Parametric form of QCD travelling waves
Peschanski, R.
2005-01-01
We derive parametric travelling-wave solutions of non-linear QCD equations. They describe the evolution towards saturation in the geometric scaling region. The method, based on an expansion in the inverse of the wave velocity, leads to a solvable hierarchy of differential equations. A universal parametric form of travelling waves emerges from the first two orders of the expansion.
Simple parametrization of nucleon form factors
International Nuclear Information System (INIS)
Kelly, J.J.
2004-01-01
This Brief Report provides simple parametrizations of the nucleon electromagnetic form factors using functions of Q 2 that are consistent with dimensional scaling at high Q 2 . Good fits require only four parameters each for G Ep , G Mp , and G Mn and only two for G En
Statistical prediction of parametric roll using FORM
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Choi, Ju-hyuck; Nielsen, Ulrik Dam
2017-01-01
Previous research has shown that the First Order Reliability Method (FORM) can be an efficient method for estimation of outcrossing rates and extreme value statistics for stationary stochastic processes. This is so also for bifurcation type of processes like parametric roll of ships. The present...
Spiral intensity patterns in the internally pumped optical parametric oscillator
DEFF Research Database (Denmark)
Lodahl, Peter; Bache, Morten; Saffman, Mark
2001-01-01
We describe a nonlinear optical system that supports spiral pattern solutions in the field intensity. This new spatial structure is found to bifurcate above a secondary instability in the internally pumped optical parametric oscillator. The analytical predictions of threshold and spatial scale...
Heating tokamaks by parametric decay of intense extraordinary mode radiation
International Nuclear Information System (INIS)
Elder, G.B.; Perkins, F.W.
1979-08-01
Intense electron beam technology has developed coherent, very high power (350 megawatts) microwave sources at frequencies which are a modest fraction of the electron cyclotron frequency in tokamaks. Propagation into a plasma occurs via the extraordinary mode which is subject to parametric decay instabilities in the density range ω/sub o/ 2 2 < ω/sub o/(ω/sub o/ + Ω/sub e/). For an incident wave focused onto a hot spot by a dish antenna of radius rho, the effective threshold power P/sub o/ required to induced effective parametric heating is P/sub o/ approx. = 10 MW x/rho Ω/sub e//ω/sub o/ (T/sub e//1 keV)/sup 3/2/ where x denotes the distance to the hot spot
Parametric design of a part with free-form surfaces
Institute of Scientific and Technical Information of China (English)
KIM Yeoung-il; KIM Li-ra; JUN Cha-soo
2006-01-01
3D solid models for parts with regular-form surfaces (PRFSs) are effectively generated using traditional parametric design techniques. A new model is obtained by changing some parameters defining the model. The parts with free-form surfaces(PFFSs), however, cannot be defined by several parameters. Usually they are defined by some geometric elements like profile curves. The traditional parametric design approaches have not easily dealt with the PFFSs. A method for generating a solid model and an engineering drawing for PFFSs is proposed in this paper: First, the new profiles are generated from input point data. Second,the profile information is extracted from the existing model. Last, the old profiles are replaced with the new profiles. This method can preserve the associative information of the existing model and automatically generate the drawing including views, dimensions, and annotations. The proposed method has been implemented using a commercial CAD/CAM system, Unigraphics, and API functions written in C-language, and were applied to the blades of a turbine generator. Some illustrative examples are provided in order to show the effectiveness of the proposed method.
Schwalenberg, Simon
2005-06-01
The present work represents a first attempt to perform computations of output intensity distributions for different parametric holographic scattering patterns. Based on the model for parametric four-wave mixing processes in photorefractive crystals and taking into account realistic material properties, we present computed images of selected scattering patterns. We compare these calculated light distributions to the corresponding experimental observations. Our analysis is especially devoted to dark scattering patterns as they make high demands on the underlying model.
Numerical Solution of Uncertain Beam Equations Using Double Parametric Form of Fuzzy Numbers
Directory of Open Access Journals (Sweden)
Smita Tapaswini
2013-01-01
Full Text Available Present paper proposes a new technique to solve uncertain beam equation using double parametric form of fuzzy numbers. Uncertainties appearing in the initial conditions are taken in terms of triangular fuzzy number. Using the single parametric form, the fuzzy beam equation is converted first to an interval-based fuzzy differential equation. Next, this differential equation is transformed to crisp form by applying double parametric form of fuzzy number. Finally, the same is solved by homotopy perturbation method (HPM to obtain the uncertain responses subject to unit step and impulse loads. Obtained results are depicted in terms of plots to show the efficiency and powerfulness of the methodology.
A non-parametric estimator for the doubly-periodic Poisson intensity function
R. Helmers (Roelof); I.W. Mangku (Wayan); R. Zitikis
2007-01-01
textabstractIn a series of papers, J. Garrido and Y. Lu have proposed and investigated a doubly-periodic Poisson model, and then applied it to analyze hurricane data. The authors have suggested several parametric models for the underlying intensity function. In the present paper we construct and
Prospect theory: A parametric analysis of functional forms in Brazil
Directory of Open Access Journals (Sweden)
Robert Eugene Lobel
2017-10-01
Full Text Available This study aims to analyze risk preferences in Brazil based on prospect theory by estimating the risk aversion parameter of the expected utility theory (EUT for a select sample, in addition to the value and probability function parameter, assuming various functional forms, and a newly proposed value function, the modified log. This is the first such study in Brazil, and the parameter results are slightly different from studies in other countries, indicating that subjects are more risk averse and exhibit a smaller loss aversion. Probability distortion is the only common factor. As expected, the study finds that behavioral models are superior to EUT, and models based on prospect theory, the TK and Prelec weighting function, and the value power function show superior performance to others. Finally, the modified log function proposed in the study fits the data well, and can thus be used for future studies in Brazil.
Electron Parametric Instabilities Driven by Relativistically Intense Laser Light in Plasma
Barr, H. C.; Mason, P.; Parr, D. M.
1999-08-01
A unified treatment of electron parametric instabilities driven by ultraintense laser light in plasma is described. It is valid for any intensity, polarization, plasma density, and scattering geometry. The method is applied to linearly polarized light in both underdense plasma and overdense plasma accessible by self-induced transparency. New options arise which are hybrids of stimulated Raman scattering, the two plasmon decay, the relativistic modulational and filamentation instabilities, and stimulated harmonic generation. There is vigorous growth over a wide range of wave numbers and harmonics.
International Nuclear Information System (INIS)
Parr, D.M.
2000-04-01
This thesis studies the propagation and stability of ultraintense laser light in plasma. A new method is devised, both general and inclusive yet requiring only modest computational effort. The exact anharmonic waveforms for laser light are established. An examination of their stability extends the theory of electron parametric instabilities to relativistic regimes in plasmas of any density including classically overdense plasma accessible by self-induced transparency. Such instabilities can rapidly degrade intense pulses, but can also be harnessed, for example in the self-resonant laser wakefield accelerator. Understanding both the new and established regimes is thus basic to the success of many applications arising in high-field science, including novel x-ray sources and ignition of laser fusion targets, as well as plasma-based accelerator schemes. A covariant formulation of a cold electron fluid plasma is Lorentz transformed to the laser group velocity frame; this is the essence of the method and produces a very simple final model. Then, first, the zero-order laser 'driver' model is developed, in this frame representing a spatially homogeneous environment and thus soluble numerically as ordinary differential equations. The linearised first-order system leads to a further set of differential equations, whose solution defines the growth and other characteristics of an instability. The method is exact, rugged and flexible, avoiding the many approximations and restrictions previously necessary. This approach unifies all theory on purely electronic parametric instabilities over the last 30 years and, for the first time in generality, extends it into the ultrahigh relativistic regime. Besides extensions to familiar parametric instabilities, such as Stimulated Raman Scattering and Two-Plasmon Decay, strong stimulated harmonic generation emerges across a wide range of harmonics with high growth rates, presenting a varied and complex physical entity
Qin, H-Y; Zhao, W-X; Zhao, W; Zhang, C; Feng, X-Q; Liu, S-P; Wang, K-G
2018-04-23
Stimulated emission depletion (STED) microscopy performed using continuous-wave (CW) lasers has been investigated and developed by Willig et al. (Nature Methods, 2007, 4(11):915) for nearly a decade. Kuang et al. (Review of Scientific Instruments, 2010, 81:053709) developed the CW STED microscopy technique with 405 nm excitation and 532 nm depletion beams. In their research, Coumarin 102 dye was adopted and was found to be depletable. In this study, a parametric investigation of the depletion of Coumarin 102 dye is carried out experimentally. The influence of the excitation and depletion beam intensities and dye concentrations on the depletion efficiency are studied in detail. The results indicate the following: (1) The highest depletion occurs for the 100 μM Coumarin 102 solution, with a 1.4 μW excitation beam and a 115.3 mW depletion beam. (2) The minimum saturation intensity (Is) of STED, that is 13 MW cm -2 , is observed when the Coumarin 102 solution concentration is 10 μM. (3) Is values calculated directly from the depletion power derived with the cross-sectional area due to the full-width-at-half-maximum (FWHM) of the depletion beam show poor accuracy, where Is may be overestimated. Thus, a correction factor for the cross-sectional area is proposed. We also find that Is is not exactly constant for a fixed excitation beam power and dye concentration. This trend indicates that the conventional suppression function η(x)=e- ln (2)ISTED(x)/Is derived from picosecond STED may cause errors in evaluating the depletion process in CW STED microscopy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Directory of Open Access Journals (Sweden)
Jolanta Dzwierzynska
2018-04-01
Full Text Available The aim of the study is to develop an original, methodical, and practical approach to the early stages of parametric design of roof shells formed by repetitive modules of Catalan surfaces. It is presented on the example of designing the roof shells compound of four concrete elements. The designing process proposed by us consists in linking geometric shaping of roofs’ models with their structural analysis and optimization. Contrary to other methods, which use optimization process in order to find free roof forms, we apply it in order to explore and improve design alternatives. It is realized with the application of designing tools working in Rhinoceros 3D software. The flexible scripts elaborated by us, in order to achieve roofs’ models of regular and symmetrical shapes, are converted into simulation models to perform structural analysis. It is mainly focused on how the roof shells perform dependently on their geometric characteristics. The simulation enables one to evaluate various roof shells’ shapes, as well as to select an optimal design solution. The proposed approach to the conceptual design process may drive the designing to achieve geometric and structural forms which not only follow the design intentions but also target better results.
International Nuclear Information System (INIS)
Hussain, G.; Sanaullah, K.
2009-01-01
A conventional shaped charge comprises a conical metal liner projecting a hyper velocity jet of metal that is able to penetrate to great depths into steel armour. However, misalignment problems exist in tandem with jet break up and spewing particles that greatly diminish its penetration power. An EFP, on the other hand, has a liner in the shape of a geometrical recess. The force of the blast molds the liner into a number of configurations, depending on the geometry and the explosive detonation characteristics. This paper presents comparative parametric numerical simulations of materials used as liners in the explosively formed projectiles EFPs. Numerical simulations are carried out using AUTODYN 2D hydrocode to study effects of liner's materials on the shape, velocity, traveled distance, time, pressure, internal energy, temperature, yield stress, divergence or stability, density, compression, and length to diameter (L/D) ratio of EFPs. These parameters are estimated at the instants of maximum as well as at stable velocities. The parametric study reveals that aluminum has maximum velocity in shortest time among the liner materials. From this reason, it was concluded effective standoff was greater for aluminum than more denser metals. Maximum velocity and traveled distance of Tantalum EFP is found to be minimum which may be due to low thermal softening exponent and larger hardening exponent. The simulated yield stress and pressure developed in the Fe EFP reaches at maximum. The L/D ratio for Copper is found to be maximum which supports maximum penetration. From the stability point of view, 1006 MS is found to be the most reliable liner material due to minimum divergence. Generally all liner materials have similar effects of all parameters like pressure, internal energy, temperature, yield stress, divergence or stability, density, compression at the instants of maximum as well as at stable velocities except L/D ratio of EFPs. At the instant of maximum velocity, L
Czech Academy of Sciences Publication Activity Database
Peřina, Jan; Křepelka, Jaromír; Peřina ml., Jan; Bondani, M.; Allevi, A.; Andreoni, A.
2009-01-01
Roč. 53, č. 3 (2009), 373-382 ISSN 1434-6060 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : parametric process * three-mode state * sub-Poisson statistics * conditional measurement Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.420, year: 2009
Pump-to-Signal Intensity Modulation Transfer in Saturated- Gain Fiber Optical Parametric Amplifiers
DEFF Research Database (Denmark)
Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke; Rottwitt, Karsten
2011-01-01
The pump-to-signal intensity modulation transfer in saturated degenerate FOPAs is numerically investigated over the whole gain bandwidth. The intensity modulation transfer decreases and the OSNR improves when the amplifier operates in the saturation regime....
A Range-Based Test for the Parametric Form of the Volatility in Diffusion Models
DEFF Research Database (Denmark)
Podolskij, Mark; Ziggel, Daniel
statistic. Under rather weak assumptions on the drift and volatility we prove weak convergence of the test statistic to a centered mixed Gaussian distribution. As a consequence we obtain a test, which is consistent for any fixed alternative. Moreover, we present a parametric bootstrap procedure which...
International Nuclear Information System (INIS)
Quesnel, Brice
1998-01-01
This research thesis reports a theoretical and numeric study of the behaviour of two non linear phenomena of the laser-plasma interaction physics in a relativistic regime: the electronic parametric instabilities, and the ponderomotive force. In a first part, the author establishes the three-dimensional scattering relationship of electron parametric instabilities for a circularly polarised wave propagating in a homogeneous and cold plasma, without limitations of wave intensity, nor of plasma density. Results are verified by comparison with those of two-dimensional numerical simulations. The Weibel instability is also briefly studied in relativistic regime. In the second part, the author establishes an expression of the ponderomotive force exerted by an ultra-intense laser pulse in the vacuum about the focus point. A numerical code of integration of equations of motion of an electron in the laser field is used for the different expressions corresponding different approximation degrees. Results are used to interpret a recent experiment, and to critic other theoretical works [fr
Forest - added Turbulence: A parametric study on Turbulence intensity in and around forests
International Nuclear Information System (INIS)
Pedersen, Henrik Sundgaard; Langreder, Wiebke
2007-01-01
The scope of the investigation is to take on-site measured wind data from a number of sites inside and close to forests. From the collected on-site data the ambient turbulence intensity is calculated and analysed depending on the distance to the forest and height above the forest. From this forest turbulence intensity database it is possible to get an overview of the general behaviour of the turbulence above and down stream from the forest. The database currently consists of 65 measurements points from around the globe, and it will be continually updated as relevant sites are made available. Using the database a number of questions can be answered. How does the ambient turbulence intensity decay with height? What does the turbulence profile look like according to wind speed? Is it the general situation that high wind speeds are creating movement in the canopy tops, resulting in higher turbulence? How does the ambient turbulence intensity decay at different height as a function of distance to the forest? From the forest turbulence database it can be seen that in general, the majority of the turbulence intensity created by the forest is visible within a radius of 5 times the forest height in vertical and 500 meters downstream from the forest edge in horizontal direction. Outside these boundaries the ambient turbulence intensity is rapidly approaching normal values
Czech Academy of Sciences Publication Activity Database
Cristoforetti, G.; Colaïtis, A.; Antonelli, L.; Atzeni, S.; Baffigi, F.; Batani, D.; Barbato, F.; Boutoux, G.; Dudžák, Roman; Koester, P.; Krouský, Eduard; Labate, L.; Nicolaï, P.; Renner, Oldřich; Skoric, M.; Tikhonchuk, V.; Gizzi, L.A.
2017-01-01
Roč. 117, č. 3 (2017), č. článku 35001. ISSN 0295-5075 R&D Projects: GA MŠk(CZ) LC528; GA MŠk LM2010014; GA MŠk EF15_008/0000162 EU Projects: European Commission(XE) 633053 - EUROfusion Grant - others:EU - ICT(XE) COST Action IC1208; ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : laser intensity regime * Stimulated Brillouin Scattering (SBS) * Stimulated Raman Scattering (SRS) * Two-Plasmon Decay (TPD) Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (FZU-D) Impact factor: 1.957, year: 2016 https://doi.org/10.1209/0295-5075/117/35001
Semi-parametric proportional intensity models robustness for right-censored recurrent failure data
Energy Technology Data Exchange (ETDEWEB)
Jiang, S.T. [College of Engineering, University of Oklahoma, 202 West Boyd St., Room 107, Norman, OK 73019 (United States); Landers, T.L. [College of Engineering, University of Oklahoma, 202 West Boyd St., Room 107, Norman, OK 73019 (United States)]. E-mail: landers@ou.edu; Rhoads, T.R. [College of Engineering, University of Oklahoma, 202 West Boyd St., Room 107, Norman, OK 73019 (United States)
2005-10-01
This paper reports the robustness of the four proportional intensity (PI) models: Prentice-Williams-Peterson-gap time (PWP-GT), PWP-total time (PWP-TT), Andersen-Gill (AG), and Wei-Lin-Weissfeld (WLW), for right-censored recurrent failure event data. The results are beneficial to practitioners in anticipating the more favorable engineering application domains and selecting appropriate PI models. The PWP-GT and AG prove to be models of choice over ranges of sample sizes, shape parameters, and censoring severity. At the smaller sample size (U=60), where there are 30 per class for a two-level covariate, the PWP-GT proves to perform well for moderate right-censoring (P {sub c}{<=}0.8), where 80% of the units have some censoring, and moderately decreasing, constant, and moderately increasing rates of occurrence of failures (power-law NHPP shape parameter in the range of 0.8{<=}{delta}{<=}1.8). For the large sample size (U=180), the PWP-GT performs well for severe right-censoring (0.8
Hock, Sia Chong; Constance, Neo Xue Rui; Wah, Chan Lai
2012-01-01
Pharmaceutical products are generally subjected to end-product batch testing as a means of quality control. Due to the inherent limitations of conventional batch testing, this is not the most ideal approach for determining the pharmaceutical quality of the finished dosage form. In the case of terminally sterilized parenteral products, the limitations of conventional batch testing have been successfully addressed with the application of parametric release (the release of a product based on control of process parameters instead of batch sterility testing at the end of the manufacturing process). Consequently, there has been an increasing interest in applying parametric release to other pharmaceutical dosage forms, beyond terminally sterilized parenteral products. For parametric release to be possible, manufacturers must be capable of designing quality into the product, monitoring the manufacturing processes, and controlling the quality of intermediates and finished products in real-time. Process analytical technology (PAT) has been thought to be capable of contributing to these prerequisites. It is believed that the appropriate use of PAT tools can eventually lead to the possibility of real-time release of other pharmaceutical dosage forms, by-passing the need for end-product batch testing. Hence, this literature review attempts to present the basic principles of PAT, introduce the various PAT tools that are currently available, present their recent applications to pharmaceutical processing, and explain the potential benefits that PAT can bring to conventional ways of processing and quality assurance of pharmaceutical products. Last but not least, current regulations governing the use of PAT and the manufacturing challenges associated with PAT implementation are also discussed. Pharmaceutical products are generally subjected to end-product batch testing as a means of quality control. Due to the inherent limitations of conventional batch testing, this is not the most
Alshakova, E. L.
2017-01-01
The program in the AutoLISP language allows automatically to form parametrical drawings during the work in the AutoCAD software product. Students study development of programs on AutoLISP language with the use of the methodical complex containing methodical instructions in which real examples of creation of images and drawings are realized. Methodical instructions contain reference information necessary for the performance of the offered tasks. The method of step-by-step development of the program is the basis for training in programming on AutoLISP language: the program draws elements of the drawing of a detail by means of definitely created function which values of arguments register in that sequence in which AutoCAD gives out inquiries when performing the corresponding command in the editor. The process of the program design is reduced to the process of step-by-step formation of functions and sequence of their calls. The author considers the development of the AutoLISP program for the creation of parametrical drawings of details, the defined design, the user enters the dimensions of elements of details. These programs generate variants of tasks of the graphic works performed in educational process of "Engineering graphics", "Engineering and computer graphics" disciplines. Individual tasks allow to develop at students skills of independent work in reading and creation of drawings, as well as 3D modeling.
Ricotta, Carlo; Pacini, Alessandra; Avena, Giancarlo
2002-01-01
We propose a measure of divergence from species to life-form diversity aimed at summarizing the ecological similarity among different plant communities without losing information on traditional taxonomic diversity. First, species and life-form relative abundances within a given plant community are determined. Next, using Rényi's generalized entropy, the diversity profiles of the analyzed community are computed both from species and life-form relative abundances. Finally, the speed of decrease from species to life-form diversity is obtained by combining the outcome of both profiles. Interestingly, the proposed measure shows some formal analogies with multifractal functions developed in statistical physics for the analysis of spatial patterns. As an application for demonstration, a small data set from a plant community sampled in the archaeological site of Paestum (southern Italy) is used.
International Nuclear Information System (INIS)
Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E
2014-01-01
Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with
Kalita, Dhruba J; Rao, Akshay; Rajvanshi, Ishir; Gupta, Ashish K
2011-06-14
We have applied parametric equations of motion (PEM) to study photodissociation dynamics of H(2)(+). The resonances are extracted using smooth exterior scaling method. This is the first application of PEM to non-Hermitian Hamiltonian that includes resonances and the continuum. Here, we have studied how the different resonance states behave with respect to the change in field amplitude. The advantage of this method is that one can easily trace the different states that are changing as the field parameter changes.
DEFF Research Database (Denmark)
Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke
2013-01-01
We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...... knowledge, how gain saturation of a FOPA reduces the noise contribution due to the transfer of pump power fluctuations to the signal. In a particular example, it is shown that the transferred noise is significantly reduced by a factor of 3, while the FOPA gain remains above 10 dB....
Norris, G; McConnell, G
2010-03-01
A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.
Hyun, J.; Satoh, M.; Yoshida, M.; Sakai, T.; Hayakawa, Y.; Tanaka, T.; Hayakawa, K.; Sato, I.; Endo, K.
2018-01-01
This paper describes a proposal for a compact x-ray source based on parametric x-ray radiation (PXR). The PXR, which is produced when a single crystal is bombarded with relativistic electrons, has good monochromaticity and spatial coherence, and is expected to be well suited for imaging of low-Z materials and medical application. The proposed system employs a pair of copper accelerating structures which are operated at a cryogenic temperature of 20 K and arranged to form a resonant ring configuration. The electron beam is once accelerated up to 75 MeV in one of the structures, being decelerated down to lower than 7 MeV in the other structure after generating PXR at a single crystal, and then dumped. The expected x-ray yield is 1 09 photons /s at a center energy of 15 keV or higher.
Whyte, Enda F; Richter, Chris; OʼConnor, Siobhan; Moran, Kieran A
2018-06-01
Whyte, EF, Richter, C, O'Connor, S, and Moran, KA. Investigation of the effects of high-intensity, intermittent exercise and unanticipation on trunk and lower limb biomechanics during a side-cutting maneuver using statistical parametric mapping. J Strength Cond Res 32(6): 1583-1593, 2018-Anterior cruciate ligament (ACL) injuries frequently occur during side-cutting maneuvers when fatigued or reacting to the sporting environment. Trunk and hip biomechanics are proposed to influence ACL loading during these activities. However, the effects of fatigue and unanticipation on the biomechanics of the kinetic chain may be limited by traditional discrete point analysis. We recruited 28 male, varsity, Gaelic footballers (21.7 ± 2.2 years; 178.7 ± 14.6 m; 81.8 ± 11.4 kg) to perform anticipated and unanticipated side-cutting maneuvers before and after a high-intensity, intermittent exercise protocol (HIIP). Statistical parametric mapping (repeated-measures analysis of varience) identified differences in phases of trunk and stance leg biomechanics during weight acceptance. Unanticipation resulted in less trunk flexion (p < 0.001) and greater side flexion away from the direction of cut (p < 0.001). This led to smaller (internal) knee flexor and greater (internal) knee extensor (p = 0.002-0.007), hip adductor (p = 0.005), and hip external rotator (p = 0.007) moments. The HIIP resulted in increased trunk flexion (p < 0.001) and side flexion away from the direction of cut (p = 0.038), resulting in smaller (internal) knee extensor moments (p = 0.006). One interaction effect was noted demonstrating greater hip extensor moments in the unanticipated condition post-HIIP (p = 0.025). Results demonstrate that unanticipation resulted in trunk kinematics considered an ACL injury risk factor. A subsequent increase in frontal and transverse plane hip loading and sagittal plane knee loading was observed, which may increase ACL strain. Conversely, HIIP-induced trunk kinematic alterations
A short form of the neonatal intensive care unit family needs inventory
Directory of Open Access Journals (Sweden)
Elisabete Alves
2016-02-01
Full Text Available ABSTRACT OBJECTIVE: The identification of parental needs in Neonatal Intensive Care Units is essential to design and implement family-centered care. This article aims to validate the Neonatal Intensive Care Units Family Needs Inventory for the Portuguese population, and to propose a Short Form. METHODS: A linguistic adaptation of the Neonatal Intensive Care Units Family Needs Inventory, a self-report scale with 56-items, was performed. The instrument was administered to 211 parents of infants hospitalized in all level III Neonatal Intensive Care Units in the North of Portugal, 15-22 days after admission (July of 2013-June of 2014. The number of items needed to achieve reliability close to 0.8 was calculated using by the Spearman-Brown formula. The global goodness of fit of the scale was evaluated using the comparative fit index. Construct validity was assessed through association of each dimension score with socio-demographic and obstetric characteristics. RESULTS: Exploratory factor analysis revealed two dimensions, one focused on parents' needs and another on the infant's needs. To compose the Short Form Inventory, items with ceiling effect were eliminated and 22 items were submitted to confirmatory analysis, which supported the existence of two dimensions (CFI = 0.925. The Short Form showed a high degree of reliability (alpha ≥ 0.76. Less educated and older parents more frequently attributed a significantly higher importance to parent-centered needs, while parents of multiples revealed a tendency to value infant-centered needs. CONCLUSIONS: The Short Form of the Neonatal Intensive Care Units Family Needs Inventory is a brief, simple, and valid instrument with a high degree of reliability. Further studies are needed to explore associations with practices of family-centered care.
International Nuclear Information System (INIS)
Smith, T.H.; Sussman, M.E.; Myers, J.; Djordjevic, S.M.; DeBiase, T.A.; Goodrich, M.T.; DeWitt, D.
1995-08-01
This report presents a preliminary parametric performance assessment (PA) of potential waste disposal systems for alpha-contaminated, mixed, low-level waste (ALLW) currently stored at the Transuranic Storage Area of INEL. The ALLW, which contains from 10 to 100 nCi/g of transuranic (TRU) radionuclides, is awaiting treatment and disposal. The purpose of this study was to examine the effects of several parameters on the radiological-confinement performance of potential disposal systems for the ALLW. The principal emphasis was on the performance of final waste forms (FWFs). Three categories of FWF (cement, glass, and ceramic) were addressed by evaluating the performance of two limiting FWFs for each category. Performance at five conceptual disposal sites was evaluated to illustrate the effects of site characteristics on the performance of the total disposal system. Other parameters investigated for effects on receptor dose included inventory assumptions, TRU radionuclide concentration, FWF fracture, disposal depth, water infiltration rates, subsurface-transport modeling assumptions, receptor well location, intrusion scenario assumptions, and the absence of waste immobilization. These and other factors were varied singly and in some combinations. The results indicate that compliance of the treated and disposed ALLW with the performance objectives depends on the assumptions made, as well as on the FWF and the disposal site. Some combinations result in compliance, while others do not. The implications of these results for decision making relative to treatment and disposal of the INEL ALLW are discussed. The report compares the degree of conservatism in this preliminary parametric PA against that in four other PAs and one risk assessment. All of the assessments addressed the same disposal site, but different wastes. The report also presents a qualitative evaluation of the uncertainties in the PA and makes recommendations for further study
Dissecting the intensely star-forming clumps in a z ~ 2 Einstein Ring
Rujopakarn, Wiphu
2013-10-01
Clumps of star formation spreading widely in galactic disks are common features of star-forming galaxies at 1 test cases to study the mechanism that drives intense star formation at z ~ 2. We propose WFC3 near-IR imaging and spatially-resolved spectroscopy of a gravitationally lensed, kinematically ordered, vigorously star-forming galaxy at z = 1.885 with physical resolutions up to 40 pc. This galaxy contains two luminous clumps that are forming stars at the rates of 100 solar mass/yr/clump. Spatially-resolved map of star formation from HST provides the most critical missing piece to interpret our existing observations of this galaxy in far-IR, CO emission lines, and radio continuum. We will probe the frontier research areas in z ~ 2 star formation, particularly the spatially-resolved star formation laws and dynamics of cold and ionized gases, which have never been probed at this spatial resolution. Our proposed observations will provide a benchmark against which to interpret the structures of vigorous star-forming clumps in general. This object can therefore have a unique impact on our understanding of the star-forming modes that dominate at z ~ 2.
Reduced clot debris size using standing waves formed via high intensity focused ultrasound
Guo, Shifang; Du, Xuan; Wang, Xin; Lu, Shukuan; Shi, Aiwei; Xu, Shanshan; Bouakaz, Ayache; Wan, Mingxi
2017-09-01
The feasibility of utilizing high intensity focused ultrasound (HIFU) to induce thrombolysis has been demonstrated previously. However, clinical concerns still remain related to the clot debris produced via fragmentation of the original clot potentially being too large and hence occluding downstream vessels, causing hazardous emboli. This study investigates the use of standing wave fields formed via HIFU to disintegrate the thrombus while achieving a reduced clot debris size in vitro. The results showed that the average diameter of the clot debris calculated by volume percentage was smaller in the standing wave mode than in the travelling wave mode at identical ultrasound thrombolysis settings. Furthermore, the inertial cavitation dose was shown to be lower in the standing wave mode, while the estimated cavitation bubble size distribution was similar in both modes. These results show that a reduction of the clot debris size with standing waves may be attributed to the particle trapping of the acoustic potential well which contributed to particle fragmentation.
Effect of different tillage intensity on yields and yield-forming factors in winter wheat
Directory of Open Access Journals (Sweden)
Martin Houšť
2012-01-01
Full Text Available The paper presents results of a study on application of minimum tillage technologies when growing winter wheat. Experiments were performed in the sugar-beet-growing region with loamy chernozem within the period of 2005–2009. Aanalysed and evaluated were effects of different methods of soil processing on yield-forming factors in stands of winter wheat grown after three different preceding crops (i.e. alfalfa, maize for silage and pea. Evaluated were the following four variants of tillage: (1 conventional ploughing to the depth of 0.22 m (Variant 1; (2 ploughing to the depth of 0.15 m (Variant 2; (3 direct sowing into the untilled soil (Variant 3, and (4 shallow tillage to the depth of 0.10 m (Variant 4.The effect of different tillage intensity on winter wheat yields was statistically non-significant after all forecrops. After alfalfa, the highest and the lowest average yields were recorded in Variant 2 (i.e. with ploughing to the depth of 0.15 m and Variant 3 (direct sowing into the untilled soil, respectively. After maize grown for silage, higher yields were obtained in Variant 2 and Variant 1 (conventional ploughing while in Variants 4 and 3 the obtained yields were lower. When growing winter wheat after pea as a preceding crop, the highest and the lowest average yields were recorded after direct sowing (Variant 3 and in Variant 1 (i.e. ploughing to the depth of 0.22 m, respectively. Results of studies on effect of different tillage technologies on yields of winter wheat crops indicate that under the given pedological and climatic conditions it is possible to apply methods of reduced tillage intensity. However, the choice of the corresponding technology must be performed with regard to the type of preceding crop.
A reduced-form intensity-based model under fuzzy environments
Wu, Liang; Zhuang, Yaming
2015-05-01
The external shocks and internal contagion are the important sources of default events. However, the external shocks and internal contagion effect on the company is not observed, we cannot get the accurate size of the shocks. The information of investors relative to the default process exhibits a certain fuzziness. Therefore, using randomness and fuzziness to study such problems as derivative pricing or default probability has practical needs. But the idea of fuzzifying credit risk models is little exploited, especially in a reduced-form model. This paper proposes a new default intensity model with fuzziness and presents a fuzzy default probability and default loss rate, and puts them into default debt and credit derivative pricing. Finally, the simulation analysis verifies the rationality of the model. Using fuzzy numbers and random analysis one can consider more uncertain sources in the default process of default and investors' subjective judgment on the financial markets in a variety of fuzzy reliability so as to broaden the scope of possible credit spreads.
Pump to signal noise transfer in parametric fiber amplifiers
DEFF Research Database (Denmark)
Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe
2010-01-01
Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....
Istvan, Mark S.; Yarusevych, Serhiy
2018-03-01
The laminar-to-turbulent transition process in a laminar separation bubble formed over a NACA 0018 airfoil is investigated experimentally. All experiments are performed for an angle of attack of 4°, chord Reynolds numbers of 80,000 and 125,000, and free-stream turbulence intensities between 0.06 and 1.99%. The results show that increasing the level of free-stream turbulence intensity leads to a decrease in separation bubble length, attributed to a downstream shift in mean separation and an upstream shift in mean reattachment, the later ascribed to an upstream shift in mean transition. Maximum spatial amplification rates of disturbances in the separated shear layer decrease with increasing free-stream turbulence intensity, implying that the larger initial amplitudes of disturbances are solely responsible for the upstream shift in mean transition and as a result mean reattachment. At the baseline level of turbulence intensity, coherent structures forming in the aft portion of the bubble are characterized by strong spanwise coherence at formation, and undergo spanwise deformations leading to localized breakup in the vicinity of mean reattachment. As the level of free-stream turbulence intensity is increased, the spanwise coherence of the shear layer rollers is reduced, and spanwise undulations in the vortex filaments start to take place at the mean location of roll-up. At the highest level of turbulence intensity investigated, streamwise streaks originating in the boundary layer upstream of the separation bubble are observed within the bubble. These streaks signify an onset of bypass transition upstream of the separation bubble, which gives rise to a highly three-dimensional shear layer roll-up. A quantitative analysis of the associated changes in salient characteristics of the coherent structures is presented, connecting the effect of elevated free-stream turbulence intensity on the time-averaged and dynamic characteristics of the separation bubble.
Analysis of plasma channels in mm-scale plasmas formed by high intensity laser beams
International Nuclear Information System (INIS)
Murakami, R; Habara, H; Iwawaki, T; Uematsu, Y; Tanaka, K A; Ivancic, S; Anderson, K; Haberberger, D; Stoeckl, C; Theobald, W; Sakagami, H
2016-01-01
A plasma channel created by a high intensity infrared laser beam was observed in a long scale-length plasma (L ∼ 240 μm) with the angular filter refractometry technique, which indicated a stable channel formation up to the critical density. We analyzed the observed plasma channel using a rigorous ray-tracing technique, which provides a deep understanding of the evolution of the channel formation. (paper)
A short form of the neonatal intensive care unit family needs inventory
Directory of Open Access Journals (Sweden)
Elisabete Alves
2016-01-01
Conclusions: The Short Form of the NICU Family Needs Inventory is a brief, simple, and valid instrument with a high degree of reliability. Further studies are needed to explore associations with practices of family‐centered care.
Parametric and Non-Parametric System Modelling
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg
1999-01-01
the focus is on combinations of parametric and non-parametric methods of regression. This combination can be in terms of additive models where e.g. one or more non-parametric term is added to a linear regression model. It can also be in terms of conditional parametric models where the coefficients...... considered. It is shown that adaptive estimation in conditional parametric models can be performed by combining the well known methods of local polynomial regression and recursive least squares with exponential forgetting. The approach used for estimation in conditional parametric models also highlights how...... networks is included. In this paper, neural networks are used for predicting the electricity production of a wind farm. The results are compared with results obtained using an adaptively estimated ARX-model. Finally, two papers on stochastic differential equations are included. In the first paper, among...
Parametric Thinking in Urban Design
DEFF Research Database (Denmark)
Steinø, Nicolai
2010-01-01
The paper states that most applications of parametric mod- elling to architecture and urban design fall into one of two strands of either form for form’s sake, or the negotiation of environmental con- cerns, while approaches which allow scenarios to be easily tested and modified without the appli...... of the paper. The pros and cons of this simple approach is discussed, and the paper con- cludes, that while it does not represent a suitable solution in all cases, it fills a gap among the existing approaches to parametric urban de- sign.......The paper states that most applications of parametric mod- elling to architecture and urban design fall into one of two strands of either form for form’s sake, or the negotiation of environmental con- cerns, while approaches which allow scenarios to be easily tested and modified without...
Soil P forms and P uptake under intensive plant growth in the greenhouse
International Nuclear Information System (INIS)
Henriquez, Carlos; Killorn, Randy
2005-01-01
The concentration of available soil (P) is a function of the equilibrium established among different soil P forms through numerous and different reactions in soil. The objective of this study was to examine the changes in P forms and P supply under exhaustive extraction conditions in soils from 3 different land use areas. In order to establish a greenhouse experiment, representative soil samples (0-20 cm) were taken from three fields located adjacent to one another, in a Typic Hapludands in Costa Rica. One field was a coffee plantation (Coffea arabica var Catuai), the second a sugar cane plantation (Saccarum spp. var 611721), and the third a secondary forest. Sorghum bicolor var Glazer 41) was planted in 1-liter pots and harvested 4 times consecutively. Treatments were no P and P application (100 mg kg -1 ) for each of the different land-use soil samples. Shoot and root dry matter and total P uptake were determined. Soil samples were taken before and after each of the 4 plant growth cycles and analyzed using a modified Hedley et al. (1982) soil P fractionation methodology. Labile-Pi, NaOH-Pi, HCI-Pi, extractable-Po, and residual -P were determined. Applied P increased labile-Pi, NaOH-Pi and HCI-Pi. Statistical changes were not observed in extractable organic P and residual-P due to P application. The NaOH-Pi and HCI-Pi seemed to act as a temporary pool of applied P. The possible participation of residual-P in replenishment of labile-P and NaOH-Pi was observed. The amount of plant P untake was closely related to the initial amount of labile-Pi and was higher in coffee than in forest and sugar cane soils. The labile-P was depleted by plant uptake. Rapid changes in reversibly available soil P forms (NaOH-Pi and HCI-Pi) were observed during the experiment. Our results suggest the occurrence of very rapid and dynamic changes between available and unavailable soil P forms in response to fertilizer application and plant uptake, supporting the idea of a continuum among the
Hauk, Olaf; Davis, Matthew H; Pulvermüller, Friedemann
2008-09-01
Psycholinguistic research has documented a range of variables that influence visual word recognition performance. Many of these variables are highly intercorrelated. Most previous studies have used factorial designs, which do not exploit the full range of values available for continuous variables, and are prone to skewed stimulus selection as well as to effects of the baseline (e.g. when contrasting words with pseudowords). In our study, we used a parametric approach to study the effects of several psycholinguistic variables on brain activation. We focussed on the variable word frequency, which has been used in numerous previous behavioural, electrophysiological and neuroimaging studies, in order to investigate the neuronal network underlying visual word processing. Furthermore, we investigated the variable orthographic typicality as well as a combined variable for word length and orthographic neighbourhood size (N), for which neuroimaging results are still either scarce or inconsistent. Data were analysed using multiple linear regression analysis of event-related fMRI data acquired from 21 subjects in a silent reading paradigm. The frequency variable correlated negatively with activation in left fusiform gyrus, bilateral inferior frontal gyri and bilateral insulae, indicating that word frequency can affect multiple aspects of word processing. N correlated positively with brain activity in left and right middle temporal gyri as well as right inferior frontal gyrus. Thus, our analysis revealed multiple distinct brain areas involved in visual word processing within one data set.
High Intensity Compton Scattering in a strong plane wave field of general form
International Nuclear Information System (INIS)
Hartin, A.; Moortgat-Pick, G.; Hamburg Univ.
2011-06-01
Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons, an integration over one of the phase space components and the Fourier transforms of the Volkov phases. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically and numerically. (orig.)
High Intensity Compton Scattering in a strong plane wave field of general form
Energy Technology Data Exchange (ETDEWEB)
Hartin, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moortgat-Pick, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2011-06-15
Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons, an integration over one of the phase space components and the Fourier transforms of the Volkov phases. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically and numerically. (orig.)
On Parametric (and Non-Parametric Variation
Directory of Open Access Journals (Sweden)
Neil Smith
2009-11-01
Full Text Available This article raises the issue of the correct characterization of ‘Parametric Variation’ in syntax and phonology. After specifying their theoretical commitments, the authors outline the relevant parts of the Principles–and–Parameters framework, and draw a three-way distinction among Universal Principles, Parameters, and Accidents. The core of the contribution then consists of an attempt to provide identity criteria for parametric, as opposed to non-parametric, variation. Parametric choices must be antecedently known, and it is suggested that they must also satisfy seven individually necessary and jointly sufficient criteria. These are that they be cognitively represented, systematic, dependent on the input, deterministic, discrete, mutually exclusive, and irreversible.
