WorldWideScience

Sample records for parallel processing system

  1. A multitransputer parallel processing system (MTPPS)

    International Nuclear Information System (INIS)

    Jethra, A.K.; Pande, S.S.; Borkar, S.P.; Khare, A.N.; Ghodgaonkar, M.D.; Bairi, B.R.

    1993-01-01

    This report describes the design and implementation of a 16 node Multi Transputer Parallel Processing System(MTPPS) which is a platform for parallel program development. It is a MIMD machine based on message passing paradigm. The basic compute engine is an Inmos Transputer Ims T800-20. Transputer with local memory constitutes the processing element (NODE) of this MIMD architecture. Multiple NODES can be connected to each other in an identifiable network topology through the high speed serial links of the transputer. A Network Configuration Unit (NCU) incorporates the necessary hardware to provide software controlled network configuration. System is modularly expandable and more NODES can be added to the system to achieve the required processing power. The system is backend to the IBM-PC which has been integrated into the system to provide user I/O interface. PC resources are available to the programmer. Interface hardware between the PC and the network of transputers is INMOS compatible. Therefore, all the commercially available development software compatible to INMOS products can run on this system. While giving the details of design and implementation, this report briefly summarises MIMD Architectures, Transputer Architecture and Parallel Processing Software Development issues. LINPACK performance evaluation of the system and solutions of neutron physics and plasma physics problem have been discussed along with results. (author). 12 refs., 22 figs., 3 tabs., 3 appendixes

  2. Parallel asynchronous systems and image processing algorithms

    Science.gov (United States)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.

  3. Parallel processing from applications to systems

    CERN Document Server

    Moldovan, Dan I

    1993-01-01

    This text provides one of the broadest presentations of parallelprocessing available, including the structure of parallelprocessors and parallel algorithms. The emphasis is on mappingalgorithms to highly parallel computers, with extensive coverage ofarray and multiprocessor architectures. Early chapters provideinsightful coverage on the analysis of parallel algorithms andprogram transformations, effectively integrating a variety ofmaterial previously scattered throughout the literature. Theory andpractice are well balanced across diverse topics in this concisepresentation. For exceptional cla

  4. Parallel and distributed processing: applications to power systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Felix; Murphy, Liam [California Univ., Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences

    1994-12-31

    Applications of parallel and distributed processing to power systems problems are still in the early stages. Rapid progress in computing and communications promises a revolutionary increase in the capacity of distributed processing systems. In this paper, the state-of-the art in distributed processing technology and applications is reviewed and future trends are discussed. (author) 14 refs.,1 tab.

  5. Method of parallel processing in SANPO real time system

    International Nuclear Information System (INIS)

    Ostrovnoj, A.I.; Salamatin, I.M.

    1981-01-01

    A method of parellel processing in SANPO real time system is described. Algorithms of data accumulation and preliminary processing in this system as a parallel processes using a specialized high level programming language are described. Hierarchy of elementary processes are also described. It provides the synchronization of concurrent processes without semaphors. The developed means are applied to the systems of experiment automation using SM-3 minicomputers [ru

  6. Parallel and distributed processing in power system simulation and control

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Djalma M [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1994-12-31

    Recent advances in computer technology will certainly have a great impact in the methodologies used in power system expansion and operational planning as well as in real-time control. Parallel and distributed processing are among the new technologies that present great potential for application in these areas. Parallel computers use multiple functional or processing units to speed up computation while distributed processing computer systems are collection of computers joined together by high speed communication networks having many objectives and advantages. The paper presents some ideas for the use of parallel and distributed processing in power system simulation and control. It also comments on some of the current research work in these topics and presents a summary of the work presently being developed at COPPE. (author) 53 refs., 2 figs.

  7. A tomograph VMEbus parallel processing data acquisition system

    International Nuclear Information System (INIS)

    Atkins, M.S.; Wilkinson, N.A.; Rogers, J.G.

    1988-11-01

    This paper describes a VME based data acquisition system suitable for the development of Positron Volume Imaging tomographs which use 3-D data for improved image resolution over slice-oriented tomographs. The data acquisition must be flexible enough to accommodate several 3-D reconstruction algorithms; hence, a software-based system is most suitable. Furthermore, because of the increased dimensions and resolution of volume imaging tomographs, the raw data event rate is greater than that of slice-oriented machines. These dual requirements are met by our data acquisition systems. Flexibility is achieved through an array of processors connected over a VMEbus, operating asynchronously and in parallel. High raw data throughput is achieved using a dedicated high speed data transfer device available for the VMEbus. The device can attain a raw data rate of 2.5 million coincidence events per second for raw events per second for raw events which are 64 bits wide. Real-time data acquisition and pre-processing requirements can be met by about forty 20 MHz Motorola 68020/68881 processors

  8. Parallelism and array processing

    International Nuclear Information System (INIS)

    Zacharov, V.

    1983-01-01

    Modern computing, as well as the historical development of computing, has been dominated by sequential monoprocessing. Yet there is the alternative of parallelism, where several processes may be in concurrent execution. This alternative is discussed in a series of lectures, in which the main developments involving parallelism are considered, both from the standpoint of computing systems and that of applications that can exploit such systems. The lectures seek to discuss parallelism in a historical context, and to identify all the main aspects of concurrency in computation right up to the present time. Included will be consideration of the important question as to what use parallelism might be in the field of data processing. (orig.)

  9. Parallel Task Processing on a Multicore Platform in a PC-based Control System for Parallel Kinematics

    Directory of Open Access Journals (Sweden)

    Harald Michalik

    2009-02-01

    Full Text Available Multicore platforms are such that have one physical processor chip with multiple cores interconnected via a chip level bus. Because they deliver a greater computing power through concurrency, offer greater system density multicore platforms provide best qualifications to address the performance bottleneck encountered in PC-based control systems for parallel kinematic robots with heavy CPU-load. Heavy load control tasks are generated by new control approaches that include features like singularity prediction, structure control algorithms, vision data integration and similar tasks. In this paper we introduce the parallel task scheduling extension of a communication architecture specially tailored for the development of PC-based control of parallel kinematics. The Sche-duling is specially designed for the processing on a multicore platform. It breaks down the serial task processing of the robot control cycle and extends it with parallel task processing paths in order to enhance the overall control performance.

  10. A tomograph VMEbus parallel processing data acquisition system

    International Nuclear Information System (INIS)

    Wilkinson, N.A.; Rogers, J.G.; Atkins, M.S.

    1989-01-01

    This paper describes a VME based data acquisition system suitable for the development of Positron Volume Imaging tomographs which use 3-D data for improved image resolution over slice-oriented tomographs. the data acquisition must be flexible enough to accommodate several 3-D reconstruction algorithms; hence, a software-based system is most suitable. Furthermore, because of the increased dimensions and resolution of volume imaging tomographs, the raw data event rate is greater than that of slice-oriented machines. These dual requirements are met by our data acquisition system. Flexibility is achieved through an array of processors connected over a VMEbus, operating asynchronously and in parallel. High raw data throughput is achieved using a dedicated high speed data transfer device available for the VMEbus. The device can attain a raw data rate of 2.5 million coincidence events per second for raw events which are 64 bits wide

  11. Next Generation Parallelization Systems for Processing and Control of PDS Image Node Assets

    Science.gov (United States)

    Verma, R.

    2017-06-01

    We present next-generation parallelization tools to help Planetary Data System (PDS) Imaging Node (IMG) better monitor, process, and control changes to nearly 650 million file assets and over a dozen machines on which they are referenced or stored.

  12. Parallel Hyperspectral Image Processing on Distributed Multi-Cluster Systems

    NARCIS (Netherlands)

    Liu, F.; Seinstra, F.J.; Plaza, A.J.

    2011-01-01

    Computationally efficient processing of hyperspectral image cubes can be greatly beneficial in many application domains, including environmental modeling, risk/hazard prevention and response, and defense/security. As individual cluster computers often cannot satisfy the computational demands of

  13. UFMulti: A new parallel processing software system for HEP

    Science.gov (United States)

    Avery, Paul; White, Andrew

    1989-12-01

    UFMulti is a multiprocessing software package designed for general purpose high energy physics applications, including physics and detector simulation, data reduction and DST physics analysis. The system is particularly well suited for installations where several workstation or computers are connected through a local area network (LAN). The initial configuration of the software is currently running on VAX/VMS machines with a planned extension to ULTRIX, using the new RISC CPUs from Digital, in the near future.

  14. UFMULTI: A new parallel processing software system for HEP

    International Nuclear Information System (INIS)

    Avery, P.; White, A.

    1989-01-01

    UFMulti is a multiprocessing software package designed for general purpose high energy physics applications, including physics and detector simulation, data reduction and DST physics analysis. The system is particularly well suited for installations where several workstations or computers are connected through a local area network (LAN). The initial configuration of the software is currently running on VAX/VMS machines with a planned extension to ULTRIX, using the new RISC CPUs from Digital, in the near future. (orig.)

  15. Parallel Framework for Cooperative Processes

    Directory of Open Access Journals (Sweden)

    Mitică Craus

    2005-01-01

    Full Text Available This paper describes the work of an object oriented framework designed to be used in the parallelization of a set of related algorithms. The idea behind the system we are describing is to have a re-usable framework for running several sequential algorithms in a parallel environment. The algorithms that the framework can be used with have several things in common: they have to run in cycles and the work should be possible to be split between several "processing units". The parallel framework uses the message-passing communication paradigm and is organized as a master-slave system. Two applications are presented: an Ant Colony Optimization (ACO parallel algorithm for the Travelling Salesman Problem (TSP and an Image Processing (IP parallel algorithm for the Symmetrical Neighborhood Filter (SNF. The implementations of these applications by means of the parallel framework prove to have good performances: approximatively linear speedup and low communication cost.

  16. SPINning parallel systems software

    International Nuclear Information System (INIS)

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-01-01

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin

  17. Recent development for the ITS code system: Parallel processing and visualization

    International Nuclear Information System (INIS)

    Fan, W.C.; Turner, C.D.; Halbleib, J.A. Sr.; Kensek, R.P.

    1996-01-01

    A brief overview is given for two software developments related to the ITS code system. These developments provide parallel processing and visualization capabilities and thus allow users to perform ITS calculations more efficiently. Timing results and a graphical example are presented to demonstrate these capabilities

  18. Distributed system for parallel data processing of ECT signals for electromagnetic flaw detection in materials

    International Nuclear Information System (INIS)

    Guliashki, Vassil; Marinova, Galia

    2002-01-01

    The paper proposes a distributed system for parallel data processing of ECT signals for flaw detection in materials. The measured data are stored in files on a host computer, where a JAVA server is located. The host computer is connected through Internet to a set of client computers, distributed geographically. The data are distributed from the host computer by means of the JAVA server to the client computers according their requests. The software necessary for the data processing is installed on each client computer in advance. The organization of the data processing on many computers, working simultaneously in parallel, leads to great time reducing, especially in cases when huge amount of data should be processed in very short time. (Author)

  19. Application of the parallel processing computer to a nuclear disaster prevention support system

    Energy Technology Data Exchange (ETDEWEB)

    Shigehiro, Nukatsuka; Osami, Watanabe [Mitsubishi Heavy Industries, LTD (Japan)

    2003-07-01

    At the time of nuclear emergency, it is important to identify the type and the cause of the accident. Besides with these, it is also important to provide adequate information for the emergency response organization to support decision making by predicting and evaluating the development of the event and the influence of the release of radioactivity for the environment. Recently, a new type of nuclear disaster prevention support system called MEASURES (Multiple Radiological Emergency Assistance System for Urgent Response) was developed which provides not only the current state of the nuclear power plant and the influence of the radioactivity for the environment, but also the future prediction of the accident development. In order to provide the accurate results of these analyses quickly, MEASURES utilizes various techniques, such as multiple nesting method which narrows down the calculation area gradually, and parallel processing computer for three dimensional analyses, such as air current distribution analysis. In this paper, the outline and the feature of MEASURES are presented, especially focused on the usage of parallel processing computer for the three dimensional air current distribution analysis. (authors)

  20. Application of the parallel processing computer to a nuclear disaster prevention support system

    International Nuclear Information System (INIS)

    Shigehiro, Nukatsuka; Osami, Watanabe

    2003-01-01

    At the time of nuclear emergency, it is important to identify the type and the cause of the accident. Besides with these, it is also important to provide adequate information for the emergency response organization to support decision making by predicting and evaluating the development of the event and the influence of the release of radioactivity for the environment. Recently, a new type of nuclear disaster prevention support system called MEASURES (Multiple Radiological Emergency Assistance System for Urgent Response) was developed which provides not only the current state of the nuclear power plant and the influence of the radioactivity for the environment, but also the future prediction of the accident development. In order to provide the accurate results of these analyses quickly, MEASURES utilizes various techniques, such as multiple nesting method which narrows down the calculation area gradually, and parallel processing computer for three dimensional analyses, such as air current distribution analysis. In this paper, the outline and the feature of MEASURES are presented, especially focused on the usage of parallel processing computer for the three dimensional air current distribution analysis. (authors)

  1. Hardware system of parallel processing for fast CT image reconstruction based on circular shifting float memory architecture

    International Nuclear Information System (INIS)

    Wang Shi; Kang Kejun; Wang Jingjin

    1995-01-01

    Computerized Tomography (CT) is expected to become an inevitable diagnostic technique in the future. However, the long time required to reconstruct an image has been one of the major drawbacks associated with this technique. Parallel process is one of the best way to solve this problem. This paper gives the architecture and hardware design of PIRS-4 (4-processor Parallel Image Reconstruction System) which is a parallel processing system for fast 3D-CT image reconstruction by circular shifting float memory architecture. It includes structure and component of the system, the design of cross bar switch and details of control model. The test results are described

  2. A program system for ab initio MO calculations on vector and parallel processing machines. Pt. 3

    International Nuclear Information System (INIS)

    Wiest, R.; Demuynck, J.; Benard, M.; Rohmer, M.M.; Ernenwein, R.

    1991-01-01

    This series of three papers presents a program system for ab initio molecular orbital calculations on vector and parallel computers. Part III is devoted to the four-index transformation on a molecular orbital basis of size NMO of the file of two-electorn integrals (pqparallelrs) generated by a contracted Gaussian set of size NATO (number of atomic orbitals). A fast Yoshimine algorithm first sorts the (pqparallelrs) integrals with respect to index pq only. This file of half-sorted integrals labelled by their rs-index can be processed without further modification to generate either the transformed integrals or the supermatrix elements. The large memory available on the CRAY-2 hase made possible to implement the transformation algorithm proposed by Bender in 1972, which requires a core-storage allocation varying as (NATO) 3 . Two versions of Bender's algorithm are included in the present program. The first version is an in-core version, where the complete file of accumulated contributions to transformed integrals in stored and updated in central memory. This version has been parallelized by distributing over a limited number of logical tasks the NATO steps corresponding to the scanning of the most external loop. The second version is an out-of-core version, in which twin files are alternatively used as input and output for the accumulated contributions to transformed integrals. This version is not parallel. The choice of one or another version and (for version 1) the determination of the number of tasks depends upon the balance between the available and the requested amounts of storage. The storage management and the choice of the proper version are carried out automatically using dynamic storage allocation. Both versions are vectorized and take advantage of the molecular symmetry. (orig.)

  3. 3D Body Scanning Measurement System Associated with RF Imaging, Zero-padding and Parallel Processing

    Directory of Open Access Journals (Sweden)

    Kim Hyung Tae

    2016-04-01

    Full Text Available This work presents a novel signal processing method for high-speed 3D body measurements using millimeter waves with a general processing unit (GPU and zero-padding fast Fourier transform (ZPFFT. The proposed measurement system consists of a radio-frequency (RF antenna array for a penetrable measurement, a high-speed analog-to-digital converter (ADC for significant data acquisition, and a general processing unit for fast signal processing. The RF waves of the transmitter and the receiver are converted to real and imaginary signals that are sampled by a high-speed ADC and synchronized with the kinematic positions of the scanner. Because the distance between the surface and the antenna is related to the peak frequency of the conjugate signals, a fast Fourier transform (FFT is applied to the signal processing after the sampling. The sampling time is finite owing to a short scanning time, and the physical resolution needs to be increased; further, zero-padding is applied to interpolate the spectra of the sampled signals to consider a 1/m floating point frequency. The GPU and parallel algorithm are applied to accelerate the speed of the ZPFFT because of the large number of additional mathematical operations of the ZPFFT. 3D body images are finally obtained by spectrograms that are the arrangement of the ZPFFT in a 3D space.

  4. Practical parallel processing

    International Nuclear Information System (INIS)

    Arendt, M.L.

    1986-01-01

    ELXSI, a San Jose based computer company, was founded in January of 1979 for the purpose of developing and marketing a tightly-coupled multiple processor system. After five years ELXSI succeeded in making the first commercial installations at Digicon Geophysical, NASA-Dryden, and Sandia National Laboratories. Since that time over fifty-one systems and ninety-three processors have been installed. The commercial success of the ELXSI system 6400(TM) is due to several significant breakthroughs in computer technology including a system bus operating at 320 million bytes per second, a new Message-Based Operating System, EMBOS (TM), and a new system organization which allows for easy expansion in any dimension without changes to the operating system, the user environment, or the application programs. (Auth.)

  5. The parallel processing system for fast 3D-CT image reconstruction by circular shifting float memory architecture

    International Nuclear Information System (INIS)

    Wang Shi; Kang Kejun; Wang Jingjin

    1996-01-01

    Computerized Tomography (CT) is expected to become an inevitable diagnostic technique in the future. However, the long time required to reconstruct an image has been one of the major drawbacks associated with this technique. Parallel process is one of the best way to solve this problem. This paper gives the architecture, hardware and software design of PIRS-4 (4-processor Parallel Image Reconstruction System), which is a parallel processing system for fast 3D-CT image reconstruction by circular shifting float memory architecture. It includes the structure and components of the system, the design of crossbar switch and details of control model, the description of RPBP image reconstruction, the choice of OS (Operate System) and language, the principle of imitating EMS, direct memory R/W of float and programming in the protect model. Finally, the test results are given

  6. Parallel processing and learning in simple systems. Final report, 10 January 1986-14 January 1989

    Energy Technology Data Exchange (ETDEWEB)

    Mpitsos, G.J.

    1989-03-15

    Work over the three-year tenure of this grant has dealt with interrelated studies of (1) neuropharmacology, (2) behavior, and (3) distributed/parallel processing in the generation of variable motor patterns in the buccal-oral system of the sea slug Pleurobranchaea californica. (4) Computer simulations of simple neutral networks have been undertaken to examine neurointegrative principles that could not be examined in biological preparations. The simulation work has set the basis for further simulations dealing with networks having characteristics relating to real neurons. All of the work has had the goal of developing interdisciplinary tools for understanding the scale-independent problem of how individuals, each possessing only local knowledge of group activity, act within a group to produce different and variable adaptive outputs, and, in turn, of how the group influences the activity of the individual. The pharmacologic studies have had the goal of developing biochemical tools with which to identify groups of neurons that perform specific tasks during the production of a given behavior but are multifunctional by being critically involved in generating several different behaviors.

  7. PARALLEL MOVING MECHANICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberius Petrescu

    2014-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7 and one fixed.

  8. About Parallel Programming: Paradigms, Parallel Execution and Collaborative Systems

    Directory of Open Access Journals (Sweden)

    Loredana MOCEAN

    2009-01-01

    Full Text Available In the last years, there were made efforts for delineation of a stabile and unitary frame, where the problems of logical parallel processing must find solutions at least at the level of imperative languages. The results obtained by now are not at the level of the made efforts. This paper wants to be a little contribution at these efforts. We propose an overview in parallel programming, parallel execution and collaborative systems.

  9. A program system for ab initio MO calculations on vector and parallel processing machines. Pt. 1

    International Nuclear Information System (INIS)

    Ernenwein, R.; Rohmer, M.M.; Benard, M.

    1990-01-01

    We present a program system for ab initio molecular orbital calculations on vector and parallel computers. The present article is devoted to the computation of one- and two-electron integrals over contracted Gaussian basis sets involving s-, p-, d- and f-type functions. The McMurchie and Davidson (MMD) algorithm has been implemented and parallelized by distributing over a limited number of logical tasks the calculation of the 55 relevant classes of integrals. All sections of the MMD algorithm have been efficiently vectorized, leading to a scalar/vector ratio of 5.8. Different algorithms are proposed and compared for an optimal vectorization of the contraction of the 'intermediate integrals' generated by the MMD formalism. Advantage is taken of the dynamic storage allocation for tuning the length of the vector loops (i.e. the size of the vectorization buffer) as a function of (i) the total memory available for the job, (ii) the number of logical tasks defined by the user (≤13), and (iii) the storage requested by each specific class of integrals. Test calculations carried out on a CRAY-2 computer show that the average number of finite integrals computed over a (s, p, d, f) CGTO basis set is about 1180000 per second and per processor. The combination of vectorization and parallelism on this 4-processor machine reduces the CPU time by a factor larger than 20 with respect to the scalar and sequential performance. (orig.)

  10. Parallel processing of structural integrity analysis codes

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.

    1996-01-01

    Structural integrity analysis forms an important role in assessing and demonstrating the safety of nuclear reactor components. This analysis is performed using analytical tools such as Finite Element Method (FEM) with the help of digital computers. The complexity of the problems involved in nuclear engineering demands high speed computation facilities to obtain solutions in reasonable amount of time. Parallel processing systems such as ANUPAM provide an efficient platform for realising the high speed computation. The development and implementation of software on parallel processing systems is an interesting and challenging task. The data and algorithm structure of the codes plays an important role in exploiting the parallel processing system capabilities. Structural analysis codes based on FEM can be divided into two categories with respect to their implementation on parallel processing systems. The first category codes such as those used for harmonic analysis, mechanistic fuel performance codes need not require the parallelisation of individual modules of the codes. The second category of codes such as conventional FEM codes require parallelisation of individual modules. In this category, parallelisation of equation solution module poses major difficulties. Different solution schemes such as domain decomposition method (DDM), parallel active column solver and substructuring method are currently used on parallel processing systems. Two codes, FAIR and TABS belonging to each of these categories have been implemented on ANUPAM. The implementation details of these codes and the performance of different equation solvers are highlighted. (author). 5 refs., 12 figs., 1 tab

  11. Advanced parallel processing with supercomputer architectures

    International Nuclear Information System (INIS)

    Hwang, K.

    1987-01-01

    This paper investigates advanced parallel processing techniques and innovative hardware/software architectures that can be applied to boost the performance of supercomputers. Critical issues on architectural choices, parallel languages, compiling techniques, resource management, concurrency control, programming environment, parallel algorithms, and performance enhancement methods are examined and the best answers are presented. The authors cover advanced processing techniques suitable for supercomputers, high-end mainframes, minisupers, and array processors. The coverage emphasizes vectorization, multitasking, multiprocessing, and distributed computing. In order to achieve these operation modes, parallel languages, smart compilers, synchronization mechanisms, load balancing methods, mapping parallel algorithms, operating system functions, application library, and multidiscipline interactions are investigated to ensure high performance. At the end, they assess the potentials of optical and neural technologies for developing future supercomputers

  12. Parallel processing in the brain’s visual form system: An fMRI study

    Directory of Open Access Journals (Sweden)

    Yoshihito eShigihara

    2014-07-01

    Full Text Available We here extend and complement our earlier time-based, magneto-encephalographic (MEG, study of the processing of forms by the visual brain (Shigihara and Zeki, 2013 with a functional magnetic resonance imaging (fMRI study, in order to better localize the activity produced in early visual areas when subjects view simple geometric stimuli of increasing perceptual complexity (lines, angles, rhomboids constituted from the same elements (lines. Our results show that all three categories of form activate all three visual areas with which we were principally concerned (V1, V2, V3, with angles producing the strongest and rhomboids the weakest activity in all three. The difference between the activity produced by angles and rhomboids was significant, that between lines and rhomboids was trend significant while that between lines and angles was not. Taken together with our earlier MEG results, the present ones suggest that a parallel strategy is used in processing forms, in addition to the well-documented hierarchical strategy.

  13. Investigation of the applicability of a functional programming model to fault-tolerant parallel processing for knowledge-based systems

    Science.gov (United States)

    Harper, Richard

    1989-01-01

    In a fault-tolerant parallel computer, a functional programming model can facilitate distributed checkpointing, error recovery, load balancing, and graceful degradation. Such a model has been implemented on the Draper Fault-Tolerant Parallel Processor (FTPP). When used in conjunction with the FTPP's fault detection and masking capabilities, this implementation results in a graceful degradation of system performance after faults. Three graceful degradation algorithms have been implemented and are presented. A user interface has been implemented which requires minimal cognitive overhead by the application programmer, masking such complexities as the system's redundancy, distributed nature, variable complement of processing resources, load balancing, fault occurrence and recovery. This user interface is described and its use demonstrated. The applicability of the functional programming style to the Activation Framework, a paradigm for intelligent systems, is then briefly described.

  14. Operation and performance of a longitudinal damping system using parallel digital signal processing

    International Nuclear Information System (INIS)

    Fox, J.D.; Hindi, H.; Linscott, I.

    1994-06-01

    A programmable longitudinal feedback system based on four AT ampersand T 1610 digital signal processors has been developed as a component of the PEP-II R ampersand D program. This Longitudinal Quick Prototype is a proof of concept for the PEP-II system and implements full speed bunch-by-bunch signal processing for storage rings with bunch spacings of 4 ns. The design implements, via software, a general purpose feedback controller which allows the system to be operated at several accelerator facilities. The system configuration used for tests at the LBL Advanced Light Source is described. Open and closed loop results showing the detection and calculation of feedback signals from bunch motion are presented, and the system is shown to damp coupled-bunch instabilities in the ALS. Use of the system for accelerator diagnostics is illustrated via measurement of injection transients and analysis of open loop bunch motion

  15. Parallel processing of genomics data

    Science.gov (United States)

    Agapito, Giuseppe; Guzzi, Pietro Hiram; Cannataro, Mario

    2016-10-01

    The availability of high-throughput experimental platforms for the analysis of biological samples, such as mass spectrometry, microarrays and Next Generation Sequencing, have made possible to analyze a whole genome in a single experiment. Such platforms produce an enormous volume of data per single experiment, thus the analysis of this enormous flow of data poses several challenges in term of data storage, preprocessing, and analysis. To face those issues, efficient, possibly parallel, bioinformatics software needs to be used to preprocess and analyze data, for instance to highlight genetic variation associated with complex diseases. In this paper we present a parallel algorithm for the parallel preprocessing and statistical analysis of genomics data, able to face high dimension of data and resulting in good response time. The proposed system is able to find statistically significant biological markers able to discriminate classes of patients that respond to drugs in different ways. Experiments performed on real and synthetic genomic datasets show good speed-up and scalability.

  16. Modular and efficient ozone systems based on massively parallel chemical processing in microchannel plasma arrays: performance and commercialization

    Science.gov (United States)

    Kim, M.-H.; Cho, J. H.; Park, S.-J.; Eden, J. G.

    2017-08-01

    Plasmachemical systems based on the production of a specific molecule (O3) in literally thousands of microchannel plasmas simultaneously have been demonstrated, developed and engineered over the past seven years, and commercialized. At the heart of this new plasma technology is the plasma chip, a flat aluminum strip fabricated by photolithographic and wet chemical processes and comprising 24-48 channels, micromachined into nanoporous aluminum oxide, with embedded electrodes. By integrating 4-6 chips into a module, the mass output of an ozone microplasma system is scaled linearly with the number of modules operating in parallel. A 115 g/hr (2.7 kg/day) ozone system, for example, is realized by the combined output of 18 modules comprising 72 chips and 1,800 microchannels. The implications of this plasma processing architecture for scaling ozone production capability, and reducing capital and service costs when introducing redundancy into the system, are profound. In contrast to conventional ozone generator technology, microplasma systems operate reliably (albeit with reduced output) in ambient air and humidity levels up to 90%, a characteristic attributable to the water adsorption/desorption properties and electrical breakdown strength of nanoporous alumina. Extensive testing has documented chip and system lifetimes (MTBF) beyond 5,000 hours, and efficiencies >130 g/kWh when oxygen is the feedstock gas. Furthermore, the weight and volume of microplasma systems are a factor of 3-10 lower than those for conventional ozone systems of comparable output. Massively-parallel plasmachemical processing offers functionality, performance, and commercial value beyond that afforded by conventional technology, and is currently in operation in more than 30 countries worldwide.

  17. Embedded parallel processing based ground control systems for small satellite telemetry

    Science.gov (United States)

    Forman, Michael L.; Hazra, Tushar K.; Troendly, Gregory M.; Nickum, William G.

    1994-01-01

    The use of networked terminals which utilize embedded processing techniques results in totally integrated, flexible, high speed, reliable, and scalable systems suitable for telemetry and data processing applications such as mission operations centers (MOC). Synergies of these terminals, coupled with the capability of terminal to receive incoming data, allow the viewing of any defined display by any terminal from the start of data acquisition. There is no single point of failure (other than with network input) such as exists with configurations where all input data goes through a single front end processor and then to a serial string of workstations. Missions dedicated to NASA's ozone measurements program utilize the methodologies which are discussed, and result in a multimission configuration of low cost, scalable hardware and software which can be run by one flight operations team with low risk.

  18. Linear parallel processing machines I

    Energy Technology Data Exchange (ETDEWEB)

    Von Kunze, M

    1984-01-01

    As is well-known, non-context-free grammars for generating formal languages happen to be of a certain intrinsic computational power that presents serious difficulties to efficient parsing algorithms as well as for the development of an algebraic theory of contextsensitive languages. In this paper a framework is given for the investigation of the computational power of formal grammars, in order to start a thorough analysis of grammars consisting of derivation rules of the form aB ..-->.. A/sub 1/ ... A /sub n/ b/sub 1/...b /sub m/ . These grammars may be thought of as automata by means of parallel processing, if one considers the variables as operators acting on the terminals while reading them right-to-left. This kind of automata and their 2-dimensional programming language prove to be useful by allowing a concise linear-time algorithm for integer multiplication. Linear parallel processing machines (LP-machines) which are, in their general form, equivalent to Turing machines, include finite automata and pushdown automata (with states encoded) as special cases. Bounded LP-machines yield deterministic accepting automata for nondeterministic contextfree languages, and they define an interesting class of contextsensitive languages. A characterization of this class in terms of generating grammars is established by using derivation trees with crossings as a helpful tool. From the algebraic point of view, deterministic LP-machines are effectively represented semigroups with distinguished subsets. Concerning the dualism between generating and accepting devices of formal languages within the algebraic setting, the concept of accepting automata turns out to reduce essentially to embeddability in an effectively represented extension monoid, even in the classical cases.

  19. Aspects of parallel processing and control engineering

    OpenAIRE

    McKittrick, Brendan J

    1991-01-01

    The concept of parallel processing is not a new one, but the application of it to control engineering tasks is a relatively recent development, made possible by contemporary hardware and software innovation. It has long been accepted that, if properly orchestrated several processors/CPUs when combined can form a powerful processing entity. What prevented this from being implemented in commercial systems was the adequacy of the microprocessor for most tasks and hence the expense of a multi-pro...

  20. The Galley Parallel File System

    Science.gov (United States)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    Most current multiprocessor file systems are designed to use multiple disks in parallel, using the high aggregate bandwidth to meet the growing I/0 requirements of parallel scientific applications. Many multiprocessor file systems provide applications with a conventional Unix-like interface, allowing the application to access multiple disks transparently. This interface conceals the parallelism within the file system, increasing the ease of programmability, but making it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. In addition to providing an insufficient interface, most current multiprocessor file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic scientific multiprocessor workloads. We discuss Galley's file structure and application interface, as well as the performance advantages offered by that interface.

  1. Parallelism and Scalability in an Image Processing Application

    DEFF Research Database (Denmark)

    Rasmussen, Morten Sleth; Stuart, Matthias Bo; Karlsson, Sven

    2008-01-01

    parallel programs. This paper investigates parallelism and scalability of an embedded image processing application. The major challenges faced when parallelizing the application were to extract enough parallelism from the application and to reduce load imbalance. The application has limited immediately......The recent trends in processor architecture show that parallel processing is moving into new areas of computing in the form of many-core desktop processors and multi-processor system-on-chip. This means that parallel processing is required in application areas that traditionally have not used...

  2. Parallelism and Scalability in an Image Processing Application

    DEFF Research Database (Denmark)

    Rasmussen, Morten Sleth; Stuart, Matthias Bo; Karlsson, Sven

    2009-01-01

    parallel programs. This paper investigates parallelism and scalability of an embedded image processing application. The major challenges faced when parallelizing the application were to extract enough parallelism from the application and to reduce load imbalance. The application has limited immediately......The recent trends in processor architecture show that parallel processing is moving into new areas of computing in the form of many-core desktop processors and multi-processor system-on-chips. This means that parallel processing is required in application areas that traditionally have not used...

  3. Parallel processing for artificial intelligence 1

    CERN Document Server

    Kanal, LN; Kumar, V; Suttner, CB

    1994-01-01

    Parallel processing for AI problems is of great current interest because of its potential for alleviating the computational demands of AI procedures. The articles in this book consider parallel processing for problems in several areas of artificial intelligence: image processing, knowledge representation in semantic networks, production rules, mechanization of logic, constraint satisfaction, parsing of natural language, data filtering and data mining. The publication is divided into six sections. The first addresses parallel computing for processing and understanding images. The second discus

  4. ISP: an optimal out-of-core image-set processing streaming architecture for parallel heterogeneous systems.

    Science.gov (United States)

    Ha, Linh Khanh; Krüger, Jens; Dihl Comba, João Luiz; Silva, Cláudio T; Joshi, Sarang

    2012-06-01

    Image population analysis is the class of statistical methods that plays a central role in understanding the development, evolution, and disease of a population. However, these techniques often require excessive computational power and memory that are compounded with a large number of volumetric inputs. Restricted access to supercomputing power limits its influence in general research and practical applications. In this paper we introduce ISP, an Image-Set Processing streaming framework that harnesses the processing power of commodity heterogeneous CPU/GPU systems and attempts to solve this computational problem. In ISP, we introduce specially designed streaming algorithms and data structures that provide an optimal solution for out-of-core multiimage processing problems both in terms of memory usage and computational efficiency. ISP makes use of the asynchronous execution mechanism supported by parallel heterogeneous systems to efficiently hide the inherent latency of the processing pipeline of out-of-core approaches. Consequently, with computationally intensive problems, the ISP out-of-core solution can achieve the same performance as the in-core solution. We demonstrate the efficiency of the ISP framework on synthetic and real datasets.

  5. Parallel Processing Performance Evaluation of Mixed T10/T100 Ethernet Topologies on Linux Pentium Systems

    National Research Council Canada - National Science Library

    Decato, Steven

    1997-01-01

    ... performed on relatively inexpensive off the shelf components. Alternative network topologies were implemented using 10 and 100 megabit-per-second Ethernet cards under the Linux operating system on Pentium based personal computer platforms...

  6. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  7. Using Monte Carlo techniques and parallel processing for debris hazard analysis of rocket systems

    Energy Technology Data Exchange (ETDEWEB)

    LaFarge, R.A.

    1994-02-01

    Sandia National Laboratories has been involved with rocket systems for many years. Some of these systems have carried high explosive onboard, while others have had FTS for destruction purposes whenever a potential hazard is detected. Recently, Sandia has also been involved with flight tests in which a target vehicle is intentionally destroyed by a projectile. Such endeavors always raise questions about the safety of personnel and the environment in the event of a premature detonation of the explosive or an activation of the FTS, as well as intentional vehicle destruction. Previous attempts to investigate fragmentation hazards for similar configurations have analyzed fragment size and shape in detail but have computed only a limited number of trajectories to determine the probabilities of impact and casualty expectations. A computer program SAFETIE has been written in support of various SNL flight experiments to compute better approximations of the hazards. SAFETIE uses the AMEER trajectory computer code and the Engineering Sciences Center LAN of Sun workstations to determine more realistically the probability of impact for an arbitrary number of exclusion areas. The various debris generation models are described.

  8. Parallel processing for fluid dynamics applications

    International Nuclear Information System (INIS)

    Johnson, G.M.

    1989-01-01

    The impact of parallel processing on computational science and, in particular, on computational fluid dynamics is growing rapidly. In this paper, particular emphasis is given to developments which have occurred within the past two years. Parallel processing is defined and the reasons for its importance in high-performance computing are reviewed. Parallel computer architectures are classified according to the number and power of their processing units, their memory, and the nature of their connection scheme. Architectures which show promise for fluid dynamics applications are emphasized. Fluid dynamics problems are examined for parallelism inherent at the physical level. CFD algorithms and their mappings onto parallel architectures are discussed. Several example are presented to document the performance of fluid dynamics applications on present-generation parallel processing devices

  9. Oxytocin: parallel processing in the social brain?

    Science.gov (United States)

    Dölen, Gül

    2015-06-01

    Early studies attempting to disentangle the network complexity of the brain exploited the accessibility of sensory receptive fields to reveal circuits made up of synapses connected both in series and in parallel. More recently, extension of this organisational principle beyond the sensory systems has been made possible by the advent of modern molecular, viral and optogenetic approaches. Here, evidence supporting parallel processing of social behaviours mediated by oxytocin is reviewed. Understanding oxytocinergic signalling from this perspective has significant implications for the design of oxytocin-based therapeutic interventions aimed at disorders such as autism, where disrupted social function is a core clinical feature. Moreover, identification of opportunities for novel technology development will require a better appreciation of the complexity of the circuit-level organisation of the social brain. © 2015 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.

  10. Parallel-Processing Test Bed For Simulation Software

    Science.gov (United States)

    Blech, Richard; Cole, Gary; Townsend, Scott

    1996-01-01

    Second-generation Hypercluster computing system is multiprocessor test bed for research on parallel algorithms for simulation in fluid dynamics, electromagnetics, chemistry, and other fields with large computational requirements but relatively low input/output requirements. Built from standard, off-shelf hardware readily upgraded as improved technology becomes available. System used for experiments with such parallel-processing concepts as message-passing algorithms, debugging software tools, and computational steering. First-generation Hypercluster system described in "Hypercluster Parallel Processor" (LEW-15283).

  11. The parallel adult education system

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    2015-01-01

    for competence development. The Danish university educational system includes two parallel programs: a traditional academic track (candidatus) and an alternative practice-based track (master). The practice-based program was established in 2001 and organized as part time. The total program takes half the time...

  12. Development of mathematical model and optimal control system of internal temperatures of hot-blast stove process in staggered parallel operation; Netsufuro sushiki model to parallel sofu ni okeru ronai ondo saiteki seigyo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Matoba, Y. [Sumitomo Metal Industries, Ltd., Osaka (Japan); Otsuka, K.

    1998-07-01

    A mathematical model and an optimal control system of hot-blast stove process are described. A precise mathematical simulation model of the hot-blast stove was developed and the accuracy of the model has been confirmed. An optimal control system of the thermal conditions of the hot-blast stoves in staggered parallel operation was also developed. By the use of the multivariable optimal regulator and the feedforward compensations for the change of the aimed blast temperature and blast volume, the system is able to control the hot blast temperature and the brick temperature efficiently. The system has been applied to Kashima works. The variations of the blast temperature and the silica brick temperature have been decreased. The ultimate low heat level operations have been realized and the thermal efficiency furthermore has been raised by about 1%. 8 refs., 14 figs., 1 tab.

  13. Organization of the channel-switching process in parallel computer systems based on a matrix optical switch

    Science.gov (United States)

    Golomidov, Y. V.; Li, S. K.; Popov, S. A.; Smolov, V. B.

    1986-01-01

    After a classification and analysis of electronic and optoelectronic switching devices, the design principles and structure of a matrix optical switch is described. The switching and pair-exclusion operations in this type of switch are examined, and a method for the optical switching of communication channels is elaborated. Finally, attention is given to the structural organization of a parallel computer system with a matrix optical switch.

  14. Parallel processing in nuclear applications

    International Nuclear Information System (INIS)

    Muniz, Francisco Junqueira

    1995-01-01

    This paper summarizes some investigations on effective and scalable dynamic load-balancing mechanisms suitable for distributed-memory (loosely-coupled) MIMD systems. The selected implementation environment is composed of T800 transputers programed in the occam and C languages and an automatic routing package communication software mechanism (the virtual channel router). Tasks were generated, at execution time, using a multiple-spawning mechanism based on a set of remote procedure calls primitives. The objective is to improve maximum resource utilization. In particular, the investigation described here facilitate portability of the user application, since it concentrates on system-level load balancing mechanisms. The load-balancing mechanisms studies are also suitable for systems that can vary in size, concentrating on methods with potential for scalability. Two possible application examples, chosen from the nuclear area, where distributed-memory MIMD machines can be utilized, are mentioned. (author). 24 refs., 1 fig

  15. Density functional theory and parallel processing

    International Nuclear Information System (INIS)

    Ward, R.C.; Geist, G.A.; Butler, W.H.

    1987-01-01

    The authors demonstrate a method for obtaining the ground state energies and charge densities of a system of atoms described within density functional theory using simulated annealing on a parallel computer

  16. Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis

    Science.gov (United States)

    Choudhary, Alok Nidhi

    1989-01-01

    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.

  17. Endpoint-based parallel data processing in a parallel active messaging interface of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-08-12

    Endpoint-based parallel data processing in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective operation through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.

  18. Template based parallel checkpointing in a massively parallel computer system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Inglett, Todd Alan [Rochester, MN

    2009-01-13

    A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.

  19. Applications of Parallel Processing in Mobile Banking

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The future of mobile banking will be represented by such applications that support mobile, Internet banking and EFT (Electronic Funds Transfer transactions in a single user interface. In such a way, the mobile banking will be able to cover all the types of applications demanded at the market level. The parallel processing of credit card bank transactions could be performed with the help of a grid network. Excluding some limitations, the grid processing offers huge opportunities to exploit the parallelism. For this reason, a lot of applications of waiting queues in grid processing were developed in the last years. Grid networks represent a distinctive and very modern field of the parallel and distributed processing.

  20. Advanced optical signal processing of broadband parallel data signals

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Hu, Hao; Kjøller, Niels-Kristian

    2016-01-01

    Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration.......Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration....

  1. A Massively Parallel Face Recognition System

    Directory of Open Access Journals (Sweden)

    Lahdenoja Olli

    2007-01-01

    Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.

  2. A Massively Parallel Face Recognition System

    Directory of Open Access Journals (Sweden)

    Ari Paasio

    2006-12-01

    Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.

  3. Applications of the parallel computing system using network

    International Nuclear Information System (INIS)

    Ido, Shunji; Hasebe, Hiroki

    1994-01-01

    Parallel programming is applied to multiple processors connected in Ethernet. Data exchanges between tasks located in each processing element are realized by two ways. One is socket which is standard library on recent UNIX operating systems. Another is a network connecting software, named as Parallel Virtual Machine (PVM) which is a free software developed by ORNL, to use many workstations connected to network as a parallel computer. This paper discusses the availability of parallel computing using network and UNIX workstations and comparison between specialized parallel systems (Transputer and iPSC/860) in a Monte Carlo simulation which generally shows high parallelization ratio. (author)

  4. Evidence of Parallel Processing During Translation

    DEFF Research Database (Denmark)

    Balling, Laura Winther; Hvelplund, Kristian Tangsgaard; Sjørup, Annette Camilla

    2014-01-01

    conclude that translation is a parallel process and that literal translation is likely to be a universal initial default strategy in translation. This conclusion is strengthened by the fact that all three experiments were relatively naturalistic, due to the combination of remote eye tracking and mixed...

  5. Researching the Parallel Process in Supervision and Psychotherapy

    DEFF Research Database (Denmark)

    Jacobsen, Claus Haugaard

    Reflects upon how to do process research in supervision and in the parallel process. A single case study is presented illustrating how a study on parallel process can be carried out.......Reflects upon how to do process research in supervision and in the parallel process. A single case study is presented illustrating how a study on parallel process can be carried out....

  6. Parallel processing for artificial intelligence 2

    CERN Document Server

    Kumar, V; Suttner, CB

    1994-01-01

    With the increasing availability of parallel machines and the raising of interest in large scale and real world applications, research on parallel processing for Artificial Intelligence (AI) is gaining greater importance in the computer science environment. Many applications have been implemented and delivered but the field is still considered to be in its infancy. This book assembles diverse aspects of research in the area, providing an overview of the current state of technology. It also aims to promote further growth across the discipline. Contributions have been grouped according to their

  7. Power stability methods for parallel systems

    International Nuclear Information System (INIS)

    Wallach, Y.

    1988-01-01

    Parallel-Processing Systems are already commercially available. This paper shows that if one of them - the Alternating Sequential Parallel, or ASP system - is applied to network stability calculations it will lead to a higher speed of solution. The ASP system is first described and is then shown to be cheaper, more reliable and available than other parallel systems. Also, no deadlock need be feared and the speedup is normally very high. A number of ASP systems were already assembled (the SMS systems, Topps, DIRMU etc.). At present, an IBM Local Area Network is being modified so that it too can work in the ASP mode. Existing ASP systems were programmed in Fortran or assembly language. Since newer systems (e.g. DIRMU) are programmed in Modula-2, this language can be used. Stability analysis is based on solving nonlinear differential and algebraic equations. The algorithm for solving the nonlinear differential equations on ASP, is described and programmed in Modula-2. The speedup is computed and is shown to be almost optimal

  8. 8051 microcontroller to FPGA and ADC interface design for high speed parallel processing systems – Application in ultrasound scanners

    Directory of Open Access Journals (Sweden)

    J. Jean Rossario Raj

    2016-09-01

    Full Text Available Microcontrollers perform the hardware control in many instruments. Instruments requiring huge data throughput and parallel computing use FPGA’s for data processing. The microcontroller in turn configures the application hardware devices such as FPGA’s, ADC’s and Ethernet chips etc. The interfacing of these devices uses address/data bus interface, serial interface or serial peripheral interface. The choice of the interface depends upon the input/output pins available with different devices, programming ease and proprietary interfaces supported by devices such as ADC’s. The novelty of this paper is to describe the programming logic used for various types of interface scenarios from microcontroller to different programmable devices. The study presented describes the methods and logic flowcharts for different interfaces. The implementation of the interface logics were in prototype hardware for ultrasound scanner. The internal devices were controlled from the graphical user interface in a laptop and the scan results are taken. It is seen that the optimum solution of the hardware design can be achieved by using a common serial interface towards all the devices.

  9. Parallel transaction processing in functional languages, towards practical functional databases

    NARCIS (Netherlands)

    Wevers, L.; Huisman, Marieke; de Keijzer, Ander

    2013-01-01

    This paper shows how functional languages can be adapted for transaction processing, and discusses the implementation of a parallel runtime system for such functional transaction processing languages. We extend functional languages with current state variables and result state variables to allow the

  10. A Novel Least Significant Bit First Processing Parallel CRC Circuit

    Directory of Open Access Journals (Sweden)

    Xiujie Qu

    2013-01-01

    Full Text Available In HDLC serial communication protocol, CRC calculation can first process the most or least significant bit of data. Nowadays most CRC calculation is based on the most significant bit (MSB first processing. An algorithm of the least significant bit (LSB first processing parallel CRC is proposed in this paper. Based on the general expression of the least significant bit first processing serial CRC, using state equation method of linear system, we derive a recursive formula by the mathematical deduction. The recursive formula is applicable to any number of bits processed in parallel and any series of generator polynomial. According to the formula, we present the parallel circuit of CRC calculation and implement it with VHDL on FPGA. The results verify the accuracy and effectiveness of this method.

  11. Test generation for digital circuits using parallel processing

    Science.gov (United States)

    Hartmann, Carlos R.; Ali, Akhtar-Uz-Zaman M.

    1990-12-01

    The problem of test generation for digital logic circuits is an NP-Hard problem. Recently, the availability of low cost, high performance parallel machines has spurred interest in developing fast parallel algorithms for computer-aided design and test. This report describes a method of applying a 15-valued logic system for digital logic circuit test vector generation in a parallel programming environment. A concept called fault site testing allows for test generation, in parallel, that targets more than one fault at a given location. The multi-valued logic system allows results obtained by distinct processors and/or processes to be merged by means of simple set intersections. A machine-independent description is given for the proposed algorithm.

  12. Building a parallel file system simulator

    International Nuclear Information System (INIS)

    Molina-Estolano, E; Maltzahn, C; Brandt, S A; Bent, J

    2009-01-01

    Parallel file systems are gaining in popularity in high-end computing centers as well as commercial data centers. High-end computing systems are expected to scale exponentially and to pose new challenges to their storage scalability in terms of cost and power. To address these challenges scientists and file system designers will need a thorough understanding of the design space of parallel file systems. Yet there exist few systematic studies of parallel file system behavior at petabyte- and exabyte scale. An important reason is the significant cost of getting access to large-scale hardware to test parallel file systems. To contribute to this understanding we are building a parallel file system simulator that can simulate parallel file systems at very large scale. Our goal is to simulate petabyte-scale parallel file systems on a small cluster or even a single machine in reasonable time and fidelity. With this simulator, file system experts will be able to tune existing file systems for specific workloads, scientists and file system deployment engineers will be able to better communicate workload requirements, file system designers and researchers will be able to try out design alternatives and innovations at scale, and instructors will be able to study very large-scale parallel file system behavior in the class room. In this paper we describe our approach and provide preliminary results that are encouraging both in terms of fidelity and simulation scalability.

