WorldWideScience

Sample records for parainfluenza virus 1 human

  1. Human Parainfluenza Viruses

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search The CDC Human Parainfluenza Viruses (HPIVs) Note: Javascript is disabled or ... CDC.gov . Recommend on Facebook Tweet Share Compartir Human parainfluenza viruses (HPIVs) commonly cause respiratory illnesses in ...

  2. About Human Parainfluenza Viruses (HPIVs)

    Science.gov (United States)

    ... Healthcare Professionals Clinical Overview Laboratory Diagnosis HPIV Seasons Resources & References About Human Parainfluenza Viruses (HPIVs) Recommend on Facebook Tweet Share Compartir Symptoms & Illnesses Lists symptoms and ...

  3. Human and Mouse Eosinophils Have Antiviral Activity against Parainfluenza Virus.

    Science.gov (United States)

    Drake, Matthew G; Bivins-Smith, Elizabeth R; Proskocil, Becky J; Nie, Zhenying; Scott, Gregory D; Lee, James J; Lee, Nancy A; Fryer, Allison D; Jacoby, David B

    2016-09-01

    Respiratory viruses cause asthma exacerbations. Because eosinophils are the prominent leukocytes in the airways of 60-70% of patients with asthma, we evaluated the effects of eosinophils on a common respiratory virus, parainfluenza 1, in the lung. Eosinophils recruited to the airways of wild-type mice after ovalbumin sensitization and challenge significantly decreased parainfluenza virus RNA in the lungs 4 days after infection compared with nonsensitized animals. This antiviral effect was also seen in IL-5 transgenic mice with an abundance of airway eosinophils (NJ.1726) but was lost in transgenic eosinophil-deficient mice (PHIL) and in IL-5 transgenic mice crossed with eosinophil-deficient mice (NJ.1726-PHIL). Loss of the eosinophil granule protein eosinophil peroxidase, using eosinophil peroxidase-deficient transgenic mice, did not reduce eosinophils' antiviral effect. Eosinophil antiviral mechanisms were also explored in vitro. Isolated human eosinophils significantly reduced parainfluenza virus titers. This effect did not involve degradation of viral RNA by eosinophil granule RNases. However, eosinophils treated with a nitric oxide synthase inhibitor lost their antiviral activity, suggesting eosinophils attenuate viral infectivity through production of nitric oxide. Consequently, eosinophil nitric oxide production was measured with an intracellular fluorescent probe. Eosinophils produced nitric oxide in response to virus and to a synthetic agonist of the virus-sensing innate immune receptor, Toll-like receptor (TLR) 7. IFNγ increased expression of eosinophil TLR7 and potentiated TLR7-induced nitric oxide production. These results suggest that eosinophils promote viral clearance in the lung and contribute to innate immune responses against respiratory virus infections in humans.

  4. Identification of a natural human serotype 3 parainfluenza virus

    Directory of Open Access Journals (Sweden)

    Wang Xiao-Jing

    2011-02-01

    Full Text Available Abstract Parainfluenza virus is an important pathogen threatening the health of animals and human, which brings human many kinds of disease, especially lower respiratory tract infection involving infants and young children. In order to control the virus, it is necessary to fully understand the molecular basis resulting in the genetic diversity of the virus. Homologous recombination is one of mechanisms for the rapid change of genetic diversity. However, as a negative-strand virus, it is unknown whether the recombination can naturally take place in human PIV. In this study, we isolated and identified a mosaic serotype 3 human PIV (HPIV3 from in China, and also provided several putative PIV mosaics from previous reports to reveal that the recombination can naturally occur in the virus. In addition, two swine PIV3 isolates transferred from cattle to pigs were found to have mosaic genomes. These results suggest that homologous recombination can promote the genetic diversity and potentially bring some novel biologic characteristics of HPIV.

  5. Rhabdomyolysis Associated with Parainfluenza Virus

    Directory of Open Access Journals (Sweden)

    Miltiadis Douvoyiannis

    2013-01-01

    Full Text Available Influenza virus is the most frequently reported viral cause of rhabdomyolysis. A 7-year-old child is presented with rhabdomyolysis associated with parainfluenza type 2 virus. Nine cases of rhabdomyolysis associated with parainfluenza virus have been reported. Complications may include electrolyte disturbances, acute renal failure, and compartment syndrome.

  6. Expression of the Surface Glycoproteins of Human Parainfluenza Virus Type 3 by Bovine Parainfluenza Virus Type 3, a Novel Attenuated Virus Vaccine Vector

    OpenAIRE

    Haller, Aurelia A.; Miller, Tessa; Mitiku, Misrach; Coelingh, Kathleen

    2000-01-01

    Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive...

  7. Prevalence of Human Parainfluenza Viruses and Noroviruses Genomes on Office Fomites.

    Science.gov (United States)

    Stobnicka, Agata; Gołofit-Szymczak, Małgorzata; Wójcik-Fatla, Angelina; Zając, Violetta; Korczyńska-Smolec, Joanna; Górny, Rafał L

    2018-06-01

    The aim of this study was to evaluate the potential role of office fomites in respiratory (human parainfluenza virus 1-HPIV1, human parainfluenza virus 3-HPIV3) and enteric (norovirus GI-NoV GI, norovirus GII-NoV GII) viruses transmission by assessing the occurrence of these viruses on surfaces in office buildings. Between 2016 and 2017, a total of 130 surfaces from open-space and non-open-space rooms in office buildings located in one city were evaluated for HPIV1, HPIV3, NoV GI, and NoV GII viral RNA presence. Detection of viruses was performed by RT-qPCR method. Study revealed 27 positive samples, among them 59.3% were HPIV3-positive, 25.9% HPIV1-positive, and 14.8% NoV GII-positive. All tested surfaces were NoV GI-negative. Statistical analysis of obtained data showed that the surfaces of office equipment including computer keyboards and mice, telephones, and desktops were significantly more contaminated with respiratory viruses than the surfaces of building equipment elements such as door handles, light switches, or ventilation tracts (χ 2 p = 0.006; Fisher's Exact p = 0.004). All examined surfaces were significantly more contaminated with HPIVs than NoVs (χ 2 p = 0.002; Fisher's Exact p = 0.003). Office fomites in open-space rooms were more often contaminated with HPIVs than with NoVs (χ 2 p = 0.016; Fisher's Exact p = 0.013). The highest average concentration of HPIVs RNA copies was observed on telephones (1.66 × 10 2 copies/100 cm 2 ), while NoVs on the light switches (1.40 × 10 2 copies/100 cm 2 ). However, the Kruskal-Wallis test did not show statistically significant differences in concentration levels of viral RNA copies on surfaces between the all tested samples. This study unequivocally showed that individuals in office environment may have contact with both respiratory and enteric viral particles present on frequently touched surfaces.

  8. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys.

