubov, Vadim V.; Khramova, Marina V.; Hramov, Alexander E.

    2017-04-01

    In the paper we propose the new method for removing noise and physiological artifacts in human EEG recordings based on empirical mode decomposition (Hilbert-Huang transform). As physiological artifacts we consider specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the proposed method with steps including empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing these empirical modes and reconstructing of initial EEG signal. We show the efficiency of the method on the example of filtration of human EEG signal from eye-moving artifacts.

  14. Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hansen, Lars Kai

    2016-01-01

    the functional dynamics of the brain. Solving the inverse problem of EEG is however highly ill-posed as there are many more potential locations of the EEG generators than EEG measurement points. Several well-known properties of brain dynamics can be exploited to alleviate this problem. More short ranging......Electroencephalography (EEG) can capture brain dynamics in high temporal resolution. By projecting the scalp EEG signal back to its origin in the brain also high spatial resolution can be achieved. Source localized EEG therefore has potential to be a very powerful tool for understanding...

  15. Multimodal EEG Recordings, Psychometrics and Behavioural Analysis.

    Science.gov (United States)

    Boeijinga, Peter H

    2015-01-01

    High spatial and temporal resolution measurements of neuronal activity are preferably combined. In an overview on how this approach can take shape, multimodal electroencephalography (EEG) is treated in 2 main parts: by experiments without a task and in the experimentally cued working brain. It concentrates first on the alpha rhythm properties and next on data-driven search for patterns such as the default mode network. The high-resolution volumic distributions of neuronal metabolic indices result in distributed cortical regions and possibly relate to numerous nuclei, observable in a non-invasive manner in the central nervous system of humans. The second part deals with paradigms in which nowadays assessment of target-related networks can align level-dependent blood oxygenation, electrical responses and behaviour, taking the temporal resolution advantages of event-related potentials. Evidence-based electrical propagation in serial tasks during performance is now to a large extent attributed to interconnected pathways, particularly chronometry-dependent ones, throughout a chain including a dorsal stream, next ventral cortical areas taking the flow of information towards inferior temporal domains. The influence of aging is documented, and results of the first multimodal studies in neuropharmacology are consistent. Finally a scope on implementation of advanced clinical applications and personalized marker strategies in neuropsychiatry is indicated. © 2016 S. Karger AG, Basel.

  16. Stimulus-dependent spiking relationships with the EEG

    Science.gov (United States)

    Snyder, Adam C.

    2015-01-01

    The development and refinement of noninvasive techniques for imaging neural activity is of paramount importance for human neuroscience. Currently, the most accessible and popular technique is electroencephalography (EEG). However, nearly all of what we know about the neural events that underlie EEG signals is based on inference, because of the dearth of studies that have simultaneously paired EEG recordings with direct recordings of single neurons. From the perspective of electrophysiologists there is growing interest in understanding how spiking activity coordinates with large-scale cortical networks. Evidence from recordings at both scales highlights that sensory neurons operate in very distinct states during spontaneous and visually evoked activity, which appear to form extremes in a continuum of coordination in neural networks. We hypothesized that individual neurons have idiosyncratic relationships to large-scale network activity indexed by EEG signals, owing to the neurons' distinct computational roles within the local circuitry. We tested this by recording neuronal populations in visual area V4 of rhesus macaques while we simultaneously recorded EEG. We found substantial heterogeneity in the timing and strength of spike-EEG relationships and that these relationships became more diverse during visual stimulation compared with the spontaneous state. The visual stimulus apparently shifts V4 neurons from a state in which they are relatively uniformly embedded in large-scale network activity to a state in which their distinct roles within the local population are more prominent, suggesting that the specific way in which individual neurons relate to EEG signals may hold clues regarding their computational roles. PMID:26108954

  17. Monitoring alert and drowsy states by modeling EEG source nonstationarity

    Science.gov (United States)