Effect of Micro-Bubbles in Water on Beam Patterns of Parametric Array
Hashiba, Kunio; Masuzawa, Hiroshi
2003-05-01
The improvement in efficiency of a parametric array by nonlinear oscillation of micro-bubbles in water is studied in this paper. The micro-bubble oscillation can increase the nonlinear coefficient of the acoustic medium. The amplitude of the difference-frequency wave along the longitudinal axis and its beam patterns in the field including the layer with micro-bubbles were analyzed using a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. As a result, the largest improvement in efficiency was obtained and a narrow parametric beam was formed by forming a layer with micro-bubbles in front of a parametric sound radiator as thick as about the shock formation distance. If the layer becomes significantly thicker than the distance, the beam of the difference-frequency wave in the far-field will become broader. If the layer is significantly thinner than the distance, the intensity level of the wave in the far-field will be too low.
Directory of Open Access Journals (Sweden)
Ouass A.
2018-01-01
Full Text Available The adsorption of chromium ions Cr3+ using two forms of a superabsorbant polymer PANa from aqueous solution was investigated. On one hand the equilibrium pH with the distilled water and the pH of point of zero charge have been studied in order to characterize the acid-base behavior of both of PANa forms. On the other hand, the effect of contact time between PANa and the metallic solution and stirring speed of aqueous solution on the adsorption rate were established to highlight the importance of PANa as an efficient adsorbent of chromium ions Cr3+.
Variance in parametric images: direct estimation from parametric projections
International Nuclear Information System (INIS)
Maguire, R.P.; Leenders, K.L.; Spyrou, N.M.
2000-01-01
Recent work has shown that it is possible to apply linear kinetic models to dynamic projection data in PET in order to calculate parameter projections. These can subsequently be back-projected to form parametric images - maps of parameters of physiological interest. Critical to the application of these maps, to test for significant changes between normal and pathophysiology, is an assessment of the statistical uncertainty. In this context, parametric images also include simple integral images from, e.g., [O-15]-water used to calculate statistical parametric maps (SPMs). This paper revisits the concept of parameter projections and presents a more general formulation of the parameter projection derivation as well as a method to estimate parameter variance in projection space, showing which analysis methods (models) can be used. Using simulated pharmacokinetic image data we show that a method based on an analysis in projection space inherently calculates the mathematically rigorous pixel variance. This results in an estimation which is as accurate as either estimating variance in image space during model fitting, or estimation by comparison across sets of parametric images - as might be done between individuals in a group pharmacokinetic PET study. The method based on projections has, however, a higher computational efficiency, and is also shown to be more precise, as reflected in smooth variance distribution images when compared to the other methods. (author)
Directory of Open Access Journals (Sweden)
Xin-Bing Cheng
2010-07-01
Full Text Available The Blumlein pulse forming line (BPFL consisting of an inner coaxial pulse forming line (PFL and an outer coaxial PFL is widely used in the field of pulsed power, especially for intense electron-beam accelerators (IEBA. The output voltage waveform determines the quality and characteristics of the output beam current of the IEBA. Comparing with the conventional BPFL, an IEBA based on a helical type BPFL can increase the duration of the output voltage in the same geometrical volume. However, for the helical type BPFL, the voltage waveform on a matched load may be distorted which influences the electron-beam quality. In this paper, an IEBA based on helical type BPFL is studied theoretically. Based on telegrapher equations of the BPFL, a formula for the output voltage of IEBA is obtained when the transition section is taken into account, where the transition section is between the middle cylinder of BPFL and the load. From the theoretical analysis, it is found that the wave impedance and transit time of the transition section influence considerably the main pulse voltage waveform at the load, a step is formed in front of the main pulse, and a sharp spike is also formed at the end of the main pulse. In order to get a well-shaped square waveform at the load and to improve the electron-beam quality of such an accelerator, the wave impedance of the transition section should be equal to that of the inner PFL of helical type BPFL and the transit time of the transition section should be designed as short as possible. Experiments performed on an IEBA with the helical type BPFL show reasonable agreement with theoretical analysis.
A Parametric k-Means Algorithm
Tarpey, Thaddeus
2007-01-01
Summary The k points that optimally represent a distribution (usually in terms of a squared error loss) are called the k principal points. This paper presents a computationally intensive method that automatically determines the principal points of a parametric distribution. Cluster means from the k-means algorithm are nonparametric estimators of principal points. A parametric k-means approach is introduced for estimating principal points by running the k-means algorithm on a very large simulated data set from a distribution whose parameters are estimated using maximum likelihood. Theoretical and simulation results are presented comparing the parametric k-means algorithm to the usual k-means algorithm and an example on determining sizes of gas masks is used to illustrate the parametric k-means algorithm. PMID:17917692
Creating Efficient Instrumentation Networks to Support Parametric Risk Transfer
Rockett, P.
2009-04-01
The development and institutionalisation of Catastrophe modelling during the 1990s opened the way for Catastrophe risk securitization transactions in which catastrophe risk held by insurers is transferred to the capital markets in the form of a bond. Cat Bonds have been one of the few areas of the capital markets in which the risk modelling has remained secure and the returns on the bonds have held up well through the 2008 Credit Crunch. There are three ways of structuring the loss triggers on bonds: ‘indemnity triggers' - reflecting the actual losses to the issuers; ‘index triggers' reflecting the losses to some index such as reported insurance industry loss and ‘parametric triggers' reflecting the parameters of the underlying catastrophe event itself. Indemnity triggers require that the investors trust that the insurer is reporting all their underlying exposures, while both indemnity and index losses may take 1-2 years to settle before all the claims are reported and resolved. Therefore parametric structures have many advantages, in particular in that the bond can be settled rapidly after an event. The challenge is to create parametric indices that closely reflect the actual losses to the insurer - ie that minimise ‘basis risk'. First generation parametric indices had high basis risk as they were crudely based on the magnitude of an earthquake occurring within some defined geographical box, or the intensity of a hurricane relative to the distance of the storm from some location. Second generation triggers involve taking measurements of ground motion or windspeed or flood depths at many locations and weighting each value so that the overall index closely mimics insurance loss. Cat bonds with second generation parametric triggers have been successfully issued for European Windstorm, UK Flood and California and Japan Earthquake. However the spread of second generation parametric structures is limited by the availability of suitable networks of
Anspaugh, B. E.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.
1979-01-01
Electrical parametric data are presented on BSF, BSR, textured 10 ohm cm, 50 micron advanced OAST cells in graphical and tabular form as functions of solar illumination intensity, temperature, and 1 MeV electron fluence.
Mcgowan, J. J.; Smith, C. W.
1976-01-01
The stress intensity factors (SIFs) at the end points of flaws emanating from the corner formed by the intersection of a plate with a hole were determined using stress freezing photoelasticity and a numerical technique known as the Taylor series correction method to extract the SIF values from the photoelastic data. The geometries studied were crack depth to thickness ratios of about 0.2, 0.5, and 0.75; crack depth to crack length ratios of about 1.0 to 2.0; and crack length to hole radius ratios of about 0.5 to 2.0. The SIFs were determined at the intersection of the flaw border with the plate surface (KS) and with the edge of the hole (KH). It is shown that extension of a crack emanating from a corner of intersection of a hole with a plate under monotonically increasing load is not self-similar and that as the flaw depth increases, KH decreases and KS increases. Existing theories and design criteria significantly overestimate the SIF at both the hole and the surface except for shallow flaws at the hole and deep flaws at the surface.
Motivations of parametric studies
International Nuclear Information System (INIS)
Birac, C.
1988-01-01
The paper concerns the motivations of parametric studies in connection with the Programme for the Inspection of Steel Components PISC II. The objective of the PISC II exercise is to evaluate the effectiveness of current and advanced NDT techniques for inspection of reactor pressure vessel components. The parametric studies were initiated to determine the influence of some parameters on defect detection and dimensioning, and to increase the technical bases of the Round Robin Tests. A description is given of the content of the parametric studies including:- the effect of the defects' characteristics, the effect of equipment characteristics, the effect of cladding, and possible use of electromagnetic techniques. (U.K.)
Universal parametrization for quark and lepton substructure
International Nuclear Information System (INIS)
Akama, Keiichi; Terazawa, Hidezumi.
1994-01-01
A universal parametrization for possible quark and lepton substructure is advocated in terms of quark and lepton form factors. It is emphasized that the lower bounds on compositeness scale, Λ c , to be determined experimentally strongly depend on their definitions in composite models. From the recent HERA data, it is estimated to be Λ c > 50 GeV, 0.4 TeV and 10 TeV, depending on the parametrizations with a single-pole form factor, a contact interaction and a logarithmic form factor, respectively. (author)
Parametric methods for spatial point processes
DEFF Research Database (Denmark)
Møller, Jesper
is studied in Section 4, and Bayesian inference in Section 5. On one hand, as the development in computer technology and computational statistics continues,computationally-intensive simulation-based methods for likelihood inference probably will play a increasing role for statistical analysis of spatial...... inference procedures for parametric spatial point process models. The widespread use of sensible but ad hoc methods based on summary statistics of the kind studied in Chapter 4.3 have through the last two decades been supplied by likelihood based methods for parametric spatial point process models......(This text is submitted for the volume ‘A Handbook of Spatial Statistics' edited by A.E. Gelfand, P. Diggle, M. Fuentes, and P. Guttorp, to be published by Chapmand and Hall/CRC Press, and planned to appear as Chapter 4.4 with the title ‘Parametric methods'.) 1 Introduction This chapter considers...
Parametric instabilities in inhomogeneous plasma
International Nuclear Information System (INIS)
Nicholson, D.R.
1975-01-01
The nonlinear coupling of three waves in a plasma is considered. One of the waves is assumed large and constant; its amplitude is the parameter of the parametric instability. The spatial-temporal evolution of the other two waves is treated theoretically, in one dimension, by analytic methods and by direct numerical integration of the basic equations. Various monotonic forms of inhomogeneity are considered; agreement with previous work is found and new results are established. Nonmonotonic inhomogeneities are considered, in the form of turbulence and, as a model problem, in the form of a simple sinusoidal modulation. Relatively small amounts of nonmonotonic inhomogeneity, in the presence of a linear density gradient, are found to destabilize the well-known convective saturation, absolute growth occurring instead. (U.S.)
PARAMETRIC DRAWINGS VS. AUTOLISP
Directory of Open Access Journals (Sweden)
PRUNĂ Liviu
2015-06-01
Full Text Available In this paper the authors make a critical analysis of the advantages offered by the parametric drawing use by comparison with the AutoLISP computer programs used when it comes about the parametric design. Studying and analysing these two work models the authors have got to some ideas and conclusions which should be considered in the moment in that someone must to decide if it is the case to elaborate a software, using the AutoLISP language, or to establish the base rules that must be followed by the drawing, in the idea to construct outlines or blocks which can be used in the projection process.
PARAMETRIC DRAWINGS VS. AUTOLISP
PRUNĂ Liviu; SLONOVSCHI Andrei
2015-01-01
In this paper the authors make a critical analysis of the advantages offered by the parametric drawing use by comparison with the AutoLISP computer programs used when it comes about the parametric design. Studying and analysing these two work models the authors have got to some ideas and conclusions which should be considered in the moment in that someone must to decide if it is the case to elaborate a software, using the AutoLISP language, or to establish the base rules that must be followed...
Controlling Parametric Resonance
DEFF Research Database (Denmark)
Galeazzi, Roberto; Pettersen, Kristin Ytterstad
2012-01-01
the authors review the conditions for the onset of parametric resonance, and propose a nonlinear control strategy in order to both induce the resonant oscillations and to stabilize the unstable motion. Lagrange’s theory is used to derive the dynamics of the system and input–output feedback linearization...
Schwinger-type parametrization of open string worldsheets
Directory of Open Access Journals (Sweden)
Sam Playle
2017-03-01
Full Text Available A parametrization of (super moduli space near the corners corresponding to bosonic or Neveu–Schwarz open string degenerations is introduced for worldsheets of arbitrary topology. With this parametrization, Feynman graph polynomials arise as the α′→0 limit of objects on moduli space. Furthermore, the integration measures of string theory take on a very simple and elegant form.
Classification rates: non‐parametric verses parametric models using ...
African Journals Online (AJOL)
This research sought to establish if non parametric modeling achieves a higher correct classification ratio than a parametric model. The local likelihood technique was used to model fit the data sets. The same sets of data were modeled using parametric logit and the abilities of the two models to correctly predict the binary ...
International Nuclear Information System (INIS)
Baker, C.
1994-10-01
The Department of Energy's (DOE) Hanford site near Richland, Washington is being cleaned up after 50 years of nuclear materials production. One of the most serious problems at the site is the waste stored in single-shell underground storage tanks. There are 149 of these tanks containing the spent fuel residue remaining after the fuel is dissolved in acid and the desired materials (primarily plutonium and uranium) are separated out. The tanks are upright cylinders 75 ft. in diameter with domed tops. They are made of reinforced concrete, have steel liners, and each tank is buried under 7--12 ft. of overburden. The tanks are up to 40-ft. high, and have capacities of 500,000, 750,000, or 1,000,000 gallons of waste. As many as one-third of these tanks are known or suspected to leak. The waste form contained in the tanks varies in consistency from liquid supernatant to peanut-butter-like gels and sludges to hard salt cake (perhaps as hard as low-grade concrete). The current waste retrieval plan is to insert a large long-reach manipulator through a hole cut in the top of the tank, and use a variety of end-effectors to mobilize the waste and remove it from the tank. PNL has, with the assistance of Deneb robotics employees, developed a means of using the IGRIP code to perform parametric design of mechanical systems. This method requires no modifications to the IGRIP code, and all design data are stored in the IGRIP workcell. The method is presented in the context of development of a passive articulated mechanism that is used to deliver down-arm services to a gantry robot. The method is completely general, however, and could be used to design a fully articulated manipulator. Briefly, the method involves using IGCALC expressions to control manipulator joint angles, and IGCALC variables to allow user control of link lengths and offsets. This paper presents the method in detail, with examples drawn from PNL's experience with the gantry robot service-providing mechanism
Towards Stabilizing Parametric Active Contours
DEFF Research Database (Denmark)
Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor
2014-01-01
Numerical instability often occurs in evolving of parametric active contours. This is mainly due to the undesired change of parametrization during evolution. In this paper, we propose a new tangential diffusion term to compensate this undesired change. As a result, the parametrization will converge...
MEMS digital parametric loudspeaker
Carreno, Armando Arpys Arevalo
2016-03-23
This paper reports on the design and fabrication of MEMS actuator arrays suitable for Digital Sound reconstruction and Parametric Directional Loudspeakers. Two distinct versions of the device were fabricated: one using the electrostatic principle actuation and the other one, the piezoelectric principle. Both versions used similar membrane dimensions, with a diameter of 500 μm. These devices are the smallest Micro-Machined Ultrasound Transducer (MUT) arrays that can be operated for both modes: Digital Sound Reconstruction and Parametric Loudspeaker. The chips consist of an array with 256 transducers, in a footprint of 12 mm by 12 mm. The total single chip size is: 2.3 cm by 2.3 cm, including the contact pads. © 2016 IEEE.
Parametric Explosion Spectral Model
Energy Technology Data Exchange (ETDEWEB)
Ford, S R; Walter, W R
2012-01-19
Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.
MEMS digital parametric loudspeaker
Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jü rgen; Foulds, Ian G.
2016-01-01
This paper reports on the design and fabrication of MEMS actuator arrays suitable for Digital Sound reconstruction and Parametric Directional Loudspeakers. Two distinct versions of the device were fabricated: one using the electrostatic principle actuation and the other one, the piezoelectric principle. Both versions used similar membrane dimensions, with a diameter of 500 μm. These devices are the smallest Micro-Machined Ultrasound Transducer (MUT) arrays that can be operated for both modes: Digital Sound Reconstruction and Parametric Loudspeaker. The chips consist of an array with 256 transducers, in a footprint of 12 mm by 12 mm. The total single chip size is: 2.3 cm by 2.3 cm, including the contact pads. © 2016 IEEE.
Macromechanical Parametric Amplification
DEFF Research Database (Denmark)
Neumeyer, Stefan
between the two peaks can be altered. The first experimental bistable amplified steady-state responses are also reported. The derived analytical models and experimental setups can readily be extended to investigate other factors. Some of the results are also applicable to the more general field of systems...... for energy harvesting. Using analytical, numerical, and experimental methods, the thesis focuses on superthreshold pumping (above the systems parametric instability threshold), nonlinear effects, frequency response backbones, and frequency detuning effects for parametric amplifiers. Part one of the thesis...... covers superthreshold pumping and nonlinear effects. Superthresh-old pumping produces some useful characteristics. For instance, strong superthreshold pumping yields a high gain even though nonlinear effects tend to reduce it. In addition, a narrower excitation phase range is realized for which...
Ketelhut, R G
1998-12-10
Physical activity in the form of endurance training is highly recommendable for hypertensives. Both suitable and unsuitable forms of sports are identified. From various points of view, two one-hour sessions per week would appear to be optimal. The intensity of the activity should be oriented to the heart rate, and, for safety's sake, prior ergometric evaluation should be carried out. As a rule of thumb, the heart rate should not exceed 70% of the maximum rate during exercise. If the blood pressure should nevertheless increase too much, appropriate pharmacological treatment is indicated.
Non-Parametric Analysis of Rating Transition and Default Data
DEFF Research Database (Denmark)
Fledelius, Peter; Lando, David; Perch Nielsen, Jens
2004-01-01
We demonstrate the use of non-parametric intensity estimation - including construction of pointwise confidence sets - for analyzing rating transition data. We find that transition intensities away from the class studied here for illustration strongly depend on the direction of the previous move b...
Parametric Resonance in Dynamical Systems
Nijmeijer, Henk
2012-01-01
Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...
The Multi-state Latent Factor Intensity Model for Credit Rating Transitions
Koopman, S.J.; Lucas, A.; Monteiro, A.
2008-01-01
A new empirical reduced-form model for credit rating transitions is introduced. It is a parametric intensity-based duration model with multiple states and driven by exogenous covariates and latent dynamic factors. The model has a generalized semi-Markov structure designed to accommodate many of the
International Nuclear Information System (INIS)
Scott, T.C.; Sisson, W.G.
1987-01-01
Experimental methods have been developed to measure droplet size characteristics and energy inputs associated with the rupture of aqueous droplets by high-intensity-pulsed electric fields. The combination of in situ microscope optics and high-speed video cameras allows reliable observation of liquid droplets down to 0.5 μm in size. Videotapes of electric-field-created emulsions reveal that average droplet sizes of less than 5 μm are easily obtained in such systems. Analysis of the energy inputs into the fluids indicates that the electric field method requires less than 1% of the energy required from mechanical agitation to create comparable droplet sizes. 11 refs., 3 figs., 2 tabs
Parametric instabilities in advanced gravitational wave detectors
International Nuclear Information System (INIS)
Gras, S; Zhao, C; Blair, D G; Ju, L
2010-01-01
As the LIGO interferometric gravitational wave detectors have finished gathering a large observational data set, an intense effort is underway to upgrade these observatories to improve their sensitivity by a factor of ∼10. High circulating power in the arm cavities is required, which leads to the possibility of parametric instability due to three-mode opto-acoustic resonant interactions between the carrier, transverse optical modes and acoustic modes. Here, we present detailed numerical analysis of parametric instability in a configuration that is similar to Advanced LIGO. After examining parametric instability for a single three-mode interaction in detail, we examine instability for the best and worst cases, as determined by the resonance condition of transverse modes in the power and signal recycling cavities. We find that, in the best case, the dual recycling detector is substantially less susceptible to instability than a single cavity, but its susceptibility is dependent on the signal recycling cavity design, and on tuning for narrow band operation. In all cases considered, the interferometer will experience parametric instability at full power operation, but the gain varies from 3 to 1000, and the number of unstable modes varies between 7 and 30 per test mass. The analysis focuses on understanding the detector complexity in relation to opto-acoustic interactions, on providing insights that can enable predictions of the detector response to transient disturbances, and of variations in thermal compensation conditions.
Parametric Design of Outdoor Broadcasting Studio Based on Schema Theory
Directory of Open Access Journals (Sweden)
Zhu Li
2016-01-01
Full Text Available This paper mainly demonstrates that the schema is an important way for the architect to cognize architecture form logic. It connects schema to algorithm of parametric design in order to seek the “algorithm schema” generation in parametric design of architecture. Meanwhile, this paper discusses the generative process and methods of the “algorithm schema” in parametric design of architecture by describing a case of outdoor broadcasting studio of Hunan Economic Radio. It also reveals the importance of “algorithm schema” for the cognition and architectural form logic generation.
Brownian parametric oscillators
Zerbe, Christine; Jung, Peter; Hänggi, Peter
1994-05-01
We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).
Parametric Linear Dynamic Logic
Directory of Open Access Journals (Sweden)
Peter Faymonville
2014-08-01
Full Text Available We introduce Parametric Linear Dynamic Logic (PLDL, which extends Linear Dynamic Logic (LDL by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL that is able to express all ω-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.
Path integral quantization of parametrized field theory
International Nuclear Information System (INIS)
Varadarajan, Madhavan
2004-01-01
Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory
Interplay between parametric instabilities in fusion - relevant laser plasmas
International Nuclear Information System (INIS)
Huller, St.
2003-01-01
The control of parametric instabilities plays an important role in laser fusion. They are driven by the incident laser beams in the underdense plasma surrounding a fusion capsule and hinder the absorption process of incident laser light which is necessary to heat the fusion target. Due to its high intensity and power, the laser light modifies the plasma density dynamically, such that two or more parametric instabilities compete, in particular stimulated Brillouin scattering and the filamentation instability. The complicated interplay between these parametric instabilities is studied in detail by developing an adequate model accompanied by numerical simulations with multidimensional codes. The model is applied to generic and to smoothed laser beams, which are necessary to limit parametric instabilities, with parameters close to experimental conditions. (author)
Parametric trapping of electromagnetic waves in an inhomogeneous plasma
International Nuclear Information System (INIS)
Silin, V.P.; Starodub, A.N.
1977-01-01
Considered is parametric instability in an inhomogeneous plasma at which a pumping wave is transformed to an electromagnetic wave and aperiodically in-time-growing disturbances. It is shown that after achievement of some boundary pumping value by electric field intensity an absolute parametric instability evolution becomes possible. In-time growing plasma disturbances are localized near electric field extremums of a pumping wave. Such localization areas are small as compared to characteristic size of pumping inhomogeneity in a plasma. The secondary electromagnetic waves stay within the localization areas and, therefore, are not scattered by a plasma. As following from this it has been established, that due to parametric instability electromagnetic radiation trapping by a plasma occurs. Such a trapping is considerably connected with a spatial structure of a pumping field and it cannot arise within the field of a running wave in the theoretical model considered. However parametric trapping turns out to be possible even with very small reflection coefficients
Nanoscale electromechanical parametric amplifier
Aleman, Benjamin Jose; Zettl, Alexander
2016-09-20
This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.
Parametric Room Acoustic Workflows
DEFF Research Database (Denmark)
Parigi, Dario; Svidt, Kjeld; Molin, Erik
2017-01-01
The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...
DEFF Research Database (Denmark)
Herzog, Dennis
adapt the primitives to the actual appearance of the tracked motion, since the appearance of actions depends on the object locations. From the recognition perspective, it is necessary to recognize a performed action, but the understanding requires also the recovery of the action parameters, which can......The thesis aims at the learning of action primitives and their application on the perceptive side (tracking/recognition) and the generative side (synthesizing for robot control). A motivation is to use a unified primitive representation applicable on both sides. The thesis considers arm actions...... with an investigation of PHMM training methods and structures to utilize the PHMM as a unified representation of parametric primitives, which is adequate for recognition and for synthesis. This is evaluated on a large motion data set. Main contributions of the thesis are the development and evaluation of approaches...
International Nuclear Information System (INIS)
Sartowska, B.; Walis, L.; Starosta, W.; Piekoszewski, J.; Barlak, M.; Pochrybniak, C.; Bochenska, K.
2011-01-01
It is well documented that the high oxygen affinity elements such as Y, Ce, La, Er and other rare earth elements added to steel in small amounts can improve their high temperature oxidation resistance. Rare earth elements can be either alloyed during the steel making process or introduced through surface treatment techniques. Improvement of high temperature oxidation resistance of AISI 316 L steel by incorporation Ce and La elements into its near surface region using high intensity pulsed plasma beams in so-called deposition by the pulse erosion mode was investigated in the present work. The samples were irradiated with 3 short (μs scale) intense (energy density 3 J/cm 2 ) plasma pulses. Heating and cooling processes occur under non-equilibrium conditions. In all samples the near surface layer of the thickness in μm range was melted and simultaneously doped with cerium and lanthanum. The modified samples were oxidized at 1000 o C for 100 h in air. The obtained effects were: oxide scales formed on the treated samples were more fine-grained, compact and adhering better that those formed on the un-treated samples. (author)
Comparing parametric and nonparametric regression methods for panel data
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
We investigate and compare the suitability of parametric and non-parametric stochastic regression methods for analysing production technologies and the optimal firm size. Our theoretical analysis shows that the most commonly used functional forms in empirical production analysis, Cobb......-Douglas and Translog, are unsuitable for analysing the optimal firm size. We show that the Translog functional form implies an implausible linear relationship between the (logarithmic) firm size and the elasticity of scale, where the slope is artificially related to the substitutability between the inputs....... The practical applicability of the parametric and non-parametric regression methods is scrutinised and compared by an empirical example: we analyse the production technology and investigate the optimal size of Polish crop farms based on a firm-level balanced panel data set. A nonparametric specification test...
Using non-parametric methods in econometric production analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
2012-01-01
by investigating the relationship between the elasticity of scale and the farm size. We use a balanced panel data set of 371~specialised crop farms for the years 2004-2007. A non-parametric specification test shows that neither the Cobb-Douglas function nor the Translog function are consistent with the "true......Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify a functional form of the production function of which the Cobb...... parameter estimates, but also in biased measures which are derived from the parameters, such as elasticities. Therefore, we propose to use non-parametric econometric methods. First, these can be applied to verify the functional form used in parametric production analysis. Second, they can be directly used...
Parametric Cherenkov radiation (development of idea)
International Nuclear Information System (INIS)
Buts, V.A.
2004-01-01
Some physical results of researches about charged particles radiation in mediums with a periodic heterogeneity and in periodic potential are reported. The development of ideas Parametric Cherenkov Radiation has shown, that in mediums, which have even a weak degree of a periodic heterogeneity of an permittivity or potential, the nonrelativistic oscillators can radiated as relativistic. They effectively radiate the high numbers of harmonics. In particular, in the carried out experiments the ultra-violet radiation was excited at action on a crystal of intensive ten-centimetric radiation. These results give the reasons to hope for making of nonrelativistic lasers on free electrons
Parametric Mass Reliability Study
Holt, James P.
2014-01-01
The International Space Station (ISS) systems are designed based upon having redundant systems with replaceable orbital replacement units (ORUs). These ORUs are designed to be swapped out fairly quickly, but some are very large, and some are made up of many components. When an ORU fails, it is replaced on orbit with a spare; the failed unit is sometimes returned to Earth to be serviced and re-launched. Such a system is not feasible for a 500+ day long-duration mission beyond low Earth orbit. The components that make up these ORUs have mixed reliabilities. Components that make up the most mass-such as computer housings, pump casings, and the silicon board of PCBs-typically are the most reliable. Meanwhile components that tend to fail the earliest-such as seals or gaskets-typically have a small mass. To better understand the problem, my project is to create a parametric model that relates both the mass of ORUs to reliability, as well as the mass of ORU subcomponents to reliability.
Absolute parametric instability in a nonuniform plane plasma ...
Indian Academy of Sciences (India)
Abstract. The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is ...
Absolute parametric instability in a nonuniform plane plasma
Indian Academy of Sciences (India)
The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is considered.
Parametric influence of powerful radiation on plasma surface
International Nuclear Information System (INIS)
Kuklin, V.M.; Panchenko, I.P.; Chernousenko, V.M.
1989-01-01
A self-consistent set of equations that describes one-dimensional dynamics to develop the instability of long-wave intensive Langmuir wave is obtained and solved. The parametric instability influence on the character of absorption of the incident radiation energy is elucidated primarily. 40 refs.; 8 figs
Planar Parametrization in Isogeometric Analysis
DEFF Research Database (Denmark)
Gravesen, Jens; Evgrafov, Anton; Nguyen, Dang-Manh
2012-01-01
Before isogeometric analysis can be applied to solving a partial differential equation posed over some physical domain, one needs to construct a valid parametrization of the geometry. The accuracy of the analysis is affected by the quality of the parametrization. The challenge of computing...... and maintaining a valid geometry parametrization is particularly relevant in applications of isogemetric analysis to shape optimization, where the geometry varies from one optimization iteration to another. We propose a general framework for handling the geometry parametrization in isogeometric analysis and shape...... are suitable for our framework. The non-linear methods we consider are based on solving a constrained optimization problem numerically, and are divided into two classes, geometry-oriented methods and analysis-oriented methods. Their performance is illustrated through a few numerical examples....
Parametric FEM for geometric biomembranes
Bonito, Andrea; Nochetto, Ricardo H.; Sebastian Pauletti, M.
2010-05-01
We consider geometric biomembranes governed by an L2-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.
Parametric motivation bases of floranimic nomination
Directory of Open Access Journals (Sweden)
Olga P. Ryabko
2016-09-01
Full Text Available The period of further development in the cognitive theory of nomination has been extensive in recent years. Our research has been concentrated on the formation of conceptual foundations in cognitive theory of flora nomination. The macrofield of flora namings embraces three microfields: parametric, pragmatic and locative-temporal ones. They determine motivation processes in cognitive theory of flora nomination, i.e., the presentation of systematic qualities in flora namings in the English language. The description and characterization of such qualities presupposes the existence of their taxonomic organization and methodology criteria, both general and practical ones. Flora namings on the phenomenological level are considered to be the products of naöve-cognitive consciousness of language speakers. They are determined, from the one hand, by the external perceptive adaptations (parametric nomination and, from the other hand, by practical needs (pure pragmatic nomination and local-temporal nomination. In this article we have concentrated on the complex parametric motivated basis of flora nomination. It is presented by a number of qualities, firstly, by dominative qualities («form», «appearance and manner of growth», «color», secondly, by peripheral qualities («odour», «taste», «size» and, finally, by minor qualities («sound», «weight», «genger». In the structure of complex parametric nomination the only one conerete qualitative element from the whole combination of qualities becomes the leading one. The cultural-archetypal dominant element determines. In each concrete situation, the choice of preferable prototypal motivated quality.
Using non-parametric methods in econometric production analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify the functional form of the production function. Most often, the Cobb...... results—including measures that are of interest of applied economists, such as elasticities. Therefore, we propose to use nonparametric econometric methods. First, they can be applied to verify the functional form used in parametric estimations of production functions. Second, they can be directly used...
On the problem of neutron spectroscopy of parametrically non-equilibrium quasiparticles in solids
International Nuclear Information System (INIS)
Vo Khong An'.
1981-01-01
A suitable for numerical estimations formula for coherent neutron inelastic scattering cross sections on the plasmon-phonon mixed modes of electron-phonon systems in the parametric resonance conditions is obtained from the analytical one presented in the previous work using some relations of the general parametric excitation theory. The cross sections of neutron scattering on the high-frequency plasmon-like and the low-frequency longitudinal optical phonon-like modes in InSb crystals are calculated as functions of the driving laser field intensity, which show an increase in values by about two orders of magnitude as the field intensity approaches the parametric excitation threshold
STATCAT, Statistical Analysis of Parametric and Non-Parametric Data
International Nuclear Information System (INIS)
David, Hugh
1990-01-01
1 - Description of program or function: A suite of 26 programs designed to facilitate the appropriate statistical analysis and data handling of parametric and non-parametric data, using classical and modern univariate and multivariate methods. 2 - Method of solution: Data is read entry by entry, using a choice of input formats, and the resultant data bank is checked for out-of- range, rare, extreme or missing data. The completed STATCAT data bank can be treated by a variety of descriptive and inferential statistical methods, and modified, using other standard programs as required
Ionospheric modification and parametric instabilities
International Nuclear Information System (INIS)
Fejer, J.A.
1979-01-01
Thresholds and linear growth rates for stimulated Brillouin and Raman scattering and for the parametric decay instability are derived by using arguments of energy transfer. For this purpose an expression for the ponderomotive force is derived. Conditions under which the partial pressure force due to differential dissipation exceeds the ponderomotive force are also discussed. Stimulated Brillouin and Raman scattering are weakly excited by existing incoherent backscatter radars. The parametric decay instability is strongly excited in ionospheric heating experiments. Saturation theories of the parametric decay instability are therefore described. After a brief discussion of the purely growing instability the effect of using several pumps is discussed as well as the effects of inhomogenicity. Turning to detailed theories of ionospheric heating, artificial spread F is discussed in terms of a purely growing instability where the nonlinearity is due to dissipation. Field-aligned short-scale striations are explained in terms of dissipation of the parametrically excited Langmuir waves (plasma oscillations): they might be further amplified by an explosive instability (except the magnetic equator). Broadband absorption is probably responsible for the 'overshoot' effect: the initially observed level of parametrically excited Langmuir waves is much higher than the steady state level
Czech Academy of Sciences Publication Activity Database
Ay, N.; Jost, J.; Le, Hong-Van; Schwachhöfer, L.
2018-01-01
Roč. 24, č. 3 (2018), s. 1692-1725 ISSN 1350-7265 Institutional support: RVO:67985840 Keywords : Amari–Chentsov tensor * Fisher quadratic * form monotonicity * sufficient statistic Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.070, year: 2016 https://projecteuclid.org/euclid.bj/1517540458
PHAZE, Parametric Hazard Function Estimation
International Nuclear Information System (INIS)
2002-01-01
1 - Description of program or function: Phaze performs statistical inference calculations on a hazard function (also called a failure rate or intensity function) based on reported failure times of components that are repaired and restored to service. Three parametric models are allowed: the exponential, linear, and Weibull hazard models. The inference includes estimation (maximum likelihood estimators and confidence regions) of the parameters and of the hazard function itself, testing of hypotheses such as increasing failure rate, and checking of the model assumptions. 2 - Methods: PHAZE assumes that the failures of a component follow a time-dependent (or non-homogenous) Poisson process and that the failure counts in non-overlapping time intervals are independent. Implicit in the independence property is the assumption that the component is restored to service immediately after any failure, with negligible repair time. The failures of one component are assumed to be independent of those of another component; a proportional hazards model is used. Data for a component are called time censored if the component is observed for a fixed time-period, or plant records covering a fixed time-period are examined, and the failure times are recorded. The number of these failures is random. Data are called failure censored if the component is kept in service until a predetermined number of failures has occurred, at which time the component is removed from service. In this case, the number of failures is fixed, but the end of the observation period equals the final failure time and is random. A typical PHAZE session consists of reading failure data from a file prepared previously, selecting one of the three models, and performing data analysis (i.e., performing the usual statistical inference about the parameters of the model, with special emphasis on the parameter(s) that determine whether the hazard function is increasing). The final goals of the inference are a point estimate
Implementing quantum optics with parametrically driven superconducting circuits
Aumentado, Jose
Parametric coupling has received much attention, in part because it forms the core of many low-noise amplifiers in superconducting quantum information experiments. However, parametric coupling in superconducting circuits is, as a general rule, simple to generate and forms the basis of a methodology for interacting microwave fields at different frequencies. In the quantum regime, this has important consequences, allowing relative novices to do experiments in superconducting circuits today that were previously heroic efforts in quantum optics and cavity-QED. In this talk, I'll give an overview of some of our work demonstrating parametric coupling within the context of circuit-QED as well as some of the possibilities this concept creates in our field.
Entanglement in a parametric converter
Energy Technology Data Exchange (ETDEWEB)
Lee, Su-Yong; Qamar, Shahid; Lee, Hai-Woong; Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)], E-mail: shahid_qamar@pieas.edu.pk, E-mail: zubairy@physics.tamu.edu
2008-07-28
In this paper, we consider a parametric converter as a source of entangled radiation. We examine recently derived conditions (Hillery and Zubairy 2006 Phys. Rev. Lett. 96 050503, Duan et al 2000 Phys. Rev. Lett. 84 2722) for determining when the two output modes in a parametric converter are entangled. We show that for different initial field states, the two criteria give different conditions that ensure that the output states are entangled. We also present an input-output calculation for the entanglement of the output field.
International Nuclear Information System (INIS)
Nazirov, N.N.; Tashmatov, N.T.; Vakhabov, A.; Nabiev, A.G.
1981-01-01
Salinization of soil affects respiration intensity, 32 P introduction into plants and its inclusion in the content of phosphoric organic compounds as well as their content in tissues of cotton plants. Respiration intensity increases: respiration intensity of weakly-stable plants increases to a greater degree. General character of changes caused by the salinization effect of different cotton sorts, is analogous, differences are only in the destruction degree [ru
PARAMETRIC INSURANCE COVER FOR NATURAL CATASTROPHE RISKS
Directory of Open Access Journals (Sweden)
Serghei Margulescu
2013-11-01
Full Text Available With economic losses of over USD 370 bn caused by 325 catastrophic events, 2011 ranks as the worst ever year in terms of costs to society due to natural catastrophes and man-made disasters. Inthe same time, 2011 is the second most expensive year in the history for the insurance industry, with insured losses from catastrophic events amounting to USD 116 bn. Both the high level of damages and insured losses, as well as the unprecedented gap between the two values, made insurers and reinsurers worldwide to understand that some risks had so far been underestimated and they have to be better integrated in the catastrophes modelling.On the other hand, governments have to protect themselves against the financial impact of natural catastrophes and new forms of cooperation between the public and private sectors can help countries finance disaster risks. Viewed in a country’s wider risk management context, the purchase of parametric insurance cover, which transfers natural catastrophe risk to the private sector using an index- based trigger, is a necessary shift towards a pre-emptive risk management strategy. This kind of approach can be pursued by central governments or at the level of provincial or municipal governments, and a number of case studies included in the publication “Closing the financial gap” by Swiss Re (2011 illustrates how new forms of parametric insurance can help countries finance disaster risks.
PARAMETRIC MODEL OF LUMBAR VERTEBRA
Directory of Open Access Journals (Sweden)
CAPPETTI Nicola
2010-11-01
Full Text Available The present work proposes the realization of a parametric/variational CAD model of a normotype lumbar vertebra, which could be used for improving the effectiveness of actual imaging techniques in informational augmentation of the orthopaedic and traumatological diagnosis. In addition it could be used for ergonomic static and dynamical analysis of the lumbar region and vertebral column.
Parametric programming of industrial robots
Directory of Open Access Journals (Sweden)
Szulczyński Paweł
2015-06-01
Full Text Available This article proposes the use of parametric design software, commonly used by architects, in order to obtain complex trajectory and program code for industrial robots. The paper describes the drawbacks of existing solutions and proposes a new script to obtain a correct program. The result of the algorithm was verified experimentally.
Relational Parametricity and Separation Logic
DEFF Research Database (Denmark)
Birkedal, Lars; Yang, Hongseok
2008-01-01
Separation logic is a recent extension of Hoare logic for reasoning about programs with references to shared mutable data structures. In this paper, we provide a new interpretation of the logic for a programming language with higher types. Our interpretation is based on Reynolds's relational...... parametricity, and it provides a formal connection between separation logic and data abstraction. Udgivelsesdato: 2008...
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
of specifying an unsuitable functional form and thus, model misspecification and biased parameter estimates. Given these problems of the DEA and the SFA, Fan, Li and Weersink (1996) proposed a semi-parametric stochastic frontier model that estimates the production function (frontier) by non......), Kumbhakar et al. (2007), and Henningsen and Kumbhakar (2009). The aim of this paper and its main contribution to the existing literature is the estimation semi-parametric stochastic frontier models using a different non-parametric estimation technique: spline regression (Ma et al. 2011). We apply...... efficiency of Polish dairy farms contributes to the insight into this dynamic process. Furthermore, we compare and evaluate the results of this spline-based semi-parametric stochastic frontier model with results of other semi-parametric stochastic frontier models and of traditional parametric stochastic...
Parametrization of the Richardson weather generator within the European Union
Voet, van der P.; Kramer, K.; Diepen, van C.A.
1996-01-01
The Richardson model for mathematically generating daily weather data was parametrized. Thirty years' time-series of the 355 main meteorological stations in the European Union formed the database. Model parameters were derived from both observed weather station data and interpolated weather data on
Statistical dynamics of parametrically perturbed sine-square map
Indian Academy of Sciences (India)
Abstract. We discuss the emergence and destruction of complex, critical and completely chaotic attractors in a nonlinear system when subjected to a small parametric perturba- tion in trigonometric, hyperbolic or noise function forms. For this purpose, a hybrid optical bistable system, which is a nonlinear physical system, has ...
Towards a parametrization of multiparticle hadronic reactions
International Nuclear Information System (INIS)
Giffon, M.; Hama, Y.; Predazzi, E.