    Science.gov (United States)

    Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin

    2017-05-15

    The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect

  9. Epidemiology and clinical presentation of the four human parainfluenza virus types

    Directory of Open Access Journals (Sweden)

    Liu Wen-Kuan

    2013-01-01

    Full Text Available Abstract Background Human parainfluenza viruses (HPIVs are important causes of upper respiratory tract illness (URTI and lower respiratory tract illness (LRTI. To analyse epidemiologic and clinical characteristics of the four types of human parainfluenza viruses (HPIVs, patients with acute respiratory tract illness (ARTI were studied in Guangzhou, southern China. Methods Throat swabs (n=4755 were collected and tested from children and adults with ARTI over a 26-month period, and 4447 of 4755 (93.5% patients’ clinical presentations were recorded for further analysis. Results Of 4755 patients tested, 178 (3.7% were positive for HPIV. Ninety-nine (2.1% samples were positive for HPIV-3, 58 (1.2% for HPIV-1, 19 (0.4% for HPIV-2 and 8 (0.2% for HPIV-4. 160/178 (88.9% HPIV-positive samples were from paediatric patients younger than 5 years old, but no infant under one month of age was HPIV positive. Seasonal peaks of HPIV-3 and HPIV-1 occurred as autumn turned to winter and summer turned to autumn. HPIV-2 and HPIV-4 were detected less frequently, and their frequency of isolation increased when the frequency of HPIV-3 and HPIV-1 declined. HPIV infection led to a wide spectrum of symptoms, and more “hoarseness” (p=0.015, “abnormal pulmonary breathing sound” (p Conclusions HPIV infection led to a wide spectrum of symptoms, and similar clinical manifestations were found in the patients with four different types of HPIVs. The study suggested pathogenic activity of HPIV in gastrointestinal illness. The clinical presentation of HPIV infection may differ by patient age.

  10. Parainfluenza virus infections in a tropical city: clinical and epidemiological aspects

    Directory of Open Access Journals (Sweden)

    Mariana Mota Moura Fé

    Full Text Available Little information on the epidemiology and clinical characteristics of human parainfluenza virus (HPIV infections, especially in children from tropical countries, has been published. The aim of this study was to determine the frequency of HPIV infections in children attended at a large hospital in Fortaleza in Northeast Brazil, and describe seasonal patterns, clinical and epidemiological characteristics of these infections. From January 2001 to December 2006, a total of 3070 nasopharyngeal aspirates collected from children were screened by indirect immunofluorescence for human parainfluenza viruses 1, 2, and 3 (HPIV-1, 2 and 3 and other respiratory viruses. Viral antigens were identified in 933 samples and HPIV in 117. The frequency of HPIV-3, HPIV-1 and HPIV-2 was of 83.76%, 11.96% and 4.27%, respectively. Only HPIV-3 showed a seasonal occurrence, with most cases observed from September to November, and with an inverse relationship to the rainy season. Most HPIV-3 infections seen in outpatients were diagnosed as upper respiratory tract infections.

  11. Parainfluenza virus as a cause of acute respiratory infection in hospitalized children.

    Science.gov (United States)

    Pecchini, Rogério; Berezin, Eitan Naaman; Souza, Maria Cândida; Vaz-de-Lima, Lourdes de Andrade; Sato, Neuza; Salgado, Maristela; Ueda, Mirthes; Passos, Saulo Duarte; Rangel, Raphael; Catebelota, Ana

    2015-01-01

    Human parainfluenza viruses account for a significant proportion of lower respiratory tract infections in children. To assess the prevalence of Human parainfluenza viruses as a cause of acute respiratory infection and to compare clinical data for this infection against those of the human respiratory syncytial virus. A prospective study in children younger than five years with acute respiratory infection was conducted. Detection of respiratory viruses in nasopharyngeal aspirate samples was performed using the indirect immunofluorescence reaction. Length of hospital stay, age, clinical history and physical exam, clinical diagnoses, and evolution (admission to Intensive Care Unit or general ward, discharge or death) were assessed. Past personal (premature birth and cardiopathy) as well as family (smoking and atopy) medical factors were also assessed. A total of 585 patients were included with a median age of 7.9 months and median hospital stay of six days. No difference between the HRSV+ and HPIV+ groups was found in terms of age, gender or length of hospital stay. The HRSV+ group had more fever and cough. Need for admission to the Intensive Care Unit was similar for both groups but more deaths were recorded in the HPIV+ group. The occurrence of parainfluenza peaked during the autumn in the first two years of the study. Parainfluenza was responsible for significant morbidity, proving to be the second-most prevalent viral agent in this population after respiratory syncytial virus. No difference in clinical presentation was found between the two groups, but mortality was higher in the HPIV+ group. Copyright © 2015. Published by Elsevier Editora Ltda.

  12. Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3.

    Science.gov (United States)

    Rabbani, M A G; Ribaudo, Michael; Guo, Ju-Tao; Barik, Sailen

    2016-12-15

    A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3. The innate immunity of the host, typified by interferon (IFN), is a major antiviral defense. IFN inhibits virus growth by inducing a large number of IFN-stimulated gene (ISG) proteins, several of which have been shown to have specific antiviral functions. Parainfluenza virus type 3 (PIV3) is major pathogen of children, and no reliable vaccine or specific antiviral against it currently exists. In this article, we report several ISG proteins that strongly inhibit PIV3 growth, the use of which may allow a better antiviral regimen targeting PIV3. Copyright © 2016, American Society for Microbiology

  13. Long-Term Shedding of Influenza Virus, Parainfluenza Virus, Respiratory Syncytial Virus and Nosocomial Epidemiology in Patients with Hematological Disorders.

    Directory of Open Access Journals (Sweden)

    Nicola Lehners

    Full Text Available Respiratory viruses are a cause of upper respiratory tract infections (URTI, but can be associated with severe lower respiratory tract infections (LRTI in immunocompromised patients. The objective of this study was to investigate the genetic variability of influenza virus, parainfluenza virus and respiratory syncytial virus (RSV and the duration of viral shedding in hematological patients. Nasopharyngeal swabs from hematological patients were screened for influenza, parainfluenza and RSV on admission as well as on development of respiratory symptoms. Consecutive swabs were collected until viral clearance. Out of 672 tested patients, a total of 111 patients (17% were infected with one of the investigated viral agents: 40 with influenza, 13 with parainfluenza and 64 with RSV; six patients had influenza/RSV or parainfluenza/RSV co-infections. The majority of infected patients (n = 75/111 underwent stem cell transplantation (42 autologous, 48 allogeneic, 15 autologous and allogeneic. LRTI was observed in 48 patients, of whom 15 patients developed severe LRTI, and 13 patients with respiratory tract infection died. Phylogenetic analysis revealed a variety of influenza A(H1N1pdm09, A(H3N2, influenza B, parainfluenza 3 and RSV A, B viruses. RSV A was detected in 54 patients, RSV B in ten patients. The newly emerging RSV A genotype ON1 predominated in the study cohort and was found in 48 (75% of 64 RSV-infected patients. Furthermore, two distinct clusters were detected for RSV A genotype ON1, identical RSV G gene sequences in these patients are consistent with nosocomial transmission. Long-term viral shedding for more than 30 days was significantly associated with prior allogeneic transplantation (p = 0.01 and was most pronounced in patients with RSV infection (n = 16 with a median duration of viral shedding for 80 days (range 35-334 days. Long-term shedding of respiratory viruses might be a catalyzer of nosocomial transmission and must be considered for

  14. A study of genetic variability of human parainfluenza virus type 1 in Croatia, 2011-2014.

    Science.gov (United States)