    Hsu, Sheng-Hsiou; Jung, Tzyy-Ping

    2017-10-01

    Objective. As a human brain performs various cognitive functions within ever-changing environments, states of the brain characterized by recorded brain activities such as electroencephalogram (EEG) are inevitably nonstationary. The challenges of analyzing the nonstationary EEG signals include finding neurocognitive sources that underlie different brain states and using EEG data to quantitatively assess the state changes. Approach. This study hypothesizes that brain activities under different states, e.g. levels of alertness, can be modeled as distinct compositions of statistically independent sources using independent component analysis (ICA). This study presents a framework to quantitatively assess the EEG source nonstationarity and estimate levels of alertness. The framework was tested against EEG data collected from 10 subjects performing a sustained-attention task in a driving simulator. Main results. Empirical results illustrate that EEG signals under alert versus drowsy states, indexed by reaction speeds to driving challenges, can be characterized by distinct ICA models. By quantifying the goodness-of-fit of each ICA model to the EEG data using the model deviation index (MDI), we found that MDIs were significantly correlated with the reaction speeds (r  =  -0.390 with alertness models and r  =  0.449 with drowsiness models) and the opposite correlations indicated that the two models accounted for sources in the alert and drowsy states, respectively. Based on the observed source nonstationarity, this study also proposes an online framework using a subject-specific ICA model trained with an initial (alert) state to track the level of alertness. For classification of alert against drowsy states, the proposed online framework achieved an averaged area-under-curve of 0.745 and compared favorably with a classic power-based approach. Significance. This ICA-based framework provides a new way to study changes of brain states and can be applied to

  18. EEG datasets for motor imagery brain-computer interface.

    Science.gov (United States)

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  19. PARAMETRIC INSURANCE COVER FOR NATURAL CATASTROPHE RISKS

    Directory of Open Access Journals (Sweden)

    Serghei Margulescu

    2013-11-01

    Full Text Available With economic losses of over USD 370 bn caused by 325 catastrophic events, 2011 ranks as the worst ever year in terms of costs to society due to natural catastrophes and man-made disasters. Inthe same time, 2011 is the second most expensive year in the history for the insurance industry, with insured losses from catastrophic events amounting to USD 116 bn. Both the high level of damages and insured losses, as well as the unprecedented gap between the two values, made insurers and reinsurers worldwide to understand that some risks had so far been underestimated and they have to be better integrated in the catastrophes modelling.On the other hand, governments have to protect themselves against the financial impact of natural catastrophes and new forms of cooperation between the public and private sectors can help countries finance disaster risks. Viewed in a country’s wider risk management context, the purchase of parametric insurance cover, which transfers natural catastrophe risk to the private sector using an index- based trigger, is a necessary shift towards a pre-emptive risk management strategy. This kind of approach can be pursued by central governments or at the level of provincial or municipal governments, and a number of case studies included in the publication “Closing the financial gap” by Swiss Re (2011 illustrates how new forms of parametric insurance can help countries finance disaster risks.

  20. Quantum tomography enhanced through parametric amplification

    Science.gov (United States)

    Knyazev, E.; Spasibko, K. Yu; Chekhova, M. V.; Khalili, F. Ya

    2018-01-01

    Quantum tomography is the standard method of reconstructing the Wigner function of quantum states of light by means of balanced homodyne detection. The reconstruction quality strongly depends on the photodetectors quantum efficiency and other losses in the measurement setup. In this article we analyze in detail a protocol of enhanced quantum tomography, proposed by Leonhardt and Paul [1] which allows one to reduce the degrading effect of detection losses. It is based on phase-sensitive parametric amplification, with the phase of the amplified quadrature being scanned synchronously with the local oscillator phase. Although with sufficiently strong amplification the protocol enables overcoming any detection inefficiency, it was so far not implemented in the experiment, probably due to the losses in the amplifier. Here we discuss a possible proof-of-principle experiment with a traveling-wave parametric amplifier. We show that with the state-of-the-art optical elements, the protocol enables high fidelity tomographic reconstruction of bright non-classical states of light. We consider two examples: bright squeezed vacuum and squeezed single-photon state, with the latter being a non-Gaussian state and both strongly affected by the losses.