1979-11-01
An explicit parametrization of high energy exclusive production cross-sections is shown to give a reasonable account of inclusive data. This is a first step towards a phenomenological parametrization of multiparticle hadronic amplitudes
Bianchi surfaces: integrability in an arbitrary parametrization
International Nuclear Information System (INIS)
Nieszporski, Maciej; Sym, Antoni
2009-01-01
We discuss integrability of normal field equations of arbitrarily parametrized Bianchi surfaces. A geometric definition of the Bianchi surfaces is presented as well as the Baecklund transformation for the normal field equations in an arbitrarily chosen surface parametrization.
Parametrization of contrails in a comprehensive climate model
Energy Technology Data Exchange (ETDEWEB)
Ponater, M; Brinkop, S; Sausen, R; Schumann, U [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere
1998-12-31
A contrail parametrization scheme for a general circulation model (GCM) is presented. Guidelines for its development were that it should be based on the thermodynamic theory of contrail formation and that it should be consistent with the cloud parametrization scheme of the GCM. Results of a six-year test integration indicate reasonable results concerning the spatial and temporal development of both contrail coverage and contrail optical properties. Hence, the scheme forms a promising basis for the quantitative estimation of the contrail climatic impact. (author) 9 refs.
Parametrization of contrails in a comprehensive climate model
Energy Technology Data Exchange (ETDEWEB)
Ponater, M.; Brinkop, S.; Sausen, R.; Schumann, U. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere
1997-12-31
A contrail parametrization scheme for a general circulation model (GCM) is presented. Guidelines for its development were that it should be based on the thermodynamic theory of contrail formation and that it should be consistent with the cloud parametrization scheme of the GCM. Results of a six-year test integration indicate reasonable results concerning the spatial and temporal development of both contrail coverage and contrail optical properties. Hence, the scheme forms a promising basis for the quantitative estimation of the contrail climatic impact. (author) 9 refs.
A parametric LTR solution for discrete-time systems
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Jannerup, Ole Erik
1989-01-01
A parametric LTR (loop transfer recovery) solution for discrete-time compensators incorporating filtering observers which achieve exact recovery is presented for both minimum- and non-minimum-phase systems. First the recovery error, which defines the difference between the target loop transfer...... and the full loop transfer function, is manipulated into a general form involving the target loop transfer matrix and the fundamental recovery matrix. A parametric LTR solution based on the recovery matrix is developed. It is shown that the LQR/LTR (linear quadratic Gaussian/loop transfer recovery) solution...
Four-photon parametric mixing and interaction between filaments
Energy Technology Data Exchange (ETDEWEB)
Georgieva, D. A. [Faculty of Applied Mathematics and Computer Science, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1000 Sofia (Bulgaria); Kovachev, L. M. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradcko Chaussee Blvd.,1784 Sofia (Bulgaria)
2014-11-12
Recently energy exchange between two filaments crossing at small angle and with power slightly above the critical for self-focusing P{sub cr} was experimentally demonstrated. In this paper we present a model describing the process of this transfer through degenerate four-photon parametric mixing. Our model confirms the experimental results that the direction of energy exchange depends on the relative transverse velocity (incident angle), laser intensity and initial distance between the pulses (relative initial phase)
Detection of Parametric Roll on Ships
DEFF Research Database (Denmark)
Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad
2012-01-01
phenomenon could make the navigator change ship’s speed and heading, and these remedial actions could make the vessel escape the bifurcation. This chapter proposes non-parametric methods to detect the onset of parametric roll resonance. Theoretical conditions for parametric resonance are re...... on experimental data from towing tank tests and data from a container ship passing an Atlantic storm....
Bartley, Judene; Streifel, Andrew J
2010-08-01
We review the context of the environment of care in the intensive care unit setting in relation to patient safety and quality, specifically addressing healthcare-associated infection issues and solutions involving interdisciplinary teams. Issues addressed include current and future architectural design and layout trends, construction trends affecting intensive care units, and prevention of construction-associated healthcare-associated infections related to airborne and waterborne risks and design solutions. Specific elements include single-occupancy, acuity-scalable intensive care unit rooms; environmental aspects of hand hygiene, such as water risks, sink design/location, human waste management, surface selection (floor covering, countertops, furniture, and equipment) and cleaning, antimicrobial-treated or similar materials, ultraviolet germicidal irradiation, specialized rooms (airborne infection isolation and protective environments), and water system design and strategies for safe use of potable water and mitigation of water intrusion. Effective design and operational use of the intensive care unit environment of care must engage critical care personnel from initial planning and design through occupancy of the new/renovated intensive care unit as part of the infection control risk assessment team. The interdisciplinary infection control risk assessment team can address key environment of care design features to enhance the safety of intensive care unit patients, personnel, and visitors. This perspective will ensure the environment of care supports human factors and behavioral aspects of the interaction between the environment of care and its occupants.
Interactive Dimensioning of Parametric Models
Kelly, T.
2015-06-22
We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models.
Parametric Optimization of Hospital Design
DEFF Research Database (Denmark)
Holst, Malene Kirstine; Kirkegaard, Poul Henning; Christoffersen, L.D.
2013-01-01
Present paper presents a parametric performancebased design model for optimizing hospital design. The design model operates with geometric input parameters defining the functional requirements of the hospital and input parameters in terms of performance objectives defining the design requirements...... and preferences of the hospital with respect to performances. The design model takes point of departure in the hospital functionalities as a set of defined parameters and rules describing the design requirements and preferences....
Parametric decay of the curvaton
International Nuclear Information System (INIS)
Enqvist, K; Nurmi, S; Rigopoulos, G I
2008-01-01
We argue that the curvaton decay takes place most naturally by way of a broad parametric resonance. The mechanism is analogous to resonant inflaton decay but does not require any tuning of the curvaton coupling strength to other scalar fields. For low scale inflation and a correspondingly low mass scale for the curvaton, we speculate on observable consequences including the possibility of stochastic gravitational waves
Parametric representation of centrifugal pump homologous curves
International Nuclear Information System (INIS)
Veloso, Marcelo A.; Mattos, Joao R.L. de
2015-01-01
Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic quantities: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. The curves showing the relationships between these four variables are called the pump characteristic curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, this configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the parametric form appears as the simplest way to deal with the homologous curves. In this approach, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a pressurized water reactor (PWR) are transformed to the parametric form. (author)
Parametric Fires for Structural Design
DEFF Research Database (Denmark)
Hertz, Kristian
2012-01-01
The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants and contra......The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants...... and contractors have asked for a reference in English in order to make the guide-lines and the background for them available internationally. The paper therefore presents recommendations from the design guide especially concerning how to assess parametric design fires based on the opening factor method for large...... compartments. Findings leading to the guide-lines are discussed, and it is indicated what a safe design fire model means for structural design and how it differs from a safe design fire model for evacuation. Furthermore, the paper includes some experiences from the application of the design guide in practise...
Parametric Bayesian Estimation of Differential Entropy and Relative Entropy
Gupta; Srivastava
2010-01-01
Given iid samples drawn from a distribution with known parametric form, we propose the minimization of expected Bregman divergence to form Bayesian estimates of differential entropy and relative entropy, and derive such estimators for the uniform, Gaussian, Wishart, and inverse Wishart distributions. Additionally, formulas are given for a log gamma Bregman divergence and the differential entropy and relative entropy for the Wishart and inverse Wishart. The results, as always with Bayesian est...
Parametric investigations of target normal sheath acceleration experiments
International Nuclear Information System (INIS)
Zani, Alessandro; Sgattoni, Andrea; Passoni, Matteo
2011-01-01
One of the most important challenges related to laser-driven ion acceleration research is to actively control some important ion beam features. This is a peculiar topic in the light of future possible technological applications. In the present work we make use of one theoretical model for target normal sheath acceleration in order to reproduce recent experimental parametric studies about maximum ion energy dependencies on laser parameters. The key role played by pulse energy and intensity is enlightened. Finally the effective dependence of maximum ion energy on intensity is evaluated using a combined theoretical approach, obtained by means of an analytical and a particle-in-cell numerical investigation.
Parametric investigations of target normal sheath acceleration experiments
Zani, Alessandro; Sgattoni, Andrea; Passoni, Matteo
2011-10-01
One of the most important challenges related to laser-driven ion acceleration research is to actively control some important ion beam features. This is a peculiar topic in the light of future possible technological applications. In the present work we make use of one theoretical model for target normal sheath acceleration in order to reproduce recent experimental parametric studies about maximum ion energy dependencies on laser parameters. The key role played by pulse energy and intensity is enlightened. Finally the effective dependence of maximum ion energy on intensity is evaluated using a combined theoretical approach, obtained by means of an analytical and a particle-in-cell numerical investigation.
Digital spectral analysis parametric, non-parametric and advanced methods
Castanié, Francis
2013-01-01
Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a
Probing the dynamics of dark energy with novel parametrizations
International Nuclear Information System (INIS)
Ma Jingzhe; Zhang Xin
2011-01-01
We point out that the CPL parametrization has a problem that the equation of state w(z) diverges in the far future, so that this model can only properly describe the past evolution but cannot depict the future evolution. To overcome such a difficulty, in this Letter we propose two novel parametrizations for dark energy, the logarithm form w(z)=w 0 +w 1 ((ln(2+z))/(1+z) -ln2) and the oscillating form w(z)=w 0 +w 1 ((sin(1+z))/(1+z) -sin(1)), successfully avoiding the future divergency problem in the CPL parametrization, and use them to probe the dynamics of dark energy in the whole evolutionary history. Our divergency-free parametrizations are proven to be very successful in exploring the dynamical evolution of dark energy and have powerful prediction capability for the ultimate fate of the universe. Constraining the CPL model and the new models with the current observational data, we show that the new models are more favored. The features and the predictions for the future evolution in the new models are discussed in detail.
Parametric Level Statistics in Random Matrix Theory: Exact Solution
International Nuclear Information System (INIS)
Kanzieper, E.
1999-01-01
During recent several years, the theory of non-Gaussian random matrix ensembles has experienced a sound progress motivated by new ideas in quantum chromodynamics (QCD) and mesoscopic physics. Invariant non-Gaussian random matrix models appear to describe universal features of low-energy part of the spectrum of Dirac operator in QCD, and electron level statistics in normal conducting-superconducting hybrid structures. They also serve as a basis for constructing the toy models of universal spectral statistics expected at the edge of the metal-insulator transition. While conventional spectral statistics has received a detailed study in the context of RMT, quite a bit is known about parametric level statistics in non-Gaussian random matrix models. In this communication we report about exact solution to the problem of parametric level statistics in unitary invariant, U(N), non-Gaussian ensembles of N x N Hermitian random matrices with either soft or strong level confinement. The solution is formulated within the framework of the orthogonal polynomial technique and is shown to depend on both the unfolded two-point scalar kernel and the level confinement through a double integral transformation which, in turn, provides a constructive tool for description of parametric level correlations in non-Gaussian RMT. In the case of soft level confinement, the formalism developed is potentially applicable to a study of parametric level statistics in an important class of random matrix models with finite level compressibility expected to describe a disorder-induced metal-insulator transition. In random matrix ensembles with strong level confinement, the solution presented takes a particular simple form in the thermodynamic limit: In this case, a new intriguing connection relation between the parametric level statistics and the scalar two-point kernel of an unperturbed ensemble is demonstrated to emerge. Extension of the results obtained to higher-order parametric level statistics is
Parametric Verification of Weighted Systems
DEFF Research Database (Denmark)
Christoffersen, Peter; Hansen, Mikkel; Mariegaard, Anders
2015-01-01
are themselves indexed with linear equations. The parameters change the model-checking problem into a problem of computing a linear system of inequalities that characterizes the parameters that guarantee the satisfiability. To address this problem, we use parametric dependency graphs (PDGs) and we propose...... a global update function that yields an assignment to each node in a PDG. For an iterative application of the function, we prove that a fixed point assignment to PDG nodes exists and the set of assignments constitutes a well-quasi ordering, thus ensuring that the fixed point assignment can be found after...
Parametric Sensibility in Lixiviation Reactors
Directory of Open Access Journals (Sweden)
Dra. Margarita Rivera-Soto
2015-11-01
Full Text Available This work presents the results obtained in an analysis of the parametric sensibility, on the base of a mathematical model, which describes the behavior a lixiviation reactors battery inside the limits of the habitual work of the industrial plant, in a concrete process and of high complexity. The analysis was carried out with the purpose of determining the effect that the changes in different operation variables have on the behavior of the system and it gave as result that the most important variables are: the mineral-acid relationship, the concentration of magnesium and of nickel.
Image sequence analysis in nuclear medicine: (1) Parametric imaging using statistical modelling
International Nuclear Information System (INIS)
Liehn, J.C.; Hannequin, P.; Valeyre, J.
1989-01-01
This is a review of parametric imaging methods on Nuclear Medicine. A Parametric Image is an image in which each pixel value is a function of the value of the same pixel of an image sequence. The Local Model Method is the fitting of each pixel time activity curve by a model which parameter values form the Parametric Images. The Global Model Method is the modelling of the changes between two images. It is applied to image comparison. For both methods, the different models, the identification criterion, the optimization methods and the statistical properties of the images are discussed. The analysis of one or more Parametric Images is performed using 1D or 2D histograms. The statistically significant Parametric Images, (Images of significant Variances, Amplitudes and Differences) are also proposed [fr
Parametric nanomechanical amplification at very high frequency.
Karabalin, R B; Feng, X L; Roukes, M L
2009-09-01
Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.
Parametric wave penetration through an overdense plasma layer
International Nuclear Information System (INIS)
Gradov, O.M.; Suender, D.
1981-01-01
The nonlinear penetration of an electromagnetic wave through an overdense plasma layer due to the excitation of parametric instabilities is studied. The quasistatic h.f. surface wave and the ion-acoustic wave, both parametrically growing, generate a nonlinear current which also exist beyound the linear skin length of the incident electromagnetic wave. This current leads to an exponential amplification of the electromagnetic wave amplitude in the layer. The growth rate of this process depends on the overthreshold value of the external wave intensity and the thickness of the layer. The saturation level of the transmitted wave amplitude is estimated for the case, when the instabilities are stabilized by generation of ion-acoustic harmonics. (author)
Parametric Study of Sealant Nozzle
Yamamoto, Yoshimi
It has become apparent in recent years the advancement of manufacturing processes in the aerospace industry. Sealant nozzles are a critical device in the use of fuel tank applications for optimal bonds and for ground service support and repair. Sealants has always been a challenging area for optimizing and understanding the flow patterns. A parametric study was conducted to better understand geometric effects of sealant flow and to determine whether the sealant rheology can be numerically modeled. The Star-CCM+ software was used to successfully develop the parametric model, material model, physics continua, and simulate the fluid flow for the sealant nozzle. The simulation results of Semco sealant nozzles showed the geometric effects of fluid flow patterns and the influences from conical area reduction, tip length, inlet diameter, and tip angle parameters. A smaller outlet diameter induced maximum outlet velocity at the exit, and contributed to a high pressure drop. The conical area reduction, tip angle and inlet diameter contributed most to viscosity variation phenomenon. Developing and simulating 2 different flow models (Segregated Flow and Viscous Flow) proved that both can be used to obtain comparable velocity and pressure drop results, however; differences are seen visually in the non-uniformity of the velocity and viscosity fields for the Viscous Flow Model (VFM). A comprehensive simulation setup for sealant nozzles was developed so other analysts can utilize the data.
A general approach to optomechanical parametric instabilities
International Nuclear Information System (INIS)
Evans, M.; Barsotti, L.; Fritschel, P.
2010-01-01
We present a simple feedback description of parametric instabilities which can be applied to a variety of optical systems. Parametric instabilities are of particular interest to the field of gravitational-wave interferometry where high mechanical quality factors and a large amount of stored optical power have the potential for instability. In our use of Advanced LIGO as an example application, we find that parametric instabilities, if left unaddressed, present a potential threat to the stability of high-power operation.
Connections between classical and parametric network entropies.
Directory of Open Access Journals (Sweden)
Matthias Dehmer
Full Text Available This paper explores relationships between classical and parametric measures of graph (or network complexity. Classical measures are based on vertex decompositions induced by equivalence relations. Parametric measures, on the other hand, are constructed by using information functions to assign probabilities to the vertices. The inequalities established in this paper relating classical and parametric measures lay a foundation for systematic classification of entropy-based measures of graph complexity.
Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A
2015-05-01
Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design of parametric software tools
DEFF Research Database (Denmark)
Sabra, Jakob Borrits; Mullins, Michael
2011-01-01
The studies investigate the field of evidence-based design used in architectural design practice and propose a method using 2D/3D CAD applications to: 1) enhance integration of evidence-based design knowledge in architectural design phases with a focus on lighting and interior design and 2) assess...... fulfilment of evidence-based design criterion regarding light distribution and location in relation to patient safety in architectural health care design proposals. The study uses 2D/3D CAD modelling software Rhinoceros 3D with plug-in Grasshopper to create parametric tool prototypes to exemplify...... the operations and functions of the design method. To evaluate the prototype potentials, surveys with architectural and healthcare design companies are conducted. Evaluation is done by the administration of questionnaires being part of the development of the tools. The results show that architects, designers...
Parametric instabilities in large plasmas
International Nuclear Information System (INIS)
Brambilla, Marco; Liberman, Bernardo.
1979-01-01
Parametric decay processes in large plasmas are considered as the linear stage of a three wave interaction (pump, sideband and beat wave) in which the amplitude of the externally excited pump is sufficiently large to neglect pump depletion to first order, yet sufficiently small to allow a linearized treatment of the pump propagation to zeroth order. The coupling coefficients are then obtained from an iterative solution of Vlasov equation, and a compact expression is derived, in which the multiple series over Bessel functions is explicitly summed. Even in the limit of a very long wavelength pump, the dispersion relation obtained in this way does not coincide with the one obtained using the well-known ''dipole'' approximation, unless both the sideband and beat wave are resonant modes of the plasma. An analysis of the origin of this discrepancy allows us to conclude that ''quasimodes'' (evanescent waves driven absolutely unstable by the pump) are more correctly described by the iterative approach
Parametric embedding for class visualization.
Iwata, Tomoharu; Saito, Kazumi; Ueda, Naonori; Stromsten, Sean; Griffiths, Thomas L; Tenenbaum, Joshua B
2007-09-01
We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.
Parametric studies on automotive radiators
International Nuclear Information System (INIS)
Oliet, C.; Oliva, A.; Castro, J.; Perez-Segarra, C.D.
2007-01-01
This paper presents a set of parametric studies performed on automotive radiators by means of a detailed rating and design heat exchanger model developed by the authors. This numerical tool has been previously verified and validated using a wide experimental data bank. A first part of the analysis focuses on the influence of working conditions on both fluids (mass flows, inlet temperatures) and the impact of the selected coolant fluid. Following these studies, the influence of some geometrical parameters is analysed (fin pitch, louver angle) as well as the importance of coolant flow lay-out on the radiator global performance. This work provides an overall behaviour report of automobile radiators working at usual range of operating conditions, while significant knowledge-based design conclusions have also been reported. The results show the utility of this numerical model as a rating and design tool for heat exchangers manufacturers, being a reasonable compromise between classic ε - NTU methods and CFD
Parametric X-rays from a polycrystalline target
International Nuclear Information System (INIS)
Lobach, Ihar; Benediktovitch, Andrei; Feranchuk, Ilya; Lobko, Alexander
2015-01-01
Highlights: • X-ray radiation from relativistic electrons in a polycrystal is described. • Analytical results are found for two models of the polycrystal texture. • Characteristic number of emitted photons for real accelerator is 10 6 s −1 . • Intensity distribution at fixed frequency resembles a set of rings. • Radiation intensities in monocrystals and polycrystals are compared. - Abstract: A theoretical description of parametric X-ray radiation (PXR) from a nanocrystal powder target is presented in terms of the orientation distribution function (ODF). Two models of ODF resulting in the analytical solution for the PXR intensity distribution are used and the characteristic features of this distribution are considered. A promising estimate of the number of the emitted photons is obtained for the case of a nanodiamond powder target using the parameters of ASTA Facility at Fermilab. The PXR spectra from polycrystal and single crystal targets are compared. The application scenarios of PXR from nanocrystals are discussed.
Parametric Design in Timber Gridshell Tectonics
Directory of Open Access Journals (Sweden)
Ismailiyah Al Athas Syarifah
2018-01-01
Full Text Available This paper begins with a simple proposition: rather than mimicking the geometric structures found in nature, perhaps the most effective modes of sustainable fabrication can be found throughunderstanding the nature of materials themselves. The material becomes a design parameter through the constraints of fabrication tools, limitations of material size, and most importantly the productivecapacity of material resistance a given material’s capacity and tendencies to take shape, rather than cutting shape out of material. Gridshell structures provide an intriguing case study to pursue this proposition. Not only is there clear precedent in the form finding experiments of frei Otto and the institute for lightweight structures, but also the very nurbs based tools of current design practices developed from the ability of wood to bend. Taking the bent wood spline quite literally, gridshells provide a means that is at once formally expressive, structurally optimized, materially efficient, and quite simply a delight to experience. The the larger motivation of this work anticipates a parametric system linking the intrinsic material values of the gridshell tectonic with extrinsic criteria such as programmatic needs and environmental response. Through an applied case study of gridshells, the play between form and material is tested out through the author’s own experimentation with gridshells and the pedagogical results of two gridshell studios.The goal of this research is to establish a give and take relationship between top down formal emphasis and a bottom-up material influence.
Parametrizations in scalar-tensor theories of gravity and the limit of general relativity
International Nuclear Information System (INIS)
Järv, L; Kuusk, P; Saal, M; Vilson, O
2014-01-01
We consider a general scalar-tensor theory of gravity and review briefly different forms it can be presented (different conformal frames and scalar field parametrizations). We investigate the conditions under which its field equations and the parametrized post-Newtonian parameters coincide with those of general relativity. We demonstrate that these so-called limits of general relativity are independent of the parametrization of the scalar field, although the transformation between scalar fields may be singular at the corresponding value of the scalar field. In particular, the limit of general relativity can equivalently be determined and investigated in the commonly used Jordan and Einstein frames.
Integrable multi parametric SU(N) chain
International Nuclear Information System (INIS)
Foerster, Angela; Roditi, Itzhak; Rodrigues, Ligia M.C.S.
1996-03-01
We analyse integrable models associated to a multi parametric SU(N) R-matrix. We show that the Hamiltonians describe SU(N) chains with twisted boundary conditions and that the underlying algebraic structure is the multi parametric deformation of SU(N) enlarged by the introduction of a central element. (author). 15 refs
Observation of Parametric Instability in Advanced LIGO.
Evans, Matthew; Gras, Slawek; Fritschel, Peter; Miller, John; Barsotti, Lisa; Martynov, Denis; Brooks, Aidan; Coyne, Dennis; Abbott, Rich; Adhikari, Rana X; Arai, Koji; Bork, Rolf; Kells, Bill; Rollins, Jameson; Smith-Lefebvre, Nicolas; Vajente, Gabriele; Yamamoto, Hiroaki; Adams, Carl; Aston, Stuart; Betzweiser, Joseph; Frolov, Valera; Mullavey, Adam; Pele, Arnaud; Romie, Janeen; Thomas, Michael; Thorne, Keith; Dwyer, Sheila; Izumi, Kiwamu; Kawabe, Keita; Sigg, Daniel; Derosa, Ryan; Effler, Anamaria; Kokeyama, Keiko; Ballmer, Stefan; Massinger, Thomas J; Staley, Alexa; Heinze, Matthew; Mueller, Chris; Grote, Hartmut; Ward, Robert; King, Eleanor; Blair, David; Ju, Li; Zhao, Chunnong
2015-04-24
Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress.
Parametric Methods for Order Tracking Analysis
DEFF Research Database (Denmark)
Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm
2017-01-01
Order tracking analysis is often used to find the critical speeds at which structural resonances are excited by a rotating machine. Typically, order tracking analysis is performed via non-parametric methods. In this report, however, we demonstrate some of the advantages of using a parametric method...
Parametric resonance in neutrino oscillations in matter
Indian Academy of Sciences (India)
Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we ...
On the parametric approximation in quantum optics
Energy Technology Data Exchange (ETDEWEB)
D' Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Pavia Univ. (Italy). Dipt. di Fisica ' Alessandro Volta'
1999-03-01
The authors perform the exact numerical diagonalization of Hamiltonians that describe both degenerate and nondegenerate parametric amplifiers, by exploiting the conservation laws pertaining each device. It is clarify the conditions under which the parametric approximation holds, showing that the most relevant requirements is the coherence of the pump after the interaction, rather than its un depletion.
On the parametric approximation in quantum optics
International Nuclear Information System (INIS)
D'Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F.; Pavia Univ.
1999-01-01
The authors perform the exact numerical diagonalization of Hamiltonians that describe both degenerate and nondegenerate parametric amplifiers, by exploiting the conservation laws pertaining each device. It is clarify the conditions under which the parametric approximation holds, showing that the most relevant requirements is the coherence of the pump after the interaction, rather than its un depletion
Kanda, Hiroyuki; Nakano, Yukari; Terasawa, Yasuo; Morimoto, Takeshi; Fujikado, Takashi
2017-10-01
Objective. Suprachoroidal-transretinal stimulation (STS) is a stimulation method for retinal prostheses. For STS-type retinal prostheses, we developed a new type of stimulating electrode called a femtosecond laser-induced porous electrode (FLiP electrode). To verify the safety of the FLiP electrode for STS, we investigated the characteristics of STS-induced retinal injury. Approach. Sixteen eyes of pigmented rabbits were studied in this in vivo study. For each examined eye, we implanted a single-channel FLiP electrode (diameter, 0.5 mm height, 0.3 mm geometric surface area, 0.43 mm2) in a scleral pocket created at the posterior pole of the eye. A return electrode (diameter, 0.5 mm length, 3 mm) was inserted into the vitreous cavity. The eyes were divided into five groups, and each group was stimulated with a different current intensity. The stimulus intensities and the number of eyes in each group were as follows: 1.0 mA (n = 2), 1.5 mA (n = 3), 2.0 mA (n = 3), 2.5 mA (n = 4), and 3.0 mA (n = 2). Continuous biphasic pulses (0.5 ms/phase) were applied under general anesthesia at a frequency of 20 Hz for 48 h. Fundus photography, fluorescein angiography (FA), and optical coherence tomography were performed before and after applying the electrical stimulation to evaluate the retinal injury. Main results. The 1.0 mA and 1.5 mA groups showed little or no retinal damage. Fluorescent dye leakage in FA and punctate pigmentation in the fundus were observed around the stimulation site with stimulation of 2.0 mA (1/3), 2.5 mA (1/4), and 3.0 mA (2/2). Significance. Our findings indicate that the threshold current for inducing retinal damage is greater than that for eliciting electrical phosphenes (<1 mA) with STS observed in human trials. Therefore, STS by the FLiP electrode is a safe and feasible stimulation method for retinal prostheses as long as it is used with these pulse parameters.
Developing a Parametric Urban Design Tool
DEFF Research Database (Denmark)
Steinø, Nicolai; Obeling, Esben
2014-01-01
Parametric urban design is a potentially powerful tool for collaborative urban design processes. Rather than making one- off designs which need to be redesigned from the ground up in case of changes, parametric design tools make it possible keep the design open while at the same time allowing...... for a level of detailing which is high enough to facilitate an understan- ding of the generic qualities of proposed designs. Starting from a brief overview of parametric design, this paper presents initial findings from the development of a parametric urban design tool with regard to developing a structural...... logic which is flexible and expandable. It then moves on to outline and discuss further development work. Finally, it offers a brief reflection on the potentials and shortcomings of the software – CityEngine – which is used for developing the parametric urban design tool....
Fine features of parametric X-ray radiation by relativistic electrons and ions
Directory of Open Access Journals (Sweden)
K.B. Korotchenko
2017-11-01
Full Text Available In present work within the frame of dynamic theory for parametric X-ray radiation in two-beam approximation we have presented detailed studies on parametric radiation emitted by relativistic both electrons and ions at channeling in crystals that is highly requested at planned experiments. The analysis done has shown that the intensity of radiation at relativistic electron channeling in Si (110 with respect to the conventional parametric radiation intensity has up to 5% uncertainty, while the error of approximate formulas for calculating parametric X-ray radiation maxima does not exceed 1.2%. We have demonstrated that simple expressions for the Fourier components of Si crystal susceptibility χ0 and χgσ could be reduced, as well as the temperature dependence for radiation maxima in Si crystal (diffraction plane (110 within Debye model. Moreover, for any types of channeled ions it is shown that the parametric X-ray radiation intensity is proportional to z2−b(Z,z/z with the function b(Z,z depending on the screening parameter and the ion charge number z=Z−Ze.
CONSTRUCTION THE BRIDGE PIER AS PARAMETRIC OBJECT USING AUTODESK REVIT
Directory of Open Access Journals (Sweden)
K. I. Hladka
2017-08-01
Full Text Available Purpose. The work is aimed to solve the following tasks: 1 to investigate the possibilities of Autodesk Revit to create parametric objects; 2 to create an information model of the bridge pier with the possibility of changing the model size without changing geometry of the object; 3 to trace the complexity and feasibility of using parametric models when designing the elements of bridges. Methodology. The studies were carried out using spatial modeling in the Autodesk Revit system. The ratio of the parameters of the object was set, the relationship between individual geometric elements was determined and the changes that were made to the model with the change of the specified parameters were checked. Findings. Support model of two types has been created: for railway bridges and for road bridges. Both types of models change the dimensions and the number of constituent elements in accordance with the entered parameters. The performed work confirms the possibility of creating information parametric models of complex form and the expediency of using them in the design of bridges and not only. Originality. Creation of information models is a modern and relevant topic. But both in the literature and in Internet resources, parametrization is considered on the example of simple objects. The model proposed in the article consists of several dependent geometric bodies; therefore, it opens the topic of objects parameterization more fully and in detail, in comparison with the existing sources. As for the creation of parametric models of the bridge elements - such information is not found in the literature, that is, it is proposed for the first time. Practical value. Parametrization of spatial models allows significantly to accelerate and simplify the process of designing any objects due to the use of typical parametric models in many projects. Especially it concerns the design of bridges, since the standard elements for them, such as support or span are not
Akbarzade, Marzieh; Ghaemmaghami, Mehrnoush; Yazdanpanahi, Zahra; Zare, Najaf; Mohagheghzadeh, Abdolali; Azizi, Amir
2016-01-01
Perineal pain is a major morbidity in the first few days after delivery. This study aimed to investigate the effect of dry cupping therapy and acupressure at BL23 point on the intensity of postpartum perineal pain based on the short-form of McGill pain questionnaire (SMPQ). The present clinical trial was conducted on 150 subjects in 3 groups of 50 cases. After at least 4-8 hr of delivery, cupping therapy was performed for 15-20 min up to 3 times a week (once a day) and acupressure was performed for 15-20 min based on clockwise model. The short-form of McGill pain questionnaire was completed both before and after the intervention. The SPSS statistical software was used to analyze the data using repeated measures ANOVA. Besides, pcupping therapy group, mean of the perineal pain intensity reduced from 37.5±6.8 before the intervention to 11.1±6.1, 6.9±4.7, and 3.8±3.6 immediately, 24 hr, and 2 weeks after the intervention, respectively. The results of study showed that the differences between the intervention and control groups were statistically significant (pcupping therapy and acupressure reduced perineal pain. Therefore, they may be considered as effective treatments for reducing pain intensity of allowing delivery.
Tokamak transmutation of (nuclear) waste (TTW): Parametric studies
International Nuclear Information System (INIS)
Cheng, E.T.; Krakowski, R.A.; Peng, Y.K.M.
1994-01-01
Radioactive waste generated as part of the commercial-power and defense nuclear programs can be either stored or transmuted. The latter treatment requires a capital-intensive neutron source and is reserved for particularly hazardous and long-lived actinide and fission-product waste. A comparative description of fusion-based transmutation is made on the basis of rudimentary estimates of ergonic performance and transmutation capacities versus inventories for both ultra-low-aspect-ratio (spherical torus, ST) and conversional (aspect-ratio) tokamak fusion-power-core drivers. The parametric systems studies reported herein provides a preamble to more-detailed, cost-based systems analyses
Ionization Cooling using Parametric Resonances
Energy Technology Data Exchange (ETDEWEB)
Johnson, Rolland P.
2008-06-07
Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been
Ionization Cooling using Parametric Resonances
International Nuclear Information System (INIS)
Johnson, Rolland P.
2008-01-01
Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been
Four-Wave Optical Parametric Amplification in a Raman-Active Gas
Directory of Open Access Journals (Sweden)
Yuichiro Kida
2015-08-01
Full Text Available Four-wave optical parametric amplification (FWOPA in a Raman-active medium is experimentally investigated by use of an air-filled hollow fiber. A femtosecond pump pulse shorter than the period of molecular motion excites the coherent molecular motion of the Raman-active molecules during the parametric amplification of a signal pulse. The excited coherent motion modulates the frequency of the signal pulse during the parametric amplification, and shifts it to lower frequencies. The magnitude of the frequency redshift depends on the pump intensity, resulting in intensity-dependent spectral characteristics that are different from those in the FWOPA induced in a noble-gas-filled hollow fiber.
Parametric level correlations in random-matrix models
International Nuclear Information System (INIS)
Weidenmueller, Hans A
2005-01-01
We show that parametric level correlations in random-matrix theories are closely related to a breaking of the symmetry between the advanced and the retarded Green functions. The form of the parametric level correlation function is the same as for the disordered case considered earlier by Simons and Altshuler and is given by the graded trace of the commutator of the saddle-point solution with the particular matrix that describes the symmetry breaking in the actual case of interest. The strength factor differs from the case of disorder. It is determined solely by the Goldstone mode. It is essentially given by the number of levels that are strongly mixed as the external parameter changes. The factor can easily be estimated in applications
Parametric spatiotemporal oscillation in reaction-diffusion systems.
Ghosh, Shyamolina; Ray, Deb Shankar
2016-03-01
We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.
Conformally parametrized surfaces associated with CPN-1 sigma models
International Nuclear Information System (INIS)
Grundland, A M; Hereman, W A; Yurdusen, I-dot
2008-01-01
Two-dimensional parametrized surfaces immersed in the su(N) algebra are investigated. The focus is on surfaces parametrized by solutions of the equations for the CP N-1 sigma model. The Lie-point symmetries of the CP N-1 model are computed for arbitrary N. The Weierstrass formula for immersion is determined and an explicit formula for a moving frame on a surface is constructed. This allows us to determine the structural equations and geometrical properties of surfaces in R N 2 -1 . The fundamental forms, Gaussian and mean curvatures, Willmore functional and topological charge of surfaces are given explicitly in terms of any holomorphic solution of the CP 2 model. The approach is illustrated through several examples, including surfaces immersed in low-dimensional su(N) algebras
Parametric Bayesian Estimation of Differential Entropy and Relative Entropy
Directory of Open Access Journals (Sweden)
Maya Gupta
2010-04-01
Full Text Available Given iid samples drawn from a distribution with known parametric form, we propose the minimization of expected Bregman divergence to form Bayesian estimates of differential entropy and relative entropy, and derive such estimators for the uniform, Gaussian, Wishart, and inverse Wishart distributions. Additionally, formulas are given for a log gamma Bregman divergence and the differential entropy and relative entropy for the Wishart and inverse Wishart. The results, as always with Bayesian estimates, depend on the accuracy of the prior parameters, but example simulations show that the performance can be substantially improved compared to maximum likelihood or state-of-the-art nonparametric estimators.
Linguraru, Marius George; Ayache, Nicholas; Bardinet, Eric; Ballester, Miguel Angel González; Galanaud, Damien; Haïk, Stéphane; Faucheux, Baptiste; Hauw, Jean-Jacques; Cozzone, Patrick; Dormont, Didier; Brandel, Jean-Philippe
2006-08-01
We present a method for the analysis of basal ganglia (including the thalamus) for accurate detection of human spongiform encephalopathy in multisequence magnetic resonance imaging (MRI) of the brain. One common feature of most forms of prion protein diseases is the appearance of hyperintensities in the deep grey matter area of the brain in T2-weighted magnetic resonance (MR) images. We employ T1, T2, and Flair-T2 MR sequences for the detection of intensity deviations in the internal nuclei. First, the MR data are registered to a probabilistic atlas and normalized in intensity. Then smoothing is applied with edge enhancement. The segmentation of hyperintensities is performed using a model of the human visual system. For more accurate results, a priori anatomical data from a segmented atlas are employed to refine the registration and remove false positives. The results are robust over the patient data and in accordance with the clinical ground truth. Our method further allows the quantification of intensity distributions in basal ganglia. The caudate nuclei are highlighted as main areas of diagnosis of sporadic Creutzfeldt-Jakob Disease (sCJD), in agreement with the histological data. The algorithm permitted the classification of the intensities of abnormal signals in sCJD patient FLAIR images with a higher hypersignal in caudate nuclei (10/10) and putamen (6/10) than in thalami. Defining normalized MRI measures of the intensity relations between the internal grey nuclei of patients, we robustly differentiate sCJD and variant CJD (vCJD) patients, in an attempt to create an automatic classification tool of human spongiform encephalopathies.
Controlling flexible rotor vibrations using parametric excitation
Energy Technology Data Exchange (ETDEWEB)
Atepor, L, E-mail: katepor@yahoo.co [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom)
2009-08-01
This paper presents both theoretical and experimental studies of an active vibration controller for vibration in a flexible rotor system. The paper shows that the vibration amplitude can be modified by introducing an axial parametric excitation. The perturbation method of multiple scales is used to solve the equations of motion. The steady-state responses, with and without the parametric excitation terms, is investigated. An experimental test machine uses a piezoelectric exciter mounted on the end of the shaft. The results show a reduction in the rotor response amplitude under principal parametric resonance, and some good correlation between theory and experiment.
Linear Parametric Model Checking of Timed Automata
DEFF Research Database (Denmark)
Hune, Tohmas Seidelin; Romijn, Judi; Stoelinga, Mariëlle
2001-01-01
We present an extension of the model checker Uppaal capable of synthesize linear parameter constraints for the correctness of parametric timed automata. The symbolic representation of the (parametric) state-space is shown to be correct. A second contribution of this paper is the identication...... of a subclass of parametric timed automata (L/U automata), for which the emptiness problem is decidable, contrary to the full class where it is know to be undecidable. Also we present a number of lemmas enabling the verication eort to be reduced for L/U automata in some cases. We illustrate our approach...
A non-parametric Bayesian approach to decompounding from high frequency data
Gugushvili, Shota; van der Meulen, F.H.; Spreij, Peter
2016-01-01
Given a sample from a discretely observed compound Poisson process, we consider non-parametric estimation of the density f0 of its jump sizes, as well as of its intensity λ0. We take a Bayesian approach to the problem and specify the prior on f0 as the Dirichlet location mixture of normal densities.
Parametric optimization of inverse trapezoid oleophobic surfaces
DEFF Research Database (Denmark)
Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin
2012-01-01
In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure...
Parametric decay below the upper hybrid frequency
Energy Technology Data Exchange (ETDEWEB)
Albers, E; Krause, K; Schlueter, H [Bochum Univ. (Germany, F.R.). Inst. fuer Experimentalphysik 2
1977-03-21
Parametric decay of the upper hybrid mode is observed between the electron cyclotron frequency and its first two harmonics. The decay products are identified as electron Bernstein and ion acoustic mode. The diagnostic results confirm the relevant dispersion relations.
Optimal parametric modelling of measured short waves
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
the importance of selecting a suitable sampling interval for better estimates of parametric modelling and also for better statistical representation. Implementation of the above algorithms in a structural monitoring system has the potential advantage of storing...
Robust and Efficient Parametric Face Alignment
Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja
2011-01-01
We propose a correlation-based approach to parametric object alignment particularly suitable for face analysis applications which require efficiency and robustness against occlusions and illumination changes. Our algorithm registers two images by iteratively maximizing their correlation coefficient
Ranking Forestry Investments With Parametric Linear Programming
Paul A. Murphy
1976-01-01
Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.
Parametric resonance in neutrino oscillations in matter
Indian Academy of Sciences (India)
specific phase relationships has an interesting property that it can accumulate if the matter .... In Д 3 we discuss the physical interpretation of the parametric reso- nance in neutrino ..... long-baseline accelerator and reactor experiments [12,29].