    Košutić-Gulija, Tanja; Slovic, Anamarija; Ljubin-Sternak, Sunčanica; Mlinarić-Galinović, Gordana; Forčić, Dubravko

    2016-08-01

    Molecular epidemiology of human parainfluenza viruses type 1 (HPIV1) was investigated. Samples were collected from patients hospitalized in Croatia during the three consecutive epidemic seasons (2011-2014). Results indicated co-circulation of two major genetic clusters of HPIV1. Samples from the current study refer to clades II and III in a phylogenetic tree of haemagglutinin-neuraminidase (HN) gene. Additional phylogenetic trees of fusion (F) and phosphoprotein (P) genes confirmed the topology. Analysis of nucleotide diversity of entire P, F and HN genes demonstrated similar values: 0.0255, 0.0236 and 0.0237, respectively. However, amino acid diversity showed F protein to be the most conserved, while P protein was the most tolerant to mutations. Potential N- and O-glycosylation sites suggested that HPIV1 HN protein is abundantly glycosylated, and a specific N-glycosylation pattern could distinguish between clades II and III. Analysis of potential O-glycosylation sites in F protein indicated that samples from this study have two potential O-glycosylation sites, while publicly available sequences have five potential sites. This study provides data on the molecular characterization and epidemic pattern of HPIV1 in Croatia.

  15. Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy.

    Science.gov (United States)

    Fox, Candace R; Parks, Griffith D

    2018-04-01

    A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked

  16. Novel Atlantic bottlenose dolphin parainfluenza virus TtPIV-1 clusters with bovine PIV-3 genotype B strains

    Science.gov (United States)

    Parainfluenza virus 3 (PIV-3) is a common viral infection not only in humans, but many other species. Serological evidence suggests that nearly 100% of children in the United States have been infected with PIV-3 by five years of age. Similarly, in cattle PIV-3 is commonly associated with bovine re...

  17. Inhibition of Primary Clinical Isolates of Human Parainfluenza Virus by DAS181 in Cell Culture and in a Cotton Rat Model

    OpenAIRE

    Jones, B. G.; Hayden, R.T.; Hurwitz, J. L.

    2013-01-01

    DAS181 is a novel drug in development for the treatment of influenza as well as human parainfluenza viruses (hPIV). Previous studies demonstrated that DAS181 inhibited laboratory strains of hPIV, but no tests were conducted with primary clinical isolates of hPIV. To fill this gap, we studied six primary isolates including hPIV-2 and hPIV-3. First tests showed that the amplification of all viruses in vitro was reproducibly inhibited with DAS181 drug concentrations ranging between 0.1 and 1 nM....

  18. Safety and immunogenicity of an intranasal Sendai virus-based human parainfluenza virus type 1 vaccine in 3- to 6-year-old children.

    Science.gov (United States)

    Adderson, Elisabeth; Branum, Kristen; Sealy, Robert E; Jones, Bart G; Surman, Sherri L; Penkert, Rhiannon; Freiden, Pamela; Slobod, Karen S; Gaur, Aditya H; Hayden, Randall T; Allison, Kim; Howlett, Nanna; Utech, Jill; Allay, Jim; Knight, James; Sleep, Susan; Meagher, Michael M; Russell, Charles J; Portner, Allen; Hurwitz, Julia L

    2015-03-01

    Human parainfluenza virus type 1 (hPIV-1) is the most common cause of laryngotracheobronchitis (croup), resulting in tens of thousands of hospitalizations each year in the United States alone. No licensed vaccine is yet available. We have developed murine PIV-1 (Sendai virus [SeV]) as a live Jennerian vaccine for hPIV-1. Here, we describe vaccine testing in healthy 3- to 6-year-old hPIV-1-seropositive children in a dose escalation study. One dose of the vaccine (5 × 10(5), 5 × 10(6), or 5 × 10(7) 50% egg infectious doses) was delivered by the intranasal route to each study participant. The vaccine was well tolerated by all the study participants. There was no sign of vaccine virus replication in the airway in any participant. Most children exhibited an increase in antibody binding and neutralizing responses toward hPIV-1 within 4 weeks from the time of vaccination. In several children, antibody responses remained above incoming levels for at least 6 months after vaccination. Data suggest that SeV may provide a benefit to 3- to 6-year-old children, even when vaccine recipients have preexisting cross-reactive antibodies due to previous exposures to hPIV-1. Results encourage the testing of SeV administration in young seronegative children to protect against the serious respiratory tract diseases caused by hPIV-1 infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Parainfluenza Virus Type 1 Induces Epithelial IL-8 Production via p38-MAPK Signalling

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Galván Morales

    2014-01-01

    Full Text Available Human parainfluenza virus type 1 (HPIV-1 is the most common cause of croup in infants. The aim of this study was to describe molecular mechanisms associated with IL-8 production during HPIV-1 infection and the role of viral replication in MAPK synthesis and activation. An in vitro model of HPIV-1 infection in the HEp-2 and A549 cell lines was used; a kinetic-based ELISA for IL-8 detection was also used, phosphorylation of the mitogen-activated protein kinases (MAPKs was identified by Western blot analysis, and specific inhibitors for each kinase were used to identify which MAPK was involved. Inactivated viruses were used to assess whether viral replication is required for IL-8 production. Results revealed a gradual increase in IL-8 production at different selected times, when phosphorylation of MAPK was detected. The secretion of IL-8 in the two cell lines infected with the HPIV-1 is related to the phosphorylation of the MAPK as well as viral replication. Inhibition of p38 suppressed the secretion of IL-8 in the HEp-2 cells. No kinase activation was observed when viruses were inactivated.

  20. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    International Nuclear Information System (INIS)

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike; Zhang Liqun; Yang Lijuan; Ward, Jerrold M.; Dorward, David W.; Pickles, Raymond J.; Murphy, Brian R.; Feldmann, Heinz; Collins, Peter L.

    2009-01-01

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/ΔF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/ΔF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/ΔF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV

  1. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge.

    Science.gov (United States)

    Mooney, Alaina J; Gabbard, Jon D; Li, Zhuo; Dlugolenski, Daniel A; Johnson, Scott K; Tripp, Ralph A; He, Biao; Tompkins, S Mark

    2017-12-01

    Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  2. PREVALENCE OF BOVINE HERPESVIRUS-1,PARAINFLUENZA-3,BOVINE ROTAVIRUS, BOVINE VIRAL DIARRHEA, BOVINE ADENOVIRUS-7,BOVINE LEUKEMIA VIRUS AND BLUETONGUE VIRUS ANTIBODIES IN CATTLE IN MEXICO

    OpenAIRE

    SUZAN, Victor M.; ONUMA, Misao; AGUILAR, Romero E.; MURAKAMI, Yosuke

    1983-01-01

    Sera were collected from dairy and beef cattle in 19 different states of Mexico. These sera were tested for bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PIV-3), bovine rotavirus (BRV), bovine leukemia virus (BLV), bovine adenovirus-7 (BAV-7), bluetongue virus (BTV) and bovine viral diarrhea virus (BVDV). Seropositive rates for each virus for dairy cattle tested were 158/277(57.0%) for BHV-1,217/286(75.0%) for PIV-3,541/1498(36.1%) for BLV, 134/144(93.1%) for BRV, 39/90(43.3%) for BTV,...