  13. Decomposition based parallel processing technique for efficient collaborative optimization

    International Nuclear Information System (INIS)

    Park, Hyung Wook; Kim, Sung Chan; Kim, Min Soo; Choi, Dong Hoon

    2000-01-01

    In practical design studies, most of designers solve multidisciplinary problems with complex design structure. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder original design processes to minimize total cost and time. This is accomplished by decomposing large multidisciplinary problem into several MultiDisciplinary Analysis SubSystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and Multidisciplinary Design Optimization(MDO) methodology

  14. Differences Between Distributed and Parallel Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brightwell, R.; Maccabe, A.B.; Rissen, R.

    1998-10-01

    Distributed systems have been studied for twenty years and are now coming into wider use as fast networks and powerful workstations become more readily available. In many respects a massively parallel computer resembles a network of workstations and it is tempting to port a distributed operating system to such a machine. However, there are significant differences between these two environments and a parallel operating system is needed to get the best performance out of a massively parallel system. This report characterizes the differences between distributed systems, networks of workstations, and massively parallel systems and analyzes the impact of these differences on operating system design. In the second part of the report, we introduce Puma, an operating system specifically developed for massively parallel systems. We describe Puma portals, the basic building blocks for message passing paradigms implemented on top of Puma, and show how the differences observed in the first part of the report have influenced the design and implementation of Puma.

  15. Fast image processing on parallel hardware

    International Nuclear Information System (INIS)

    Bittner, U.

    1988-01-01

    Current digital imaging modalities in the medical field incorporate parallel hardware which is heavily used in the stage of image formation like the CT/MR image reconstruction or in the DSA real time subtraction. In order to image post-processing as efficient as image acquisition, new software approaches have to be found which take full advantage of the parallel hardware architecture. This paper describes the implementation of two-dimensional median filter which can serve as an example for the development of such an algorithm. The algorithm is analyzed by viewing it as a complete parallel sort of the k pixel values in the chosen window which leads to a generalization to rank order operators and other closely related filters reported in literature. A section about the theoretical base of the algorithm gives hints for how to characterize operations suitable for implementations on pipeline processors and the way to find the appropriate algorithms. Finally some results that computation time and usefulness of medial filtering in radiographic imaging are given

  16. Partitioning sparse rectangular matrices for parallel processing

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  17. An educational tool for interactive parallel and distributed processing

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2012-01-01

    In this article we try to describe how the modular interactive tiles system (MITS) can be a valuable tool for introducing students to interactive parallel and distributed processing programming. This is done by providing a handson educational tool that allows a change in the representation...... of abstract problems related to designing interactive parallel and distributed systems. Indeed, the MITS seems to bring a series of goals into education, such as parallel programming, distributedness, communication protocols, master dependency, software behavioral models, adaptive interactivity, feedback......, connectivity, topology, island modeling, and user and multi-user interaction which can rarely be found in other tools. Finally, we introduce the system of modular interactive tiles as a tool for easy, fast, and flexible hands-on exploration of these issues, and through examples we show how to implement...

  18. CS-Studio Scan System Parallelization

    Energy Technology Data Exchange (ETDEWEB)

    Kasemir, Kay [ORNL; Pearson, Matthew R [ORNL

    2015-01-01

    For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to the Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.

  19. Toward a parallel and cascading model of the writing system: A review of research on writing processes coordination

    OpenAIRE

    Thierry Olive

    2014-01-01

    Efficient coordination of the different writing processes is central to producing good-quality texts, and is a fundamental component of writing skill. In this article, I propose a general theoretical framework for considering how writing processes are coordinated, in which writing processes are concurrently activated with more or less overlap between processes depending on their working memory demands, and with the flow of information cascading from central to peripheral levels of processing....

  20. A qualitative single case study of parallel processes

    DEFF Research Database (Denmark)

    Jacobsen, Claus Haugaard

    2007-01-01

    Parallel process in psychotherapy and supervision is a phenomenon manifest in relationships and interactions, that originates in one setting and is reflected in another. This article presents an explorative single case study of parallel processes based on qualitative analyses of two successive...... randomly chosen psychotherapy sessions with a schizophrenic patient and the supervision session given in between. The author's analysis is verified by an independent examiner's analysis. Parallel processes are identified and described. Reflections on the dynamics of parallel processes and supervisory...

  1. Parallel processing approach to transform-based image coding

    Science.gov (United States)

    Normile, James O.; Wright, Dan; Chu, Ken; Yeh, Chia L.

    1991-06-01

    This paper describes a flexible parallel processing architecture designed for use in real time video processing. The system consists of floating point DSP processors connected to each other via fast serial links, each processor has access to a globally shared memory. A multiple bus architecture in combination with a dual ported memory allows communication with a host control processor. The system has been applied to prototyping of video compression and decompression algorithms. The decomposition of transform based algorithms for decompression into a form suitable for parallel processing is described. A technique for automatic load balancing among the processors is developed and discussed, results ar presented with image statistics and data rates. Finally techniques for accelerating the system throughput are analyzed and results from the application of one such modification described.

  2. Application of parallel processing for automatic inspection of printed circuits

    International Nuclear Information System (INIS)

    Lougheed, R.M.

    1986-01-01

    Automated visual inspection of printed electronic circuits is a challenging application for image processing systems. Detailed inspection requires high speed analysis of gray scale imagery along with high quality optics, lighting, and sensing equipment. A prototype system has been developed and demonstrated at the Environmental Research Institute of Michigan (ERIM) for inspection of multilayer thick-film circuits. The central problem of real-time image processing is solved by a special-purpose parallel processor which includes a new high-speed Cytocomputer. In this chapter the inspection process and the algorithms used are summarized, along with the functional requirements of the machine vision system. Next, the parallel processor is described in detail and then performance on this application is given

  3. Distributed parallel messaging for multiprocessor systems

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka

    2013-06-04

    A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.

  4. Real-time parallel processing of grammatical structure in the fronto-striatal system: a recurrent network simulation study using reservoir computing.

    Science.gov (United States)

    Hinaut, Xavier; Dominey, Peter Ford

    2013-01-01

    Sentence processing takes place in real-time. Previous words in the sentence can influence the processing of the current word in the timescale of hundreds of milliseconds. Recent neurophysiological studies in humans suggest that the fronto-striatal system (frontal cortex, and striatum--the major input locus of the basal ganglia) plays a crucial role in this process. The current research provides a possible explanation of how certain aspects of this real-time processing can occur, based on the dynamics of recurrent cortical networks, and plasticity in the cortico-striatal system. We simulate prefrontal area BA47 as a recurrent network that receives on-line input about word categories during sentence processing, with plastic connections between cortex and striatum. We exploit the homology between the cortico-striatal system and reservoir computing, where recurrent frontal cortical networks are the reservoir, and plastic cortico-striatal synapses are the readout. The system is trained on sentence-meaning pairs, where meaning is coded as activation in the striatum corresponding to the roles that different nouns and verbs play in the sentences. The model learns an extended set of grammatical constructions, and demonstrates the ability to generalize to novel constructions. It demonstrates how early in the sentence, a parallel set of predictions are made concerning the meaning, which are then confirmed or updated as the processing of the input sentence proceeds. It demonstrates how on-line responses to words are influenced by previous words in the sentence, and by previous sentences in the discourse, providing new insight into the neurophysiology of the P600 ERP scalp response to grammatical complexity. This demonstrates that a recurrent neural network can decode grammatical structure from sentences in real-time in order to generate a predictive representation of the meaning of the sentences. This can provide insight into the underlying mechanisms of human cortico

  5. An Educational Tool for Interactive Parallel and Distributed Processing

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2011-01-01

    In this paper we try to describe how the Modular Interactive Tiles System (MITS) can be a valuable tool for introducing students to interactive parallel and distributed processing programming. This is done by providing an educational hands-on tool that allows a change of representation of the abs......In this paper we try to describe how the Modular Interactive Tiles System (MITS) can be a valuable tool for introducing students to interactive parallel and distributed processing programming. This is done by providing an educational hands-on tool that allows a change of representation...... of the abstract problems related to designing interactive parallel and distributed systems. Indeed, MITS seems to bring a series of goals into the education, such as parallel programming, distributedness, communication protocols, master dependency, software behavioral models, adaptive interactivity, feedback......, connectivity, topology, island modeling, user and multiuser interaction, which can hardly be found in other tools. Finally, we introduce the system of modular interactive tiles as a tool for easy, fast, and flexible hands-on exploration of these issues, and through examples show how to implement interactive...

  6. Performance of the Galley Parallel File System

    Science.gov (United States)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    As the input/output (I/O) needs of parallel scientific applications increase, file systems for multiprocessors are being designed to provide applications with parallel access to multiple disks. Many parallel file systems present applications with a conventional Unix-like interface that allows the application to access multiple disks transparently. This interface conceals the parallism within the file system, which increases the ease of programmability, but makes it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. Furthermore, most current parallel file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic parallel workloads. Initial experiments, reported in this paper, indicate that Galley is capable of providing high-performance 1/O to applications the applications that rely on them. In Section 3 we describe that access data in patterns that have been observed to be common.

  7. Parallel processing based decomposition technique for efficient collaborative optimization

    International Nuclear Information System (INIS)

    Park, Hyung Wook; Kim, Sung Chan; Kim, Min Soo; Choi, Dong Hoon

    2001-01-01

    In practical design studies, most of designers solve multidisciplinary problems with large sized and complex design system. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder the original design processes to minimize total computational cost. This is accomplished by decomposing large multidisciplinary problem into several MultiDisciplinary Analysis SubSystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and Multidisciplinary Design Optimization(MDO) methodology

  8. The study of image processing of parallel digital signal processor

    International Nuclear Information System (INIS)

    Liu Jie

    2000-01-01

    The author analyzes the basic characteristic of parallel DSP (digital signal processor) TMS320C80 and proposes related optimized image algorithm and the parallel processing method based on parallel DSP. The realtime for many image processing can be achieved in this way

  9. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1993-01-01

    Reliability-based design of structural systems is considered. In particular, systems where the reliability model is a series system of parallel systems are treated. A sensitivity analysis for this class of problems is presented. Optimization problems with series systems of parallel systems...... optimization of series systems of parallel systems, but it is also efficient in reliability-based optimization of series systems in general....

  10. An intelligent allocation algorithm for parallel processing

    Science.gov (United States)

    Carroll, Chester C.; Homaifar, Abdollah; Ananthram, Kishan G.

    1988-01-01

    The problem of allocating nodes of a program graph to processors in a parallel processing architecture is considered. The algorithm is based on critical path analysis, some allocation heuristics, and the execution granularity of nodes in a program graph. These factors, and the structure of interprocessor communication network, influence the allocation. To achieve realistic estimations of the executive durations of allocations, the algorithm considers the fact that nodes in a program graph have to communicate through varying numbers of tokens. Coarse and fine granularities have been implemented, with interprocessor token-communication duration, varying from zero up to values comparable to the execution durations of individual nodes. The effect on allocation of communication network structures is demonstrated by performing allocations for crossbar (non-blocking) and star (blocking) networks. The algorithm assumes the availability of as many processors as it needs for the optimal allocation of any program graph. Hence, the focus of allocation has been on varying token-communication durations rather than varying the number of processors. The algorithm always utilizes as many processors as necessary for the optimal allocation of any program graph, depending upon granularity and characteristics of the interprocessor communication network.

  11. Automated Parallel Capillary Electrophoretic System

    Science.gov (United States)

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  12. Parallel and Distributed System Simulation

    Science.gov (United States)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our research into the software infrastructure necessary to support the modeling and simulation techniques that are most appropriate for the Information Power Grid. Such computational power grids will use high-performance networking to connect hardware, software, instruments, databases, and people into a seamless web that supports a new generation of computation-rich problem solving environments for scientists and engineers. In this context we looked at evaluating the NetSolve software environment for network computing that leverages the potential of such systems while addressing their complexities. NetSolve's main purpose is to enable the creation of complex applications that harness the immense power of the grid, yet are simple to use and easy to deploy. NetSolve uses a modular, client-agent-server architecture to create a system that is very easy to use. Moreover, it is designed to be highly composable in that it readily permits new resources to be added by anyone willing to do so. In these respects NetSolve is to the Grid what the World Wide Web is to the Internet. But like the Web, the design that makes these wonderful features possible can also impose significant limitations on the performance and robustness of a NetSolve system. This project explored the design innovations that push the performance and robustness of the NetSolve paradigm as far as possible without sacrificing the Web-like ease of use and composability that make it so powerful.

  13. Novel techniques for data decomposition and load balancing for parallel processing of vision systems: Implementation and evaluation using a motion estimation system

    Science.gov (United States)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.

  14. Parallel, Asynchronous Executive (PAX): System concepts, facilities, and architecture

    Science.gov (United States)

    Jones, W. H.

    1983-01-01

    The Parallel, Asynchronous Executive (PAX) is a software operating system simulation that allows many computers to work on a single problem at the same time. PAX is currently implemented on a UNIVAC 1100/42 computer system. Independent UNIVAC runstreams are used to simulate independent computers. Data are shared among independent UNIVAC runstreams through shared mass-storage files. PAX has achieved the following: (1) applied several computing processes simultaneously to a single, logically unified problem; (2) resolved most parallel processor conflicts by careful work assignment; (3) resolved by means of worker requests to PAX all conflicts not resolved by work assignment; (4) provided fault isolation and recovery mechanisms to meet the problems of an actual parallel, asynchronous processing machine. Additionally, one real-life problem has been constructed for the PAX environment. This is CASPER, a collection of aerodynamic and structural dynamic problem simulation routines. CASPER is not discussed in this report except to provide examples of parallel-processing techniques.

  15. Smoldyn on graphics processing units: massively parallel Brownian dynamics simulations.

    Science.gov (United States)

    Dematté, Lorenzo

    2012-01-01

    Space is a very important aspect in the simulation of biochemical systems; recently, the need for simulation algorithms able to cope with space is becoming more and more compelling. Complex and detailed models of biochemical systems need to deal with the movement of single molecules and particles, taking into consideration localized fluctuations, transportation phenomena, and diffusion. A common drawback of spatial models lies in their complexity: models can become very large, and their simulation could be time consuming, especially if we want to capture the systems behavior in a reliable way using stochastic methods in conjunction with a high spatial resolution. In order to deliver the promise done by systems biology to be able to understand a system as whole, we need to scale up the size of models we are able to simulate, moving from sequential to parallel simulation algorithms. In this paper, we analyze Smoldyn, a widely diffused algorithm for stochastic simulation of chemical reactions with spatial resolution and single molecule detail, and we propose an alternative, innovative implementation that exploits the parallelism of Graphics Processing Units (GPUs). The implementation executes the most computational demanding steps (computation of diffusion, unimolecular, and bimolecular reaction, as well as the most common cases of molecule-surface interaction) on the GPU, computing them in parallel on each molecule of the system. The implementation offers good speed-ups and real time, high quality graphics output

  16. Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies

    Science.gov (United States)

    Hsieh, Shang-Hsien

    1993-01-01

    The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.

  17. Bessel functions: parallel display and processing.

    Science.gov (United States)

    Lohmann, A W; Ojeda-Castañeda, J; Serrano-Heredia, A

    1994-01-01

    We present an optical setup that converts planar binary curves into two-dimensional amplitude distributions, which are proportional, along one axis, to the Bessel function of order n, whereas along the other axis the order n increases. This Bessel displayer can be used for parallel Bessel transformation of a signal. Experimental verifications are included.

  18. Neural Parallel Engine: A toolbox for massively parallel neural signal processing.

    Science.gov (United States)

    Tam, Wing-Kin; Yang, Zhi

    2018-05-01

    Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings. In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation. Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows. Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing. A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Flexibility and Performance of Parallel File Systems

    Science.gov (United States)

    Kotz, David; Nieuwejaar, Nils

    1996-01-01

    As we gain experience with parallel file systems, it becomes increasingly clear that a single solution does not suit all applications. For example, it appears to be impossible to find a single appropriate interface, caching policy, file structure, or disk-management strategy. Furthermore, the proliferation of file-system interfaces and abstractions make applications difficult to port. We propose that the traditional functionality of parallel file systems be separated into two components: a fixed core that is standard on all platforms, encapsulating only primitive abstractions and interfaces, and a set of high-level libraries to provide a variety of abstractions and application-programmer interfaces (API's). We present our current and next-generation file systems as examples of this structure. Their features, such as a three-dimensional file structure, strided read and write interfaces, and I/O-node programs, are specifically designed with the flexibility and performance necessary to support a wide range of applications.

  20. Base drive for paralleled inverter systems

    Science.gov (United States)

    Nagano, S. (Inventor)

    1980-01-01

    In a paralleled inverter system, a positive feedback current derived from the total current from all of the modules of the inverter system is applied to the base drive of each of the power transistors of all modules, thereby to provide all modules protection against open or short circuit faults occurring in any of the modules, and force equal current sharing among the modules during turn on of the power transistors.

  1. PUMA: An Operating System for Massively Parallel Systems

    Directory of Open Access Journals (Sweden)

    Stephen R. Wheat

    1994-01-01

    Full Text Available This article presents an overview of PUMA (Performance-oriented, User-managed Messaging Architecture, a message-passing kernel for massively parallel systems. Message passing in PUMA is based on portals – an opening in the address space of an application process. Once an application process has established a portal, other processes can write values into the portal using a simple send operation. Because messages are written directly into the address space of the receiving process, there is no need to buffer messages in the PUMA kernel and later copy them into the applications address space. PUMA consists of two components: the quintessential kernel (Q-Kernel and the process control thread (PCT. Although the PCT provides management decisions, the Q-Kernel controls access and implements the policies specified by the PCT.

  2. Parallel processing of two-dimensional Sn transport calculations

    International Nuclear Information System (INIS)

    Uematsu, M.

    1997-01-01

    A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation

  3. Integrative Dynamic Reconfiguration in a Parallel Stream Processing Engine

    DEFF Research Database (Denmark)

    Madsen, Kasper Grud Skat; Zhou, Yongluan; Cao, Jianneng

    2017-01-01

    Load balancing, operator instance collocations and horizontal scaling are critical issues in Parallel Stream Processing Engines to achieve low data processing latency, optimized cluster utilization and minimized communication cost respectively. In previous work, these issues are typically tackled...... solution called ALBIC, which support general jobs. We implement the proposed techniques on top of Apache Storm, an open-source Parallel Stream Processing Engine. The extensive experimental results over both synthetic and real datasets show that our techniques clearly outperform existing approaches....

  4. Parallel processing data network of master and slave transputers controlled by a serial control network

    Science.gov (United States)

    Crosetto, Dario B.

    1996-01-01

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor (100) to a plurality of slave processors (200) to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor's status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer (104), a digital signal processor (114), a parallel transfer controller (106), and two three-port memory devices. A communication switch (108) within each node (100) connects it to a fast parallel hardware channel (70) through which all high density data arrives or leaves the node.

  5. Parallel and Distributed Data Processing Using Autonomous ...

    African Journals Online (AJOL)

    Looking at the distributed nature of these networks, data is processed by remote login or Remote Procedure Calls (RPC), this causes congestion in the network bandwidth. This paper proposes a framework where software agents are assigned duties to be processing the distributed data concurrently and assembling the ...

  6. Small file aggregation in a parallel computing system

    Science.gov (United States)

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Grider, Gary; Zhang, Jingwang

    2014-09-02

    Techniques are provided for small file aggregation in a parallel computing system. An exemplary method for storing a plurality of files generated by a plurality of processes in a parallel computing system comprises aggregating the plurality of files into a single aggregated file; and generating metadata for the single aggregated file. The metadata comprises an offset and a length of each of the plurality of files in the single aggregated file. The metadata can be used to unpack one or more of the files from the single aggregated file.

  7. Cooperative storage of shared files in a parallel computing system with dynamic block size

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2015-11-10

    Improved techniques are provided for parallel writing of data to a shared object in a parallel computing system. A method is provided for storing data generated by a plurality of parallel processes to a shared object in a parallel computing system. The method is performed by at least one of the processes and comprises: dynamically determining a block size for storing the data; exchanging a determined amount of the data with at least one additional process to achieve a block of the data having the dynamically determined block size; and writing the block of the data having the dynamically determined block size to a file system. The determined block size comprises, e.g., a total amount of the data to be stored divided by the number of parallel processes. The file system comprises, for example, a log structured virtual parallel file system, such as a Parallel Log-Structured File System (PLFS).

  8. Parallel heater system for subsurface formations

    Science.gov (United States)

    Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  9. Examination of Speed Contribution of Parallelization for Several Fingerprint Pre-Processing Algorithms

    Directory of Open Access Journals (Sweden)

    GORGUNOGLU, S.

    2014-05-01

    Full Text Available In analysis of minutiae based fingerprint systems, fingerprints needs to be pre-processed. The pre-processing is carried out to enhance the quality of the fingerprint and to obtain more accurate minutiae points. Reducing the pre-processing time is important for identification and verification in real time systems and especially for databases holding large fingerprints information. Parallel processing and parallel CPU computing can be considered as distribution of processes over multi core processor. This is done by using parallel programming techniques. Reducing the execution time is the main objective in parallel processing. In this study, pre-processing of minutiae based fingerprint system is implemented by parallel processing on multi core computers using OpenMP and on graphics processor using CUDA to improve execution time. The execution times and speedup ratios are compared with the one that of single core processor. The results show that by using parallel processing, execution time is substantially improved. The improvement ratios obtained for different pre-processing algorithms allowed us to make suggestions on the more suitable approaches for parallelization.

  10. GPU: the biggest key processor for AI and parallel processing

    Science.gov (United States)

    Baji, Toru

    2017-07-01

    Two types of processors exist in the market. One is the conventional CPU and the other is Graphic Processor Unit (GPU). Typical CPU is composed of 1 to 8 cores while GPU has thousands of cores. CPU is good for sequential processing, while GPU is good to accelerate software with heavy parallel executions. GPU was initially dedicated for 3D graphics. However from 2006, when GPU started to apply general-purpose cores, it was noticed that this architecture can be used as a general purpose massive-parallel processor. NVIDIA developed a software framework Compute Unified Device Architecture (CUDA) that make it possible to easily program the GPU for these application. With CUDA, GPU started to be used in workstations and supercomputers widely. Recently two key technologies are highlighted in the industry. The Artificial Intelligence (AI) and Autonomous Driving Cars. AI requires a massive parallel operation to train many-layers of neural networks. With CPU alone, it was impossible to finish the training in a practical time. The latest multi-GPU system with P100 makes it possible to finish the training in a few hours. For the autonomous driving cars, TOPS class of performance is required to implement perception, localization, path planning processing and again SoC with integrated GPU will play a key role there. In this paper, the evolution of the GPU which is one of the biggest commercial devices requiring state-of-the-art fabrication technology will be introduced. Also overview of the GPU demanding key application like the ones described above will be introduced.

  11. Parallel finite elements with domain decomposition and its pre-processing

    International Nuclear Information System (INIS)

    Yoshida, A.; Yagawa, G.; Hamada, S.

    1993-01-01

    This paper describes a parallel finite element analysis using a domain decomposition method, and the pre-processing for the parallel calculation. Computer simulations are about to replace experiments in various fields, and the scale of model to be simulated tends to be extremely large. On the other hand, computational environment has drastically changed in these years. Especially, parallel processing on massively parallel computers or computer networks is considered to be promising techniques. In order to achieve high efficiency on such parallel computation environment, large granularity of tasks, a well-balanced workload distribution are key issues. It is also important to reduce the cost of pre-processing in such parallel FEM. From the point of view, the authors developed the domain decomposition FEM with the automatic and dynamic task-allocation mechanism and the automatic mesh generation/domain subdivision system for it. (author)

  12. Processing data communications events by awakening threads in parallel active messaging interface of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2016-03-15

    Processing data communications events in a parallel active messaging interface (`PAMI`) of a parallel computer that includes compute nodes that execute a parallel application, with the PAMI including data communications endpoints, and the endpoints are coupled for data communications through the PAMI and through other data communications resources, including determining by an advance function that there are no actionable data communications events pending for its context, placing by the advance function its thread of execution into a wait state, waiting for a subsequent data communications event for the context; responsive to occurrence of a subsequent data communications event for the context, awakening by the thread from the wait state; and processing by the advance function the subsequent data communications event now pending for the context.

  13. Parallel processing for pitch splitting decomposition

    Science.gov (United States)

    Barnes, Levi; Li, Yong; Wadkins, David; Biederman, Steve; Miloslavsky, Alex; Cork, Chris

    2009-10-01

    Decomposition of an input pattern in preparation for a double patterning process is an inherently global problem in which the influence of a local decomposition decision can be felt across an entire pattern. In spite of this, a large portion of the work can be massively distributed. Here, we discuss the advantages of geometric distribution for polygon operations with limited range of influence. Further, we have found that even the naturally global "coloring" step can, in large part, be handled in a geometrically local manner. In some practical cases, up to 70% of the work can be distributed geometrically. We also describe the methods for partitioning the problem into local pieces and present scaling data up to 100 CPUs. These techniques reduce DPT decomposition runtime by orders of magnitude.

  14. Parallel processing of neutron transport in fuel assembly calculation

    International Nuclear Information System (INIS)

    Song, Jae Seung

    1992-02-01

    Group constants, which are used for reactor analyses by nodal method, are generated by fuel assembly calculations based on the neutron transport theory, since one or a quarter of the fuel assembly corresponds to a unit mesh in the current nodal calculation. The group constant calculation for a fuel assembly is performed through spectrum calculations, a two-dimensional fuel assembly calculation, and depletion calculations. The purpose of this study is to develop a parallel algorithm to be used in a parallel processor for the fuel assembly calculation and the depletion calculations of the group constant generation. A serial program, which solves the neutron integral transport equation using the transmission probability method and the linear depletion equation, was prepared and verified by a benchmark calculation. Small changes from the serial program was enough to parallelize the depletion calculation which has inherent parallel characteristics. In the fuel assembly calculation, however, efficient parallelization is not simple and easy because of the many coupling parameters in the calculation and data communications among CPU's. In this study, the group distribution method is introduced for the parallel processing of the fuel assembly calculation to minimize the data communications. The parallel processing was performed on Quadputer with 4 CPU's operating in NURAD Lab. at KAIST. Efficiencies of 54.3 % and 78.0 % were obtained in the fuel assembly calculation and depletion calculation, respectively, which lead to the overall speedup of about 2.5. As a result, it is concluded that the computing time consumed for the group constant generation can be easily reduced by parallel processing on the parallel computer with small size CPU's

  15. Distributed parallel computing in stochastic modeling of groundwater systems.

    Science.gov (United States)

    Dong, Yanhui; Li, Guomin; Xu, Haizhen

    2013-03-01

    Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  16. The Acoustic and Peceptual Effects of Series and Parallel Processing

    Directory of Open Access Journals (Sweden)

    Melinda C. Anderson

    2009-01-01

    Full Text Available Temporal envelope (TE cues provide a great deal of speech information. This paper explores how spectral subtraction and dynamic-range compression gain modifications affect TE fluctuations for parallel and series configurations. In parallel processing, algorithms compute gains based on the same input signal, and the gains in dB are summed. In series processing, output from the first algorithm forms the input to the second algorithm. Acoustic measurements show that the parallel arrangement produces more gain fluctuations, introducing more changes to the TE than the series configurations. Intelligibility tests for normal-hearing (NH and hearing-impaired (HI listeners show (1 parallel processing gives significantly poorer speech understanding than an unprocessed (UNP signal and the series arrangement and (2 series processing and UNP yield similar results. Speech quality tests show that UNP is preferred to both parallel and series arrangements, although spectral subtraction is the most preferred. No significant differences exist in sound quality between the series and parallel arrangements, or between the NH group and the HI group. These results indicate that gain modifications affect intelligibility and sound quality differently. Listeners appear to have a higher tolerance for gain modifications with regard to intelligibility, while judgments for sound quality appear to be more affected by smaller amounts of gain modification.

  17. Efficient multitasking: parallel versus serial processing of multiple tasks.

    Science.gov (United States)

    Fischer, Rico; Plessow, Franziska

    2015-01-01

    In the context of performance optimizations in multitasking, a central debate has unfolded in multitasking research around whether cognitive processes related to different tasks proceed only sequentially (one at a time), or can operate in parallel (simultaneously). This review features a discussion of theoretical considerations and empirical evidence regarding parallel versus serial task processing in multitasking. In addition, we highlight how methodological differences and theoretical conceptions determine the extent to which parallel processing in multitasking can be detected, to guide their employment in future research. Parallel and serial processing of multiple tasks are not mutually exclusive. Therefore, questions focusing exclusively on either task-processing mode are too simplified. We review empirical evidence and demonstrate that shifting between more parallel and more serial task processing critically depends on the conditions under which multiple tasks are performed. We conclude that efficient multitasking is reflected by the ability of individuals to adjust multitasking performance to environmental demands by flexibly shifting between different processing strategies of multiple task-component scheduling.

  18. Parallel Computational Intelligence-Based Multi-Camera Surveillance System

    OpenAIRE

    Orts-Escolano, Sergio; Garcia-Rodriguez, Jose; Morell, Vicente; Cazorla, Miguel; Azorin-Lopez, Jorge; García-Chamizo, Juan Manuel

    2014-01-01

    In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units). It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mob...

  19. Parallel Distributed Processing Theory in the Age of Deep Networks.

    Science.gov (United States)

    Bowers, Jeffrey S

    2017-12-01

    Parallel distributed processing (PDP) models in psychology are the precursors of deep networks used in computer science. However, only PDP models are associated with two core psychological claims, namely that all knowledge is coded in a distributed format and cognition is mediated by non-symbolic computations. These claims have long been debated in cognitive science, and recent work with deep networks speaks to this debate. Specifically, single-unit recordings show that deep networks learn units that respond selectively to meaningful categories, and researchers are finding that deep networks need to be supplemented with symbolic systems to perform some tasks. Given the close links between PDP and deep networks, it is surprising that research with deep networks is challenging PDP theory. Copyright © 2017. Published by Elsevier Ltd.

  20. Spatially parallel processing of within-dimension conjunctions.

    Science.gov (United States)

    Linnell, K J; Humphreys, G W

    2001-01-01

    Within-dimension conjunction search for red-green targets amongst red-blue, and blue-green, nontargets is extremely inefficient (Wolfe et al, 1990 Journal of Experimental Psychology: Human Perception and Performance 16 879-892). We tested whether pairs of red-green conjunction targets can nevertheless be processed spatially in parallel. Participants made speeded detection responses whenever a red-green target was present. Across trials where a second identical target was present, the distribution of detection times was compatible with the assumption that targets were processed in parallel (Miller, 1982 Cognitive Psychology 14 247-279). We show that this was not an artifact of response-competition or feature-based processing. We suggest that within-dimension conjunctions can be processed spatially in parallel. Visual search for such items may be inefficient owing to within-dimension grouping between items.

  1. Automatic Management of Parallel and Distributed System Resources

    Science.gov (United States)

    Yan, Jerry; Ngai, Tin Fook; Lundstrom, Stephen F.

    1990-01-01

    Viewgraphs on automatic management of parallel and distributed system resources are presented. Topics covered include: parallel applications; intelligent management of multiprocessing systems; performance evaluation of parallel architecture; dynamic concurrent programs; compiler-directed system approach; lattice gaseous cellular automata; and sparse matrix Cholesky factorization.

  2. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...

  3. Tuning HDF5 subfiling performance on parallel file systems

    Energy Technology Data Exchange (ETDEWEB)

    Byna, Suren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chaarawi, Mohamad [Intel Corp. (United States); Koziol, Quincey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mainzer, John [The HDF Group (United States); Willmore, Frank [The HDF Group (United States)

    2017-05-12

    Subfiling is a technique used on parallel file systems to reduce locking and contention issues when multiple compute nodes interact with the same storage target node. Subfiling provides a compromise between the single shared file approach that instigates the lock contention problems on parallel file systems and having one file per process, which results in generating a massive and unmanageable number of files. In this paper, we evaluate and tune the performance of recently implemented subfiling feature in HDF5. In specific, we explain the implementation strategy of subfiling feature in HDF5, provide examples of using the feature, and evaluate and tune parallel I/O performance of this feature with parallel file systems of the Cray XC40 system at NERSC (Cori) that include a burst buffer storage and a Lustre disk-based storage. We also evaluate I/O performance on the Cray XC30 system, Edison, at NERSC. Our results show performance benefits of 1.2X to 6X performance advantage with subfiling compared to writing a single shared HDF5 file. We present our exploration of configurations, such as the number of subfiles and the number of Lustre storage targets to storing files, as optimization parameters to obtain superior I/O performance. Based on this exploration, we discuss recommendations for achieving good I/O performance as well as limitations with using the subfiling feature.

  4. Parallel and distributed processing in two SGBDS: A case study

    OpenAIRE

    Francisco Javier Moreno; Nataly Castrillón Charari; Camilo Taborda Zuluaga

    2017-01-01

    Context: One of the strategies for managing large volumes of data is distributed and parallel computing. Among the tools that allow applying these characteristics are some Data Base Management Systems (DBMS), such as Oracle, DB2, and SQL Server. Method: In this paper we present a case study where we evaluate the performance of an SQL query in two of these DBMS. The evaluation is done through various forms of data distribution in a computer network with different degrees of parallelism. ...

  5. MASSIVELY PARALLEL LATENT SEMANTIC ANALYSES USING A GRAPHICS PROCESSING UNIT

    Energy Technology Data Exchange (ETDEWEB)

    Cavanagh, J.; Cui, S.

    2009-01-01

    Latent Semantic Analysis (LSA) aims to reduce the dimensions of large term-document datasets using Singular Value Decomposition. However, with the ever-expanding size of datasets, current implementations are not fast enough to quickly and easily compute the results on a standard PC. A graphics processing unit (GPU) can solve some highly parallel problems much faster than a traditional sequential processor or central processing unit (CPU). Thus, a deployable system using a GPU to speed up large-scale LSA processes would be a much more effective choice (in terms of cost/performance ratio) than using a PC cluster. Due to the GPU’s application-specifi c architecture, harnessing the GPU’s computational prowess for LSA is a great challenge. We presented a parallel LSA implementation on the GPU, using NVIDIA® Compute Unifi ed Device Architecture and Compute Unifi ed Basic Linear Algebra Subprograms software. The performance of this implementation is compared to traditional LSA implementation on a CPU using an optimized Basic Linear Algebra Subprograms library. After implementation, we discovered that the GPU version of the algorithm was twice as fast for large matrices (1 000x1 000 and above) that had dimensions not divisible by 16. For large matrices that did have dimensions divisible by 16, the GPU algorithm ran fi ve to six times faster than the CPU version. The large variation is due to architectural benefi ts of the GPU for matrices divisible by 16. It should be noted that the overall speeds for the CPU version did not vary from relative normal when the matrix dimensions were divisible by 16. Further research is needed in order to produce a fully implementable version of LSA. With that in mind, the research we presented shows that the GPU is a viable option for increasing the speed of LSA, in terms of cost/performance ratio.

  6. Parallel asynchronous hardware implementation of image processing algorithms

    Science.gov (United States)

    Coon, Darryl D.; Perera, A. G. U.

    1990-01-01

    Research is being carried out on hardware for a new approach to focal plane processing. The hardware involves silicon injection mode devices. These devices provide a natural basis for parallel asynchronous focal plane image preprocessing. The simplicity and novel properties of the devices would permit an independent analog processing channel to be dedicated to every pixel. A laminar architecture built from arrays of the devices would form a two-dimensional (2-D) array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuron-like asynchronous pulse-coded form through the laminar processor. No multiplexing, digitization, or serial processing would occur in the preprocessing state. High performance is expected, based on pulse coding of input currents down to one picoampere with noise referred to input of about 10 femtoamperes. Linear pulse coding has been observed for input currents ranging up to seven orders of magnitude. Low power requirements suggest utility in space and in conjunction with very large arrays. Very low dark current and multispectral capability are possible because of hardware compatibility with the cryogenic environment of high performance detector arrays. The aforementioned hardware development effort is aimed at systems which would integrate image acquisition and image processing.

  7. A parallel solver for huge dense linear systems

    Science.gov (United States)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system

  8. DEA Sensitivity Analysis for Parallel Production Systems

    Directory of Open Access Journals (Sweden)

    J. Gerami

    2011-06-01

    Full Text Available In this paper, we introduce systems consisting of several production units, each of which include several subunits working in parallel. Meanwhile, each subunit is working independently. The input and output of each production unit are the sums of the inputs and outputs of its subunits, respectively. We consider each of these subunits as an independent decision making unit(DMU and create the production possibility set(PPS produced by these DMUs, in which the frontier points are considered as efficient DMUs. Then we introduce models for obtaining the efficiency of the production subunits. Using super-efficiency models, we categorize all efficient subunits into different efficiency classes. Then we follow by presenting the sensitivity analysis and stability problem for efficient subunits, including extreme efficient and non-extreme efficient subunits, assuming simultaneous perturbations in all inputs and outputs of subunits such that the efficiency of the subunit under evaluation declines while the efficiencies of other subunits improve.

  9. Iterative algorithms for large sparse linear systems on parallel computers

    Science.gov (United States)

    Adams, L. M.

    1982-01-01

    Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.

  10. Leveraging Parallel Data Processing Frameworks with Verified Lifting

    Directory of Open Access Journals (Sweden)

    Maaz Bin Safeer Ahmad

    2016-11-01

    Full Text Available Many parallel data frameworks have been proposed in recent years that let sequential programs access parallel processing. To capitalize on the benefits of such frameworks, existing code must often be rewritten to the domain-specific languages that each framework supports. This rewriting–tedious and error-prone–also requires developers to choose the framework that best optimizes performance given a specific workload. This paper describes Casper, a novel compiler that automatically retargets sequential Java code for execution on Hadoop, a parallel data processing framework that implements the MapReduce paradigm. Given a sequential code fragment, Casper uses verified lifting to infer a high-level summary expressed in our program specification language that is then compiled for execution on Hadoop. We demonstrate that Casper automatically translates Java benchmarks into Hadoop. The translated results execute on average 3.3x faster than the sequential implementations and scale better, as well, to larger datasets.

  11. Compiling Scientific Programs for Scalable Parallel Systems

    National Research Council Canada - National Science Library

    Kennedy, Ken

    2001-01-01

    ...). The research performed in this project included new techniques for recognizing implicit parallelism in sequential programs, a powerful and precise set-based framework for analysis and transformation...

  12. Parallel processing using an optical delay-based reservoir computer

    Science.gov (United States)

    Van der Sande, Guy; Nguimdo, Romain Modeste; Verschaffelt, Guy

    2016-04-01

    Delay systems subject to delayed optical feedback have recently shown great potential in solving computationally hard tasks. By implementing a neuro-inspired computational scheme relying on the transient response to optical data injection, high processing speeds have been demonstrated. However, reservoir computing systems based on delay dynamics discussed in the literature are designed by coupling many different stand-alone components which lead to bulky, lack of long-term stability, non-monolithic systems. Here we numerically investigate the possibility of implementing reservoir computing schemes based on semiconductor ring lasers. Semiconductor ring lasers are semiconductor lasers where the laser cavity consists of a ring-shaped waveguide. SRLs are highly integrable and scalable, making them ideal candidates for key components in photonic integrated circuits. SRLs can generate light in two counterpropagating directions between which bistability has been demonstrated. We demonstrate that two independent machine learning tasks , even with different nature of inputs with different input data signals can be simultaneously computed using a single photonic nonlinear node relying on the parallelism offered by photonics. We illustrate the performance on simultaneous chaotic time series prediction and a classification of the Nonlinear Channel Equalization. We take advantage of different directional modes to process individual tasks. Each directional mode processes one individual task to mitigate possible crosstalk between the tasks. Our results indicate that prediction/classification with errors comparable to the state-of-the-art performance can be obtained even with noise despite the two tasks being computed simultaneously. We also find that a good performance is obtained for both tasks for a broad range of the parameters. The results are discussed in detail in [Nguimdo et al., IEEE Trans. Neural Netw. Learn. Syst. 26, pp. 3301-3307, 2015

  13. Parallel coupling of symmetric and asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Tsekouras, K; Kolomeisky, A B

    2008-01-01

    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins

  14. The Extended Parallel Process Model: Illuminating the Gaps in Research

    Science.gov (United States)

    Popova, Lucy

    2012-01-01

    This article examines constructs, propositions, and assumptions of the extended parallel process model (EPPM). Review of the EPPM literature reveals that its theoretical concepts are thoroughly developed, but the theory lacks consistency in operational definitions of some of its constructs. Out of the 12 propositions of the EPPM, a few have not…

  15. Using Motivational Interviewing Techniques to Address Parallel Process in Supervision

    Science.gov (United States)

    Giordano, Amanda; Clarke, Philip; Borders, L. DiAnne

    2013-01-01

    Supervision offers a distinct opportunity to experience the interconnection of counselor-client and counselor-supervisor interactions. One product of this network of interactions is parallel process, a phenomenon by which counselors unconsciously identify with their clients and subsequently present to their supervisors in a similar fashion…

  16. Parallelization of MCNP 4, a Monte Carlo neutron and photon transport code system, in highly parallel distributed memory type computer

    International Nuclear Information System (INIS)

    Masukawa, Fumihiro; Takano, Makoto; Naito, Yoshitaka; Yamazaki, Takao; Fujisaki, Masahide; Suzuki, Koichiro; Okuda, Motoi.

    1993-11-01

    In order to improve the accuracy and calculating speed of shielding analyses, MCNP 4, a Monte Carlo neutron and photon transport code system, has been parallelized and measured of its efficiency in the highly parallel distributed memory type computer, AP1000. The code has been analyzed statically and dynamically, then the suitable algorithm for parallelization has been determined for the shielding analysis functions of MCNP 4. This includes a strategy where a new history is assigned to the idling processor element dynamically during the execution. Furthermore, to avoid the congestion of communicative processing, the batch concept, processing multi-histories by a unit, has been introduced. By analyzing a sample cask problem with 2,000,000 histories by the AP1000 with 512 processor elements, the 82 % of parallelization efficiency is achieved, and the calculational speed has been estimated to be around 50 times as fast as that of FACOM M-780. (author)

  17. Heterogeneous Multicore Parallel Programming for Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Francois Bodin

    2009-01-01

    Full Text Available Hybrid parallel multicore architectures based on graphics processing units (GPUs can provide tremendous computing power. Current NVIDIA and AMD Graphics Product Group hardware display a peak performance of hundreds of gigaflops. However, exploiting GPUs from existing applications is a difficult task that requires non-portable rewriting of the code. In this paper, we present HMPP, a Heterogeneous Multicore Parallel Programming workbench with compilers, developed by CAPS entreprise, that allows the integration of heterogeneous hardware accelerators in a unintrusive manner while preserving the legacy code.

  18. Adaptive Dynamic Process Scheduling on Distributed Memory Parallel Computers

    Directory of Open Access Journals (Sweden)

    Wei Shu

    1994-01-01

    Full Text Available One of the challenges in programming distributed memory parallel machines is deciding how to allocate work to processors. This problem is particularly important for computations with unpredictable dynamic behaviors or irregular structures. We present a scheme for dynamic scheduling of medium-grained processes that is useful in this context. The adaptive contracting within neighborhood (ACWN is a dynamic, distributed, load-dependent, and scalable scheme. It deals with dynamic and unpredictable creation of processes and adapts to different systems. The scheme is described and contrasted with two other schemes that have been proposed in this context, namely the randomized allocation and the gradient model. The performance of the three schemes on an Intel iPSC/2 hypercube is presented and analyzed. The experimental results show that even though the ACWN algorithm incurs somewhat larger overhead than the randomized allocation, it achieves better performance in most cases due to its adaptiveness. Its feature of quickly spreading the work helps it outperform the gradient model in performance and scalability.

  19. Practical integrated simulation systems for coupled numerical simulations in parallel

    Energy Technology Data Exchange (ETDEWEB)

    Osamu, Hazama; Zhihong, Guo [Japan Atomic Energy Research Inst., Centre for Promotion of Computational Science and Engineering, Tokyo (Japan)

    2003-07-01

    In order for the numerical simulations to reflect 'real-world' phenomena and occurrences, incorporation of multidisciplinary and multi-physics simulations considering various physical models and factors are becoming essential. However, there still exist many obstacles which inhibit such numerical simulations. For example, it is still difficult in many instances to develop satisfactory software packages which allow for such coupled simulations and such simulations will require more computational resources. A precise multi-physics simulation today will require parallel processing which again makes it a complicated process. Under the international cooperative efforts between CCSE/JAERI and Fraunhofer SCAI, a German institute, a library called the MpCCI, or Mesh-based Parallel Code Coupling Interface, has been implemented together with a library called STAMPI to couple two existing codes to develop an 'integrated numerical simulation system' intended for meta-computing environments. (authors)

  20. Parallel and distributed processing in two SGBDS: A case study

    Directory of Open Access Journals (Sweden)

    Francisco Javier Moreno

    2017-04-01

    Full Text Available Context: One of the strategies for managing large volumes of data is distributed and parallel computing. Among the tools that allow applying these characteristics are some Data Base Management Systems (DBMS, such as Oracle, DB2, and SQL Server. Method: In this paper we present a case study where we evaluate the performance of an SQL query in two of these DBMS. The evaluation is done through various forms of data distribution in a computer network with different degrees of parallelism. Results: The tests of the SQL query evidenced the performance differences between the two DBMS analyzed. However, more thorough testing and a wider variety of queries are needed. Conclusions: The differences in performance between the two DBMSs analyzed show that when evaluating this aspect, it is necessary to consider the particularities of each DBMS and the degree of parallelism of the queries.

  1. MARBLE: A system for executing expert systems in parallel

    Science.gov (United States)

    Myers, Leonard; Johnson, Coe; Johnson, Dean

    1990-01-01

    This paper details the MARBLE 2.0 system which provides a parallel environment for cooperating expert systems. The work has been done in conjunction with the development of an intelligent computer-aided design system, ICADS, by the CAD Research Unit of the Design Institute at California Polytechnic State University. MARBLE (Multiple Accessed Rete Blackboard Linked Experts) is a system of C Language Production Systems (CLIPS) expert system tool. A copied blackboard is used for communication between the shells to establish an architecture which supports cooperating expert systems that execute in parallel. The design of MARBLE is simple, but it provides support for a rich variety of configurations, while making it relatively easy to demonstrate the correctness of its parallel execution features. In its most elementary configuration, individual CLIPS expert systems execute on their own processors and communicate with each other through a modified blackboard. Control of the system as a whole, and specifically of writing to the blackboard is provided by one of the CLIPS expert systems, an expert control system.

  2. Study and simulation of a parallel numerical processing machine

    International Nuclear Information System (INIS)

    Bel Hadj, Slaheddine

    1981-12-01

    This study has been carried out in the perspective of the implementation on a minicomputer of the NEPTUNIX package (software for the resolution of very large algebra-differential equation systems). Aiming at increasing the system performance, a previous research work has shown the necessity of reducing the execution time of certain numerical computation tasks, which are of frequent use. It has also demonstrated the feasibility of handling these tasks with efficient algorithms of parallel type. The present work deals with the study and simulation of a parallel architecture processor adapted to the fast execution of these algorithms. A minicomputer fitted with a connection to such a parallel processor, has a greatly extended computing power. Then the architecture of a parallel numerical processor, based on the use of VLSI microprocessors and co-processors, is described. Its design aims at the best cost / performance ratio. The last part deals with the simulation processor with the 'CHAMBOR' program. Results show an increasing factor of 30 in speed, in comparison with the execution on a MITRA 15 minicomputer. Moreover the conflicts importance, mainly at the level of access to a shared resource is evaluated. Although this implementation has been designed having in mind a dedicated application, other uses could be envisaged, particularly for the simulation of nuclear reactors: operator guiding system, the behavioural study under accidental circumstances, etc. (author) [fr

  3. Parallel Computational Intelligence-Based Multi-Camera Surveillance System

    Directory of Open Access Journals (Sweden)

    Sergio Orts-Escolano

    2014-04-01

    Full Text Available In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units. It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mobile agents in the scene. It is also necessary to integrate the vision module into a global system that operates in a complex environment by receiving images from multiple acquisition devices at video frequency. Offering relevant information to higher level systems, monitoring and making decisions in real time, it must accomplish a set of requirements, such as: time constraints, high availability, robustness, high processing speed and re-configurability. We have built a system able to represent and analyze the motion in video acquired by a multi-camera network and to process multi-source data in parallel on a multi-GPU architecture.

  4. Highly scalable parallel processing of extracellular recordings of Multielectrode Arrays.

    Science.gov (United States)

    Gehring, Tiago V; Vasilaki, Eleni; Giugliano, Michele

    2015-01-01

    Technological advances of Multielectrode Arrays (MEAs) used for multisite, parallel electrophysiological recordings, lead to an ever increasing amount of raw data being generated. Arrays with hundreds up to a few thousands of electrodes are slowly seeing widespread use and the expectation is that more sophisticated arrays will become available in the near future. In order to process the large data volumes resulting from MEA recordings there is a pressing need for new software tools able to process many data channels in parallel. Here we present a new tool for processing MEA data recordings that makes use of new programming paradigms and recent technology developments to unleash the power of modern highly parallel hardware, such as multi-core CPUs with vector instruction sets or GPGPUs. Our tool builds on and complements existing MEA data analysis packages. It shows high scalability and can be used to speed up some performance critical pre-processing steps such as data filtering and spike detection, helping to make the analysis of larger data sets tractable.