Lausch, Anthony; Yeung, Timothy Pok-Chi; Chen, Jeff; Law, Elton; Wang, Yong; Urbini, Benedetta; Donelli, Filippo; Manco, Luigi; Fainardi, Enrico; Lee, Ting-Yim; Wong, Eugene
2017-11-01
Parametric response map (PRM) analysis of functional imaging has been shown to be an effective tool for early prediction of cancer treatment outcomes and may also be well-suited toward guiding personalized adaptive radiotherapy (RT) strategies such as sub-volume boosting. However, the PRM method was primarily designed for analysis of longitudinally acquired pairs of single-parameter image data. The purpose of this study was to demonstrate the feasibility of a generalized parametric response map analysis framework, which enables analysis of multi-parametric data while maintaining the key advantages of the original PRM method. MRI-derived apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) maps acquired at 1 and 3-months post-RT for 19 patients with high-grade glioma were used to demonstrate the algorithm. Images were first co-registered and then standardized using normal tissue image intensity values. Tumor voxels were then plotted in a four-dimensional Cartesian space with coordinate values equal to a voxel's image intensity in each of the image volumes and an origin defined as the multi-parametric mean of normal tissue image intensity values. Voxel positions were orthogonally projected onto a line defined by the origin and a pre-determined response vector. The voxels are subsequently classified as positive, negative or nil, according to whether projected positions along the response vector exceeded a threshold distance from the origin. The response vector was selected by identifying the direction in which the standard deviation of tumor image intensity values was maximally different between responding and non-responding patients within a training dataset. Voxel classifications were visualized via familiar three-class response maps and then the fraction of tumor voxels associated with each of the classes was investigated for predictive utility analogous to the original PRM method. Independent PRM and MPRM analyses of the contrast
Chaotic parametric soliton-like pulses in ferromagnetic-film active ring resonators
International Nuclear Information System (INIS)
Grishin, S. V.; Golova, T. M.; Morozova, M. A.; Romanenko, D. V.; Seleznev, E. P.; Sysoev, I. V.; Sharaevskii, Yu. P.
2015-01-01
The generation of quasi-periodic sequences of parametric soliton-like pulses in an active ring resonator with a ferromagnetic film via the three-wave parametric instability of a magnetostatic surface wave is studied theoretically and experimentally. These dissipative structures form in time due to the competition between the cubic nonlinearity caused by parametric coupling between spin waves and the time dispersion caused by the resonant cavity that is present in a self-oscillatory system. The development of dynamic chaos due to the parametric instability of a magnetostatic surface wave results in irregular behavior of a phase. However, this behavior does not break a quasi-periodic pulse sequence when the gain changes over a wide range. The generated soliton-like pulses have a chaotic nature, which is supported by the maximum Lyapunov exponent estimated from experimental time series
Parametric resonance in an expanding universe
International Nuclear Information System (INIS)
Zlatev, I.; Huey, G.; Steinhardt, P.J.
1998-01-01
Parametric resonance has been discussed as a mechanism for copious particle production following inflation. Here we present a simple and intuitive calculational method for estimating the efficiency of parametric amplification as a function of parameters. This is important for determining whether resonant amplification plays an important role in the reheating process. We find that significant amplification occurs only for a limited range of couplings and interactions. copyright 1998 The American Physical Society
von Hirschhausen, Christian R.; Cullmann, Astrid
2005-01-01
Abstract This paper applies parametric and non-parametric and parametric tests to assess the efficiency of electricity distribution companies in Germany. We address traditional issues in electricity sector benchmarking, such as the role of scale effects and optimal utility size, as well as new evidence specific to the situation in Germany. We use labour, capital, and peak load capacity as inputs, and units sold and the number of customers as output. The data cover 307 (out of 553) ...
DEFF Research Database (Denmark)
Keiding, Tina Bering
2012-01-01
understanding of form per se, or, to use an expression from this text, of form as form. This challenge can be reduced to one question: how can design teaching support students in achieving not only the ability to recognize and describe different form-related concepts in existing design (i.e. analytical...
A convenient analytical form for the triton wave function
International Nuclear Information System (INIS)
Hajduk, C.; Green, A.M.; Sainio, M.E.
1979-01-01
The triton wave function obtained by solving the Faddeev equations with the Reid soft core potential is parametrized in a symmetrized cluster form. As a test the 3 He charge form factor is calculated for the exact and the parametrized wave functions and reasonable agreement between the two is found. (author)
Parametric effects on glass reaction in the unsaturated test method
International Nuclear Information System (INIS)
Woodland, A.B.; Bates, J.K.; Gerding, T.J.
1991-12-01
The Unsaturated Test Method has been applied to study glass reaction under conditions that may be present at the potential Yucca Mountain site, currently under evaluation for storage of reprocessed high-level nuclear waste. The results from five separate sets of parametric experiments are presented wherein test parameters ranging from water contact volume to sensitization of metal in contact with the glass were examined. The most significant effect was observed when the volume of water, as controlled by the water inject volume and interval period, was such to allow exfoliation of reacted glass to occur. The extent of reaction was also influenced to a lesser extent by the degree of sensitization of the 304L stainless steel. For each experiment, the release of cations from the glass and alteration of the glass were examined. The major alteration product is a smectite clay that forms both from precipitation from solution and from in-situ alteration of the glass itself. It is this clay that undergoes exfoliation as water drips from the glass. A comparison is made between the results of the parametric experiments with those of static leach tests. In the static tests the rates of release become progressively reduced through 39 weeks while, in contrast, they remain relatively constant in the parametric experiments for at least 300 weeks. This differing behavior may be attributable to the dripping water environment where fresh water is periodically added and where evaporation can occur
Dual parametrization of generalized parton distributions in two equivalent representations
International Nuclear Information System (INIS)
Müller, D.; Polyakov, M.V.; Semenov-Tian-Shansky, K.M.
2015-01-01
The dual parametrization and the Mellin-Barnes integral approach represent two frameworks for handling the double partial wave expansion of generalized parton distributions (GPDs) in the conformal partial waves and in the t-channel SO(3) partial waves. Within the dual parametrization framework, GPDs are represented as integral convolutions of forward-like functions whose Mellin moments generate the conformal moments of GPDs. The Mellin-Barnes integral approach is based on the analytic continuation of the GPD conformal moments to the complex values of the conformal spin. GPDs are then represented as the Mellin-Barnes-type integrals in the complex conformal spin plane. In this paper we explicitly show the equivalence of these two independently developed GPD representations. Furthermore, we clarify the notions of the J=0 fixed pole and the D-form factor. We also provide some insight into GPD modeling and map the phenomenologically successful Kumerički-Müller GPD model to the dual parametrization framework by presenting the set of the corresponding forward-like functions. We also build up the reparametrization procedure allowing to recast the double distribution representation of GPDs in the Mellin-Barnes integral framework and present the explicit formula for mapping double distributions into the space of double partial wave amplitudes with complex conformal spin.
International Nuclear Information System (INIS)
Greben, J.M.
1982-04-01
Nucleon-trinucleon overlap functions in 4 He have been parametrized as a sum of exponentials, and are fitted to the charge form factor of 4 He. We present results with and without taking account of meson-exchange corrections
Efficient primary and parametric resonance excitation of bistable resonators
Ramini, Abdallah
2016-09-12
We experimentally demonstrate an efficient approach to excite primary and parametric (up to the 4th) resonance of Microelectromechanical system MEMS arch resonators with large vibrational amplitudes. A single crystal silicon in-plane arch microbeam is fabricated such that it can be excited axially from one of its ends by a parallel-plate electrode. Its micro/nano scale vibrations are transduced using a high speed camera. Through the parallel-plate electrode, a time varying electrostatic force is applied, which is converted into a time varying axial force that modulates dynamically the stiffness of the arch resonator. Due to the initial curvature of the structure, not only parametric excitation is induced, but also primary resonance. Experimental investigation is conducted comparing the response of the arch near primary resonance using the axial excitation to that of a classical parallel-plate actuation where the arch itself forms an electrode. The results show that the axial excitation can be more efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting the structure from pull-in. In addition to primary resonance, parametrical resonances are demonstrated at twice, one-half, and two-thirds the primary resonance frequency. The ability to actuate primary and/or parametric resonances can serve various applications, such as for resonator based logic and memory devices. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
A new simple form of quark mixing matrix
Energy Technology Data Exchange (ETDEWEB)
Qin Nan [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Ma Boqiang, E-mail: mabq@pku.edu.c [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Center for High Energy Physics, Peking University, Beijing 100871 (China)
2011-01-10
Although different parametrizations of quark mixing matrix are mathematically equivalent, the consequences of experimental analysis may be distinct. Based on the triminimal expansion of Kobayashi-Maskawa matrix around the unit matrix, we propose a new simple parametrization. Compared with the Wolfenstein parametrization, we find that the new form is not only consistent with the original one in the hierarchical structure, but also more convenient for numerical analysis and measurement of the CP-violating phase. By discussing the relation between our new form and the unitarity boomerang, we point out that along with the unitarity boomerang, this new parametrization is useful in hunting for new physics.
A new simple form of quark mixing matrix
International Nuclear Information System (INIS)
Qin Nan; Ma Boqiang
2011-01-01
Although different parametrizations of quark mixing matrix are mathematically equivalent, the consequences of experimental analysis may be distinct. Based on the triminimal expansion of Kobayashi-Maskawa matrix around the unit matrix, we propose a new simple parametrization. Compared with the Wolfenstein parametrization, we find that the new form is not only consistent with the original one in the hierarchical structure, but also more convenient for numerical analysis and measurement of the CP-violating phase. By discussing the relation between our new form and the unitarity boomerang, we point out that along with the unitarity boomerang, this new parametrization is useful in hunting for new physics.
Assessing pupil and school performance by non-parametric and parametric techniques
de Witte, K.; Thanassoulis, E.; Simpson, G.; Battisti, G.; Charlesworth-May, A.
2010-01-01
This paper discusses the use of the non-parametric free disposal hull (FDH) and the parametric multi-level model (MLM) as alternative methods for measuring pupil and school attainment where hierarchical structured data are available. Using robust FDH estimates, we show how to decompose the overall
Verrelst, Jochem; Rivera, Juan Pablo; Veroustraete, Frank; Muñoz-Marí, Jordi; Clevers, J.G.P.W.; Camps-Valls, Gustau; Moreno, José
2015-01-01
Given the forthcoming availability of Sentinel-2 (S2) images, this paper provides a systematic comparison of retrieval accuracy and processing speed of a multitude of parametric, non-parametric and physically-based retrieval methods using simulated S2 data. An experimental field dataset (SPARC),
Displacement of microwave squeezed states with Josephson parametric amplifiers
Energy Technology Data Exchange (ETDEWEB)
Zhong, Ling; Baust, Alexander; Xie, Edwar; Schwarz, Manuel; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Fedorov, Kirill; Menzel, Edwin; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Betzenbichler, Martin; Pogorzalek, Stefan; Haeberlein, Max; Eder, Peter; Goetz, Jan; Wulschner, Karl Friedrich; Huebl, Hans; Deppe, Frank [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany)
2015-07-01
Propagating quantum microwaves are promising building blocks for quantum communication. Interestingly, such itinerant quantum microwaves can be generated in the form of squeezed photon states by Josephson parametric amplifiers (JPA). We employ a specific ''dual-path'' setup for both state reconstruction and JPA characterization. Displacement operations are performed by using a directional coupler after the squeezing. We compare our results with theory predictions. In particular, we discuss our experiments in the context of remote state preparation and quantum teleportation with propagating microwaves.
Parametric interaction of waves in the plasma with random large-scale inhomogeneities
International Nuclear Information System (INIS)
Abramovich, B.S.; Tamojkin, V.V.
1980-01-01
Parametric processes of the decay and fusion of three waves in a weakly turbulent plasma with random inhomogeneities, the size of which is too big as compared with wave-lengths are considered. Under the diffusive approximation applicability closed equations are obtained, which determine the behaviour of all the intensity moments of parametrically bound waves. It is shown that under the conditions when the characteristic length of the multiple scattering is considerably less than the nonlinear interaction, length the effective increment of average intensity increase and its moments at dissociation processes is too small as compared with the homogeneous plasma case. At fusion processes the same increment (decrement) determines the distance at which all intensity moments are in the saturation regime
Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt
International Nuclear Information System (INIS)
Zhang Wei; Yao Minghui
2006-01-01
In this paper, the Shilnikov type multi-pulse orbits and chaotic dynamics of parametrically excited viscoelastic moving belt are studied in detail. Using Kelvin-type viscoelastic constitutive law, the equations of motion for viscoelastic moving belt with the external damping and parametric excitation are given. The four-dimensional averaged equation under the case of primary parametric resonance is obtained by directly using the method of multiple scales and Galerkin's approach to the partial differential governing equation of viscoelastic moving belt. From the averaged equations obtained here, the theory of normal form is used to give the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on normal form, the energy-phrase method is employed to analyze the global bifurcations and chaotic dynamics in parametrically excited viscoelastic moving belt. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type multi-pulse homoclinic orbits in the averaged equation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense in parametrically excited viscoelastic moving belt. The chaotic motions of viscoelastic moving belts are also found by using numerical simulation. A new phenomenon on the multi-pulse jumping orbits is observed from three-dimensional phase space
Parametric pendulum based wave energy converter
Yurchenko, Daniil; Alevras, Panagiotis
2018-01-01
The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.
Parametric Conversion Using Custom MOS Varactors
Directory of Open Access Journals (Sweden)
Iniewski Krzysztof (Kris
2006-01-01
Full Text Available The possible role of customized MOS varactors in amplification, mixing, and frequency control of future millimeter wave CMOS RFICs is outlined. First, the parametric conversion concept is revisited and discussed in terms of modern RF communications systems. Second, the modeling, design, and optimization of MOS varactors are reconsidered in the context of their central role in parametric circuits. Third, a balanced varactor structure is proposed for robust oscillator frequency control in the presence of large extrinsic noise expected in tightly integrated wireless communicators. Main points include the proposal of a subharmonic pumping scheme based on the MOS varactor, a nonequilibrium elastance-voltage model, optimal varactor layout suggestions, custom m-CMOS varactor design and measurement, device-level balanced varactor simulations, and parametric circuit evaluation based on measured device characteristics.
Piezoelectric energy harvesting with parametric uncertainty
International Nuclear Information System (INIS)
Ali, S F; Friswell, M I; Adhikari, S
2010-01-01
The design and analysis of energy harvesting devices is becoming increasing important in recent years. Most of the literature has focused on the deterministic analysis of these systems and the problem of uncertain parameters has received less attention. Energy harvesting devices exhibit parametric uncertainty due to errors in measurement, errors in modelling and variability in the parameters during manufacture. This paper investigates the effect of parametric uncertainty in the mechanical system on the harvested power, and derives approximate explicit formulae for the optimal electrical parameters that maximize the mean harvested power. The maximum of the mean harvested power decreases with increasing uncertainty, and the optimal frequency at which the maximum mean power occurs shifts. The effect of the parameter variance on the optimal electrical time constant and optimal coupling coefficient are reported. Monte Carlo based simulation results are used to further analyse the system under parametric uncertainty
Parametric analysis of ATM solar array.
Singh, B. K.; Adkisson, W. B.
1973-01-01
The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.
Nonlinear dynamics of parametrically driven particles in a Φ6 potential
International Nuclear Information System (INIS)
Tchawoua, C; Siewe Siewe, M; Tchatchueng, S; Moukam Kakmeni, F M
2008-01-01
A general parametrically excited mechanical system is considered. Approximate solutions are determined by applying the method of multiple time scales. It is shown that only combination parametric resonance of the additive type is possible for the system examined. For this case, the existence and stability properties of the fixed points of the averaged equations corresponding to the nontrivial periodic solutions of the original system are investigated. Thus, emphasis is placed on understanding the chaotic behaviour of the extended Duffing oscillator in the Φ 6 potential under parametric excitation for a specific parameter choice. From the Melnikov-type technique, we obtain the conditions for the existence of homoclinic or heteroclinic bifurcation. Our analysis is carried out in the case of a triple well with a double hump which does not lead to unbounded motion; this analysis is complemented by numerical simulations from which we illustrate the fractality of the basins of attraction. The results show that the threshold amplitude of parametric excitation moves upwards as the parametric intensity increases. Numerical simulations including bifurcation diagrams, Lyapunov exponents, phase portraits and Poincaré maps are shown
Parametric Landau damping of space charge modes
Energy Technology Data Exchange (ETDEWEB)
Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab
2016-09-23
Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.
Parametric number covariance in quantum chaotic spectra.
Vinayak; Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.
Parametric frequency conversion in long Josephson junctions
International Nuclear Information System (INIS)
Irie, F.; Ashihara, S.; Yoshida, K.
1976-01-01
Current steps at voltages corresponding to the parametric coupling between an applied r.f. field and junction resonant modes have been observed in long Josephson tunnel junctions in the flux-flow state. The observed periodic variations of the step height due to the applied magnetic field are explained quantitatively by a perturbational analysis using Josephson phase equations. The present study demonstrates that the moving vortex array can serve as a coherent pump wave for signal waves propagating in the barrier region, which indicates, as a result, the possibility of traveling-wave parametric devices with long Josephson tunnel junctions. (author)
Non-parametric system identification from non-linear stochastic response
DEFF Research Database (Denmark)
Rüdinger, Finn; Krenk, Steen
2001-01-01
An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable...... of the energy at mean-level crossings, which yields the damping relative to white noise intensity. Finally, an estimate of the noise intensity is extracted by estimating the absolute damping from the autocovariance functions of a set of modified phase plane variables at different energy levels. The method...
García-Hermoso, A; Cerrillo-Urbina, A J; Herrera-Valenzuela, T; Cristi-Montero, C; Saavedra, J M; Martínez-Vizcaíno, V
2016-06-01
The scientific interest in high-intensity interval training (HIIT) has greatly increased during recent years. The objective of this meta-analysis was to determine the effectiveness of HIIT interventions on cardio-metabolic risk factors and aerobic capacity in overweight and obese youth, in comparison with other forms of exercise. A computerized search was made using seven databases. The analysis was restricted to studies that examined the effect of HIIT interventions on cardio-metabolic and/or aerobic capacity in pediatric obesity (6-17 years old). Nine studies using HIIT interventions were selected (n = 274). Standarized mean difference (SMD) and 95% confidence intervals were calculated. The DerSimonian-Laird approach was used. HIIT interventions (4-12 week duration) produced larger decreases in systolic blood pressure (SMD = 0.39; -3.63 mmHg) and greater increases in maximum oxygen uptake (SMD = 0.59; 1.92 ml/kg/min) than other forms of exercise. Also, type of comparison exercise group and duration of study were moderators. HIIT could be considered a more effective and time-efficient intervention for improving blood pressure and aerobic capacity levels in obese youth in comparison to other types of exercise. © 2016 World Obesity. © 2016 World Obesity.
MRI intensity inhomogeneity correction by combining intensity and spatial information
International Nuclear Information System (INIS)
Vovk, Uros; Pernus, Franjo; Likar, Bostjan
2004-01-01
We propose a novel fully automated method for retrospective correction of intensity inhomogeneity, which is an undesired phenomenon in many automatic image analysis tasks, especially if quantitative analysis is the final goal. Besides most commonly used intensity features, additional spatial image features are incorporated to improve inhomogeneity correction and to make it more dynamic, so that local intensity variations can be corrected more efficiently. The proposed method is a four-step iterative procedure in which a non-parametric inhomogeneity correction is conducted. First, the probability distribution of image intensities and corresponding second derivatives is obtained. Second, intensity correction forces, condensing the probability distribution along the intensity feature, are computed for each voxel. Third, the inhomogeneity correction field is estimated by regularization of all voxel forces, and fourth, the corresponding partial inhomogeneity correction is performed. The degree of inhomogeneity correction dynamics is determined by the size of regularization kernel. The method was qualitatively and quantitatively evaluated on simulated and real MR brain images. The obtained results show that the proposed method does not corrupt inhomogeneity-free images and successfully corrects intensity inhomogeneity artefacts even if these are more dynamic
Using Parametrics to Facilitate Collaborative Urban Design
DEFF Research Database (Denmark)
Steinø, Nicolai; Benbih, Karima; Obeling, Esben
2013-01-01
in the context of the urban South which is characterized by high urban growth rates, weak planning systems and modest means. The current state of planning and urban development in Morocco is introduced as a context for discussing collaborative urban design and parametric urban design, and some tentative...
Parametric Architectural Design with Point-clouds
DEFF Research Database (Denmark)
Zwierzycki, Mateusz; Evers, Henrik Leander; Tamke, Martin
2016-01-01
This paper investigates the efforts and benefits of the implementation of point clouds into architectural design processes and tools. Based on a study on the principal work processes of designers with point clouds the prototypical plugin/library - Volvox - was developed for the parametric modelling...
Global chaos synchronization of coupled parametrically excited ...
Indian Academy of Sciences (India)
In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which ...
Interdisciplinary parametric design : The XXL experience
Turrin, M.; Sariyildiz, I.S.; Paul, J.C.
2015-01-01
Focusing on large span structures for sport buildings, the paper tackles the role of parametric modelling and performance simulations, to enhance the integration between architectural and engineering design. The general approach contrasts post-engineering processes. In post-engineering, technical
The parametrized simulation of electromagnetic showers
International Nuclear Information System (INIS)
Peters, S.
1992-09-01
The simulation of electromagnetic showers in calorimeters by detailed tracking of all secondary particles is extremely computer time consuming. Without loosing considerably in precision, the use of parametrizations for global shower properties may reduce the computing time by factors of 10 1 to 10 4 , depending on the energy, the degree of parametrization, and the complexity in the material description and the cut off energies in the detailed simulation. To arrive at a high degree of universality, parametrizations of individual electromagnetic showers in homogeneous media are developed, taking the dependence of the shower development on the material into account. In sampling calorimeters, the inhomogeneous material distribution leads to additional effects which can be taken into account by geometry dependent terms in the parametrization of the longitudinal and radial energy density distributions. Comparisons with detailed simulations of homogeneous and sampling calorimeters show very good agreement in the fluctuations, correlations, and signal averages of spatial energy distributions. Verifications of the algorithms for the simulation of the H1 detector are performed using calorimeter test data for different moduls of the H1 liquid argon calorimeter. Special attention has been paid to electron pion separation, which is of great importance for physics analysis. (orig.) [de
Narrow linewidth pulsed optical parametric oscillator
Indian Academy of Sciences (India)
Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grating and etalon in combination, grazing angle of incidence, entangled cavity ...
Consequences of hadron-nucleus multiplicity parametrization
International Nuclear Information System (INIS)
Singh, C.P.; Shyam, M.
1986-01-01
Some interesting consequences are analyzed of a new parametrization for the hadron-nucleus multiplicity distributions and they are compared with the experimental data. Further, it is illustrated how the scaling property for the average multiplicity will be modified and it is found that the experimental data support this behaviour. (orig.)
Parametric studies of tandem mirror reactors
International Nuclear Information System (INIS)
Carlson, G.A.; Boghosian, B.M.; Fink, J.H.; Myall, J.O.; Neef, W.S. Jr.
1979-01-01
This report, along with its companion, An Improved Tandem Mirror Reactor, discusses the recent progress and present status of our tandem mirror reactor studies. This report presents the detailed results of parametric studies up to, but not including, the very new ideas involving thermal barriers
Probabilistic Reachability for Parametric Markov Models
DEFF Research Database (Denmark)
Hahn, Ernst Moritz; Hermanns, Holger; Zhang, Lijun
2011-01-01
Given a parametric Markov model, we consider the problem of computing the rational function expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression...
Non-Parametric Estimation of Correlation Functions
DEFF Research Database (Denmark)
Brincker, Rune; Rytter, Anders; Krenk, Steen
In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are point...
A parametric reconstruction of the deceleration parameter
Energy Technology Data Exchange (ETDEWEB)
Al Mamon, Abdulla [Manipal University, Manipal Centre for Natural Sciences, Manipal (India); Visva-Bharati, Department of Physics, Santiniketan (India); Das, Sudipta [Visva-Bharati, Department of Physics, Santiniketan (India)
2017-07-15
The present work is based on a parametric reconstruction of the deceleration parameter q(z) in a model for the spatially flat FRW universe filled with dark energy and non-relativistic matter. In cosmology, the parametric reconstruction technique deals with an attempt to build up a model by choosing some specific evolution scenario for a cosmological parameter and then estimate the values of the parameters with the help of different observational datasets. In this paper, we have proposed a logarithmic parametrization of q(z) to probe the evolution history of the universe. Using the type Ia supernova, baryon acoustic oscillation and the cosmic microwave background datasets, the constraints on the arbitrary model parameters q{sub 0} and q{sub 1} are obtained (within 1σ and 2σ confidence limits) by χ{sup 2}-minimization technique. We have then reconstructed the deceleration parameter, the total EoS parameter ω{sub tot}, the jerk parameter and have compared the reconstructed results of q(z) with other well-known parametrizations of q(z). We have also shown that two model selection criteria (namely, the Akaike information criterion and Bayesian information criterion) provide a clear indication that our reconstructed model is well consistent with other popular models. (orig.)
Parametric Primitives for Hand Gesture Recognition
DEFF Research Database (Denmark)
Baby, Sanmohan; Krüger, Volker
2009-01-01
Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding...
Parametric Transverse Patterns in Broad Aperture Lasers
DEFF Research Database (Denmark)
Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik
1998-01-01
Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...... on the geometrical size of the system is demonstrated even in the case of large-scale systems....
R. Jason Faberman
2014-01-01
To hire new workers, employers use a variety of recruiting methods in addition to posting a vacancy announcement. The intensity with which employers use these alternative methods can vary widely with a firm’s performance and with the business cycle. In fact, persistently low recruiting intensity helps to explain the sluggish pace of US job growth following the Great Recession.
Stochastic stability of mechanical systems under renewal jump process parametric excitation
DEFF Research Database (Denmark)
Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther
2005-01-01
A dynamic system under parametric excitation in the form of a non-Erlang renewal jump process is considered. The excitation is a random train of nonoverlapping rectangular pulses with equal, deterministic heights. The time intervals between two consecutive jumps up (or down), are the sum of two...
Electroweak form factors of the Skyrmion
International Nuclear Information System (INIS)
Braaten, E.; Sze-Man Tse; Willcox, C.
1986-01-01
The electroweak form factors of baryons are studied in the semiclassical approximation to the Skyrme model. General expressions for the form factors are given for arbitrary choices of the Skyrme-model Lagrangian. They are applied to the original two-parameter Skyrme model to compute the electric, magnetic, and axial-vector form factors of the nucleon and the electromagnetic nucleon-Δ transition form factors. The dependence of the form factors on the momentum transfer is compared with phenomenological dipole parametrizations
Parametric instabilities in magnetized bi-ion and dusty plasmas
Indian Academy of Sciences (India)
-ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and parametrically excited transverse modes propagating along the magnetic field are found.
Hyperbolic and semi-parametric models in finance
Bingham, N. H.; Kiesel, Rüdiger
2001-02-01
The benchmark Black-Scholes-Merton model of mathematical finance is parametric, based on the normal/Gaussian distribution. Its principal parametric competitor, the hyperbolic model of Barndorff-Nielsen, Eberlein and others, is briefly discussed. Our main theme is the use of semi-parametric models, incorporating the mean vector and covariance matrix as in the Markowitz approach, plus a non-parametric part, a scalar function incorporating features such as tail-decay. Implementation is also briefly discussed.
Stable integrated hyper-parametric oscillator based on coupled optical microcavities.
Armaroli, Andrea; Feron, Patrice; Dumeige, Yannick
2015-12-01
We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.
Fault detection and isolation in systems with parametric faults
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, Hans Henrik
1999-01-01
The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...
Parametric Audio Based Decoder and Music Synthesizer for Mobile Applications
Oomen, A.W.J.; Szczerba, M.Z.; Therssen, D.
2011-01-01
This paper reviews parametric audio coders and discusses novel technologies introduced in a low-complexity, low-power consumption audiodecoder and music synthesizer platform developed by the authors. Thedecoder uses parametric coding scheme based on the MPEG-4 Parametric Audio standard. In order to
Energy Technology Data Exchange (ETDEWEB)
Kim, Mimi [Hanyang University College of Medicine, Department of Radiology, Hanyang Medical Center, Seoul (Korea, Republic of); Jang, Kyung Mi [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Jae-Hun; Jeong, Woo Kyoung; Kim, Seong Hyun; Kang, Tae Wook; Kim, Young Kon; Cha, Dong Ik [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Kyunga [Samsung Medical Center, Biostatics and Clinical Epidemiology Center, Research Institute for Future Medicine, Seoul (Korea, Republic of)
2017-04-15
To evaluate the value of dynamic enhancement patterns on contrast-enhanced MR images by adding signal intensity colour mapping (SICM) to differentiate mass-forming focal pancreatitis (MFFP) from pancreatic ductal adenocarcinoma (PDAC). Forty-one clinicopathologically proven MFFPs and 144 surgically confirmed PDACs were enrolled. Laboratory and MR imaging parameters were used to differentiate MFFP from PDAC. In particular, enhancement patterns on MR images adding SICM were evaluated. By using classification tree analysis (CTA), we determined the predictors for the differentiation of MFFP from PDAC. In the CTA, with all parameters except enhancement pattern on SICM images, ductal obstruction grade and T1 hypointensity grade of the pancreatic lesion were the first and second splitting predictor for differentiation of MFFP from PDAC, in order. By adding an enhancement pattern on the SICM images to CTA, the enhancement pattern was the only splitting predictor to differentiate MFFP from PDAC. The CTA model including enhancement pattern on SICM images has sensitivity of 78.0 %, specificity of 99.3 %, and accuracy of 94.6 % for differentiating MFFP from PDAC. The characterization of enhancement pattern for pancreatic lesions on contrast-enhanced MR images adding SICM would be helpful to differentiate MFFP from PDAC. (orig.)
Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems
DEFF Research Database (Denmark)
Christensen, Rene Hardam; Santos, Ilmar
2003-01-01
of modes. The designed control scheme is applied to a coupled rotor-blade system and dynamic responses are numerically evaluated. Such responses show that the vibrations are efficiently reduced. Frequency response diagrams demonstrate that both basis and parametric vibration modes are significantly...... the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...
Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data.
Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao
2013-01-01
Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.
Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach
Boiko, Igor
2013-01-01
The relay feedback test (RFT) has become a popular and efficient tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text. Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...
DEFF Research Database (Denmark)
Crocker, Malcolm J.; Jacobsen, Finn
1998-01-01
This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....
DEFF Research Database (Denmark)
Crocker, M.J.; Jacobsen, Finn
1997-01-01
This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....
Parametric Study Of Window Frame Geometry
DEFF Research Database (Denmark)
Zajas, Jan Jakub; Heiselberg, Per
2013-01-01
This paper describes a parametric study on window frame geometry with the goal of designing frames with very good thermal properties. Three different parametric frame models are introduced, deseribed by a number of variables. In the first part of the study, a process of sensitivity analysis...... is conducted to determine which of the parameters describing the frame have the highest impact on its thermal performance. Afterwards, an optimization process is conducted on each frame in order to optimize the design with regard to three objectives: minimizing the thermal transmittance, maxim izing the net...... energy gain factor and minimizing the material use. Since the objectives contradiet each other, it was found that it is not possible to identifY a single solution that satisfies all these goals. lnstead, a compromise between the objectives has to be found....
Parametric structural modeling of insect wings
International Nuclear Information System (INIS)
Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R
2009-01-01
Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.
Casas-Ibarra parametrization and leptogenesis
International Nuclear Information System (INIS)
Xing Zhizhong
2010-01-01
The Casas-Ibarra parametrization is a description of the Dirac neutrino mass matrix M D in terms of the neutrino mixing matrix V, an orthogonal matrix O and the diagonal mass matrices of light and heavy Majorana neutrinos in the type-I seesaw mechanism. Because M D + M D is apparently independent of V but dependent on O in this parametrization, a number of authors have claimed that unflavored leptogenesis has nothing to do with CP violation at low energies. Here we question this logic by clarifying the physical meaning of O. We establish a clear relationship between O and the observable quantities, and find that O does depend on V. We show that both unflavored leptogenesis and flavored leptogenesis have no direct connection with low-energy CP violation. (authors)
Rayleigh-type parametric chemical oscillation
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Rayleigh-type parametric chemical oscillation.
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Parametric instability in GEO 600 interferometer
International Nuclear Information System (INIS)
Gurkovsky, A.G.; Vyatchanin, S.P.
2007-01-01
We present analysis of undesirable effect of parametric instability in signal recycled GEO 600 interferometer. The basis for this effect is provided by excitation of additional (Stokes) optical mode, having frequency ω 1 , and mirror elastic mode, having frequency ω m , when the optical energy stored in the main FP cavity mode, having frequency ω 0 , exceeds a certain threshold and detuning Δ=ω 0 -ω 1 -ω m is small. We discuss the potential of observing parametric instability and its precursors in GEO 600 interferometer. This approach provides the best option to get familiar with this phenomenon, to develop experimental methods to depress it and to test the effectiveness of these methods in situ
Lang, T; Harth, A; Matyschok, J; Binhammer, T; Schultze, M; Morgner, U
2013-01-14
A 2 + 1 dimensional nonlinear pulse propagation model is presented, illustrating the weighting of different effects for the parametric amplification of ultra-broadband spectra in different regimes of energy scaling. Typical features in the distribution of intensity and phase of state-of-the-art OPA-systems can be understood by cascaded spatial and temporal effects.
Parametric Immunization in Bond Portfolio Management
Bravo, Jorge; Fonseca, José
2012-01-01
In this paper, we evaluate the relative immunization performance of the multifactor parametric interest rate risk model based on the Nelson-Siegel-Svensson specification of the yield curve with that of standard benchmark investment strategies, using European Central Bank yield curve data in the period between January 3, 2005 and December 31, 2011. In addition, we examine the role of portfolio design in the success of immunization strategies, particularly the role of the maturit...
Parametric study of laser photovoltaic energy converters
Walker, G. H.; Heinbockel, J. H.
1987-01-01
Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.
Acoustic parametric pumping of spin waves
Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.
2014-11-01
Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.
Acoustic parametric pumping of spin waves
Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.
2013-01-01
Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.
Multidimensional Scaling Visualization using Parametric Similarity Indices
Machado, J. A. Tenreiro; Lopes, António M.; Galhano, A.M.
2015-01-01
In this paper, we apply multidimensional scaling (MDS) and parametric similarity indices (PSI) in the analysis of complex systems (CS). Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, an...
On Algebraic Approach for MSD Parametric Estimation
Oueslati , Marouene; Thiery , Stéphane; Gibaru , Olivier; Béarée , Richard; Moraru , George
2011-01-01
This article address the identification problem of the natural frequency and the damping ratio of a second order continuous system where the input is a sinusoidal signal. An algebra based approach for identifying parameters of a Mass Spring Damper (MSD) system is proposed and compared to the Kalman-Bucy filter. The proposed estimator uses the algebraic parametric method in the frequency domain yielding exact formula, when placed in the time domain to identify the unknown parameters. We focus ...
Supercritical nonlinear parametric dynamics of Timoshenko microbeams
Farokhi, Hamed; Ghayesh, Mergen H.
2018-06-01
The nonlinear supercritical parametric dynamics of a Timoshenko microbeam subject to an axial harmonic excitation force is examined theoretically, by means of different numerical techniques, and employing a high-dimensional analysis. The time-variant axial load is assumed to consist of a mean value along with harmonic fluctuations. In terms of modelling, a continuous expression for the elastic potential energy of the system is developed based on the modified couple stress theory, taking into account small-size effects; the kinetic energy of the system is also modelled as a continuous function of the displacement field. Hamilton's principle is employed to balance the energies and to obtain the continuous model of the system. Employing the Galerkin scheme along with an assumed-mode technique, the energy terms are reduced, yielding a second-order reduced-order model with finite number of degrees of freedom. A transformation is carried out to convert the second-order reduced-order model into a double-dimensional first order one. A bifurcation analysis is performed for the system in the absence of the axial load fluctuations. Moreover, a mean value for the axial load is selected in the supercritical range, and the principal parametric resonant response, due to the time-variant component of the axial load, is obtained - as opposed to transversely excited systems, for parametrically excited system (such as our problem here), the nonlinear resonance occurs in the vicinity of twice any natural frequency of the linear system; this is accomplished via use of the pseudo-arclength continuation technique, a direct time integration, an eigenvalue analysis, and the Floquet theory for stability. The natural frequencies of the system prior to and beyond buckling are also determined. Moreover, the effect of different system parameters on the nonlinear supercritical parametric dynamics of the system is analysed, with special consideration to the effect of the length-scale parameter.
Quantum theory of novel parametric devices
International Nuclear Information System (INIS)
Drummond, P.D.; Reid, M.D.; Dechoum, K.; Chaturvedi, S.; Olsen, M.; Kheruntsyan, K.; Bradley, A.
2005-01-01
While the parametric amplifier is a widely used and important source of entangled and squeezed photons, there are many possible ways to investigate the physics of intracavity parametric devices. Novel quantum theory of parametric devices in this talk will cover several new types of unconventional devices, including the following topics:- Critical intracavity paramp - We calculate intrinsic limits to entanglement of a quantum paramp, caused by nonlinear effects originating in phase noise of the pump. - Degenerate planar paramp - We obtain universal quantum critical fluctuations in a planar paramp device by mapping to the equations of magnetic Lifshitz points Nondegenerate planar paramp - The Mermin-Wagner theorem is used to demonstrate that there is no phase transition in the case of a nondegenerate planar device - Coupled channel paramp - A robust and novel integrated entanglement source can be generated using type I waveguides coupled inside a cavity to generate spatial entanglement - Cascade paramps - This possible 'GHZ-type' source is obtained by cascading successive down conversion crystals inside the same cavity, giving two thresholds Parallel paramps - Tripartite entanglement can be generated if three intracavity paramp crystals are operated in parallel, each idler mode acting as a signal for the next. Finally, we briefly treat the relevant experimental developments. (author)
Parametric Architecture in the Urban Space
Januszkiewicz, Krystyna; Kowalski, Karol G.
2017-10-01
The paper deals with the parametric architecture which is trying to introduce a new spatial language in the context for urban tissue that correspond to the artistic consciousness and the attitude of information and digital technologies era. The first part of the paper defines the main features of parametric architecture (such as: folding, continuity and curvilinearity) which are are characteristic of the new style of named the “parametricism”. This architecture is a strong emphasis on geometry, materiality, feasibility and sustainability, what emerges is an explicit agenda promoting material ornamentation, spatial spectacle and formal theatricality. The second part presents result of case study, especially parametric public use buildings, within the tissue of city. The analyzed objects are: The Sage Gateshead (1998-2004) in Gateshead, Kunsthaus in Graz (2000-2003), the Weltstadthaus (2003-2005) in Cologne, The Golden Terraces in Warsaw (2000-2007), the Metropol Parasol in Seville (2005-2011) the King Cross Station (2005-2012) in London, the headquarters of the Pathé Foundation (2006-2014) in Paris. Each of the enumerated examples shows a diverse approach to designing in the urban space, which reflect the age of digital technologies and the information society. In conclusion emphasizes, that new concept of the spatialization of architecture is the equivalent of the democratization of the political system, the liberalization of the economy, among other examples.
Sgr A* Emission Parametrizations from GRMHD Simulations
Anantua, Richard; Ressler, Sean; Quataert, Eliot
2018-06-01
Galactic Center emission near the vicinity of the central black hole, Sagittarius (Sgr) A*, is modeled using parametrizations involving the electron temperature, which is found from general relativistic magnetohydrodynamic (GRMHD) simulations to be highest in the disk-outflow corona. Jet-motivated prescriptions generalizing equipartition of particle and magnetic energies, e.g., by scaling relativistic electron energy density to powers of the magnetic field strength, are also introduced. GRMHD jet (or outflow)/accretion disk/black hole (JAB) simulation postprocessing codes IBOTHROS and GRMONTY are employed in the calculation of images and spectra. Various parametric models reproduce spectral and morphological features, such as the sub-mm spectral bump in electron temperature models and asymmetric photon rings in equipartition-based models. The Event Horizon Telescope (EHT) will provide unprecedentedly high-resolution 230+ GHz observations of the "shadow" around Sgr A*'s supermassive black hole, which the synthetic models presented here will reverse-engineer. Both electron temperature and equipartition-based models can be constructed to be compatible with EHT size constraints for the emitting region of Sgr A*. This program sets the groundwork for devising a unified emission parametrization flexible enough to model disk, corona and outflow/jet regions with a small set of parameters including electron heating fraction and plasma beta.
Parametric Cost Models for Space Telescopes
Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney
2010-01-01
Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.
Parametric cost models for space telescopes
Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtnay
2017-11-01
Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.
Nonscaling parametrization of hadronic spectra and dual parton model
International Nuclear Information System (INIS)
Gaponenko, O.N.