  3. Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: comparison at different pH levels.

    Science.gov (United States)

    Hilmarsson, H; Traustason, B S; Kristmundsdóttir, T; Thormar, H

    2007-01-01

    Recent studies have shown that some lipids and fatty alcohols have microbicidal activities against a broad variety of pathogens. In this study, virucidal activities of fatty acids, monoglycerides and fatty alcohols were tested against respiratory syncytial virus (RSV) and human parainfluenza virus type 2 (HPIV2) at different concentrations, times and pH levels. The most active compounds were mixed with milk products and fruit juices and the mixtures tested for virucidal effects. The aim was to determine which compounds are the most active against these respiratory viruses and could possibly be used in pharmaceutical formulations or as additives to milk products or juice. Several compounds caused a significant inactivation of virus, and there was generally a good agreement between the activities against RSV and parainfluenza virus. By changing the pH from 7 to 4.2, the virucidal activities of some of the compounds were greatly increased, i.e., they inactivated virus in a shorter time and at lower concentrations. The most active compound tested was 1-monoglyceride of capric acid, monocaprin, which also showed activity against influenza A virus and significant virucidal activities after addition to milk products and fruit juices, even at a concentration as low as 0.06-0.12%. The significant virucidal activities of fatty alcohols and lipids on RSV and parainfluenza virus demonstrated in this in vitro study raise the question of the feasibility of using such compounds as ingredients in pharmaceutical dosage forms against respiratory infections caused by these viruses, and possibly other paramyxo- and myxoviruses.

  4. [Detection and Analysis of Human Parainfluenza Virus Infection in Hospitalized Adults with Acute Respiratory Tract Infections].

    Science.gov (United States)

    Li, Xing-Qiao; Liu, Xue-Wei; Zhou, Tao; Pei, Xiao-Fang

    2017-11-01

    To investigate the prevalence and gene characteristics of different groups of human parainfluenza virus (HPIV) infection in hospitalized adults with acute respiratory tract infections (ARI). RT-PCR was used to detect HPIV hemagglutinin (HA) DNA,which was extracted from sputum samples of 1 039 adult patients with ARI from March,2014 to June,2016. The HA gene amplified from randomly selected positive samples were sequenced to analyze the homology and variation. 10.6% (110/1 039) of these samples were positive for HPIV,including 8 cases of HPIV-1,22 cases of HPIV-2,46 cases of HPIV-3 and 34 cases of HPIV-4. Detectable rate varied among different groups of HPIV according to seasons of the year and ages of patients. No significant differences were found between the positive samples and the reference sequences. Compared with different reference strains of different regions,the genetic distance of nucleotide is the smallest between the strains tested in this study and the reference strains of other provinces and cities in China. In Chengdu region,HPIV virus is highly detected in ARI,all subtypes were detected with HPIV-3 being the main subtype.

  5. Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge

    Science.gov (United States)

    Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark

    2013-01-01

    A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314

  6. 5-Hydroxytryptophan, a major product of tryptophan degradation, is essential for optimal replication of human parainfluenza virus.

    Science.gov (United States)

    Rabbani, M A G; Barik, Sailen

    2017-03-01

    Interferon (IFN) exerts its antiviral effect by inducing a large family of cellular genes, named interferon (IFN)-stimulated genes (ISGs). An intriguing member of this family is indoleamine 2,3-dioxygenase (IDO), which catalyzes the first and rate-limiting step of the main branch of tryptophan (Trp) degradation, the kynurenine pathway. We recently showed that IDO strongly inhibits human parainfluenza virus type 3 (PIV3), a significant respiratory pathogen. Here, we show that 5-hydoxytryptophan (5-HTP), the first product of an alternative branch of Trp degradation and a serotonin precursor, is essential to protect virus growth against IDO in cell culture. We also show that the apparent antiviral effect of IDO on PIV3 is not due to the generation of the kynurenine pathway metabolites, but rather due to the depletion of intracellular Trp by IDO, as a result of which this rare amino acid becomes unavailable for the alternative, proviral 5-HTP pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Attenuation and efficacy of human parainfluenza virus type 1 (HPIV1 vaccine candidates containing stabilized mutations in the P/C and L genes

    Directory of Open Access Journals (Sweden)

    Skiadopoulos Mario H

    2007-07-01

    Full Text Available Abstract Background Two recombinant, live attenuated human parainfluenza virus type 1 (rHPIV1 mutant viruses have been developed, using a reverse genetics system, for evaluation as potential intranasal vaccine candidates. These rHPIV1 vaccine candidates have two non-temperature sensitive (non-ts attenuating (att mutations primarily in the P/C gene, namely CR84GHNT553A (two point mutations used together as a set and CΔ170 (a short deletion mutation, and two ts att mutations in the L gene, namely LY942A (a point mutation, and LΔ1710–11 (a short deletion, the last of which has not been previously described. The latter three mutations were specifically designed for increased genetic and phenotypic stability. These mutations were evaluated on the HPIV1 backbone, both individually and in combination, for attenuation, immunogenicity, and protective efficacy in African green monkeys (AGMs. Results The rHPIV1 mutant bearing the novel LΔ1710–11 mutation was highly ts and attenuated in AGMs and was immunogenic and efficacious against HPIV1 wt challenge. The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates were highly ts, with shut-off temperatures of 38°C and 35°C, respectively, and were highly attenuated in AGMs. Immunization with rHPIV1-CR84G/Δ170HNT553ALY942A protected against HPIV1 wt challenge in both the upper and lower respiratory tracts. In contrast, rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 was not protective in AGMs due to over-attenuation, but it is expected to replicate more efficiently and be more immunogenic in the natural human host. Conclusion The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates are clearly highly attenuated in AGMs and clinical trials are planned to address safety and immunogenicity in humans.

  8. ENDOGENOUS PYROGEN RELEASE FROM RABBIT BLOOD CELLS INCUBATED IN VITRO WITH PARAINFLUENZA VIRUS.

    Science.gov (United States)

    ATKINS, E; CRONIN, M; ISACSON, P

    1964-12-11

    Rabbit blood cells incubated in vitro with purified parainfluenza-5 virus (DA strain) released a rapidly acting pyrogen. Spleen and lymph node cells were inactive. The pyrogen resembled in behavior a pyrogen extracted from granulocytic exudates. Similar cells in the blood are believed to be activated by virus in vivo to produce the circulating endogenous pyrogen that mediates virus-induced fever.

  9. High Resistance of Human Parainfluenza Type 2 Virus Protein-Expressing Cells to the Antiviral and Anti-Cell Proliferative Activities of Alpha/Beta Interferons: Cysteine-Rich V-Specific Domain Is Required for High Resistance to the Interferons

    OpenAIRE

    Nishio, Machiko; Tsurudome, Masato; Ito, Morihiro; Kawano, Mitsuo; Komada, Hiroshi; Ito, Yasuhiko

    2001-01-01

    Human parainfluenza type 2 virus (hPIV-2)-infected HeLa (HeLa-CA) cells and hPIV-2 V-expressing HeLa (HeLa-V) cells show high resistance to alpha/beta interferons (IFN-α/β) irrespective of whether vesicular stomatitis virus or Sindbis virus is used as a challenge virus. When Sindbis virus is used, these cells show high susceptibility to human IFN-γ. Furthermore, the multiplication of HeLa-V cells is not inhibited by IFN-α/β. HeLa cells expressing the N-terminally truncated V protein show resi...