  5. Parallel Processing and Applied Mathematics. 10th International Conference, PPAM 2013. Revised Selected Papers

    DEFF Research Database (Denmark)

    The following topics are dealt with: parallel scientific computing; numerical algorithms; parallel nonnumerical algorithms; cloud computing; evolutionary computing; metaheuristics; applied mathematics; GPU computing; multicore systems; hybrid architectures; hierarchical parallelism; HPC systems......; power monitoring; energy monitoring; and distributed computing....

  6. Surface topography of parallel grinding process for nonaxisymmetric aspheric lens

    International Nuclear Information System (INIS)

    Zhang Ningning; Wang Zhenzhong; Pan Ri; Wang Chunjin; Guo Yinbiao

    2012-01-01

    Workpiece surface profile, texture and roughness can be predicted by modeling the topography of wheel surface and modeling kinematics of grinding process, which compose an important part of precision grinding process theory. Parallel grinding technology is an important method for nonaxisymmetric aspheric lens machining, but there is few report on relevant simulation. In this paper, a simulation method based on parallel grinding for precision machining of aspheric lens is proposed. The method combines modeling the random surface of wheel and modeling the single grain track based on arc wheel contact points. Then, a mathematical algorithm for surface topography is proposed and applied in conditions of different machining parameters. The consistence between the results of simulation and test proves that the algorithm is correct and efficient. (authors)

  7. Digital intermediate frequency QAM modulator using parallel processing

    Science.gov (United States)

    Pao, Hsueh-Yuan [Livermore, CA; Tran, Binh-Nien [San Ramon, CA

    2008-05-27

    The digital Intermediate Frequency (IF) modulator applies to various modulation types and offers a simple and low cost method to implement a high-speed digital IF modulator using field programmable gate arrays (FPGAs). The architecture eliminates multipliers and sequential processing by storing the pre-computed modulated cosine and sine carriers in ROM look-up-tables (LUTs). The high-speed input data stream is parallel processed using the corresponding LUTs, which reduces the main processing speed, allowing the use of low cost FPGAs.

  8. A dataflow analysis tool for parallel processing of algorithms

    Science.gov (United States)

    Jones, Robert L., III

    1993-01-01

    A graph-theoretic design process and software tool is presented for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described using a dataflow graph and are intended to be executed repetitively on a set of identical parallel processors. Typical applications include signal processing and control law problems. Graph analysis techniques are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool is shown to facilitate the application of the design process to a given problem.

  9. Preliminary Study on the Enhancement of Reconstruction Speed for Emission Computed Tomography Using Parallel Processing

    International Nuclear Information System (INIS)

    Park, Min Jae; Lee, Jae Sung; Kim, Soo Mee; Kang, Ji Yeon; Lee, Dong Soo; Park, Kwang Suk

    2009-01-01

    Conventional image reconstruction uses simplified physical models of projection. However, real physics, for example 3D reconstruction, takes too long time to process all the data in clinic and is unable in a common reconstruction machine because of the large memory for complex physical models. We suggest the realistic distributed memory model of fast-reconstruction using parallel processing on personal computers to enable large-scale technologies. The preliminary tests for the possibility on virtual machines and various performance test on commercial super computer, Tachyon were performed. Expectation maximization algorithm with common 2D projection and realistic 3D line of response were tested. Since the process time was getting slower (max 6 times) after a certain iteration, optimization for compiler was performed to maximize the efficiency of parallelization. Parallel processing of a program on multiple computers was available on Linux with MPICH and NFS. We verified that differences between parallel processed image and single processed image at the same iterations were under the significant digits of floating point number, about 6 bit. Double processors showed good efficiency (1.96 times) of parallel computing. Delay phenomenon was solved by vectorization method using SSE. Through the study, realistic parallel computing system in clinic was established to be able to reconstruct by plenty of memory using the realistic physical models which was impossible to simplify

  10. Image processing with massively parallel computer Quadrics Q1

    International Nuclear Information System (INIS)

    Della Rocca, A.B.; La Porta, L.; Ferriani, S.

    1995-05-01

    Aimed to evaluate the image processing capabilities of the massively parallel computer Quadrics Q1, a convolution algorithm that has been implemented is described in this report. At first the discrete convolution mathematical definition is recalled together with the main Q1 h/w and s/w features. Then the different codification forms of the algorythm are described and the Q1 performances are compared with those obtained by different computers. Finally, the conclusions report on main results and suggestions

  11. Parallel Distributed Processing theory in the age of deep networks

    OpenAIRE

    Bowers, Jeffrey

    2017-01-01

    Parallel Distributed Processing (PDP) models in psychology are the precursors of deep networks used in computer science. However, only PDP models are associated with two core psychological claims, namely, that all knowledge is coded in a distributed format, and cognition is mediated by non-symbolic computations. These claims have long been debated within cognitive science, and recent work with deep networks speaks to this debate. Specifically, single-unit recordings show that deep networks le...

  12. Multi states electromechanical switch for energy efficient parallel data processing

    KAUST Repository

    Kloub, Hussam

    2011-04-01

    We present a design, simulation results and fabrication of electromechanical switches enabling parallel data processing and multi functionality. The device is applied in logic gates AND, NOR, XNOR, and Flip-Flops. The device footprint size is 2μm by 0.5μm, and has a pull-in voltage of 5.15V which is verified by FEM simulation. © 2011 IEEE.

  13. Multi states electromechanical switch for energy efficient parallel data processing

    KAUST Repository

    Kloub, Hussam; Smith, Casey; Hussain, Muhammad Mustafa

    2011-01-01

    We present a design, simulation results and fabrication of electromechanical switches enabling parallel data processing and multi functionality. The device is applied in logic gates AND, NOR, XNOR, and Flip-Flops. The device footprint size is 2μm by 0.5μm, and has a pull-in voltage of 5.15V which is verified by FEM simulation. © 2011 IEEE.

  14. Morphological evidence for parallel processing of information in rat macula

    Science.gov (United States)

    Ross, M. D.

    1988-01-01

    Study of montages, tracings and reconstructions prepared from a series of 570 consecutive ultrathin sections shows that rat maculas are morphologically organized for parallel processing of linear acceleratory information. Type II cells of one terminal field distribute information to neighboring terminals as well. The findings are examined in light of physiological data which indicate that macular receptor fields have a preferred directional vector, and are interpreted by analogy to a computer technology known as an information network.

  15. Tolerating correlated failures in Massively Parallel Stream Processing Engines

    DEFF Research Database (Denmark)

    Su, L.; Zhou, Y.

    2016-01-01

    Fault-tolerance techniques for stream processing engines can be categorized into passive and active approaches. A typical passive approach periodically checkpoints a processing task's runtime states and can recover a failed task by restoring its runtime state using its latest checkpoint. On the o......Fault-tolerance techniques for stream processing engines can be categorized into passive and active approaches. A typical passive approach periodically checkpoints a processing task's runtime states and can recover a failed task by restoring its runtime state using its latest checkpoint....... On the other hand, an active approach usually employs backup nodes to run replicated tasks. Upon failure, the active replica can take over the processing of the failed task with minimal latency. However, both approaches have their own inadequacies in Massively Parallel Stream Processing Engines (MPSPE...

  16. A Hybrid FPGA/Coarse Parallel Processing Architecture for Multi-modal Visual Feature Descriptors

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Alonso, Javier Díaz

    2008-01-01

    This paper describes the hybrid architecture developed for speeding up the processing of so-called multi-modal visual primitives which are sparse image descriptors extracted along contours. In the system, the first stages of visual processing are implemented on FPGAs due to their highly parallel...

  17. Parallel and Distributed Systems for Probabilistic Reasoning

    Science.gov (United States)

    2012-12-01

    Ranganathan "et"al...typically a random permutation over the vertices. Advances by Elidan et al. [2006] and Ranganathan et al. [2007] have focused on dynamic asynchronous...Wildfire algorithm shown in Alg. 3.6 is a direct parallelization of the algorithm proposed by [ Ranganathan et al., 2007]. The Wildfire algorithm

  18. Hypercube Expert System Shell - Applying Production Parallelism.

    Science.gov (United States)

    1989-12-01

    possible processor organizations, or int( rconntction n thod,, for par- allel architetures . The following are examples of commonlv used interconnection...this timing analysis because match speed-up avaiiah& from production parallelism is proportional to the average number of affected produclions1 ( 11:5

  19. Reliability allocation problem in a series-parallel system

    International Nuclear Information System (INIS)

    Yalaoui, Alice; Chu, Chengbin; Chatelet, Eric

    2005-01-01

    In order to improve system reliability, designers may introduce in a system different technologies in parallel. When each technology is composed of components in series, the configuration belongs to the series-parallel systems. This type of system has not been studied as much as the parallel-series architecture. There exist no methods dedicated to the reliability allocation in series-parallel systems with different technologies. We propose in this paper theoretical and practical results for the allocation problem in a series-parallel system. Two resolution approaches are developed. Firstly, a one stage problem is studied and the results are exploited for the multi-stages problem. A theoretical condition for obtaining the optimal allocation is developed. Since this condition is too restrictive, we secondly propose an alternative approach based on an approximated function and the results of the one-stage study. This second approach is applied to numerical examples

  20. Graphics Processing Unit Enhanced Parallel Document Flocking Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL; ST Charles, Jesse Lee [ORNL

    2010-01-01

    Analyzing and clustering documents is a complex problem. One explored method of solving this problem borrows from nature, imitating the flocking behavior of birds. One limitation of this method of document clustering is its complexity O(n2). As the number of documents grows, it becomes increasingly difficult to generate results in a reasonable amount of time. In the last few years, the graphics processing unit (GPU) has received attention for its ability to solve highly-parallel and semi-parallel problems much faster than the traditional sequential processor. In this paper, we have conducted research to exploit this archi- tecture and apply its strengths to the flocking based document clustering problem. Using the CUDA platform from NVIDIA, we developed a doc- ument flocking implementation to be run on the NVIDIA GEFORCE GPU. Performance gains ranged from thirty-six to nearly sixty times improvement of the GPU over the CPU implementation.

  1. Plagiarism Detection for Indonesian Language using Winnowing with Parallel Processing

    Science.gov (United States)

    Arifin, Y.; Isa, S. M.; Wulandhari, L. A.; Abdurachman, E.

    2018-03-01

    The plagiarism has many forms, not only copy paste but include changing passive become active voice, or paraphrasing without appropriate acknowledgment. It happens on all language include Indonesian Language. There are many previous research that related with plagiarism detection in Indonesian Language with different method. But there are still some part that still has opportunity to improve. This research proposed the solution that can improve the plagiarism detection technique that can detect not only copy paste form but more advance than that. The proposed solution is using Winnowing with some addition process in pre-processing stage. With stemming processing in Indonesian Language and generate fingerprint in parallel processing that can saving time processing and produce the plagiarism result on the suspected document.

  2. Parallelization of the Physical-Space Statistical Analysis System (PSAS)

    Science.gov (United States)

    Larson, J. W.; Guo, J.; Lyster, P. M.

    1999-01-01

    Atmospheric data assimilation is a method of combining observations with model forecasts to produce a more accurate description of the atmosphere than the observations or forecast alone can provide. Data assimilation plays an increasingly important role in the study of climate and atmospheric chemistry. The NASA Data Assimilation Office (DAO) has developed the Goddard Earth Observing System Data Assimilation System (GEOS DAS) to create assimilated datasets. The core computational components of the GEOS DAS include the GEOS General Circulation Model (GCM) and the Physical-space Statistical Analysis System (PSAS). The need for timely validation of scientific enhancements to the data assimilation system poses computational demands that are best met by distributed parallel software. PSAS is implemented in Fortran 90 using object-based design principles. The analysis portions of the code solve two equations. The first of these is the "innovation" equation, which is solved on the unstructured observation grid using a preconditioned conjugate gradient (CG) method. The "analysis" equation is a transformation from the observation grid back to a structured grid, and is solved by a direct matrix-vector multiplication. Use of a factored-operator formulation reduces the computational complexity of both the CG solver and the matrix-vector multiplication, rendering the matrix-vector multiplications as a successive product of operators on a vector. Sparsity is introduced to these operators by partitioning the observations using an icosahedral decomposition scheme. PSAS builds a large (approx. 128MB) run-time database of parameters used in the calculation of these operators. Implementing a message passing parallel computing paradigm into an existing yet developing computational system as complex as PSAS is nontrivial. One of the technical challenges is balancing the requirements for computational reproducibility with the need for high performance. The problem of computational

  3. Vector-Parallel processing of the successive overrelaxation method

    International Nuclear Information System (INIS)

    Yokokawa, Mitsuo

    1988-02-01

    Successive overrelaxation method, called SOR method, is one of iterative methods for solving linear system of equations, and it has been calculated in serial with a natural ordering in many nuclear codes. After the appearance of vector processors, this natural SOR method has been changed for the parallel algorithm such as hyperplane or red-black method, in which the calculation order is modified. These methods are suitable for vector processors, and more high-speed calculation can be obtained compared with the natural SOR method on vector processors. In this report, a new scheme named 4-colors SOR method is proposed. We find that the 4-colors SOR method can be executed on vector-parallel processors and it gives the most high-speed calculation among all SOR methods according to results of the vector-parallel execution on the Alliant FX/8 multiprocessor system. It is also shown that the theoretical optimal acceleration parameters are equal among five different ordering SOR methods, and the difference between convergence rates of these SOR methods are examined. (author)

  4. Parallel Hybrid Vehicle Optimal Storage System

    Science.gov (United States)

    Bloomfield, Aaron P.

    2009-01-01

    A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.

  5. Visual analysis of inter-process communication for large-scale parallel computing.

    Science.gov (United States)

    Muelder, Chris; Gygi, Francois; Ma, Kwan-Liu

    2009-01-01

    In serial computation, program profiling is often helpful for optimization of key sections of code. When moving to parallel computation, not only does the code execution need to be considered but also communication between the different processes which can induce delays that are detrimental to performance. As the number of processes increases, so does the impact of the communication delays on performance. For large-scale parallel applications, it is critical to understand how the communication impacts performance in order to make the code more efficient. There are several tools available for visualizing program execution and communications on parallel systems. These tools generally provide either views which statistically summarize the entire program execution or process-centric views. However, process-centric visualizations do not scale well as the number of processes gets very large. In particular, the most common representation of parallel processes is a Gantt char t with a row for each process. As the number of processes increases, these charts can become difficult to work with and can even exceed screen resolution. We propose a new visualization approach that affords more scalability and then demonstrate it on systems running with up to 16,384 processes.

  6. RAMA: A file system for massively parallel computers

    Science.gov (United States)

    Miller, Ethan L.; Katz, Randy H.

    1993-01-01

    This paper describes a file system design for massively parallel computers which makes very efficient use of a few disks per processor. This overcomes the traditional I/O bottleneck of massively parallel machines by storing the data on disks within the high-speed interconnection network. In addition, the file system, called RAMA, requires little inter-node synchronization, removing another common bottleneck in parallel processor file systems. Support for a large tertiary storage system can easily be integrated in lo the file system; in fact, RAMA runs most efficiently when tertiary storage is used.

  7. Synchronous Parallel System for Emulation and Discrete Event Simulation

    Science.gov (United States)

    Steinman, Jeffrey S. (Inventor)

    2001-01-01

    A synchronous parallel system for emulation and discrete event simulation having parallel nodes responds to received messages at each node by generating event objects having individual time stamps, stores only the changes to the state variables of the simulation object attributable to the event object and produces corresponding messages. The system refrains from transmitting the messages and changing the state variables while it determines whether the changes are superseded, and then stores the unchanged state variables in the event object for later restoral to the simulation object if called for. This determination preferably includes sensing the time stamp of each new event object and determining which new event object has the earliest time stamp as the local event horizon, determining the earliest local event horizon of the nodes as the global event horizon, and ignoring events whose time stamps are less than the global event horizon. Host processing between the system and external terminals enables such a terminal to query, monitor, command or participate with a simulation object during the simulation process.

  8. Parallel factor analysis PARAFAC of process affected water

    Energy Technology Data Exchange (ETDEWEB)

    Ewanchuk, A.M.; Ulrich, A.C.; Sego, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Alostaz, M. [Thurber Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    A parallel factor analysis (PARAFAC) of oil sands process-affected water was presented. Naphthenic acids (NA) are traditionally described as monobasic carboxylic acids. Research has indicated that oil sands NA do not fit classical definitions of NA. Oil sands organic acids have toxic and corrosive properties. When analyzed by fluorescence technology, oil sands process-affected water displays a characteristic peak at 290 nm excitation and approximately 346 nm emission. In this study, a parallel factor analysis (PARAFAC) was used to decompose process-affected water multi-way data into components representing analytes, chemical compounds, and groups of compounds. Water samples from various oil sands operations were analyzed in order to obtain EEMs. The EEMs were then arranged into a large matrix in decreasing process-affected water content for PARAFAC. Data were divided into 5 components. A comparison with commercially prepared NA samples suggested that oil sands NA is fundamentally different. Further research is needed to determine what each of the 5 components represent. tabs., figs.

  9. Parallel Processing of Images in Mobile Devices using BOINC

    Science.gov (United States)

    Curiel, Mariela; Calle, David F.; Santamaría, Alfredo S.; Suarez, David F.; Flórez, Leonardo

    2018-04-01

    Medical image processing helps health professionals make decisions for the diagnosis and treatment of patients. Since some algorithms for processing images require substantial amounts of resources, one could take advantage of distributed or parallel computing. A mobile grid can be an adequate computing infrastructure for this problem. A mobile grid is a grid that includes mobile devices as resource providers. In a previous step of this research, we selected BOINC as the infrastructure to build our mobile grid. However, parallel processing of images in mobile devices poses at least two important challenges: the execution of standard libraries for processing images and obtaining adequate performance when compared to desktop computers grids. By the time we started our research, the use of BOINC in mobile devices also involved two issues: a) the execution of programs in mobile devices required to modify the code to insert calls to the BOINC API, and b) the division of the image among the mobile devices as well as its merging required additional code in some BOINC components. This article presents answers to these four challenges.

  10. Parallel Processing of Images in Mobile Devices using BOINC

    Directory of Open Access Journals (Sweden)

    Curiel Mariela

    2018-04-01

    Full Text Available Medical image processing helps health professionals make decisions for the diagnosis and treatment of patients. Since some algorithms for processing images require substantial amounts of resources, one could take advantage of distributed or parallel computing. A mobile grid can be an adequate computing infrastructure for this problem. A mobile grid is a grid that includes mobile devices as resource providers. In a previous step of this research, we selected BOINC as the infrastructure to build our mobile grid. However, parallel processing of images in mobile devices poses at least two important challenges: the execution of standard libraries for processing images and obtaining adequate performance when compared to desktop computers grids. By the time we started our research, the use of BOINC in mobile devices also involved two issues: a the execution of programs in mobile devices required to modify the code to insert calls to the BOINC API, and b the division of the image among the mobile devices as well as its merging required additional code in some BOINC components. This article presents answers to these four challenges.

  11. Parallel processing at the SSC: The fact and the fiction

    International Nuclear Information System (INIS)

    Bourianoff, G.; Cole, B.

    1991-10-01

    Accurately modelling the behavior of particles circulating in accelerators is a computationally demanding task. The particle tracking code currently in use at SSC is based upon a ''thin element'' analysis (TEAPOT). In this model each magnet in the lattice is described by a thin element at which the particle experiences an impulsive kick. Each kick requires approximately 200 floating point operations (''FLOP''). For the SSC collider lattice consisting of 10 4 elements, performing a tracking of study for a set of 100 particles for 10 7 turns would require 2 x 10 15 FLOPS. Even on a machine capable of 100 MFLOP/sec (MFLOPS), this would require 2 x 10 7 seconds, and many such runs are necessary. It should be noted that the accuracy with which the kicks are to be calculated is important: the large number of iterations involved will magnify the effects of small errors. The inability of current computational resources to effectively perform the full calculation motivates the migration of this calculation to the most powerful computers available. A survey of the current research into new technologies for superconducting reveals that the supercomputers of the future will be parallel in nature. Further, numerous such machines exist today, and are being used to solve other difficult problems. Thus it seems clear that it is not early to begin developing the capability to develop tracking codes for parallel architectures. This report discusses implementing parallel processing on the SCC

  12. A Parallel Prefix Algorithm for Almost Toeplitz Tridiagonal Systems

    Science.gov (United States)

    Sun, Xian-He; Joslin, Ronald D.

    1995-01-01

    A compact scheme is a discretization scheme that is advantageous in obtaining highly accurate solutions. However, the resulting systems from compact schemes are tridiagonal systems that are difficult to solve efficiently on parallel computers. Considering the almost symmetric Toeplitz structure, a parallel algorithm, simple parallel prefix (SPP), is proposed. The SPP algorithm requires less memory than the conventional LU decomposition and is efficient on parallel machines. It consists of a prefix communication pattern and AXPY operations. Both the computation and the communication can be truncated without degrading the accuracy when the system is diagonally dominant. A formal accuracy study has been conducted to provide a simple truncation formula. Experimental results have been measured on a MasPar MP-1 SIMD machine and on a Cray 2 vector machine. Experimental results show that the simple parallel prefix algorithm is a good algorithm for symmetric, almost symmetric Toeplitz tridiagonal systems and for the compact scheme on high-performance computers.

  13. Parallel processing of Monte Carlo code MCNP for particle transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Kawasaki, Takuji

    1996-06-01

    It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)

  14. A Parallel Processing Algorithm for Remote Sensing Classification

    Science.gov (United States)

    Gualtieri, J. Anthony

    2005-01-01

    A current thread in parallel computation is the use of cluster computers created by networking a few to thousands of commodity general-purpose workstation-level commuters using the Linux operating system. For example on the Medusa cluster at NASA/GSFC, this provides for super computing performance, 130 G(sub flops) (Linpack Benchmark) at moderate cost, $370K. However, to be useful for scientific computing in the area of Earth science, issues of ease of programming, access to existing scientific libraries, and portability of existing code need to be considered. In this paper, I address these issues in the context of tools for rendering earth science remote sensing data into useful products. In particular, I focus on a problem that can be decomposed into a set of independent tasks, which on a serial computer would be performed sequentially, but with a cluster computer can be performed in parallel, giving an obvious speedup. To make the ideas concrete, I consider the problem of classifying hyperspectral imagery where some ground truth is available to train the classifier. In particular I will use the Support Vector Machine (SVM) approach as applied to hyperspectral imagery. The approach will be to introduce notions about parallel computation and then to restrict the development to the SVM problem. Pseudocode (an outline of the computation) will be described and then details specific to the implementation will be given. Then timing results will be reported to show what speedups are possible using parallel computation. The paper will close with a discussion of the results.

  15. pcircle - A Suite of Scalable Parallel File System Tools

    Energy Technology Data Exchange (ETDEWEB)

    2015-10-01

    Most of the software related to file system are written for conventional local file system, they are serialized and can't take advantage of the benefit of a large scale parallel file system. "pcircle" software builds on top of ubiquitous MPI in cluster computing environment and "work-stealing" pattern to provide a scalable, high-performance suite of file system tools. In particular - it implemented parallel data copy and parallel data checksumming, with advanced features such as async progress report, checkpoint and restart, as well as integrity checking.

  16. An Expert System for the Development of Efficient Parallel Code

    Science.gov (United States)

    Jost, Gabriele; Chun, Robert; Jin, Hao-Qiang; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    We have built the prototype of an expert system to assist the user in the development of efficient parallel code. The system was integrated into the parallel programming environment that is currently being developed at NASA Ames. The expert system interfaces to tools for automatic parallelization and performance analysis. It uses static program structure information and performance data in order to automatically determine causes of poor performance and to make suggestions for improvements. In this paper we give an overview of our programming environment, describe the prototype implementation of our expert system, and demonstrate its usefulness with several case studies.

  17. Compressing Data Cube in Parallel OLAP Systems

    Directory of Open Access Journals (Sweden)

    Frank Dehne

    2007-03-01

    Full Text Available This paper proposes an efficient algorithm to compress the cubes in the progress of the parallel data cube generation. This low overhead compression mechanism provides block-by-block and record-by-record compression by using tuple difference coding techniques, thereby maximizing the compression ratio and minimizing the decompression penalty at run-time. The experimental results demonstrate that the typical compression ratio is about 30:1 without sacrificing running time. This paper also demonstrates that the compression method is suitable for Hilbert Space Filling Curve, a mechanism widely used in multi-dimensional indexing.

  18. Adding Data Management Services to Parallel File Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Scott [Univ. of California, Santa Cruz, CA (United States)

    2015-03-04

    The objective of this project, called DAMASC for “Data Management in Scientific Computing”, is to coalesce data management with parallel file system management to present a declarative interface to scientists for managing, querying, and analyzing extremely large data sets efficiently and predictably. Managing extremely large data sets is a key challenge of exascale computing. The overhead, energy, and cost of moving massive volumes of data demand designs where computation is close to storage. In current architectures, compute/analysis clusters access data in a physically separate parallel file system and largely leave it scientist to reduce data movement. Over the past decades the high-end computing community has adopted middleware with multiple layers of abstractions and specialized file formats such as NetCDF-4 and HDF5. These abstractions provide a limited set of high-level data processing functions, but have inherent functionality and performance limitations: middleware that provides access to the highly structured contents of scientific data files stored in the (unstructured) file systems can only optimize to the extent that file system interfaces permit; the highly structured formats of these files often impedes native file system performance optimizations. We are developing Damasc, an enhanced high-performance file system with native rich data management services. Damasc will enable efficient queries and updates over files stored in their native byte-stream format while retaining the inherent performance of file system data storage via declarative queries and updates over views of underlying files. Damasc has four key benefits for the development of data-intensive scientific code: (1) applications can use important data-management services, such as declarative queries, views, and provenance tracking, that are currently available only within database systems; (2) the use of these services becomes easier, as they are provided within a familiar file

  19. Vectorization, parallelization and porting of nuclear codes on the VPP500 system (parallelization). Progress report fiscal 1996

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hideo; Kawai, Wataru; Nemoto, Toshiyuki [Fujitsu Ltd., Tokyo (Japan); and others

    1997-12-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. These results are reported in 3 parts, i.e., the vectorization part, the parallelization part and the porting part. In this report, we describe the parallelization. In this parallelization part, the parallelization of 2-Dimensional relativistic electromagnetic particle code EM2D, Cylindrical Direct Numerical Simulation code CYLDNS and molecular dynamics code for simulating radiation damages in diamond crystals DGR are described. In the vectorization part, the vectorization of two and three dimensional discrete ordinates simulation code DORT-TORT, gas dynamics analysis code FLOWGR and relativistic Boltzmann-Uehling-Uhlenbeck simulation code RBUU are described. And then, in the porting part, the porting of reactor safety analysis code RELAP5/MOD3.2 and RELAP5/MOD3.2.1.2, nuclear data processing system NJOY and 2-D multigroup discrete ordinate transport code TWOTRAN-II are described. And also, a survey for the porting of command-driven interactive data analysis plotting program IPLOT are described. (author)

  20. The Performance of an Object-Oriented, Parallel Operating System

    Directory of Open Access Journals (Sweden)

    David R. Kohr, Jr.

    1994-01-01

    Full Text Available The nascent and rapidly evolving state of parallel systems often leaves parallel application developers at the mercy of inefficient, inflexible operating system software. Given the relatively primitive state of parallel systems software, maximizing the performance of parallel applications not only requires judicious tuning of the application software, but occasionally, the replacement of specific system software modules with others that can more readily respond to the imposed pattern of resource demands. To assess the feasibility of application and performance tuning via malleable system software and to understand the performance penalties for detailed operating system performance data capture, we describe a set of performance instrumentation techniques for parallel, object-oriented operating systems and a set of performance experiments with Choices, an experimental, object-oriented operating system designed for use with parallel sys- tems. These performance experiments show that (a the performance overhead for operating system data capture is modest, (b the penalty for malleable, object-oriented operating systems is negligible, but (c techniques are needed to strictly enforce adherence of implementation to design if operating system modules are to be replaced.

  1. Z-buffer image assembly processing in high parallel visualization processing

    International Nuclear Information System (INIS)

    Kaneko, Isamu; Muramatsu, Kazuhiro

    2000-03-01

    On the platform of the parallel computer with many processors, the domain decomposition method is used as a popular means of parallel processing. In these days when the simulation scale becomes much larger and takes a lot of time, the simultaneous visualization processing with the actual computation is much more needed, and especially in case of a real-time visualization, the domain decomposition technique is indispensable. In case of parallel rendering processing, the rendered results must be gathered to one processor to compose the integrated picture in the last stage. This integration is usually conducted by the method using Z-buffer values. This process, however, induces the crucial problems of much lower speed processing and local memory shortage in case of parallel processing exceeding more than several tens of processors. In this report, the two new solutions are proposed. The one is the adoption of a special operator (Reduce operator) in the parallelization process, and the other is a buffer compression by deleting the background informations. This report includes the performance results of these new techniques to investigate their effect with use of the parallel computer Paragon. (author)

  2. Pulse mode counting system with parallel port interface

    International Nuclear Information System (INIS)

    Farooq, M.A.; Mushtaq, N.; Sultan, M.; Karim, A.

    2010-11-01

    Pulse mode Counting System (PPCS) module has been designed and developed which is compatible with SPP (Standard Parallel Port) and EPP Enhanced Parallel Port). This system can capture, present and store real time data in a well formatted form. The stored data is in a format that can be imported in different packages for further analysis. The purpose of this system is to facilitate the research experiments having frequency range up to 4 MHz and storing range up to 16 million counts. (author)

  3. Parallel processing is good for your scientific codes...But massively parallel processing is so much better

    International Nuclear Information System (INIS)

    Thomas, B.; Domain, Ch.; Souffez, Y.; Eon-Duval, P.

    1998-01-01

    Harnessing the power of many computers, to solve concurrently difficult scientific problems, is one of the most innovative trend in High Performance Computing. At EDF, we have invested in parallel computing and have achieved significant results. First we improved the processing speed of strategic codes, in order to extend their scope. Then we turned to numerical simulations at the atomic scale. These computations, we never dreamt of before, provided us with a better understanding of metallurgic phenomena. More precisely we were able to trace defects in alloys that are used in nuclear power plants. (author)

  4. Methods to model-check parallel systems software

    International Nuclear Information System (INIS)

    Matlin, O. S.; McCune, W.; Lusk, E.

    2003-01-01

    We report on an effort to develop methodologies for formal verification of parts of the Multi-Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of communicating processes. While the individual components of the collection execute simple algorithms, their interaction leads to unexpected errors that are difficult to uncover by conventional means. Two verification approaches are discussed here: the standard model checking approach using the software model checker SPIN and the nonstandard use of a general-purpose first-order resolution-style theorem prover OTTER to conduct the traditional state space exploration. We compare modeling methodology and analyze performance and scalability of the two methods with respect to verification of MPD

  5. Highly uniform parallel microfabrication using a large numerical aperture system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Yu; Su, Ya-Hui, E-mail: ustcsyh@ahu.edu.cn, E-mail: dongwu@ustc.edu.cn [School of Electrical Engineering and Automation, Anhui University, Hefei 230601 (China); Zhang, Chen-Chu; Hu, Yan-Lei; Wang, Chao-Wei; Li, Jia-Wen; Chu, Jia-Ru; Wu, Dong, E-mail: ustcsyh@ahu.edu.cn, E-mail: dongwu@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026 (China)

    2016-07-11

    In this letter, we report an improved algorithm to produce accurate phase patterns for generating highly uniform diffraction-limited multifocal arrays in a large numerical aperture objective system. It is shown that based on the original diffraction integral, the uniformity of the diffraction-limited focal arrays can be improved from ∼75% to >97%, owing to the critical consideration of the aperture function and apodization effect associated with a large numerical aperture objective. The experimental results, e.g., 3 × 3 arrays of square and triangle, seven microlens arrays with high uniformity, further verify the advantage of the improved algorithm. This algorithm enables the laser parallel processing technology to realize uniform microstructures and functional devices in the microfabrication system with a large numerical aperture objective.

  6. Synchronization control for ultrafast laser parallel microdrilling system

    Science.gov (United States)

    Zhai, Zhongsheng; Kuang, Zheng; Ouyang, Jinlei; Liu, Dun; Perrie, Walter; Edwardson, Stuart P.; Dearden, Geoff

    2014-11-01

    Ultrafast lasers, emitting ultra-short pulses of light, generally of the order of femtoseconds to ten picoseconds, are widely used in micro-processing with the advantage of very little thermal damage. Parallel micro-processing is seen significant developments in laser fabrication, thanking to the spatial light modulator (SLM) which can concert single beam to multiple beams through computer generate holograms (CGHs). However, without synchronization control, on the conditions of changing different holograms or processing on large area beyond scanning galvo's ability, the fabrication will be interrupted constantly for changing holograms and moving the stages. Therefore, synchronization control is very important to improve the convenience and application of parallel micro-processing. A synchronization control method, carried out through two application software: SAMLight (or WaveRunner) and Labview, is presented in this paper. SAMLight is used to control the laser and the scanning galvo to implement microprocessing, and the developed program with Labview is used to control the SLM and motion stages. The synchronization signals, transmitted between the two software, are utilized by a National Instruments (NI) device USB-6008. Using optimal control methods, the synchronized system can easily and automatically accomplish complicated fabrications with minimum time. A multi-drilling application is provided to verify the affectivity of the synchronized control method. It uses multiple annular beams, generated by superimposing multi-beam CGH onto a diffractive axicon CGH, to drill multiple holes at one time, and it can automatically finish different patterns based on synchronization control. This drilling way is an optical trepanning and it avoids huge laser energy waste with attenuation. The multi-beam CGHs, generated by the Grating and Lens algorithm, are different for different patterns. The processing is over 200 times faster than traditional mechanical trepanning

  7. "Let's Move" campaign: applying the extended parallel process model.

    Science.gov (United States)

    Batchelder, Alicia; Matusitz, Jonathan

    2014-01-01

    This article examines Michelle Obama's health campaign, "Let's Move," through the lens of the extended parallel process model (EPPM). "Let's Move" aims to reduce the childhood obesity epidemic in the United States. Developed by Kim Witte, EPPM rests on the premise that people's attitudes can be changed when fear is exploited as a factor of persuasion. Fear appeals work best (a) when a person feels a concern about the issue or situation, and (b) when he or she believes to have the capability of dealing with that issue or situation. Overall, the analysis found that "Let's Move" is based on past health campaigns that have been successful. An important element of the campaign is the use of fear appeals (as it is postulated by EPPM). For example, part of the campaign's strategies is to explain the severity of the diseases associated with obesity. By looking at the steps of EPPM, readers can also understand the strengths and weaknesses of "Let's Move."

  8. Parallel dispatch: a new paradigm of electrical power system dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun Jason; Wang, Fei-Yue; Wang, Qiang; Hao, Dazhi; Yang, Xiaojing; Gao, David Wenzhong; Zhao, Xiangyang; Zhang, Yingchen

    2018-01-01

    Modern power systems are evolving into sociotechnical systems with massive complexity, whose real-time operation and dispatch go beyond human capability. Thus, the need for developing and applying new intelligent power system dispatch tools are of great practical significance. In this paper, we introduce the overall business model of power system dispatch, the top level design approach of an intelligent dispatch system, and the parallel intelligent technology with its dispatch applications. We expect that a new dispatch paradigm, namely the parallel dispatch, can be established by incorporating various intelligent technologies, especially the parallel intelligent technology, to enable secure operation of complex power grids, extend system operators U+02BC capabilities, suggest optimal dispatch strategies, and to provide decision-making recommendations according to power system operational goals.

  9. Parallel processing of dose calculation for external photon beam therapy

    International Nuclear Information System (INIS)

    Kunieda, Etsuo; Ando, Yutaka; Tsukamoto, Nobuhiro; Ito, Hisao; Kubo, Atsushi

    1994-01-01

    We implemented external photon beam dose calculation programs into a parallel processor system consisting of Transputers, 32-bit processors especially suitable for multi-processor configuration. Two network conformations, binary-tree and pipeline, were evaluated for rectangular and irregular field dose calculation algorithms. Although computation speed increased in proportion to the number of CPU, substantial overhead caused by inter-processor communication occurred when a smaller computation load was delivered to each processor. On the other hand, for irregular field calculation, which requires more computation capability for each calculation point, the communication overhead was still less even when more than 50 processors were involved. Real-time responses could be expected for more complex algorithms by increasing the number of processors. (author)

  10. Mobile Devices and GPU Parallelism in Ionospheric Data Processing

    Science.gov (United States)

    Mascharka, D.; Pankratius, V.

    2015-12-01

    Scientific data acquisition in the field is often constrained by data transfer backchannels to analysis environments. Geoscientists are therefore facing practical bottlenecks with increasing sensor density and variety. Mobile devices, such as smartphones and tablets, offer promising solutions to key problems in scientific data acquisition, pre-processing, and validation by providing advanced capabilities in the field. This is due to affordable network connectivity options and the increasing mobile computational power. This contribution exemplifies a scenario faced by scientists in the field and presents the "Mahali TEC Processing App" developed in the context of the NSF-funded Mahali project. Aimed at atmospheric science and the study of ionospheric Total Electron Content (TEC), this app is able to gather data from various dual-frequency GPS receivers. It demonstrates parsing of full-day RINEX files on mobile devices and on-the-fly computation of vertical TEC values based on satellite ephemeris models that are obtained from NASA. Our experiments show how parallel computing on the mobile device GPU enables fast processing and visualization of up to 2 million datapoints in real-time using OpenGL. GPS receiver bias is estimated through minimum TEC approximations that can be interactively adjusted by scientists in the graphical user interface. Scientists can also perform approximate computations for "quickviews" to reduce CPU processing time and memory consumption. In the final stage of our mobile processing pipeline, scientists can upload data to the cloud for further processing. Acknowledgements: The Mahali project (http://mahali.mit.edu) is funded by the NSF INSPIRE grant no. AGS-1343967 (PI: V. Pankratius). We would like to acknowledge our collaborators at Boston College, Virginia Tech, Johns Hopkins University, Colorado State University, as well as the support of UNAVCO for loans of dual-frequency GPS receivers for use in this project, and Intel for loans of

  11. Parallel adaptation of a vectorised quantumchemical program system

    International Nuclear Information System (INIS)

    Van Corler, L.C.H.; Van Lenthe, J.H.

    1987-01-01

    Supercomputers, like the CRAY 1 or the Cyber 205, have had, and still have, a marked influence on Quantum Chemistry. Vectorization has led to a considerable increase in the performance of Quantum Chemistry programs. However, clockcycle times more than a factor 10 smaller than those of the present supercomputers are not to be expected. Therefore future supercomputers will have to depend on parallel structures. Recently, the first examples of such supercomputers have been installed. To be prepared for this new generation of (parallel) supercomputers one should consider the concepts one wants to use and the kind of problems one will encounter during implementation of existing vectorized programs on those parallel systems. The authors implemented four important parts of a large quantumchemical program system (ATMOL), i.e. integrals, SCF, 4-index and Direct-CI in the parallel environment at ECSEC (Rome, Italy). This system offers simulated parallellism on the host computer (IBM 4381) and real parallellism on at most 10 attached processors (FPS-164). Quantumchemical programs usually handle large amounts of data and very large, often sparse matrices. The transfer of that many data can cause problems concerning communication and overhead, in view of which shared memory and shared disks must be considered. The strategy and the tools that were used to parallellise the programs are shown. Also, some examples are presented to illustrate effectiveness and performance of the system in Rome for these type of calculations

  12. Category specific spatial dissociations of parallel processes underlying visual naming.

    Science.gov (United States)

    Conner, Christopher R; Chen, Gang; Pieters, Thomas A; Tandon, Nitin

    2014-10-01

    The constituent elements and dynamics of the networks responsible for word production are a central issue to understanding human language. Of particular interest is their dependency on lexical category, particularly the possible segregation of nouns and verbs into separate processing streams. We applied a novel mixed-effects, multilevel analysis to electrocorticographic data collected from 19 patients (1942 electrodes) to examine the activity of broadly disseminated cortical networks during the retrieval of distinct lexical categories. This approach was designed to overcome the issues of sparse sampling and individual variability inherent to invasive electrophysiology. Both noun and verb generation evoked overlapping, yet distinct nonhierarchical processes favoring ventral and dorsal visual streams, respectively. Notable differences in activity patterns were noted in Broca's area and superior lateral temporo-occipital regions (verb > noun) and in parahippocampal and fusiform cortices (noun > verb). Comparisons with functional magnetic resonance imaging (fMRI) results yielded a strong correlation of blood oxygen level-dependent signal and gamma power and an independent estimate of group size needed for fMRI studies of cognition. Our findings imply parallel, lexical category-specific processes and reconcile discrepancies between lesional and functional imaging studies. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Parallel processing algorithms for hydrocodes on a computer with MIMD architecture (DENELCOR's HEP)

    International Nuclear Information System (INIS)

    Hicks, D.L.

    1983-11-01

    In real time simulation/prediction of complex systems such as water-cooled nuclear reactors, if reactor operators had fast simulator/predictors to check the consequences of their operations before implementing them, events such as the incident at Three Mile Island might be avoided. However, existing simulator/predictors such as RELAP run slower than real time on serial computers. It appears that the only way to overcome the barrier to higher computing rates is to use computers with architectures that allow concurrent computations or parallel processing. The computer architecture with the greatest degree of parallelism is labeled Multiple Instruction Stream, Multiple Data Stream (MIMD). An example of a machine of this type is the HEP computer by DENELCOR. It appears that hydrocodes are very well suited for parallelization on the HEP. It is a straightforward exercise to parallelize explicit, one-dimensional Lagrangean hydrocodes in a zone-by-zone parallelization. Similarly, implicit schemes can be parallelized in a zone-by-zone fashion via an a priori, symbolic inversion of the tridiagonal matrix that arises in an implicit scheme. These techniques are extended to Eulerian hydrocodes by using Harlow's rezone technique. The extension from single-phase Eulerian to two-phase Eulerian is straightforward. This step-by-step extension leads to hydrocodes with zone-by-zone parallelization that are capable of two-phase flow simulation. Extensions to two and three spatial dimensions can be achieved by operator splitting. It appears that a zone-by-zone parallelization is the best way to utilize the capabilities of an MIMD machine. 40 references

  14. A New Tool for Intelligent Parallel Processing of Radar/SAR Remotely Sensed Imagery

    Directory of Open Access Journals (Sweden)

    A. Castillo Atoche

    2013-01-01

    Full Text Available A novel parallel tool for large-scale image enhancement/reconstruction and postprocessing of radar/SAR sensor systems is addressed. The proposed parallel tool performs the following intelligent processing steps: image formation, for the application of different system-level effects of image degradation with a particular remote sensing (RS system and simulation of random noising effects, enhancement/reconstruction by employing nonparametric robust high-resolution techniques, and image postprocessing using the fuzzy anisotropic diffusion technique which incorporates a better edge-preserving noise removal effect and faster diffusion process. This innovative tool allows the processing of high-resolution images provided with different radar/SAR sensor systems as required by RS endusers for environmental monitoring, risk prevention, and resource management. To verify the performance implementation of the proposed parallel framework, the processing steps are developed and specifically tested on graphic processing units (GPU, achieving considerable speedups compared to the serial version of the same techniques implemented in C language.

  15. A model for dealing with parallel processes in supervision

    Directory of Open Access Journals (Sweden)

    Lilja Cajvert

    2011-03-01

    Supervision in social work is essential for successful outcomes when working with clients. In social work, unconscious difficulties may arise and similar difficulties may occur in supervision as parallel processes. In this article, the development of a practice-based model of supervision to deal with parallel processes in supervision is described. The model has six phases. In the first phase, the focus is on the supervisor’s inner world, his/her own reflections and observations. In the second phase, the supervision situation is “frozen”, and the supervisees are invited to join the supervisor in taking a meta-perspective on the current situation of supervision. The focus in the third phase is on the inner world of all the group members as well as the visualization and identification of reflections and feelings that arose during the supervision process. Phase four focuses on the supervisee who presented a case, and in phase five the focus shifts to the common understanding and theorization of the supervision process as well as the definition and identification of possible parallel processes. In the final phase, the supervisee, with the assistance of the supervisor and other members of the group, develops a solution and determines how to proceed with the client in treatment. This article uses phenomenological concepts to provide a theoretical framework for the supervision model. Phenomenological reduction is an important approach to examine and to externalize and visualize the inner words of the supervisor and supervisees. Een model voor het hanteren van parallelle processen tijdens supervisie Om succesvol te zijn in de hulpverlening aan cliënten, is supervisie cruciaal in het sociaal werk. Tijdens de hulpverlening kunnen impliciete moeilijkheden de kop opsteken en soortgelijke moeilijkheden duiken soms ook op tijdens supervisie. Dit worden parallelle processen genoemd. Dit artikel beschrijft een op praktijkervaringen gebaseerd model om dergelijke parallelle

  16. AZTEC: A parallel iterative package for the solving linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    We describe a parallel linear system package, AZTEC. The package incorporates a number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or ILU within subdomains). Additionally, AZTEC allows for the reuse of previous preconditioning factorizations within Newton schemes for nonlinear methods. Currently, a number of different users are using this package to solve a variety of PDE applications.

  17. Modeling and optimization of parallel and distributed embedded systems

    CERN Document Server

    Munir, Arslan; Ranka, Sanjay

    2016-01-01

    This book introduces the state-of-the-art in research in parallel and distributed embedded systems, which have been enabled by developments in silicon technology, micro-electro-mechanical systems (MEMS), wireless communications, computer networking, and digital electronics. These systems have diverse applications in domains including military and defense, medical, automotive, and unmanned autonomous vehicles. The emphasis of the book is on the modeling and optimization of emerging parallel and distributed embedded systems in relation to the three key design metrics of performance, power and dependability.

  18. Parallel Computer System for 3D Visualization Stereo on GPU

    Science.gov (United States)

    Al-Oraiqat, Anas M.; Zori, Sergii A.

    2018-03-01

    This paper proposes the organization of a parallel computer system based on Graphic Processors Unit (GPU) for 3D stereo image synthesis. The development is based on the modified ray tracing method developed by the authors for fast search of tracing rays intersections with scene objects. The system allows significant increase in the productivity for the 3D stereo synthesis of photorealistic quality. The generalized procedure of 3D stereo image synthesis on the Graphics Processing Unit/Graphics Processing Clusters (GPU/GPC) is proposed. The efficiency of the proposed solutions by GPU implementation is compared with single-threaded and multithreaded implementations on the CPU. The achieved average acceleration in multi-thread implementation on the test GPU and CPU is about 7.5 and 1.6 times, respectively. Studying the influence of choosing the size and configuration of the computational Compute Unified Device Archi-tecture (CUDA) network on the computational speed shows the importance of their correct selection. The obtained experimental estimations can be significantly improved by new GPUs with a large number of processing cores and multiprocessors, as well as optimized configuration of the computing CUDA network.

  19. A new decomposition method for parallel processing multi-level optimization

    International Nuclear Information System (INIS)

    Park, Hyung Wook; Kim, Min Soo; Choi, Dong Hoon

    2002-01-01

    In practical designs, most of the multidisciplinary problems have a large-size and complicate design system. Since multidisciplinary problems have hundreds of analyses and thousands of variables, the grouping of analyses and the order of the analyses in the group affect the speed of the total design cycle. Therefore, it is very important to reorder and regroup the original design processes in order to minimize the total computational cost by decomposing large multidisciplinary problems into several MultiDisciplinary Analysis SubSystems (MDASS) and by processing them in parallel. In this study, a new decomposition method is proposed for parallel processing of multidisciplinary design optimization, such as Collaborative Optimization (CO) and Individual Discipline Feasible (IDF) method. Numerical results for two example problems are presented to show the feasibility of the proposed method

  20. Parallel object-oriented decision tree system

    Science.gov (United States)

    Kamath,; Chandrika, Cantu-Paz [Dublin, CA; Erick, [Oakland, CA

    2006-02-28

    A data mining decision tree system that uncovers patterns, associations, anomalies, and other statistically significant structures in data by reading and displaying data files, extracting relevant features for each of the objects, and using a method of recognizing patterns among the objects based upon object features through a decision tree that reads the data, sorts the data if necessary, determines the best manner to split the data into subsets according to some criterion, and splits the data.

  1. Parallel direct solver for finite element modeling of manufacturing processes

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P.A.F.

    2017-01-01

    The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...

  2. Design of a family of integrated parallel co-processors for images processing

    International Nuclear Information System (INIS)

    Court, Thierry

    1991-01-01

    The design of parallel image processing Systems joining in a same architecture, sophisticated microprocessors and specialised operators is a difficult task, because of the various problems to be taken into account. The current study identifies a certain way of realizing and interfacing such dedicated operators to a central unit with microprocessor type. The two guide lines of this work are the search for polyvalent specialized and re-configurated operators as well as their connections to a System bus, and not to specialized video buses. This research work proposes a certain architecture of circuits dedicated to image processing and two realization proposals of them. One of them was be realized in this study by using silicon compiler tools. This work belongs to a more important project, whose aim is the development of an industrial image processing System, high performing, modular, based on the parallelization, in MIMD structures, of an elementary, autonomous image processing unit integrating a microprocessor equipped with a parallel coprocessor suited to image processing. (author) [fr

  3. Parallel discrete ordinates algorithms on distributed and common memory systems

    International Nuclear Information System (INIS)

    Wienke, B.R.; Hiromoto, R.E.; Brickner, R.G.