2001-01-01
Using the popular Wdowczyk-Wolfendale parametrization (WW-parametrization) as an example one studies restrictions imposed by a dual parton model for different nonscaling parametrizations of the pulsed hadron spectra in soft hadron-hadron and hadron-nuclear interactions. One derived a new parametrization free from basic drawback of the WW-formulae. In the central range the determined parametrization show agreement with the Wdowczyk-Wolfendale formula, but in contrast to the last-named one it does not result in contradiction with the experiment due to fast reduction of inelastic factor reduction with energy increase [ru
Unified triminimal parametrizations of quark and lepton mixing matrices
International Nuclear Information System (INIS)
He Xiaogang; Li Shiwen; Ma Boqiang
2009-01-01
We present a detailed study on triminimal parametrizations of quark and lepton mixing matrices with different basis matrices. We start with a general discussion on the triminimal expansion of the mixing matrix and on possible unified quark and lepton parametrization using quark-lepton complementarity. We then consider several interesting basis matrices and compare the triminimal parametrizations with the Wolfenstein-like parametrizations. The usual Wolfenstein parametrization for quark mixing is a triminimal expansion around the unit matrix as the basis. The corresponding quark-lepton complementarity lepton mixing matrix is a triminimal expansion around the bimaximal basis. Current neutrino oscillation data show that the lepton mixing matrix is very well represented by the tribimaximal mixing. It is natural to take it as an expanding basis. The corresponding zeroth order basis for quark mixing in this case makes the triminimal expansion converge much faster than the usual Wolfenstein parametrization. The triminimal expansion based on tribimaximal mixing can be converted to the Wolfenstein-like parametrizations discussed in the literature. We thus have a unified description between different kinds of parametrizations for quark and lepton sectors: the standard parametrizations, the Wolfenstein-like parametrizations, and the triminimal parametrizations.
Parametric resonance of intrinsic localized modes in coupled cantilever arrays
Energy Technology Data Exchange (ETDEWEB)
Kimura, Masayuki, E-mail: kimura.masayuki.8c@kyoto-u.ac.jp [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsushita, Yasuo [Advanced Mathematical Institute, Osaka City University, 3-3-138 Sughimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Hikihara, Takashi [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)
2016-08-19
In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.
Parametric resonance of intrinsic localized modes in coupled cantilever arrays
International Nuclear Information System (INIS)
Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi
2016-01-01
In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.
A probabilistic strategy for parametric catastrophe insurance
Figueiredo, Rui; Martina, Mario; Stephenson, David; Youngman, Benjamin
2017-04-01
Economic losses due to natural hazards have shown an upward trend since 1980, which is expected to continue. Recent years have seen a growing worldwide commitment towards the reduction of disaster losses. This requires effective management of disaster risk at all levels, a part of which involves reducing financial vulnerability to disasters ex-ante, ensuring that necessary resources will be available following such events. One way to achieve this is through risk transfer instruments. These can be based on different types of triggers, which determine the conditions under which payouts are made after an event. This study focuses on parametric triggers, where payouts are determined by the occurrence of an event exceeding specified physical parameters at a given location, or at multiple locations, or over a region. This type of product offers a number of important advantages, and its adoption is increasing. The main drawback of parametric triggers is their susceptibility to basis risk, which arises when there is a mismatch between triggered payouts and the occurrence of loss events. This is unavoidable in said programmes, as their calibration is based on models containing a number of different sources of uncertainty. Thus, a deterministic definition of the loss event triggering parameters appears flawed. However, often for simplicity, this is the way in which most parametric models tend to be developed. This study therefore presents an innovative probabilistic strategy for parametric catastrophe insurance. It is advantageous as it recognizes uncertainties and minimizes basis risk while maintaining a simple and transparent procedure. A logistic regression model is constructed here to represent the occurrence of loss events based on certain loss index variables, obtained through the transformation of input environmental variables. Flood-related losses due to rainfall are studied. The resulting model is able, for any given day, to issue probabilities of occurrence of loss
Shaping of picosecond pulses for pumping optical parametric amplification
International Nuclear Information System (INIS)
Fueloep, J.A.; Krausz, F.; Major, Zs.; Horvath, B.
2006-01-01
Complete test of publication follows. The use of temporally shaped pump pulses for optical parametric amplification (OPA) is expected to facilitate an increase of efficiency and suppression of possible spectral distortions in this process, since the gain sensitively depends on the pump intensity. Our simulations confirmed such beneficial effect of temporally shaped pump pulses on the OPA process. With the aim to realize an optimized OPA stage pumped by shaped pulses, a novel method for passively shaping narrow band picosecond pulses has been developed. The method is based on the pulse-stacking principle, where replicas of the incoming pulse are created in a specially designed four-beam interferometer. The replicas are recombined with appropriate delays. The interferometer design allows for a unique flexibility in varying the pulse shape, since all relevant degrees of freedom, such as relative intensities and delays between the pulse replicas are independently adjustable. According to our calculations a pulse with a flat-top time profile would provide optimal conditions in the OPA process. Usually the pump pulse needs to be amplified in a conventional laser amplifier prior to the OPA. Our cross-correlation measurements showed that we are able to obtain shaped amplified pulses by shaping the amplifier input. Furthermore, by precompensating the distortions introduced by the amplifier we demonstrated our capability to produce amplified pulses with a flat-top time profile.
Consistency of parametric registration in serial MRI studies of brain tumor progression
International Nuclear Information System (INIS)
Mang, Andreas; Buzug, Thorsten M.; Schnabel, Julia A.; Crum, William R.; Modat, Marc; Ourselin, Sebastien; Hawkes, David J.; Camara-Rey, Oscar; Palm, Christoph; Caseiras, Gisele Brasil; Jaeger, H.R.
2008-01-01
The consistency of parametric registration in multi-temporal magnetic resonance (MR) imaging studies was evaluated. Serial MRI scans of adult patients with a brain tumor (glioma) were aligned by parametric registration. The performance of low-order spatial alignment (6/9/12 degrees of freedom) of different 3D serial MR-weighted images is evaluated. A registration protocol for the alignment of all images to one reference coordinate system at baseline is presented. Registration results were evaluated for both, multimodal intra-timepoint and mono-modal multi-temporal registration. The latter case might present a challenge to automatic intensity-based registration algorithms due to ill-defined correspondences. The performance of our algorithm was assessed by testing the inverse registration consistency. Four different similarity measures were evaluated to assess consistency. Careful visual inspection suggests that images are well aligned, but their consistency may be imperfect. Sub-voxel inconsistency within the brain was found for allsimilarity measures used for parametric multi-temporal registration. T1-weighted images were most reliable for establishing spatial correspondence between different timepoints. The parametric registration algorithm is feasible for use in this application. The sub-voxel resolution mean displacement error of registration transformations demonstrates that the algorithm converges to an almost identical solution for forward and reverse registration. (orig.)
International Nuclear Information System (INIS)
Mizuno, K.; De Groot, J.S.; Seka, W.
1986-01-01
Detailed studies of the ion acoustic parametric decay instability have been made. Theoretical and particle simulation results indicate these instabilities are important in long scale length plasma irradiated by moderate intensity laser light (10'' ≤ Iλ 2 /T/sub e/ (W/cm 2 ) (μm 2 )/(keV) ≤ 5 x 10 14 ). Laser light (λ 0 ≅ 1/2 μm) is focused onto a CH target. The parametric decay instability has been measured by detecting the emission spectrum at frequencies near 2ω 0 . The experimental results clearly indicate that this parametric instability is important for short wavelength (1/2 μm) laser light irradiation. The threshold of the parametric instability (λ 0 = 1/2 μm) was only slightly higher than that of 1 μm laser case. The measured wavelength shift of the Stokes component (λ 0 = 1/2 μm) compared very well with the 1 μm laser results
Parametric boundary reconstruction algorithm for industrial CT metrology application.
Yin, Zhye; Khare, Kedar; De Man, Bruno
2009-01-01
High-energy X-ray computed tomography (CT) systems have been recently used to produce high-resolution images in various nondestructive testing and evaluation (NDT/NDE) applications. The accuracy of the dimensional information extracted from CT images is rapidly approaching the accuracy achieved with a coordinate measuring machine (CMM), the conventional approach to acquire the metrology information directly. On the other hand, CT systems generate the sinogram which is transformed mathematically to the pixel-based images. The dimensional information of the scanned object is extracted later by performing edge detection on reconstructed CT images. The dimensional accuracy of this approach is limited by the grid size of the pixel-based representation of CT images since the edge detection is performed on the pixel grid. Moreover, reconstructed CT images usually display various artifacts due to the underlying physical process and resulting object boundaries from the edge detection fail to represent the true boundaries of the scanned object. In this paper, a novel algorithm to reconstruct the boundaries of an object with uniform material composition and uniform density is presented. There are three major benefits in the proposed approach. First, since the boundary parameters are reconstructed instead of image pixels, the complexity of the reconstruction algorithm is significantly reduced. The iterative approach, which can be computationally intensive, will be practical with the parametric boundary reconstruction. Second, the object of interest in metrology can be represented more directly and accurately by the boundary parameters instead of the image pixels. By eliminating the extra edge detection step, the overall dimensional accuracy and process time can be improved. Third, since the parametric reconstruction approach shares the boundary representation with other conventional metrology modalities such as CMM, boundary information from other modalities can be directly
Metastable states in parametrically excited multimode Hamiltonian systems
Kirr, E
2003-01-01
Consider a linear autonomous Hamiltonian system with time periodic bound state solutions. In this paper we study their dynamics under time almost periodic perturbations which are small, localized and Hamiltonian. The analysis proceeds through a reduction of the original infinite dimensional dynamical system to the dynamics of two coupled subsystems: a dominant m-dimensional system of ordinary differential equations (normal form), governing the projections onto the bound states and an infinite dimensional dispersive wave equation. The present work generalizes previous work of the authors, where the case of a single bound state is considered. Here, the interaction picture is considerably more complicated and requires deeper analysis, due to a multiplicity of bound states and the very general nature of the perturbation's time dependence. Parametric forcing induces coupling of bound states to continuum radiation modes, bound states directly to bound states, as well as coupling among bound states, which is mediate...
Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy.
Tang, Jing; Kuwabara, Hiroto; Wong, Dean F; Rahmim, Arman
2010-08-07
We developed an anatomy-guided 4D closed-form algorithm to directly reconstruct parametric images from projection data for (nearly) irreversible tracers. Conventional methods consist of individually reconstructing 2D/3D PET data, followed by graphical analysis on the sequence of reconstructed image frames. The proposed direct reconstruction approach maintains the simplicity and accuracy of the expectation-maximization (EM) algorithm by extending the system matrix to include the relation between the parametric images and the measured data. A closed-form solution was achieved using a different hidden complete-data formulation within the EM framework. Furthermore, the proposed method was extended to maximum a posterior reconstruction via incorporation of MR image information, taking the joint entropy between MR and parametric PET features as the prior. Using realistic simulated noisy [(11)C]-naltrindole PET and MR brain images/data, the quantitative performance of the proposed methods was investigated. Significant improvements in terms of noise versus bias performance were demonstrated when performing direct parametric reconstruction, and additionally upon extending the algorithm to its Bayesian counterpart using the MR-PET joint entropy measure.
Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.
2016-01-01
In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration
Comparative Study of Parametric and Non-parametric Approaches in Fault Detection and Isolation
DEFF Research Database (Denmark)
Katebi, S.D.; Blanke, M.; Katebi, M.R.
This report describes a comparative study between two approaches to fault detection and isolation in dynamic systems. The first approach uses a parametric model of the system. The main components of such techniques are residual and signature generation for processing and analyzing. The second...... approach is non-parametric in the sense that the signature analysis is only dependent on the frequency or time domain information extracted directly from the input-output signals. Based on these approaches, two different fault monitoring schemes are developed where the feature extraction and fault decision...
Markovian Dynamics of Josephson Parametric Amplification
Directory of Open Access Journals (Sweden)
W. Kaiser
2017-09-01
Full Text Available In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA. The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.
Non-parametric smoothing of experimental data
International Nuclear Information System (INIS)
Kuketayev, A.T.; Pen'kov, F.M.
2007-01-01
Full text: Rapid processing of experimental data samples in nuclear physics often requires differentiation in order to find extrema. Therefore, even at the preliminary stage of data analysis, a range of noise reduction methods are used to smooth experimental data. There are many non-parametric smoothing techniques: interval averages, moving averages, exponential smoothing, etc. Nevertheless, it is more common to use a priori information about the behavior of the experimental curve in order to construct smoothing schemes based on the least squares techniques. The latter methodology's advantage is that the area under the curve can be preserved, which is equivalent to conservation of total speed of counting. The disadvantages of this approach include the lack of a priori information. For example, very often the sums of undifferentiated (by a detector) peaks are replaced with one peak during the processing of data, introducing uncontrolled errors in the determination of the physical quantities. The problem is solvable only by having experienced personnel, whose skills are much greater than the challenge. We propose a set of non-parametric techniques, which allows the use of any additional information on the nature of experimental dependence. The method is based on a construction of a functional, which includes both experimental data and a priori information. Minimum of this functional is reached on a non-parametric smoothed curve. Euler (Lagrange) differential equations are constructed for these curves; then their solutions are obtained analytically or numerically. The proposed approach allows for automated processing of nuclear physics data, eliminating the need for highly skilled laboratory personnel. Pursuant to the proposed approach is the possibility to obtain smoothing curves in a given confidence interval, e.g. according to the χ 2 distribution. This approach is applicable when constructing smooth solutions of ill-posed problems, in particular when solving
Markovian Dynamics of Josephson Parametric Amplification
Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian
2017-09-01
In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.
Massively multi-parametric immunoassays using ICPMS
International Nuclear Information System (INIS)
Tanner, S.D.; Ornatsky, O.; Bandura, D.R.; Baranov, V.I.
2009-01-01
The use of stable isotopes as tags in immunoassays, and their determination by ICPMS, is poised to have a huge impact on multi-parametric bioanalysis. A new technology, which we term 'mass cytometry', enables high throughput, highly multiplexed individual cell analysis. Preliminary results for T-cell immunophenotyping in peripheral blood mononuclear cells (PBMC), agonist influence on concomitant phosphorylation pathways, and sub-classification of acute myeloid leukemia patients' samples will be presented. The significance of individual cell analysis is demonstrated by the identification of populations of rogue cells in PBMC samples through the use of multidimensional neural network cluster analysis. (author)
A parametric evaluation of supersonic STOVL
Kidwell, G. H.; Rapp, D. C.
1985-01-01
This paper describes the results of a study to evaluate parametric variations to a single engine short-takeoff vertical-landing fighter/attack aircraft design. The variables considered involved thrust vectoring, thrust degradation, maximum lift, and other changes to determine the impact on short-takeoff performance, but subject to a vertical-landing capability. The results indicate that there are certain parameters that have a significant effect on short-field performance. Also, the optimal control strategies for transitions from a short-takeoff to forward flight and from forward flight to hover are determined. The results have applicability beyond the configuration evaluated.
Semi-parametric estimation for ARCH models
Directory of Open Access Journals (Sweden)
Raed Alzghool
2018-03-01
Full Text Available In this paper, we conduct semi-parametric estimation for autoregressive conditional heteroscedasticity (ARCH model with Quasi likelihood (QL and Asymptotic Quasi-likelihood (AQL estimation methods. The QL approach relaxes the distributional assumptions of ARCH processes. The AQL technique is obtained from the QL method when the process conditional variance is unknown. We present an application of the methods to a daily exchange rate series. Keywords: ARCH model, Quasi likelihood (QL, Asymptotic Quasi-likelihood (AQL, Martingale difference, Kernel estimator
Robust Parametric Control of Spacecraft Rendezvous
Directory of Open Access Journals (Sweden)
Dake Gu
2014-01-01
Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.
Parametric resonance in acoustically levitated water drops
International Nuclear Information System (INIS)
Shen, C.L.; Xie, W.J.; Wei, B.
2010-01-01
Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.
Parametric resonance in acoustically levitated water drops
Energy Technology Data Exchange (ETDEWEB)
Shen, C.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.c [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)
2010-05-10
Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.
Parametric systems analysis for tandem mirror hybrids
International Nuclear Information System (INIS)
Lee, J.D.; Chapin, D.L.; Chi, J.W.H.
1980-09-01
Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U 3 O 8 cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions
Molecular and parametric imaging with iron oxides
International Nuclear Information System (INIS)
Matuszewski, L.; Bremer, C.; Tombach, B.; Heindel, W.
2007-01-01
Superparamagnetic iron oxide (SPIO) contrast agents, clinically established for high resolution magnetic resonance imaging of reticuloendothelial system containing anatomical structures, can additionally be exploited for the non-invasive characterization and quantification of pathology down to the molecular level. In this context, SPIOs can be applied for non-invasive cell tracking, quantification of tissue perfusion and target specific imaging, as well as for the detection of gene expression. This article provides an overview of new applications for clinically approved iron oxides as well of new, modified SPIO contrast agents for parametric and molecular imaging. (orig.) [de
Parametrization relating the fermionic mass spectra
International Nuclear Information System (INIS)
Kleppe, A.
1993-01-01
When parametrizing the fermionic mass spectra in terms of the unit matrix and a recursive matrix scrR 0 , which corresponds to an underlying scaling pattern in the mass spectra, each fermionic sector is characterized by three parameters: k, α, and R. Using the set of relations displayed by the parameters of the different sectors, it is possible to formulate a ''family Lagrangian'' which for each sector encompasses all the families. Relations between quark masses are furthermore deduced from these ''family Lagrangians.'' Using the relations between the parameters of the different charge sectors, it is also possible to ''derive'' the quark mass spectra from the (charged) leptonic mass spectrum
Parametric Portfolio Policies with Common Volatility Dynamics
DEFF Research Database (Denmark)
Ergemen, Yunus Emre; Taamouti, Abderrahim
A parametric portfolio policy function is considered that incorporates common stock volatility dynamics to optimally determine portfolio weights. Reducing dimension of the traditional portfolio selection problem significantly, only a number of policy parameters corresponding to first- and second......-order characteristics are estimated based on a standard method-of-moments technique. The method, allowing for the calculation of portfolio weight and return statistics, is illustrated with an empirical application to 30 U.S. industries to study the economic activity before and after the recent financial crisis....
Exercise in Configurable Products using Creo parametric
DEFF Research Database (Denmark)
Christensen, Georg Kronborg
2017-01-01
Family tables is a long know method with ProEngineer/Creo parametric to make families of products – like families of bolts and roller bearings. Configurable Products expand these possibilities in two major ways: First it makes configurable assemblies possible where one topologically different com...... been available as: configurable assemblies in earlier versions of Creo) An example of a practical application of configurable products is shown below where an outdoor Play/Exercise system is transferred from AutoCAD 2D to a 3D configurable product in Creo 3.0....
Quantum phase from s-parametrized quasidistributions
International Nuclear Information System (INIS)
Perinova, V; Luks, A
2005-01-01
It is familiar that a well behaved operator of the harmonic oscillator phase does not exist. Therefore, Turski's phase operator and the operator of Garrison and Wong may be at most defined in an interesting fashion and yield useful quantum expectation values. In this paper we touch on a recent incomplete definition of a phase operator which has also failed in the respect that it can be completed only to a definition of an 'incomplete' phase operator. We discuss, however, a possibility of completion of the definition and a relationship to the phase operator from an s-parametrized quasidistribution
White-light parametric instabilities in plasmas.
Santos, J E; Silva, L O; Bingham, R
2007-06-08
Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.
Parametric Amplification of Gravitational Fluctuations during Reheating
International Nuclear Information System (INIS)
Finelli, F.; Brandenberger, R.; Finelli, F.
1999-01-01
Cosmological perturbations can undergo amplification by parametric resonance during preheating even on scales larger than the Hubble radius, without violating causality. A unified description of gravitational and matter fluctuations is crucial to determine the strength of the instability. To extract specific signatures of the oscillating inflaton field during reheating, it is essential to focus on a variable describing metric fluctuations which is constant in the standard analyses of inflation. For a massive inflaton without self-coupling, we find no additional growth of superhorizon modes during reheating beyond the usual predictions. For a massless self-coupled inflaton, there is a sub-Hubble scale resonance. copyright 1999 The American Physical Society
Ground-Based Telescope Parametric Cost Model
Stahl, H. Philip; Rowell, Ginger Holmes
2004-01-01
A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.
Preparing Schrodinger cat states by parametric pumping
Leghtas, Zaki; Touzard, Steven; Pop, Ioan; Vlastakis, Brian; Zalys-Geller, Evan; Albert, Victor V.; Jiang, Liang; Frunzio, Luigi; Schoelkopf, Robert J.; Mirrahimi, Mazyar; Devoret, Michel H.
2014-03-01
Maintaining a quantum superposition state of light in a cavity has important applications for quantum error correction. We present an experimental protocol based on parametric pumping and Josephson circuits, which could prepare a Schrodinger cat state in a cavity. This is achieved by engineering a dissipative environment, which exchanges only pairs or quadruples of photons with our cavity mode. The dissipative nature of this preparation would lead to the observation of a dynamical Zeno effect, where the competition between a coherent drive and the dissipation reveals non trivial dynamics. Work supported by: IARPA, ARO, and NSF.
DEFF Research Database (Denmark)
Vannini, Phillip; Bissell, David; Jensen, Ole B.
with fieldwork conducted in Canada, Denmark and Australia to develop our understanding of the experiential politics of long distance workers. Rather than focusing on the extensive dimensions of mobilities that are implicated in patterns and trends, our paper turns to the intensive dimensions of this experience......This paper explores the intensities of long distance commuting journeys as a way of exploring how bodily sensibilities are being changed by the mobilities that they undertake. The context of this paper is that many people are travelling further to work than ever before owing to a variety of factors...... which relate to transport, housing and employment. Yet we argue that the experiential dimensions of long distance mobilities have not received the attention that they deserve within geographical research on mobilities. This paper combines ideas from mobilities research and contemporary social theory...
Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms
Energy Technology Data Exchange (ETDEWEB)
Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.; Bickford, Jody; Foote, Martin W.
2011-09-23
To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are still too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.
Suppression of Growth by Multiplicative White Noise in a Parametric Resonant System
Ishihara, Masamichi
2015-02-01
The growth of the amplitude in a Mathieu-like equation with multiplicative white noise is studied. To obtain an approximate analytical expression for the exponent at the extremum on parametric resonance regions, a time-interval width is introduced. To determine the exponents numerically, the stochastic differential equations are solved by a symplectic numerical method. The Mathieu-like equation contains a parameter α determined by the intensity of noise and the strength of the coupling between the variable and noise; without loss of generality, only non-negative α can be considered. The exponent is shown to decrease with α, reach a minimum and increase after that. The minimum exponent is obtained analytically and numerically. As a function of α, the minimum at α≠0, occurs on the parametric resonance regions of α=0. This minimum indicates suppression of growth by multiplicative white noise.
Non-classical Signature of Parametric Fluorescence and its Application in Metrology
Directory of Open Access Journals (Sweden)
Hamar M.
2014-08-01
Full Text Available The article provides a short theoretical background of what the non-classical light means. We applied the criterion for the existence of non-classical effects derived by C.T. Lee on parametric fluorescence. The criterion was originally derived for the study of two light beams with one mode per beam. We checked if the criterion is still working for two multimode beams of parametric down-conversion through numerical simulations. The theoretical results were tested by measurement of photon number statistics of twin beams emitted by nonlinear BBO crystal pumped by intense femtoseconds UV pulse. We used ICCD camera as the detector of photons in both beams. It appears that the criterion can be used for the measurement of the quantum efficiencies of the ICCD cameras.
Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki
2010-07-05
We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.
Quantum tomography enhanced through parametric amplification
Knyazev, E.; Spasibko, K. Yu; Chekhova, M. V.; Khalili, F. Ya
2018-01-01
Quantum tomography is the standard method of reconstructing the Wigner function of quantum states of light by means of balanced homodyne detection. The reconstruction quality strongly depends on the photodetectors quantum efficiency and other losses in the measurement setup. In this article we analyze in detail a protocol of enhanced quantum tomography, proposed by Leonhardt and Paul [1] which allows one to reduce the degrading effect of detection losses. It is based on phase-sensitive parametric amplification, with the phase of the amplified quadrature being scanned synchronously with the local oscillator phase. Although with sufficiently strong amplification the protocol enables overcoming any detection inefficiency, it was so far not implemented in the experiment, probably due to the losses in the amplifier. Here we discuss a possible proof-of-principle experiment with a traveling-wave parametric amplifier. We show that with the state-of-the-art optical elements, the protocol enables high fidelity tomographic reconstruction of bright non-classical states of light. We consider two examples: bright squeezed vacuum and squeezed single-photon state, with the latter being a non-Gaussian state and both strongly affected by the losses.
Supramodal parametric working memory processing in humans.
Spitzer, Bernhard; Blankenburg, Felix
2012-03-07
Previous studies of delayed-match-to-sample (DMTS) frequency discrimination in animals and humans have succeeded in delineating the neural signature of frequency processing in somatosensory working memory (WM). During retention of vibrotactile frequencies, stimulus-dependent single-cell and population activity in prefrontal cortex was found to reflect the task-relevant memory content, whereas increases in occipital alpha activity signaled the disengagement of areas not relevant for the tactile task. Here, we recorded EEG from human participants to determine the extent to which these mechanisms can be generalized to frequency retention in the visual and auditory domains. Subjects performed analogous variants of a DMTS frequency discrimination task, with the frequency information presented either visually, auditorily, or by vibrotactile stimulation. Examining oscillatory EEG activity during frequency retention, we found characteristic topographical distributions of alpha power over visual, auditory, and somatosensory cortices, indicating systematic patterns of inhibition and engagement of early sensory areas, depending on stimulus modality. The task-relevant frequency information, in contrast, was found to be represented in right prefrontal cortex, independent of presentation mode. In each of the three modality conditions, parametric modulations of prefrontal upper beta activity (20-30 Hz) emerged, in a very similar manner as recently found in vibrotactile tasks. Together, the findings corroborate a view of parametric WM as supramodal internal scaling of abstract quantity information and suggest strong relevance of previous evidence from vibrotactile work for a more general framework of quantity processing in human working memory.
Parametric uncertainty in optical image modeling
Potzick, James; Marx, Egon; Davidson, Mark
2006-10-01
Optical photomask feature metrology and wafer exposure process simulation both rely on optical image modeling for accurate results. While it is fair to question the accuracies of the available models, model results also depend on several input parameters describing the object and imaging system. Errors in these parameter values can lead to significant errors in the modeled image. These parameters include wavelength, illumination and objective NA's, magnification, focus, etc. for the optical system, and topography, complex index of refraction n and k, etc. for the object. In this paper each input parameter is varied over a range about its nominal value and the corresponding images simulated. Second order parameter interactions are not explored. Using the scenario of the optical measurement of photomask features, these parametric sensitivities are quantified by calculating the apparent change of the measured linewidth for a small change in the relevant parameter. Then, using reasonable values for the estimated uncertainties of these parameters, the parametric linewidth uncertainties can be calculated and combined to give a lower limit to the linewidth measurement uncertainty for those parameter uncertainties.
A new parametric equation of state and quark stars
International Nuclear Information System (INIS)
Na Xuesen; Xu Renxin
2011-01-01
It is still a matter of debate to understand the equation of state of cold matter with supra-nuclear density in compact stars because of unknown non-perturbative strong interaction between quarks. Nevertheless, it is speculated from an astrophysical view point that quark clusters could form in cold quark matter due to strong coupling at realistic baryon densities. Although it is hard to calculate this conjectured matter from first principles, one can expect that the inter-cluster interaction will share some general features with the nucleon- nucleon interaction successfully depicted by various models. We adopt a two-Gaussian component soft-core potential with these general features and show that quark clusters can form stable simple cubic crystal structure if we assume that the wave function of quark clusters have a Gaussian form. With this parametrization, the Tolman-Oppenheimer-Volkoff equation is solved with reasonably constrained parameter space to give mass-radius relations of crystalline solid quark stars. With baryon number densities truncated at 2n 0 at surface and the range of the interaction fixed at 2 fm we can reproduce similar mass-radius relations to that obtained with bag model equations of state. The maximum mass ranges from ∼ 0.5 solar mass to approx.> 3 solar mass . The recently measured high pulsar mass (approx.> 2 solar mass ) is then used to constrain the parameters of this simple interaction potential. (authors)
High intensity hadron accelerators
International Nuclear Information System (INIS)
Teng, L.C.
1989-05-01
This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics
GHz-rate optical parametric amplifier in hydrogenated amorphous silicon
International Nuclear Information System (INIS)
Wang, Ke-Yao; Foster, Amy C
2015-01-01
We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)
Synchronization of chaos in non-identical parametrically excited systems
International Nuclear Information System (INIS)
Idowu, B.A.; Vincent, U.E.; Njah, A.N.
2009-01-01
In this paper, we investigate the synchronization of chaotic systems consisting of non-identical parametrically excited oscillators. The active control technique is employed to design control functions based on Lyapunov stability theory and Routh-Hurwitz criteria so as to achieve global chaos synchronization between a parametrically excited gyroscope and each of the parametrically excited pendulum and Duffing oscillator. Numerical simulations are implemented to verify the results.
Absolute decay parametric instability of high-temperature plasma
International Nuclear Information System (INIS)
Zozulya, A.A.; Silin, V.P.; Tikhonchuk, V.T.
1986-01-01
A new absolute decay parametric instability having wide spatial localization region is shown to be possible near critical plasma density. Its excitation is conditioned by distributed feedback of counter-running Langmuir waves occurring during parametric decay of incident and reflected pumping wave components. In a hot plasma with the temperature of the order of kiloelectronvolt its threshold is lower than that of a known convective decay parametric instability. Minimum absolute instability threshold is shown to be realized under conditions of spatial parametric resonance of higher orders
Parametric x-ray FEL operating with external Bragg reflectors
International Nuclear Information System (INIS)
Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.
1995-01-01
In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10 2 -10 4 times up to 10 9 . One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times
Bláha, M; Hoch, J; Ferko, A; Ryška, A; Hovorková, E
Improvement in any human activity is preconditioned by inspection of results and providing feedback used for modification of the processes applied. Comparison of experts experience in the given field is another indispensable part leading to optimisation and improvement of processes, and optimally to implementation of standards. For the purpose of objective comparison and assessment of the processes, it is always necessary to describe the processes in a parametric way, to obtain representative data, to assess the achieved results, and to provide unquestionable and data-driven feedback based on such analysis. This may lead to a consensus on the definition of standards in the given area of health care. Total mesorectal excision (TME) is a standard procedure of rectal cancer (C20) surgical treatment. However, the quality of performed procedures varies in different health care facilities, which is given, among others, by internal processes and surgeons experience. Assessment of surgical treatment results is therefore of key importance. A pathologist who assesses the resected tissue can provide valuable feedback in this respect. An information system for the parametric assessment of TME performance is described in our article, including technical background in the form of a multicentre clinical registry and the structure of observed parameters. We consider the proposed system of TME parametric assessment as significant for improvement of TME performance, aimed at reducing local recurrences and at improving the overall prognosis of patients. rectal cancer total mesorectal excision parametric data clinical registries TME registry.
New parametrization for the scale dependent growth function in general relativity
International Nuclear Information System (INIS)
Dent, James B.; Dutta, Sourish; Perivolaropoulos, Leandros
2009-01-01
We study the scale-dependent evolution of the growth function δ(a,k) of cosmological perturbations in dark energy models based on general relativity. This scale dependence is more prominent on cosmological scales of 100h -1 Mpc or larger. We derive a new scale-dependent parametrization which generalizes the well-known Newtonian approximation result f 0 (a)≡(dlnδ 0 /dlna)=Ω(a) γ (γ=(6/11) for ΛCDM) which is a good approximation on scales less than 50h -1 Mpc. Our generalized parametrization is of the form f(a)=(f 0 (a)/1+ξ(a,k)), where ξ(a,k)=(3H 0 2 Ω 0m )/(ak 2 ). We demonstrate that this parametrization fits the exact result of a full general relativistic evaluation of the growth function up to horizon scales for both ΛCDM and dynamical dark energy. In contrast, the scale independent parametrization does not provide a good fit on scales beyond 5% of the horizon scale (k≅0.01h -1 Mpc).
Three-dimensional parametrization of photon-initiated high energy showers
International Nuclear Information System (INIS)
De Angelis, A.
1988-01-01
A three-dimensional parametrization of photon-initiated showers in a homogeneous absorber is presented. The form, suggested by a model assimilating the transverse shower development to a random walk process, displays a simple scaling with the primary energy, and is very suitable for numerical integration. The parameters are explicitly calculated for the case of showers in SF5 lead glass, and the results are compared with the explicit simulation by GEANT3.11. Fields of application are investigated. (orig.)
Low Parametric Sensitivity Realizations with relaxed L2-dynamic-range-scaling constraints
Hilaire , Thibault
2009-01-01
This paper presents a new dynamic-range scaling for the implementation of filters/controllers in state-space form. Relaxing the classical L2-scaling constraints by specific fixed-point considerations allows for a higher degree of freedom for the optimal L2-parametric sensitivity problem. However, overflows in the implementation are still prevented. The underlying constrained problem is converted into an unconstrained problem for which a solution can be provided. This leads to realizations whi...
Parametrizing coarse grained models for molecular systems at equilibrium
Kalligiannaki, Evangelia; Chazirakis, A.; Tsourtis, A.; Katsoulakis, M. A.; Plechá č, P.; Harmandaris, V.
2016-01-01
Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.
Ultrashort pulse shaping by optical parametric chirped amplification
International Nuclear Information System (INIS)
Nelet, Ambre
2007-01-01
The aim of this work is to propose new laser architectures based on optical parametric chirped pulse amplification (OPCPA). Common goals of OPCPA pre-amplifiers are to reach high energy level while maintaining the spectrum width and to adapt geometry of the amplified beam to the high power laser chain optics. We consider OPCPA as a way to control and to sculpt ultrashort pulses. Our first set-up aims at thwarting possible time recovery default between pump and signal pulses, which lower the energy extraction. A regenerative OPCPA, idler resonant, is a way to produce a high-intensity and high-repetition rate train of amplified signal replicas. Our second laser system pre-compensates the spectral gain narrowing by sculpting pulses directly within the OPCPA section, where a temporal shaping of the pump beam permits a spectro-spectral shaping of the amplified signal. Finally, we propose an OPCPA based on spatial coding and uniform amplification of spectral signal components by using a fan-out periodically poled crystal and a zero dispersion line. (author) [fr
A parametric study of adverse pressure gradient turbulent boundary layers
International Nuclear Information System (INIS)
Monty, J.P.; Harun, Z.; Marusic, I.
2011-01-01
There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.
Parametrizing coarse grained models for molecular systems at equilibrium
Kalligiannaki, Evangelia
2016-10-18
Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.
Tile-based rigidization surface parametric design study
Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee
2018-03-01
Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of
Asymptotic inference for jump diffusions with state-dependent intensity
Becheri, Gaia; Drost, Feico; Werker, Bas
2016-01-01
We establish the local asymptotic normality property for a class of ergodic parametric jump-diffusion processes with state-dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to
Internal dynamics of intense twin beams and their coherence
Czech Academy of Sciences Publication Activity Database
Peřina Jr., J.; Haderka, Ondřej; Allevi, A.; Bondani, M.
2016-01-01
Roč. 6, Feb (2016), 1-8, č. článku 22320. ISSN 2045-2322 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : dynamics of intense * twin beams * pump-depleted parametric * down-conversion * coherence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.259, year: 2016
Parametric resonance in quantum electrodynamics vacuum birefringence
Arza, Ariel; Elias, Ricardo Gabriel
2018-05-01
Vacuum magnetic birefringence is one of the most interesting nonlinear phenomena in quantum electrodynamics because it is a pure photon-photon result of the theory and it directly signalizes the violation of the classical superposition principle of electromagnetic fields in the full quantum theory. We perform analytical and numerical calculations when an electromagnetic wave interacts with an oscillating external magnetic field. We find that in an ideal cavity, when the external field frequency is around the electromagnetic wave frequency, the normal and parallel components of the wave suffer parametric resonance at different rates, producing a vacuum birefringence effect growing in time. We also study the case where there is no cavity and the oscillating magnetic field is spatially localized in a region of length L . In both cases we find also a rotation of the elliptical axis.
Parametric time-frequency domain spatial audio
Delikaris-Manias, Symeon; Politis, Archontis
2018-01-01
This book provides readers with the principles and best practices in spatial audio signal processing. It describes how sound fields and their perceptual attributes are captured and analyzed within the time-frequency domain, how essential representation parameters are coded, and how such signals are efficiently reproduced for practical applications. The book is split into four parts starting with an overview of the fundamentals. It then goes on to explain the reproduction of spatial sound before offering an examination of signal-dependent spatial filtering. The book finishes with coverage of both current and future applications and the direction that spatial audio research is heading in. Parametric Time-frequency Domain Spatial Audio focuses on applications in entertainment audio, including music, home cinema, and gaming--covering the capturing and reproduction of spatial sound as well as its generation, transduction, representation, transmission, and perception. This book will teach readers the tools needed...
Parametric HMMs for Movement Recognition and Synthesis
DEFF Research Database (Denmark)
Herzog, Dennis; Krüger, Volker
2009-01-01
, we develop an exemplar-based parametric hidden Markov model (PHMM) that allows to represent movements of a particular type. Since we use model interpolation to reduce the necessary amount of training data, we had to develop a method to setup local models in a synchronized way. In our experiments we......A common problem in human movement recognition is the recognition of movements of a particular type (semantic). E.g., grasping movements have a particular semantic (grasping) but the actual movements usually have very different appearances due to, e.g., different grasping directions. In this paper...... to recover the movement type, and, e.g., the object position a human is pointing at. Our experiments show the flexibility of the PHMMs in terms of the amount of training data and its robustness in terms of noisy observation data. In addition, we compare our PHMM to an other kind of PHMM, which has been...
Parametric resonance and cosmological gravitational waves
International Nuclear Information System (INIS)
Sa, Paulo M.; Henriques, Alfredo B.
2008-01-01
We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.
Parametric description of the quantum measurement process
Liuzzo-Scorpo, P.; Cuccoli, A.; Verrucchi, P.
2015-08-01
We present a description of the measurement process based on the parametric representation with environmental coherent states. This representation is specifically tailored for studying quantum systems whose environment needs being considered through the quantum-to-classical crossover. Focusing upon projective measures, and exploiting the connection between large-N quantum theories and the classical limit of related ones, we manage to push our description beyond the pre-measurement step. This allows us to show that the outcome production follows from a global-symmetry breaking, entailing the observed system's state reduction, and that the statistical nature of the process is brought about, together with the Born's rule, by the macroscopic character of the measuring apparatus.
Parametric Design Strategies for Collaborative Urban Design
DEFF Research Database (Denmark)
Steinø, Nicolai; Yıldırım, Miray Baş; Özkar, Mine
2013-01-01
to the collaboration between professionals, participation by different non-professional stakeholders, such as residents, local authorities, non-governmental organizations and investors, is another important component of collaborative urban design processes. The involvement of community in decision making process...... implications of planning and design decisions, unless they are presented with relatively detailed architectural models, whether physical or virtual. This however, typically presents steep demands in terms of time and resources. As a foundation for our work with parametric urban design lies the hypothesis...... to solve different scripting challenges. The paper is organized into an introduction, three main sections and closing section with conclusions and perspectives. The first section of the paper gives a theoretical discussion of the notion of collaborative design and the challenges of collaborative urban...
Parametric systems analysis for ICF hybrid reactors
International Nuclear Information System (INIS)
Berwald, D.H.; Maniscalco, J.A.; Chapin, D.L.
1981-01-01
Parametric design and systems analysis for inertial confinement fusion-fission hybrids are presented. These results were generated as part of the Electric Power Research Institute (EPRI) sponsored Feasibility Assessment of Fusion-Fission Hybrids, using an Inertial Confinement Fusion (ICF) hybrid power plant design code developed in conjunction with the feasibility assessment. The SYMECON systems analysis code, developed by Westinghouse, was used to generate economic results for symbiotic electricity generation systems consisting of the hybrid and its client Light Water Reactors (LWRs). These results explore the entire fusion parameter space for uranium fast fission blanket hybrids, thorium fast fission blanket hybrids, and thorium suppressed fission blanket types are discussed, and system sensitivities to design uncertainties are explored
Simplifying the circuit of Josephson parametric converters
Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George
Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results
Spherical Parametrization of the Higgs Boson Candidate
Gainer, James S; Matchev, Konstantin T; Mrenna, Stephen; Park, Myeonghun
2013-01-01
The latest results from the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC) unequivocally confirm the existence of a resonance, $X$, with mass near 125 GeV which could be the Higgs boson of the Standard Model. Measuring the properties (quantum numbers and couplings) of this resonance is of paramount importance. Initial analyses by the LHC collaborations disfavor specific alternative benchmark hypotheses, e.g. pure pseudoscalars or gravitons. However, this is just the first step in a long-term program of detailed measurements. We consider the most general set of operators in the decay channels $X \\to ZZ$, $WW$, $Z\\gamma$, $\\gamma\\gamma$ and derive the constraint implied by the measured rate. This allows us to provide a useful parametrization of the orthogonal independent Higgs coupling degrees of freedom as coordinates on a suitably defined sphere.
Examples in parametric inference with R
Dixit, Ulhas Jayram
2016-01-01
This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests. Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory cou...
Stellar parametrization from Gaia RVS spectra
Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.