  10. Alix serves as an adaptor that allows human parainfluenza virus type 1 to interact with the host cell ESCRT system.

    Directory of Open Access Journals (Sweden)

    Jim Boonyaratanakornkit

    Full Text Available The cellular ESCRT (endosomal sorting complex required for transport system functions in cargo-sorting, in the formation of intraluminal vesicles that comprise multivesicular bodies (MVB, and in cytokinesis, and this system can be hijacked by a number of enveloped viruses to promote budding. The respiratory pathogen human parainfluenza virus type I (HPIV1 encodes a nested set of accessory C proteins that play important roles in down-regulating viral transcription and replication, in suppressing the type I interferon (IFN response, and in suppressing apoptosis. Deletion or mutation of the C proteins attenuates HPIV1 in vivo, and such mutants are being evaluated preclinically and clinically as vaccines. We show here that the C proteins interact and co-localize with the cellular protein Alix, which is a member of the class E vacuolar protein sorting (Vps proteins that assemble at endosomal membranes into ESCRT complexes. The HPIV1 C proteins interact with the Bro1 domain of Alix at a site that is also required for the interaction between Alix and Chmp4b, a subunit of ESCRT-III. The C proteins are ubiquitinated and subjected to proteasome-mediated degradation, but the interaction with AlixBro1 protects the C proteins from degradation. Neither over-expression nor knock-down of Alix expression had an effect on HPIV1 replication, although this might be due to the large redundancy of Alix-like proteins. In contrast, knocking down the expression of Chmp4 led to an approximately 100-fold reduction in viral titer during infection with wild-type (WT HPIV1. This level of reduction was similar to that observed for the viral mutant, P(C- HPIV1, in which expression of the C proteins were knocked out. Chmp4 is capable of out-competing the HPIV1 C proteins for binding Alix. Together, this suggests a possible model in which Chmp4, through Alix, recruits the C proteins to a common site on intracellular membranes and facilitates budding.

  11. Immunogenicity of a modified-live virus vaccine against bovine viral diarrhea virus types 1 and 2, infectious bovine rhinotracheitis virus, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus when administered intranasally in young calves.

    Science.gov (United States)

    Xue, Wenzhi; Ellis, John; Mattick, Debra; Smith, Linda; Brady, Ryan; Trigo, Emilio

    2010-05-14

    The immunogenicity of an intranasally-administered modified-live virus (MLV) vaccine in 3-8 day old calves was evaluated against bovine viral diarrhea virus (BVDV) types 1 and 2, infectious bovine rhinotracheitis (IBR) virus, parainfluenza-3 (PI-3) virus and bovine respiratory syncytial virus (BRSV). Calves were intranasally vaccinated with a single dose of a multivalent MLV vaccine and were challenged with one of the respective viruses three to four weeks post-vaccination in five separate studies. There was significant sparing of diseases in calves intranasally vaccinated with the MLV vaccine, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding, greater white blood cell and platelet counts, and less severe pulmonary lesions than control animals. This was the first MLV combination vaccine to demonstrate efficacy against BVDV types 1 and 2, IBR, PI-3 and BRSV in calves 3-8 days of age. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Crazy-paving sign in high-resolution computed tomography in parainfluenza virus pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, Osamu [Department of Respiratory Disease, NHO National Osaka Minami Medical Center, Kido higashi machi 2-1, Kawachinagano City, Osaka 586-8521 (Japan)], E-mail: matsuno@ommc-hp.jp; Hayama, Yoshitomo; Honda, Hidehiro; Yamane, Hiroyuki; Yamamoto, Suguru; Ueno, Kiyonobu [Department of Respiratory Disease, NHO National Osaka Minami Medical Center, Kido higashi machi 2-1, Kawachinagano City, Osaka 586-8521 (Japan); Saeki, Yukihiko [Department of Clinical Research, NHO National Osaka Minami Medical Center, Kido higashi machi 2-1, Kawachinagano city, Osaka 586-8521 (Japan)

    2010-05-15

    The crazy-paving sign is the appearance of a smooth linear pattern superimposed on an area of ground-glass opacity on thin-section computed tomography (CT). A 69-year-old woman was admitted to our hospital for treatment of pneumonia. Thoracic CT showed a crazy-paving sign in the right lung field on admission. She received ceftriaxone and clarithromycin, and the symptoms and infiltration shadow promptly disappeared. Serologic testing revealed a greater than 4-fold increase in the IgG titer for parainfluenza virus I. To our knowledge, there is no previous report of the crazy-paving sign in associated with viral pneumonia in a non-immunocompromised host or with parainfluenza pneumonia.

  13. A Tryptophan-Rich Motif in the Human Parainfluenza Virus Type 2 V Protein Is Critical for the Blockade of Toll-Like Receptor 7 (TLR7)- and TLR9-Dependent Signaling▿

    OpenAIRE

    Kitagawa, Yoshinori; Yamaguchi, Mayu; Zhou, Min; Komatsu, Takayuki; Nishio, Machiko; Sugiyama, Tsuyoshi; Takeuchi, Kenji; Itoh, Masae; Gotoh, Bin

    2011-01-01

    Plasmacytoid dendritic cells (pDCs) do not produce alpha interferon (IFN-α) unless viruses cause a systemic infection or overcome the first-line defense provided by conventional DCs and macrophages. We show here that even paramyxoviruses, whose infections are restricted to the respiratory tract, have a V protein able to prevent Toll-like receptor 7 (TLR7)- and TLR9-dependent IFN-α induction specific to pDCs. Mutational analysis of human parainfluenza virus type 2 demonstrates that the second ...

  14. 21 CFR 866.3400 - Parainfluenza virus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3400 Parainfluenza... that consist of antigens and antisera used in serological tests to identify antibodies to parainfluenza...

  15. Human parainfluenza virus type 2 hemagglutinin-neuramindase gene: sequence and phylogenetic analysis of the Saudi strain Riyadh 105/2009

    Directory of Open Access Journals (Sweden)

    Almajhdi Fahad N

    2012-12-01

    Full Text Available Abstract Background Although human parainfluenza type 2 (HPIV-2 virus is an important respiratory pathogen, a little is known about strains circulating in Saudi Arabia. Findings Among 180 nasopharyngeal aspirates collected from suspected cases in Riyadh, only one sample (0.56% was confirmed HPIV-2 positive by nested RT-PCR. The sample that was designated Riyadh 105/2009 was used for sequencing and phylogenetic analysis of the most variable virus gene; the haemagglutinin-neuramindase (HN. Comparison of HN gene of Riyadh 105/2009 strain and the relevant sequences available in GenBank revealed a strong relationship with Oklahoma-94-2009 strain. Phylogenetic analysis indicated four different clusters of HPIV-2 strains (G1-4. Twenty-three amino acid substitutions were recorded for Riyadh 105/2009, from which four are unique. The majority of substitutions (n=18 had changed their amino acids characteristics. By analyzing the effect of the recorded substitutions on the protein function using SIFT program, only two located at positions 360 and 571 were predicted to be deleterious. Conclusions The presented changes of Riyadh 105/2009 strain may possess potential effect on the protein structure and/or function level. This is the first report that describes partial characterization of Saudi HPIV-2 strain.