    1987-01-01

    The S/sub n/ algorithm employs iterative techniques in solving the linear Boltzmann equation. These methods, both ordered and chaotic, were compared on both the Denelcor HEP and the Intel hypercube. Strategies are linked to the organization and accessibility of memory (common memory versus distributed memory architectures), with common concern for acquisition of global information. Apart from this, the inherent parallelism of the algorithm maps directly onto the two architectures. Results comparing execution times, speedup, and efficiency are based on a representative 16-group (full upscatter and downscatter) sample problem. Calculations were performed on both the Los Alamos National Laboratory (LANL) Denelcor HEP and the LANL Intel hypercube. The Denelcor HEP is a 64-bit multi-instruction, multidate MIMD machine consisting of up to 16 process execution modules (PEMs), each capable of executing 64 processes concurrently. Each PEM can cooperate on a job, or run several unrelated jobs, and share a common global memory through a crossbar switch. The Intel hypercube, on the other hand, is a distributed memory system composed of 128 processing elements, each with its own local memory. Processing elements are connected in a nearest-neighbor hypercube configuration and sharing of data among processors requires execution of explicit message-passing constructs

  4. Processors and systems (picture processing)

    Energy Technology Data Exchange (ETDEWEB)

    Gemmar, P

    1983-01-01

    Automatic picture processing requires high performance computers and high transmission capacities in the processor units. The author examines the possibilities of operating processors in parallel in order to accelerate the processing of pictures. He therefore discusses a number of available processors and systems for picture processing and illustrates their capacities for special types of picture processing. He stresses the fact that the amount of storage required for picture processing is exceptionally high. The author concludes that it is as yet difficult to decide whether very large groups of simple processors or highly complex multiprocessor systems will provide the best solution. Both methods will be aided by the development of VLSI. New solutions have already been offered (systolic arrays and 3-d processing structures) but they also are subject to losses caused by inherently parallel algorithms. Greater efforts must be made to produce suitable software for multiprocessor systems. Some possibilities for future picture processing systems are discussed. 33 references.

  5. Parallel embedded systems: where real-time and low-power meet

    DEFF Research Database (Denmark)

    Karakehayov, Zdravko; Guo, Yu

    2008-01-01

    This paper introduces a combination of models and proofs for optimal power management via Dynamic Frequency Scaling and Dynamic Voltage Scaling. The approach is suitable for systems on a chip or microcontrollers where processors run in parallel with embedded peripherals. We have developed...... a software tool, called CASTLE, to provide computer assistance in the design process of energy-aware embedded systems. The tool considers single processor and parallel architectures. An example shows an energy reduction of 23% when the tool allocates two microcontrollers for parallel execution....

  6. Parallel object-oriented data mining system

    Science.gov (United States)

    Kamath, Chandrika; Cantu-Paz, Erick

    2004-01-06

    A data mining system uncovers patterns, associations, anomalies and other statistically significant structures in data. Data files are read and displayed. Objects in the data files are identified. Relevant features for the objects are extracted. Patterns among the objects are recognized based upon the features. Data from the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) sky survey was used to search for bent doubles. This test was conducted on data from the Very Large Array in New Mexico which seeks to locate a special type of quasar (radio-emitting stellar object) called bent doubles. The FIRST survey has generated more than 32,000 images of the sky to date. Each image is 7.1 megabytes, yielding more than 100 gigabytes of image data in the entire data set.

  7. Parallel Breadth-First Search on Distributed Memory Systems

    Energy Technology Data Exchange (ETDEWEB)

    Computational Research Division; Buluc, Aydin; Madduri, Kamesh

    2011-04-15

    Data-intensive, graph-based computations are pervasive in several scientific applications, and are known to to be quite challenging to implement on distributed memory systems. In this work, we explore the design space of parallel algorithms for Breadth-First Search (BFS), a key subroutine in several graph algorithms. We present two highly-tuned par- allel approaches for BFS on large parallel systems: a level-synchronous strategy that relies on a simple vertex-based partitioning of the graph, and a two-dimensional sparse matrix- partitioning-based approach that mitigates parallel commu- nication overhead. For both approaches, we also present hybrid versions with intra-node multithreading. Our novel hybrid two-dimensional algorithm reduces communication times by up to a factor of 3.5, relative to a common vertex based approach. Our experimental study identifies execu- tion regimes in which these approaches will be competitive, and we demonstrate extremely high performance on lead- ing distributed-memory parallel systems. For instance, for a 40,000-core parallel execution on Hopper, an AMD Magny- Cours based system, we achieve a BFS performance rate of 17.8 billion edge visits per second on an undirected graph of 4.3 billion vertices and 68.7 billion edges with skewed degree distribution.

  8. Big Data GPU-Driven Parallel Processing Spatial and Spatio-Temporal Clustering Algorithms

    Science.gov (United States)

    Konstantaras, Antonios; Skounakis, Emmanouil; Kilty, James-Alexander; Frantzeskakis, Theofanis; Maravelakis, Emmanuel

    2016-04-01

    Diamantaras, K.: 'Programming and architecture of parallel processing systems', 1st Edition, Eds. Kleidarithmos, 2011 [4] NVIDIA.: 'NVidia CUDA C Programming Guide', version 5.0, NVidia (reference book) [5] Konstantaras, A.: 'Classification of Distinct Seismic Regions and Regional Temporal Modelling of Seismicity in the Vicinity of the Hellenic Seismic Arc', IEEE Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6 (4), pp. 1857-1863, 2013 [6] Konstantaras, A. Varley, M.R.,. Valianatos, F., Collins, G. and Holifield, P.: 'Recognition of electric earthquake precursors using neuro-fuzzy models: methodology and simulation results', Proc. IASTED International Conference on Signal Processing Pattern Recognition and Applications (SPPRA 2002), Crete, Greece, 2002, pp 303-308, 2002 [7] Konstantaras, A., Katsifarakis, E., Maravelakis, E., Skounakis, E., Kokkinos, E. and Karapidakis, E.: 'Intelligent Spatial-Clustering of Seismicity in the Vicinity of the Hellenic Seismic Arc', Earth Science Research, vol. 1 (2), pp. 1-10, 2012 [8] Georgoulas, G., Konstantaras, A., Katsifarakis, E., Stylios, C.D., Maravelakis, E. and Vachtsevanos, G.: '"Seismic-Mass" Density-based Algorithm for Spatio-Temporal Clustering', Expert Systems with Applications, vol. 40 (10), pp. 4183-4189, 2013 [9] Konstantaras, A. J.: 'Expert knowledge-based algorithm for the dynamic discrimination of interactive natural clusters', Earth Science Informatics, 2015 (In Press, see: www.scopus.com) [10] Drakatos, G. and Latoussakis, J.: 'A catalog of aftershock sequences in Greece (1971-1997): Their spatial and temporal characteristics', Journal of Seismology, vol. 5, pp. 137-145, 2001

  9. Ultrasound Vector Flow Imaging: Part II: Parallel Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov; Yu, Alfred C. H.

    2016-01-01

    The paper gives a review of the current state-of-theart in ultrasound parallel acquisition systems for flow imaging using spherical and plane waves emissions. The imaging methods are explained along with the advantages of using these very fast and sensitive velocity estimators. These experimental...... ultrasound imaging for studying brain function in animals. The paper explains the underlying acquisition and estimation methods for fast 2-D and 3-D velocity imaging and gives a number of examples. Future challenges and the potentials of parallel acquisition systems for flow imaging are also discussed....

  10. Investigation of Mediational Processes Using Parallel Process Latent Growth Curve Modeling

    Science.gov (United States)

    Cheong, JeeWon; MacKinnon, David P.; Khoo, Siek Toon

    2010-01-01

    This study investigated a method to evaluate mediational processes using latent growth curve modeling. The mediator and the outcome measured across multiple time points were viewed as 2 separate parallel processes. The mediational process was defined as the independent variable influencing the growth of the mediator, which, in turn, affected the growth of the outcome. To illustrate modeling procedures, empirical data from a longitudinal drug prevention program, Adolescents Training and Learning to Avoid Steroids, were used. The program effects on the growth of the mediator and the growth of the outcome were examined first in a 2-group structural equation model. The mediational process was then modeled and tested in a parallel process latent growth curve model by relating the prevention program condition, the growth rate factor of the mediator, and the growth rate factor of the outcome. PMID:20157639

  11. The concept of parallel input/output processing for an electron linac

    International Nuclear Information System (INIS)

    Emoto, Takashi

    1993-01-01

    The instrumentation of and the control system for the PNC 10 MeV CW electron linac are described. A new concept of parallel input/output processing for the linac has been introduced. It is based on a substantial number of input/output processors(IOP) using beam control and diagnostics. The flexibility and simplicity of hardware/software are significant advantages with this scheme. (author)

  12. Massively parallel data processing for quantitative total flow imaging with optical coherence microscopy and tomography

    Science.gov (United States)

    Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo

    2017-08-01

    We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU

  13. Understanding decimal proportions: discrete representations, parallel access, and privileged processing of zero.

    Science.gov (United States)

    Varma, Sashank; Karl, Stacy R

    2013-05-01

    Much of the research on mathematical cognition has focused on the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9, with considerably less attention paid to more abstract number classes. The current research investigated how people understand decimal proportions--rational numbers between 0 and 1 expressed in the place-value symbol system. The results demonstrate that proportions are represented as discrete structures and processed in parallel. There was a semantic interference effect: When understanding a proportion expression (e.g., "0.29"), both the correct proportion referent (e.g., 0.29) and the incorrect natural number referent (e.g., 29) corresponding to the visually similar natural number expression (e.g., "29") are accessed in parallel, and when these referents lead to conflicting judgments, performance slows. There was also a syntactic interference effect, generalizing the unit-decade compatibility effect for natural numbers: When comparing two proportions, their tenths and hundredths components are processed in parallel, and when the different components lead to conflicting judgments, performance slows. The results also reveal that zero decimals--proportions ending in zero--serve multiple cognitive functions, including eliminating semantic interference and speeding processing. The current research also extends the distance, semantic congruence, and SNARC effects from natural numbers to decimal proportions. These findings inform how people understand the place-value symbol system, and the mental implementation of mathematical symbol systems more generally. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Data structures and languages in support of parallel image processing for astronomy

    International Nuclear Information System (INIS)

    Tanimoto, S.L.

    1985-01-01

    This paper discusses data structures, and aspects of programming languages and systems that are relevant to image processing of astronomy data. Emphasis is on image processing computations, because this kind of data processing is obviously a ripe one for parallelism and is important in astronomy. However, some discussion of general possibilities are also presented. The role of algorithms is examined since they are not dependent on a particular language. As an implementation of an algorithm a program is equally tied to data structure, operations, architecture and language, and therefore the issue of programming resides in the center of the tetrahedron

  15. Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering

    Science.gov (United States)

    Panomruttanarug, Benjamas; Higuchi, Kohji

    This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.

  16. Massively Parallel Polar Decomposition on Distributed-Memory Systems

    KAUST Repository

    Ltaief, Hatem

    2018-01-01

    We present a high-performance implementation of the Polar Decomposition (PD) on distributed-memory systems. Building upon on the QR-based Dynamically Weighted Halley (QDWH) algorithm, the key idea lies in finding the best rational approximation for the scalar sign function, which also corresponds to the polar factor for symmetric matrices, to further accelerate the QDWH convergence. Based on the Zolotarev rational functions—introduced by Zolotarev (ZOLO) in 1877— this new PD algorithm ZOLO-PD converges within two iterations even for ill-conditioned matrices, instead of the original six iterations needed for QDWH. ZOLO-PD uses the property of Zolotarev functions that optimality is maintained when two functions are composed in an appropriate manner. The resulting ZOLO-PD has a convergence rate up to seventeen, in contrast to the cubic convergence rate for QDWH. This comes at the price of higher arithmetic costs and memory footprint. These extra floating-point operations can, however, be processed in an embarrassingly parallel fashion. We demonstrate performance using up to 102, 400 cores on two supercomputers. We demonstrate that, in the presence of a large number of processing units, ZOLO-PD is able to outperform QDWH by up to 2.3X speedup, especially in situations where QDWH runs out of work, for instance, in the strong scaling mode of operation.

  17. Regional-scale calculation of the LS factor using parallel processing

    Science.gov (United States)

    Liu, Kai; Tang, Guoan; Jiang, Ling; Zhu, A.-Xing; Yang, Jianyi; Song, Xiaodong

    2015-05-01

    With the increase of data resolution and the increasing application of USLE over large areas, the existing serial implementation of algorithms for computing the LS factor is becoming a bottleneck. In this paper, a parallel processing model based on message passing interface (MPI) is presented for the calculation of the LS factor, so that massive datasets at a regional scale can be processed efficiently. The parallel model contains algorithms for calculating flow direction, flow accumulation, drainage network, slope, slope length and the LS factor. According to the existence of data dependence, the algorithms are divided into local algorithms and global algorithms. Parallel strategy are designed according to the algorithm characters including the decomposition method for maintaining the integrity of the results, optimized workflow for reducing the time taken for exporting the unnecessary intermediate data and a buffer-communication-computation strategy for improving the communication efficiency. Experiments on a multi-node system show that the proposed parallel model allows efficient calculation of the LS factor at a regional scale with a massive dataset.

  18. Engineering-Based Thermal CFD Simulations on Massive Parallel Systems

    KAUST Repository

    Frisch, Jérôme

    2015-05-22

    The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers with several thousands to millions of cores. In this paper, we present a hierarchical data structure for massive parallel computations that supports the coupling of a Navier–Stokes-based fluid flow code with the Boussinesq approximation in order to address complex thermal scenarios for energy-related assessments. The newly designed data structure is specifically designed with the idea of interactive data exploration and visualization during runtime of the simulation code; a major shortcoming of traditional high-performance computing (HPC) simulation codes. We further show and discuss speed-up values obtained on one of Germany’s top-ranked supercomputers with up to 140,000 processes and present simulation results for different engineering-based thermal problems.

  19. Endpoint-based parallel data processing with non-blocking collective instructions in a parallel active messaging interface of a parallel computer

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Cernohous, Bob R; Ratterman, Joseph D; Smith, Brian E

    2014-11-11

    Endpoint-based parallel data processing with non-blocking collective instructions in a PAMI of a parallel computer is disclosed. The PAMI is composed of data communications endpoints, each including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task. The compute nodes are coupled for data communications through the PAMI. The parallel application establishes a data communications geometry specifying a set of endpoints that are used in collective operations of the PAMI by associating with the geometry a list of collective algorithms valid for use with the endpoints of the geometry; registering in each endpoint in the geometry a dispatch callback function for a collective operation; and executing without blocking, through a single one of the endpoints in the geometry, an instruction for the collective operation.

  20. A Parallel Strategy for Convolutional Neural Network Based on Heterogeneous Cluster for Mobile Information System

    Directory of Open Access Journals (Sweden)

    Jilin Zhang

    2017-01-01

    Full Text Available With the development of the mobile systems, we gain a lot of benefits and convenience by leveraging mobile devices; at the same time, the information gathered by smartphones, such as location and environment, is also valuable for business to provide more intelligent services for customers. More and more machine learning methods have been used in the field of mobile information systems to study user behavior and classify usage patterns, especially convolutional neural network. With the increasing of model training parameters and data scale, the traditional single machine training method cannot meet the requirements of time complexity in practical application scenarios. The current training framework often uses simple data parallel or model parallel method to speed up the training process, which is why heterogeneous computing resources have not been fully utilized. To solve these problems, our paper proposes a delay synchronization convolutional neural network parallel strategy, which leverages the heterogeneous system. The strategy is based on both synchronous parallel and asynchronous parallel approaches; the model training process can reduce the dependence on the heterogeneous architecture in the premise of ensuring the model convergence, so the convolution neural network framework is more adaptive to different heterogeneous system environments. The experimental results show that the proposed delay synchronization strategy can achieve at least three times the speedup compared to the traditional data parallelism.

  1. A Parallel Algebraic Multigrid Solver on Graphics Processing Units

    KAUST Repository

    Haase, Gundolf

    2010-01-01

    The paper presents a multi-GPU implementation of the preconditioned conjugate gradient algorithm with an algebraic multigrid preconditioner (PCG-AMG) for an elliptic model problem on a 3D unstructured grid. An efficient parallel sparse matrix-vector multiplication scheme underlying the PCG-AMG algorithm is presented for the many-core GPU architecture. A performance comparison of the parallel solver shows that a singe Nvidia Tesla C1060 GPU board delivers the performance of a sixteen node Infiniband cluster and a multi-GPU configuration with eight GPUs is about 100 times faster than a typical server CPU core. © 2010 Springer-Verlag.

  2. A new parallel molecular dynamics algorithm for organic systems

    International Nuclear Information System (INIS)

    Plimpton, S.; Hendrickson, B.; Heffelfinger, G.

    1993-01-01

    A new parallel algorithm for simulating bonded molecular systems such as polymers and proteins by molecular dynamics (MD) is presented. In contrast to methods that extract parallelism by breaking the spatial domain into sub-pieces, the new method does not require regular geometries or uniform particle densities to achieve high parallel efficiency. For very large, regular systems spatial methods are often the best choice, but in practice the new method is faster for systems with tens-of-thousands of atoms simulated on large numbers of processors. It is also several times faster than the techniques commonly used for parallelizing bonded MD that assign a subset of atoms to each processor and require all-to-all communication. Implementation of the algorithm in a CHARMm-like MD model with many body forces and constraint dynamics is discussed and timings on the Intel Delta and Paragon machines are given. Example calculations using the algorithm in simulations of polymers and liquid-crystal molecules will also be briefly discussed

  3. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    Science.gov (United States)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the

  4. Introduction to parallel programming

    CERN Document Server

    Brawer, Steven

    1989-01-01

    Introduction to Parallel Programming focuses on the techniques, processes, methodologies, and approaches involved in parallel programming. The book first offers information on Fortran, hardware and operating system models, and processes, shared memory, and simple parallel programs. Discussions focus on processes and processors, joining processes, shared memory, time-sharing with multiple processors, hardware, loops, passing arguments in function/subroutine calls, program structure, and arithmetic expressions. The text then elaborates on basic parallel programming techniques, barriers and race

  5. A learnable parallel processing architecture towards unity of memory and computing.

    Science.gov (United States)

    Li, H; Gao, B; Chen, Z; Zhao, Y; Huang, P; Ye, H; Liu, L; Liu, X; Kang, J

    2015-08-14

    Developing energy-efficient parallel information processing systems beyond von Neumann architecture is a long-standing goal of modern information technologies. The widely used von Neumann computer architecture separates memory and computing units, which leads to energy-hungry data movement when computers work. In order to meet the need of efficient information processing for the data-driven applications such as big data and Internet of Things, an energy-efficient processing architecture beyond von Neumann is critical for the information society. Here we show a non-von Neumann architecture built of resistive switching (RS) devices named "iMemComp", where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and structural parallelism of crossbar RS arrays, we have equipped "iMemComp" with capabilities of computing in parallel and learning user-defined logic functions for large-scale information processing tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. Compared with contemporary silicon technology, adder circuits based on "iMemComp" can improve the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive reduction in the circuit area.

  6. A learnable parallel processing architecture towards unity of memory and computing

    Science.gov (United States)

    Li, H.; Gao, B.; Chen, Z.; Zhao, Y.; Huang, P.; Ye, H.; Liu, L.; Liu, X.; Kang, J.

    2015-08-01

    Developing energy-efficient parallel information processing systems beyond von Neumann architecture is a long-standing goal of modern information technologies. The widely used von Neumann computer architecture separates memory and computing units, which leads to energy-hungry data movement when computers work. In order to meet the need of efficient information processing for the data-driven applications such as big data and Internet of Things, an energy-efficient processing architecture beyond von Neumann is critical for the information society. Here we show a non-von Neumann architecture built of resistive switching (RS) devices named “iMemComp”, where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and structural parallelism of crossbar RS arrays, we have equipped “iMemComp” with capabilities of computing in parallel and learning user-defined logic functions for large-scale information processing tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. Compared with contemporary silicon technology, adder circuits based on “iMemComp” can improve the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive reduction in the circuit area.

  7. Leveraging Non-Uniform Resources for Parallel Query Processing

    DEFF Research Database (Denmark)

    Mayr, Tobias; Bonnet, Philippe; Gehrke, Johannes

    2003-01-01

    Modular clusters are now composed of non- uniform nodes with different CPUs, disks or network cards so that customers can adapt the cluster configuration to the changing technologies and to their changing needs. This challenges dataflow parallelism as the primary load balancing technique of exist...

  8. A Parallel Algebraic Multigrid Solver on Graphics Processing Units

    KAUST Repository

    Haase, Gundolf; Liebmann, Manfred; Douglas, Craig C.; Plank, Gernot

    2010-01-01

    -vector multiplication scheme underlying the PCG-AMG algorithm is presented for the many-core GPU architecture. A performance comparison of the parallel solver shows that a singe Nvidia Tesla C1060 GPU board delivers the performance of a sixteen node Infiniband cluster

  9. High-Performance Parallel and Stream Processing of X-ray Microdiffraction Data on Multicores

    International Nuclear Information System (INIS)

    Bauer, Michael A; McIntyre, Stewart; Xie Yuzhen; Biem, Alain; Tamura, Nobumichi

    2012-01-01

    We present the design and implementation of a high-performance system for processing synchrotron X-ray microdiffraction (XRD) data in IBM InfoSphere Streams on multicore processors. We report on the parallel and stream processing techniques that we use to harvest the power of clusters of multicores to analyze hundreds of gigabytes of synchrotron XRD data in order to reveal the microtexture of polycrystalline materials. The timing to process one XRD image using one pipeline is about ten times faster than the best C program at present. With the support of InfoSphere Streams platform, our software is able to be scaled up to operate on clusters of multi-cores for processing multiple images concurrently. This system provides a high-performance processing kernel to achieve near real-time data analysis of image data from synchrotron experiments.

  10. Parallel processing method for high-speed real time digital pulse processing for gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Fernandes, A.M.; Pereira, R.C.; Sousa, J.; Neto, A.; Carvalho, P.; Batista, A.J.N.; Carvalho, B.B.; Varandas, C.A.F.; Tardocchi, M.; Gorini, G.

    2010-01-01

    A new data acquisition (DAQ) system was developed to fulfil the requirements of the gamma-ray spectrometer (GRS) JET-EP2 (joint European Torus enhancement project 2), providing high-resolution spectroscopy at very high-count rate (up to few MHz). The system is based on the Advanced Telecommunications Computing Architecture TM (ATCA TM ) and includes a transient record (TR) module with 8 channels of 14 bits resolution at 400 MSamples/s (MSPS) sampling rate, 4 GB of local memory, and 2 field programmable gate array (FPGA) able to perform real time algorithms for data reduction and digital pulse processing. Although at 400 MSPS only fast programmable devices such as FPGAs can be used either for data processing and data transfer, FPGA resources also present speed limitation at some specific tasks, leading to an unavoidable data lost when demanding algorithms are applied. To overcome this problem and foreseeing an increase of the algorithm complexity, a new digital parallel filter was developed, aiming to perform real time pulse processing in the FPGAs of the TR module at the presented sampling rate. The filter is based on the conventional digital time-invariant trapezoidal shaper operating with parallelized data while performing pulse height analysis (PHA) and pile up rejection (PUR). The incoming sampled data is successively parallelized and fed into the processing algorithm block at one fourth of the sampling rate. The following data processing and data transfer is also performed at one fourth of the sampling rate. The algorithm based on data parallelization technique was implemented and tested at JET facilities, where a spectrum was obtained. Attending to the observed results, the PHA algorithm will be improved by implementing the pulse pile up discrimination.

  11. Analysis of flow distribution instability in parallel thin rectangular multi-channel system

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G.L. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China); Su, G.H., E-mail: ghsu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Peng, M.J. [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China)

    2016-08-15

    Highlights: • Flow distribution instability in parallel thin rectangular multi-channel system is studied using RELAP5 codes. • Flow excursion may bring parallel heating channel into the density wave oscillations region. • Flow distribution instability is more likely to happen at low power/flow ratio conditions. • The increase of channel number will not affect the flow distribution instability boundary. • Asymmetry inlet throttling and heating will make system more unstable. - Abstract: The flow distribution instability in parallel thin rectangular multi-channel system has been researched in the present study. The research model of parallel channel system is established by using RELAP5/MOD3.4 codes. The transient process of flow distribution instability is studied at imposed inlet mass flow rate and imposed pressure drop conditions. The influence of heating power, mass flow rate, system pressure and channel number on flow distribution instability are analyzed. Furthermore, the flow distribution instability of parallel two-channel system under asymmetric inlet throttling and heating power is studied. The results show that, if multi-channel system operates at the negative slope region of channel ΔP–G curve, small disturbance in pressure drop will lead to flow redistribution between parallel channels. Flow excursion may bring the operating point of heating channel into the density-wave oscillations region, this will result in out-phase or in-phase flow oscillations. Flow distribution instability is more likely to happen at low power/flow ratio conditions, the stability of parallel channel system increases with system pressure, the channel number has a little effect on system stability, but the asymmetry inlet throttling or heating power will make the system more unstable.

  12. Monte Carlo simulations of quantum systems on massively parallel supercomputers

    International Nuclear Information System (INIS)

    Ding, H.Q.

    1993-01-01

    A large class of quantum physics applications uses operator representations that are discrete integers by nature. This class includes magnetic properties of solids, interacting bosons modeling superfluids and Cooper pairs in superconductors, and Hubbard models for strongly correlated electrons systems. This kind of application typically uses integer data representations and the resulting algorithms are dominated entirely by integer operations. The authors implemented an efficient algorithm for one such application on the Intel Touchstone Delta and iPSC/860. The algorithm uses a multispin coding technique which allows significant data compactification and efficient vectorization of Monte Carlo updates. The algorithm regularly switches between two data decompositions, corresponding naturally to different Monte Carlo updating processes and observable measurements such that only nearest-neighbor communications are needed within a given decomposition. On 128 nodes of Intel Delta, this algorithm updates 183 million spins per second (compared to 21 million on CM-2 and 6.2 million on a Cray Y-MP). A systematic performance analysis shows a better than 90% efficiency in the parallel implementation

  13. Scalable Parallel Distributed Coprocessor System for Graph Searching Problems with Massive Data

    Directory of Open Access Journals (Sweden)

    Wanrong Huang

    2017-01-01

    Full Text Available The Internet applications, such as network searching, electronic commerce, and modern medical applications, produce and process massive data. Considerable data parallelism exists in computation processes of data-intensive applications. A traversal algorithm, breadth-first search (BFS, is fundamental in many graph processing applications and metrics when a graph grows in scale. A variety of scientific programming methods have been proposed for accelerating and parallelizing BFS because of the poor temporal and spatial locality caused by inherent irregular memory access patterns. However, new parallel hardware could provide better improvement for scientific methods. To address small-world graph problems, we propose a scalable and novel field-programmable gate array-based heterogeneous multicore system for scientific programming. The core is multithread for streaming processing. And the communication network InfiniBand is adopted for scalability. We design a binary search algorithm to address mapping to unify all processor addresses. Within the limits permitted by the Graph500 test bench after 1D parallel hybrid BFS algorithm testing, our 8-core and 8-thread-per-core system achieved superior performance and efficiency compared with the prior work under the same degree of parallelism. Our system is efficient not as a special acceleration unit but as a processor platform that deals with graph searching applications.

  14. Storing files in a parallel computing system based on user-specified parser function

    Science.gov (United States)

    Faibish, Sorin; Bent, John M; Tzelnic, Percy; Grider, Gary; Manzanares, Adam; Torres, Aaron

    2014-10-21

    Techniques are provided for storing files in a parallel computing system based on a user-specified parser function. A plurality of files generated by a distributed application in a parallel computing system are stored by obtaining a parser from the distributed application for processing the plurality of files prior to storage; and storing one or more of the plurality of files in one or more storage nodes of the parallel computing system based on the processing by the parser. The plurality of files comprise one or more of a plurality of complete files and a plurality of sub-files. The parser can optionally store only those files that satisfy one or more semantic requirements of the parser. The parser can also extract metadata from one or more of the files and the extracted metadata can be stored with one or more of the plurality of files and used for searching for files.

  15. Shaft torsional oscillation interactions between turbo-generators in parallel in series compensated transmission systems

    Energy Technology Data Exchange (ETDEWEB)

    Mello, F.P. de

    1994-12-31

    Several investigators have raised the possibility of interaction between shaft systems of parallel units, particularly among identical units. The question addressed in this paper is the significance of this interaction between shaft systems of units coupled through the electrical system. A time domain model of two parallels units connected to an infinite bus trough a series compensated transmission is used to evaluate the phenomena. The same model is used to extract pertinent frequency response functions by Fourier processing of pulse response tests from which a frequency response analysis is performed to lend additional insight into the phenomena. (author) 8 refs., 13 figs., 3 tabs.

  16. Optimal task mapping in safety-critical real-time parallel systems; Placement optimal de taches pour les systemes paralleles temps-reel critiques

    Energy Technology Data Exchange (ETDEWEB)

    Aussagues, Ch

    1998-12-11

    This PhD thesis is dealing with the correct design of safety-critical real-time parallel systems. Such systems constitutes a fundamental part of high-performance systems for command and control that can be found in the nuclear domain or more generally in parallel embedded systems. The verification of their temporal correctness is the core of this thesis. our contribution is mainly in the following three points: the analysis and extension of a programming model for such real-time parallel systems; the proposal of an original method based on a new operator of synchronized product of state machines task-graphs; the validation of the approach by its implementation and evaluation. The work addresses particularly the main problem of optimal task mapping on a parallel architecture, such that the temporal constraints are globally guaranteed, i.e. the timeliness property is valid. The results incorporate also optimally criteria for the sizing and correct dimensioning of a parallel system, for instance in the number of processing elements. These criteria are connected with operational constraints of the application domain. Our approach is based on the off-line analysis of the feasibility of the deadline-driven dynamic scheduling that is used to schedule tasks inside one processor. This leads us to define the synchronized-product, a system of linear, constraints is automatically generated and then allows to calculate a maximum load of a group of tasks and then to verify their timeliness constraints. The communications, their timeliness verification and incorporation to the mapping problem is the second main contribution of this thesis. FInally, the global solving technique dealing with both task and communication aspects has been implemented and evaluated in the framework of the OASIS project in the LETI research center at the CEA/Saclay. (author) 96 refs.

  17. Incorporating Parallel Computing into the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    Science.gov (United States)

    Larson, Jay W.

    1998-01-01

    Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.

  18. I/O Parallelization for the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    Science.gov (United States)

    Lucchesi, Rob; Sawyer, W.; Takacs, L. L.; Lyster, P.; Zero, J.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center (GSFC) has developed the GEOS DAS, a data assimilation system that provides production support for NASA missions and will support NASA's Earth Observing System (EOS) in the coming years. The GEOS DAS will be used to provide background fields of meteorological quantities to EOS satellite instrument teams for use in their data algorithms as well as providing assimilated data sets for climate studies on decadal time scales. The DAO has been involved in prototyping parallel implementations of the GEOS DAS for a number of years and is now embarking on an effort to convert the production version from shared-memory parallelism to distributed-memory parallelism using the portable Message-Passing Interface (MPI). The GEOS DAS consists of two main components, an atmospheric General Circulation Model (GCM) and a Physical-space Statistical Analysis System (PSAS). The GCM operates on data that are stored on a regular grid while PSAS works with observational data that are scattered irregularly throughout the atmosphere. As a result, the two components have different data decompositions. The GCM is decomposed horizontally as a checkerboard with all vertical levels of each box existing on the same processing element(PE). The dynamical core of the GCM can also operate on a rotated grid, which requires communication-intensive grid transformations during GCM integration. PSAS groups observations on PEs in a more irregular and dynamic fashion.

  19. Nice Guys Finish Fast and Bad Guys Finish Last: Facilitatory vs. Inhibitory Interaction in Parallel Systems

    OpenAIRE

    Eidels, Ami; Houpt, Joseph W.; Altieri, Nicholas; Pei, Lei; Townsend, James T.

    2011-01-01

    Systems Factorial Technology is a powerful framework for investigating the fundamental properties of human information processing such as architecture (i.e., serial or parallel processing) and capacity (how processing efficiency is affected by increased workload). The Survivor Interaction Contrast (SIC) and the Capacity Coefficient are effective measures in determining these underlying properties, based on response-time data. Each of the different architectures, under the assumption of indepe...

  20. Massively Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems

    OpenAIRE

    Albutiu, Martina-Cezara; Kemper, Alfons; Neumann, Thomas

    2012-01-01

    Two emerging hardware trends will dominate the database system technology in the near future: increasing main memory capacities of several TB per server and massively parallel multi-core processing. Many algorithmic and control techniques in current database technology were devised for disk-based systems where I/O dominated the performance. In this work we take a new look at the well-known sort-merge join which, so far, has not been in the focus of research in scalable massively parallel mult...

  1. Local rollback for fault-tolerance in parallel computing systems

    Science.gov (United States)

    Blumrich, Matthias A [Yorktown Heights, NY; Chen, Dong [Yorktown Heights, NY; Gara, Alan [Yorktown Heights, NY; Giampapa, Mark E [Yorktown Heights, NY; Heidelberger, Philip [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Steinmacher-Burow, Burkhard [Boeblingen, DE; Sugavanam, Krishnan [Yorktown Heights, NY

    2012-01-24

    A control logic device performs a local rollback in a parallel super computing system. The super computing system includes at least one cache memory device. The control logic device determines a local rollback interval. The control logic device runs at least one instruction in the local rollback interval. The control logic device evaluates whether an unrecoverable condition occurs while running the at least one instruction during the local rollback interval. The control logic device checks whether an error occurs during the local rollback. The control logic device restarts the local rollback interval if the error occurs and the unrecoverable condition does not occur during the local rollback interval.

  2. Parallel file system performances in fusion data storage

    International Nuclear Information System (INIS)

    Iannone, F.; Podda, S.; Bracco, G.; Manduchi, G.; Maslennikov, A.; Migliori, S.; Wolkersdorfer, K.

    2012-01-01

    High I/O flow rates, up to 10 GB/s, are required in large fusion Tokamak experiments like ITER where hundreds of nodes store simultaneously large amounts of data acquired during the plasma discharges. Typical network topologies such as linear arrays (systolic), rings, meshes (2-D arrays), tori (3-D arrays), trees, butterfly, hypercube in combination with high speed data transports like Infiniband or 10G-Ethernet, are the main areas in which the effort to overcome the so-called parallel I/O bottlenecks is most focused. The high I/O flow rates were modelled in an emulated testbed based on the parallel file systems such as Lustre and GPFS, commonly used in High Performance Computing. The test runs on High Performance Computing–For Fusion (8640 cores) and ENEA CRESCO (3392 cores) supercomputers. Message Passing Interface based applications were developed to emulate parallel I/O on Lustre and GPFS using data archival and access solutions like MDSPLUS and Universal Access Layer. These methods of data storage organization are widely diffused in nuclear fusion experiments and are being developed within the EFDA Integrated Tokamak Modelling – Task Force; the authors tried to evaluate their behaviour in a realistic emulation setup.

  3. On program restructuring, scheduling, and communication for parallel processor systems

    Energy Technology Data Exchange (ETDEWEB)

    Polychronopoulos, Constantine D. [Univ. of Illinois, Urbana, IL (United States)

    1986-08-01

    This dissertation discusses several software and hardware aspects of program execution on large-scale, high-performance parallel processor systems. The issues covered are program restructuring, partitioning, scheduling and interprocessor communication, synchronization, and hardware design issues of specialized units. All this work was performed focusing on a single goal: to maximize program speedup, or equivalently, to minimize parallel execution time. Parafrase, a Fortran restructuring compiler was used to transform programs in a parallel form and conduct experiments. Two new program restructuring techniques are presented, loop coalescing and subscript blocking. Compile-time and run-time scheduling schemes are covered extensively. Depending on the program construct, these algorithms generate optimal or near-optimal schedules. For the case of arbitrarily nested hybrid loops, two optimal scheduling algorithms for dynamic and static scheduling are presented. Simulation results are given for a new dynamic scheduling algorithm. The performance of this algorithm is compared to that of self-scheduling. Techniques for program partitioning and minimization of interprocessor communication for idealized program models and for real Fortran programs are also discussed. The close relationship between scheduling, interprocessor communication, and synchronization becomes apparent at several points in this work. Finally, the impact of various types of overhead on program speedup and experimental results are presented.

  4. Parallel file system performances in fusion data storage

    Energy Technology Data Exchange (ETDEWEB)

    Iannone, F., E-mail: francesco.iannone@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R.ENEA Frascati, via E.Fermi, 45 - 00044 Frascati, Rome (Italy); Podda, S.; Bracco, G. [ENEA Information Communication Tecnologies, Lungotevere Thaon di Revel, 76 - 00196 Rome (Italy); Manduchi, G. [Associazione EURATOM-ENEA sulla Fusione, Consorzio RFX, Corso Stati Uniti, 4 - 35127 Padua (Italy); Maslennikov, A. [CASPUR Inter-University Consortium for the Application of Super-Computing for Research, via dei Tizii, 6b - 00185 Rome (Italy); Migliori, S. [ENEA Information Communication Tecnologies, Lungotevere Thaon di Revel, 76 - 00196 Rome (Italy); Wolkersdorfer, K. [Juelich Supercomputing Centre-FZJ, D-52425 Juelich (Germany)

    2012-12-15

    High I/O flow rates, up to 10 GB/s, are required in large fusion Tokamak experiments like ITER where hundreds of nodes store simultaneously large amounts of data acquired during the plasma discharges. Typical network topologies such as linear arrays (systolic), rings, meshes (2-D arrays), tori (3-D arrays), trees, butterfly, hypercube in combination with high speed data transports like Infiniband or 10G-Ethernet, are the main areas in which the effort to overcome the so-called parallel I/O bottlenecks is most focused. The high I/O flow rates were modelled in an emulated testbed based on the parallel file systems such as Lustre and GPFS, commonly used in High Performance Computing. The test runs on High Performance Computing-For Fusion (8640 cores) and ENEA CRESCO (3392 cores) supercomputers. Message Passing Interface based applications were developed to emulate parallel I/O on Lustre and GPFS using data archival and access solutions like MDSPLUS and Universal Access Layer. These methods of data storage organization are widely diffused in nuclear fusion experiments and are being developed within the EFDA Integrated Tokamak Modelling - Task Force; the authors tried to evaluate their behaviour in a realistic emulation setup.

  5. Parallel workflow tools to facilitate human brain MRI post-processing

    Directory of Open Access Journals (Sweden)

    Zaixu eCui

    2015-05-01

    Full Text Available Multi-modal magnetic resonance imaging (MRI techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues.

  6. Configuration Synthesis of Novel Series-Parallel Hybrid Transmission Systems with Eight-Bar Mechanisms

    Directory of Open Access Journals (Sweden)

    Ngoc-Tan Hoang

    2017-07-01

    Full Text Available This paper presents a design approach for the configuration synthesis of series-parallel hybrid transmissions with eight-bar mechanisms. The final design consists of 54 mechanisms with eight members and twelve joints including a simple planetary gear train (PGT and a double planet PGT. Then, by using the techniques of power and clutch arrangements, new series-parallel hybrid transmissions are synthesized. The power arrangement process generates 97 clutchless hybrid systems. The clutch arrangement process generates 100 corresponding series-parallel transmissions. To demonstrate the feasibility of the synthesized configurations, a new hybrid transmission is selected as an example to analyze the working principle with operation modes and power flow paths.

  7. Parallel Block Structured Adaptive Mesh Refinement on Graphics Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Beckingsale, D. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Gaudin, W. P. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Hornung, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gunney, B. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gamblin, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herdman, J. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Jarvis, S. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom)

    2014-11-17

    Block-structured adaptive mesh refinement is a technique that can be used when solving partial differential equations to reduce the number of zones necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a native GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an eight-node cluster, and over four thousand nodes of Oak Ridge National Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and has been scaled to over four thousand GPUs using a combination of MPI and CUDA.

  8. Parallelization and implementation of approximate root isolation for nonlinear system by Monte Carlo

    Science.gov (United States)

    Khosravi, Ebrahim

    1998-12-01

    This dissertation solves a fundamental problem of isolating the real roots of nonlinear systems of equations by Monte-Carlo that were published by Bush Jones. This algorithm requires only function values and can be applied readily to complicated systems of transcendental functions. The implementation of this sequential algorithm provides scientists with the means to utilize function analysis in mathematics or other fields of science. The algorithm, however, is so computationally intensive that the system is limited to a very small set of variables, and this will make it unfeasible for large systems of equations. Also a computational technique was needed for investigating a metrology of preventing the algorithm structure from converging to the same root along different paths of computation. The research provides techniques for improving the efficiency and correctness of the algorithm. The sequential algorithm for this technique was corrected and a parallel algorithm is presented. This parallel method has been formally analyzed and is compared with other known methods of root isolation. The effectiveness, efficiency, enhanced overall performance of the parallel processing of the program in comparison to sequential processing is discussed. The message passing model was used for this parallel processing, and it is presented and implemented on Intel/860 MIMD architecture. The parallel processing proposed in this research has been implemented in an ongoing high energy physics experiment: this algorithm has been used to track neutrinoes in a super K detector. This experiment is located in Japan, and data can be processed on-line or off-line locally or remotely.

  9. ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers.

    Science.gov (United States)

    Xing, Yuting; Wu, Chengkun; Yang, Xi; Wang, Wei; Zhu, En; Yin, Jianping

    2018-04-27

    A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address this challenge by introducing parallel processing on a supercomputer. We developed paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer. It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of named entity recognition tasks as demonstration. Results show that, in most cases, the processing efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical text mining besides NER.

  10. Co-simulation of dynamic systems in parallel and serial model configurations

    International Nuclear Information System (INIS)

    Sweafford, Trevor; Yoon, Hwan Sik

    2013-01-01

    Recent advancement in simulation software and computation hardware make it realizable to simulate complex dynamic systems comprised of multiple submodels developed in different modeling languages. The so-called co-simulation enables one to study various aspects of a complex dynamic system with heterogeneous submodels in a cost-effective manner. Among several different model configurations for co-simulation, synchronized parallel configuration is regarded to expedite the simulation process by simulation multiple sub models concurrently on a multi core processor. In this paper, computational accuracies as well as computation time are studied for three different co-simulation frameworks : integrated, serial, and parallel. for this purpose, analytical evaluations of the three different methods are made using the explicit Euler method and then they are applied to two-DOF mass-spring systems. The result show that while the parallel simulation configuration produces the same accurate results as the integrated configuration, results of the serial configuration, results of the serial configuration show a slight deviation. it is also shown that the computation time can be reduced by running simulation in the parallel configuration. Therefore, it can be concluded that the synchronized parallel simulation methodology is the best for both simulation accuracy and time efficiency.

  11. Optical technologies for data communication in large parallel systems

    International Nuclear Information System (INIS)

    Ritter, M B; Vlasov, Y; Kash, J A; Benner, A

    2011-01-01

    Large, parallel systems have greatly aided scientific computation and data collection, but performance scaling now relies on chip and system-level parallelism. This has happened because power density limits have caused processor frequency growth to stagnate, driving the new multi-core architecture paradigm, which would seem to provide generations of performance increases as transistors scale. However, this paradigm will be constrained by electrical I/O bandwidth limits; first off the processor card, then off the processor module itself. We will present best-estimates of these limits, then show how optical technologies can help provide more bandwidth to allow continued system scaling. We will describe the current status of optical transceiver technology which is already being used to exceed off-board electrical bandwidth limits, then present work on silicon nanophotonic transceivers and 3D integration technologies which, taken together, promise to allow further increases in off-module and off-card bandwidth. Finally, we will show estimated limits of nanophotonic links and discuss breakthroughs that are needed for further progress, and will speculate on whether we will reach Exascale-class machine performance at affordable powers.

  12. Optical technologies for data communication in large parallel systems

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, M B; Vlasov, Y; Kash, J A [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States); Benner, A, E-mail: mritter@us.ibm.com [IBM Poughkeepsie, Poughkeepsie, NY (United States)

    2011-01-15

    Large, parallel systems have greatly aided scientific computation and data collection, but performance scaling now relies on chip and system-level parallelism. This has happened because power density limits have caused processor frequency growth to stagnate, driving the new multi-core architecture paradigm, which would seem to provide generations of performance increases as transistors scale. However, this paradigm will be constrained by electrical I/O bandwidth limits; first off the processor card, then off the processor module itself. We will present best-estimates of these limits, then show how optical technologies can help provide more bandwidth to allow continued system scaling. We will describe the current status of optical transceiver technology which is already being used to exceed off-board electrical bandwidth limits, then present work on silicon nanophotonic transceivers and 3D integration technologies which, taken together, promise to allow further increases in off-module and off-card bandwidth. Finally, we will show estimated limits of nanophotonic links and discuss breakthroughs that are needed for further progress, and will speculate on whether we will reach Exascale-class machine performance at affordable powers.

  13. The Glasgow Parallel Reduction Machine: Programming Shared-memory Many-core Systems using Parallel Task Composition

    Directory of Open Access Journals (Sweden)

    Ashkan Tousimojarad

    2013-12-01

    Full Text Available We present the Glasgow Parallel Reduction Machine (GPRM, a novel, flexible framework for parallel task-composition based many-core programming. We allow the programmer to structure programs into task code, written as C++ classes, and communication code, written in a restricted subset of C++ with functional semantics and parallel evaluation. In this paper we discuss the GPRM, the virtual machine framework that enables the parallel task composition approach. We focus the discussion on GPIR, the functional language used as the intermediate representation of the bytecode running on the GPRM. Using examples in this language we show the flexibility and power of our task composition framework. We demonstrate the potential using an implementation of a merge sort algorithm on a 64-core Tilera processor, as well as on a conventional Intel quad-core processor and an AMD 48-core processor system. We also compare our framework with OpenMP tasks in a parallel pointer chasing algorithm running on the Tilera processor. Our results show that the GPRM programs outperform the corresponding OpenMP codes on all test platforms, and can greatly facilitate writing of parallel programs, in particular non-data parallel algorithms such as reductions.

  14. Online measurement for geometrical parameters of wheel set based on structure light and CUDA parallel processing

    Science.gov (United States)

    Wu, Kaihua; Shao, Zhencheng; Chen, Nian; Wang, Wenjie

    2018-01-01

    The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. Geometrical parameters mainly include flange thickness and flange height. Line structure laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD and CUDA parallel processing unit. The image acquisition was fulfilled by hardware interrupt mode. A high efficiency parallel segmentation algorithm based on CUDA was proposed. The algorithm firstly divides the image into smaller squares, and extracts the squares of the target by fusion of k_means and STING clustering image segmentation algorithm. Segmentation time is less than 0.97ms. A considerable acceleration ratio compared with the CPU serial calculation was obtained, which greatly improved the real-time image processing capacity. When wheel set was running in a limited speed, the system placed alone railway line can measure the geometrical parameters automatically. The maximum measuring speed is 120km/h.

  15. Information-Limited Parallel Processing in Difficult Heterogeneous Covert Visual Search

    Science.gov (United States)

    Dosher, Barbara Anne; Han, Songmei; Lu, Zhong-Lin

    2010-01-01

    Difficult visual search is often attributed to time-limited serial attention operations, although neural computations in the early visual system are parallel. Using probabilistic search models (Dosher, Han, & Lu, 2004) and a full time-course analysis of the dynamics of covert visual search, we distinguish unlimited capacity parallel versus serial…

  16. Processing optimization with parallel computing for the J-PET scanner

    Directory of Open Access Journals (Sweden)

    Krzemień Wojciech

    2015-12-01

    Full Text Available The Jagiellonian Positron Emission Tomograph (J-PET collaboration is developing a prototype time of flight (TOF-positron emission tomograph (PET detector based on long polymer scintillators. This novel approach exploits the excellent time properties of the plastic scintillators, which permit very precise time measurements. The very fast field programmable gate array (FPGA-based front-end electronics and the data acquisition system, as well as low- and high-level reconstruction algorithms were specially developed to be used with the J-PET scanner. The TOF-PET data processing and reconstruction are time and resource demanding operations, especially in the case of a large acceptance detector that works in triggerless data acquisition mode. In this article, we discuss the parallel computing methods applied to optimize the data processing for the J-PET detector. We begin with general concepts of parallel computing and then we discuss several applications of those techniques in the J-PET data processing.

  17. Architecture of top down, parallel pattern recognition system TOPS and its application to the MR head images

    International Nuclear Information System (INIS)

    Matsunoshita, Jun-ichi; Akamatsu, Shigeo; Yamamoto, Shinji.