2016-01-01
Context. Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as GRVS~ 16. A specific stellar parametrization will be performed on most of these RVS spectra, I.e. those with enough high signal-to-noise ratio (S/N), which should correspond to single stars that have a magnitude in the RVS band brighter than ~14.5. Some individual chemical abundances will also be estimated for the brightest targets. Aims: We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-Spec working group of the analysis consortium. The tested codes are based on optimisation (FERRE and GAUGUIN), projection (MATISSE), or pattern-recognition methods (Artificial Neural Networks). We present and discuss each of their expected performances in the recovered stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity) for B- to K-type stars. The performances for determining of [α/Fe] ratios are also presented for cool stars. Methods: Each code has been homogeneously tested with a large grid of RVS simulated synthetic spectra of BAFGK-spectral types (dwarfs and giants), with metallicities varying from 10-2.5 to 10+ 0.5 the solar metallicity, and taking variations of ±0.4 dex in the composition of the α-elements into consideration. The tests were performed for S/N ranging from ten to 350. Results: For all the stellar types we considered, stars brighter than GRVS~ 12.5 are very efficiently parametrized by the GSP-Spec pipeline, including reliable estimations of [α/Fe]. Typical internal errors for FGK metal-rich and metal-intermediate stars are around 40 K in Teff, 0.10 dex in log(g), 0.04 dex in [M/H], and 0.03 dex in [α/Fe] at GRVS = 10.3. They degrade to 155 K in Teff, 0.15 dex in log(g), 0.10 dex in [M/H], and 0.1 dex in [α/Fe] at GRVS~ 12. Similar accuracies in Teff and [M/H] are
Parametric inference for biological sequence analysis.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.
Toward a compact fibered squeezing parametric source.
Brieussel, Alexandre; Ott, Konstantin; Joos, Maxime; Treps, Nicolas; Fabre, Claude
2018-03-15
In this work, we investigate three different compact fibered systems generating vacuum squeezing that involve optical cavities limited by the end surface of a fiber and by a curved mirror and containing a thin parametric crystal. These systems have the advantage to couple squeezed states directly to a fiber, allowing the user to benefit from the flexibility of fibers in the use of squeezing. Three types of fibers are investigated: standard single-mode fibers, photonic-crystal large-mode-area single-mode fibers, and short multimode fibers taped to a single-mode fiber. The observed squeezing is modest (-0.56 dB, -0.9 dB, -1 dB), but these experiments open the way for miniaturized squeezing devices that could be a very interesting advantage in scaling up quantum systems for quantum processing, opening new perspectives in the domain of integrated quantum optics.
Normal dispersion femtosecond fiber optical parametric oscillator.
Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N
2013-09-15
We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60 mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3 ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.
Parametric uncertainty modeling for robust control
DEFF Research Database (Denmark)
Rasmussen, K.H.; Jørgensen, Sten Bay
1999-01-01
The dynamic behaviour of a non-linear process can often be approximated with a time-varying linear model. In the presented methodology the dynamics is modeled non-conservatively as parametric uncertainty in linear lime invariant models. The obtained uncertainty description makes it possible...... to perform robustness analysis on a control system using the structured singular value. The idea behind the proposed method is to fit a rational function to the parameter variation. The parameter variation can then be expressed as a linear fractional transformation (LFT), It is discussed how the proposed...... point changes. It is shown that a diagonal PI control structure provides robust performance towards variations in feed flow rate or feed concentrations. However including both liquid and vapor flow delays robust performance specifications cannot be satisfied with this simple diagonal control structure...
Parametric resonance and cosmological gravitational waves
Sá, Paulo M.; Henriques, Alfredo B.
2008-03-01
We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.
Parametric cost estimation for space science missions
Lillie, Charles F.; Thompson, Bruce E.
2008-07-01
Cost estimation for space science missions is critically important in budgeting for successful missions. The process requires consideration of a number of parameters, where many of the values are only known to a limited accuracy. The results of cost estimation are not perfect, but must be calculated and compared with the estimates that the government uses for budgeting purposes. Uncertainties in the input parameters result from evolving requirements for missions that are typically the "first of a kind" with "state-of-the-art" instruments and new spacecraft and payload technologies that make it difficult to base estimates on the cost histories of previous missions. Even the cost of heritage avionics is uncertain due to parts obsolescence and the resulting redesign work. Through experience and use of industry best practices developed in participation with the Aerospace Industries Association (AIA), Northrop Grumman has developed a parametric modeling approach that can provide a reasonably accurate cost range and most probable cost for future space missions. During the initial mission phases, the approach uses mass- and powerbased cost estimating relationships (CER)'s developed with historical data from previous missions. In later mission phases, when the mission requirements are better defined, these estimates are updated with vendor's bids and "bottoms- up", "grass-roots" material and labor cost estimates based on detailed schedules and assigned tasks. In this paper we describe how we develop our CER's for parametric cost estimation and how they can be applied to estimate the costs for future space science missions like those presented to the Astronomy & Astrophysics Decadal Survey Study Committees.
Parametric amplifications in the nonlinear transmission line
Energy Technology Data Exchange (ETDEWEB)
Kawata, T; Sakai, J; Inoue, H [Toyama Univ., Takaoka (Japan). Faculty of Engineering
1980-03-01
The parametric amplification in a transmission line with nonlinear capacitors is analysed theoretically using the equations of three wave interactions. Since this line has two modes, high frequency and low frequency modes, there may occur some mode coupling phenomena through the resonant interactions. We consider three waves with wave number k sub(j) and frequency ..omega..sub(j) in resonance with each other, that is, ..omega../sub 1/ + ..omega../sub 2/ = ..omega../sub 3/ and k/sub 1/ + k/sub 2/ = k/sub 3/, where 0 <= ..omega../sub 1/ <= ..omega../sub 2/ <= ..omega../sub 3/ and k/sub 3/ >= 0. Such conditions are realized in our network and there exist two states: ''forward state'' (each group velocity is positive) and ''backward state'' (one of the group velocities is negative). The coupled equations of three waves has two constant pumps: high frequency (HF) pump and low frequency (LF) pump. Using linear approximations, we examine the possible types of parametric amplification and obtain the power gains depending on the frequency deviation. For only the case of HF pump we get the gain between signals with seme frequency and also get the gain from the low frequency signal to the high frequency signal (''up-conversion'') for the LF pump. The nonlinear analysis gives the exact relation between input and output signals. For the forward state the gain is absolutely suppressed by the ratio of pumping power to input power, while the gain of backward state has no finite maximum and there may appear an ''oscillating state'' if the pumping power is comparatively small.
Evaluation of Two Energy Balance Closure Parametrizations
Eder, Fabian; De Roo, Frederik; Kohnert, Katrin; Desjardins, Raymond L.; Schmid, Hans Peter; Mauder, Matthias
2014-05-01
A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273-292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701-716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the "missing energy" between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios 1.
Fast, Sequence Adaptive Parcellation of Brain MR Using Parametric Models
DEFF Research Database (Denmark)
Puonti, Oula; Iglesias, Juan Eugenio; Van Leemput, Koen
2013-01-01
In this paper we propose a method for whole brain parcellation using the type of generative parametric models typically used in tissue classification. Compared to the non-parametric, multi-atlas segmentation techniques that have become popular in recent years, our method obtains state-of-the-art ...
Parametric Statistics of Individual Energy Levels in Random Hamiltonians
Smolyarenko, I. E.; Simons, B. D.
2002-01-01
We establish a general framework to explore parametric statistics of individual energy levels in disordered and chaotic quantum systems of unitary symmetry. The method is applied to the calculation of the universal intra-level parametric velocity correlation function and the distribution of level shifts under the influence of an arbitrary external perturbation.
Design and development of a parametrically excited nonlinear energy harvester
International Nuclear Information System (INIS)
Yildirim, Tanju; Ghayesh, Mergen H.; Li, Weihua; Alici, Gursel
2016-01-01
Highlights: • A parametrically broadband energy harvester was fabricated. • Strong softening-type nonlinear behaviour was observed. • Experiments were conducted showing the large bandwidth of the device. - Abstract: An energy harvester has been designed, fabricated and tested based on the nonlinear dynamical response of a parametrically excited clamped-clamped beam with a central point-mass; magnets have been used as the central point-mass which pass through a coil when parametrically excited. Experiments have been conducted for the energy harvester when the system is excited (i) harmonically near the primary resonance; (ii) harmonically near the principal parametric resonance; (iii) by means of a non-smooth periodic excitation. An electrodynamic shaker was used to parametrically excite the system and the corresponding displacement of the magnet and output voltages of the coil were measured. It has been shown that the system displays linear behaviour at the primary resonance; however, at the principal parametric resonance, the motion characteristic of the magnet substantially changed displaying a strong softening-type nonlinearity. Theoretical simulations have also been conducted in order to verify the experimental results; the comparison between theory and experiment were within very good agreement of each other. The energy harvester developed in this paper is capable of harvesting energy close to the primary resonance as well as the principal parametric resonance; the frequency-band has been broadened significantly mainly due to the nonlinear effects as well as the parametric excitation.
QCD parametrizations of the parton distribution of deep inelastic scattering
International Nuclear Information System (INIS)
Kotikov, A.V.; Maksimov, S.J.; Parobij, I.S.
1993-01-01
A realistic parametrization of the gluon and quarks distributions is suggested. It is shown that the solutions of the Gribov-Lipatov-Altarelli-Paris equations can be presented by these parametrizations and these equations unambiguously lead to the constraints on the Q 2 -evolution of the parameters. (author). 10 refs
Parametric excitation of drift waves in a sheared slab geometry
International Nuclear Information System (INIS)
Vranjes, J.; Weiland, J.
1992-01-01
The threshold for parametric excitation of drift waves in a sheared slab geometry is calculated for a pump wave that is a standing wave along the magnetic field, using the Hasegawa-Mima nonlinearity. The shear damping is counteracted by the parametric coupling and the eigenvalue problem is solved analytically using Taylor's strong coupling approximation. (au)
Additivity for parametrized topological Euler characteristic and Reidemeister torsion
Badzioch, Bernard; Dorabiala, Wojciech
2005-01-01
Dwyer, Weiss, and Williams have recently defined the notions of parametrized topological Euler characteristic and parametrized topological Reidemeister torsion which are invariants of bundles of compact topological manifolds. We show that these invariants satisfy additivity formulas paralleling the additive properties of the classical Euler characteristic and Reidemeister torsion of finite CW-complexes.
Parametric Cost and Schedule Modeling for Early Technology Development
2018-04-02
Research NoteNational Security Rep rt PARAMETRIC MODELING FOR EARLY TECHNOLOGY DEVELOPMENT COST AND SCHEDULE Chuck...Alexander NSR_11x17_Cover_CostModeling_v8.indd 1 11/20/17 3:15 PM PARAMETRIC COST AND SCHEDULE MODELING FOR EARLY TECHNOLOGY DEVELOPMENT Chuck...COST AND SCHEDULE MODELING FOR EARLY TECHNOLOGY DEVELOPMENT iii Contents Figures
Parametric Room Acoustic workflows with real-time acoustic simulation
DEFF Research Database (Denmark)
Parigi, Dario
2017-01-01
The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...
Parametric Equations: Push 'Em Back, Push 'Em Back, Way Back!
Cieply, Joseph F.
1993-01-01
Stresses using the features of graphing calculators to teach parametric equations much earlier in the curriculum than is presently done. Examples using parametric equations to teach slopes and lines in beginning algebra, inverse functions in advanced algebra, the wrapping function, and simulations of physical phenomena are presented. (MAZ)
A PARAMETRIC STUDY OF THE INFLUENCE OF SHORT-TERM ...
African Journals Online (AJOL)
(b). (•). Figure I a) The building embedded in a layered formation; b) The building model with base springs. PARAMETRIC STUDY. 'fhe parametric study carried out in this work aims at investigating the effect of the soil flexibility on the internal force distribution of selected structural systems of buildings that are founded on soil.
Parametric Model for Astrophysical Proton-Proton Interactions and Applications
Energy Technology Data Exchange (ETDEWEB)
Karlsson, Niklas [KTH Royal Institute of Technology, Stockholm (Sweden)
2007-01-01
Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e^{±}, v_{e}, $\\bar{v}$_{e}, v_{μ} and $\\bar{μ}$_{e}--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c^{2}. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a
PISC II: Parametric studies. Monitoring of PISC-II parametric studies in ultrasonic NDT for PWR
International Nuclear Information System (INIS)
Toft, M.W.
1989-09-01
The CEGB NDT Applications Centre is partipating in the EEC-funded international Programme for the Inspection of Steel Components (PISC) on account of its relevance to the inspection of Sizewell B and future PWRs. This report describes an inspection monitoring exercise undertaken by NDTAC under partial funding from JRC Ispra, at the initiation of the PISC-III Ultrasonic Modelling Group. Experimental studies have been carried out under PISC-II to investigate ultrasonic defect response as a function of various parameters which characterise the inspection situation. Some of these parametric studies are potentially useful for the validation of theoretical models of ultrasonic inspection and are consequently relevant to the work of the PISC-III Modelling Group. The aim of the present exercise was to ensure that data obtained by the various contract organizations participating in the PISC-II Parametric Studies was of high quality, was a complete record of the inspection and would yield valid comparisons with the predictions of theoretical models. The exercise entailed visits by a nominated CEGB observer to 4 European NDT Laboratories at which the parametric studies were in progress; CISE (Milan); UKAEA (Harwell); UKAEA (Risley) and Vincotte (Brussels). This report presents the findings of those visits
Autonomous Supervision and Control of Parametric Roll Resonance
DEFF Research Database (Denmark)
Galeazzi, Roberto
therefore two objectives. The first is to develop methods for detection of the inception of parametric roll resonance. The second is to develop control strategies to stabilize the motion after parametric roll has started. Stabilisation of parametric roll resonance points to two possible courses of action...... strategies are then combined to stabilise parametric roll resonance within few roll cycles. Limitations on the maximum stabilisable roll angle are analysed and linked to the ii slew rate saturation and hydrodynamic stall characteristics of the fin stabilisers. The study on maximum stabilisable roll angle...... leads to the requirements for early detection. Two novel detectors are proposed, which work within a shorttime prediction horizon, and issue early warnings of parametric roll inception within few roll cycles from its onset. The main idea behind these detection schemes is that of exploiting the link...
Parametric Instability in Advanced Laser Interferometer Gravitational Wave Detectors
International Nuclear Information System (INIS)
Ju, L; Grass, S; Zhao, C; Degallaix, J; Blair, D G
2006-01-01
High frequency parametric instabilities in optical cavities are radiation pressure induced interactions between test mass mechanical modes and cavity optical modes. The parametric gain depends on the cavity power and the quality factor of the test mass internal modes (usually in ultrasonic frequency range), as well as the overlap integral for the mechanical and optical modes. In advanced laser interferometers which require high optical power and very low acoustic loss test masses, parametric instabilities could prevent interferometer operation if not suppressed. Here we review the problem of parametric instabilities in advanced detector configurations for different combinations of sapphire and fused silica test masses, and compare three methods for control or suppression of parametric instabilities-thermal tuning, surface damping and active feedback
Pixel-based parametric source depth map for Cerenkov luminescence imaging
International Nuclear Information System (INIS)
Altabella, L.; Spinelli, A.E.; Boschi, F.
2016-01-01
Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5–6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure
Parametric mechanisms for detecting gravitational waves
International Nuclear Information System (INIS)
Pustovoit, V.I.; Chernozatonskii, L.A.
1981-01-01
An intense electromagnetic wave and a gravitational wave can interact to effectively generate electromagnetic waves at sum and difference frequencies. The self-effect of a monochromatic electromagnetic wave through a gravitational field leads to third-harmonic generation
Scholten, O.; Trinh, T. N. G.; de Vries, K. D.; Hare, B. M.
2018-01-01
The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the plasma cloud, the longitudinal shower structure, is determined by interesting physics which one would like to extract, such as the location and multiplicity of the primary cosmic-ray collision or the values of electric fields in the atmosphere during thunderstorms. To extract the structure of a shower from its footprint requires solving a complicated inverse problem. For this purpose we have developed a code that semianalytically calculates the radio footprint of an extensive air shower given an arbitrary longitudinal structure. This code can be used in an optimization procedure to extract the optimal longitudinal shower structure given a radio footprint. On the basis of air-shower universality we propose a simple parametrization of the structure of the plasma cloud. This parametrization is based on the results of Monte Carlo shower simulations. Deriving the parametrization also teaches which aspects of the plasma cloud are important for understanding the features seen in the radio-emission footprint. The calculated radio footprints are compared with microscopic CoREAS simulations.
Moment stability for a predator–prey model with parametric dichotomous noises
International Nuclear Information System (INIS)
Jin Yan-Fei
2015-01-01
In this paper, we investigate the solution moment stability for a Harrison-type predator–prey model with parametric dichotomous noises. Using the Shapiro–Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses. (paper)
Bagayev, S. N.; Arkhipov, R. M.; Arkhipov, M. V.; Egorov, V. S.; Chekhonin, I. A.; Chekhonin, M. A.
2017-11-01
The generation of the ring mode-locked laser containing resonant absorption medium in the cavity was investigated. It is shown that near the strong resonant absorption lines a condensation of polaritons arises. Intensive radiation looks like as superradiance in a medium without population inversion. We studied theoretically the microscopic mechanism of these phenomena. It was shown that in this system in absorbing medium a strong self-induced difference combination parametric resonance exists. Superradiance on polaritonic modes in the absorbing medium are due to the emergence of light-induced resonant polarization as a result of fast periodic nonadiabatic quantum jumps in the absorber.
Interference of biphotons upon parametric down-conversion in the field of biharmonic pumping
International Nuclear Information System (INIS)
Zolotoverkh, I I
2014-01-01
We report theoretical investigation of interference of biphotons emitted upon type-II collinear parametric down-conversion in the case of biharmonic pumping. Interference occurs when an optical or electronic shutter is used as an amplitude modulator in the experimental scheme. The phase of the interference is shown to depend on the time interval between the instant the shutter is opened and the instant corresponding to the maximum pump intensity. The main parameter affecting the visibility of the interference pattern is a time interval during which the shutter is open. (nonlinear optical phenomena)
Kerschbamer, Rudolf
2015-05-01
This paper proposes a geometric delineation of distributional preference types and a non-parametric approach for their identification in a two-person context. It starts with a small set of assumptions on preferences and shows that this set (i) naturally results in a taxonomy of distributional archetypes that nests all empirically relevant types considered in previous work; and (ii) gives rise to a clean experimental identification procedure - the Equality Equivalence Test - that discriminates between archetypes according to core features of preferences rather than properties of specific modeling variants. As a by-product the test yields a two-dimensional index of preference intensity.
Hastuti, S.; Harijono; Murtini, E. S.; Fibrianto, K.
2018-03-01
This current study is aimed to investigate the use of parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method. Ledre as Bojonegoro unique local food product was used as point of interest, in which 319 panelists were involved in the study. The result showed that ledre is characterized as easy-crushed texture, sticky in mouth, stingy sensation and easy to swallow. It has also strong banana flavour with brown in colour. Compared to eggroll and semprong, ledre has more variances in terms of taste as well the roll length. As RATA questionnaire is designed to collect categorical data, non-parametric approach is the common statistical procedure. However, similar results were also obtained as parametric approach, regardless the fact of non-normal distributed data. Thus, it suggests that parametric approach can be applicable for consumer study with large number of respondents, even though it may not satisfy the assumption of ANOVA (Analysis of Variances).
Energy Technology Data Exchange (ETDEWEB)
Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland
2013-04-01
The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.
Use of statistical parametric mapping of 18F-FDG-PET in frontal lobe epilepsy
International Nuclear Information System (INIS)
Plotkin, M.; Amthauer, H.; Luedemann, L.; Hartkop, E.; Ruf, J.; Gutberlet, M.; Bertram, H.; Felix, R.; Venz, St.; Merschhemke, M.; Meencke, H.-J.
2003-01-01
Aim: Evaluation of the use of statistical parametrical mapping (SPM) of FDG-PET for seizure lateralization in frontal lobe epilepsy. Patients: 38 patients with suspected frontal lobe epilepsy supported by clinical findings and video-EEG monitoring. Method: Statistical parametrical maps were generated by subtraction of individual scans from a control group, formed by 16 patients with negative neurological/psychiatric history and no abnormalities in the MR scan. The scans were also analyzed visually as well as semiquantitatively by manually drawn ROIs. Results: SPM showed a better accordance to the results of surface EEG monitoring compared with visual scan analysis and ROI quantification. In comparison with intracranial EEG recordings, the best performance was achieved by combining the ROI based quantification with SPM analysis. Conclusion: These findings suggest that SPM analysis of FDG-PET data could be a useful as complementary tool in the evaluation of seizure focus lateralization in patients with supposed frontal lobe epilepsy. (orig.)
Parametric Quadrilateral Meshes for the Design and Optimization of Superconducting Magnets
Aleksa, Martin; Völlinger, Christine
2002-01-01
The program package ROXIE has been developed at CERN for the design and optimization of accelerator magnets. The necessity of extremely uniform fields in the superconducting accelerator magnets for LHC requires very accurate methods of field computation. For this purpose the coupled boundary-element / finite-element technique (BEM-FEM) is used. Quadrilateral higher order finite-element meshes are generated for the discretization of the iron domain (yoke) and stainless steel collars. A new mesh generator using geometrically optimized domain decomposition which was developed at the University of Stuttgart, Germany has been implemented into the ROXIE program providing fully automatic and user friendly mesh generation. The structure of the magnet cross-section can be modeled using parametric objects such as holes of different forms, elliptic, parabolic or hyperbolic arcs, notches, slots, .... For sensitivity analysis and parametric studies, point based morphing algorithms are applied to guarantee smooth adaptatio...
International Nuclear Information System (INIS)
Shafieloo, Arman
2012-01-01
By introducing Crossing functions and hyper-parameters I show that the Bayesian interpretation of the Crossing Statistics [1] can be used trivially for the purpose of model selection among cosmological models. In this approach to falsify a cosmological model there is no need to compare it with other models or assume any particular form of parametrization for the cosmological quantities like luminosity distance, Hubble parameter or equation of state of dark energy. Instead, hyper-parameters of Crossing functions perform as discriminators between correct and wrong models. Using this approach one can falsify any assumed cosmological model without putting priors on the underlying actual model of the universe and its parameters, hence the issue of dark energy parametrization is resolved. It will be also shown that the sensitivity of the method to the intrinsic dispersion of the data is small that is another important characteristic of the method in testing cosmological models dealing with data with high uncertainties
Chicurel-Uziel, Enrique
2007-08-01
A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.
Directory of Open Access Journals (Sweden)
Ying Li
2017-01-01
Full Text Available The nonlinear parametric vibration of an axially moving string made by rubber-like materials is studied in the paper. The fractional viscoelastic model is used to describe the damping of the string. Then, a new nonlinear fractional mathematical model governing transverse motion of the string is derived based on Newton’s second law, the Euler beam theory, and the Lagrangian strain. Taking into consideration the fractional calculus law of Riemann-Liouville form, the principal parametric resonance is analytically investigated via applying the direct multiscale method. Numerical results are presented to show the influences of the fractional order, the stiffness constant, the viscosity coefficient, and the axial-speed fluctuation amplitude on steady-state responses. It is noticeable that the amplitudes and existing intervals of steady-state responses predicted by Kirchhoff’s fractional material model are much larger than those predicted by Mote’s fractional material model.
A Review of Parametric Descriptions of Tropical Cyclone Wind-Wave Generation
Directory of Open Access Journals (Sweden)
Ian R. Young
2017-10-01
Full Text Available More than three decades of observations of tropical cyclone wind and wave fields have resulted in a detailed understanding of wave-growth dynamics, although details of the physics are still lacking. These observations are presented in a consistent manner, which provides the basis to be able to characterize the full wave spectrum in a parametric form throughout tropical cyclones. The data clearly shows that an extended fetch model can be used to represent the maximum significant wave height in such storms. The shape stabilizing influence of nonlinear interactions means that the spectral shape is remarkably similar to fetch-limited cases. As such, the tropical cyclone spectrum can also be described by using well-known parametric models. A detailed process is described to parameterize the wave spectrum at any point in a tropical cyclone.
Hamiltonian description of the parametrized scalar field in bounded spatial regions
International Nuclear Information System (INIS)
Barbero G, J Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J S
2016-01-01
We study the Hamiltonian formulation for a parametrized scalar field in a regular bounded spatial region subject to Dirichlet, Neumann and Robin boundary conditions. We generalize the work carried out by a number of authors on parametrized field systems to the interesting case where spatial boundaries are present. The configuration space of our models contains both smooth scalar fields defined on the spatial manifold and spacelike embeddings from the spatial manifold to a target spacetime endowed with a fixed Lorentzian background metric. We pay particular attention to the geometry of the infinite dimensional manifold of embeddings and the description of the relevant geometric objects: the symplectic form on the primary constraint submanifold and the Hamiltonian vector fields defined on it. (paper)
A soft double regularization approach to parametric blind image deconvolution.
Chen, Li; Yap, Kim-Hui
2005-05-01
This paper proposes a blind image deconvolution scheme based on soft integration of parametric blur structures. Conventional blind image deconvolution methods encounter a difficult dilemma of either imposing stringent and inflexible preconditions on the problem formulation or experiencing poor restoration results due to lack of information. This paper attempts to address this issue by assessing the relevance of parametric blur information, and incorporating the knowledge into the parametric double regularization (PDR) scheme. The PDR method assumes that the actual blur satisfies up to a certain degree of parametric structure, as there are many well-known parametric blurs in practical applications. Further, it can be tailored flexibly to include other blur types if some prior parametric knowledge of the blur is available. A manifold soft parametric modeling technique is proposed to generate the blur manifolds, and estimate the fuzzy blur structure. The PDR scheme involves the development of the meaningful cost function, the estimation of blur support and structure, and the optimization of the cost function. Experimental results show that it is effective in restoring degraded images under different environments.
International Development Research Centre (IDRC) Digital Library (Canada)
Dorine Odongo
COLLABORATING TECHNICAL AGENCIES: EXPRESSION OF INTEREST FORM. • Please read the information provided about the initiative and the eligibility requirements in the Prospectus before completing this application form. • Ensure all the sections of the form are accurately completed and saved in PDF format.
Edixhoven, B.; van der Geer, G.; Moonen, B.; Edixhoven, B.; van der Geer, G.; Moonen, B.
2008-01-01
Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the
Function parametrization by using 4-point transforms
International Nuclear Information System (INIS)
Dikusar, N.D.
1996-01-01
A continuous parametrization of the smooth curve f(x)=f(x;R) is suggested on a basis of four-point transformations. Coordinates of three reference points of the curve are chosen as parameters R. This approach allows to derive a number of advantages in function approximation and fitting of empiric data. The transformations have made possible to derive a new class of polynomials (monosplines) having the better approximation quality than monomials {x n }. A behaviour of an error of the approximation has a uniform character. A three-point model of the cubic spline (TPS) is proposed. The model allows to reduce a number of unknown parameters in twice and to obtain an advantage in a computing aspect. The new approach to the function approximation and fitting are shown on a number of examples. The proposed approach gives a new mathematical tool and a new possibility in both practical applications and theoretical research of numerical and computational methods. 13 refs., 13 figs., 2 tabs
Parametric Decay during HHFW on NSTX
International Nuclear Information System (INIS)
Wilson, J.R.; Bernabei, S.; Biewer, T.; Diem, S.; Hosea, J.; LeBlanc, B.; Phillips, C.K.; Ryan, P.; Swain, D.W.
2005-01-01
High Harmonic Fast Wave (HHFW) heating experiments on NSTX have been observed to be accompanied by significant edge ion heating (T i >> T e ). This heating is found to be anisotropic with T perp > T par . Simultaneously, coherent oscillations have been detected with an edge Langmuir probe. The oscillations are consistent with parametric decay of the incident fast wave (ω > 13ω ci ) into ion Bernstein waves and an unobserved ion-cyclotron quasi-mode. The observation of anisotropic heating is consistent with Bernstein wave damping, and the Bernstein waves should completely damp in the plasma periphery as they propagate toward a cyclotron harmonic resonance. The number of daughter waves is found to increase with rf power, and to increase as the incident wave's toroidal wavelength increases. The frequencies of the daughter wave are separated by the edge ion cyclotron frequency. Theoretical calculations of the threshold for this decay in uniform plasma indicate an extremely small value of incident power should be required to drive the instability. While such decays are commonly observed at lower harmonics in conventional ICRF heating scenarios, they usually do not involve the loss of significant wave power from the pump wave. On NSTX an estimate of the power loss can be found by calculating the minimum power required to support the edge ion heating (presumed to come from the decay Bernstein wave). This calculation indicates at least 20-30% of the incident rf power ends up as decay waves
Stability analysis of fuzzy parametric uncertain systems.
Bhiwani, R J; Patre, B M
2011-10-01
In this paper, the determination of stability margin, gain and phase margin aspects of fuzzy parametric uncertain systems are dealt. The stability analysis of uncertain linear systems with coefficients described by fuzzy functions is studied. A complexity reduced technique for determining the stability margin for FPUS is proposed. The method suggested is dependent on the order of the characteristic polynomial. In order to find the stability margin of interval polynomials of order less than 5, it is not always necessary to determine and check all four Kharitonov's polynomials. It has been shown that, for determining stability margin of FPUS of order five, four, and three we require only 3, 2, and 1 Kharitonov's polynomials respectively. Only for sixth and higher order polynomials, a complete set of Kharitonov's polynomials are needed to determine the stability margin. Thus for lower order systems, the calculations are reduced to a large extent. This idea has been extended to determine the stability margin of fuzzy interval polynomials. It is also shown that the gain and phase margin of FPUS can be determined analytically without using graphical techniques. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Multidimensional Scaling Visualization Using Parametric Similarity Indices
Directory of Open Access Journals (Sweden)
J. A. Tenreiro Machado
2015-03-01
Full Text Available In this paper, we apply multidimensional scaling (MDS and parametric similarity indices (PSI in the analysis of complex systems (CS. Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, and we generate the corresponding MDS maps of ‘points’. Third, we use Procrustes analysis to linearly transform the MDS charts for maximum superposition and to build a globalMDS map of “shapes”. This final plot captures the time evolution of the phenomena and is sensitive to the PSI adopted. The generalized correlation, theMinkowski distance and four entropy-based indices are tested. The proposed approach is applied to the Dow Jones Industrial Average stock market index and the Europe Brent Spot Price FOB time-series.
Parametric analysis of a magnetized cylindrical plasma
International Nuclear Information System (INIS)
Ahedo, Eduardo
2009-01-01
The relevant macroscopic model, the spatial structure, and the parametric regimes of a low-pressure plasma confined by a cylinder and an axial magnetic field is discussed for the small-Debye length limit, making use of asymptotic techniques. The plasma response is fully characterized by three-dimensionless parameters, related to the electron gyroradius, and the electron and ion collision mean-free-paths. There are the unmagnetized regime, the main magnetized regime, and, for a low electron-collisionality plasma, an intermediate-magnetization regime. In the magnetized regimes, electron azimuthal inertia is shown to be a dominant phenomenon in part of the quasineutral plasma region and to set up before ion radial inertia. In the main magnetized regime, the plasma structure consists of a bulk diffusive region, a thin layer governed by electron inertia, a thinner sublayer controlled by ion inertia, and the non-neutral Debye sheath. The solution of the main inertial layer yields that the electron azimuthal energy near the wall is larger than the electron thermal energy, making electron resistivity effects non-negligible. The electron Boltzmann relation is satisfied only in the very vicinity of the Debye sheath edge. Ion collisionality effects are irrelevant in the magnetized regime. Simple scaling laws for plasma production and particle and energy fluxes to the wall are derived.
Parametric Analysis of Flexible Logic Control Model
Directory of Open Access Journals (Sweden)
Lihua Fu
2013-01-01
Full Text Available Based on deep analysis about the essential relation between two input variables of normal two-dimensional fuzzy controller, we used universal combinatorial operation model to describe the logic relationship and gave a flexible logic control method to realize the effective control for complex system. In practical control application, how to determine the general correlation coefficient of flexible logic control model is a problem for further studies. First, the conventional universal combinatorial operation model has been limited in the interval [0,1]. Consequently, this paper studies a kind of universal combinatorial operation model based on the interval [a,b]. And some important theorems are given and proved, which provide a foundation for the flexible logic control method. For dealing reasonably with the complex relations of every factor in complex system, a kind of universal combinatorial operation model with unequal weights is put forward. Then, this paper has carried out the parametric analysis of flexible logic control model. And some research results have been given, which have important directive to determine the values of the general correlation coefficients in practical control application.
A scale invariance criterion for LES parametrizations
Directory of Open Access Journals (Sweden)
Urs Schaefer-Rolffs
2015-01-01
Full Text Available Turbulent kinetic energy cascades in fluid dynamical systems are usually characterized by scale invariance. However, representations of subgrid scales in large eddy simulations do not necessarily fulfill this constraint. So far, scale invariance has been considered in the context of isotropic, incompressible, and three-dimensional turbulence. In the present paper, the theory is extended to compressible flows that obey the hydrostatic approximation, as well as to corresponding subgrid-scale parametrizations. A criterion is presented to check if the symmetries of the governing equations are correctly translated into the equations used in numerical models. By applying scaling transformations to the model equations, relations between the scaling factors are obtained by demanding that the mathematical structure of the equations does not change.The criterion is validated by recovering the breakdown of scale invariance in the classical Smagorinsky model and confirming scale invariance for the Dynamic Smagorinsky Model. The criterion also shows that the compressible continuity equation is intrinsically scale-invariant. The criterion also proves that a scale-invariant turbulent kinetic energy equation or a scale-invariant equation of motion for a passive tracer is obtained only with a dynamic mixing length. For large-scale atmospheric flows governed by the hydrostatic balance the energy cascade is due to horizontal advection and the vertical length scale exhibits a scaling behaviour that is different from that derived for horizontal length scales.
Supercritical extraction of oleaginous: parametric sensitivity analysis
Directory of Open Access Journals (Sweden)
Santos M.M.
2000-01-01
Full Text Available The economy has become universal and competitive, thus the industries of vegetable oil extraction must advance in the sense of minimising production costs and, at the same time, generating products that obey more rigorous patterns of quality, including solutions that do not damage the environment. The conventional oilseed processing uses hexane as solvent. However, this solvent is toxic and highly flammable. Thus the search of substitutes for hexane in oleaginous extraction process has increased in the last years. The supercritical carbon dioxide is a potential substitute for hexane, but it is necessary more detailed studies to understand the phenomena taking place in such process. Thus, in this work a diffusive model for semi-continuous (batch for the solids and continuous for the solvent isothermal and isobaric extraction process using supercritical carbon dioxide is presented and submitted to a parametric sensitivity analysis by means of a factorial design in two levels. The model parameters were disturbed and their main effects analysed, so that it is possible to propose strategies for high performance operation.
Improvement of Statistical Decisions under Parametric Uncertainty
Nechval, Nicholas A.; Nechval, Konstantin N.; Purgailis, Maris; Berzins, Gundars; Rozevskis, Uldis
2011-10-01
A large number of problems in production planning and scheduling, location, transportation, finance, and engineering design require that decisions be made in the presence of uncertainty. Decision-making under uncertainty is a central problem in statistical inference, and has been formally studied in virtually all approaches to inference. The aim of the present paper is to show how the invariant embedding technique, the idea of which belongs to the authors, may be employed in the particular case of finding the improved statistical decisions under parametric uncertainty. This technique represents a simple and computationally attractive statistical method based on the constructive use of the invariance principle in mathematical statistics. Unlike the Bayesian approach, an invariant embedding technique is independent of the choice of priors. It allows one to eliminate unknown parameters from the problem and to find the best invariant decision rule, which has smaller risk than any of the well-known decision rules. To illustrate the proposed technique, application examples are given.
Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation
Pentaris, Fragkiskos P.; Fouskitakis, George N.
2014-05-01
The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5
Parametric resonance and cooling on an atom chip
International Nuclear Information System (INIS)
Yan Bo; Li Xiaolin; Ke Min; Wang Yuzhu
2008-01-01
This paper observes the parametric excitation on atom chip by measuring the trap loss when applying a parametric modulation. By modulating the current in chip wires, it modulates not only the trap frequency but also the trap position. It shows that the strongest resonance occurs when the modulation frequency equals to the trap frequency. The resonance amplitude increases exponentially with modulation depth. Because the Z-trap is an anharmonic trap, there exists energy selective excitation which would cause parametric cooling. We confirm this effect by observing the temperature of atom cloud dropping
Parametric analysis of fatigue crack growth
International Nuclear Information System (INIS)
Carden, A.E.
1975-01-01
The effect of temperature and frequency on fatigue crack growth were empirically observed and treated as a coefficient on a stress intensity factor term. The stress intensity factor term is a function of Ksub(max), Ksub(min) (or stress ratio) and a threshold K term. The apparent threshold values were selected in order to linearize the data. At 1000 0 F a constant da/dt (creep crack growth rate) is approached for cycle periods approaching 2000 s indicating a limiting and linear-inverse frequency effect. (author)
Parametrized post-Friedmann framework for modified gravity
International Nuclear Information System (INIS)
Hu, Wayne; Sawicki, Ignacy
2007-01-01
We develop a parametrized post-Friedmann (PPF) framework which describes three regimes of modified gravity models that accelerate the expansion without dark energy. On large scales, the evolution of scalar metric and density perturbations must be compatible with the expansion history defined by distance measures. On intermediate scales in the linear regime, they form a scalar-tensor theory with a modified Poisson equation. On small scales in dark matter halos such as our own galaxy, modifications must be suppressed in order to satisfy stringent local tests of general relativity. We describe these regimes with three free functions and two parameters: the relationship between the two metric fluctuations, the large and intermediate scale relationships to density fluctuations, and the two scales of the transitions between the regimes. We also clarify the formal equivalence of modified gravity and generalized dark energy. The PPF description of linear fluctuation in f(R) modified action and the Dvali-Gabadadze-Porrati braneworld models show excellent agreement with explicit calculations. Lacking cosmological simulations of these models, our nonlinear halo-model description remains an ansatz but one that enables well-motivated consistency tests of general relativity. The required suppression of modifications within dark matter halos suggests that the linear and weakly nonlinear regimes are better suited for making a complementary test of general relativity than the deeply nonlinear regime
Wang, Shuo; Yu, Rongjun; Tyszka, J. Michael; Zhen, Shanshan; Kovach, Christopher; Sun, Sai; Huang, Yi; Hurlemann, Rene; Ross, Ian B.; Chung, Jeffrey M.; Mamelak, Adam N.; Adolphs, Ralph; Rutishauser, Ueli
2017-01-01
The human amygdala is a key structure for processing emotional facial expressions, but it remains unclear what aspects of emotion are processed. We investigated this question with three different approaches: behavioural analysis of 3 amygdala lesion patients, neuroimaging of 19 healthy adults, and single-neuron recordings in 9 neurosurgical patients. The lesion patients showed a shift in behavioural sensitivity to fear, and amygdala BOLD responses were modulated by both fear and emotion ambiguity (the uncertainty that a facial expression is categorized as fearful or happy). We found two populations of neurons, one whose response correlated with increasing degree of fear, or happiness, and a second whose response primarily decreased as a linear function of emotion ambiguity. Together, our results indicate that the human amygdala processes both the degree of emotion in facial expressions and the categorical ambiguity of the emotion shown and that these two aspects of amygdala processing can be most clearly distinguished at the level of single neurons. PMID:28429707
Forms and genesis of species abundance distributions
Directory of Open Access Journals (Sweden)
Evans O. Ochiaga
2015-12-01
Full Text Available Species abundance distribution (SAD is one of the most important metrics in community ecology. SAD curves take a hollow or hyperbolic shape in a histogram plot with many rare species and only a few common species. In general, the shape of SAD is largely log-normally distributed, although the mechanism behind this particular SAD shape still remains elusive. Here, we aim to review four major parametric forms of SAD and three contending mechanisms that could potentially explain this highly skewed form of SAD. The parametric forms reviewed here include log series, negative binomial, lognormal and geometric distributions. The mechanisms reviewed here include the maximum entropy theory of ecology, neutral theory and the theory of proportionate effect.
Hamiltonian constraint in polymer parametrized field theory
International Nuclear Information System (INIS)
Laddha, Alok; Varadarajan, Madhavan
2011-01-01
Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.
Parametric decay instabilities in ECR heated plasmas
International Nuclear Information System (INIS)
Porkolab, M.