  16. Estimates of Parainfluenza Virus-Associated Hospitalizations and Cost Among Children Aged Less Than 5 Years in the United States, 1998–2010

    Science.gov (United States)

    Abedi, Glen R.; Prill, Mila M.; Langley, Gayle E.; Wikswo, Mary E.; Weinberg, Geoffrey A.; Curns, Aaron T.; Schneider, Eileen

    2018-01-01

    Background Parainfluenza virus (PIV) is the second leading cause of hospitalization for respiratory illness in young children in the United States. Infection can result in a full range of respiratory illness, including bronchiolitis, croup, and pneumonia. The recognized human subtypes of PIV are numbered 1–4. This study calculates estimates of PIV-associated hospitalizations among US children younger than 5 years using the latest available data. Methods Data from the National Respiratory and Enteric Virus Surveillance System were used to characterize seasonal PIV trends from July 2004 through June 2010. To estimate the number of PIV-associated hospitalizations that occurred annually among US children aged PIV among young children enrolled in the New Vaccine Surveillance Network. Estimates of hospitalization charges attributable to PIV infection were also calculated. Results Parainfluenza virus seasonality follows type-specific seasonal patterns, with PIV-1 circulating in odd-numbered years and PIV-2 and -3 circulating annually. The average annual estimates of PIV-associated bronchiolitis, croup, and pneumonia hospitalizations among children aged PIV-associated bronchiolitis, croup, and pneumonia hospitalizations were approximately $43 million, $58 million, and $158 million, respectively. Conclusions The majority of PIV-associated hospitalizations in young children occur among those aged 0 to 2 years. When vaccines for PIV become available, immunization would be most effective if realized within the first year of life. PMID:26908486

  17. Current management of parainfluenza pneumonitis in immunocompromised patients: a review

    Directory of Open Access Journals (Sweden)

    Falsey AR

    2012-08-01

    Full Text Available Ann R FalseyUniversity of Rochester, Rochester General Hospital, Rochester, NY, USAAbstract: Parainfluenza viruses (PIV are common respiratory viruses that belong to the Paramyxoviridae family. PIV infection can lead to a wide variety of clinical syndromes ranging from mild upper respiratory illness to severe pneumonia. Severe disease can be seen in elderly or chronically ill persons and may be fatal in persons with compromised immune systems, particularly children with severe combined immunodeficiency disease syndrome and hematopathic stem cell transplant recipients. At present, there are no licensed antiviral agents for the treatment of PIV infection. Aerosolized or systemic ribavirin in combination with intravenous gamma globulin has been reported in small, uncontrolled series and case reports of immunocompromised patients. A number of agents show antiviral activity in vitro and in animals, but none are currently approved for human use.Keywords: parainfluenza virus, antiviral agents, immunocompromised host

  18. First complete genome sequence of parainfluenza virus 5 isolated from lesser panda.

    Science.gov (United States)

    Zhai, Jun-Qiong; Zhai, Shao-Lun; Lin, Tao; Liu, Jian-Kui; Wang, He-Xing; Li, Bing; Zhang, He; Zou, Shu-Zhan; Zhou, Xia; Wu, Meng-Fan; Chen, Wu; Luo, Man-Lin

    2017-05-01

    Parainfluenza virus 5 (PIV5) is widespread in mammals and humans. Up to now, there is little information about PIV5 infection in lesser pandas. In this study, a PIV5 variant (named ZJQ-221) was isolated from a lesser panda with respiratory disease in Guangzhou zoo in Guangdong province, southern China. The full-length genome of ZJQ-221 was found to be 15,246 nucleotides and consisted of seven non-overlapping genes encoding eight proteins (i.e., NP, V, P, M, F, SH, HN and L). Sequence alignment and genetic analysis revealed that ZJQ-221 shared a close relationship with a PIV5 strain of canine-origin (1168-1) from South Korea. The findings of this study confirm the presence of PIV5 in lesser panda and indicate this mammal as a possible natural reservoir. Furthermore they highlight the urgent need to strengthen viral surveillance and control of PIV5 in zoo animals.

  19. Novel Atlantic bottlenose dolphin parainfluenza virus TtPIV-1 clusters with bovine PIV-3 genotype B strains.

    Science.gov (United States)

    Eberle, Kirsten C; Neill, John D; Venn-Watson, Stephanie K; McGill, Jodi L; Sacco, Randy E

    2015-10-01

    Parainfluenza virus 3 (PIV-3) is a common viral infection not only in humans, but also in many other species. Serological evidence suggests that nearly 100 % of children in the United States have been infected with PIV-3 by 5 years of age. Similarly, in cattle, PIV-3 is commonly associated with bovine respiratory disease complex. A novel dolphin PIV-3 (TtPIV-1) was described by Nollens et al. in 2008 from a dolphin that was diagnosed with an unknown respiratory illness. At that time, TtPIV-1 was found to be most similar to, but distinct from, bovine PIV-3 (BPIV-3). In the present study, similar viral growth kinetics and pro-inflammatory cytokine (IL-1β, IL-6, and CXCL8) production were seen between BPIV-3 and TtPIV-1 in BEAS-2B, MDBK, and Vero cell lines. Initial nomenclature of TtPIV-1 was based on partial sequence of the fusion and RNA polymerase genes. Based on the similarities we saw with the in vitro work, it was important to examine the TtPIV-1 genome in more detail. Full genome sequencing and subsequent phylogenetic analysis revealed that all six viral genes of TtPIV-1 clustered within the recently described BPIV-3 genotype B strains, and it is proposed that TtPIV-1 be re-classified with BPIV-3 genotype B strains.

  20. THE TREATMENT EFFECT OF OXYTETRACYCLINE AND VITAMIN C IN AN EPISODE OF PARAINFLUENZA SHEEP IN TIMIS COUNTY

    Directory of Open Access Journals (Sweden)

    Stancu, A

    2017-06-01

    Full Text Available Sheep parainfluenza It is a disease with high diffusibility, sometimes with fatal serious, especially youth. It is caused by parainfluenza 3 virus (PI-3, identical to the bovine parainfluenza virus isolate, in combination with certain bacteria. PI-3 virus was firstly isolated from Hore et al. (1966 in the lungs and nasal mucus of sheep with pneumopathies and Gilmour et al (1968 successfully experimenting with an inactivated vaccine for the prophylaxis of diseases. In our country, parainfluenza sheep was diagnosed in 1977 by pathological examinations. Also by pathological examination was differentiated by Maedi-visna disease and pulmonary adenomatosis.

  1. A tryptophan-rich motif in the human parainfluenza virus type 2 V protein is critical for the blockade of toll-like receptor 7 (TLR7)- and TLR9-dependent signaling.