    1993-01-01

    This paper describes about the system architecture of a new image recognition system TOPS (top-down parallel pattern recognition system), and its application to the automatic extraction of brain organs (cerebrum, cerebellum, brain stem) from 3D-MRI images. Main concepts of TOPS are as follows: (1) TOPS is the top-down type recognition system, which allows parallel models in each level of hierarchy structure. (2) TOPS allows parallel image processing algorithms for one purpose (for example, for extraction of one special organ). This results in multiple candidates for one purpose, and judgment to get unique solution for it will be made at upper level of hierarchy structure. (author)

  18. A new model for reliability optimization of series-parallel systems with non-homogeneous components

    International Nuclear Information System (INIS)

    Feizabadi, Mohammad; Jahromi, Abdolhamid Eshraghniaye

    2017-01-01

    In discussions related to reliability optimization using redundancy allocation, one of the structures that has attracted the attention of many researchers, is series-parallel structure. In models previously presented for reliability optimization of series-parallel systems, there is a restricting assumption based on which all components of a subsystem must be homogeneous. This constraint limits system designers in selecting components and prevents achieving higher levels of reliability. In this paper, a new model is proposed for reliability optimization of series-parallel systems, which makes possible the use of non-homogeneous components in each subsystem. As a result of this flexibility, the process of supplying system components will be easier. To solve the proposed model, since the redundancy allocation problem (RAP) belongs to the NP-hard class of optimization problems, a genetic algorithm (GA) is developed. The computational results of the designed GA are indicative of high performance of the proposed model in increasing system reliability and decreasing costs. - Highlights: • In this paper, a new model is proposed for reliability optimization of series-parallel systems. • In the previous models, there is a restricting assumption based on which all components of a subsystem must be homogeneous. • The presented model provides a possibility for the subsystems’ components to be non- homogeneous in the required conditions. • The computational results demonstrate the high performance of the proposed model in improving reliability and reducing costs.

  19. Massively Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems

    OpenAIRE

    Martina-Cezara Albutiu, Alfons Kemper, Thomas Neumann

    2012-01-01

    Two emerging hardware trends will dominate the database system technology in the near future: increasing main memory capacities of several TB per server and massively parallel multi-core processing. Many algorithmic and control techniques in current database technology were devised for disk-based systems where I/O dominated the performance. In this work we take a new look at the well-known sort-merge join which, so far, has not been in the focus of research ...

  20. Geospatial Applications on Different Parallel and Distributed Systems in enviroGRIDS Project

    Science.gov (United States)

    Rodila, D.; Bacu, V.; Gorgan, D.

    2012-04-01

    The execution of Earth Science applications and services on parallel and distributed systems has become a necessity especially due to the large amounts of Geospatial data these applications require and the large geographical areas they cover. The parallelization of these applications comes to solve important performance issues and can spread from task parallelism to data parallelism as well. Parallel and distributed architectures such as Grid, Cloud, Multicore, etc. seem to offer the necessary functionalities to solve important problems in the Earth Science domain: storing, distribution, management, processing and security of Geospatial data, execution of complex processing through task and data parallelism, etc. A main goal of the FP7-funded project enviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is the development of a Spatial Data Infrastructure targeting this catchment region but also the development of standardized and specialized tools for storing, analyzing, processing and visualizing the Geospatial data concerning this area. For achieving these objectives, the enviroGRIDS deals with the execution of different Earth Science applications, such as hydrological models, Geospatial Web services standardized by the Open Geospatial Consortium (OGC) and others, on parallel and distributed architecture to maximize the obtained performance. This presentation analysis the integration and execution of Geospatial applications on different parallel and distributed architectures and the possibility of choosing among these architectures based on application characteristics and user requirements through a specialized component. Versions of the proposed platform have been used in enviroGRIDS project on different use cases such as: the execution of Geospatial Web services both on Web and Grid infrastructures [2] and the execution of SWAT hydrological models both on Grid and Multicore architectures [3]. The current

  1. Engineering-Based Thermal CFD Simulations on Massive Parallel Systems

    KAUST Repository

    Frisch, Jé rô me; Mundani, Ralf-Peter; Rank, Ernst; van Treeck, Christoph

    2015-01-01

    The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers

  2. Massively Parallel Signal Processing using the Graphics Processing Unit for Real-Time Brain-Computer Interface Feature Extraction.

    Science.gov (United States)

    Wilson, J Adam; Williams, Justin C

    2009-01-01

    The clock speeds of modern computer processors have nearly plateaued in the past 5 years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card [graphics processing unit (GPU)] was developed for real-time neural signal processing of a brain-computer interface (BCI). The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter), followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a central processing unit-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels of 250 ms in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.

  3. [PVFS 2000: An operational parallel file system for Beowulf

    Science.gov (United States)

    Ligon, Walt

    2004-01-01

    The approach has been to develop Parallel Virtual File System version 2 (PVFS2) , retaining the basic philosophy of the original file system but completely rewriting the code. It shows the architecture of the server and client components. BMI - BMI is the network abstraction layer. It is designed with a common driver and modules for each protocol supported. The interface is non-blocking, and provides mechanisms for optimizations including pinning user buffers. Currently TCP/IP and GM(Myrinet) modules have been implemented. Trove -Trove is the storage abstraction layer. It provides for storing both data spaces and name/value pairs. Trove can also be implemented using different underlying storage mechanisms including native files, raw disk partitions, SQL and other databases. The current implementation uses native files for data spaces and Berkeley db for name/value pairs.

  4. Ground state of the parallel double quantum dot system.

    Science.gov (United States)

    Zitko, Rok; Mravlje, Jernej; Haule, Kristjan

    2012-02-10

    We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.

  5. STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB

    KAUST Repository

    Klingbeil, G.

    2011-02-25

    Motivation: The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB. Results: The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user\\'s models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2. © The Author 2011. Published by Oxford University Press. All rights reserved.

  6. Dynamic CT perfusion image data compression for efficient parallel processing.

    Science.gov (United States)

    Barros, Renan Sales; Olabarriaga, Silvia Delgado; Borst, Jordi; van Walderveen, Marianne A A; Posthuma, Jorrit S; Streekstra, Geert J; van Herk, Marcel; Majoie, Charles B L M; Marquering, Henk A

    2016-03-01

    The increasing size of medical imaging data, in particular time series such as CT perfusion (CTP), requires new and fast approaches to deliver timely results for acute care. Cloud architectures based on graphics processing units (GPUs) can provide the processing capacity required for delivering fast results. However, the size of CTP datasets makes transfers to cloud infrastructures time-consuming and therefore not suitable in acute situations. To reduce this transfer time, this work proposes a fast and lossless compression algorithm for CTP data. The algorithm exploits redundancies in the temporal dimension and keeps random read-only access to the image elements directly from the compressed data on the GPU. To the best of our knowledge, this is the first work to present a GPU-ready method for medical image compression with random access to the image elements from the compressed data.

  7. Category Specific Spatial Dissociations of Parallel Processes Underlying Visual Naming

    OpenAIRE

    Conner, Christopher R.; Chen, Gang; Pieters, Thomas A.; Tandon, Nitin

    2013-01-01

    The constituent elements and dynamics of the networks responsible for word production are a central issue to understanding human language. Of particular interest is their dependency on lexical category, particularly the possible segregation of nouns and verbs into separate processing streams. We applied a novel mixed-effects, multilevel analysis to electrocorticographic data collected from 19 patients (1942 electrodes) to examine the activity of broadly disseminated cortical networks during t...

  8. A parallel process growth model of avoidant personality disorder symptoms and personality traits.

    Science.gov (United States)

    Wright, Aidan G C; Pincus, Aaron L; Lenzenweger, Mark F

    2013-07-01

    Avoidant personality disorder (AVPD), like other personality disorders, has historically been construed as a highly stable disorder. However, results from a number of longitudinal studies have found that the symptoms of AVPD demonstrate marked change over time. Little is known about which other psychological systems are related to this change. Although cross-sectional research suggests a strong relationship between AVPD and personality traits, no work has examined the relationship of their change trajectories. The current study sought to establish the longitudinal relationship between AVPD and basic personality traits using parallel process growth curve modeling. Parallel process growth curve modeling was applied to the trajectories of AVPD and basic personality traits from the Longitudinal Study of Personality Disorders (Lenzenweger, M. F., 2006, The longitudinal study of personality disorders: History, design considerations, and initial findings. Journal of Personality Disorders, 20, 645-670. doi:10.1521/pedi.2006.20.6.645), a naturalistic, prospective, multiwave, longitudinal study of personality disorder, temperament, and normal personality. The focus of these analyses is on the relationship between the rates of change in both AVPD symptoms and basic personality traits. AVPD symptom trajectories demonstrated significant negative relationships with the trajectories of interpersonal dominance and affiliation, and a significant positive relationship to rates of change in neuroticism. These results provide some of the first compelling evidence that trajectories of change in PD symptoms and personality traits are linked. These results have important implications for the ways in which temporal stability is conceptualized in AVPD specifically, and PD in general.

  9. A Parallel Process Growth Model of Avoidant Personality Disorder Symptoms and Personality Traits

    Science.gov (United States)

    Wright, Aidan G. C.; Pincus, Aaron L.; Lenzenweger, Mark F.

    2012-01-01

    Background Avoidant personality disorder (AVPD), like other personality disorders, has historically been construed as a highly stable disorder. However, results from a number of longitudinal studies have found that the symptoms of AVPD demonstrate marked change over time. Little is known about which other psychological systems are related to this change. Although cross-sectional research suggests a strong relationship between AVPD and personality traits, no work has examined the relationship of their change trajectories. The current study sought to establish the longitudinal relationship between AVPD and basic personality traits using parallel process growth curve modeling. Methods Parallel process growth curve modeling was applied to the trajectories of AVPD and basic personality traits from the Longitudinal Study of Personality Disorders (Lenzenweger, 2006), a naturalistic, prospective, multiwave, longitudinal study of personality disorder, temperament, and normal personality. The focus of these analyses is on the relationship between the rates of change in both AVPD symptoms and basic personality traits. Results AVPD symptom trajectories demonstrated significant negative relationships with the trajectories of interpersonal dominance and affiliation, and a significant positive relationship to rates of change in neuroticism. Conclusions These results provide some of the first compelling evidence that trajectories of change in PD symptoms and personality traits are linked. These results have important implications for the ways in which temporal stability is conceptualized in AVPD specifically, and PD in general. PMID:22506627

  10. AdiosStMan: Parallelizing Casacore Table Data System using Adaptive IO System

    Science.gov (United States)

    Wang, R.; Harris, C.; Wicenec, A.

    2016-07-01

    In this paper, we investigate the Casacore Table Data System (CTDS) used in the casacore and CASA libraries, and methods to parallelize it. CTDS provides a storage manager plugin mechanism for third-party developers to design and implement their own CTDS storage managers. Having this in mind, we looked into various storage backend techniques that can possibly enable parallel I/O for CTDS by implementing new storage managers. After carrying on benchmarks showing the excellent parallel I/O throughput of the Adaptive IO System (ADIOS), we implemented an ADIOS based parallel CTDS storage manager. We then applied the CASA MSTransform frequency split task to verify the ADIOS Storage Manager. We also ran a series of performance tests to examine the I/O throughput in a massively parallel scenario.

  11. Connectionism, parallel constraint satisfaction processes, and gestalt principles: (re) introducing cognitive dynamics to social psychology.

    Science.gov (United States)

    Read, S J; Vanman, E J; Miller, L C

    1997-01-01

    We argue that recent work in connectionist modeling, in particular the parallel constraint satisfaction processes that are central to many of these models, has great importance for understanding issues of both historical and current concern for social psychologists. We first provide a brief description of connectionist modeling, with particular emphasis on parallel constraint satisfaction processes. Second, we examine the tremendous similarities between parallel constraint satisfaction processes and the Gestalt principles that were the foundation for much of modem social psychology. We propose that parallel constraint satisfaction processes provide a computational implementation of the principles of Gestalt psychology that were central to the work of such seminal social psychologists as Asch, Festinger, Heider, and Lewin. Third, we then describe how parallel constraint satisfaction processes have been applied to three areas that were key to the beginnings of modern social psychology and remain central today: impression formation and causal reasoning, cognitive consistency (balance and cognitive dissonance), and goal-directed behavior. We conclude by discussing implications of parallel constraint satisfaction principles for a number of broader issues in social psychology, such as the dynamics of social thought and the integration of social information within the narrow time frame of social interaction.

  12. Enabling parallel simulation of large-scale HPC network systems

    International Nuclear Information System (INIS)

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; Carns, Philip

    2016-01-01

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks used in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations

  13. Optimal task mapping in safety-critical real-time parallel systems

    International Nuclear Information System (INIS)

    Aussagues, Ch.

    1998-01-01

    This PhD thesis is dealing with the correct design of safety-critical real-time parallel systems. Such systems constitutes a fundamental part of high-performance systems for command and control that can be found in the nuclear domain or more generally in parallel embedded systems. The verification of their temporal correctness is the core of this thesis. our contribution is mainly in the following three points: the analysis and extension of a programming model for such real-time parallel systems; the proposal of an original method based on a new operator of synchronized product of state machines task-graphs; the validation of the approach by its implementation and evaluation. The work addresses particularly the main problem of optimal task mapping on a parallel architecture, such that the temporal constraints are globally guaranteed, i.e. the timeliness property is valid. The results incorporate also optimally criteria for the sizing and correct dimensioning of a parallel system, for instance in the number of processing elements. These criteria are connected with operational constraints of the application domain. Our approach is based on the off-line analysis of the feasibility of the deadline-driven dynamic scheduling that is used to schedule tasks inside one processor. This leads us to define the synchronized-product, a system of linear, constraints is automatically generated and then allows to calculate a maximum load of a group of tasks and then to verify their timeliness constraints. The communications, their timeliness verification and incorporation to the mapping problem is the second main contribution of this thesis. FInally, the global solving technique dealing with both task and communication aspects has been implemented and evaluated in the framework of the OASIS project in the LETI research center at the CEA/Saclay. (author)

  14. A multi-transputer system for parallel Monte Carlo simulations of extensive air showers

    International Nuclear Information System (INIS)

    Gils, H.J.; Heck, D.; Oehlschlaeger, J.; Schatz, G.; Thouw, T.

    1989-01-01

    A multiprocessor computer system has been brought into operation at the Kernforschungszentrum Karlsruhe. It is dedicated to Monte Carlo simulations of extensive air showers induced by ultra-high energy cosmic rays. The architecture consists of two independently working VMEbus systems each with a 68020 microprocessor as host computer and twelve T800 transputers for parallel processing. The two systems are linked via Ethernet for data exchange. The T800 transputers are equipped with 4 Mbyte RAM each, sufficient to run rather large codes. The host computers are operated under UNIX 5.3. On the transputers compilers for PARALLEL FORTRAN, C, and PASCAL are available. The simple modular architecture of this parallel computer reflects the single purpose for which it is intended. The hardware of the multiprocessor computer is described as well as the way how the user software is handled and distributed to the 24 working processors. The performance of the parallel computer is demonstrated by well-known benchmarks and by realistic Monte Carlo simulations of air showers. Comparisons with other types of microprocessors and with large universal computers are made. It is demonstrated that a cost reduction by more than a factor of 20 is achieved by this system as compared to universal computer. (orig.)

  15. Massively parallel signal processing using the graphics processing unit for real-time brain-computer interface feature extraction

    Directory of Open Access Journals (Sweden)

    J. Adam Wilson

    2009-07-01

    Full Text Available The clock speeds of modern computer processors have nearly plateaued in the past five years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card (GPU was developed for real-time neural signal processing of a brain-computer interface (BCI. The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter, followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally-intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a CPU-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.

  16. Ordering schemes for parallel processing of certain mesh problems

    International Nuclear Information System (INIS)

    O'Leary, D.

    1984-01-01

    In this work, some ordering schemes for mesh points are presented which enable algorithms such as the Gauss-Seidel or SOR iteration to be performed efficiently for the nine-point operator finite difference method on computers consisting of a two-dimensional grid of processors. Convergence results are presented for the discretization of u /SUB xx/ + u /SUB yy/ on a uniform mesh over a square, showing that the spectral radius of the iteration for these orderings is no worse than that for the standard row by row ordering of mesh points. Further applications of these mesh point orderings to network problems, more general finite difference operators, and picture processing problems are noted

  17. Process-Oriented Parallel Programming with an Application to Data-Intensive Computing

    OpenAIRE

    Givelberg, Edward

    2014-01-01

    We introduce process-oriented programming as a natural extension of object-oriented programming for parallel computing. It is based on the observation that every class of an object-oriented language can be instantiated as a process, accessible via a remote pointer. The introduction of process pointers requires no syntax extension, identifies processes with programming objects, and enables processes to exchange information simply by executing remote methods. Process-oriented programming is a h...

  18. Initial Assessment of Parallelization of Monte Carlo Calculation using Graphics Processing Units

    International Nuclear Information System (INIS)

    Choi, Sung Hoon; Joo, Han Gyu

    2009-01-01

    Monte Carlo (MC) simulation is an effective tool for calculating neutron transports in complex geometry. However, because Monte Carlo simulates each neutron behavior one by one, it takes a very long computing time if enough neutrons are used for high precision of calculation. Accordingly, methods that reduce the computing time are required. In a Monte Carlo code, parallel calculation is well-suited since it simulates the behavior of each neutron independently and thus parallel computation is natural. The parallelization of the Monte Carlo codes, however, was done using multi CPUs. By the global demand for high quality 3D graphics, the Graphics Processing Unit (GPU) has developed into a highly parallel, multi-core processor. This parallel processing capability of GPUs can be available to engineering computing once a suitable interface is provided. Recently, NVIDIA introduced CUDATM, a general purpose parallel computing architecture. CUDA is a software environment that allows developers to manage GPU using C/C++ or other languages. In this work, a GPU-based Monte Carlo is developed and the initial assessment of it parallel performance is investigated

  19. The role of parallelism in the real-time processing of anaphora.

    Science.gov (United States)

    Poirier, Josée; Walenski, Matthew; Shapiro, Lewis P

    2012-06-01

    Parallelism effects refer to the facilitated processing of a target structure when it follows a similar, parallel structure. In coordination, a parallelism-related conjunction triggers the expectation that a second conjunct with the same structure as the first conjunct should occur. It has been proposed that parallelism effects reflect the use of the first structure as a template that guides the processing of the second. In this study, we examined the role of parallelism in real-time anaphora resolution by charting activation patterns in coordinated constructions containing anaphora, Verb-Phrase Ellipsis (VPE) and Noun-Phrase Traces (NP-traces). Specifically, we hypothesised that an expectation of parallelism would incite the parser to assume a structure similar to the first conjunct in the second, anaphora-containing conjunct. The speculation of a similar structure would result in early postulation of covert anaphora. Experiment 1 confirms that following a parallelism-related conjunction, first-conjunct material is activated in the second conjunct. Experiment 2 reveals that an NP-trace in the second conjunct is posited immediately where licensed, which is earlier than previously reported in the literature. In light of our findings, we propose an intricate relation between structural expectations and anaphor resolution.

  20. Reconstruction for Time-Domain In Vivo EPR 3D Multigradient Oximetric Imaging—A Parallel Processing Perspective

    Directory of Open Access Journals (Sweden)

    Christopher D. Dharmaraj

    2009-01-01

    Full Text Available Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23×23×23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet. The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.

  1. Reconstruction for time-domain in vivo EPR 3D multigradient oximetric imaging--a parallel processing perspective.

    Science.gov (United States)

    Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C

    2009-01-01

    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.

  2. multiPDEVS: A Parallel Multicomponent System Specification Formalism

    Directory of Open Access Journals (Sweden)

    Damien Foures

    2018-01-01

    Full Text Available Based on multiDEVS formalism, we introduce multiPDEVS, a parallel and nonmodular formalism for discrete event system specification. This formalism provides combined advantages of PDEVS and multiDEVS approaches, such as excellent simulation capabilities for simultaneously scheduled events and components able to influence each other using exclusively their state transitions. We next show the soundness of the formalism by giving a construction showing that any multiPDEVS model is equivalent to a PDEVS atomic model. We then present the simulation procedure associated, usually called abstract simulator. As a well-adapted formalism to express cellular automata, we finally propose to compare an implementation of multiPDEVS formalism with a more classical Cell-DEVS implementation through a fire spread application.

  3. Optimum fuel allocation in parallel steam generator systems

    International Nuclear Information System (INIS)

    Bollettini, U.; Cangioli, E.; Cerri, G.; Rome Univ. 'La Sapienza'; Trento Univ.

    1991-01-01

    An optimization procedure was developed to allocate fuels into parallel steam generators. The procedure takes into account the level of performance deterioration connected with the loading history (fossil fuel allocation and maintenance) of each steam generator. The optimization objective function is the system hourly cost, overall steam demand being satisfied. Costs are due to fuel and electric power supply and to plant depreciation and maintenance as well. In order to easily updata the state of each steam generator, particular care was put in the general formulation of the steam production function by adopting a special efficiency-load curve description based on a deterioration scaling parameter. The influence of the characteristic time interval length on the optimum operation result is investigated. A special implementation of the method based on minimum cost paths is suggested

  4. Adapting high-level language programs for parallel processing using data flow

    Science.gov (United States)

    Standley, Hilda M.

    1988-01-01

    EASY-FLOW, a very high-level data flow language, is introduced for the purpose of adapting programs written in a conventional high-level language to a parallel environment. The level of parallelism provided is of the large-grained variety in which parallel activities take place between subprograms or processes. A program written in EASY-FLOW is a set of subprogram calls as units, structured by iteration, branching, and distribution constructs. A data flow graph may be deduced from an EASY-FLOW program.

  5. Parallel processing implementation for the coupled transport of photons and electrons using OpenMP

    Science.gov (United States)

    Doerner, Edgardo

    2016-05-01

    In this work the use of OpenMP to implement the parallel processing of the Monte Carlo (MC) simulation of the coupled transport for photons and electrons is presented. This implementation was carried out using a modified EGSnrc platform which enables the use of the Microsoft Visual Studio 2013 (VS2013) environment, together with the developing tools available in the Intel Parallel Studio XE 2015 (XE2015). The performance study of this new implementation was carried out in a desktop PC with a multi-core CPU, taking as a reference the performance of the original platform. The results were satisfactory, both in terms of scalability as parallelization efficiency.

  6. Parallel processes: using motivational interviewing as an implementation coaching strategy.

    Science.gov (United States)

    Hettema, Jennifer E; Ernst, Denise; Williams, Jessica Roberts; Miller, Kristin J

    2014-07-01

    In addition to its clinical efficacy as a communication style for strengthening motivation and commitment to change, motivational interviewing (MI) has been hypothesized to be a potential tool for facilitating evidence-based practice adoption decisions. This paper reports on the rationale and content of MI-based implementation coaching Webinars that, as part of a larger active dissemination strategy, were found to be more effective than passive dissemination strategies at promoting adoption decisions among behavioral health and health providers and administrators. The Motivational Interviewing Treatment Integrity scale (MITI 3.1.1) was used to rate coaching Webinars from 17 community behavioral health organizations and 17 community health centers. The MITI coding system was found to be applicable to the coaching Webinars, and raters achieved high levels of agreement on global and behavior count measurements of fidelity to MI. Results revealed that implementation coaches maintained fidelity to the MI model, exceeding competency benchmarks for almost all measures. Findings suggest that it is feasible to implement MI as a coaching tool.

  7. Parallelization of Droplet Microfluidic Systems for the Sustainable Production of Micro-Reactors at Industrial Scale

    KAUST Repository

    Conchouso Gonzalez, David

    2017-01-01

    fluid mechanics and limitations on the manufacturing capacity have constrained these works to explore only in-plane parallelization. This thesis investigates a three-dimensional parallelization by proposing a microfluidic system that is comprised of a

  8. When fast logic meets slow belief: Evidence for a parallel-processing model of belief bias

    OpenAIRE

    Trippas, Dries; Thompson, Valerie A.; Handley, Simon J.

    2016-01-01

    Two experiments pitted the default-interventionist account of belief bias against a parallel-processing model. According to the former, belief bias occurs because a fast, belief-based evaluation of the conclusion pre-empts a working-memory demanding logical analysis. In contrast, according to the latter both belief-based and logic-based responding occur in parallel. Participants were given deductive reasoning problems of variable complexity and instructed to decide whether the conclusion was ...

  9. The parallel processing of EGS4 code on distributed memory scalar parallel computer:Intel Paragon XP/S15-256

    Energy Technology Data Exchange (ETDEWEB)

    Takemiya, Hiroshi; Ohta, Hirofumi; Honma, Ichirou

    1996-03-01

    The parallelization of Electro-Magnetic Cascade Monte Carlo Simulation Code, EGS4 on distributed memory scalar parallel computer: Intel Paragon XP/S15-256 is described. EGS4 has the feature that calculation time for one incident particle is quite different from each other because of the dynamic generation of secondary particles and different behavior of each particle. Granularity for parallel processing, parallel programming model and the algorithm of parallel random number generation are discussed and two kinds of method, each of which allocates particles dynamically or statically, are used for the purpose of realizing high speed parallel processing of this code. Among four problems chosen for performance evaluation, the speedup factors for three problems have been attained to nearly 100 times with 128 processor. It has been found that when both the calculation time for each incident particles and its dispersion are large, it is preferable to use dynamic particle allocation method which can average the load for each processor. And it has also been found that when they are small, it is preferable to use static particle allocation method which reduces the communication overhead. Moreover, it is pointed out that to get the result accurately, it is necessary to use double precision variables in EGS4 code. Finally, the workflow of program parallelization is analyzed and tools for program parallelization through the experience of the EGS4 parallelization are discussed. (author).

  10. Decreasing Data Analytics Time: Hybrid Architecture MapReduce-Massive Parallel Processing for a Smart Grid

    Directory of Open Access Journals (Sweden)

    Abdeslam Mehenni

    2017-03-01

    Full Text Available As our populations grow in a world of limited resources enterprise seek ways to lighten our load on the planet. The idea of modifying consumer behavior appears as a foundation for smart grids. Enterprise demonstrates the value available from deep analysis of electricity consummation histories, consumers’ messages, and outage alerts, etc. Enterprise mines massive structured and unstructured data. In a nutshell, smart grids result in a flood of data that needs to be analyzed, for better adjust to demand and give customers more ability to delve into their power consumption. Simply put, smart grids will increasingly have a flexible data warehouse attached to them. The key driver for the adoption of data management strategies is clearly the need to handle and analyze the large amounts of information utilities are now faced with. New approaches to data integration are nauseating moment; Hadoop is in fact now being used by the utility to help manage the huge growth in data whilst maintaining coherence of the Data Warehouse. In this paper we define a new Meter Data Management System Architecture repository that differ with three leaders MDMS, where we use MapReduce programming model for ETL and Parallel DBMS in Query statements(Massive Parallel Processing MPP.

  11. Issues in developing parallel iterative algorithms for solving partial differential equations on a (transputer-based) distributed parallel computing system

    International Nuclear Information System (INIS)

    Rajagopalan, S.; Jethra, A.; Khare, A.N.; Ghodgaonkar, M.D.; Srivenkateshan, R.; Menon, S.V.G.

    1990-01-01

    Issues relating to implementing iterative procedures, for numerical solution of elliptic partial differential equations, on a distributed parallel computing system are discussed. Preliminary investigations show that a speed-up of about 3.85 is achievable on a four transputer pipeline network. (author). 2 figs., 3 a ppendixes., 7 refs

  12. Study on Parallel Processing for Efficient Flexible Multibody Analysis based on Subsystem Synthesis Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jong-Boo; Song, Hajun; Kim, Sung-Soo [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2017-06-15

    Flexible multibody simulations are widely used in the industry to design mechanical systems. In flexible multibody dynamics, deformation coordinates are described either relatively in the body reference frame that is floating in the space or in the inertial reference frame. Moreover, these deformation coordinates are generated based on the discretization of the body according to the finite element approach. Therefore, the formulation of the flexible multibody system always deals with a huge number of degrees of freedom and the numerical solution methods require a substantial amount of computational time. Parallel computational methods are a solution for efficient computation. However, most of the parallel computational methods are focused on the efficient solution of large-sized linear equations. For multibody analysis, we need to develop an efficient formulation that could be suitable for parallel computation. In this paper, we developed a subsystem synthesis method for a flexible multibody system and proposed efficient parallel computational schemes based on the OpenMP API in order to achieve efficient computation. Simulations of a rotating blade system, which consists of three identical blades, were carried out with two different parallel computational schemes. Actual CPU times were measured to investigate the efficiency of the proposed parallel schemes.

  13. Real-time data acquisition and parallel data processing solution for TJ-II Bolometer arrays diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, E. [Departamento de Sistemas Electronicos y de Control, Universidad Politecnica de Madrid, Crta. Valencia Km. 7, 28031 Madrid (Spain)]. E-mail: eduardo.barrera@upm.es; Ruiz, M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid, Crta. Valencia Km. 7, 28031 Madrid (Spain); Lopez, S. [Departamento de Sistemas Electronicos y de Control, Universidad Politecnica de Madrid, Crta. Valencia Km. 7, 28031 Madrid (Spain); Machon, D. [Departamento de Sistemas Electronicos y de Control, Universidad Politecnica de Madrid, Crta. Valencia Km. 7, 28031 Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, 28040 Madrid (Spain); Ochando, M. [Asociacion EURATOM/CIEMAT para Fusion, 28040 Madrid (Spain)

    2006-07-15

    Maps of local plasma emissivity of TJ-II plasmas are determined using three-array cameras of silicon photodiodes (AXUV type from IRD). They have assigned the top and side ports of the same sector of the vacuum vessel. Each array consists of 20 unfiltered detectors. The signals from each of these detectors are the inputs to an iterative algorithm of tomographic reconstruction. Currently, these signals are acquired by a PXI standard system at approximately 50 kS/s, with 12 bits of resolution and are stored for off-line processing. A 0.5 s discharge generates 3 Mbytes of raw data. The algorithm's load exceeds the CPU capacity of the PXI system's controller in a continuous mode, making unfeasible to process the samples in parallel with their acquisition in a PXI standard system. A new architecture model has been developed, making possible to add one or several processing cards to a standard PXI system. With this model, it is possible to define how to distribute, in real-time, the data from all acquired signals in the system among the processing cards and the PXI controller. This way, by distributing the data processing among the system controller and two processing cards, the data processing can be done in parallel with the acquisition. Hence, this system configuration would be able to measure even in long pulse devices.

  14. Reliable and Efficient Parallel Processing Algorithms and Architectures for Modern Signal Processing. Ph.D. Thesis

    Science.gov (United States)

    Liu, Kuojuey Ray

    1990-01-01

    Least-squares (LS) estimations and spectral decomposition algorithms constitute the heart of modern signal processing and communication problems. Implementations of recursive LS and spectral decomposition algorithms onto parallel processing architectures such as systolic arrays with efficient fault-tolerant schemes are the major concerns of this dissertation. There are four major results in this dissertation. First, we propose the systolic block Householder transformation with application to the recursive least-squares minimization. It is successfully implemented on a systolic array with a two-level pipelined implementation at the vector level as well as at the word level. Second, a real-time algorithm-based concurrent error detection scheme based on the residual method is proposed for the QRD RLS systolic array. The fault diagnosis, order degraded reconfiguration, and performance analysis are also considered. Third, the dynamic range, stability, error detection capability under finite-precision implementation, order degraded performance, and residual estimation under faulty situations for the QRD RLS systolic array are studied in details. Finally, we propose the use of multi-phase systolic algorithms for spectral decomposition based on the QR algorithm. Two systolic architectures, one based on triangular array and another based on rectangular array, are presented for the multiphase operations with fault-tolerant considerations. Eigenvectors and singular vectors can be easily obtained by using the multi-pase operations. Performance issues are also considered.

  15. Implementation of parallel processing in the basf2 framework for Belle II

    International Nuclear Information System (INIS)

    Itoh, Ryosuke; Lee, Soohyung; Katayama, N; Mineo, S; Moll, A; Kuhr, T; Heck, M

    2012-01-01

    Recent PC servers are equipped with multi-core CPUs and it is desired to utilize the full processing power of them for the data analysis in large scale HEP experiments. A software framework basf2 is being developed for the use in the Belle II experiment, a new generation B-factory experiment at KEK, and the parallel event processing to utilize the multi-core CPUs is in its design for the use in the massive data production. The details of the implementation of event parallel processing in the basf2 framework are discussed with the report of preliminary performance study in the realistic use on a 32 core PC server.

  16. Nice Guys Finish Fast and Bad Guys Finish Last: Facilitatory vs. Inhibitory Interaction in Parallel Systems.

    Science.gov (United States)

    Eidels, Ami; Houpt, Joseph W; Altieri, Nicholas; Pei, Lei; Townsend, James T

    2011-04-01

    Systems Factorial Technology is a powerful framework for investigating the fundamental properties of human information processing such as architecture (i.e., serial or parallel processing) and capacity (how processing efficiency is affected by increased workload). The Survivor Interaction Contrast (SIC) and the Capacity Coefficient are effective measures in determining these underlying properties, based on response-time data. Each of the different architectures, under the assumption of independent processing, predicts a specific form of the SIC along with some range of capacity. In this study, we explored SIC predictions of discrete-state (Markov process) and continuous-state (Linear Dynamic) models that allow for certain types of cross-channel interaction. The interaction can be facilitatory or inhibitory: one channel can either facilitate, or slow down processing in its counterpart. Despite the relative generality of these models, the combination of the architecture-oriented plus the capacity oriented analyses provide for precise identification of the underlying system.

  17. Fear Control an Danger Control: A Test of the Extended Parallel Process Model (EPPM).

    Science.gov (United States)

    Witte, Kim

    1994-01-01

    Explores cognitive and emotional mechanisms underlying success and failure of fear appeals in context of AIDS prevention. Offers general support for Extended Parallel Process Model. Suggests that cognitions lead to fear appeal success (attitude, intention, or behavior changes) via danger control processes, whereas the emotion fear leads to fear…

  18. Strong Bisimilarity and Regularity of Basic Parallel Processes is PSPACE-Hard

    DEFF Research Database (Denmark)

    Srba, Jirí

    2002-01-01

    We show that the problem of checking whether two processes definable in the syntax of Basic Parallel Processes (BPP) are strongly bisimilar is PSPACE-hard. We also demonstrate that there is a polynomial time reduction from the strong bisimilarity checking problem of regular BPP to the strong...

  19. Parallels between a Collaborative Research Process and the Middle Level Philosophy

    Science.gov (United States)

    Dever, Robin; Ross, Diane; Miller, Jennifer; White, Paula; Jones, Karen

    2014-01-01

    The characteristics of the middle level philosophy as described in This We Believe closely parallel the collaborative research process. The journey of one research team is described in relationship to these characteristics. The collaborative process includes strengths such as professional relationships, professional development, courageous…

  20. A Two-Pass Exact Algorithm for Selection on Parallel Disk Systems.

    Science.gov (United States)

    Mi, Tian; Rajasekaran, Sanguthevar

    2013-07-01

    Numerous OLAP queries process selection operations of "top N", median, "top 5%", in data warehousing applications. Selection is a well-studied problem that has numerous applications in the management of data and databases since, typically, any complex data query can be reduced to a series of basic operations such as sorting and selection. The parallel selection has also become an important fundamental operation, especially after parallel databases were introduced. In this paper, we present a deterministic algorithm Recursive Sampling Selection (RSS) to solve the exact out-of-core selection problem, which we show needs no more than (2 + ε ) passes ( ε being a very small fraction). We have compared our RSS algorithm with two other algorithms in the literature, namely, the Deterministic Sampling Selection and QuickSelect on the Parallel Disks Systems. Our analysis shows that DSS is a (2 + ε )-pass algorithm when the total number of input elements N is a polynomial in the memory size M (i.e., N = M c for some constant c ). While, our proposed algorithm RSS runs in (2 + ε ) passes without any assumptions. Experimental results indicate that both RSS and DSS outperform QuickSelect on the Parallel Disks Systems. Especially, the proposed algorithm RSS is more scalable and robust to handle big data when the input size is far greater than the core memory size, including the case of N ≫ M c .

  1. Parallel computation for solving the tridiagonal linear system of equations

    International Nuclear Information System (INIS)

    Ishiguro, Misako; Harada, Hiroo; Fujii, Minoru; Fujimura, Toichiro; Nakamura, Yasuhiro; Nanba, Katsumi.

    1981-09-01

    Recently, applications of parallel computation for scientific calculations have increased from the need of the high speed calculation of large scale programs. At the JAERI computing center, an array processor FACOM 230-75 APU has installed to study the applicability of parallel computation for nuclear codes. We made some numerical experiments by using the APU on the methods of solution of tridiagonal linear equation which is an important problem in scientific calculations. Referring to the recent papers with parallel methods, we investigate eight ones. These are Gauss elimination method, Parallel Gauss method, Accelerated parallel Gauss method, Jacobi method, Recursive doubling method, Cyclic reduction method, Chebyshev iteration method, and Conjugate gradient method. The computing time and accuracy were compared among the methods on the basis of the numerical experiments. As the result, it is found that the Cyclic reduction method is best both in computing time and accuracy and the Gauss elimination method is the second one. (author)

  2. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    Science.gov (United States)

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-12-23

    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

  3. Design and fabrication of a micro parallel mechanism system using MEMS technologies

    Science.gov (United States)

    Chin, Chi-Te

    A parallel mechanism is seen as an attractive method of fabricating a multi-degree of freedom micro-stage on a chip. The research team at Arizona State University has experience with several potential parallel mechanisms that would be scaled down to micron dimensions and fabricated by using the silicon process. The researcher developed a micro parallel mechanism that allows for planar motion having two translational motions and one rotational motion (e.g., x, y, theta). The mask design shown in Appendix B is an example of a planar parallel mechanism, however, this design would only have a few discrete positions given the nature of the fully extended or fully retracted electrostatic motor. The researcher proposes using a rotary motor (comb-drive actuator with gear chain system) coupled to a rack and pinion for finer increments of linear motion. The rotary motor can behave as a stepper motor by counting drive pulses, which is the basis for a simple open loop control system. This system was manufactured at the Central Regional MEMS Research Center (CMEMS), National Tsing-Hua University, and supported by the National Science Council, Taiwan. After the microstructures had been generated, the proceeding devices were released and an experiment study was performed to demonstrate the feasibility of the proposed micro-stage devices. In this dissertation, the micro electromechanical system (MEMS) fabrication technologies were introduced. The development of this parallel mechanism system will initially focus on development of a planar micro-stage. The design of the micro-stage will build on the parallel mechanism technology, which has been developed for manufacturing, assembly, and flight simulator applications. Parallel mechanism will give the maximum operating envelope with a minimum number of silicon levels. The ideally proposed mechanism should comprise of a user interface, a micro-stage and a non-silicon tool, which is difficult to accomplish by current MEMS technology

  4. Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration

    International Nuclear Information System (INIS)

    Li, Y.F.; Peng, R.

    2014-01-01

    Most studies on multi-state series–parallel systems focus on the static type of system architecture. However, it is insufficient to model many complex industrial systems having several operation phases and each requires a subset of the subsystems combined together to perform certain tasks. To bridge this gap, this study takes into account this type of dynamic behavior in the multi-state series–parallel system and proposes an analytical approach to calculate the system availability and the operation cost. In this approach, Markov process is used to model the dynamics of system phase changing and component state changing, Markov reward model is used to calculate the operation cost associated with the dynamics, and universal generating function (UGF) is used to build system availability function from the system phase model and the component models. Based upon these models, an optimization problem is formulated to minimize the total system cost with the constraint that system availability is greater than a desired level. The genetic algorithm is then applied to solve the optimization problem. The proposed modeling and solution procedures are illustrated on a system design problem modified from a real-world maritime oil transportation system

  5. Toward a model framework of generalized parallel componential processing of multi-symbol numbers.

    Science.gov (United States)

    Huber, Stefan; Cornelsen, Sonja; Moeller, Korbinian; Nuerk, Hans-Christoph

    2015-05-01

    In this article, we propose and evaluate a new model framework of parallel componential multi-symbol number processing, generalizing the idea of parallel componential processing of multi-digit numbers to the case of negative numbers by considering the polarity signs similar to single digits. In a first step, we evaluated this account by defining and investigating a sign-decade compatibility effect for the comparison of positive and negative numbers, which extends the unit-decade compatibility effect in 2-digit number processing. Then, we evaluated whether the model is capable of accounting for previous findings in negative number processing. In a magnitude comparison task, in which participants had to single out the larger of 2 integers, we observed a reliable sign-decade compatibility effect with prolonged reaction times for incompatible (e.g., -97 vs. +53; in which the number with the larger decade digit has the smaller, i.e., negative polarity sign) as compared with sign-decade compatible number pairs (e.g., -53 vs. +97). Moreover, an analysis of participants' eye fixation behavior corroborated our model of parallel componential processing of multi-symbol numbers. These results are discussed in light of concurrent theoretical notions about negative number processing. On the basis of the present results, we propose a generalized integrated model framework of parallel componential multi-symbol processing. (c) 2015 APA, all rights reserved).

  6. Joint redundancy and imperfect preventive maintenance optimization for series–parallel multi-state degraded systems

    International Nuclear Information System (INIS)

    Nourelfath, Mustapha; Châtelet, Eric; Nahas, Nabil

    2012-01-01

    This paper formulates a joint redundancy and imperfect preventive maintenance planning optimization model for series–parallel multi-state degraded systems. Non identical multi-state components can be used in parallel to improve the system availability by providing redundancy in subsystems. Multiple component choices are available in the market for each subsystem. The status of each component is considered to degrade with use. The objective is to determine jointly the maximal-availability series–parallel system structure and the appropriate preventive maintenance actions, subject to a budget constraint. System availability is defined as the ability to satisfy consumer demand that is represented as a piecewise cumulative load curve. A procedure is used, based on Markov processes and universal moment generating function, to evaluate the multi-state system availability and the cost function. A heuristic approach is also proposed to solve the formulated problem. This heuristic is based on a combination of space partitioning, genetic algorithms (GA) and tabu search (TS). After dividing the search space into a set of disjoint subsets, this approach uses GA to select the subspaces, and applies TS to each selected sub-space.

  7. Managing internode data communications for an uninitialized process in a parallel computer

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Parker, Jeffrey J; Ratterman, Joseph D; Smith, Brian E

    2014-05-20

    A parallel computer includes nodes, each having main memory and a messaging unit (MU). Each MU includes computer memory, which in turn includes, MU message buffers. Each MU message buffer is associated with an uninitialized process on the compute node. In the parallel computer, managing internode data communications for an uninitialized process includes: receiving, by an MU of a compute node, one or more data communications messages in an MU message buffer associated with an uninitialized process on the compute node; determining, by an application agent, that the MU message buffer associated with the uninitialized process is full prior to initialization of the uninitialized process; establishing, by the application agent, a temporary message buffer for the uninitialized process in main computer memory; and moving, by the application agent, data communications messages from the MU message buffer associated with the uninitialized process to the temporary message buffer in main computer memory.

  8. Kemari: A Portable High Performance Fortran System for Distributed Memory Parallel Processors

    Directory of Open Access Journals (Sweden)

    T. Kamachi

    1997-01-01

    Full Text Available We have developed a compilation system which extends High Performance Fortran (HPF in various aspects. We support the parallelization of well-structured problems with loop distribution and alignment directives similar to HPF's data distribution directives. Such directives give both additional control to the user and simplify the compilation process. For the support of unstructured problems, we provide directives for dynamic data distribution through user-defined mappings. The compiler also allows integration of message-passing interface (MPI primitives. The system is part of a complete programming environment which also comprises a parallel debugger and a performance monitor and analyzer. After an overview of the compiler, we describe the language extensions and related compilation mechanisms in detail. Performance measurements demonstrate the compiler's applicability to a variety of application classes.

  9. Storing files in a parallel computing system using list-based index to identify replica files

    Science.gov (United States)

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Zhang, Zhenhua; Grider, Gary

    2015-07-21

    Improved techniques are provided for storing files in a parallel computing system using a list-based index to identify file replicas. A file and at least one replica of the file are stored in one or more storage nodes of the parallel computing system. An index for the file comprises at least one list comprising a pointer to a storage location of the file and a storage location of the at least one replica of the file. The file comprises one or more of a complete file and one or more sub-files. The index may also comprise a checksum value for one or more of the file and the replica(s) of the file. The checksum value can be evaluated to validate the file and/or the file replica(s). A query can be processed using the list.

  10. Requirements for implementing real-time control functional modules on a hierarchical parallel pipelined system

    Science.gov (United States)

    Wheatley, Thomas E.; Michaloski, John L.; Lumia, Ronald

    1989-01-01

    Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored.

  11. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    Science.gov (United States)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  12. Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks

    Directory of Open Access Journals (Sweden)

    M. Cacace

    2017-09-01

    Full Text Available Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture–solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton–Raphson or by free Jacobian inexact Newton–Krylow schemes on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres and temporal scales (from minutes to hundreds of years.

  13. Out-of-order parallel discrete event simulation for electronic system-level design

    CERN Document Server

    Chen, Weiwei

    2014-01-01

    This book offers readers a set of new approaches and tools a set of tools and techniques for facing challenges in parallelization with design of embedded systems.? It provides an advanced parallel simulation infrastructure for efficient and effective system-level model validation and development so as to build better products in less time.? Since parallel discrete event simulation (PDES) has the potential to exploit the underlying parallel computational capability in today's multi-core simulation hosts, the author begins by reviewing the parallelization of discrete event simulation, identifyin

  14. Comparison of likelihood testing procedures for parallel systems with covariances

    International Nuclear Information System (INIS)

    Ayman Baklizi; Isa Daud; Noor Akma Ibrahim

    1998-01-01

    In this paper we considered investigating and comparing the behavior of the likelihood ratio, the Rao's and the Wald's statistics for testing hypotheses on the parameters of the simple linear regression model based on parallel systems with covariances. These statistics are asymptotically equivalent (Barndorff-Nielsen and Cox, 1994). However, their relative performances in finite samples are generally known. A Monte Carlo experiment is conducted to stimulate the sizes and the powers of these statistics for complete samples and in the presence of time censoring. Comparisons of the statistics are made according to the attainment of assumed size of the test and their powers at various points in the parameter space. The results show that the likelihood ratio statistics appears to have the best performance in terms of the attainment of the assumed size of the test. Power comparisons show that the Rao statistic has some advantage over the Wald statistic in almost all of the space of alternatives while likelihood ratio statistic occupies either the first or the last position in term of power. Overall, the likelihood ratio statistic appears to be more appropriate to the model under study, especially for small sample sizes

  15. Design of an Input-Parallel Output-Parallel LLC Resonant DC-DC Converter System for DC Microgrids

    Science.gov (United States)

    Juan, Y. L.; Chen, T. R.; Chang, H. M.; Wei, S. E.

    2017-11-01

    Compared with the centralized power system, the distributed modularized power system is composed of several power modules with lower power capacity to provide a totally enough power capacity for the load demand. Therefore, the current stress of the power components in each module can then be reduced, and the flexibility of system setup is also enhanced. However, the parallel-connected power modules in the conventional system are usually controlled to equally share the power flow which would result in lower efficiency in low loading condition. In this study, a modular power conversion system for DC micro grid is developed with 48 V dc low voltage input and 380 V dc high voltage output. However, in the developed system control strategy, the numbers of power modules enabled to share the power flow is decided according to the output power at lower load demand. Finally, three 350 W power modules are constructed and parallel-connected to setup a modular power conversion system. From the experimental results, compared with the conventional system, the efficiency of the developed power system in the light loading condition is greatly improved. The modularized design of the power system can also decrease the power loss ratio to the system capacity.

  16. Parallel Evolutionary Optimization of Multibody Systems with Application to Railway Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Peter [University of Erlangen-Nuremberg, Institute of Applied Mechanics (Germany)], E-mail: eberhard@ltm.uni-erlangen.de; Dignath, Florian [University of Stuttgart, Institute B of Mechanics (Germany)], E-mail: fd@mechb.uni-stuttgart.de; Kuebler, Lars [University of Erlangen-Nuremberg, Institute of Applied Mechanics (Germany)], E-mail: kuebler@ltm.uni-erlangen.de

    2003-03-15

    The optimization of multibody systems usually requires many costly criteria computations since the equations of motion must be evaluated by numerical time integration for each considered design. For actively controlled or flexible multibody systems additional difficulties arise as the criteria may contain non-differentiable points or many local minima. Therefore, in this paper a stochastic evolution strategy is used in combination with parallel computing in order to reduce the computation times whilst keeping the inherent robustness. For the parallelization a master-slave approach is used in a heterogeneous workstation/PC cluster. The pool-of-tasks concept is applied in order to deal with the frequently changing workloads of different machines in the cluster. In order to analyze the performance of the parallel optimization method, the suspension of an ICE passenger coach, modeled as an elastic multibody system, is optimized simultaneously with regard to several criteria including vibration damping and a criterion related to safety against derailment. The iterative and interactive nature of a typical optimization process for technical systems is emphasized.

  17. Parallel Evolutionary Optimization of Multibody Systems with Application to Railway Dynamics

    International Nuclear Information System (INIS)

    Eberhard, Peter; Dignath, Florian; Kuebler, Lars

    2003-01-01

    The optimization of multibody systems usually requires many costly criteria computations since the equations of motion must be evaluated by numerical time integration for each considered design. For actively controlled or flexible multibody systems additional difficulties arise as the criteria may contain non-differentiable points or many local minima. Therefore, in this paper a stochastic evolution strategy is used in combination with parallel computing in order to reduce the computation times whilst keeping the inherent robustness. For the parallelization a master-slave approach is used in a heterogeneous workstation/PC cluster. The pool-of-tasks concept is applied in order to deal with the frequently changing workloads of different machines in the cluster. In order to analyze the performance of the parallel optimization method, the suspension of an ICE passenger coach, modeled as an elastic multibody system, is optimized simultaneously with regard to several criteria including vibration damping and a criterion related to safety against derailment. The iterative and interactive nature of a typical optimization process for technical systems is emphasized

  18. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes.

    Science.gov (United States)

    Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong

    2017-07-01

    Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.