1982-01-01
The possibility of parametric excitation of electron Bernstein waves and low frequency ion oscillations during ECR heating at omega/sub o/ approx. = l omega/sub ce/, l = 1,2 is examined. In particular, the thresholds for such instabilities are calculated. It is found that Bernstein waves and lower hybrid quasi-modes have relatively low homogeneous where T/sub e/ approx. = T/sub i/. Thus, these processes may lead to nonlinear absorption and/or scattering of the incident pump wave. The resulting Bernstein waves may lead to either more effective heating (especially during the start-up phase) or to loss of microwave energy if the decay waves propagate out of the system before their energy is absorbed by particles. While at omega/sub o/ = omega/sub UH/ the threshold is reduced due to the WKB enhancement of the pump wave, (and this instability may be important in tokamaks) in EBT's and tandem mirrors the instability at omega /sub o/ greater than or equal to 2 omega/sub ce/ may be important. The instability may persist even if omega > 2 omega/sub ce/ and this may be the case during finite beta depression of the magnetic field in which case the decay waves may be trapped in the local magnetic well so that convective losses are minimized. The excited fluctuations may lead to additional scattering of the ring electrons and the incident microwave fields. Application of these calculations to ECR heating of tokamaks, tandem mirrors, and EBT's will be examined
Parametric tomography of the cardiac blood pool
International Nuclear Information System (INIS)
Meyer, M.; Schwartz, K.D.
1990-01-01
In nuclear cardiology image processing is performed usually in 3 of 4 dimensions. ECG-gated SPECT (GSPECT) would make it possible to obtain all 4 dimensions of space and time during one examination, but its duration as well as radiation dose is limited resulting in a low signal-to-noise ratio. Sensitive feature extractions from the amount of data are necessary, e.g. Fourier filtering or extracting isovolumetric intervals. The relatively large amount of calculations and storage requirements often handicaps tomographic ventriculography because a high number of sections have to be processed and the temporal resolution is limited. A new list-mode oriented tomographic algorithm demands less storage and fewer calculations: The Fourier coefficient extraction and the filtered back projection, both of which are linear operations, could be interchanged in the case of thoracic SPECT. The feature extraction algorithm process internal list-mode heart cycles for discrimination of invalid cycles, for end-diastolic and end-systolic synthesis as well as for Fourier analysis of the first harmonic in 10 ms steps. Reconstruction operations are applied also to modified distribution matrices of Fourier coefficients. By only processing 4 spatial matrix sequences (end-diastolic and end-systolic images, amplitude and phase values) parametric tomography becomes practicable and could be also performed by a minicomputer with 64 KByte memory in addition to the possibilities of the planar left ventricular gated imaging. If there are 3 or more processors available a complete feature extraction on-the-fly will be possible. The numerical algorithms were tested with respect to stable reconstructions by phantoms. First results of a patient examination are used to explore effective display techniques, and preliminary modes are demonstrated. It is the purpose of this study to obtain additional information about the gated planar cardiac blood pool imaging in the field of SPECT. (author)
Parametric study of roof diaphragm stiffness requirements
International Nuclear Information System (INIS)
Jones, W.D.; Tenbus, M.A.
1991-01-01
A common assumption made in performing a dynamic seismic analysis for a building is that the roof/floor system is open-quotes rigidclose quotes. This assumption would appear to be reasonable for many of the structures found in nuclear power plants, since many of these structures are constructed of heavily reinforced concrete having floor/roof slabs at least two feet in thickness, and meet the code requirements for structural detailing for seismic design. The roofs of many Department of Energy (DOE) buildings at the Oak Ridge Y-12 Plant in Oak Ridge, Tennessee, have roofs constructed of either metal, precast concrete or gypsum plank deck overlaid with rigid insulation, tar and gravel. In performing natural phenomena hazard assessments for one such facility, it was assumed that the existing roof performed first as a flexible diaphragm (zero stiffness) and then, rigid (infinitely stiff). For the flexible diaphragm model it was determined that the building began to experience significant damage around 0.09 g's. For the rigid diaphragm model it was determined that no significant damage was observed below 0.20 g's. A Conceptual Design Report has been prepared for upgrading/replacing the roof of this building. The question that needed to be answered here was, open-quotes How stiff should the new roof diaphragm be in order to satisfy the rigid diaphragm assumption and, yet, be cost effective?close quotes. This paper presents a parametric study of a very simple structural system to show that the design of roof diaphragms needs to consider both strength and stiffness (frequency) requirements. This paper shows how the stiffness of a roof system affects the seismically induced loads in the lateral, vertical load resisting elements of a building and provides guidance in determining how open-quotes rigidclose quotes a roof system should be in order to accomplish a cost effective design
Current-driven parametric resonance in magnetic multilayers
International Nuclear Information System (INIS)
Wang, C; Seinige, H; Tsoi, M
2013-01-01
Current-induced parametric excitations were observed in point-contact spin-valve nanodevices. Point contacts were used to inject high densities of direct and microwave currents into spin valves, thus producing oscillating spin-transfer and Oersted-field torques on magnetic moments. The resulting magnetodynamics were observed electrically by measuring rectified voltage signals across the contact. In addition to the spin-torque-driven ferromagnetic resonance we observe doubled-frequency signals which correspond to the parametric excitation of magnetic moments. Numerical simulations suggest that while both spin-transfer torque and ac Oersted field contribute to the parametrically excited dynamics, the ac spin torque dominates, and dc spin torque can switch it on and off. The dc bias dependence of the parametric resonance signal enabled the mapping of instability regions characterizing the nonlinearity of the oscillation. (paper)
Determinant of flexible Parametric Estimation of Mixture Cure ...
African Journals Online (AJOL)
PROF. OLIVER OSUAGWA
2015-12-01
Dec 1, 2015 ... Suitability of four parametric mixture cure models were considered namely; Log .... regression analysis which relies on the ... The parameter of mixture cure fraction model was ..... Stochastic Models of Tumor Latency and Their.
Semi-parametrical NAA method for paper analysis
International Nuclear Information System (INIS)
Medeiros, Ilca M.M.A.; Zamboni, Cibele B.; Cruz, Manuel T.F. da; Morel, Jose C.O.; Park, Song W.
2007-01-01
The semi-parametric Neutron Activation Analysis technique, using Au as flux monitor, was applied to determine element concentrations in white paper, usually commercialized, aiming to check the quality control of its production in industrial process. (author)
Evaluating forest management policies by parametric linear programing
Daniel I. Navon; Richard J. McConnen
1967-01-01
An analytical and simulation technique, parametric linear programing explores alternative conditions and devises an optimal management plan for each condition. Its application in solving policy-decision problems in the management of forest lands is illustrated in an example.
The RECENT code with the Reich-Moore parametrization
International Nuclear Information System (INIS)
Melnikoff, M.; Chalhoub, E.S.; Carlson, B.V.
1985-01-01
The program RECENT, which reconstructs neutron cross sections from resonance parameters given in the ENDF/B format, was modified in order to include in its structure the Reich-Moore parametrization. (Author) [pt
Parametric optimization of CNC end milling using entropy ...
African Journals Online (AJOL)
Parametric optimization of CNC end milling using entropy measurement technique combined with grey-Taguchi method. ... International Journal of Engineering, Science and Technology ... Keywords: CNC end milling, surface finish, material removal rate (MRR), entropy measurement technique, Taguchi method ...
On the unlimited gain of a nonlinear parametric amplifier
DEFF Research Database (Denmark)
Sorokin, Vladislav
2014-01-01
The present paper is concerned with analysis of the response of a nonlinear parametric amplifier in abroad range of system parameters, particularly beyond resonance. Such analysis is of particular interestfor micro- and nanosystems, since many small-scale parametric amplifiers exhibit a distinctly...... nonlinearbehavior when amplitude of their response is sufficiently large. The modified method of direct separa-tion of motions is employed to study the considered system. As the result it is obtained that steady-stateamplitude of the nonlinear parametric amplifier response can reach large values in the case...... of arbitrarilysmall amplitude of external excitation, so that the amplifier gain tends to infinity. Very large amplifiergain can be achieved in a broad range of system parameters, in particular when the amplitude of para-metric excitation is comparatively small. The obtained results clearly demonstrate that very...
Scaling of plasma turbulence resulting from parametric instabilities
International Nuclear Information System (INIS)
Ott, E.
1976-01-01
Dimensional analysis is used to obtain results on the turbulent state resulting from parametric instabilities of an initially cold plasma. The results include the possibility of an applied magnetic field, multiple ion species, and arbitrary dimensionality
Parametric roll resonance monitoring using signal-based detection
DEFF Research Database (Denmark)
Galeazzi, Roberto; Blanke, Mogens; Falkenberg, Thomas
2015-01-01
Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric roll...... algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners’ standard methods, and supported by available wave radar data. Further, a bivariate statistical...... analysis of the outcome of the signal-based detectors is performed to assess the real life false alarm probability. It is shown that detection robustness and very low false warning rates are obtained. The study concludes that small parametric roll events are occurring, and that the proposed signal...
Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network
DEFF Research Database (Denmark)
Míguez González, M; López Peña, F.; Díaz Casás, V.
2011-01-01
Parametric roll resonance is a ship stability related phenomenon that generates sudden large amplitude oscillations up to 30-40 degrees of roll. This can cause severe damage, and it can put the crew in serious danger. The need for a parametric rolling real time prediction system has been acknowle......Parametric roll resonance is a ship stability related phenomenon that generates sudden large amplitude oscillations up to 30-40 degrees of roll. This can cause severe damage, and it can put the crew in serious danger. The need for a parametric rolling real time prediction system has been...... acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network...
Involute Spur Gear Template Development by Parametric Technique ...
African Journals Online (AJOL)
Nekky Umera
cylindrical coordinate systems to create the involute curve profile. Since spur gear ... Template gear development using parametric method means that the dimensions control the ... and rapid prototyping of interlocking gears. Excel is a common ...
Parametric Portfolio Selection: Evaluating and Comparing to Markowitz Portfolios
Directory of Open Access Journals (Sweden)
Marcelo C. Medeiros
2014-10-01
Full Text Available In this paper we exploit the parametric portfolio optimization in the Brazilian market. Our data consists of monthly returns of 306 Brazilian stocks in the period between 2001 and 2013. We tested the model both in and out of sample and compared the results with the value and equal weighted portfolios and with a Markowitz based portfolio. We performed statistical inference in the parametric optimization using bootstrap techniques in order to build the parameters empirical distributions. Our results showed that the parametric optimization is a very efficient technique out of sample. It consistently showed superior results when compared with the VW, EW and Markowitz portfolios even when transaction costs were included. Finally, we consider the parametric approach to be very flexible to the inclusion of constraints in weights, transaction costs and listing and delisting of stocks.
A model of parametric X-ray radiation for application to diagnostic radiology
International Nuclear Information System (INIS)
Di Domenico, G.; Cardarelli, P.; Gambaccini, M.; Marziani, M.; Taibi, A.; Comandini, A.
2011-01-01
Parametric X-ray Radiation (PXR) is well known as an intense, tunable and quasi-monochromatic X-ray source. From the very first work of Ter-Mikaelian, who proposed the interaction phenomenon for Parametric X-rays many theoretical and experimental studies have investigated the characteristics of such a novel X-ray source. Within the framework of classical electrodynamics, we have thoroughly studied the physical implications of electrons moving through a medium at relativistic speed and then developed an analytical model of X-ray diffraction based on the PXR phenomenon. The model has been used to obtain information on the characteristics of PXR diffracted beam in terms of X-ray intensity, energy spectrum and angular distribution. Several crystals have been studied both in Bragg and Laue geometry and their relative yield has been compared. Preliminary results on the diagnostic potential of PXR have shown that, at a distance from the crystal which produces a size of the X-ray field useful for an imaging application, the photon yield of PXR is higher than that produced by a conventional X-ray tube, provided that a similar electron current is available.
Parametric surface and properties defined on parallelogrammic domain
Directory of Open Access Journals (Sweden)
Shuqian Fan
2014-01-01
Full Text Available Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufactura-bility (and its limitation in logarithmic spiral bevel gears is analyzed using precision forging and multi-axis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multi-axis freeform milling also need to be solved in a further study.
Housing price prediction: parametric versus semi-parametric spatial hedonic models
Montero, José-María; Mínguez, Román; Fernández-Avilés, Gema
2018-01-01
House price prediction is a hot topic in the economic literature. House price prediction has traditionally been approached using a-spatial linear (or intrinsically linear) hedonic models. It has been shown, however, that spatial effects are inherent in house pricing. This article considers parametric and semi-parametric spatial hedonic model variants that account for spatial autocorrelation, spatial heterogeneity and (smooth and nonparametrically specified) nonlinearities using penalized splines methodology. The models are represented as a mixed model that allow for the estimation of the smoothing parameters along with the other parameters of the model. To assess the out-of-sample performance of the models, the paper uses a database containing the price and characteristics of 10,512 homes in Madrid, Spain (Q1 2010). The results obtained suggest that the nonlinear models accounting for spatial heterogeneity and flexible nonlinear relationships between some of the individual or areal characteristics of the houses and their prices are the best strategies for house price prediction.
Parametric decay of plasma waves near the upper-hybrid resonance
Dodin, I. Y.; Arefiev, A. V.
2017-10-01
An intense X wave propagating perpendicularly to dc magnetic field is unstable with respect to a parametric decay into an electron Bernstein wave and a lower-hybrid wave. A modified theory of this effect is proposed that extends to the high-intensity regime, where the instability rate γ ceases to be a linear function of the incident-wave amplitude. An explicit formula for γ is derived and expressed in terms of cold-plasma parameters. Theory predictions are in reasonable agreement with the results of the particle-in-cell simulations reported in Ref.. The work was supported by the U.S. DOE through Contract No. DE-AC02-09CH11466 and by the U.S. DOE-NNSA Cooperative Agreement No. DE-NA0002008.
Energy Technology Data Exchange (ETDEWEB)
Fang, Yami; Feng, Jingliang; Cao, Leiming; Wang, Yaxian; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)
2016-03-28
Beamsplitters have played an important role in quantum optics experiments. They are often used to split and combine two beams, especially in the construct of an interferometer. In this letter, we experimentally implement a nonlinear beamsplitter using a phase-sensitive parametric amplifier, which is based on four-wave mixing in hot rubidium vapor. Here we show that, despite the different frequencies of the two input beams, the output ports of the nonlinear beamsplitter exhibit interference phenomena. We make measurements of the interference fringe visibility and study how various parameters, such as the intensity gain of the amplifier, the intensity ratio of the two input beams, and the one and two photon detunings, affect the behavior of the nonlinear beamsplitter. It may find potential applications in quantum metrology and quantum information processing.
Measuring Physical Activity Intensity
Full Text Available ... Compartir For more help with what counts as aerobic activity, watch this video: Windows Media Player, 4: ... ways to understand and measure the intensity of aerobic activity: relative intensity and absolute intensity. Relative Intensity ...
The evalution of reproduction parametres in chosen herd of sheep
BENEŠOVÁ, Kristýna
2009-01-01
It has been observed the breed herd of Texel sheep in the foothills area of Orlické mountains in the year 2005-2008. The base of herd was consisted of 374 ewes, 575 lambs and 6 rams in total. These parametres of reproduction - conception, fertility, rearing, empty ewes, abortions, lambing, stillborn, death after born, were monitored at ewes. For the parametres of reproduction at ewes were found significant effects of ewe´s age and ram´s line.
Relativistic parametric instabilities in extended extragalactic radio sources
Energy Technology Data Exchange (ETDEWEB)
Ferrari, A [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Trussoni, E; Zaninetti, L
1978-01-01
A general discussion is presented of parametric instabilities of electromagnetic waves in cold plasmas. Previous results for f = eE/msub(e)c..omega../sub 0/ >> 1 and << 1 are extended and the intermediate range f approximately 1, which could be relevant in some astrophysical applications, is analysed by numerical techniques. In the final section a model for particle acceleration and radiation emission by turbulent plasma modes excited in extended radiosources by parametric absorption of strong electromagnetic waves is tentatively discussed.
Two-parametric PT-symmetric quartic family
International Nuclear Information System (INIS)
Eremenko, Alexandre; Gabrielov, Andrei
2012-01-01
We describe a parametrization of the real spectral locus of the two-parametric family of PT-symmetric quartic oscillators. For this family, we find a parameter region where all eigenvalues are real, extending the results of Dorey et al (2007 J. Phys. A: Math Theor. 40 R205–83) and Shin (2005 J. Phys. A: Math. Gen. 38 6147–66; 2002 Commun. Math. Phys. 229 543–64). (paper)
Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification
DEFF Research Database (Denmark)
Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten
2012-01-01
Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....
Bayesian non- and semi-parametric methods and applications
Rossi, Peter
2014-01-01
This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number
Excess quantum noise in optical parametric chirped-pulse amplification
Manzoni, C.; Moses, J.; Kärtner, F. X.; Cerullo, G.
2011-01-01
Noise evolution in an optical parametric chirped-pulse amplifier (OPCPA) differs essentially from that of an optical parametric or a conventional laser amplifier, in that an incoherent pedestal is produced by superfluorescence that can overwhelm the signal under strong saturation. Using a model for the nonlinear dynamics consistent with quantum mechanics, we numerically study the evolution of excess noise in an OPCPA. The observed dynamics explain the macroscopic characteristics seen previous...
Global optimization of silicon nanowires for efficient parametric processes
DEFF Research Database (Denmark)
Vukovic, Dragana; Xu, Jing; Mørk, Jesper
2013-01-01
We present a global optimization of silicon nanowires for parametric single-pump mixing. For the first time, the effect of surface roughness-induced loss is included in the analysis, significantly influencing the optimum waveguide dimensions.......We present a global optimization of silicon nanowires for parametric single-pump mixing. For the first time, the effect of surface roughness-induced loss is included in the analysis, significantly influencing the optimum waveguide dimensions....
Applying Parametric Fault Detection to a Mechanical System
DEFF Research Database (Denmark)
Felício, P.; Stoustrup, Jakob; Niemann, H.
2002-01-01
A way of doing parametric fault detection is described. It is based on the representation of parameter changes as linear fractional transformations (lfts). We describe a model with parametric uncertainty. Then a stabilizing controller is chosen and its robustness properties are studied via mu. Th....... The parameter changes (faults) are estimated based on estimates of the fictitious signals that enter the delta block in the lft. These signal estimators are designed by H-infinity techniques. The chosen example is an inverted pendulum....
PARAMETRIC ANALYSIS OF THE DYNAMIC PROPERTIES OF ...
African Journals Online (AJOL)
cut the structure into equal parts. In the case where ... is the circular frequency of the i-th mode cd denotes the phase .... material density pet) = vector of nodal loads. The theoretical background on closed-form analytical solutions of discretized-mass system has bee presented by several authors [1, 2, 11); these will form the ...
Investigation of Parametric Instability of the Planetary Gear under Speed Fluctuations
Directory of Open Access Journals (Sweden)
Xinghui Qiu
2017-01-01
Full Text Available Planetary gear is widely used in engineering and usually has symmetrical structure. As the number of teeth in contact changes during rotation, the time-varying mesh stiffness parametrically excites the planetary gear and may cause severe vibrations and instabilities. Taking speed fluctuations into account, the time-varying mesh stiffness is frequency modulated, and therefore sideband instabilities may arise and original instabilities are significantly affected. Considering two different speed fluctuations, original and sideband instabilities are numerically and analytically investigated. A rotational lumped-parameter model of the planetary gear is developed, in which the time-varying mesh stiffness, input speed fluctuations, and damping are considered. Closed-form approximations of instability boundaries for primary and combination instabilities are obtained by perturbation analysis and verified by numerical analysis. The effects of speed fluctuations and damping on parametric instability are systematically examined. Because of the frequency modulation, whether a parametric instability occurs cannot be simply predicted by the planet meshing phase which is applicable to constant speed. Besides adjusting the planet meshing phase, speed fluctuation supplies a new thought to minimize certain instability by adjusting the amplitude or frequency of the speed fluctuation. Both original and sideband instabilities are shrunken by damping, and speed fluctuation further shrinks the original instability.
Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.
2018-01-01
This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.
de-Graft Acquah, Henry
2014-01-01
This paper highlights the sensitivity of technical efficiency estimates to estimation approaches using empirical data. Firm specific technical efficiency and mean technical efficiency are estimated using the non parametric Data Envelope Analysis (DEA) and the parametric Corrected Ordinary Least Squares (COLS) and Stochastic Frontier Analysis (SFA) approaches. Mean technical efficiency is found to be sensitive to the choice of estimation technique. Analysis of variance and Tukeyâ€™s test sugge...
An Optimal Parametrization of Turbulent Scales
Thalabard, S.
2015-12-01
To numerically capture the large-scale dynamics of atmospheric flows, geophysicists need to rely on reasonable parametrizations of the energy transfers to and from the non-resolved small scale eddies, mediated through turbulence. The task is notoriously not trivial, and is typically solved by ingenious but ad-hoc elaborations on the concept of eddy viscosities. The difficulty is tied into the intrinsic Non-Gaussianity of turbulence, a feature that may explain why standard Quasi-Normal cumulant discard statistical closure strategies can fail dramatically, an example being the development of negative energy spectra in Millionshtchikov's 1941 Quasi-Normal (QN) theory. While Orszag's 1977 Eddy Damped Quasi Normal Markovian closure (EDQNM) provides an ingenious patch to the issue, the reason why the QN theory fails so badly is not so clear. Are closures necessarily either trivial or ad-hoc, when proxies for true ensemble averages are taken to be Gaussian ? The purpose of the talk is to answer negatively, using the lights of a new ``optimal closure framework'' recently exposed by [Turkington,2013]. For turbulence problems, the optimal closure allows a consistent use of a Gaussian Ansatz (and corresponding vanishing third cumulant) that also retains an intrinsic damping. The key to this apparent paradox lies in a clear distinction between the true ensemble averages and their proxies, most easily grasped provided one uses the Liouville equation as a starting point, rather than the cumulant hierarchy. Schematically said, closure is achieved by minimizing a lack-of-fit residual, which retains the intrinsic features of the true dynamics. The optimal closure is not restricted to the Gaussian modeling. Yet, for the sake of clarity, I will discuss the optimal closure on a problem where it can be entirely implemented, and compared to DNS : the relaxation of an arbitrarily far from equilibrium energy shell towards the Gibbs equilibrium for truncated Euler dynamics. Predictive
Mixing parametrizations for ocean climate modelling
Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir
2016-04-01
The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model
The package PAKPDF ver. 1.1 of parametrizations of parton distribution functions in the proton
International Nuclear Information System (INIS)
Charchula, K.
1991-08-01
A FORTRAN package containing parametrizations of parton distribution functions (PDFS) in the proton is described. It allows an easy access to PDFS provided by several recent parametrizations and to some parameters characterizing particular parametrization. Some comments about the use of various parametrizations are also included. (orig.)
Monitoring coastal marshes biomass with CASI: a comparison of parametric and non-parametric models
Mo, Y.; Kearney, M.
2017-12-01
Coastal marshes are important carbon sinks that face multiple natural and anthropogenic stresses. Optical remote sensing is a powerful tool for closely monitoring the biomass of coastal marshes. However, application of hyperspectral sensors on assessing the biomass of diverse coastal marsh ecosystems is limited. This study samples spectral and biophysical data from coastal freshwater, intermediate, brackish, and saline marshes in Louisiana, and develops parametric and non-parametric models for using the Compact Airborne Spectrographic Imager (CASI) to retrieve the marshes' biomass. Linear models and random forest models are developed from simulated CASI data (48 bands, 380-1050 nm, bandwidth 14 nm). Linear models are also developed using narrowband vegetation indices computed from all possible band combinations from the blue, red, and near infrared wavelengths. It is found that the linear models derived from the optimal narrowband vegetation indices provide strong predictions for the marshes' Leaf Area Index (LAI; R2 > 0.74 for ARVI), but not for their Aboveground Green Biomass (AGB; R2 > 0.25). The linear models derived from the simulated CASI data strongly predict the marshes' LAI (R2 = 0.93) and AGB (R2 = 0.71) and have 27 and 30 bands/variables in the final models through stepwise regression, respectively. The random forest models derived from the simulated CASI data also strongly predict the marshes' LAI and AGB (R2 = 0.91 and 0.84, respectively), where the most important variables for predicting LAI are near infrared bands at 784 and 756 nm and for predicting ABG are red bands at 684 and 670 nm. In sum, the random forest model is preferable for assessing coastal marsh biomass using CASI data as it offers high R2 for both LAI and AGB. The superior performance of the random forest model is likely to due to that it fully utilizes the full-spectrum data and makes no assumption of the approximate normality of the sampling population. This study offers solutions
Directory of Open Access Journals (Sweden)
Petrova Irina Yur’evna
2018-01-01
Full Text Available Subject: automation of calculation of dynamic characteristics of the device being designed in the system of conceptual design of sensor equipment, structurally-parametric models of dynamic processes and algorithms for the automated calculation of the qualitative characteristics of elements of the information-measuring and control systems (IMCS. The stage of conceptual design most fully determines the operational characteristics of technical systems. However, none of the information support systems of this stage provides an opportunity to evaluate the performance characteristics of the element being designed taking into account its dynamic characteristics. Research objectives: increasing the effectiveness of the evaluation of dynamic characteristics of sensitive elements of the information-measuring and control systems of a smart house. Materials and methods: when solving the problems posed, the mathematical apparatus of system modeling was used (in particular, the energy-information method of modeling processes of various physical nature that occur in the sensor equipment; the main provisions of the theory of automatic control, the theory of constructing computer-aided design systems, the theory of operational calculus; basics of conceptual design of elements of the information-measuring and control systems. Results: we compared the known automated systems for conceptual design of sensors, highlighted their advantages and disadvantages and we showed that none of these systems allows us to investigate dynamic characteristics of the element being designed in a simple and understandable for engineer form. The authors proposed using energy-information method of modeling for the synthesis of operation principles of sensors and analysis of their dynamic characteristics. We considered elementary dynamic chains and issues of synthesis of parametrical structural schemes that reflect the dynamics of the process with the use of mathematical apparatus of
Parametric, nonparametric and parametric modelling of a chaotic circuit time series
Timmer, J.; Rust, H.; Horbelt, W.; Voss, H. U.
2000-09-01
The determination of a differential equation underlying a measured time series is a frequently arising task in nonlinear time series analysis. In the validation of a proposed model one often faces the dilemma that it is hard to decide whether possible discrepancies between the time series and model output are caused by an inappropriate model or by bad estimates of parameters in a correct type of model, or both. We propose a combination of parametric modelling based on Bock's multiple shooting algorithm and nonparametric modelling based on optimal transformations as a strategy to test proposed models and if rejected suggest and test new ones. We exemplify this strategy on an experimental time series from a chaotic circuit where we obtain an extremely accurate reconstruction of the observed attractor.
PISC II: parametric studies. The purpose of the PISC II parametric studies programme
International Nuclear Information System (INIS)
Crutzen, S.
1989-09-01
The results of the PISC I round robin test of the ASME type procedure showed a very large dispersion. The amplitude of response of all defects varied very much among the teams from the 27 laboratories considered for the evaluation of results. Scatter on detection and sizing in PISC I was such that discussions started on the reasons for such a phenomenon when exactly the same procedure was used by all teams. The observation of two teams' results (JRC Ispra and ENEL Piacenza, Italy) induced the NDE Ispra laboratories to insist on the possible importance of equipment characteristics. All PISC members insisted on specific studies of the influence of defect characteristics as well as the role of cladding. These three chapters were the leading PIS laboratory exercises called Parametric Studies
Physiological responses at short distances from a parametric speaker
Directory of Open Access Journals (Sweden)
Lee Soomin
2012-06-01
Full Text Available Abstract In recent years, parametric speakers have been used in various circumstances. In our previous studies, we verified that the physiological burden of the sound of parametric speaker set at 2.6 m from the subjects was lower than that of the general speaker. However, nothing has yet been demonstrated about the effects of the sound of a parametric speaker at the shorter distance between parametric speakers the human body. Therefore, we studied this effect on physiological functions and task performance. Nine male subjects participated in this study. They completed three consecutive sessions: a 20-minute quiet period as a baseline, a 30-minute mental task period with general speakers or parametric speakers, and a 20-minute recovery period. We measured electrocardiogram (ECG photoplethysmogram (PTG, electroencephalogram (EEG, systolic and diastolic blood pressure. Four experiments, one with a speaker condition (general speaker and parametric speaker, the other with a distance condition (0.3 m and 1.0 m, were conducted respectively at the same time of day on separate days. To examine the effects of the speaker and distance, three-way repeated measures ANOVA (speaker factor x distance factor x time factor were conducted. In conclusion, we found that the physiological responses were not significantly different between the speaker condition and the distance condition. Meanwhile, it was shown that the physiological burdens increased with progress in time independently of speaker condition and distance condition. In summary, the effects of the parametric speaker at the 2.6 m distance were not obtained at the distance of 1 m or less.
Kouramas, K.I.; Faí sca, N.P.; Panos, C.; Pistikopoulos, E.N.
2011-01-01
This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques
Parametric studies and optimisation of pumped thermal electricity storage
International Nuclear Information System (INIS)
McTigue, Joshua D.; White, Alexander J.; Markides, Christos N.
2015-01-01
Highlights: • PTES is modelled by cycle analysis and a Schumann-style model of the thermal stores. • Optimised trade-off surfaces show a flat efficiency vs. energy density profile. • Overall roundtrip efficiencies of around 70% are not inconceivable. - Abstract: Several of the emerging technologies for electricity storage are based on some form of thermal energy storage (TES). Examples include liquid air energy storage, pumped heat energy storage and, at least in part, advanced adiabatic compressed air energy storage. Compared to other large-scale storage methods, TES benefits from relatively high energy densities, which should translate into a low cost per MW h of storage capacity and a small installation footprint. TES is also free from the geographic constraints that apply to hydro storage schemes. TES concepts for electricity storage rely on either a heat pump or refrigeration cycle during the charging phase to create a hot or a cold storage space (the thermal stores), or in some cases both. During discharge, the thermal stores are depleted by reversing the cycle such that it acts as a heat engine. The present paper is concerned with a form of TES that has both hot and cold packed-bed thermal stores, and for which the heat pump and heat engine are based on a reciprocating Joule cycle, with argon as the working fluid. A thermodynamic analysis is presented based on traditional cycle calculations coupled with a Schumann-style model of the packed beds. Particular attention is paid to the various loss-generating mechanisms and their effect on roundtrip efficiency and storage density. A parametric study is first presented that examines the sensitivity of results to assumed values of the various loss factors and demonstrates the rather complex influence of the numerous design variables. Results of an optimisation study are then given in the form of trade-off surfaces for roundtrip efficiency, energy density and power density. The optimised designs show a
Parametric fitting of corneal height data to a biconic surface.
Janunts, Edgar; Kannengießer, Marc; Langenbucher, Achim
2015-03-01
As the average corneal shape can effectively be approximated by a conic section, a determination of the corneal shape by biconic parameters is desired. The purpose of the paper is to introduce a straightforward mathematical approach for extracting clinically relevant parameters of corneal surface, such as radii of curvature and conic constants for principle meridians and astigmatism. A general description for modeling the ocular surfaces in a biconic form is given, based on which an implicit parametric surface fitting algorithm is introduced. The solution of the biconic fitting is obtained by a two sequential least squares optimization approach with constrains. The data input can be raw information from any corneal topographer with not necessarily a uniform data distribution. Various simulated and clinical data are studied including surfaces with rotationally symmetric and non-symmetric geometries. The clinical data was obtained from the Pentacam (Oculus) for the patient having undergone a refractive surgery. A sub-micrometer fitting accuracy was obtained for all simulated surfaces: 0,08 μm RMS fitting error at max for rotationally symmetric and 0,125 μm for non-symmetric surfaces. The astigmatism was recovered in a sub-minutes resolution. The equality in rotational symmetric and the superiority in non-symmetric surfaces of the presented model over the widely used quadric fitting model is shown. The introduced biconic surface fitting algorithm is able to recover the apical radii of curvature and conic constants in principle meridians. This methodology could be a platform for advanced IOL calculations and enhanced contact lens fitting. Copyright © 2014. Published by Elsevier GmbH.
Numerical simulation of gas metal arc welding parametrical study
International Nuclear Information System (INIS)
Szanto, M.; Gilad, I.; Shai, I.; Quinn, T.P.
2002-01-01
The Gas Metal Arc Welding (GMAW) is a widely used welding process in the industry. The process variables are usually determined through extensive experiments. Numerical simulation, reduce the cost and extends the understanding of the process. In the present work, a versatile model for numerical simulation of GMAW is presented. The model provides the basis for fundamental understanding of the process. The model solves the magneto-hydrodynamic equations for the flow and temperature fields of the molten electrode and the plasma simultaneously, to form a fully coupled model. A commercial CFD code was extended to include the effects of radiation, Lorentz forces, Joule heating and thermoelectric effects. The geometry of the numerical model assembled to fit an experimental apparatus. To demonstrate the method, an aluminum electrode was modeled in a pure argon arc. Material properties and welding parameters are the input variables in the numerical model. In a typical process, the temperature distribution of the plasma is over 15000 K, resulting high non-linearity of the material properties. Moreover, there is high uncertainty in the available property data, at that range of temperatures. Therefore, correction factors were derived for the material properties to adjust between the numerical and the experimental results. Using the compensated properties, parametric study was performed. The effects of the welding parameters on the process, such the working voltage, electrode feed rate and shielding gas flow, were derived. The principal result of the present work is the ability to predict, by numerical simulation, the mode, size and frequency of the metal transferred from the electrode, which is the main material and energy source for the welding pool in GMAW
First integrals and parametric solutions of third-order ODEs admitting {\\mathfrak{sl}(2, {R})}
Ruiz, A.; Muriel, C.
2017-05-01
A complete set of first integrals for any third-order ordinary differential equation admitting a Lie symmetry algebra isomorphic to sl(2, {R}) is explicitly computed. These first integrals are derived from two linearly independent solutions of a linear second-order ODE, without additional integration. The general solution in parametric form can be obtained by using the computed first integrals. The study includes a parallel analysis of the four inequivalent realizations of sl(2, {R}) , and it is applied to several particular examples. These include the generalized Chazy equation, as well as an example of an equation which admits the most complicated of the four inequivalent realizations.
Gaussian random-matrix process and universal parametric correlations in complex systems
International Nuclear Information System (INIS)
Attias, H.; Alhassid, Y.
1995-01-01
We introduce the framework of the Gaussian random-matrix process as an extension of Dyson's Gaussian ensembles and use it to discuss the statistical properties of complex quantum systems that depend on an external parameter. We classify the Gaussian processes according to the short-distance diffusive behavior of their energy levels and demonstrate that all parametric correlation functions become universal upon the appropriate scaling of the parameter. The class of differentiable Gaussian processes is identified as the relevant one for most physical systems. We reproduce the known spectral correlators and compute eigenfunction correlators in their universal form. Numerical evidence from both a chaotic model and weakly disordered model confirms our predictions
On Parametrization of the Linear GL(4,C) and Unitary SU(4) Groups in Terms of Dirac Matrices
Red'Kov, Victor M.; Bogush, Andrei A.; Tokarevskaya, Natalia G.
2008-02-01
Parametrization of 4 × 4-matrices G of the complex linear group GL(4,C) in terms of four complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some subgroups of GL(4,C) are given explicitly. In the given parametrization, the problem of inverting any 4 × 4 matrix G is solved. Expression for determinant of any matrix G is found: det G = F(k,m,n,l). Unitarity conditions G+ = G-1 have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups G1, G2, G3 - each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consis! ting of a product of a 3-parametric group isomorphic SU(2) and 1-parametric Abelian group. The Dirac basis of generators Λk, being of Gell-Mann type, substantially differs from the basis λi used in the literature on SU(4) group, formulas relating them are found - they permit to separate SU(3) subgroup in SU(4). Special way to list 15 Dirac generators of GL(4,C) can be used {Λk} = {μiÅνjÅ(μiVνj = KÅL ÅM )}, which permit to factorize SU(4) transformations according to S = eiaμ eibνeikKeilLeimM, where two first factors commute with each other and are isomorphic to SU(2) group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices Λk permits to separate twenty 3-parametric subgroups in SU(4) isomorphic to SU(2); those subgroups might be used as bigger elementary blocks in constructing of a general transformation SU(4). It is shown how one can specify the present approach for the pseudounitary group SU(2,2) and SU(3,1).
Incorporating parametric uncertainty into population viability analysis models
McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.
2011-01-01
Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.
A capacitive ultrasonic transducer based on parametric resonance.
Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F
2017-07-24
A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.
Comparison of parametric and bootstrap method in bioequivalence test.
Ahn, Byung-Jin; Yim, Dong-Seok
2009-10-01
The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.
A capacitive ultrasonic transducer based on parametric resonance
Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.
2017-07-01
A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.
Magnetorheological fluid dampers: a review of parametric modelling
International Nuclear Information System (INIS)
Wang, D H; Liao, W H
2011-01-01
Due to the inherent nonlinear nature of magnetorheological (MR) dampers, one of the challenging aspects for developing and utilizing these devices to achieve high performance is the development of models that can accurately describe their unique characteristics. In this review, the characteristics of MR dampers are summarized according to the measured responses under different conditions. On these bases, the considerations and methods of the parametric dynamic modelling for MR dampers are given and the state-of-the-art parametric dynamic modelling, identification and validation techniques for MR dampers are reviewed. In the past two decades, the models for MR dampers have been focused on how to improve the modelling accuracy. Although the force–displacement behaviour is well represented by most of the proposed dynamic models for MR dampers, no simple parametric models with high accuracy for MR dampers can be found. In addition, the parametric dynamic models for MR dampers with on-line updating ability and the inverse parametric models for MR dampers are scarcely explored. Moreover, whether one dynamic model for MR dampers can portray the force–displacement and force–velocity behaviour is not only determined by the dynamic model itself but also determined by the identification method. (topical review)
Observational Signatures of Parametric Instability at 1AU
Bowen, T. A.; Bale, S. D.; Badman, S.
2017-12-01
Observations and simulations of inertial compressive turbulence in the solar wind are characterized by density structures anti-correlated with magnetic fluctuations parallel to the mean field. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures (PBS), kinetic ion acoustic waves, as well as the MHD slow mode. Recent work, specifically Verscharen et al. (2017), has highlighted the unexpected fluid like nature of the solar wind. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggests the presence of a driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the parametric instability, in which large amplitude Alfvenic fluctuations decay into parallel propagating compressive waves. This work employs 10 years of WIND observations in order to test the parametric decay process as a source of compressive waves in the solar wind through comparing collisionless damping rates of compressive fluctuations with growth rates of the parametric instability. Preliminary results suggest that generation of compressive waves through parametric decay is overdamped at 1 AU. However, the higher parametric decay rates expected in the inner heliosphere likely allow for growth of the slow mode-the remnants of which could explain density fluctuations observed at 1AU.
International Nuclear Information System (INIS)
Reid, M.D.; Munro, W.J.; De Martini, F.
2002-01-01
We show how polarization measurements on the output fields generated by parametric down conversion will reveal a violation of multiparticle Bell inequalities, in the regime of both low- and high-output intensity. In this case, each spatially separated system, upon which a measurement is performed, is comprised of more than one particle. In view of the formal analogy with spin systems, the proposal provides an opportunity to test the predictions of quantum mechanics for spatially separated higher spin states. Here the quantum behavior possible even where measurements are performed on systems of large quantum (particle) number may be demonstrated. Our proposal applies to both vacuum-state signal and idler inputs, and also to the quantum-injected parametric amplifier as studied by De Martini et al. The effect of detector inefficiencies is included, and weaker Bell-Clauser-Horne inequalities are derived to enable realistic tests of local hidden variables with auxiliary assumptions for the multiparticle situation
Incorporating Oxygen-Enhanced MRI into Multi-Parametric Assessment of Human Prostate Cancer
Directory of Open Access Journals (Sweden)
Heling Zhou
2017-08-01
Full Text Available Hypoxia is associated with prostate tumor aggressiveness, local recurrence, and biochemical failure. Magnetic resonance imaging (MRI offers insight into tumor pathophysiology and recent reports have related transverse relaxation rate (R2* and longitudinal relaxation rate (R1 measurements to tumor hypoxia. We have investigated the inclusion of oxygen-enhanced MRI for multi-parametric evaluation of tumor malignancy. Multi-parametric MRI sequences at 3 Tesla were evaluated in 10 patients to investigate hypoxia in prostate cancer prior to radical prostatectomy. Blood oxygen level dependent (BOLD, tissue oxygen level dependent (TOLD, dynamic contrast enhanced (DCE, and diffusion weighted imaging MRI were intercorrelated and compared with the Gleason score. The apparent diffusion coefficient (ADC was significantly lower in tumor than normal prostate. Baseline R2* (BOLD-contrast was significantly higher in tumor than normal prostate. Upon the oxygen breathing challenge, R2* decreased significantly in the tumor tissue, suggesting improved vascular oxygenation, however changes in R1 were minimal. R2* of contralateral normal prostate decreased in most cases upon oxygen challenge, although the differences were not significant. Moderate correlation was found between ADC and Gleason score. ADC and R2* were correlated and trends were found between Gleason score and R2*, as well as maximum-intensity-projection and area-under-the-curve calculated from DCE. Tumor ADC and R2* have been associated with tumor hypoxia, and thus the correlations are of particular interest. A multi-parametric approach including oxygen-enhanced MRI is feasible and promises further insights into the pathophysiological information of tumor microenvironment.