    Science.gov (United States)

    Kitagawa, Yoshinori; Yamaguchi, Mayu; Zhou, Min; Komatsu, Takayuki; Nishio, Machiko; Sugiyama, Tsuyoshi; Takeuchi, Kenji; Itoh, Masae; Gotoh, Bin

    2011-05-01

    Plasmacytoid dendritic cells (pDCs) do not produce alpha interferon (IFN-α) unless viruses cause a systemic infection or overcome the first-line defense provided by conventional DCs and macrophages. We show here that even paramyxoviruses, whose infections are restricted to the respiratory tract, have a V protein able to prevent Toll-like receptor 7 (TLR7)- and TLR9-dependent IFN-α induction specific to pDCs. Mutational analysis of human parainfluenza virus type 2 demonstrates that the second Trp residue of the Trp-rich motif (Trp-X(3)-Trp-X(9)-Trp) in the C-terminal domain unique to V, a determinant for IRF7 binding, is critical for the blockade of TLR7/9-dependent signaling.

  2. The C proteins of human parainfluenza virus type 1 block IFN signaling by binding and retaining Stat1 in perinuclear aggregates at the late endosome.

    Directory of Open Access Journals (Sweden)

    Henrick Schomacker

    Full Text Available Interferons (IFNs play a crucial role in the antiviral immune response. Whereas the C proteins of wild-type human parainfluenza virus type 1 (WT HPIV1 inhibit both IFN-β induction and signaling, a HPIV1 mutant encoding a single amino acid substitution (F170S in the C proteins is unable to block either host response. Here, signaling downstream of the type 1 IFN receptor was examined in Vero cells to define at what stage WT HPIV1 can block, and F170S HPIV1 fails to block, IFN signaling. WT HPIV1 inhibited phosphorylation of both Stat1 and Stat2, and this inhibition was only slightly reduced for F170S HPIV1. Degradation of Stat1 or Stat2 was not observed. The HPIV1 C proteins were found to accumulate in the perinuclear space, often forming large granules, and co-localized with Stat1 and the cation-independent mannose 6-phosphate receptor (M6PR that is a marker for late endosomes. Upon stimulation with IFN-β, both the WT and F170S C proteins remained in the perinuclear space, but only the WT C proteins prevented Stat1 translocation to the nucleus. In addition, WT HPIV1 C proteins, but not F170S C proteins, co-immunoprecipitated both phosphorylated and unphosphorylated Stat1. Our findings suggest that the WT HPIV1 C proteins form a stable complex with Stat1 in perinuclear granules that co-localize with M6PR, and that this direct interaction between the WT HPIV1 C proteins and Stat1 is the basis for the ability of HPIV1 to inhibit IFN signaling. The F170S mutation in HPIV1 C did not prevent perinuclear co-localization with Stat1, but apparently weakened this interaction such that, upon IFN stimulation, Stat1 was translocated to the nucleus to induce an antiviral response.

  3. Inhibition of interleukin-6 expression by the V protein of parainfluenza virus 5

    International Nuclear Information System (INIS)

    Lin Yuan; Sun Minghao; Fuentes, Sandra M.; Keim, Celia D.; Rothermel, Terri; He Biao

    2007-01-01

    The V protein of parainfluenza virus 5 (PIV5) plays an important role in the evasion of host immune responses. The V protein blocks interferon (IFN) signaling in human cells by causing degradation of the STAT1 protein, a key component of IFN signaling, and blocks IFN-β production by preventing nuclear translocation of IRF3, a key transcription factor for activating IFN-β promoter. Interleukin-6 (IL-6), along with tumor necrosis factor (TNF)-α and IL-1β, is a major proinflammatory cytokine that plays important roles in clearing virus infection through inflammatory responses. Many viruses have developed strategies to block IL-6 expression. Wild-type PIV5 infection induces little, if any, expression of cytokines such as IL-6 or TNF-α, whereas infection by a mutant PIV5 lacking the conserved C-terminal cysteine rich domain (rPIV5VΔC) induced high levels of IL-6 expression. Examination of mRNA levels of IL-6 indicated that the transcription activation of IL-6 played an important role in the increased IL-6 expression. Co-infection with wild-type PIV5 prevented the activation of IL-6 transcription by rPIV5VΔC, and a plasmid encoding the full-length PIV5 V protein prevented the activation of IL-6 promoter-driven reporter gene expression by rPIV5VΔC, indicating that the V protein played a role in inhibiting IL-6 transcription. The activation of IL-6 was independent of IFN-β even though rPIV5VΔC-infected cells produced IFN-β. Using reporter gene assays and chromatin immunoprecipitation (ChIP), it was found that NF-κB played an important role in activating expression of IL-6. We have proposed a model of activating and inhibiting IL-6 transcription by PIV5

  4. Haemophilus parainfluenzae urethritis among homosexual men.

    Science.gov (United States)

    Hsu, Meng-Shiuan; Wu, Mei-Yu; Lin, Tsui-Hsien; Liao, Chun-Hsing

    2015-08-01

    Haemophilus parainfluenzae is a common inhabitant of the human upper respiratory tract of the normal oral microflora. We report three men who had been having unprotected sex with men (MSM) and subsequently acquired H. parainfluenzae urethritis, which was confirmed by 16S rRNA gene sequencing analysis. Two men were treated with ceftriaxone and doxycycline, and the third man was treated with clarithromycin. All three patients responded to treatment. This case series highlights the potential role of H. parainfluenzae as a sexually transmitted genitourinary pathogen. Copyright © 2012. Published by Elsevier B.V.

  5. Anticorpos fixadores de complemento para o vírus respiratório sincicial e adenovírus e inibidores da hemaglutinação para os vírus parainfluenza 1, 2 e 3 numa população infantil brasileira

    Directory of Open Access Journals (Sweden)

    José Alberto Neves Candeias

    1968-06-01

    Full Text Available Apresentaram-se os resultados obtidos na pesquisa de anticorpos fixadores de complemento para o vírus respiratório sincicial e adenovírus, assim como de anticorpos inibidores da hemaglutinação para os vírus parainfluenza dos tipos 1, 2 e 3, num grupo de 972 crianças de idade compreendida entre 3 meses e 14 anos. A técnica de colheita de sangue foi a de embebição em papel de filtro. Do total de crianças examinadas, considerando o conjunto de todas as idades, 34,6% apresentavam anticorpos para o vírus respiratório sincicial; as porcentagens com anticorpos para adenovírus, parainfluenza 1, parainfluenza 2 e parainfluenza 3, foram respectivamente 47,7%, 46,8%, 54,1% e 66,6%. Foram estudadas as distribuições dos anticorpos em função da idade, do sexo e da localização do domicílio. Em relação aos dois últimos atributos obtiveram-se os seguintes resultados: dos indivíduos do sexo masculino, 32,3% apresentavam anticorpos contra o vírus respiratório sincicial, 49,2% contra adenovírus, 60,1%, 65,1% e 78,3%, respectivamente, contra os vírus parainfluenza 1, 2 e 3; nas crianças do sexo feminino as porcentagens de positividade encontradas foram, respectivamente, 37,4%, 45,9%, 31,1%, 41,2% e 52,9%; em relação à localização do domicílio, 44,8% do total de crianças da zona rural mostraram possuir anticorpos contra o vírus respiratório sincicial, 70,1% contra adenovírus, 43,8% contra vírus parainfluenza 1 e 46,8% e 65,4% contra os vírus parainfluenza dos tipos 2 e 3; as porcentagens de positividade na zona urbana foram, respectivamente, 30,5%, 38,7%, 47,9%, 57,1% e 67,1%.The author presents the results of a survey for respiratory syncytial virus and adenovirus complement fixing antibodies and parainfluenza viruses 1, 2, 3 haemagglutination inhibition antibodies in a group of 972 chidren between 3 months and 14 years of age. The filter paper method of collecting whole blood was used. Altogether, the percentage of children

  6. DAS181 Treatment of Severe Parainfluenza Virus 3 Pneumonia in Allogeneic Hematopoietic Stem Cell Transplant Recipients Requiring Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    B. Dhakal

    2016-01-01

    Full Text Available Parainfluenza virus (PIV may cause life-threatening pneumonia in allogeneic hematopoietic stem cell transplant (HSCT recipients. Currently, there are no proven effective therapies. We report the use of inhaled DAS181, a novel sialidase fusion protein, for treatment of PIV type 3 pneumonia in two allogeneic hematopoietic SCT recipients with respiratory failure.