  19. Processing communications events in parallel active messaging interface by awakening thread from wait state

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-10-22

    Processing data communications events in a parallel active messaging interface (`PAMI`) of a parallel computer that includes compute nodes that execute a parallel application, with the PAMI including data communications endpoints, and the endpoints are coupled for data communications through the PAMI and through other data communications resources, including determining by an advance function that there are no actionable data communications events pending for its context, placing by the advance function its thread of execution into a wait state, waiting for a subsequent data communications event for the context; responsive to occurrence of a subsequent data communications event for the context, awakening by the thread from the wait state; and processing by the advance function the subsequent data communications event now pending for the context.

  20. FFTF gas processing systems

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1977-01-01

    The design and operation of the two radioactive gas processing systems at the Fast Flux Test Facility (FFTF) exemplifies the concept that will be used in the first generation of Liquid Metal Fast Breeder Reactors (LMFBR's). The two systems, the Radioactive Argon Processing System (RAPS) and the Cell Atmosphere Processing System (CAPS), process the argon and nitrogen used in the FFTF for cover gas on liquid metal systems and as inert atmospheres in steel lined cells housing sodium equipment. The RAPS specifically processes the argon cover gas from the reactor coolant system, providing for decontamination and eventual reuse. The CAPS processes radioactive gasses from inerted cells and other liquid metal cover gas systems, providing for decontamination and ultimate discharge to the atmosphere. The cryogenic processing of waste gas by both systems is described

  1. Cocaine Use and Delinquent Behavior among High-Risk Youths: A Growth Model of Parallel Processes

    Science.gov (United States)

    Dembo, Richard; Sullivan, Christopher

    2009-01-01

    We report the results of a parallel-process, latent growth model analysis examining the relationships between cocaine use and delinquent behavior among youths. The study examined a sample of 278 justice-involved juveniles completing at least one of three follow-up interviews as part of a National Institute on Drug Abuse-funded study. The results…

  2. Psychodrama: A Creative Approach for Addressing Parallel Process in Group Supervision

    Science.gov (United States)

    Hinkle, Michelle Gimenez

    2008-01-01

    This article provides a model for using psychodrama to address issues of parallel process during group supervision. Information on how to utilize the specific concepts and techniques of psychodrama in relation to group supervision is discussed. A case vignette of the model is provided.

  3. Parallel Distributed Processing at 25: Further Explorations in the Microstructure of Cognition

    Science.gov (United States)

    Rogers, Timothy T.; McClelland, James L.

    2014-01-01

    This paper introduces a special issue of "Cognitive Science" initiated on the 25th anniversary of the publication of "Parallel Distributed Processing" (PDP), a two-volume work that introduced the use of neural network models as vehicles for understanding cognition. The collection surveys the core commitments of the PDP…

  4. An Inconvenient Truth: An Application of the Extended Parallel Process Model

    Science.gov (United States)

    Goodall, Catherine E.; Roberto, Anthony J.

    2008-01-01

    "An Inconvenient Truth" is an Academy Award-winning documentary about global warming presented by Al Gore. This documentary is appropriate for a lesson on fear appeals and the extended parallel process model (EPPM). The EPPM is concerned with the effects of perceived threat and efficacy on behavior change. Perceived threat is composed of an…

  5. Real-time SHVC software decoding with multi-threaded parallel processing

    Science.gov (United States)

    Gudumasu, Srinivas; He, Yuwen; Ye, Yan; He, Yong; Ryu, Eun-Seok; Dong, Jie; Xiu, Xiaoyu

    2014-09-01

    This paper proposes a parallel decoding framework for scalable HEVC (SHVC). Various optimization technologies are implemented on the basis of SHVC reference software SHM-2.0 to achieve real-time decoding speed for the two layer spatial scalability configuration. SHVC decoder complexity is analyzed with profiling information. The decoding process at each layer and the up-sampling process are designed in parallel and scheduled by a high level application task manager. Within each layer, multi-threaded decoding is applied to accelerate the layer decoding speed. Entropy decoding, reconstruction, and in-loop processing are pipeline designed with multiple threads based on groups of coding tree units (CTU). A group of CTUs is treated as a processing unit in each pipeline stage to achieve a better trade-off between parallelism and synchronization. Motion compensation, inverse quantization, and inverse transform modules are further optimized with SSE4 SIMD instructions. Simulations on a desktop with an Intel i7 processor 2600 running at 3.4 GHz show that the parallel SHVC software decoder is able to decode 1080p spatial 2x at up to 60 fps (frames per second) and 1080p spatial 1.5x at up to 50 fps for those bitstreams generated with SHVC common test conditions in the JCT-VC standardization group. The decoding performance at various bitrates with different optimization technologies and different numbers of threads are compared in terms of decoding speed and resource usage, including processor and memory.

  6. Parallel processing and non-uniform grids in global air quality modeling

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, Mikhail A.

    2002-01-01

    A large-scale global air quality model, running efficiently on a single vector processor, is enhanced to make more realistic and more long-term simulations feasible. Two strategies are combined: non-uniform grids and parallel processing. The communication through the hierarchy of non-uniform grids

  7. One Factor or Two Parallel Processes? Comorbidity and Development of Adolescent Anxiety and Depressive Disorder Symptoms

    Science.gov (United States)

    Hale, William W., III; Raaijmakers, Quinten A. W.; Muris, Peter; van Hoof, Anne; Meeus, Wim H. J.

    2009-01-01

    Background: This study investigates whether anxiety and depressive disorder symptoms of adolescents from the general community are best described by a model that assumes they are indicative of one general factor or by a model that assumes they are two distinct disorders with parallel growth processes. Additional analyses were conducted to explore…

  8. High Performance Parallel Processing Project: Industrial computing initiative. Progress reports for fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Koniges, A.

    1996-02-09

    This project is a package of 11 individual CRADA`s plus hardware. This innovative project established a three-year multi-party collaboration that is significantly accelerating the availability of commercial massively parallel processing computing software technology to U.S. government, academic, and industrial end-users. This report contains individual presentations from nine principal investigators along with overall program information.

  9. Exact stationary state for an asymmetric exclusion process with fully parallel dynamics

    NARCIS (Netherlands)

    Gier, J.C.|info:eu-repo/dai/nl/170218430; Nienhuis, B.

    The exact stationary state of an asymmetric exclusion process with fully parallel dynamics is obtained using the matrix product ansatz. We give a simple derivation for the deterministic case by a physical interpretation of the dimension of the matrices. We prove the stationarity via a cancellation

  10. Sustainability Attitudes and Behavioral Motivations of College Students: Testing the Extended Parallel Process Model

    Science.gov (United States)

    Perrault, Evan K.; Clark, Scott K.

    2018-01-01

    Purpose: A planet that can no longer sustain life is a frightening thought--and one that is often present in mass media messages. Therefore, this study aims to test the components of a classic fear appeal theory, the extended parallel process model (EPPM) and to determine how well its constructs predict sustainability behavioral intentions. This…

  11. Metastable states in the hierarchical Dyson model drive parallel processing in the hierarchical Hopfield network

    International Nuclear Information System (INIS)

    Agliari, Elena; Barra, Adriano; Guerra, Francesco; Galluzzi, Andrea; Tantari, Daniele; Tavani, Flavia

    2015-01-01

    In this paper, we introduce and investigate the statistical mechanics of hierarchical neural networks. First, we approach these systems à la Mattis, by thinking of the Dyson model as a single-pattern hierarchical neural network. We also discuss the stability of different retrievable states as predicted by the related self-consistencies obtained both from a mean-field bound and from a bound that bypasses the mean-field limitation. The latter is worked out by properly reabsorbing the magnetization fluctuations related to higher levels of the hierarchy into effective fields for the lower levels. Remarkably, mixing Amit's ansatz technique for selecting candidate-retrievable states with the interpolation procedure for solving for the free energy of these states, we prove that, due to gauge symmetry, the Dyson model accomplishes both serial and parallel processing. We extend this scenario to multiple stored patterns by implementing the Hebb prescription for learning within the couplings. This results in Hopfield-like networks constrained on a hierarchical topology, for which, by restricting to the low-storage regime where the number of patterns grows at its most logarithmical with the amount of neurons, we prove the existence of the thermodynamic limit for the free energy, and we give an explicit expression of its mean-field bound and of its related improved bound. We studied the resulting self-consistencies for the Mattis magnetizations, which act as order parameters, are studied and the stability of solutions is analyzed to get a picture of the overall retrieval capabilities of the system according to both mean-field and non-mean-field scenarios. Our main finding is that embedding the Hebbian rule on a hierarchical topology allows the network to accomplish both serial and parallel processing. By tuning the level of fast noise affecting it or triggering the decay of the interactions with the distance among neurons, the system may switch from sequential retrieval to

  12. Optimization Algorithms for Calculation of the Joint Design Point in Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1992-01-01

    In large structures it is often necessary to estimate the reliability of the system by use of parallel systems. Optimality criteria-based algorithms for calculation of the joint design point in a parallel system are described and efficient active set strategies are developed. Three possible...

  13. Design of parallel intersector weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Kovanen, Janne; Rouvinen, Asko; Hannukainen, Petri; Saira, Tanja; Jones, Lawrence

    2003-01-01

    This paper presents a new parallel robot Penta-WH, which has five degrees of freedom driven by hydraulic cylinders. The manipulator has a large, singularity-free workspace and high stiffness and it acts as a transport device for welding, machining and inspection end-effectors inside the ITER vacuum vessel. The presented kinematic structure of a parallel robot is particularly suitable for the ITER environment. Analysis of the machining process for ITER, such as the machining methods and forces are given, and the kinematic analyses, such as workspace and force capacity are discussed

  14. Algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations with the use of parallel computations

    Energy Technology Data Exchange (ETDEWEB)

    Moryakov, A. V., E-mail: sailor@orc.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.

  15. Parallel Algorithm of Geometrical Hashing Based on NumPy Package and Processes Pool

    Directory of Open Access Journals (Sweden)

    Klyachin Vladimir Aleksandrovich

    2015-10-01

    Full Text Available The article considers the problem of multi-dimensional geometric hashing. The paper describes a mathematical model of geometric hashing and considers an example of its use in localization problems for the point. A method of constructing the corresponding hash matrix by parallel algorithm is considered. In this paper an algorithm of parallel geometric hashing using a development pattern «pool processes» is proposed. The implementation of the algorithm is executed using the Python programming language and NumPy package for manipulating multidimensional data. To implement the process pool it is proposed to use a class Process Pool Executor imported from module concurrent.futures, which is included in the distribution of the interpreter Python since version 3.2. All the solutions are presented in the paper by corresponding UML class diagrams. Designed GeomNash package includes classes Data, Result, GeomHash, Job. The results of the developed program presents the corresponding graphs. Also, the article presents the theoretical justification for the application process pool for the implementation of parallel algorithms. It is obtained condition t2 > (p/(p-1*t1 of the appropriateness of process pool. Here t1 - the time of transmission unit of data between processes, and t2 - the time of processing unit data by one processor.

  16. Parallel Algorithm for GPU Processing; for use in High Speed Machine Vision Sensing of Cotton Lint Trash

    Directory of Open Access Journals (Sweden)

    Mathew G. Pelletier

    2008-02-01

    Full Text Available One of the main hurdles standing in the way of optimal cleaning of cotton lint isthe lack of sensing systems that can react fast enough to provide the control system withreal-time information as to the level of trash contamination of the cotton lint. This researchexamines the use of programmable graphic processing units (GPU as an alternative to thePC’s traditional use of the central processing unit (CPU. The use of the GPU, as analternative computation platform, allowed for the machine vision system to gain asignificant improvement in processing time. By improving the processing time, thisresearch seeks to address the lack of availability of rapid trash sensing systems and thusalleviate a situation in which the current systems view the cotton lint either well before, orafter, the cotton is cleaned. This extended lag/lead time that is currently imposed on thecotton trash cleaning control systems, is what is responsible for system operators utilizing avery large dead-band safety buffer in order to ensure that the cotton lint is not undercleaned.Unfortunately, the utilization of a large dead-band buffer results in the majority ofthe cotton lint being over-cleaned which in turn causes lint fiber-damage as well assignificant losses of the valuable lint due to the excessive use of cleaning machinery. Thisresearch estimates that upwards of a 30% reduction in lint loss could be gained through theuse of a tightly coupled trash sensor to the cleaning machinery control systems. Thisresearch seeks to improve processing times through the development of a new algorithm forcotton trash sensing that allows for implementation on a highly parallel architecture.Additionally, by moving the new parallel algorithm onto an alternative computing platform,the graphic processing unit “GPU”, for processing of the cotton trash images, a speed up ofover 6.5 times, over optimized code running on the PC’s central processing

  17. Supertracker: A Programmable Parallel Pipeline Arithmetic Processor For Auto-Cueing Target Processing

    Science.gov (United States)

    Mack, Harold; Reddi, S. S.

    1980-04-01

    Supertracker represents a programmable parallel pipeline computer architecture that has been designed to meet the real time image processing requirements of auto-cueing target data processing. The prototype bread-board currently under development will be designed to perform input video preprocessing and processing for 525-line and 875-line TV formats FLIR video, automatic display gain and contrast control, and automatic target cueing, classification, and tracking. The video preprocessor is capable of performing operations full frames of video data in real time, e.g., frame integration, storage, 3 x 3 convolution, and neighborhood processing. The processor architecture is being implemented using bit-slice microprogrammable arithmetic processors, operating in parallel. Each processor is capable of up to 20 million operations per second. Multiple frame memories are used for additional flexibility.

  18. Fraud Detection in Credit Card Transactions; Using Parallel Processing of Anomalies in Big Data

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Taghva

    2016-10-01

    Full Text Available In parallel to the increasing use of electronic cards, especially in the banking industry, the volume of transactions using these cards has grown rapidly. Moreover, the financial nature of these cards has led to the desirability of fraud in this area. The present study with Map Reduce approach and parallel processing, applied the Kohonen neural network model to detect abnormalities in bank card transactions. For this purpose, firstly it was proposed to classify all transactions into the fraudulent and legal which showed better performance compared with other methods. In the next step, we transformed the Kohonen model into the form of parallel task which demonstrated appropriate performance in terms of time; as expected to be well implemented in transactions with Big Data assumptions.

  19. Performance of MPI parallel processing implemented by MCNP5/ MCNPX for criticality benchmark problems

    International Nuclear Information System (INIS)

    Mark Dennis Usang; Mohd Hairie Rabir; Mohd Amin Sharifuldin Salleh; Mohamad Puad Abu

    2012-01-01

    MPI parallelism are implemented on a SUN Workstation for running MCNPX and on the High Performance Computing Facility (HPC) for running MCNP5. 23 input less obtained from MCNP Criticality Validation Suite are utilized for the purpose of evaluating the amount of speed up achievable by using the parallel capabilities of MPI. More importantly, we will study the economics of using more processors and the type of problem where the performance gain are obvious. This is important to enable better practices of resource sharing especially for the HPC facilities processing time. Future endeavours in this direction might even reveal clues for best MCNP5/ MCNPX coding practices for optimum performance of MPI parallelisms. (author)

  20. Distributed and cloud computing from parallel processing to the Internet of Things

    CERN Document Server

    Hwang, Kai; Fox, Geoffrey C

    2012-01-01

    Distributed and Cloud Computing, named a 2012 Outstanding Academic Title by the American Library Association's Choice publication, explains how to create high-performance, scalable, reliable systems, exposing the design principles, architecture, and innovative applications of parallel, distributed, and cloud computing systems. Starting with an overview of modern distributed models, the book provides comprehensive coverage of distributed and cloud computing, including: Facilitating management, debugging, migration, and disaster recovery through virtualization Clustered systems for resear

  1. The application of image processing in the measurement for three-light-axis parallelity of laser ranger

    Science.gov (United States)

    Wang, Yang; Wang, Qianqian

    2008-12-01

    When laser ranger is transported or used in field operations, the transmitting axis, receiving axis and aiming axis may be not parallel. The nonparallelism of the three-light-axis will affect the range-measuring ability or make laser ranger not be operated exactly. So testing and adjusting the three-light-axis parallelity in the production and maintenance of laser ranger is important to ensure using laser ranger reliably. The paper proposes a new measurement method using digital image processing based on the comparison of some common measurement methods for the three-light-axis parallelity. It uses large aperture off-axis paraboloid reflector to get the images of laser spot and white light cross line, and then process the images on LabVIEW platform. The center of white light cross line can be achieved by the matching arithmetic in LABVIEW DLL. And the center of laser spot can be achieved by gradation transformation, binarization and area filter in turn. The software system can set CCD, detect the off-axis paraboloid reflector, measure the parallelity of transmitting axis and aiming axis and control the attenuation device. The hardware system selects SAA7111A, a programmable vedio decoding chip, to perform A/D conversion. FIFO (first-in first-out) is selected as buffer.USB bus is used to transmit data to PC. The three-light-axis parallelity can be achieved according to the position bias between them. The device based on this method has been already used. The application proves this method has high precision, speediness and automatization.

  2. Load balancing in highly parallel processing of Monte Carlo code for particle transport

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Takemiya, Hiroshi; Kawasaki, Takuji

    1998-01-01

    In parallel processing of Monte Carlo (MC) codes for neutron, photon and electron transport problems, particle histories are assigned to processors making use of independency of the calculation for each particle. Although we can easily parallelize main part of a MC code by this method, it is necessary and practically difficult to optimize the code concerning load balancing in order to attain high speedup ratio in highly parallel processing. In fact, the speedup ratio in the case of 128 processors remains in nearly one hundred times when using the test bed for the performance evaluation. Through the parallel processing of the MCNP code, which is widely used in the nuclear field, it is shown that it is difficult to attain high performance by static load balancing in especially neutron transport problems, and a load balancing method, which dynamically changes the number of assigned particles minimizing the sum of the computational and communication costs, overcomes the difficulty, resulting in nearly fifteen percentage of reduction for execution time. (author)

  3. Integration experiences and performance studies of A COTS parallel archive systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsing-bung [Los Alamos National Laboratory; Scott, Cody [Los Alamos National Laboratory; Grider, Bary [Los Alamos National Laboratory; Torres, Aaron [Los Alamos National Laboratory; Turley, Milton [Los Alamos National Laboratory; Sanchez, Kathy [Los Alamos National Laboratory; Bremer, John [Los Alamos National Laboratory

    2010-01-01

    Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-shelf(COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the need for speed and bandwidth, especially metadata searching speeds such as more caching and less robust semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage approach of using COTS components and innovative software technology can bring new capabilities into a production environment for the HPC community much faster than the approach of creating and maintaining a complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a global parallel file system and a standard backup/archive product with a very small amount of additional code to provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage management, (c) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content management, and (e) leveraging all free file movement tools in Linux such as copy, move, ls, tar, etc. We have successfully applied our working COTS Parallel Archive System to the current world's first petaflop/s computing system, LANL's Roadrunner, and demonstrated its capability to address requirements of

  4. Integration experiments and performance studies of a COTS parallel archive system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsing-bung [Los Alamos National Laboratory; Scott, Cody [Los Alamos National Laboratory; Grider, Gary [Los Alamos National Laboratory; Torres, Aaron [Los Alamos National Laboratory; Turley, Milton [Los Alamos National Laboratory; Sanchez, Kathy [Los Alamos National Laboratory; Bremer, John [Los Alamos National Laboratory

    2010-06-16

    Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-shelf (COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the need for speed and bandwidth, especially metadata searching speeds such as more caching and less robust semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage approach of using COTS components and innovative software technology can bring new capabilities into a production environment for the HPC community much faster than the approach of creating and maintaining a complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a global parallel file system and a standard backup/archive product with a very small amount of additional code to provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage management, (c) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content management, and (e) leveraging all free file movement tools in Linux such as copy, move, Is, tar, etc. We have successfully applied our working COTS Parallel Archive System to the current world's first petafiop/s computing system, LANL's Roadrunner machine, and demonstrated its capability to address

  5. Strong Bisimilarity and Regularity of Basic Parallel Processes is PSPACE-Hard

    DEFF Research Database (Denmark)

    Srba, Jirí

    2002-01-01

    We show that the problem of checking whether two processes definable in the syntax of Basic Parallel Processes (BPP) are strongly bisimilar is PSPACE-hard. We also demonstrate that there is a polynomial time reduction from the strong bisimilarity checking problem of regular BPP to the strong...... regularity (finiteness) checking of BPP. This implies that strong regularity of BPP is also PSPACE-hard....

  6. Parallelized event chain algorithm for dense hard sphere and polymer systems

    International Nuclear Information System (INIS)

    Kampmann, Tobias A.; Boltz, Horst-Holger; Kierfeld, Jan

    2015-01-01

    We combine parallelization and cluster Monte Carlo for hard sphere systems and present a parallelized event chain algorithm for the hard disk system in two dimensions. For parallelization we use a spatial partitioning approach into simulation cells. We find that it is crucial for correctness to ensure detailed balance on the level of Monte Carlo sweeps by drawing the starting sphere of event chains within each simulation cell with replacement. We analyze the performance gains for the parallelized event chain and find a criterion for an optimal degree of parallelization. Because of the cluster nature of event chain moves massive parallelization will not be optimal. Finally, we discuss first applications of the event chain algorithm to dense polymer systems, i.e., bundle-forming solutions of attractive semiflexible polymers

  7. A review of advanced small-scale parallel bioreactor technology for accelerated process development: current state and future need.

    Science.gov (United States)

    Bareither, Rachel; Pollard, David

    2011-01-01

    The pharmaceutical and biotech industries face continued pressure to reduce development costs and accelerate process development. This challenge occurs alongside the need for increased upstream experimentation to support quality by design initiatives and the pursuit of predictive models from systems biology. A small scale system enabling multiple reactions in parallel (n ≥ 20), with automated sampling and integrated to purification, would provide significant improvement (four to fivefold) to development timelines. State of the art attempts to pursue high throughput process development include shake flasks, microfluidic reactors, microtiter plates and small-scale stirred reactors. The limitations of these systems are compared to desired criteria to mimic large scale commercial processes. The comparison shows that significant technological improvement is still required to provide automated solutions that can speed upstream process development. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  8. Parallel processing architecture for H.264 deblocking filter on multi-core platforms

    Science.gov (United States)

    Prasad, Durga P.; Sonachalam, Sekar; Kunchamwar, Mangesh K.; Gunupudi, Nageswara Rao

    2012-03-01

    filter for multi core platforms such as HyperX technology. Parallel techniques such as parallel processing of independent macroblocks, sub blocks, and pixel row level are examined in this work. The deblocking architecture consists of a basic cell called deblocking filter unit (DFU) and dependent data buffer manager (DFM). The DFU can be used in several instances, catering to different performance needs the DFM serves the data required for the different number of DFUs, and also manages all the neighboring data required for future data processing of DFUs. This approach achieves the scalability, flexibility, and performance excellence required in deblocking filters.

  9. Resistance to awareness of the supervisor's transferences with special reference to the parallel process.

    Science.gov (United States)

    Stimmel, B

    1995-06-01

    Supervision is an essential part of psychoanalytic education. Although not taken for granted, it is not studied with the same critical eye as is the analytic process. This paper examines the supervision specifically with a focus on the supervisor's transference towards the supervisee. The point is made, in the context of clinical examples, that one of the ways these transference reactions may be rationalised is within the setting of the parallel process so often encountered in supervision. Parallel process, a very familiar term, is used frequently and easily when discussing supervision. It may be used also as a resistance to awareness of transference phenomena within the supervisor in relation to the supervisee, particularly because of its clinical presentation. It is an enactment between supervisor and supervisee, thus ripe with possibilities for disguise, displacement and gratification. While transference reactions of the supervisee are often discussed, those of the supervisor are notably missing in our literature.

  10. The Temporal Dynamics of Visual Search: Evidence for Parallel Processing in Feature and Conjunction Searches

    Science.gov (United States)

    McElree, Brian; Carrasco, Marisa

    2012-01-01

    Feature and conjunction searches have been argued to delineate parallel and serial operations in visual processing. The authors evaluated this claim by examining the temporal dynamics of the detection of features and conjunctions. The 1st experiment used a reaction time (RT) task to replicate standard mean RT patterns and to examine the shapes of the RT distributions. The 2nd experiment used the response-signal speed–accuracy trade-off (SAT) procedure to measure discrimination (asymptotic detection accuracy) and detection speed (processing dynamics). Set size affected discrimination in both feature and conjunction searches but affected detection speed only in the latter. Fits of models to the SAT data that included a serial component overpredicted the magnitude of the observed dynamics differences. The authors concluded that both features and conjunctions are detected in parallel. Implications for the role of attention in visual processing are discussed. PMID:10641310

  11. Application of parallel computing to seismic damage process simulation of an arch dam

    International Nuclear Information System (INIS)

    Zhong Hong; Lin Gao; Li Jianbo

    2010-01-01

    The simulation of damage process of high arch dam subjected to strong earthquake shocks is significant to the evaluation of its performance and seismic safety, considering the catastrophic effect of dam failure. However, such numerical simulation requires rigorous computational capacity. Conventional serial computing falls short of that and parallel computing is a fairly promising solution to this problem. The parallel finite element code PDPAD was developed for the damage prediction of arch dams utilizing the damage model with inheterogeneity of concrete considered. Developed with programming language Fortran, the code uses a master/slave mode for programming, domain decomposition method for allocation of tasks, MPI (Message Passing Interface) for communication and solvers from AZTEC library for solution of large-scale equations. Speedup test showed that the performance of PDPAD was quite satisfactory. The code was employed to study the damage process of a being-built arch dam on a 4-node PC Cluster, with more than one million degrees of freedom considered. The obtained damage mode was quite similar to that of shaking table test, indicating that the proposed procedure and parallel code PDPAD has a good potential in simulating seismic damage mode of arch dams. With the rapidly growing need for massive computation emerged from engineering problems, parallel computing will find more and more applications in pertinent areas.

  12. A web-based, collaborative modeling, simulation, and parallel computing environment for electromechanical systems

    Directory of Open Access Journals (Sweden)

    Xiaoliang Yin

    2015-03-01

    Full Text Available Complex electromechanical system is usually composed of multiple components from different domains, including mechanical, electronic, hydraulic, control, and so on. Modeling and simulation for electromechanical system on a unified platform is one of the research hotspots in system engineering at present. It is also the development trend of the design for complex electromechanical system. The unified modeling techniques and tools based on Modelica language provide a satisfactory solution. To meet with the requirements of collaborative modeling, simulation, and parallel computing for complex electromechanical systems based on Modelica, a general web-based modeling and simulation prototype environment, namely, WebMWorks, is designed and implemented. Based on the rich Internet application technologies, an interactive graphic user interface for modeling and post-processing on web browser was implemented; with the collaborative design module, the environment supports top-down, concurrent modeling and team cooperation; additionally, service-oriented architecture–based architecture was applied to supply compiling and solving services which run on cloud-like servers, so the environment can manage and dispatch large-scale simulation tasks in parallel on multiple computing servers simultaneously. An engineering application about pure electric vehicle is tested on WebMWorks. The results of simulation and parametric experiment demonstrate that the tested web-based environment can effectively shorten the design cycle of the complex electromechanical system.

  13. An efficient, interactive, and parallel system for biomedical volume analysis on a standard workstation

    International Nuclear Information System (INIS)

    Rebuffel, V.; Gonon, G.

    1992-01-01

    A software package is presented that can be employed for any 3D imaging modalities: X-ray tomography, emission tomography, magnetic resonance imaging. This system uses a hierarchical data structure, named Octree, that naturally allows a multi-resolution approach. The well-known problems of such an indeterministic representation, especially the neighbor finding, has been solved. Several algorithms of volume processing have been developed, using these techniques and an optimal data storage for the Octree. A parallel implementation was chosen that is compatible with the constraints of the Octree base and the various algorithms. (authors) 4 refs., 3 figs., 1 tab

  14. Parallel real-time visualization system for large-scale simulation. Application to WSPEEDI

    International Nuclear Information System (INIS)

    Muramatsu, Kazuhiro; Otani, Takayuki; Kitabata, Hideyuki; Matsumoto, Hideki; Takei, Toshifumi; Doi, Shun

    2000-01-01

    The real-time visualization system, PATRAS (PArallel TRAcking Steering system) has been developed on parallel computing servers. The system performs almost all of the visualization tasks on a parallel computing server, and uses image data compression technique for efficient communication between the server and the client terminal. Therefore, the system realizes high performance concurrent visualization in an internet computing environment. The experience in applying PATRAS to WSPEEDI (Worldwide version of System for Prediction Environmental Emergency Dose Information) is reported. The application of PATRAS to WSPEEDI enables users to understand behaviours of radioactive tracers from different release points easily and quickly. (author)

  15. STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB.

    Science.gov (United States)

    Klingbeil, Guido; Erban, Radek; Giles, Mike; Maini, Philip K

    2011-04-15

    The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB. The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user's models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2. The software is open source under the GPL v3 and available at http://www.maths.ox.ac.uk/cmb/STOCHSIMGPU. The web site also contains supplementary information. klingbeil@maths.ox.ac.uk Supplementary data are available at Bioinformatics online.

  16. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex

    Science.gov (United States)

    Lafer-Sousa, Rosa; Conway, Bevil R.

    2014-01-01

    Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314

  17. The Masterson Approach with play therapy: a parallel process between mother and child.

    Science.gov (United States)

    Mulherin, M A

    2001-01-01

    This paper discusses a case in which the Masterson Approach was used with play therapy to treat a child with a developing personality disorder. It describes the parallel progression of the child and mother in adjunct therapy throughout a six-year period. The unique value of the Masterson Approach is that it provides the therapist with a framework and tool to diagnose and treat a child during the dynamic process of play. The case describes the mother-child dyad throughout therapy. It traces their parallel processes that involve separation, individuation, rapprochement, and the recovery of real self-capacities. Each stage of treatment is described, including verbal interventions. The child's internal affective state and intrapsychic structure during the various stages of treatment are illustrated by representative pictures.

  18. Research on Control Strategy of Complex Systems through VSC-HVDC Grid Parallel Device

    Directory of Open Access Journals (Sweden)

    Xue Mei-Juan

    2014-07-01

    Full Text Available After the completion of grid parallel, the device can turn to be UPFC, STATCOM, SSSC, research on the conversion circuit and transform method by corresponding switching operation. Accomplish the grid parallel and comprehensive control of the tie-line and stable operation and control functions of grid after parallel. Defines the function select operation switch matrix and grid parallel system branch variable, forming a switch matrix to achieve corresponding function of the composite system. Formed a criterion of the selection means to choose control strategy according to the switch matrix, to accomplish corresponding function. Put the grid parallel, STATCOM, SSSC and UPFC together as a system, improve the stable operation and flexible control of the power system.

  19. Eighth SIAM conference on parallel processing for scientific computing: Final program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This SIAM conference is the premier forum for developments in parallel numerical algorithms, a field that has seen very lively and fruitful developments over the past decade, and whose health is still robust. Themes for this conference were: combinatorial optimization; data-parallel languages; large-scale parallel applications; message-passing; molecular modeling; parallel I/O; parallel libraries; parallel software tools; parallel compilers; particle simulations; problem-solving environments; and sparse matrix computations.

  20. A Review of Parallel Processing Approaches to Robot Kinematics and Jacobian

    OpenAIRE

    Henrich, Dominik; Karl, Joachim; Wörn, Heinz

    1997-01-01

    Due to continuously increasing demands in the area of advanced robot control, it became necessary to speed up the computation. One way to reduce the computation time is to distribute the computation onto several processing units. In this survey we present different approaches to parallel computation of robot kinematics and Jacobian. Thereby, we discuss both the forward and the reverse problem. We introduce a classification scheme and class...

  1. Tuning of tool dynamics for increased stability of parallel (simultaneous) turning processes

    Science.gov (United States)

    Ozturk, E.; Comak, A.; Budak, E.

    2016-01-01

    Parallel (simultaneous) turning operations make use of more than one cutting tool acting on a common workpiece offering potential for higher productivity. However, dynamic interaction between the tools and workpiece and resulting chatter vibrations may create quality problems on machined surfaces. In order to determine chatter free cutting process parameters, stability models can be employed. In this paper, stability of parallel turning processes is formulated in frequency and time domain for two different parallel turning cases. Predictions of frequency and time domain methods demonstrated reasonable agreement with each other. In addition, the predicted stability limits are also verified experimentally. Simulation and experimental results show multi regional stability diagrams which can be used to select most favorable set of process parameters for higher stable material removal rates. In addition to parameter selection, developed models can be used to determine the best natural frequency ratio of tools resulting in the highest stable depth of cuts. It is concluded that the most stable operations are obtained when natural frequency of the tools are slightly off each other and worst stability occurs when the natural frequency of the tools are exactly the same.

  2. Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping.

    Science.gov (United States)

    Backoach, Ohad; Kariv, Saar; Girshovitz, Pinhas; Shaked, Natan T

    2016-02-22

    We present parallel processing implementation for rapid extraction of the quantitative phase maps from off-axis holograms on the Graphics Processing Unit (GPU) of the computer using computer unified device architecture (CUDA) programming. To obtain efficient implementation, we parallelized both the wrapped phase map extraction algorithm and the two-dimensional phase unwrapping algorithm. In contrast to previous implementations, we utilized unweighted least squares phase unwrapping algorithm that better suits parallelism. We compared the proposed algorithm run times on the CPU and the GPU of the computer for various sizes of off-axis holograms. Using the GPU implementation, we extracted the unwrapped phase maps from the recorded off-axis holograms at 35 frames per second (fps) for 4 mega pixel holograms, and at 129 fps for 1 mega pixel holograms, which presents the fastest processing framerates obtained so far, to the best of our knowledge. We then used common-path off-axis interferometric imaging to quantitatively capture the phase maps of a micro-organism with rapid flagellum movements.

  3. Natural Information Processing Systems

    OpenAIRE

    John Sweller; Susan Sweller

    2006-01-01

    Natural information processing systems such as biological evolution and human cognition organize information used to govern the activities of natural entities. When dealing with biologically secondary information, these systems can be specified by five common principles that we propose underlie natural information processing systems. The principles equate: (1) human long-term memory with a genome; (2) learning from other humans with biological reproduction; (3) problem solving through random ...

  4. A PARALLEL MONTE CARLO CODE FOR SIMULATING COLLISIONAL N-BODY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Pattabiraman, Bharath; Umbreit, Stefan; Liao, Wei-keng; Choudhary, Alok; Kalogera, Vassiliki; Memik, Gokhan; Rasio, Frederic A., E-mail: bharath@u.northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, IL (United States)

    2013-02-15

    We present a new parallel code for computing the dynamical evolution of collisional N-body systems with up to N {approx} 10{sup 7} particles. Our code is based on the Henon Monte Carlo method for solving the Fokker-Planck equation, and makes assumptions of spherical symmetry and dynamical equilibrium. The principal algorithmic developments involve optimizing data structures and the introduction of a parallel random number generation scheme as well as a parallel sorting algorithm required to find nearest neighbors for interactions and to compute the gravitational potential. The new algorithms we introduce along with our choice of decomposition scheme minimize communication costs and ensure optimal distribution of data and workload among the processing units. Our implementation uses the Message Passing Interface library for communication, which makes it portable to many different supercomputing architectures. We validate the code by calculating the evolution of clusters with initial Plummer distribution functions up to core collapse with the number of stars, N, spanning three orders of magnitude from 10{sup 5} to 10{sup 7}. We find that our results are in good agreement with self-similar core-collapse solutions, and the core-collapse times generally agree with expectations from the literature. Also, we observe good total energy conservation, within {approx}< 0.04% throughout all simulations. We analyze the performance of the code, and demonstrate near-linear scaling of the runtime with the number of processors up to 64 processors for N = 10{sup 5}, 128 for N = 10{sup 6} and 256 for N = 10{sup 7}. The runtime reaches saturation with the addition of processors beyond these limits, which is a characteristic of the parallel sorting algorithm. The resulting maximum speedups we achieve are approximately 60 Multiplication-Sign , 100 Multiplication-Sign , and 220 Multiplication-Sign , respectively.

  5. A PARALLEL MONTE CARLO CODE FOR SIMULATING COLLISIONAL N-BODY SYSTEMS

    International Nuclear Information System (INIS)

    Pattabiraman, Bharath; Umbreit, Stefan; Liao, Wei-keng; Choudhary, Alok; Kalogera, Vassiliki; Memik, Gokhan; Rasio, Frederic A.

    2013-01-01

    We present a new parallel code for computing the dynamical evolution of collisional N-body systems with up to N ∼ 10 7 particles. Our code is based on the Hénon Monte Carlo method for solving the Fokker-Planck equation, and makes assumptions of spherical symmetry and dynamical equilibrium. The principal algorithmic developments involve optimizing data structures and the introduction of a parallel random number generation scheme as well as a parallel sorting algorithm required to find nearest neighbors for interactions and to compute the gravitational potential. The new algorithms we introduce along with our choice of decomposition scheme minimize communication costs and ensure optimal distribution of data and workload among the processing units. Our implementation uses the Message Passing Interface library for communication, which makes it portable to many different supercomputing architectures. We validate the code by calculating the evolution of clusters with initial Plummer distribution functions up to core collapse with the number of stars, N, spanning three orders of magnitude from 10 5 to 10 7 . We find that our results are in good agreement with self-similar core-collapse solutions, and the core-collapse times generally agree with expectations from the literature. Also, we observe good total energy conservation, within ∼ 5 , 128 for N = 10 6 and 256 for N = 10 7 . The runtime reaches saturation with the addition of processors beyond these limits, which is a characteristic of the parallel sorting algorithm. The resulting maximum speedups we achieve are approximately 60×, 100×, and 220×, respectively.

  6. Effects of visual information regarding allocentric processing in haptic parallelity matching.

    Science.gov (United States)

    Van Mier, Hanneke I

    2013-10-01

    Research has revealed that haptic perception of parallelity deviates from physical reality. Large and systematic deviations have been found in haptic parallelity matching most likely due to the influence of the hand-centered egocentric reference frame. Providing information that increases the influence of allocentric processing has been shown to improve performance on haptic matching. In this study allocentric processing was stimulated by providing informative vision in haptic matching tasks that were performed using hand- and arm-centered reference frames. Twenty blindfolded participants (ten men, ten women) explored the orientation of a reference bar with the non-dominant hand and subsequently matched (task HP) or mirrored (task HM) its orientation on a test bar with the dominant hand. Visual information was provided by means of informative vision with participants having full view of the test bar, while the reference bar was blocked from their view (task VHP). To decrease the egocentric bias of the hands, participants also performed a visual haptic parallelity drawing task (task VHPD) using an arm-centered reference frame, by drawing the orientation of the reference bar. In all tasks, the distance between and orientation of the bars were manipulated. A significant effect of task was found; performance improved from task HP, to VHP to VHPD, and HM. Significant effects of distance were found in the first three tasks, whereas orientation and gender effects were only significant in tasks HP and VHP. The results showed that stimulating allocentric processing by means of informative vision and reducing the egocentric bias by using an arm-centered reference frame led to most accurate performance on parallelity matching. © 2013 Elsevier B.V. All rights reserved.

  7. Lempel–Ziv Data Compression on Parallel and Distributed Systems

    Directory of Open Access Journals (Sweden)

    Sergio De Agostino

    2011-09-01

    Full Text Available We present a survey of results concerning Lempel–Ziv data compression on parallel and distributed systems, starting from the theoretical approach to parallel time complexity to conclude with the practical goal of designing distributed algorithms with low communication cost. Storer’s extension for image compression is also discussed.

  8. MEDUSA - An overset grid flow solver for network-based parallel computer systems

    Science.gov (United States)

    Smith, Merritt H.; Pallis, Jani M.

    1993-01-01

    Continuing improvement in processing speed has made it feasible to solve the Reynolds-Averaged Navier-Stokes equations for simple three-dimensional flows on advanced workstations. Combining multiple workstations into a network-based heterogeneous parallel computer allows the application of programming principles learned on MIMD (Multiple Instruction Multiple Data) distributed memory parallel computers to the solution of larger problems. An overset-grid flow solution code has been developed which uses a cluster of workstations as a network-based parallel computer. Inter-process communication is provided by the Parallel Virtual Machine (PVM) software. Solution speed equivalent to one-third of a Cray-YMP processor has been achieved from a cluster of nine commonly used engineering workstation processors. Load imbalance and communication overhead are the principal impediments to parallel efficiency in this application.

  9. DATA TRANSFER IN THE AUTOMATED SYSTEM OF PARALLEL DESIGN AND CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Volkov Andrey Anatol'evich

    2012-12-01

    Full Text Available This article covers data transfer processes in the automated system of parallel design and construction. The authors consider the structure of reports used by contractors and clients when large-scale projects are implemented. All necessary items of information are grouped into three levels, and each level is described by certain attributes. The authors drive a lot of attention to the integrated operational schedule as it is the main tool of project management. Some recommendations concerning the forms and the content of reports are presented. Integrated automation of all operations is a necessary condition for the successful implementation of the new concept. The technical aspect of the notion of parallel design and construction also includes the client-to-server infrastructure that brings together all process implemented by the parties involved into projects. This approach should be taken into consideration in the course of review of existing codes and standards to eliminate any inconsistency between the construction legislation and the practical experience of engineers involved into the process.

  10. A parallel architecture system dedicated to fast numerical calculus

    International Nuclear Information System (INIS)

    Harmanci, A.E.

    1982-04-01

    The project described here is the first result of a careful reflection oriented to the implementation of a machine intended for fast scientific computation, having in mind applications in the field of nuclear reactor safety. The selected structure is a data processing system of the MIMD type (Multiple Instruction, Multiple Data Stream). It is built by generalizing a basic cell constituted by associating an host processor and one or several processors dedicated to numerical computation, both operating alternatively on two areas of a common memory block. The principle of simultaneous operation of a large number of identical resources is used at every level of the structure. The system described here is hence modular and reconfigurable. The number of cells, the size and number of memory blocks may be chosen according to the needs. The communication between processors is carried out through the switching of the allocation of memory blocks. Moreover the numerical processors make the best use of private interconnections for synchronisation and fast data interchange. The present study devoted to the definition of the main hardware structures, will be followed by a simulation phase while suitable software tools will be developed [fr

  11. MOOSE: A parallel computational framework for coupled systems of nonlinear equations

    International Nuclear Information System (INIS)

    Gaston, Derek; Newman, Chris; Hansen, Glen; Lebrun-Grandie, Damien

    2009-01-01

    Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics expressions are modularized into 'Kernels,' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics-based preconditioning, which provides great flexibility even with large variance in time scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.

  12. On-board landmark navigation and attitude reference parallel processor system

    Science.gov (United States)

    Gilbert, L. E.; Mahajan, D. T.

    1978-01-01

    An approach to autonomous navigation and attitude reference for earth observing spacecraft is described along with the landmark identification technique based on a sequential similarity detection algorithm (SSDA). Laboratory experiments undertaken to determine if better than one pixel accuracy in registration can be achieved consistent with onboard processor timing and capacity constraints are included. The SSDA is implemented using a multi-microprocessor system including synchronization logic and chip library. The data is processed in parallel stages, effectively reducing the time to match the small known image within a larger image as seen by the onboard image system. Shared memory is incorporated in the system to help communicate intermediate results among microprocessors. The functions include finding mean values and summation of absolute differences over the image search area. The hardware is a low power, compact unit suitable to onboard application with the flexibility to provide for different parameters depending upon the environment.

  13. Passive and partially active fault tolerance for massively parallel stream processing engines

    DEFF Research Database (Denmark)

    Su, Li; Zhou, Yongluan

    2018-01-01

    . On the other hand, an active approach usually employs backup nodes to run replicated tasks. Upon failure, the active replica can take over the processing of the failed task with minimal latency. However, both approaches have their own inadequacies in Massively Parallel Stream Processing Engines (MPSPE...... also propose effective and efficient algorithms to optimize a partially active replication plan to maximize the quality of tentative outputs. We implemented PPA on top of Storm, an open-source MPSPE and conducted extensive experiments using both real and synthetic datasets to verify the effectiveness...

  14. Lamb wave propagation modelling and simulation using parallel processing architecture and graphical cards

    International Nuclear Information System (INIS)

    Paćko, P; Bielak, T; Staszewski, W J; Uhl, T; Spencer, A B; Worden, K

    2012-01-01

    This paper demonstrates new parallel computation technology and an implementation for Lamb wave propagation modelling in complex structures. A graphical processing unit (GPU) and computer unified device architecture (CUDA), available in low-cost graphical cards in standard PCs, are used for Lamb wave propagation numerical simulations. The local interaction simulation approach (LISA) wave propagation algorithm has been implemented as an example. Other algorithms suitable for parallel discretization can also be used in practice. The method is illustrated using examples related to damage detection. The results demonstrate good accuracy and effective computational performance of very large models. The wave propagation modelling presented in the paper can be used in many practical applications of science and engineering. (paper)

  15. Online data processing system

    International Nuclear Information System (INIS)

    Nakahara, Yoshinori; Yagi, Hideyuki; Yamada, Takayuki

    1979-02-01

    A pulse height analyzer terminal system PHATS has been developed for online data processing via JAERI-TOKAI computer network. The system is controled by using a micro-computer MICRO-8 which was developed for the JAERI-TOKAI network. The system program consists of two subprograms, online control system ONLCS and pulse height analyzer control system PHACS. ONLCS links the terminal with the conversational programming system of FACOM 230/75 through the JAERI-TOKAI network and controls data processing in TSS and remote batch modes. PHACS is used to control INPUT/OUTPUT of data between pulse height analyzer and cassette-MT or typewriter. This report describes the hardware configuration and the system program in detail. In the appendix, explained are real time monitor, type of message, PEX to PEX protocol and Host to Host protocol, required for the system programming. (author)

  16. Experience with highly-parallel software for the storage system of the ATLAS Experiment at CERN

    CERN Document Server

    Colombo, T; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment is observing proton-proton collisions delivered by the LHC accelerator. The ATLAS Trigger and Data Acquisition (TDAQ) system selects interesting events on-line in a three-level trigger system in order to store them at a budgeted rate of several hundred Hz. This paper focuses on the TDAQ data-logging system and in particular on the implementation and performance of a novel parallel software design. In this respect, the main challenge presented by the data-logging workload is the conflict between the largely parallel nature of the event processing, especially the recently introduced event compression, and the constraint of sequential file writing and checksum evaluation. This is further complicated by the necessity of operating in a fully data-driven mode, to cope with continuously evolving trigger and detector configurations. In this paper we report on the design of the new ATLAS on-line storage software. In particular we will discuss our development experience using recent concurrency-ori...

  17. Parallelization of Droplet Microfluidic Systems for the Sustainable Production of Micro-Reactors at Industrial Scale

    KAUST Repository

    Conchouso Gonzalez, David

    2017-04-01

    At the cutting edge of the chemical and biological research, innovation takes place in a field referred to as Lab on Chip (LoC), a multi-disciplinary area that combines biology, chemistry, electronics, microfabrication, and fluid mechanics. Within this field, droplets have been used as microreactors to produce advanced materials like quantum dots, micro and nanoparticles, active pharmaceutical ingredients, etc. The size of these microreactors offers distinct advantages, which were not possible using batch technologies. For example, they allow for lower reagent waste, minimal energy consumption, increased safety, as well as better process control of reaction conditions like temperature regulation, residence times, and response times among others. One of the biggest drawbacks associated with this technology is its limited production volume that prevents it from reaching industrial applications. The standard production rates for a single droplet microfluidic device is in the range of 1-10mLh-1, whereas industrial applications usually demand production rates several orders of magnitude higher. Although substantial work has been recently undertaken in the development scaled-out solutions, which run in parallel several droplet generators. Complex fluid mechanics and limitations on the manufacturing capacity have constrained these works to explore only in-plane parallelization. This thesis investigates a three-dimensional parallelization by proposing a microfluidic system that is comprised of a stack of droplet generation layers working on the liquid-liquid ow regime. Its realization implied a study of the characteristics of conventional droplet generators and the development of a fabrication process for 3D networks of microchannels. Finally, the combination of these studies resulted in a functional 3D parallelization system with the highest production rate (i.e. 1 Lh-1) at the time of its publication. Additionally, this architecture can reach industrially relevant

  18. Process evaluation distributed system

    Science.gov (United States)

    Moffatt, Christopher L. (Inventor)

    2006-01-01

    The distributed system includes a database server, an administration module, a process evaluation module, and a data display module. The administration module is in communication with the database server for providing observation criteria information to the database server. The process evaluation module is in communication with the database server for obtaining the observation criteria information from the database server and collecting process data based on the observation criteria information. The process evaluation module utilizes a personal digital assistant (PDA). A data display module in communication with the database server, including a website for viewing collected process data in a desired metrics form, the data display module also for providing desired editing and modification of the collected process data. The connectivity established by the database server to the administration module, the process evaluation module, and the data display module, minimizes the requirement for manual input of the collected process data.

  19. Parallel Simulation of Loosely Timed SystemC/TLM Programs: Challenges Raised by an Industrial Case Study

    Directory of Open Access Journals (Sweden)

    Denis Becker

    2016-05-01

    Full Text Available Transaction level models of systems-on-chip in SystemC are commonly used in the industry to provide an early simulation environment. The SystemC standard imposes coroutine semantics for the scheduling of simulated processes, to ensure determinism and reproducibility of simulations. However, because of this, sequential implementations have, for a long time, been the only option available, and still now the reference implementation is sequential. With the increasing size and complexity of models, and the multiplication of computation cores on recent machines, the parallelization of SystemC simulations is a major research concern. There have been several proposals for SystemC parallelization, but most of them are limited to cycle-accurate models. In this paper we focus on loosely timed models, which are commonly used in the industry. We present an industrial context and show that, unfortunately, most of the existing approaches for SystemC parallelization can fundamentally not apply in this context. We support this claim with a set of measurements performed on a platform used in production at STMicroelectronics. This paper surveys existing techniques, presents a visualization and profiling tool and identifies unsolved challenges in the parallelization of SystemC models at transaction level.