Multi parametrical indicator test for urban wastewater influence
Humer, Franko; Weiss, Stefan; Reinnicke, Sandra; Clara, Manfred; Grath, Johannes; Windhofer, Georg
2013-04-01
Austria's drinking water is abstracted from groundwater. While 50 % of the Austrian population are supplied with spring water, the other 50 % get their drinking water from groundwater supplies, in part from enormous quaternary valley and basin deposits, subjected to intensive use by population, industry, agriculture and traffic/transport. Due to protected areas around drinking water wells and springs, there is no treatment necessary in most cases. Water bodies, however, can be affected by different pathways from natural, industrial and urban sources. Identification of anthropogenic sources is paramount for taking appropriate measures to safeguard the quality of drinking water supply. Common parameters like boron are widely used as tracers indicating anthropogenic impacts (e.g. wastewater contamination of groundwater systems). Unfortunately application of these conventional indicators is often limited due to high dilution. Another application where common parameters have their limits is the identification and quantification of the diffuse nitrogen input to water by the stable isotopes of nitrogen and oxygen in nitrate. Without any additional tracers the source distinction of nitrate from manure or waste water is still difficult. Even the application of boron isotopes can in some cases not avoid ambiguous interpretation. Therefore the Umweltbundesamt (Environment Agency Austria) developed a multi parametrical indicator test which shall allow for identification and quantification of anthropogenic pollutions. The test aims at analysing eight target substances which are well known to occur in wastewater: Acesulfame and sucralose (two artificial, calorie-free sweeteners), benzotriazole and tolyltriazole (two industrial chemicals/corrosion inhibitors), metoprolol, sotalol, carbamazepine and the metabolite 10,11-Dihydro-10,11-dihydroxycarbamazepin (pharmaceuticals). These substances are polar and degradation in the aquatic system by microbiological processes is not
Measuring Physical Activity Intensity
Full Text Available ... 45 David, Age 65 Harold, Age 67 Data & Statistics Facts About Physical Activity Data, Trends and Maps ... relative intensity and absolute intensity. Relative Intensity The level of effort required by a person to do ...
Parametric excitation of a SiN membrane via piezoelectricity
Directory of Open Access Journals (Sweden)
Shuhui Wu
2018-01-01
Full Text Available We develop a stoichiometric silicon nitride (SiN membrane-based electromechanical system, in which the spring constant of the mechanical resonator can be dynamically controlled via piezoelectric actuation. The degenerate parametric amplifier is studied in this configuration. We observe the splitting of mechanical mode in the response spectra of a phase-sensitive parametric amplifier. In addition, we demonstrate that the quality factor Q of the membrane oscillator can be significantly enhanced by more than two orders of magnitude due to the coherent amplification, reaching an effective Q factor of ∼3 × 108 at room temperature. The nonlinear effect on the parametric amplification is also investigated, as well as the thermomechanical noise squeezing. This system offers the possibility to integrate electrical, optical and mechanical degrees of freedom without compromising the exceptional material properties of SiN membranes, and can be a useful platform for studying cavity optoelectromechanics.
Parametric excitation of a SiN membrane via piezoelectricity
Wu, Shuhui; Sheng, Jiteng; Zhang, Xiaotian; Wu, Yuelong; Wu, Haibin
2018-01-01
We develop a stoichiometric silicon nitride (SiN) membrane-based electromechanical system, in which the spring constant of the mechanical resonator can be dynamically controlled via piezoelectric actuation. The degenerate parametric amplifier is studied in this configuration. We observe the splitting of mechanical mode in the response spectra of a phase-sensitive parametric amplifier. In addition, we demonstrate that the quality factor Q of the membrane oscillator can be significantly enhanced by more than two orders of magnitude due to the coherent amplification, reaching an effective Q factor of ˜3 × 108 at room temperature. The nonlinear effect on the parametric amplification is also investigated, as well as the thermomechanical noise squeezing. This system offers the possibility to integrate electrical, optical and mechanical degrees of freedom without compromising the exceptional material properties of SiN membranes, and can be a useful platform for studying cavity optoelectromechanics.
High frequency parametric wave phenomena and plasma heating: a review
International Nuclear Information System (INIS)
Porkolab, M.
1975-11-01
A survey of parametric instabilities in plasma, and associated particle heating, is presented. A brief summary of linear theory is given. The physical mechanism of decay instability, the purely growing mode (oscillating two-stream instability) and soliton and density cavity formation is presented. Effects of density gradients are discussed. Possible nonlinear saturation mechanisms are pointed out. Experimental evidence for the existence of parametric instabilities in both unmagnetized and magnetized plasmas is reviewed in some detail. Experimental observation of plasma heating associated with the presence of parametric instabilities is demonstrated by a number of examples. Possible application of these phenomena to heating of pellets by lasers and heating of magnetically confined fusion plasmas by high power microwave sources is discussed
Parametric Resonance in a Time-Dependent Harmonic Oscillator
Directory of Open Access Journals (Sweden)
P. N. Nesterov
2013-01-01
Full Text Available In this paper, we study the phenomenon of appearance of new resonances in a timedependent harmonic oscillator under an oscillatory decreasing force. The studied equation belongs to the class of adiabatic oscillators and arises in connection with the spectral problem for the one-dimensional Schr¨odinger equation with Wigner–von Neumann type potential. We use a specially developed method for asymptotic integration of linear systems of differential equations with oscillatory decreasing coefficients. This method uses the ideas of the averaging method to simplify the initial system. Then we apply Levinson’s fundamental theorem to get the asymptotics for its solutions. Finally, we analyze the features of a parametric resonance phenomenon. The resonant frequencies of perturbation are found and the pointwise type of the parametric resonance phenomenon is established. In conclusion, we construct an example of a time-dependent harmonic oscillator (adiabatic oscillator in which the parametric resonances, mentioned in the paper, may occur.
Circulation and Directional Amplification in the Josephson Parametric Converter
Hatridge, Michael
Nonreciprocal transport and directional amplification of weak microwave signals are fundamental ingredients in performing efficient measurements of quantum states of flying microwave light. This challenge has been partly met, as quantum-limited amplification is now regularly achieved with parametrically-driven, Josephson-junction based superconducting circuits. However, these devices are typically non-directional, requiring external circulators to separate incoming and outgoing signals. Recently this limitation has been overcome by several proposals and experimental realizations of both directional amplifiers and circulators based on interference between several parametric processes in a single device. This new class of multi-parametrically driven devices holds the promise of achieving a variety of desirable characteristics simultaneously- directionality, reduced gain-bandwidth constraints and quantum-limited added noise, and are good candidates for on-chip integration with other superconducting circuits such as qubits.
Simulation-based optimization parametric optimization techniques and reinforcement learning
Gosavi, Abhijit
2003-01-01
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to converg...
Wind Farm parametrization in the mesoscale model WRF
DEFF Research Database (Denmark)
Volker, Patrick; Badger, Jake; Hahmann, Andrea N.
2012-01-01
, but are parametrized as another sub-grid scale process. In order to appropriately capture the wind farm wake recovery and its direction, two properties are important, among others, the total energy extracted by the wind farm and its velocity deficit distribution. In the considered parametrization the individual...... the extracted force is proportional to the turbine area interfacing a grid cell. The sub-grid scale wake expansion is achieved by adding turbulence kinetic energy (proportional to the extracted power) to the flow. The validity of both wind farm parametrizations has been verified against observational data. We...... turbines produce a thrust dependent on the background velocity. For the sub-grid scale velocity deficit, the entrainment from the free atmospheric flow into the wake region, which is responsible for the expansion, is taken into account. Furthermore, since the model horizontal distance is several times...
Noise-enhanced Parametric Resonance in Perturbed Galaxies
Sideris, Ioannis V.; Kandrup, Henry E.
2004-02-01
This paper describes how parametric resonances associated with a galactic potential subjected to relatively low-amplitude, strictly periodic time-dependent perturbations can be impacted by pseudo-random variations in the pulsation frequency, modeled as colored noise. One aim thereby is to allow for the effects of a changing oscillation frequency as the density distribution associated with a galaxy evolves during violent relaxation. Another is to mimic the possible effects of internal substructures, satellite galaxies, and/or a high-density environment. The principal conclusions are that allowing for a variable frequency does not vitiate the effects of parametric resonance, and that, in at least some cases, such variations can increase the overall importance of parametric resonance associated with systematic pulsations. In memory of Professor H. E. Kandrup, a brilliant scientist, excellent teacher, and good friend. His genius and sense of humor will be greatly missed.
The parametric resonance—from LEGO Mindstorms to cold atoms
Kawalec, Tomasz; Sierant, Aleksandra
2017-07-01
We show an experimental setup based on a popular LEGO Mindstorms set, allowing us to both observe and investigate the parametric resonance phenomenon. The presented method is simple but covers a variety of student activities like embedded software development, conducting measurements, data collection and analysis. It may be used during science shows, as part of student projects and to illustrate the parametric resonance in mechanics or even quantum physics, during lectures or classes. The parametrically driven LEGO pendulum gains energy in a spectacular way, increasing its amplitude from 10° to about 100° within a few tens of seconds. We provide also a short description of a wireless absolute orientation sensor that may be used in quantitative analysis of driven or free pendulum movement.
The parametric resonance—from LEGO Mindstorms to cold atoms
International Nuclear Information System (INIS)
Kawalec, Tomasz; Sierant, Aleksandra
2017-01-01
We show an experimental setup based on a popular LEGO Mindstorms set, allowing us to both observe and investigate the parametric resonance phenomenon. The presented method is simple but covers a variety of student activities like embedded software development, conducting measurements, data collection and analysis. It may be used during science shows, as part of student projects and to illustrate the parametric resonance in mechanics or even quantum physics, during lectures or classes. The parametrically driven LEGO pendulum gains energy in a spectacular way, increasing its amplitude from 10° to about 100° within a few tens of seconds. We provide also a short description of a wireless absolute orientation sensor that may be used in quantitative analysis of driven or free pendulum movement. (paper)
Epicyclic helical channels for parametric resonance ionization cooling
Energy Technology Data Exchange (ETDEWEB)
Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)
2015-08-23
Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.
Parametric Resonance in the Early Universe - A Fitting Analysis
Figueroa, Daniel G.
2017-02-01
Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in $3+1$ dimensions, we parametrise the dynamics' outcome scanning over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasise the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequ...
Parametric Hidden Markov Models for Recognition and Synthesis of Movements
DEFF Research Database (Denmark)
Herzog, Dennis; Krüger, Volker; Grest, Daniel
2008-01-01
In humanoid robotics, the recognition and synthesis of parametric movements plays an extraordinary role for robot human interaction. Such a parametric movement is a movement of a particular type (semantic), for example, similar pointing movements performed at different table-top positions....... For understanding the whole meaning of a movement of a human, the recognition of its type, likewise its parameterization are important. Only both together convey the whole meaning. Vice versa, for mimicry, the synthesis of movements for the motor control of a robot needs to be parameterized, e.g., by the relative...... the applicability for online recognition based on very noisy 3D tracking data. The use of a parametric representation of movements is shown in a robot demo, where a robot removes objects from a table as demonstrated by an advisor. The synthesis for motor control is performed for arbitrary table-top positions....
Ponciano, José Miguel
2017-11-22
Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors' work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly "biology-free" their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin's GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)'s prior adds to the conceptual and scientific value of these authors' inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Siciliani, Luigi
2006-01-01
Policy makers are increasingly interested in developing performance indicators that measure hospital efficiency. These indicators may give the purchasers of health services an additional regulatory tool to contain health expenditure. Using panel data, this study compares different parametric (econometric) and non-parametric (linear programming) techniques for the measurement of a hospital's technical efficiency. This comparison was made using a sample of 17 Italian hospitals in the years 1996-9. Highest correlations are found in the efficiency scores between the non-parametric data envelopment analysis under the constant returns to scale assumption (DEA-CRS) and several parametric models. Correlation reduces markedly when using more flexible non-parametric specifications such as data envelopment analysis under the variable returns to scale assumption (DEA-VRS) and the free disposal hull (FDH) model. Correlation also generally reduces when moving from one output to two-output specifications. This analysis suggests that there is scope for developing performance indicators at hospital level using panel data, but it is important that extensive sensitivity analysis is carried out if purchasers wish to make use of these indicators in practice.
Haj-Ali, Rami; Marom, Gil; Ben Zekry, Sagit; Rosenfeld, Moshe; Raanani, Ehud
2012-09-21
The complex three-dimensional (3D) geometry of the native tricuspid aortic valve (AV) is represented by select parametric curves allowing for a general construction and representation of the 3D-AV structure including the cusps, commissures and sinuses. The proposed general mathematical description is performed by using three independent parametric curves, two for the cusp and one for the sinuses. These curves are used to generate different surfaces that form the structure of the AV. Additional dependent curves are also generated and utilized in this process, such as the joint curve between the cusps and the sinuses. The model's feasibility to generate patient-specific parametric geometry is examined against 3D-transesophageal echocardiogram (3D-TEE) measurements from a non-pathological AV. Computational finite-element (FE) mesh can then be easily constructed from these surfaces. Examples are given for constructing several 3D-AV geometries by estimating the needed parameters from echocardiographic measurements. The average distance (error) between the calculated geometry and the 3D-TEE measurements was only 0.78±0.63mm. The proposed general 3D parametric method is very effective in quantitatively representing a wide range of native AV structures, with and without pathology. It can also facilitate a methodical quantitative investigation over the effect of pathology and mechanical loading on these major AV parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Machine learning-based dual-energy CT parametric mapping.
Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Al Helo, Rose; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C; Rassouli, Negin; Gilkeson, Robert C; Traughber, Bryan J; Cheng, Chee-Wai; Muzic, Raymond F
2018-05-22
The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Z_{eff}), relative electron density (ρ_{e}), mean excitation energy (I_{x}), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 seconds. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency. . © 2018 Institute of Physics and Engineering in
The impact of parametrized convection on cloud feedback
Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming
2015-01-01
We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud
Spin effect on parametric interactions of waves in magnetoplasmas
International Nuclear Information System (INIS)
Shahid, M.; Melrose, D. B.; Jamil, M.; Murtaza, G.
2012-01-01
The parametric decay instability of upper hybrid wave into low-frequency electromagnetic Shear Alfvén wave and Ordinary mode radiation (O-mode) has been investigated in an electron-ion plasma immersed in the uniform external magnetic field. Incorporating quantum effect due to electron spin, the fluid model has been used to investigate the linear and nonlinear response of the plasma species for three-wave coupling in a magnetoplasma. It is shown that the spin of electrons has considerable effect on the parametric decay of upper hybrid wave into Ordinary mode radiation (O-mode) and Shear Alfvén wave even in classical regime.
Early Detection of Parametric Roll Resonance on Container Ships
DEFF Research Database (Denmark)
Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad
2013-01-01
Parametric roll resonance on ships is a nonlinear phenomenon where waves encountered at twice the natural roll frequency can bring the vessel dynamics into a bifurcation mode and lead to extreme values of roll. Recent years have seen several incidents with dramatic damage to container vessels...... the ship's speed and course, to escape from the bifurcation condition. This paper proposes nonparametric methods to detect the onset of roll resonance and demonstrates their performance. Theoretical conditions for parametric resonance are revisited and are used to develop efficient methods to detect its...... on experimental data from model tests and on data from a container ship crossing the Atlantic during a storm....
On the parametrization of the Δ residue function
International Nuclear Information System (INIS)
Vasan, S.S.
1976-01-01
The complex residues at the Δ(1236) and Δ(1950) poles in the relevant partial-wave amplitudes provide information on the behaviour of the Δ Regge residue function in the resonance region u>0. Attempts to incorporate this information in parametrizations of the residue by functions that are real on the real u-axis result in residues which have unsatisfactory behaviour in the region u 2 . The choice of complex functions for the trajectory and residue removes this undesirable feature and provides a better representation of the residue in the resonance region, suggesting that complex parametrizations would be better suited to Regge analyses of near-backward scattering. (Auth.)
Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier
Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)
2014-01-01
A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.
Frequency comb generation in a continuously pumped optical parametric oscillator
Mosca, S.; Parisi, M.; Ricciardi, I.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M.
2018-02-01
We demonstrate optical frequency comb generation in a continuously pumped optical parametric oscillator, in the parametric region around half of the pump frequency. We also model the dynamics of such quadratic combs using a single time-domain mean-field equation, and obtain simulation results that are in good agreement with experimentally observed spectra. Moreover, we numerically investigate the coherence properties of simulated combs, showing the existence of correlated and phase-locked combs. Our work could pave the way for a new class of frequency comb sources, which may enable straightforward access to new spectral regions and stimulate novel applications of frequency combs.
Parametric study of prospective early commercial OCMHD power plants /PSPEC/
Marston, C. H.; Bender, D. J.; Hnat, J. G.; Dellinger, T. C.
1980-06-01
The paper presents a parametric study conducted to obtain the performance, economics, natural resource requirements, and environmental impact of moderate technology MHD/steam power plants that do not require development of direct-fired high-temperature air heaters. The study was divided into three base cases, each with a reference case and parametric variations. The case using recuperative air preheat in the range of 1000 F to 1300 F, combined with O2 enrichment to 42% by volume has been selected for conceptual design.
On the parametric cyclotron heating of a toroidal plasma
International Nuclear Information System (INIS)
Golovanivsky, K.C.; Punithavelu, A.M.
1976-01-01
The possibility of heating the ionic component of a dense plasma at the parametric cyclotron resonance, using a section of the conducting toroidal chamber of a large scale Tokamak as a resonance cavity, is considered. It is suggested to use the mode TE 011 to overcome the difficulties with the penetration of HF fields into such a dense plasma. The experimental investigation of parametric cyclotron heating of electrons in a overdense plasma (n/nsub(cut off)=10 2 ) on such a model has given hopeful results
Synchronously Pumped Optical Parametric Oscillator with Intracavity Difference Frequency Mixing
1998-06-29
departing from the Rrpubbc of Panama when traveling on official orders." * " De eonfortnidad con el Parrafo 5u) del Articulo XVII del Acuerdo para U...isotopic photochemistry using an optical parametric oscillator and a down converter," J. Opt. ( Paris ), , no. 14, pp. 43-48, 1983. [4] J. D. Kafka, M. L...isotopic photochemistry using an optical parametric oscillator and a down converter," J. Opt. ( Paris ), , no. 14, pp. 43-48, 1983. [4] J. D. Kafka, M. L
Theoretical and algorithmic advances in multi-parametric programming and control
Pistikopoulos, Efstratios N.; Dominguez, Luis; Panos, Christos; Kouramas, Konstantinos; Chinchuluun, Altannar
2012-01-01
This paper presents an overview of recent theoretical and algorithmic advances, and applications in the areas of multi-parametric programming and explicit/multi-parametric model predictive control (mp-MPC). In multi-parametric programming, advances include areas such as nonlinear multi-parametric programming (mp-NLP), bi-level programming, dynamic programming and global optimization for multi-parametric mixed-integer linear programming problems (mp-MILPs). In multi-parametric/explicit MPC (mp-MPC), advances include areas such as robust multi-parametric control, multi-parametric nonlinear MPC (mp-NMPC) and model reduction in mp-MPC. A comprehensive framework for multi-parametric programming and control is also presented. Recent applications include a hydrogen storage device, a fuel cell power generation system, an unmanned autonomous vehicle (UAV) and a hybrid pressure swing adsorption (PSA) system. © 2012 Springer-Verlag.
Theoretical and algorithmic advances in multi-parametric programming and control
Pistikopoulos, Efstratios N.
2012-04-21
This paper presents an overview of recent theoretical and algorithmic advances, and applications in the areas of multi-parametric programming and explicit/multi-parametric model predictive control (mp-MPC). In multi-parametric programming, advances include areas such as nonlinear multi-parametric programming (mp-NLP), bi-level programming, dynamic programming and global optimization for multi-parametric mixed-integer linear programming problems (mp-MILPs). In multi-parametric/explicit MPC (mp-MPC), advances include areas such as robust multi-parametric control, multi-parametric nonlinear MPC (mp-NMPC) and model reduction in mp-MPC. A comprehensive framework for multi-parametric programming and control is also presented. Recent applications include a hydrogen storage device, a fuel cell power generation system, an unmanned autonomous vehicle (UAV) and a hybrid pressure swing adsorption (PSA) system. © 2012 Springer-Verlag.
Parametric Identification of Nonlinear Dynamical Systems
Feeny, Brian
2002-01-01
In this project, we looked at the application of harmonic balancing as a tool for identifying parameters (HBID) in a nonlinear dynamical systems with chaotic responses. The main idea is to balance the harmonics of periodic orbits extracted from measurements of each coordinate during a chaotic response. The periodic orbits are taken to be approximate solutions to the differential equations that model the system, the form of the differential equations being known, but with unknown parameters to be identified. Below we summarize the main points addressed in this work. The details of the work are attached as drafts of papers, and a thesis, in the appendix. Our study involved the following three parts: (1) Application of the harmonic balance to a simulation case in which the differential equation model has known form for its nonlinear terms, in contrast to a differential equation model which has either power series or interpolating functions to represent the nonlinear terms. We chose a pendulum, which has sinusoidal nonlinearities; (2) Application of the harmonic balance to an experimental system with known nonlinear forms. We chose a double pendulum, for which chaotic response were easily generated. Thus we confronted a two-degree-of-freedom system, which brought forth challenging issues; (3) A study of alternative reconstruction methods. The reconstruction of the phase space is necessary for the extraction of periodic orbits from the chaotic responses, which is needed in this work. Also, characterization of a nonlinear system is done in the reconstructed phase space. Such characterizations are needed to compare models with experiments. Finally, some nonlinear prediction methods can be applied in the reconstructed phase space. We developed two reconstruction methods that may be considered if the common method (method of delays) is not applicable.
Directory of Open Access Journals (Sweden)
Sandvik Leiv
2011-04-01
Full Text Available Abstract Background The number of events per individual is a widely reported variable in medical research papers. Such variables are the most common representation of the general variable type called discrete numerical. There is currently no consensus on how to compare and present such variables, and recommendations are lacking. The objective of this paper is to present recommendations for analysis and presentation of results for discrete numerical variables. Methods Two simulation studies were used to investigate the performance of hypothesis tests and confidence interval methods for variables with outcomes {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, and {0, 1, 2, 3, 4, 5}, using the difference between the means as an effect measure. Results The Welch U test (the T test with adjustment for unequal variances and its associated confidence interval performed well for almost all situations considered. The Brunner-Munzel test also performed well, except for small sample sizes (10 in each group. The ordinary T test, the Wilcoxon-Mann-Whitney test, the percentile bootstrap interval, and the bootstrap-t interval did not perform satisfactorily. Conclusions The difference between the means is an appropriate effect measure for comparing two independent discrete numerical variables that has both lower and upper bounds. To analyze this problem, we encourage more frequent use of parametric hypothesis tests and confidence intervals.
Schuitemaker, Alie; van Berckel, Bart N M; Kropholler, Marc A; Veltman, Dick J; Scheltens, Philip; Jonker, Cees; Lammertsma, Adriaan A; Boellaard, Ronald
2007-05-01
(R)-[11C]PK11195 has been used for quantifying cerebral microglial activation in vivo. In previous studies, both plasma input and reference tissue methods have been used, usually in combination with a region of interest (ROI) approach. Definition of ROIs, however, can be labourious and prone to interobserver variation. In addition, results are only obtained for predefined areas and (unexpected) signals in undefined areas may be missed. On the other hand, standard pharmacokinetic models are too sensitive to noise to calculate (R)-[11C]PK11195 binding on a voxel-by-voxel basis. Linearised versions of both plasma input and reference tissue models have been described, and these are more suitable for parametric imaging. The purpose of this study was to compare the performance of these plasma input and reference tissue parametric methods on the outcome of statistical parametric mapping (SPM) analysis of (R)-[11C]PK11195 binding. Dynamic (R)-[11C]PK11195 PET scans with arterial blood sampling were performed in 7 younger and 11 elderly healthy subjects. Parametric images of volume of distribution (Vd) and binding potential (BP) were generated using linearised versions of plasma input (Logan) and reference tissue (Reference Parametric Mapping) models. Images were compared at the group level using SPM with a two-sample t-test per voxel, both with and without proportional scaling. Parametric BP images without scaling provided the most sensitive framework for determining differences in (R)-[11C]PK11195 binding between younger and elderly subjects. Vd images could only demonstrate differences in (R)-[11C]PK11195 binding when analysed with proportional scaling due to intersubject variation in K1/k2 (blood-brain barrier transport and non-specific binding).
Dry deposition to vegetated surfaces: parametric dependencies
International Nuclear Information System (INIS)
Underwood, B.Y.
1987-12-01
The dry deposition velocity of airborne pollutants to vegetated surfaces depends on the physico-chemical form of the pollutant, on meteorological conditions (windspeed, atmospheric stability) and on characteristics of the surface cover. This report examines these dependencies, drawing on experimental data and on information from theoretical analyses. A canopy model is outlined which uses first-order closure of the equations for turbulent transport of momentum (or matter), with losses of momentum (or matter) to individual canopy elements parameterised in terms of the mean windspeed: the model has previously been tested against experimental data on an artificial 'grass' canopy. The model is used to elucidate the features of the dependence of deposition velocity on windspeed and on whether the pollutant is in gaseous or particulate form: in the former case, the dependence on the molecular diffusivity of the gas is shown; in the latter case, dependencies on particle diameter and density are deduced. The predictions are related to available measurements. Additional hypotheses are introduced to treat the influence of atmospheric stability on deposition, and the analysis is used to shed light on the somewhat confusing picture that has emerged from past experimental studies. In considering the dependence of deposition velocity on the structural properties of the vegetation, it is established that more parameters than the single one conventionally used -aerodynamic roughness length - are needed to characterise the surface cover. Some indications of the extent of variation in deposition velocity from one type of vegetation to another are elicited from the model. (author)
Moment stability for a predator-prey model with parametric dichotomous noises
Jin, Yan-Fei
2015-06-01
In this paper, we investigate the solution moment stability for a Harrison-type predator-prey model with parametric dichotomous noises. Using the Shapiro-Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses. Project supported by the National Natural Science Foundation of China (Grant No. 11272051).
Parametric feedback cooling of a single atom inside on optical cavity
International Nuclear Information System (INIS)
Tatjana Wilk
2014-01-01
An optical cavity can be used as a kind of intensifier to study radiation features of an atom, which are hard to detect in free space, like squeezing. Such experiments make use of strong coupling between atom and cavity mode, which experimentally requires the atom to be well localized in the cavity mode. This can be achieved using feedback on the atomic motion: from intensity variations of a probe beam transmitted through the cavity information about the atomic motion is gained, which is used to synchronously modulate the trapping potential holding the atom, leading to cooling and better localization. Here, we report on efficient parametric feedback cooling of a single atom held in an intra-cavity standing wave dipole trap. In contrast to previous feedback strategies, this scheme cools the fast axial oscillation of the atom as well as the slower radial motion. (author)
Daylight Adaptive Shading Using Parametric Camshaft Mechanism for SOHO in Jakarta
Directory of Open Access Journals (Sweden)
Sjarifudin Firza Utama
2014-03-01
Full Text Available This research analyzes SOHO (Small Office Home Office which can adjust to the need of visual comfort for the users through natural daylighting and also can be adapted to standard requirements of 14 creative industry workspace in Jakartas. The method of the research is by simulating the SOHO unit with variation of shading opening angles in order to adapt to each unit. Analysis done to every shading opening angle to get the appropriate daylight intensity level which support the work activities in every unit for the whole day. In order for the shading to be able to adapt to the changing daylight condition, previously developed parametric camshaft mechanism was used. The study found that the visual comfort for SOHO with creative industries workers in Jakarta can be achieve by varying the shading opening angles between 15-75°.
Network of time-multiplexed optical parametric oscillators as a coherent Ising machine
Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa
2014-12-01
Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.
An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers
International Nuclear Information System (INIS)
Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F
2015-01-01
High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)
Investigation on phase noise of the signal from a singly resonant optical parametric oscillator
Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang
2018-04-01
The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.
Haj-Ali, Rami; Aboudi, Jacob
2012-01-01
The recent two-dimensional (2-D) parametric formulation of the high fidelity generalized method of cells (HFGMC) reported by the authors is generalized for the micromechanical analysis of three-dimensional (3-D) multiphase composites with periodic microstructure. Arbitrary hexahedral subcell geometry is developed to discretize a triply periodic repeating unit-cell (RUC). Linear parametric-geometric mapping is employed to transform the arbitrary hexahedral subcell shapes from the physical space to an auxiliary orthogonal shape, where a complete quadratic displacement expansion is performed. Previously in the 2-D case, additional three equations are needed in the form of average moments of equilibrium as a result of the inclusion of the bilinear terms. However, the present 3-D parametric HFGMC formulation eliminates the need for such additional equations. This is achieved by expressing the coefficients of the full quadratic polynomial expansion of the subcell in terms of the side or face average-displacement vectors. The 2-D parametric and orthogonal HFGMC are special cases of the present 3-D formulation. The continuity of displacements and tractions, as well as the equilibrium equations, are imposed in the average (integral) sense as in the original HFGMC formulation. Each of the six sides (faces) of a subcell has an independent average displacement micro-variable vector which forms an energy-conjugate pair with the transformed average-traction vector. This allows generating symmetric stiffness matrices along with internal resisting vectors for the subcells which enhances the computational efficiency. The established new parametric 3-D HFGMC equations are formulated and solution implementations are addressed. Several applications for triply periodic 3-D composites are presented to demonstrate the general capability and varsity of the present parametric HFGMC method for refined micromechanical analysis by generating the spatial distributions of local stress fields
Parametric decay of lower hybrid wave into drift waves
International Nuclear Information System (INIS)
Sanuki, Heiji.
1976-12-01
A dispersion relation describing the parametric decay of a lower hybrid wave into an electrostatic drift wave and a drift Alfven wave is derived for an inhomogeneous magnetized plasma. Particularly the stimulated scattering of a drift Alfven wave in such a plasma was investigated in detail. The resonance backscattering instability is found to yield the minimum threshold. (auth.)
Parametric estimation for reinforced concrete relief shelter for Aceh cases
Atthaillah; Saputra, Eri; Iqbal, Muhammad
2018-05-01
This paper was a work in progress (WIP) to discover a rapid parametric framework for post-disaster permanent shelter’s materials estimation. The intended shelters were reinforced concrete construction with bricks as its wall. Inevitably, in post-disaster cases, design variations were needed to help suited victims condition. It seemed impossible to satisfy a beneficiary with a satisfactory design utilizing the conventional method. This study offered a parametric framework to overcome slow construction-materials estimation issue against design variations. Further, this work integrated parametric tool, which was Grasshopper to establish algorithms that simultaneously model, visualize, calculate and write the calculated data to a spreadsheet in a real-time. Some customized Grasshopper components were created using GHPython scripting for a more optimized algorithm. The result from this study was a partial framework that successfully performed modeling, visualization, calculation and writing the calculated data simultaneously. It meant design alterations did not escalate time needed for modeling, visualization, and material estimation. Further, the future development of the parametric framework will be made open source.
Multi-level approach for parametric roll analysis
Kim, Taeyoung; Kim, Yonghwan
2011-03-01
The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude- Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.
Containment parametric analysis for loss of coolant accident
International Nuclear Information System (INIS)
Fabjan, L.
1985-01-01
Full text: This paper presents parametric analysis of double containment response to LOCA using CONTEMPT-LT/28 code. The influence of the active and passive heat sinks on thermodynamic parameters in the containment after big and small LOCA was considered. (author)
DEVELOPING PARAMETRIC BUILDING MODELS – THE GANDIS USE CASE
Directory of Open Access Journals (Sweden)
W. Thaller
2012-09-01
Full Text Available In the course of a project related to green building design, we have created a group of eight parametric building models that can be manipulated interactively with respect to dimensions, number of ﬂoors, and a few other parameters. We report on the commonalities and differences between the models and the abstractions that we were able to identify.
Parametric resonance in the early Universe—a fitting analysis
Energy Technology Data Exchange (ETDEWEB)
Figueroa, Daniel G. [Theoretical Physics Department, CERN, Geneva (Switzerland); Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es [Instituto de Física Teórica IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid (Spain)
2017-02-01
Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanning over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.
Testing Parametric versus Semiparametric Modelling in Generalized Linear Models
Härdle, W.K.; Mammen, E.; Müller, M.D.
1996-01-01
We consider a generalized partially linear model E(Y|X,T) = G{X'b + m(T)} where G is a known function, b is an unknown parameter vector, and m is an unknown function.The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model: (i) m is linear, i.e.
SEMIPARAMETRIC VERSUS PARAMETRIC CLASSIFICATION MODELS - AN APPLICATION TO DIRECT MARKETING
BULT, [No Value
In this paper we are concerned with estimation of a classification model using semiparametric and parametric methods. Benefits and limitations of semiparametric models in general, and of Manski's maximum score method in particular, are discussed. The maximum score method yields consistent estimates
Nonlinear dynamics of a parametrically driven sine-Gordon system
DEFF Research Database (Denmark)
Grønbech-Jensen, Niels; Kivshar, Yuri S.; Samuelsen, Mogens Rugholm
1993-01-01
We consider a sine-Gordon system, driven by an ac parametric force in the presence of loss. It is demonstrated that a breather can be maintained in a steady state at half of the external frequency. In the small-amplitude limit the effect is described by an effective nonlinear Schrodinger equation...
Absolute differential yield of parametric x-ray radiation
International Nuclear Information System (INIS)
Shchagin, A.V.; Pristupa, V.I.; Khizhnyak, N.A.
1993-01-01
The results of measurements of absolute differential yield of parametric X-ray radiation (PXR) in thin single crystal are presented for the first time. It has been established that the experimental results are in good agreement with theoretical calculations according with kinematical theory. The influence of density effect on PXR properties is discussed. (author). 19 refs., 7 figs
A parametric level-set method for partially discrete tomography
A. Kadu (Ajinkya); T. van Leeuwen (Tristan); K.J. Batenburg (Joost)
2017-01-01
textabstractThis paper introduces a parametric level-set method for tomographic reconstruction of partially discrete images. Such images consist of a continuously varying background and an anomaly with a constant (known) grey-value. We express the geometry of the anomaly using a level-set function,
Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers
DEFF Research Database (Denmark)
Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael
2012-01-01
We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion inf...... characteristics of the amplifier and shows local maxima for specific dispersion values....
Parametric Cost Estimates for an International Competitive Edge
International Nuclear Information System (INIS)
Murphy, L.T.; Hickey, M.
2006-01-01
This paper summarizes the progress to date by CH2M HILL and the UKAEA in development of a parametric modelling capability for estimating the costs of large nuclear decommissioning projects in the United Kingdom (UK) and Europe. The ability to successfully apply parametric cost estimating techniques will be a key factor to commercial success in the UK and European multi-billion dollar waste management, decommissioning and environmental restoration markets. The most useful parametric models will be those that incorporate individual components representing major elements of work: reactor decommissioning, fuel cycle facility decommissioning, waste management facility decommissioning and environmental restoration. Models must be sufficiently robust to estimate indirect costs and overheads, permit pricing analysis and adjustment, and accommodate the intricacies of international monetary exchange, currency fluctuations and contingency. The development of a parametric cost estimating capability is also a key component in building a forward estimating strategy. The forward estimating strategy will enable the preparation of accurate and cost-effective out-year estimates, even when work scope is poorly defined or as yet indeterminate. Preparation of cost estimates for work outside the organizations current sites, for which detailed measurement is not possible and historical cost data does not exist, will also be facilitated. (authors)
Parametric inference for discretely sampled stochastic differential equations
DEFF Research Database (Denmark)
Sørensen, Michael
A review is given of parametric estimation methods for discretely sampled mul- tivariate diffusion processes. The main focus is on estimating functions and asymp- totic results. Maximum likelihood estimation is briefly considered, but the emphasis is on computationally less demanding martingale...
Chaotic neoclassical separatrix dissipation in parametric drift-wave decay.
Kabantsev, A A; Tsidulko, Yu A; Driscoll, C F
2014-02-07
Experiments and theory characterize a parametric decay instability between plasma drift waves when the nonlinear coupling is modified by an electrostatic barrier. Novel mode coupling terms representing enhanced dissipation and mode phase shifts are caused by chaotic separatrix crossings on the wave-ruffled separatrix. Experimental determination of these coupling terms is in broad agreement with new chaotic neoclassical transport analyses.
Gain characteristics of a saturated fiber optic parametric amplifier
DEFF Research Database (Denmark)
Rottwitt, Karsten; Lorenzen, Michael Rodas; Noordegraaf, Danny
2008-01-01
In this work we discuss saturation performance of a fiber optic parametric amplifier. A simple numerical model is described and applied to specific cases. A system experiment using a saturated amplifier illustrates a 4 dB improvement in required signal to noise ratio for a fixed bit error ratio....
Linear time heteronymous damping in nonlinear parametric systems
Czech Academy of Sciences Publication Activity Database
Hortel, Milan; Škuderová, Alena; Houfek, Martin
2016-01-01
Roč. 40, 23-24 (2016), s. 10038-10051 ISSN 0307-904X Institutional support: RVO:61388998 Keywords : nonlinear dynamics of systems * parametric systems * time heteronymous damping * gears Subject RIV: JT - Propulsion, Motors ; Fuels Impact factor: 2.350, year: 2016
Exchange of parametric bridge models using a neutral data format
Ji, Y.; Borrmann, André; Beetz, J.; Obergrießer, M.
2013-01-01
Parametric modeling is a well-established methodology in the field of mechanical engineering. It allows the creation of flexible geometric models using parameters for dimensions and makes it possible to define numeric relationships between these parameters by means of mathematical formulas and
Involute Spur Gear Template Development by Parametric Technique ...
African Journals Online (AJOL)
There are many methods available for developing profiles of gear and spline teeth. Most of the techniques are inaccurate because they use only an approximation of the involute curve profile. The parametric method developed in this paper provides accurate involute curve creation using formulas and exact geometric ...
Perturbation analysis of a parametrically changed sine-Gordon equation
DEFF Research Database (Denmark)
Sakai, S.; Samuelsen, Mogens Rugholm; Olsen, O. H.
1987-01-01
A long Josephson junction with a spatially varying inductance is a physical manifestation of a modified sine-Gordon equation with parametric perturbation. Soliton propagation in such Josephson junctions is discussed. First, for an adiabatic model where the inductance changes smoothly compared...
Two-parametric model of metals hardening during cold working
International Nuclear Information System (INIS)
Khajkin, B.E.
1985-01-01
Mathematical models of cold working metal resistance σ depending on deformation degree have been analyzed. Advantage of two-parametric formula combining simplicity with satisfactory accuracy of experimental data approximation is noted. The formula is convenient when determining value σ, which is average with respect of deformation location, as average geometric value
Revisiting non-degenerate parametric down-conversion
Indian Academy of Sciences (India)
conversion process is studied by recasting the time evolution equations for the basic op- erators in an equivalent ... We consider a model of non-degenerate parametric down-conversion process com- posed of two coupled ..... e−iωat and eiωbt have been left out in writing down the final results in ref. [4], even though these ...
Estimation of Parametric Fault in Closed-loop Systems
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Poulsen, Niels Kjølstad
2015-01-01
The aim of this paper is to present a method for estimation of parametric faults in closed-loop systems. The key technology applied in this paper is coprime factorization of both the dynamic system as well as the feedback controller. Using the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization...
An empirical analysis of one, two, and three parametric logistic ...
African Journals Online (AJOL)
The purpose of this study was to determine the three parametric logistic IRT methods in dichotomous and ordinal test items due to differential item functioning using statistical DIF detection methods of SIBTEST, GMH, and LDFA. The study adopted instrumentation research design. The sample consisted of an intact class of ...
Numerical Modelling of Spontaneous Emission in Optical Parametric Amplifiers
DEFF Research Database (Denmark)
Friis, Søren Michael Mørk; Andersen, Ulrik Lund; Rottwitt, Karsten
2013-01-01
Fiber optical parametric processes offer a wide range of applications including phase sensitive as well as phase insensitive amplification, wavelength conversion and signal regeneration. One of the difficult challenges is any of these applications is to predict their associated noise performance....
Bim and Gis: when Parametric Modeling Meets Geospatial Data
Barazzetti, L.; Banfi, F.
2017-12-01
Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building) scale to the infrastructure (where geospatial data cannot be neglected) has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by "pure" GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator) industry, as well as new solutions for parametric modelling with additional geoinformation.
BIM AND GIS: WHEN PARAMETRIC MODELING MEETS GEOSPATIAL DATA
Directory of Open Access Journals (Sweden)
L. Barazzetti
2017-12-01
Full Text Available Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building scale to the infrastructure (where geospatial data cannot be neglected has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by “pure” GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator industry, as well as new solutions for parametric modelling with additional geoinformation.