  20. Parallel and Efficient Sensitivity Analysis of Microscopy Image Segmentation Workflows in Hybrid Systems.

    Science.gov (United States)

    Barreiros, Willian; Teodoro, George; Kurc, Tahsin; Kong, Jun; Melo, Alba C M A; Saltz, Joel

    2017-09-01

    We investigate efficient sensitivity analysis (SA) of algorithms that segment and classify image features in a large dataset of high-resolution images. Algorithm SA is the process of evaluating variations of methods and parameter values to quantify differences in the output. A SA can be very compute demanding because it requires re-processing the input dataset several times with different parameters to assess variations in output. In this work, we introduce strategies to efficiently speed up SA via runtime optimizations targeting distributed hybrid systems and reuse of computations from runs with different parameters. We evaluate our approach using a cancer image analysis workflow on a hybrid cluster with 256 nodes, each with an Intel Phi and a dual socket CPU. The SA attained a parallel efficiency of over 90% on 256 nodes. The cooperative execution using the CPUs and the Phi available in each node with smart task assignment strategies resulted in an additional speedup of about 2×. Finally, multi-level computation reuse lead to an additional speedup of up to 2.46× on the parallel version. The level of performance attained with the proposed optimizations will allow the use of SA in large-scale studies.

  1. The parallel processing impact in the optimization of the reactors neutronic by genetic algorithms

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Universidade Federal, Rio de Janeiro, RJ; Lapa, Celso M.F.; Mol, Antonio C.A.

    2002-01-01

    Nowadays, many optimization problems found in nuclear engineering has been solved through genetic algorithms (GA). The robustness of such methods is strongly related to the nature of search process which is based on populations of solution candidates, and this fact implies high computational cost in the optimization process. The use of GA become more critical when the evaluation process of a solution candidate is highly time consuming. Problems of this nature are common in the nuclear engineering, and an example is the reactor design optimization, where neutronic codes, which consume high CPU time, must be run. Aiming to investigate the impact of the use of parallel computation in the solution, through GA, of a reactor design optimization problem, a parallel genetic algorithm (PGA), using the Island Model, was developed. Exhaustive experiments, then 1500 processing hours in 550 MHz personal computers, have been done, in order to compare the conventional GA with the PGA. Such experiments have demonstrating the superiority of the PGA not only in terms of execution time, but also, in the optimization results. (author)

  2. Massive Parallelism of Monte-Carlo Simulation on Low-End Hardware using Graphic Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Mburu, Joe Mwangi; Hah, Chang Joo Hah [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    Within the past decade, research has been done on utilizing GPU massive parallelization in core simulation with impressive results but unfortunately, not much commercial application has been done in the nuclear field especially in reactor core simulation. The purpose of this paper is to give an introductory concept on the topic and illustrate the potential of exploiting the massive parallel nature of GPU computing on a simple monte-carlo simulation with very minimal hardware specifications. To do a comparative analysis, a simple two dimension monte-carlo simulation is implemented for both the CPU and GPU in order to evaluate performance gain based on the computing devices. The heterogeneous platform utilized in this analysis is done on a slow notebook with only 1GHz processor. The end results are quite surprising whereby high speedups obtained are almost a factor of 10. In this work, we have utilized heterogeneous computing in a GPU-based approach in applying potential high arithmetic intensive calculation. By applying a complex monte-carlo simulation on GPU platform, we have speed up the computational process by almost a factor of 10 based on one million neutrons. This shows how easy, cheap and efficient it is in using GPU in accelerating scientific computing and the results should encourage in exploring further this avenue especially in nuclear reactor physics simulation where deterministic and stochastic calculations are quite favourable in parallelization.

  3. Massive Parallelism of Monte-Carlo Simulation on Low-End Hardware using Graphic Processing Units

    International Nuclear Information System (INIS)

    Mburu, Joe Mwangi; Hah, Chang Joo Hah

    2014-01-01

    Within the past decade, research has been done on utilizing GPU massive parallelization in core simulation with impressive results but unfortunately, not much commercial application has been done in the nuclear field especially in reactor core simulation. The purpose of this paper is to give an introductory concept on the topic and illustrate the potential of exploiting the massive parallel nature of GPU computing on a simple monte-carlo simulation with very minimal hardware specifications. To do a comparative analysis, a simple two dimension monte-carlo simulation is implemented for both the CPU and GPU in order to evaluate performance gain based on the computing devices. The heterogeneous platform utilized in this analysis is done on a slow notebook with only 1GHz processor. The end results are quite surprising whereby high speedups obtained are almost a factor of 10. In this work, we have utilized heterogeneous computing in a GPU-based approach in applying potential high arithmetic intensive calculation. By applying a complex monte-carlo simulation on GPU platform, we have speed up the computational process by almost a factor of 10 based on one million neutrons. This shows how easy, cheap and efficient it is in using GPU in accelerating scientific computing and the results should encourage in exploring further this avenue especially in nuclear reactor physics simulation where deterministic and stochastic calculations are quite favourable in parallelization

  4. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  5. Optimization Solutions for Improving the Performance of the Parallel Reduction Algorithm Using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Ion LUNGU

    2012-01-01

    Full Text Available In this paper, we research, analyze and develop optimization solutions for the parallel reduction function using graphics processing units (GPUs that implement the Compute Unified Device Architecture (CUDA, a modern and novel approach for improving the software performance of data processing applications and algorithms. Many of these applications and algorithms make use of the reduction function in their computational steps. After having designed the function and its algorithmic steps in CUDA, we have progressively developed and implemented optimization solutions for the reduction function. In order to confirm, test and evaluate the solutions' efficiency, we have developed a custom tailored benchmark suite. We have analyzed the obtained experimental results regarding: the comparison of the execution time and bandwidth when using graphic processing units covering the main CUDA architectures (Tesla GT200, Fermi GF100, Kepler GK104 and a central processing unit; the data type influence; the binary operator's influence.

  6. Parallel computation for distributed parameter system-from vector processors to Adena computer

    Energy Technology Data Exchange (ETDEWEB)

    Nogi, T

    1983-04-01

    Research on advanced parallel hardware and software architectures for very high-speed computation deserves and needs more support and attention to fulfil its promise. Novel architectures for parallel processing are being made ready. Architectures for parallel processing can be roughly divided into two groups. One is a vector processor in which a single central processing unit involves multiple vector-arithmetic registers. The other is a processor array in which slave processors are connected to a host processor to perform parallel computation. In this review, the concept and data structure of the Adena (alternating-direction edition nexus array) architecture, which is conformable to distributed-parameter simulation algorithms, are described. 5 references.

  7. Visualization of biomedical image data and irradiation planning using a parallel computing system

    International Nuclear Information System (INIS)

    Lehrig, R.

    1991-01-01

    The contribution explains the development of a novel, low-cost workstation for the processing of biomedical tomographic data sequences. The workstation was to allow both graphical display of the data and implementation of modelling software for irradiation planning, especially for calculation of dose distributions on the basis of the measured tomogram data. The system developed according to these criteria is a parallel computing system which performs secondary, two-dimensional image reconstructions irrespective of the imaging direction of the original tomographic scans. Three-dimensional image reconstructions can be generated from any direction of view, with random selection of sections of the scanned object. (orig./MM) With 69 figs., 2 tabs [de

  8. A Pervasive Parallel Processing Framework for Data Visualization and Analysis at Extreme Scale

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States)

    2014-11-01

    The evolution of the computing world from teraflop to petaflop has been relatively effortless, with several of the existing programming models scaling effectively to the petascale. The migration to exascale, however, poses considerable challenges. All industry trends infer that the exascale machine will be built using processors containing hundreds to thousands of cores per chip. It can be inferred that efficient concurrency on exascale machines requires a massive amount of concurrent threads, each performing many operations on a localized piece of data. Currently, visualization libraries and applications are based off what is known as the visualization pipeline. In the pipeline model, algorithms are encapsulated as filters with inputs and outputs. These filters are connected by setting the output of one component to the input of another. Parallelism in the visualization pipeline is achieved by replicating the pipeline for each processing thread. This works well for today’s distributed memory parallel computers but cannot be sustained when operating on processors with thousands of cores. Our project investigates a new visualization framework designed to exhibit the pervasive parallelism necessary for extreme scale machines. Our framework achieves this by defining algorithms in terms of worklets, which are localized stateless operations. Worklets are atomic operations that execute when invoked unlike filters, which execute when a pipeline request occurs. The worklet design allows execution on a massive amount of lightweight threads with minimal overhead. Only with such fine-grained parallelism can we hope to fill the billions of threads we expect will be necessary for efficient computation on an exascale machine.

  9. Performance Analysis of a Threshold-Based Parallel Multiple Beam Selection Scheme for WDM FSO Systems

    KAUST Repository

    Nam, Sung Sik; Alouini, Mohamed-Slim; Ko, Young-Chai

    2018-01-01

    In this paper, we statistically analyze the performance of a threshold-based parallel multiple beam selection scheme for a free-space optical (FSO) based system with wavelength division multiplexing (WDM) in cases where a pointing error has occurred

  10. An expert system for automatic mesh generation for Sn particle transport simulation in parallel environment

    International Nuclear Information System (INIS)

    Apisit, Patchimpattapong; Alireza, Haghighat; Shedlock, D.

    2003-01-01

    An expert system for generating an effective mesh distribution for the SN particle transport simulation has been developed. This expert system consists of two main parts: 1) an algorithm for generating an effective mesh distribution in a serial environment, and 2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. For the first part, the algorithm prepares an effective mesh distribution considering problem physics and the spatial differencing scheme. For the second part, the algorithm determines a parallel-performance-index (PPI), which is defined as the ratio of the granularity to the degree-of-coupling. The parallel-performance-index provides expected performance of an algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems. (authors)

  11. An expert system for automatic mesh generation for Sn particle transport simulation in parallel environment

    Energy Technology Data Exchange (ETDEWEB)

    Apisit, Patchimpattapong [Electricity Generating Authority of Thailand, Office of Corporate Planning, Bangkruai, Nonthaburi (Thailand); Alireza, Haghighat; Shedlock, D. [Florida Univ., Department of Nuclear and Radiological Engineering, Gainesville, FL (United States)

    2003-07-01

    An expert system for generating an effective mesh distribution for the SN particle transport simulation has been developed. This expert system consists of two main parts: 1) an algorithm for generating an effective mesh distribution in a serial environment, and 2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. For the first part, the algorithm prepares an effective mesh distribution considering problem physics and the spatial differencing scheme. For the second part, the algorithm determines a parallel-performance-index (PPI), which is defined as the ratio of the granularity to the degree-of-coupling. The parallel-performance-index provides expected performance of an algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems. (authors)

  12. Parallel communicating grammar systems with context-free components are Turing complete for any communication model

    Directory of Open Access Journals (Sweden)

    Wilkin Mary Sarah Ruth

    2016-12-01

    Full Text Available Parallel Communicating Grammar Systems (PCGS were introduced as a language-theoretic treatment of concurrent systems. A PCGS extends the concept of a grammar to a structure that consists of several grammars working in parallel, communicating with each other, and so contributing to the generation of strings. PCGS are usually more powerful than a single grammar of the same type; PCGS with context-free components (CF-PCGS in particular were shown to be Turing complete. However, this result only holds when a specific type of communication (which we call broadcast communication, as opposed to one-step communication is used. We expand the original construction that showed Turing completeness so that broadcast communication is eliminated at the expense of introducing a significant number of additional, helper component grammars. We thus show that CF-PCGS with one-step communication are also Turing complete. We introduce in the process several techniques that may be usable in other constructions and may be capable of removing broadcast communication in general.

  13. Process gas solidification system

    International Nuclear Information System (INIS)

    1980-01-01

    A process for withdrawing gaseous UF 6 from a first system and directing same into a second system for converting the gas to liquid UF 6 at an elevated temperature, additionally including the step of withdrawing the resulting liquid UF 6 from the second system, subjecting it to a specified sequence of flash-evaporation, cooling and solidification operations, and storing it as a solid in a plurality of storage vessels. (author)

  14. Massively parallel computation of PARASOL code on the Origin 3800 system

    International Nuclear Information System (INIS)

    Hosokawa, Masanari; Takizuka, Tomonori

    2001-10-01

    The divertor particle simulation code named PARASOL simulates open-field plasmas between divertor walls self-consistently by using an electrostatic PIC method and a binary collision Monte Carlo model. The PARASOL parallelized with MPI-1.1 for scalar parallel computer worked on Intel Paragon XP/S system. A system SGI Origin 3800 was newly installed (May, 2001). The parallel programming was improved at this switchover. As a result of the high-performance new hardware and this improvement, the PARASOL is speeded up by about 60 times with the same number of processors. (author)

  15. Experimental studies in a single-phase parallel channel natural circulation system. Preliminary results

    International Nuclear Information System (INIS)

    Bodkha, Kapil; Pilkhwal, D.S.; Jana, S.S.; Vijayan, P.K.

    2016-01-01

    Natural circulation systems find extensive applications in industrial engineering systems. One of the applications is in nuclear reactor where the decay heat is removed by natural circulation of the fluid under off-normal conditions. The upcoming reactor designs make use of natural circulation in order to remove the heat from core under normal operating conditions also. These reactors employ multiple vertical fuel channels with provision of on-power refueling/defueling. Natural circulation systems are relatively simple, safe and reliable when compared to forced circulation systems. However, natural circulation systems are prone to encounter flow instabilities which are highly undesirable for various reasons. Presence of parallel channels under natural circulation makes the system more complicated. To examine the behavior of parallel channel system, studies were carried out for single-phase natural circulation flow in a multiple vertical channel system. The objective of the present work is to study the flow behavior of the parallel heated channel system under natural circulation for different operating conditions. Steady state and transient studies have been carried out in a parallel channel natural circulation system with three heated channels. The paper brings out the details of the system considered, different cases analyzed and preliminary results of studies carried out on a single-phase parallel channel system.

  16. When fast logic meets slow belief: Evidence for a parallel-processing model of belief bias.

    Science.gov (United States)

    Trippas, Dries; Thompson, Valerie A; Handley, Simon J

    2017-05-01

    Two experiments pitted the default-interventionist account of belief bias against a parallel-processing model. According to the former, belief bias occurs because a fast, belief-based evaluation of the conclusion pre-empts a working-memory demanding logical analysis. In contrast, according to the latter both belief-based and logic-based responding occur in parallel. Participants were given deductive reasoning problems of variable complexity and instructed to decide whether the conclusion was valid on half the trials or to decide whether the conclusion was believable on the other half. When belief and logic conflict, the default-interventionist view predicts that it should take less time to respond on the basis of belief than logic, and that the believability of a conclusion should interfere with judgments of validity, but not the reverse. The parallel-processing view predicts that beliefs should interfere with logic judgments only if the processing required to evaluate the logical structure exceeds that required to evaluate the knowledge necessary to make a belief-based judgment, and vice versa otherwise. Consistent with this latter view, for the simplest reasoning problems (modus ponens), judgments of belief resulted in lower accuracy than judgments of validity, and believability interfered more with judgments of validity than the converse. For problems of moderate complexity (modus tollens and single-model syllogisms), the interference was symmetrical, in that validity interfered with belief judgments to the same degree that believability interfered with validity judgments. For the most complex (three-term multiple-model syllogisms), conclusion believability interfered more with judgments of validity than vice versa, in spite of the significant interference from conclusion validity on judgments of belief.

  17. Phase locking of a seven-channel continuous wave fibre laser system by a stochastic parallel gradient algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, M V; Garanin, S G; Dolgopolov, Yu V; Kopalkin, A V; Kulikov, S M; Sinyavin, D N; Starikov, F A; Sukharev, S A; Tyutin, S V; Khokhlov, S V; Chaparin, D A [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2014-11-30

    A seven-channel fibre laser system operated by the master oscillator – multichannel power amplifier scheme is the phase locked using a stochastic parallel gradient algorithm. The phase modulators on lithium niobate crystals are controlled by a multichannel electronic unit with the microcontroller processing signals in real time. The dynamic phase locking of the laser system with the bandwidth of 14 kHz is demonstrated, the time of phasing is 3 – 4 ms. (fibre and integrated-optical structures)

  18. The vector and parallel processing of MORSE code on Monte Carlo Machine

    International Nuclear Information System (INIS)

    Hasegawa, Yukihiro; Higuchi, Kenji.

    1995-11-01

    Multi-group Monte Carlo Code for particle transport, MORSE is modified for high performance computing on Monte Carlo Machine Monte-4. The method and the results are described. Monte-4 was specially developed to realize high performance computing of Monte Carlo codes for particle transport, which have been difficult to obtain high performance in vector processing on conventional vector processors. Monte-4 has four vector processor units with the special hardware called Monte Carlo pipelines. The vectorization and parallelization of MORSE code and the performance evaluation on Monte-4 are described. (author)

  19. LMFAO! Humor as a Response to Fear: Decomposing Fear Control within the Extended Parallel Process Model

    Science.gov (United States)

    Abril, Eulàlia P.; Szczypka, Glen; Emery, Sherry L.

    2017-01-01

    This study seeks to analyze fear control responses to the 2012 Tips from Former Smokers campaign using the Extended Parallel Process Model (EPPM). The goal is to examine the occurrence of ancillary fear control responses, like humor. In order to explore individuals’ responses in an organic setting, we use Twitter data—tweets—collected via the Firehose. Content analysis of relevant fear control tweets (N = 14,281) validated the existence of boomerang responses within the EPPM: denial, defensive avoidance, and reactance. More importantly, results showed that humor tweets were not only a significant occurrence but constituted the majority of fear control responses. PMID:29527092

  20. Leveraging human oversight and intervention in large-scale parallel processing of open-source data

    Science.gov (United States)

    Casini, Enrico; Suri, Niranjan; Bradshaw, Jeffrey M.

    2015-05-01

    The popularity of cloud computing along with the increased availability of cheap storage have led to the necessity of elaboration and transformation of large volumes of open-source data, all in parallel. One way to handle such extensive volumes of information properly is to take advantage of distributed computing frameworks like Map-Reduce. Unfortunately, an entirely automated approach that excludes human intervention is often unpredictable and error prone. Highly accurate data processing and decision-making can be achieved by supporting an automatic process through human collaboration, in a variety of environments such as warfare, cyber security and threat monitoring. Although this mutual participation seems easily exploitable, human-machine collaboration in the field of data analysis presents several challenges. First, due to the asynchronous nature of human intervention, it is necessary to verify that once a correction is made, all the necessary reprocessing is done in chain. Second, it is often needed to minimize the amount of reprocessing in order to optimize the usage of resources due to limited availability. In order to improve on these strict requirements, this paper introduces improvements to an innovative approach for human-machine collaboration in the processing of large amounts of open-source data in parallel.

  1. Is orthographic information from multiple parafoveal words processed in parallel: An eye-tracking study.

    Science.gov (United States)

    Cutter, Michael G; Drieghe, Denis; Liversedge, Simon P

    2017-08-01

    In the current study we investigated whether orthographic information available from 1 upcoming parafoveal word influences the processing of another parafoveal word. Across 2 experiments we used the boundary paradigm (Rayner, 1975) to present participants with an identity preview of the 2 words after the boundary (e.g., hot pan ), a preview in which 2 letters were transposed between these words (e.g., hop tan ), or a preview in which the same 2 letters were substituted (e.g., hob fan ). We hypothesized that if these 2 words were processed in parallel in the parafovea then we may observe significant preview benefits for the condition in which the letters were transposed between words relative to the condition in which the letters were substituted. However, no such effect was observed, with participants fixating the words for the same amount of time in both conditions. This was the case both when the transposition was made between the final and first letter of the 2 words (e.g., hop tan as a preview of hot pan ; Experiment 1) and when the transposition maintained within word letter position (e.g., pit hop as a preview of hit pop ; Experiment 2). The implications of these findings are considered in relation to serial and parallel lexical processing during reading. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Parallel photonic information processing at gigabyte per second data rates using transient states

    Science.gov (United States)

    Brunner, Daniel; Soriano, Miguel C.; Mirasso, Claudio R.; Fischer, Ingo

    2013-01-01

    The increasing demands on information processing require novel computational concepts and true parallelism. Nevertheless, hardware realizations of unconventional computing approaches never exceeded a marginal existence. While the application of optics in super-computing receives reawakened interest, new concepts, partly neuro-inspired, are being considered and developed. Here we experimentally demonstrate the potential of a simple photonic architecture to process information at unprecedented data rates, implementing a learning-based approach. A semiconductor laser subject to delayed self-feedback and optical data injection is employed to solve computationally hard tasks. We demonstrate simultaneous spoken digit and speaker recognition and chaotic time-series prediction at data rates beyond 1Gbyte/s. We identify all digits with very low classification errors and perform chaotic time-series prediction with 10% error. Our approach bridges the areas of photonic information processing, cognitive and information science.

  3. Massively Parallel Post-Packaging for Microelectromechanical Systems (MEMS)

    National Research Council Canada - National Science Library

    Lin, Liwei

    2003-01-01

    ...) demonstrations and characterizations of post-fabrication device trimming. In summary, we were able to develop several new localized bonding processes, including eutectic bonding, fusion bonding, solder bonding, chemical vapor deposition (CVD...

  4. Parallel rendering

    Science.gov (United States)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  5. From experiment to design -- Fault characterization and detection in parallel computer systems using computational accelerators

    Science.gov (United States)

    Yim, Keun Soo

    This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of

  6. Tokamak equilibria with non-parallel flow in a triangularity-deformed axisymmetric toroidal coordinate system

    Directory of Open Access Journals (Sweden)

    Ap Kuiroukidis

    2018-01-01

    Full Text Available We consider a generalized Grad–Shafranov equation (GGSE in a triangularity-deformed axisymmetric toroidal coordinate system and solve it numerically for the generic case of ITER-like and JET-like equilibria with non-parallel flow. It turns out that increase of the triangularity improves confinement by leading to larger values of the toroidal beta and the safety factor. This result is supported by the application of a criterion for linear stability valid for equilibria with flow parallel to the magnetic field. Also, the parallel flow has a weaker stabilizing effect.

  7. Parallel verification of dynamic systems with rich configurations

    OpenAIRE

    Pessoa, Eduardo José Dias

    2016-01-01

    Dissertação de mestrado em Engenharia Informática (área de especialização em Informática) Model checking is a technique used to automatically verify a model which represents the specification of some system. To ensure the correctness of the system the verification of both static and dynamic properties is often needed. The specification of a system is made through modeling languages, while the respective verification is made by its model-checker. Most modeling frameworks are not...

  8. Parallel preprocessing in a nuclear data acquisition system

    International Nuclear Information System (INIS)

    Pichot, G.; Auriol, E.; Lemarchand, G.; Millaud, J.

    1977-01-01

    The appearance of microprocessors and large memory chips has somewhat modified the spectrum of tools usable by the data acquisition system designer. This is particular true in the nuclear research field where the data flow has been continuously growing as a consequence of the increasing capabilities of new detectors. This paper deals with the insertion, between a data acquisition system and a computer, of a preprocessing structure based on microprocessors and large capacity high speed memories. The results shows a significant improvement on several aspects in the operation of the system with returns paying back the investments in 18 months

  9. Distributed control system for parallel-connected DC boost converters

    Science.gov (United States)

    Goldsmith, Steven

    2017-08-15

    The disclosed invention is a distributed control system for operating a DC bus fed by disparate DC power sources that service a known or unknown load. The voltage sources vary in v-i characteristics and have time-varying, maximum supply capacities. Each source is connected to the bus via a boost converter, which may have different dynamic characteristics and power transfer capacities, but are controlled through PWM. The invention tracks the time-varying power sources and apportions their power contribution while maintaining the DC bus voltage within the specifications. A central digital controller solves the steady-state system for the optimal duty cycle settings that achieve a desired power supply apportionment scheme for a known or predictable DC load. A distributed networked control system is derived from the central system that utilizes communications among controllers to compute a shared estimate of the unknown time-varying load through shared bus current measurements and bus voltage measurements.

  10. Massively Parallel Polar Decomposition on Distributed-Memory Systems

    KAUST Repository

    Ltaief, Hatem; Sukkari, Dalal E.; Esposito, Aniello; Nakatsukasa, Yuji; Keyes, David E.

    2018-01-01

    We present a high-performance implementation of the Polar Decomposition (PD) on distributed-memory systems. Building upon on the QR-based Dynamically Weighted Halley (QDWH) algorithm, the key idea lies in finding the best rational approximation

  11. Numerical Investigation of Startup Instabilities in Parallel-Channel Natural Circulation Boiling Systems

    Directory of Open Access Journals (Sweden)

    S. P. Lakshmanan

    2010-01-01

    Full Text Available The behaviour of a parallel-channel natural circulation boiling water reactor under a low-pressure low-power startup condition has been studied numerically (using RELAP5 and compared with its scaled model. The parallel-channel RELAP5 model is an extension of a single-channel model developed and validated with experimental results. Existence of in-phase and out-of-phase flashing instabilities in the parallel-channel systems is investigated through simulations under equal and unequal power boundary conditions in the channels. The effect of flow resistance on Type-I oscillations is explored. For nonidentical condition in the channels, the flow fluctuations in the parallel-channel systems are found to be out-of-phase.

  12. Parallelized preconditioned BiCGStab solution of sparse linear system equations in F-COBRA-TF

    International Nuclear Information System (INIS)

    Geemert, Rene van; Glück, Markus; Riedmann, Michael; Gabriel, Harry

    2011-01-01

    Recently, the in-house development of a preconditioned and parallelized BiCGStab solver has been pursued successfully in AREVA’s advanced sub-channel code F-COBRA-TF. This solver can be run either in a sequential computation mode on a single CPU, or in a parallel computation mode on multiple parallel CPUs. The developed procedure enables the computation of several thousands of successive sparse linear system solutions in F-COBRA-TF with acceptable wall clock run times. The current paper provides general information about F-COBRA-TF in terms of modeling capabilities and application areas, and points out where the relevance arises for the efficient iterative solution of sparse linear systems. Furthermore, the preconditioning and parallelization strategies in the developed BiCGStab iterative solution approach are discussed. The paper is concluded with a number of verification examples. (author)

  13. ARTS - adaptive runtime system for massively parallel systems. Final report; ARTS - optimale Ausfuehrungsunterstuetzung fuer komplexe Anwendungen auf massiv parallelen Systemen. Teilprojekt: Parallele Stroemungsmechanik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gentzsch, W.; Ferstl, F.; Paap, H.G.; Riedel, E.

    1998-03-20

    In the ARTS project, system software has been developed to support smog and fluid dynamic applications on massively parallel systems. The aim is to implement and test specific software structures within an adaptive run-time system to separate the parallel core algorithms of the applications from the platform independent runtime aspects. Only slight modifications is existing Fortran and C code are necessary to integrate the application code into the new object oriented parallel integrated ARTS framework. The OO-design offers easy control, re-use and adaptation of the system services, resulting in a dramatic decrease in development time of the application and in ease of maintainability of the application software in the future. (orig.) [Deutsch] Im Projekt ARTS wird Basissoftware zur Unterstuetzung von Anwendungen aus den Bereichen Smoganalyse und Stroemungsmechanik auf massiv parallelen Systemen entwickelt und optimiert. Im Vordergrund steht die Erprobung geeigneter Strukturen, um systemnahe Funktionalitaeten in einer Laufzeitumgebung anzusiedeln und dadurch die parallelen Kernalgorithmen der Anwendungsprogramme von den plattformunabhaengigen Laufzeitaspekten zu trennen. Es handelt sich dabei um herkoemmlich strukturierten Fortran-Code, der unter minimalen Aenderungen auch weiterhin nutzbar sein muss, sowie um objektbasiert entworfenen C-Code, der die volle Funktionalitaet der ARTS-Plattform ausnutzen kann. Ein objektorientiertes Design erlaubt eine einfache Kontrolle, Wiederverwendung und Adaption der vom System vorgegebenen Basisdienste. Daraus resultiert ein deutlich reduzierter Entwicklungs- und Laufzeitaufwand fuer die Anwendung. ARTS schafft eine integrierende Plattform, die moderne Technologien aus dem Bereich objektorientierter Laufzeitsysteme mit praxisrelevanten Anforderungen aus dem Bereich des wissenschaftlichen Hoechstleistungsrechnens kombiniert. (orig.)

  14. Electron beam processing system

    International Nuclear Information System (INIS)

    Kashiwagi, Masayuki

    2004-01-01

    Electron beam Processing Systems (EPS) are used as useful and powerful tools in many industrial application fields such as the production of cross-linked wire, rubber tire, heat shrinkable film and tubing, curing, degradation of polymers, sterilization and environmental application. In this paper, the feature and application fields, the selection of machine ratings and safety measures of EPS will be described. (author)

  15. Numerical modelling of series-parallel cooling systems in power plant

    Directory of Open Access Journals (Sweden)

    Regucki Paweł

    2017-01-01

    Full Text Available The paper presents a mathematical model allowing one to study series-parallel hydraulic systems like, e.g., the cooling system of a power boiler's auxiliary devices or a closed cooling system including condensers and cooling towers. The analytical approach is based on a set of non-linear algebraic equations solved using numerical techniques. As a result of the iterative process, a set of volumetric flow rates of water through all the branches of the investigated hydraulic system is obtained. The calculations indicate the influence of changes in the pipeline's geometrical parameters on the total cooling water flow rate in the analysed installation. Such an approach makes it possible to analyse different variants of the modernization of the studied systems, as well as allowing for the indication of its critical elements. Basing on these results, an investor can choose the optimal variant of the reconstruction of the installation from the economic point of view. As examples of such a calculation, two hydraulic installations are described. One is a boiler auxiliary cooling installation including two screw ash coolers. The other is a closed cooling system consisting of cooling towers and condensers.

  16. Single product lot-sizing on unrelated parallel machines with non-decreasing processing times

    Science.gov (United States)

    Eremeev, A.; Kovalyov, M.; Kuznetsov, P.

    2018-01-01

    We consider a problem in which at least a given quantity of a single product has to be partitioned into lots, and lots have to be assigned to unrelated parallel machines for processing. In one version of the problem, the maximum machine completion time should be minimized, in another version of the problem, the sum of machine completion times is to be minimized. Machine-dependent lower and upper bounds on the lot size are given. The product is either assumed to be continuously divisible or discrete. The processing time of each machine is defined by an increasing function of the lot volume, given as an oracle. Setup times and costs are assumed to be negligibly small, and therefore, they are not considered. We derive optimal polynomial time algorithms for several special cases of the problem. An NP-hard case is shown to admit a fully polynomial time approximation scheme. An application of the problem in energy efficient processors scheduling is considered.

  17. Design and simulation of parallel and distributed architectures for images processing

    International Nuclear Information System (INIS)

    Pirson, Alain

    1990-01-01

    The exploitation of visual information requires special computers. The diversity of operations and the Computing power involved bring about structures founded on the concepts of concurrency and distributed processing. This work identifies a vision computer with an association of dedicated intelligent entities, exchanging messages according to the model of parallelism introduced by the language Occam. It puts forward an architecture of the 'enriched processor network' type. It consists of a classical multiprocessor structure where each node is provided with specific devices. These devices perform processing tasks as well as inter-nodes dialogues. Such an architecture benefits from the homogeneity of multiprocessor networks and the power of dedicated resources. Its implementation corresponds to that of a distributed structure, tasks being allocated to each Computing element. This approach culminates in an original architecture called ATILA. This modular structure is based on a transputer network supplied with vision dedicated co-processors and powerful communication devices. (author) [fr

  18. Optimal redundant systems for works with random processing time

    International Nuclear Information System (INIS)

    Chen, M.; Nakagawa, T.

    2013-01-01

    This paper studies the optimal redundant policies for a manufacturing system processing jobs with random working times. The redundant units of the parallel systems and standby systems are subject to stochastic failures during the continuous production process. First, a job consisting of only one work is considered for both redundant systems and the expected cost functions are obtained. Next, each redundant system with a random number of units is assumed for a single work. The expected cost functions and the optimal expected numbers of units are derived for redundant systems. Subsequently, the production processes of N tandem works are introduced for parallel and standby systems, and the expected cost functions are also summarized. Finally, the number of works is estimated by a Poisson distribution for the parallel and standby systems. Numerical examples are given to demonstrate the optimization problems of redundant systems

  19. A concurrent visualization system for large-scale unsteady simulations. Parallel vector performance on an NEC SX-4

    International Nuclear Information System (INIS)

    Takei, Toshifumi; Doi, Shun; Matsumoto, Hideki; Muramatsu, Kazuhiro

    2000-01-01

    We have developed a concurrent visualization system RVSLIB (Real-time Visual Simulation Library). This paper shows the effectiveness of the system when it is applied to large-scale unsteady simulations, for which the conventional post-processing approach may no longer work, on high-performance parallel vector supercomputers. The system performs almost all of the visualization tasks on a computation server and uses compressed visualized image data for efficient communication between the server and the user terminal. We have introduced several techniques, including vectorization and parallelization, into the system to minimize the computational costs of the visualization tools. The performance of RVSLIB was evaluated by using an actual CFD code on an NEC SX-4. The computational time increase due to the concurrent visualization was at most 3% for a smaller (1.6 million) grid and less than 1% for a larger (6.2 million) one. (author)

  20. Teaching ethics to engineers: ethical decision making parallels the engineering design process.

    Science.gov (United States)

    Bero, Bridget; Kuhlman, Alana

    2011-09-01

    In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.

  1. Parallel simulation of axon growth in the nervous system

    NARCIS (Netherlands)

    J. Wensch; B.P. Sommeijer (Ben)

    2002-01-01

    textabstractIn this paper we discuss a model from neurobiology, which describes theoutgrowth of axons from neurons in the nervous system. The model combines ordinary differential equations, defining the movement of the axons, with parabolic partial differential equations. The parabolic equations

  2. Control of automotive waste heat recovery systems with parallel evaporators

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rascanu, G.C.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    In this paper, Model Predictive Control (MPC) is applied to control a Waste Heat Recovery system for a highly dynamic automotive application. As a benchmark, a commonly applied control strategy is used that consists of a feedforward based on engine conditions and of two PI controllers that

  3. False targets vs. redundancy in homogeneous parallel systems

    International Nuclear Information System (INIS)

    Levitin, Gregory; Hausken, Kjell

    2009-01-01

    System defense against natural threats and disasters that have a stochastic nature includes providing redundancy and protecting system elements. The defense against strategic intentional attacks can also include deploying false targets aimed at misleading the attacker. Distribution of the available resources among different defensive means is an important problem that arises in organizing the defense of complex civil infrastructures, industrial systems or military objects. The article considers defense resource allocation in a system exposed to external intentional attack. The expected damage caused by the attack is evaluated as system unsupplied demand. The defender distributes its limited resource between deploying redundant genuine elements and false elements, both of which are targets of attack. The attacker attacks a subset of the elements and distributes its limited resource evenly among the attacked elements. Two cases are considered: in the first one the number of attacked elements and the vulnerability of each genuine element are fixed and the defense resource distribution is determined as a solution of an optimization problem; in the second one the number of attacked elements is the attacker's free choice variable and the element's vulnerability depends on a contest determined by the defender's and attacker's resources allocated to each element. The defender's optimal resource distribution strategy is determined as a solution of a two-period minmax game. It is shown that the optimal number of genuine elements decreases monotonically with the growth of the element cost and vulnerability, whereas the optimal number of false elements demonstrates non-monotonic behavior. The contest intensity is an important factor influencing the optimal defense resource distribution. It cannot be ignored when the defense strategy is determined, and it thus also impacts the attack strategy

  4. Parallel computations

    CERN Document Server

    1982-01-01

    Parallel Computations focuses on parallel computation, with emphasis on algorithms used in a variety of numerical and physical applications and for many different types of parallel computers. Topics covered range from vectorization of fast Fourier transforms (FFTs) and of the incomplete Cholesky conjugate gradient (ICCG) algorithm on the Cray-1 to calculation of table lookups and piecewise functions. Single tridiagonal linear systems and vectorized computation of reactive flow are also discussed.Comprised of 13 chapters, this volume begins by classifying parallel computers and describing techn

  5. Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array

    Science.gov (United States)

    Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul

    2008-04-01

    This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.

  6. JANUS: A Compilation System for Balancing Parallelism and Performance in OpenVX

    Science.gov (United States)

    Omidian, Hossein; Lemieux, Guy G. F.

    2018-04-01

    Embedded systems typically do not have enough on-chip memory for entire an image buffer. Programming systems like OpenCV operate on entire image frames at each step, making them use excessive memory bandwidth and power. In contrast, the paradigm used by OpenVX is much more efficient; it uses image tiling, and the compilation system is allowed to analyze and optimize the operation sequence, specified as a compute graph, before doing any pixel processing. In this work, we are building a compilation system for OpenVX that can analyze and optimize the compute graph to take advantage of parallel resources in many-core systems or FPGAs. Using a database of prewritten OpenVX kernels, it automatically adjusts the image tile size as well as using kernel duplication and coalescing to meet a defined area (resource) target, or to meet a specified throughput target. This allows a single compute graph to target implementations with a wide range of performance needs or capabilities, e.g. from handheld to datacenter, that use minimal resources and power to reach the performance target.

  7. Log-Less Metadata Management on Metadata Server for Parallel File Systems

    Directory of Open Access Journals (Sweden)

    Jianwei Liao

    2014-01-01

    Full Text Available This paper presents a novel metadata management mechanism on the metadata server (MDS for parallel and distributed file systems. In this technique, the client file system backs up the sent metadata requests, which have been handled by the metadata server, so that the MDS does not need to log metadata changes to nonvolatile storage for achieving highly available metadata service, as well as better performance improvement in metadata processing. As the client file system backs up certain sent metadata requests in its memory, the overhead for handling these backup requests is much smaller than that brought by the metadata server, while it adopts logging or journaling to yield highly available metadata service. The experimental results show that this newly proposed mechanism can significantly improve the speed of metadata processing and render a better I/O data throughput, in contrast to conventional metadata management schemes, that is, logging or journaling on MDS. Besides, a complete metadata recovery can be achieved by replaying the backup logs cached by all involved clients, when the metadata server has crashed or gone into nonoperational state exceptionally.

  8. Optimizing the data acquisition rate for a remotely controllable structural monitoring system with parallel operation and self-adaptive sampling

    International Nuclear Information System (INIS)

    Sheng, Wenjuan; Guo, Aihuang; Liu, Yang; Azmi, Asrul Izam; Peng, Gang-Ding

    2011-01-01

    We present a novel technique that optimizes the real-time remote monitoring and control of dispersed civil infrastructures. The monitoring system is based on fiber Bragg gating (FBG) sensors, and transfers data via Ethernet. This technique combines parallel operation and self-adaptive sampling to increase the data acquisition rate in remote controllable structural monitoring systems. The compact parallel operation mode is highly efficient at achieving the highest possible data acquisition rate for the FBG sensor based local data acquisition system. Self-adaptive sampling is introduced to continuously coordinate local acquisition and remote control for data acquisition rate optimization. Key issues which impact the operation of the whole system, such as the real-time data acquisition rate, data processing capability, and buffer usage, are investigated. The results show that, by introducing parallel operation and self-adaptive sampling, the data acquisition rate can be increased by several times without affecting the system operating performance on both local data acquisition and remote process control

  9. Mizan: Optimizing Graph Mining in Large Parallel Systems

    KAUST Repository

    Kalnis, Panos

    2012-03-01

    Extracting information from graphs, from nding shortest paths to complex graph mining, is essential for many ap- plications. Due to the shear size of modern graphs (e.g., social networks), processing must be done on large paral- lel computing infrastructures (e.g., the cloud). Earlier ap- proaches relied on the MapReduce framework, which was proved inadequate for graph algorithms. More recently, the message passing model (e.g., Pregel) has emerged. Although the Pregel model has many advantages, it is agnostic to the graph properties and the architecture of the underlying com- puting infrastructure, leading to suboptimal performance. In this paper, we propose Mizan, a layer between the users\\' code and the computing infrastructure. Mizan considers the structure of the input graph and the architecture of the in- frastructure in order to: (i) decide whether it is bene cial to generate a near-optimal partitioning of the graph in a pre- processing step, and (ii) choose between typical point-to- point message passing and a novel approach that puts com- puting nodes in a virtual overlay ring. We deployed Mizan on a small local Linux cluster, on the cloud (256 virtual machines in Amazon EC2), and on an IBM Blue Gene/P supercomputer (1024 CPUs). We show that Mizan executes common algorithms on very large graphs 1-2 orders of mag- nitude faster than MapReduce-based implementations and up to one order of magnitude faster than implementations relying on Pregel-like hash-based graph partitioning.

  10. Applications of parallel computer architectures to the real-time simulation of nuclear power systems

    International Nuclear Information System (INIS)

    Doster, J.M.; Sills, E.D.

    1988-01-01

    In this paper the authors report on efforts to utilize parallel computer architectures for the thermal-hydraulic simulation of nuclear power systems and current research efforts toward the development of advanced reactor operator aids and control systems based on this new technology. Many aspects of reactor thermal-hydraulic calculations are inherently parallel, and the computationally intensive portions of these calculations can be effectively implemented on modern computers. Timing studies indicate faster-than-real-time, high-fidelity physics models can be developed when the computational algorithms are designed to take advantage of the computer's architecture. These capabilities allow for the development of novel control systems and advanced reactor operator aids. Coupled with an integral real-time data acquisition system, evolving parallel computer architectures can provide operators and control room designers improved control and protection capabilities. Current research efforts are currently under way in this area

  11. Advanced information processing system

    Science.gov (United States)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  12. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  13. Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    Science.gov (United States)

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C.; Dehio, Christoph

    2011-01-01

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  14. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Directory of Open Access Journals (Sweden)

    Philipp Engel

    2011-02-01

    Full Text Available Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS, and thereby translocated Bartonella effector proteins (Beps, evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial

  15. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Science.gov (United States)

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph

    2011-02-10

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  16. OpenCL Implementation of a Parallel Universal Kriging Algorithm for Massive Spatial Data Interpolation on Heterogeneous Systems

    Directory of Open Access Journals (Sweden)

    Fang Huang

    2016-06-01

    Full Text Available In some digital Earth engineering applications, spatial interpolation algorithms are required to process and analyze large amounts of data. Due to its powerful computing capacity, heterogeneous computing has been used in many applications for data processing in various fields. In this study, we explore the design and implementation of a parallel universal kriging spatial interpolation algorithm using the OpenCL programming model on heterogeneous computing platforms for massive Geo-spatial data processing. This study focuses primarily on transforming the hotspots in serial algorithms, i.e., the universal kriging interpolation function, into the corresponding kernel function in OpenCL. We also employ parallelization and optimization techniques in our implementation to improve the code performance. Finally, based on the results of experiments performed on two different high performance heterogeneous platforms, i.e., an NVIDIA graphics processing unit system and an Intel Xeon Phi system (MIC, we show that the parallel universal kriging algorithm can achieve the highest speedup of up to 40× with a single computing device and the highest speedup of up to 80× with multiple devices.

  17. A Pervasive Parallel Processing Framework for Data Visualization and Analysis at Extreme Scale

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Kwan-Liu [Univ. of California, Davis, CA (United States)

    2017-02-01

    Most of today’s visualization libraries and applications are based off of what is known today as the visualization pipeline. In the visualization pipeline model, algorithms are encapsulated as “filtering” components with inputs and outputs. These components can be combined by connecting the outputs of one filter to the inputs of another filter. The visualization pipeline model is popular because it provides a convenient abstraction that allows users to combine algorithms in powerful ways. Unfortunately, the visualization pipeline cannot run effectively on exascale computers. Experts agree that the exascale machine will comprise processors that contain many cores. Furthermore, physical limitations will prevent data movement in and out of the chip (that is, between main memory and the processing cores) from keeping pace with improvements in overall compute performance. To use these processors to their fullest capability, it is essential to carefully consider memory access. This is where the visualization pipeline fails. Each filtering component in the visualization library is expected to take a data set in its entirety, perform some computation across all of the elements, and output the complete results. The process of iterating over all elements must be repeated in each filter, which is one of the worst possible ways to traverse memory when trying to maximize the number of executions per memory access. This project investigates a new type of visualization framework that exhibits a pervasive parallelism necessary to run on exascale machines. Our framework achieves this by defining algorithms in terms of functors, which are localized, stateless operations. Functors can be composited in much the same way as filters in the visualization pipeline. But, functors’ design allows them to be concurrently running on massive amounts of lightweight threads. Only with such fine-grained parallelism can we hope to fill the billions of threads we expect will be necessary for

  18. Screw-System-Based Mobility Analysis of a Family of Fully Translational Parallel Manipulators

    Directory of Open Access Journals (Sweden)

    Ernesto Rodriguez-Leal

    2013-01-01

    Full Text Available This paper investigates the mobility of a family of fully translational parallel manipulators based on screw system analysis by identifying the common constraint and redundant constraints, providing a case study of this approach. The paper presents the branch motion-screws for the 3-RP̲C-Y parallel manipulator, the 3-RCC-Y (or 3-RP̲RC-Y parallel manipulator, and a newly proposed 3-RP̲C-T parallel manipulator. Then the paper determines the sets of platform constraint-screws for each of these three manipulators. The constraints exerted on the platforms of the 3-RP̲C architectures and the 3-RCC-Y manipulators are analyzed using the screw system approach and have been identified as couples. A similarity has been identified with the axes of couples: they are perpendicular to the R joint axes, but in the former the axes are coplanar with the base and in the latter the axes are perpendicular to the limb. The remaining couples act about the axis that is normal to the base. The motion-screw system and constraint-screw system analysis leads to the insightful understanding of the mobility of the platform that is then obtained by determining the reciprocal screws to the platform constraint screw sets, resulting in three independent instantaneous translational degrees-of-freedom. To validate the mobility analysis of the three parallel manipulators, the paper includes motion simulations which use a commercially available kinematics software.

  19. Parallel computing works

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-23

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.

  20. Performance of DS-CDMA systems with optimal hard-decision parallel interference cancellation

    NARCIS (Netherlands)

    Hofstad, van der R.W.; Klok, M.J.

    2003-01-01

    We study a multiuser detection system for code-division multiple access (CDMA). We show that applying multistage hard-decision parallel interference cancellation (HD-PIC) significantly improves performance compared to the matched filter system. In (multistage) HD-PIC, estimates of the interfering

  1. ACME: A scalable parallel system for extracting frequent patterns from a very long sequence

    KAUST Repository

    Sahli, Majed; Mansour, Essam; Kalnis, Panos

    2014-01-01

    -long sequences and is the first to support supermaximal motifs. ACME is a versatile parallel system that can be deployed on desktop multi-core systems, or on thousands of CPUs in the cloud. However, merely using more compute nodes does not guarantee efficiency

  2. Tissue P Systems With Channel States Working in the Flat Maximally Parallel Way.

    Science.gov (United States)

    Song, Bosheng; Perez-Jimenez, Mario J; Paun, Gheorghe; Pan, Linqiang

    2016-10-01

    Tissue P systems with channel states are a class of bio-inspired parallel computational models, where rules are used in a sequential manner (on each channel, at most one rule can be used at each step). In this work, tissue P systems with channel states working in a flat maximally parallel way are considered, where at each step, on each channel, a maximal set of applicable rules that pass from a given state to a unique next state, is chosen and each rule in the set is applied once. The computational power of such P systems is investigated. Specifically, it is proved that tissue P systems with channel states and antiport rules of length two are able to compute Parikh sets of finite languages, and such P systems with one cell and noncooperative symport rules can compute at least all Parikh sets of matrix languages. Some Turing universality results are also provided. Moreover, the NP-complete problem SAT is solved by tissue P systems with channel states, cell division and noncooperative symport rules working in the flat maximally parallel way; nevertheless, if channel states are not used, then such P systems working in the flat maximally parallel way can solve only tractable problems. These results show that channel states provide a frontier of tractability between efficiency and non-efficiency in the framework of tissue P systems with cell division (assuming P ≠ NP ).

  3. Parallel Processing and Bio-inspired Computing for Biomedical Image Registration

    Directory of Open Access Journals (Sweden)

    Silviu Ioan Bejinariu

    2014-07-01

    Full Text Available Image Registration (IR is an optimization problem computing optimal parameters of a geometric transform used to overlay one or more source images to a given model by maximizing a similarity measure. In this paper the use of bio-inspired optimization algorithms in image registration is analyzed. Results obtained by means of three different algorithms are compared: Bacterial Foraging Optimization Algorithm (BFOA, Genetic Algorithm (GA and Clonal Selection Algorithm (CSA. Depending on the images type, the registration may be: area based, which is slow but more precise, and features based, which is faster. In this paper a feature based approach based on the Scale Invariant Feature Transform (SIFT is proposed. Finally, results obtained using sequential and parallel implementations on multi-core systems for area based and features based image registration are compared.

  4. Vectorization of KENO IV code and an estimate of vector-parallel processing

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Higuchi, Kenji; Katakura, Jun-ichi; Kurita, Yutaka.

    1986-10-01

    The multi-group criticality safety code KENO IV has been vectorized and tested on FACOM VP-100 vector processor. At first the vectorized KENO IV on a scalar processor became slower than the original one by a factor of 1.4 because of the overhead introduced by the vectorization. Making modifications of algorithms and techniques for vectorization, the vectorized version has become faster than the original one by a factor of 1.4 and 3.0 on the vector processor for sample problems of complex and simple geometries, respectively. For further speedup of the code, some improvements on compiler and hardware, especially on addition of Monte Carlo pipelines to the vector processor, are discussed. Finally a pipelined parallel processor system is proposed and its performance is estimated. (author)

  5. Vectorization, parallelization and porting of nuclear codes on the VPP500 system (vectorization). Progress report fiscal 1996

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Toshiyuki; Kawai, Wataru [Fujitsu Ltd., Tokyo (Japan); Kawasaki, Nobuo [and others

    1997-12-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. These results are reported in 3 parts, i.e., the vectorization part, the parallelization part and the porting part. In this report, we describe the vectorization. In this vectorization part, the vectorization of two and three dimensional discrete ordinates simulation code DORT-TORT, gas dynamics analysis code FLOWGR and relativistic Boltzmann-Uehling-Uhlenbeck simulation code RBUU are described. In the parallelization part, the parallelization of 2-Dimensional relativistic electromagnetic particle code EM2D, Cylindrical Direct Numerical Simulation code CYLDNS and molecular dynamics code for simulating radiation damages in diamond crystals DGR are described. And then, in the porting part, the porting of reactor safety analysis code RELAP5/MOD3.2 and RELAP5/MOD3.2.1.2, nuclear data processing system NJOY and 2-D multigroup discrete ordinate transport code TWOTRAN-II are described. And also, a survey for the porting of command-driven interactive data analysis plotting program IPLOT are described. (author)

  6. Vectorization, parallelization and porting of nuclear codes on the VPP500 system (porting). Progress report fiscal 1996

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Toshiyuki [Fujitsu Ltd., Tokyo (Japan); Kawasaki, Nobuo; Tanabe, Hidenobu [and others

    1998-01-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. These results are reported in 3 parts, i.e., the vectorization part, the parallelization part and the porting part. In this report, we describe the porting. In this porting part, the porting of reactor safety analysis code RELAP5/MOD3.2 and RELAP5/MOD3.2.1.2, nuclear data processing system NJOY and 2-D multigroup discrete ordinate transport code TWOTRAN-II are described. And also, a survey for the porting of command-driven interactive data analysis plotting program IPLOT are described. In the parallelization part, the parallelization of 2-Dimensional relativistic electromagnetic particle code EM2D, Cylindrical Direct Numerical Simulation code CYLDNS and molecular dynamics code for simulating radiation damages in diamond crystals DGR are described. And then, in the vectorization part, the vectorization of two and three dimensional discrete ordinates simulation code DORT-TORT, gas dynamics analysis code FLOWGR and relativistic Boltzmann-Uehling-Uhlenbeck simulation code RBUU are described. (author)

  7. Parallel assembling and equation solving via graph algorithms with an application to the FE simulation of metal extrusion processes

    CERN Document Server

    Unterkircher, A

    2005-01-01

    We propose methods for parallel assembling and iterative equation solving based on graph algorithms. The assembling technique is independent of dimension, element type and model shape. As a parallel solving technique we construct a multiplicative symmetric Schwarz preconditioner for the conjugate gradient method. Both methods have been incorporated into a non-linear FE code to simulate 3D metal extrusion processes. We illustrate the efficiency of these methods on shared memory computers by realistic examples.

  8. Development of real-time visualization system for Computational Fluid Dynamics on parallel computers

    International Nuclear Information System (INIS)

    Muramatsu, Kazuhiro; Otani, Takayuki; Matsumoto, Hideki; Takei, Toshifumi; Doi, Shun

    1998-03-01

    A real-time visualization system for computational fluid dynamics in a network connecting between a parallel computing server and the client terminal was developed. Using the system, a user can visualize the results of a CFD (Computational Fluid Dynamics) simulation on the parallel computer as a client terminal during the actual computation on a server. Using GUI (Graphical User Interface) on the client terminal, to user is also able to change parameters of the analysis and visualization during the real-time of the calculation. The system carries out both of CFD simulation and generation of a pixel image data on the parallel computer, and compresses the data. Therefore, the amount of data from the parallel computer to the client is so small in comparison with no compression that the user can enjoy the swift image appearance comfortably. Parallelization of image data generation is based on Owner Computation Rule. GUI on the client is built on Java applet. A real-time visualization is thus possible on the client PC only if Web browser is implemented on it. (author)

  9. Algorithms for parallel computers

    International Nuclear Information System (INIS)

    Churchhouse, R.F.

    1985-01-01

    Until relatively recently almost all the algorithms for use on computers had been designed on the (usually unstated) assumption that they were to be run on single processor, serial machines. With the introduction of vector processors, array processors and interconnected systems of mainframes, minis and micros, however, various forms of parallelism have become available. The advantage of parallelism is that it offers increased overall processing speed but it also raises some fundamental questions, including: (i) which, if any, of the existing 'serial' algorithms can be adapted for use in the parallel mode. (ii) How close to optimal can such adapted algorithms be and, where relevant, what are the convergence criteria. (iii) How can we design new algorithms specifically for parallel systems. (iv) For multi-processor systems how can we handle the software aspects of the interprocessor communications. Aspects of these questions illustrated by examples are considered in these lectures. (orig.)

  10. Extending the POSIX I/O interface: a parallel file system perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Vilayannur, M.; Lang, S.; Ross, R.; Klundt, R.; Ward, L.; Mathematics and Computer Science; VMWare, Inc.; SNL

    2008-12-11

    The POSIX interface does not lend itself well to enabling good performance for high-end applications. Extensions are needed in the POSIX I/O interface so that high-concurrency HPC applications running on top of parallel file systems perform well. This paper presents the rationale, design, and evaluation of a reference implementation of a subset of the POSIX I/O interfaces on a widely used parallel file system (PVFS) on clusters. Experimental results on a set of micro-benchmarks confirm that the extensions to the POSIX interface greatly improve scalability and performance.

  11. Radiation signal processing system

    International Nuclear Information System (INIS)

    Bennett, M.; Knoll, G.; Strange, D.

    1980-01-01

    An improved signal processing system for radiation imaging apparatus comprises: a radiation transducer producing transducer signals proportional to apparent spatial coordinates of detected radiation events; means for storing true spatial coordinates corresponding to a plurality of predetermined apparent spatial coordinates relative to selected detected radiation events said means for storing responsive to said transducer signal and producing an output signal representative of said true spatial coordinates; and means for interpolating the true spatial coordinates of the detected radiation events located intermediate the stored true spatial coordinates, said means for interpolating communicating with said means for storing

  12. Experience with highly-parallel software for the storage system of the ATLAS Experiment at CERN

    CERN Document Server

    Colombo, T; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment is observing proton-proton collisions delivered by the LHC accelerator at a centre of mass energy of 7 TeV. The ATLAS Trigger and Data Acquisition (TDAQ) system selects interesting events on-line in a three-level trigger system in order to store them at a budgeted rate of several hundred Hz, for an average event size of ~1.2 MB. This paper focuses on the TDAQ data-logging system and in particular on the implementation and performance of a novel SW design, reporting on the effort of exploiting the full power of recently installed multi-core hardware. In this respect, the main challenge presented by the data-logging workload is the conflict between the largely parallel nature of the event processing, especially the recently introduced on-line event-compression, and the constraint of sequential file writing and checksum evaluation. This is furtherly complicated by the necessity of operating in a fully data-driven mode, to cope with continuously evolving trigger and detector configurations. T...

  13. ParBiBit: Parallel tool for binary biclustering on modern distributed-memory systems.

    Science.gov (United States)

    González-Domínguez, Jorge; Expósito, Roberto R

    2018-01-01

    Biclustering techniques are gaining attention in the analysis of large-scale datasets as they identify two-dimensional submatrices where both rows and columns are correlated. In this work we present ParBiBit, a parallel tool to accelerate the search of interesting biclusters on binary datasets, which are very popular on different fields such as genetics, marketing or text mining. It is based on the state-of-the-art sequential Java tool BiBit, which has been proved accurate by several studies, especially on scenarios that result on many large biclusters. ParBiBit uses the same methodology as BiBit (grouping the binary information into patterns) and provides the same results. Nevertheless, our tool significantly improves performance thanks to an efficient implementation based on C++11 that includes support for threads and MPI processes in order to exploit the compute capabilities of modern distributed-memory systems, which provide several multicore CPU nodes interconnected through a network. Our performance evaluation with 18 representative input datasets on two different eight-node systems shows that our tool is significantly faster than the original BiBit. Source code in C++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/parbibit/.

  14. Front-end data processing the SLD data acquisition system

    International Nuclear Information System (INIS)

    Nielsen, B.S.

    1986-07-01

    The data acquisition system for the SLD detector will make extensive use of parallel at the front-end level. Fastbus acquisition modules are being built with powerful processing capabilities for calibration, data reduction and further pre-processing of the large amount of analog data handled by each module. This paper describes the read-out electronics chain and data pre-processing system adapted for most of the detector channels, exemplified by the central drift chamber waveform digitization and processing system

  15. The effect of earthquake on architecture geometry with non-parallel system irregularity configuration

    Science.gov (United States)

    Teddy, Livian; Hardiman, Gagoek; Nuroji; Tudjono, Sri

    2017-12-01

    Indonesia is an area prone to earthquake that may cause casualties and damage to buildings. The fatalities or the injured are not largely caused by the earthquake, but by building collapse. The collapse of the building is resulted from the building behaviour against the earthquake, and it depends on many factors, such as architectural design, geometry configuration of structural elements in horizontal and vertical plans, earthquake zone, geographical location (distance to earthquake center), soil type, material quality, and construction quality. One of the geometry configurations that may lead to the collapse of the building is irregular configuration of non-parallel system. In accordance with FEMA-451B, irregular configuration in non-parallel system is defined to have existed if the vertical lateral force-retaining elements are neither parallel nor symmetric with main orthogonal axes of the earthquake-retaining axis system. Such configuration may lead to torque, diagonal translation and local damage to buildings. It does not mean that non-parallel irregular configuration should not be formed on architectural design; however the designer must know the consequence of earthquake behaviour against buildings with irregular configuration of non-parallel system. The present research has the objective to identify earthquake behaviour in architectural geometry with irregular configuration of non-parallel system. The present research was quantitative with simulation experimental method. It consisted of 5 models, where architectural data and model structure data were inputted and analyzed using the software SAP2000 in order to find out its performance, and ETAB2015 to determine the eccentricity occurred. The output of the software analysis was tabulated, graphed, compared and analyzed with relevant theories. For areas of strong earthquake zones, avoid designing buildings which wholly form irregular configuration of non-parallel system. If it is inevitable to design a

  16. Operating system design of parallel computer for on-line management of nuclear pressurised water reactor cores

    International Nuclear Information System (INIS)

    Gougam, F.

    1991-04-01

    This study is part of the PHAETON project which aims at increasing the knowledge of safety parameters of PWR core and reducing operating margins during the reactor cycle. The on-line system associates a simulator process to compute the three dimensional flux distribution and an acquisition process of reactor core parameters from the central instrumentation. The 3D flux calculation is the most time consuming. So, for cost and safety reasons, the PHAETON project proposes an approach which is to parallelize the 3D diffusion calculation and to use a computer based on parallel processor architecture. This paper presents the design of the operating system on which the application is executed. The routine interface proposed, includes the main operations necessary for programming a real time and parallel application. The primitives include: task management, data transfer, synchronisation by event signalling and by using the rendez-vous mechanisms. The primitives which are proposed use standard softwares like real-time kernel and UNIX operating system [fr

  17. Parallelization of the preconditioned IDR solver for modern multicore computer systems

    Science.gov (United States)

    Bessonov, O. A.; Fedoseyev, A. I.

    2012-10-01

    This paper present the analysis, parallelization and optimization approach for the large sparse matrix solver CNSPACK for modern multicore microprocessors. CNSPACK is an advanced solver successfully used for coupled solution of stiff problems arising in multiphysics applications such as CFD, semiconductor transport, kinetic and quantum problems. It employs iterative IDR algorithm with ILU preconditioning (user chosen ILU preconditioning order). CNSPACK has been successfully used during last decade for solving problems in several application areas, including fluid dynamics and semiconductor device simulation. However, there was a dramatic change in processor architectures and computer system organization in recent years. Due to this, performance criteria and methods have been revisited, together with involving the parallelization of the solver and preconditioner using Open MP environment. Results of the successful implementation for efficient parallelization are presented for the most advances computer system (Intel Core i7-9xx or two-processor Xeon 55xx/56xx).

  18. A Graph-Based Approach to Action Scheduling in a Parallel Database System

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Apers, Peter M.G.

    Parallel database machines are meant to obtain high performance in transaction processing, both in terms of response time adn throughput. To obtain high performance, a good scheduling of the execution of the various actions in transactions is crucial. This paper describes a graph-based technique for

  19. On the mathematic simulation of the energy efficiency for heat exchangers with the systems of impingement plane-parallel jets

    Directory of Open Access Journals (Sweden)

    Haritonova Larisa

    2017-01-01

    Full Text Available The article gives the analytical generalization of the data on the energy efficiency for heat exchangers with the flat heat exchange surface to which systems of impact plane parallel jets are sent. Functional relations of specific power consumption (per unit of area, which were obtained for the first time using the techniques of the similarity law, for moving a heat carrier are shown with regard to design and operation factors. The regression equations representing a mathematical model of the process enable to carry out an analysis of various factors impact on the parameter to be determined. The obtained results can be used to optimize or to create the calculation techniques for new highly-efficient heat exchange devices with jet plane -parallel impingement systems and also to reduce power consumption for moving a heat carrier.

  20. Dosimetry systems for radiation processing in Japan

    International Nuclear Information System (INIS)

    Tamura, Naoyuki

    1995-01-01

    The present situation of dosimetry systems for radiation processing industry in Japan is reviewed. For gamma-rays irradiation the parallel-plate ionization chamber in TRCRE, JAERI has been placed as a reference standard dosimeter for processing-level dose. Various solid and liquid chemical dosimeters are used as routine dosimeters for gamma processing industries. Alanine dosimeters is used for the irradiation purpose which needs precise dosimetry. For electron-beam irradiation the electron current density meter and the total absorption calorimeter of TRCRE are used for the calibration of routine dosimeters. Plastic film dosimeters, such as cellulose triacetate and radiochromic dye are used as routine dosimeters for electron processing industries. When the official traceability systems for processing-level dosimetry now under investigation is completed, the ionization chamber of TRCRE is expected to have a role of the primary standard dosimeter and the specified alanine dosimeter will be nominated for the secondary or reference standard dosimeter. (author)

  1. Individual differences in speech-in-noise perception parallel neural speech processing and attention in preschoolers

    Science.gov (United States)

    Thompson, Elaine C.; Carr, Kali Woodruff; White-Schwoch, Travis; Otto-Meyer, Sebastian; Kraus, Nina

    2016-01-01

    From bustling classrooms to unruly lunchrooms, school settings are noisy. To learn effectively in the unwelcome company of numerous distractions, children must clearly perceive speech in noise. In older children and adults, speech-in-noise perception is supported by sensory and cognitive processes, but the correlates underlying this critical listening skill in young children (3–5 year olds) remain undetermined. Employing a longitudinal design (two evaluations separated by ~12 months), we followed a cohort of 59 preschoolers, ages 3.0–4.9, assessing word-in-noise perception, cognitive abilities (intelligence, short-term memory, attention), and neural responses to speech. Results reveal changes in word-in-noise perception parallel changes in processing of the fundamental frequency (F0), an acoustic cue known for playing a role central to speaker identification and auditory scene analysis. Four unique developmental trajectories (speech-in-noise perception groups) confirm this relationship, in that improvements and declines in word-in-noise perception couple with enhancements and diminishments of F0 encoding, respectively. Improvements in word-in-noise perception also pair with gains in attention. Word-in-noise perception does not relate to strength of neural harmonic representation or short-term memory. These findings reinforce previously-reported roles of F0 and attention in hearing speech in noise in older children and adults, and extend this relationship to preschool children. PMID:27864051

  2. Early and parallel processing of pragmatic and semantic information in speech acts: neurophysiological evidence

    Directory of Open Access Journals (Sweden)

    Natalia eEgorova

    2013-03-01

    Full Text Available Although language is a tool for communication, most research in the neuroscience of language has focused on studying words and sentences, while little is known about the brain mechanisms of speech acts, or communicative functions, for which words and sentences are used as tools. Here the neural processing of two types of speech acts, Naming and Requesting, was addressed using the time-resolved event-related potential (ERP technique. The brain responses for Naming and Request diverged as early as ~120 ms after the onset of the critical words, at the same time as, or even before, the earliest brain manifestations of semantic word properties could be detected. Request-evoked potentials were generally larger in amplitude than those for Naming. The use of identical words in closely matched settings for both speech acts rules out explanation of the difference in terms of phonological, lexical, semantic properties or word expectancy. The cortical sources underlying the ERP enhancement for Requests were found in the fronto-central cortex, consistent with the activation of action knowledge, as well as in right temporo-parietal junction, possibly reflecting additional implications of speech acts for social interaction and theory of mind. These results provide the first evidence for surprisingly early access to pragmatic and social interactive knowledge, which possibly occurs in parallel with other types of linguistic processing, and thus supports the near-simultaneous access to different subtypes of psycholinguistic information.

  3. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction.

    Science.gov (United States)

    Belin, David; Jonkman, Sietse; Dickinson, Anthony; Robbins, Trevor W; Everitt, Barry J

    2009-04-12

    In this review we discuss the evidence that drug addiction, defined as a maladaptive compulsive habit, results from the progressive subversion by addictive drugs of striatum-dependent operant and Pavlovian learning mechanisms that are usually involved in the control over behaviour by stimuli associated with natural reinforcement. Although mainly organized through segregated parallel cortico-striato-pallido-thalamo-cortical loops involved in motor or emotional functions, the basal ganglia, and especially the striatum, are key mediators of the modulation of behavioural responses, under the control of both action-outcome and stimulus-response mechanisms, by incentive motivational processes and Pavlovian associations. Here we suggest that protracted exposure to addictive drugs recruits serial and dopamine-dependent, striato-nigro-striatal ascending spirals from the nucleus accumbens to more dorsal regions of the striatum that underlie a shift from action-outcome to stimulus-response mechanisms in the control over drug seeking. When this progressive ventral to dorsal striatum shift is combined with drug-associated Pavlovian influences from limbic structures such as the amygdala and the orbitofrontal cortex, drug seeking behaviour becomes established as an incentive habit. This instantiation of implicit sub-cortical processing of drug-associated stimuli and instrumental responding might be a key mechanism underlying the development of compulsive drug seeking and the high vulnerability to relapse which are hallmarks of drug addiction.

  4. Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-10-01

    Full Text Available In electric vehicles, the battery pack is one of the most important components that strongly influence the system performance. The battery thermal management system (BTMS is critical to remove the heat generated by the battery pack, which guarantees the appropriate working temperature for the battery pack. Air cooling is one of the most commonly-used solutions among various battery thermal management technologies. In this paper, the cooling performance of the parallel air-cooled BTMS is improved through choosing appropriate system parameters. The flow field and the temperature field of the system are calculated using the computational fluid dynamics method. Typical numerical cases are introduced to study the influences of the operation parameters and the structure parameters on the performance of the BTMS. The operation parameters include the discharge rate of the battery pack, the inlet air temperature and the inlet airflow rate. The structure parameters include the cell spacing and the angles of the divergence plenum and the convergence plenum. The results show that the temperature rise and the temperature difference of the batter pack are not affected by the inlet air flow temperature and are increased as the discharge rate increases. Increasing the inlet airflow rate can reduce the maximum temperature, but meanwhile significantly increase the power consumption for driving the airflow. Adopting smaller cell spacing can reduce the temperature and the temperature difference of the battery pack, but it consumes much more power. Designing the angles of the divergence plenum and the convergence plenum is an effective way to improve the performance of the BTMS without occupying more system volume. An optimization strategy is used to obtain the optimal values of the plenum angles. For the numerical cases with fixed power consumption, the maximum temperature and the maximum temperature difference at the end of the five-current discharge process for

  5. Enabling Requirements-Based Programming for Highly-Dependable Complex Parallel and Distributed Systems

    Science.gov (United States)

    Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.

    2005-01-01

    The manual application of formal methods in system specification has produced successes, but in the end, despite any claims and assertions by practitioners, there is no provable relationship between a manually derived system specification or formal model and the customer's original requirements. Complex parallel and distributed system present the worst case implications for today s dearth of viable approaches for achieving system dependability. No avenue other than formal methods constitutes a serious contender for resolving the problem, and so recognition of requirements-based programming has come at a critical juncture. We describe a new, NASA-developed automated requirement-based programming method that can be applied to certain classes of systems, including complex parallel and distributed systems, to achieve a high degree of dependability.

  6. Overtaking CPU DBMSes with a GPU in whole-query analytic processing with parallelism-friendly execution plan optimization

    NARCIS (Netherlands)

    A. Agbaria (Adnan); D. Minor (David); N. Peterfreund (Natan); E. Rozenberg (Eyal); O. Rosenberg (Ofer); Huawei Research

    2016-01-01

    textabstractExisting work on accelerating analytic DB query processing with (discrete) GPUs fails to fully realize their potential for speedup through parallelism: Published results do not achieve significant speedup over more performant CPU-only DBMSes when processing complete queries. This

  7. Reliability and mass analysis of dynamic power conversion systems with parallel or standby redundancy

    Science.gov (United States)

    Juhasz, Albert J.; Bloomfield, Harvey S.

    1987-01-01

    A combinatorial reliability approach was used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis was also performed, specifically for a 100-kWe nuclear Brayton power conversion system with parallel redundancy. Although this study was done for a reactor outlet temperature of 1100 K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.

  8. Reliability and mass analysis of dynamic power conversion systems with parallel of standby redundancy

    Science.gov (United States)

    Juhasz, A. J.; Bloomfield, H. S.

    1985-01-01

    A combinatorial reliability approach is used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis is also performed, specifically for a 100 kWe nuclear Brayton power conversion system with parallel redundancy. Although this study is done for a reactor outlet temperature of 1100K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.

  9. The Development of Reading and Spelling in Arabic Orthography: Two Parallel Processes?

    Science.gov (United States)

    Taha, Haitham

    2016-01-01

    The parallels between reading and spelling skills in Arabic were tested. One-hundred forty-three native Arab students, with typical reading development, from second, fourth, and sixth grades were tested with reading, spelling and orthographic decision tasks. The results indicated a full parallel between the reading and spelling performances within…

  10. Quasi-disjoint pentadiagonal matrix systems for the parallelization of compact finite-difference schemes and filters

    Science.gov (United States)

    Kim, Jae Wook

    2013-05-01

    This paper proposes a novel systematic approach for the parallelization of pentadiagonal compact finite-difference schemes and filters based on domain decomposition. The proposed approach allows a pentadiagonal banded matrix system to be split into quasi-disjoint subsystems by using a linear-algebraic transformation technique. As a result the inversion of pentadiagonal matrices can be implemented within each subdomain in an independent manner subject to a conventional halo-exchange process. The proposed matrix transformation leads to new subdomain boundary (SB) compact schemes and filters that require three halo terms to exchange with neighboring subdomains. The internode communication overhead in the present approach is equivalent to that of standard explicit schemes and filters based on seven-point discretization stencils. The new SB compact schemes and filters demand additional arithmetic operations compared to the original serial ones. However, it is shown that the additional cost becomes sufficiently low by choosing optimal sizes of their discretization stencils. Compared to earlier published results, the proposed SB compact schemes and filters successfully reduce parallelization artifacts arising from subdomain boundaries to a level sufficiently negligible for sophisticated aeroacoustic simulations without degrading parallel efficiency. The overall performance and parallel efficiency of the proposed approach are demonstrated by stringent benchmark tests.

  11. On reliability of system composed from parallel units subject to increasing load

    Czech Academy of Sciences Publication Activity Database

    Volf, Petr; Linka, A.

    2000-01-01

    Roč. 7, č. 4 (2000), s. 271-284 ISSN 0218-5393 R&D Projects: GA MŠk VS97084 Institutional research plan: AV0Z1075907 Keywords : reliability * mathematical statistics * parallel system Subject RIV: BB - Applied Statistics, Operational Research

  12. Design heuristic for parallel many server systems under FCFS-ALIS

    NARCIS (Netherlands)

    Adan, I.J.B.F.; Boon, M.; Weiss, G.

    2016-01-01

    We study a parallel service queueing system with servers of types $s_1,\\ldots,s_J$, customers of types $c_1,\\ldots,c_I$, bipartite compatibility graph $\\mathcal{G}$, where arc $(c_i, s_j)$ indicates that server type $s_j$ can serve customer type $c_i$, and service policy of first come first served

  13. Development Modules for Specification of Requirements for a System of Verification of Parallel Algorithms

    Directory of Open Access Journals (Sweden)

    Vasiliy Yu. Meltsov

    2012-05-01

    Full Text Available This paper presents the results of the development of one of the modules of the system verification of parallel algorithms that are used to verify the inference engine. This module is designed to build the specification requirements, the feasibility of which on the algorithm is necessary to prove (test.

  14. Optimization of multi-phase compressible lattice Boltzmann codes on massively parallel multi-core systems

    NARCIS (Netherlands)

    Biferale, L.; Mantovani, F.; Pivanti, M.; Pozzati, F.; Sbragaglia, M.; Schifano, S.F.; Toschi, F.; Tripiccione, R.

    2011-01-01

    We develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the performance bottlenecks that we find as we gradually expose a larger fraction of

  15. Further comments on the geometrical efficiency of a parallel-disk source and detector system

    International Nuclear Information System (INIS)

    Ruby, L.

    1994-01-01

    A derivation is presented for a previously published formula, which determines the geometrical efficiency of a parallel-disk source and detector system. The formula involves an integral over a product of two Bessel functions. An algebraic approximation to the integral is also discussed. (orig.)

  16. Mars Aqueous Processing System

    Science.gov (United States)

    Berggren, Mark; Wilson, Cherie; Carrera, Stacy; Rose, Heather; Muscatello, Anthony; Kilgore, James; Zubrin, Robert

    2012-01-01

    The goal of the Mars Aqueous Processing System (MAPS) is to establish a flexible process that generates multiple products that are useful for human habitation. Selectively extracting useful components into an aqueous solution, and then sequentially recovering individual constituents, can obtain a suite of refined or semi-refined products. Similarities in the bulk composition (although not necessarily of the mineralogy) of Martian and Lunar soils potentially make MAPS widely applicable. Similar process steps can be conducted on both Mars and Lunar soils while tailoring the reaction extents and recoveries to the specifics of each location. The MAPS closed-loop process selectively extracts, and then recovers, constituents from soils using acids and bases. The emphasis on Mars involves the production of useful materials such as iron, silica, alumina, magnesia, and concrete with recovery of oxygen as a byproduct. On the Moon, similar chemistry is applied with emphasis on oxygen production. This innovation has been demonstrated to produce high-grade materials, such as metallic iron, aluminum oxide, magnesium oxide, and calcium oxide, from lunar and Martian soil simulants. Most of the target products exhibited purities of 80 to 90 percent or more, allowing direct use for many potential applications. Up to one-fourth of the feed soil mass was converted to metal, metal oxide, and oxygen products. The soil residue contained elevated silica content, allowing for potential additional refining and extraction for recovery of materials needed for photovoltaic, semiconductor, and glass applications. A high-grade iron oxide concentrate derived from lunar soil simulant was used to produce a metallic iron component using a novel, combined hydrogen reduction/metal sintering technique. The part was subsequently machined and found to be structurally sound. The behavior of the lunar-simulant-derived iron product was very similar to that produced using the same methods on a Michigan iron

  17. Line filter design of parallel interleaved VSCs for high power wind energy conversion systems

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2015-01-01

    The Voltage Source Converters (VSCs) are often connected in parallel in a Wind Energy Conversion System (WECS) to match the high power rating of the modern wind turbines. The effect of the interleaved carriers on the harmonic performance of the parallel connected VSCs is analyzed in this paper...... limit. In order to achieve the desired filter performance with optimal values of the filter parameters, the use of a LC trap branch with the conventional LCL filter is proposed. The expressions for the resonant frequencies of the proposed line filter are derived and used in the design to selectively...

  18. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    Science.gov (United States)

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  19. Harmonic resonance assessment of multiple paralleled grid-connected inverters system

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    This paper presents an eigenvalue-based impedance stability analytical method of multiple paralleled grid-connected inverter system. Different from the conventional impedance-based stability criterion, this work first built the state-space model of paralleled grid-connected inverters. On the basis...... of this, a bridge between the state-space-based modelling and impedance-based stability criterion is presented. The proposed method is able to perform stability assessment locally at the connection points of the component. Meanwhile, the eigenvalue-based sensitivity analysis is adopted to identify...

  20. Radioisotope waste processing systems

    International Nuclear Information System (INIS)

    Machida, Tadashi

    1978-01-01

    The Atomic Energy Safety Bureau established the policy entitled ''On Common Processing System of Radioactive Wastes'' consulting with the Liaison Committee of Radioactive Waste Processing. Japan Atomic Energy Research Institute (JAERI) and Japan Radioisotope Association (JRIA) had been discussing the problems required for the establishment of the common disposal facilities based on the above policy, and they started the organization in spring, 1978. It is a foundation borrowing equipments from JAERI though installing newly some of them not available from JAERI, and depending the fund on JRIA. The operation expenses will be borne by those who want to dispose the wastes produced. The staffs are sent out from JAERI and JRIA. For animal wastes contaminated with RI, formaldehyde dipping should be abolished, but drying and freezing procedures will be taken before they are burnt up in a newly planned exclusive furnace with disposing capacity of 50 kg/hour. To settle the problems of other wastes, enough understanding and cooperation of users are to be requested. (Kobatake, H.)

  1. Automatic analysis (aa: efficient neuroimaging workflows and parallel processing using Matlab and XML

    Directory of Open Access Journals (Sweden)

    Rhodri eCusack

    2015-01-01

    Full Text Available Recent years have seen neuroimaging data becoming richer, with larger cohorts of participants, a greater variety of acquisition techniques, and increasingly complex analyses. These advances have made data analysis pipelines complex to set up and run (increasing the risk of human error and time consuming to execute (restricting what analyses are attempted. Here we present an open-source framework, automatic analysis (aa, to address these concerns. Human efficiency is increased by making code modular and reusable, and managing its execution with a processing engine that tracks what has been completed and what needs to be (redone. Analysis is accelerated by optional parallel processing of independent tasks on cluster or cloud computing resources. A pipeline comprises a series of modules that each perform a specific task. The processing engine keeps track of the data, calculating a map of upstream and downstream dependencies for each module. Existing modules are available for many analysis tasks, such as SPM-based fMRI preprocessing, individual and group level statistics, voxel-based morphometry, tractography, and multi-voxel pattern analyses (MVPA. However, aa also allows for full customization, and encourages efficient management of code: new modules may be written with only a small code overhead. aa has been used by more than 50 researchers in hundreds of neuroimaging studies comprising thousands of subjects. It has been found to be robust, fast and efficient, for simple single subject studies up to multimodal pipelines on hundreds of subjects. It is attractive to both novice and experienced users. aa can reduce the amount of time neuroimaging laboratories spend performing analyses and reduce errors, expanding the range of scientific questions it is practical to address.

  2. Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using Matlab and XML.

    Science.gov (United States)

    Cusack, Rhodri; Vicente-Grabovetsky, Alejandro; Mitchell, Daniel J; Wild, Conor J; Auer, Tibor; Linke, Annika C; Peelle, Jonathan E

    2014-01-01

    Recent years have seen neuroimaging data sets becoming richer, with larger cohorts of participants, a greater variety of acquisition techniques, and increasingly complex analyses. These advances have made data analysis pipelines complicated to set up and run (increasing the risk of human error) and time consuming to execute (restricting what analyses are attempted). Here we present an open-source framework, automatic analysis (aa), to address these concerns. Human efficiency is increased by making code modular and reusable, and managing its execution with a processing engine that tracks what has been completed and what needs to be (re)done. Analysis is accelerated by optional parallel processing of independent tasks on cluster or cloud computing resources. A pipeline comprises a series of modules that each perform a specific task. The processing engine keeps track of the data, calculating a map of upstream and downstream dependencies for each module. Existing modules are available for many analysis tasks, such as SPM-based fMRI preprocessing, individual and group level statistics, voxel-based morphometry, tractography, and multi-voxel pattern analyses (MVPA). However, aa also allows for full customization, and encourages efficient management of code: new modules may be written with only a small code overhead. aa has been used by more than 50 researchers in hundreds of neuroimaging studies comprising thousands of subjects. It has been found to be robust, fast, and efficient, for simple-single subject studies up to multimodal pipelines on hundreds of subjects. It is attractive to both novice and experienced users. aa can reduce the amount of time neuroimaging laboratories spend performing analyses and reduce errors, expanding the range of scientific questions it is practical to address.

  3. An Approach Using Parallel Architecture to Storage DICOM Images in Distributed File System

    International Nuclear Information System (INIS)

    Soares, Tiago S; Prado, Thiago C; Dantas, M A R; De Macedo, Douglas D J; Bauer, Michael A

    2012-01-01

    Telemedicine is a very important area in medical field that is expanding daily motivated by many researchers interested in improving medical applications. In Brazil was started in 2005, in the State of Santa Catarina has a developed server called the CyclopsDCMServer, which the purpose to embrace the HDF for the manipulation of medical images (DICOM) using a distributed file system. Since then, many researches were initiated in order to seek better performance. Our approach for this server represents an additional parallel implementation in I/O operations since HDF version 5 has an essential feature for our work which supports parallel I/O, based upon the MPI paradigm. Early experiments using four parallel nodes, provide good performance when compare to the serial HDF implemented in the CyclopsDCMServer.

  4. Parallel, but Dissociable, Processing in Discrete Corticostriatal Inputs Encodes Skill Learning.

    Science.gov (United States)

    Kupferschmidt, David A; Juczewski, Konrad; Cui, Guohong; Johnson, Kari A; Lovinger, David M

    2017-10-11

    Changes in cortical and striatal function underlie the transition from novel actions to refined motor skills. How discrete, anatomically defined corticostriatal projections function in vivo to encode skill learning remains unclear. Using novel fiber photometry approaches to assess real-time activity of associative inputs from medial prefrontal cortex to dorsomedial striatum and sensorimotor inputs from motor cortex to dorsolateral striatum, we show that associative and sensorimotor inputs co-engage early in action learning and disengage in a dissociable manner as actions are refined. Disengagement of associative, but not sensorimotor, inputs predicts individual differences in subsequent skill learning. Divergent somatic and presynaptic engagement in both projections during early action learning suggests potential learning-related in vivo modulation of presynaptic corticostriatal function. These findings reveal parallel processing within associative and sensorimotor circuits that challenges and refines existing views of corticostriatal function and expose neuronal projection- and compartment-specific activity dynamics that encode and predict action learning. Published by Elsevier Inc.

  5. Comparison of Efficacy and Threat Perception Processes in Predicting Smoking among University Students Based on Extended Parallel Process Model

    Directory of Open Access Journals (Sweden)

    S. Bashirian

    2014-04-01

    Full Text Available Introduction & Objective: The survey of smoking as the most toxic, common and cheapest ad-diction, and its psychological and demographic variables especially among the youth who are efficient and constructive individuals of the society is of great importance. This study was performed to compare efficacy and threat perception in predicting cigarette smoking among university students based on Expended Parallel Process Model (EPPM. Material & Methods: This cross sectional descriptive study was carried out on 700 college stu-dents of Hamadan recruited with a stratified sampling method. The participants completed a self-administered questionnaire including demographic characteristics, smoking status and EPPM Data analysis was done with the SPSS software (version 16, using t-test, one way ANOVA, Pierson correlation and logistic regression methods. Results: The average scores of threat and efficacy perception were 39.7 and 38.6, respectively. The prevalence of cigarette smoking among participants was 27.1 percent. Also, there were significant differences between the average score of efficacy perception and age, gender, his-tory of drug abuse and dwelling of students (P<0.05. Efficacy and threat perception both predicted student cigarette smoking. Conclusions: Cognitive mediating process of threat perception was a more powerful predictor of cigarette smoking as an unsafe behavior. Therefore, increasing self efficacy and response efficacy of university students aimed at facilitating the acceptance of safe behavior could be note-worthy as a principle in education. (Sci J Hamadan Univ Med Sci 2014; 21 (1:58-65

  6. Digital processing data communication systems (bus systems)

    International Nuclear Information System (INIS)

    Fleck, K.

    1980-01-01

    After an introduction to the technology of digital processing data communication systems there are the following chapters: digital communication of processing data in automation technology, the technology of biserial communication, the implementaiton of a bus system, the data transmission of the TDC-2000 system of Honeywell's and the process bus CS 275 in the automation system TELEPERM M of Siemens AG. (WB) [de

  7. Parallel power electronics filters in three-phase four-wire systems principle, control and design

    CERN Document Server

    Wong, Man-Chung; Lam, Chi-Seng

    2016-01-01

    This book describes parallel power electronic filters for 3-phase 4-wire systems, focusing on the control, design and system operation. It presents the basics of power-electronics techniques applied in power systems as well as the advanced techniques in controlling, implementing and designing parallel power electronics converters. The power-quality compensation has been achieved using active filters and hybrid filters, and circuit models, control principles and operational practice problems have been verified by principle study, simulation and experimental results. The state-of-the-art research findings were mainly developed by a team at the University of Macau. Offering background information and related novel techniques, this book is a valuable resource for electrical engineers and researchers wanting to work on energy saving using power-quality compensators or renewable energy power electronics systems. .

  8. Implementation science: a role for parallel dual processing models of reasoning?

    Directory of Open Access Journals (Sweden)

    Phillips Paddy A

    2006-05-01

    Full Text Available Abstract Background A better theoretical base for understanding professional behaviour change is needed to support evidence-based changes in medical practice. Traditionally strategies to encourage changes in clinical practices have been guided empirically, without explicit consideration of underlying theoretical rationales for such strategies. This paper considers a theoretical framework for reasoning from within psychology for identifying individual differences in cognitive processing between doctors that could moderate the decision to incorporate new evidence into their clinical decision-making. Discussion Parallel dual processing models of reasoning posit two cognitive modes of information processing that are in constant operation as humans reason. One mode has been described as experiential, fast and heuristic; the other as rational, conscious and rule based. Within such models, the uptake of new research evidence can be represented by the latter mode; it is reflective, explicit and intentional. On the other hand, well practiced clinical judgments can be positioned in the experiential mode, being automatic, reflexive and swift. Research suggests that individual differences between people in both cognitive capacity (e.g., intelligence and cognitive processing (e.g., thinking styles influence how both reasoning modes interact. This being so, it is proposed that these same differences between doctors may moderate the uptake of new research evidence. Such dispositional characteristics have largely been ignored in research investigating effective strategies in implementing research evidence. Whilst medical decision-making occurs in a complex social environment with multiple influences and decision makers, it remains true that an individual doctor's judgment still retains a key position in terms of diagnostic and treatment decisions for individual patients. This paper argues therefore, that individual differences between doctors in terms of

  9. Implementation science: a role for parallel dual processing models of reasoning?

    Science.gov (United States)

    Sladek, Ruth M; Phillips, Paddy A; Bond, Malcolm J

    2006-05-25

    A better theoretical base for understanding professional behaviour change is needed to support evidence-based changes in medical practice. Traditionally strategies to encourage changes in clinical practices have been guided empirically, without explicit consideration of underlying theoretical rationales for such strategies. This paper considers a theoretical framework for reasoning from within psychology for identifying individual differences in cognitive processing between doctors that could moderate the decision to incorporate new evidence into their clinical decision-making. Parallel dual processing models of reasoning posit two cognitive modes of information processing that are in constant operation as humans reason. One mode has been described as experiential, fast and heuristic; the other as rational, conscious and rule based. Within such models, the uptake of new research evidence can be represented by the latter mode; it is reflective, explicit and intentional. On the other hand, well practiced clinical judgments can be positioned in the experiential mode, being automatic, reflexive and swift. Research suggests that individual differences between people in both cognitive capacity (e.g., intelligence) and cognitive processing (e.g., thinking styles) influence how both reasoning modes interact. This being so, it is proposed that these same differences between doctors may moderate the uptake of new research evidence. Such dispositional characteristics have largely been ignored in research investigating effective strategies in implementing research evidence. Whilst medical decision-making occurs in a complex social environment with multiple influences and decision makers, it remains true that an individual doctor's judgment still retains a key position in terms of diagnostic and treatment decisions for individual patients. This paper argues therefore, that individual differences between doctors in terms of reasoning are important considerations in any

  10. Scalable High-Performance Parallel Design for Network Intrusion Detection Systems on Many-Core Processors

    OpenAIRE

    Jiang, Hayang; Xie, Gaogang; Salamatian, Kavé; Mathy, Laurent

    2013-01-01

    Network Intrusion Detection Systems (NIDSes) face significant challenges coming from the relentless network link speed growth and increasing complexity of threats. Both hardware accelerated and parallel software-based NIDS solutions, based on commodity multi-core and GPU processors, have been proposed to overcome these challenges. Network Intrusion Detection Systems (NIDSes) face significant challenges coming from the relentless network link speed growth and increasing complexity of threats. ...

  11. The global unified parallel file system (GUPFS) project: FY 2003 activities and results

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Gregory F.; Baird William P.; Lee, Rei C.; Tull, Craig E.; Welcome, Michael L.; Whitney Cary L.

    2004-04-30

    The Global Unified Parallel File System (GUPFS) project is a multiple-phase project at the National Energy Research Scientific Computing (NERSC) Center whose goal is to provide a scalable, high-performance, high-bandwidth, shared file system for all of the NERSC production computing and support systems. The primary purpose of the GUPFS project is to make the scientific users more productive as they conduct advanced scientific research at NERSC by simplifying the scientists' data management tasks and maximizing storage and data availability. This is to be accomplished through the use of a shared file system providing a unified file namespace, operating on consolidated shared storage that is accessible by all the NERSC production computing and support systems. In order to successfully deploy a scalable high-performance shared file system with consolidated disk storage, three major emerging technologies must be brought together: (1) shared/cluster file systems software, (2) cost-effective, high-performance storage area network (SAN) fabrics, and (3) high-performance storage devices. Although they are evolving rapidly, these emerging technologies individually are not targeted towards the needs of scientific high-performance computing (HPC). The GUPFS project is in the process of assessing these emerging technologies to determine the best combination of solutions for a center-wide shared file system, to encourage the development of these technologies in directions needed for HPC, particularly at NERSC, and to then put them into service. With the development of an evaluation methodology and benchmark suites, and with the updating of the GUPFS testbed system, the project did a substantial number of investigations and evaluations during FY 2003. The investigations and evaluations involved many vendors and products. From our evaluation of these products, we have found that most vendors and many of the products are more focused on the commercial market. Most vendors

  12. The Protein Maker: an automated system for high-throughput parallel purification

    International Nuclear Information System (INIS)

    Smith, Eric R.; Begley, Darren W.; Anderson, Vanessa; Raymond, Amy C.; Haffner, Taryn E.; Robinson, John I.; Edwards, Thomas E.; Duncan, Natalie; Gerdts, Cory J.; Mixon, Mark B.; Nollert, Peter; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    The Protein Maker instrument addresses a critical bottleneck in structural genomics by allowing automated purification and buffer testing of multiple protein targets in parallel with a single instrument. Here, the use of this instrument to (i) purify multiple influenza-virus proteins in parallel for crystallization trials and (ii) identify optimal lysis-buffer conditions prior to large-scale protein purification is described. The Protein Maker is an automated purification system developed by Emerald BioSystems for high-throughput parallel purification of proteins and antibodies. This instrument allows multiple load, wash and elution buffers to be used in parallel along independent lines for up to 24 individual samples. To demonstrate its utility, its use in the purification of five recombinant PB2 C-terminal domains from various subtypes of the influenza A virus is described. Three of these constructs crystallized and one diffracted X-rays to sufficient resolution for structure determination and deposition in the Protein Data Bank. Methods for screening lysis buffers for a cytochrome P450 from a pathogenic fungus prior to upscaling expression and purification are also described. The Protein Maker has become a valuable asset within the Seattle Structural Genomics Center for Infectious Disease (SSGCID) and hence is a potentially valuable tool for a variety of high-throughput protein-purification applications

  13. Information processing in decision-making systems.

    Science.gov (United States)

    van der Meer, Matthijs; Kurth-Nelson, Zeb; Redish, A David

    2012-08-01

    Decisions result from an interaction between multiple functional systems acting in parallel to process information in very different ways, each with strengths and weaknesses. In this review, the authors address three action-selection components of decision-making: The Pavlovian system releases an action from a limited repertoire of potential actions, such as approaching learned stimuli. Like the Pavlovian system, the habit system is computationally fast but, unlike the Pavlovian system permits arbitrary stimulus-action pairings. These associations are a "forward'' mechanism; when a situation is recognized, the action is released. In contrast, the deliberative system is flexible but takes time to process. The deliberative system uses knowledge of the causal structure of the world to search into the future, planning actions to maximize expected rewards. Deliberation depends on the ability to imagine future possibilities, including novel situations, and it allows decisions to be taken without having previously experienced the options. Various anatomical structures have been identified that carry out the information processing of each of these systems: hippocampus constitutes a map of the world that can be used for searching/imagining the future; dorsal striatal neurons represent situation-action associations; and ventral striatum maintains value representations for all three systems. Each system presents vulnerabilities to pathologies that can manifest as psychiatric disorders. Understanding these systems and their relation to neuroanatomy opens up a deeper way to treat the structural problems underlying various disorders.

  14. The Processing of Somatosensory Information Shifts from an Early Parallel into a Serial Processing Mode: A Combined fMRI/MEG Study.

    Science.gov (United States)

    Klingner, Carsten M; Brodoehl, Stefan; Huonker, Ralph; Witte, Otto W

    2016-01-01

    The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG) data collected during sustained (260 ms) tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII) receives information regarding a new stimulus in parallel with the primary somatosensory area (SI), whereas later processing in the SII is dominated by the preprocessed input from the SI.

  15. The Processing of Somatosensory Information shifts from an early parallel into a serial processing mode: a combined fMRI/MEG study.

    Directory of Open Access Journals (Sweden)

    Carsten Michael Klingner

    2016-12-01

    Full Text Available The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG data collected during sustained (260 ms tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII receives information regarding a new stimulus in parallel with the primary somatosensory area (SI, whereas later processing in the SII is dominated by the preprocessed input from the SI.

  16. Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver

    Science.gov (United States)

    Wang, Chao; Yu, Hong-Yi; Zhu, Yi-Jun; Wang, Tao; Ji, Ya-Wei

    2018-03-01

    In this paper, a multiple light emitting diode (LED) chips parallel transmission (Multi-LED-PT) scheme for underwater visible light communication system with one photon-counting single photon avalanche diode (SPAD) receiver is proposed. As the lamp always consists of multi-LED chips, the data rate could be improved when we drive these multi-LED chips parallel by using the interleaver-division-multiplexing technique. For each chip, the on-off-keying modulation is used to reduce the influence of clipping. Then a serial successive interference cancellation detection algorithm based on ideal Poisson photon-counting channel by the SPAD is proposed. Finally, compared to the SPAD-based direct current-biased optical orthogonal frequency division multiplexing system, the proposed Multi-LED-PT system could improve the error-rate performance and anti-nonlinearity performance significantly under the effects of absorption, scattering and weak turbulence-induced channel fading together.

  17. Reduced complexity and latency for a massive MIMO system using a parallel detection algorithm

    Directory of Open Access Journals (Sweden)

    Shoichi Higuchi

    2017-09-01

    Full Text Available In recent years, massive MIMO systems have been widely researched to realize high-speed data transmission. Since massive MIMO systems use a large number of antennas, these systems require huge complexity to detect the signal. In this paper, we propose a novel detection method for massive MIMO using parallel detection with maximum likelihood detection with QR decomposition and M-algorithm (QRM-MLD to reduce the complexity and latency. The proposed scheme obtains an R matrix after permutation of an H matrix and QR decomposition. The R matrix is also eliminated using a Gauss–Jordan elimination method. By using a modified R matrix, the proposed method can detect the transmitted signal using parallel detection. From the simulation results, the proposed scheme can achieve a reduced complexity and latency with a little degradation of the bit error rate (BER performance compared with the conventional method.

  18. Parameter estimation of fractional-order chaotic systems by using quantum parallel particle swarm optimization algorithm.

    Directory of Open Access Journals (Sweden)

    Yu Huang

    Full Text Available Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.

  19. Parallel log structured file system collective buffering to achieve a compact representation of scientific and/or dimensional data

    Science.gov (United States)

    Grider, Gary A.; Poole, Stephen W.

    2015-09-01

    Collective buffering and data pattern solutions are provided for storage, retrieval, and/or analysis of data in a collective parallel processing environment. For example, a method can be provided for data storage in a collective parallel processing environment. The method comprises receiving data to be written for a plurality of collective processes within a collective parallel processing environment, extracting a data pattern for the data to be written for the plurality of collective processes, generating a representation describing the data pattern, and saving the data and the representation.

  20. Parallel-hierarchical processing and classification of laser beam profile images based on the GPU-oriented architecture

    Science.gov (United States)

    Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan

    2017-08-01

    The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.