  7. Duration of serological response to canine parvovirus-type 2, canine distemper virus, canine adenovirus type 1 and canine parainfluenza virus in client-owned dogs in Australia.

    Science.gov (United States)

    Mitchell, S A; Zwijnenberg, R J; Huang, J; Hodge, A; Day, M J

    2012-12-01

    To determine whether client-owned dogs in Australia, last vaccinated with Canvac(®) vaccines containing canine parvovirus-type 2 (CPV-2), canine distemper virus (CDV), canine adenovirus type 2 (CAV-2) ± canine parainfluenza virus (CPiV) at least 18 months ago, were seropositive or responded serologically to revaccination. A total of 235 dogs were recruited from 23 veterinary clinics, representing a variety of breeds, ages and time since last vaccination (TSLV: range 1.5-9 years, mean 2.8 years). Dogs had a blood sample taken and were revaccinated on day 0. A second blood sample was taken 7-14 days later. Blood samples were assessed for antibody titres to CPV-2 (by haemagglutination inhibition) and CDV, CAV type 1 (CAV-1) and CPiV (by virus neutralisation). Dogs with a day 0 titre >10 or a four-fold increase in titre following revaccination were considered to be serological responders. The overall percentage of dogs classified as serological responders was 98.7% for CPV-2, 96.6% for CDV, 99.6% for CAV-1 and 90.3% for CPiV. These results suggest that the duration of serological response induced by modified-live vaccines against CPV-2, CDV, CAV-1 and CPiV, including Canvac(®) vaccines, is beyond 18 months and may extend up to 9 years. Accordingly, these vaccines may be considered for use in extended revaccination interval protocols as recommended by current canine vaccine guidelines. © 2012 The Authors. Australian Veterinary Journal © 2012 Australian Veterinary Association.

  8. An Amino Acid of Human Parainfluenza Virus Type 3 Nucleoprotein Is Critical for Template Function and Cytoplasmic Inclusion Body Formation

    Science.gov (United States)

    Zhang, Shengwei; Chen, Longyun; Zhang, Guangyuan; Yan, Qin; Yang, Xiaodan; Ding, Binbin; Tang, Qiaopeng; Sun, Shengjun; Hu, Zhulong

    2013-01-01

    The nucleoprotein (N) and phosphoprotein (P) interaction of nonsegmented negative-strand RNA viruses is essential for viral replication; this includes N0-P (N0, free of RNA) interaction and the interaction of N-RNA with P. The precise site(s) within N that mediates the N-P interaction and the detailed regulating mechanism, however, are less clear. Using a human parainfluenza virus type 3 (HPIV3) minigenome assay, we found that an N mutant (NL478A) did not support reporter gene expression. Using in vivo and in vitro coimmunoprecipitation, we found that NL478A maintains the ability to form NL478A0-P, to self-assemble, and to form NL478A-RNA but that NL478A-RNA does not interact with P. Using an immunofluorescence assay, we found that N-P interaction provides the minimal requirement for the formation of cytoplasmic inclusion bodies, which contain viral RNA, N, P, and polymerase in HPIV3-infected cells. NL478A was unable to form inclusion bodies when coexpressed with P, but the presence of N rescued the ability of NL478A to form inclusion bodies and the transcriptional function of NL478A, thereby suggesting that hetero-oligomers formed by N and NL478A are functional and competent to form inclusion bodies. Furthermore, we found that NL478A is also defective in virus growth. To our knowledge, we are the first to use a paramyxovirus to identify a precise amino acid within N that is critical for N-RNA and P interaction but not for N0-P interaction for the formation of inclusion bodies, which appear to be bona fide sites of RNA synthesis. PMID:24027324

  9. Structure of the parainfluenza virus 5 (PIV5 hemagglutinin-neuraminidase (HN ectodomain.

    Directory of Open Access Journals (Sweden)

    Brett D Welch

    Full Text Available Paramyxoviruses cause a wide variety of human and animal diseases. They infect host cells using the coordinated action of two surface glycoproteins, the receptor binding protein (HN, H, or G and the fusion protein (F. HN binds sialic acid on host cells (hemagglutinin activity and hydrolyzes these receptors during viral egress (neuraminidase activity, NA. Additionally, receptor binding is thought to induce a conformational change in HN that subsequently triggers major refolding in homotypic F, resulting in fusion of virus and target cell membranes. HN is an oligomeric type II transmembrane protein with a short cytoplasmic domain and a large ectodomain comprising a long helical stalk and large globular head domain containing the enzymatic functions (NA domain. Extensive biochemical characterization has revealed that HN-stalk residues determine F specificity and activation. However, the F/HN interaction and the mechanisms whereby receptor binding regulates F activation are poorly defined. Recently, a structure of Newcastle disease virus (NDV HN ectodomain revealed the heads (NA domains in a "4-heads-down" conformation whereby two of the heads form a symmetrical interaction with two sides of the stalk. The interface includes stalk residues implicated in triggering F, and the heads sterically shield these residues from interaction with F (at least on two sides. Here we report the x-ray crystal structure of parainfluenza virus 5 (PIV5 HN ectodomain in a "2-heads-up/2-heads-down" conformation where two heads (covalent dimers are in the "down position," forming a similar interface as observed in the NDV HN ectodomain structure, and two heads are in an "up position." The structure supports a model in which the heads of HN transition from down to up upon receptor binding thereby releasing steric constraints and facilitating the interaction between critical HN-stalk residues and F.

  10. The L polymerase protein of parainfluenza virus 3 forms an oligomer and can interact with the heterologous Sendai virus L, P and C proteins

    International Nuclear Information System (INIS)

    Smallwood, Sherin; Moyer, Sue A.

    2004-01-01

    We recently showed that the L protein of Sendai virus is present as an oligomer in the active P-L polymerase complex [Smallwood et al., Virology 304 (2002) 235]. We now demonstrate using two different epitope tags that the L protein of a second respirovirus, human parainfluenza type 3 virus (PIV3), also forms an L-L complex. L oligomerization requires the coexpression of the differentially epitope tagged L proteins. By exploiting a series of C-terminal truncations the L-L binding site maps to the N-terminal half of L. There is some complex formation between the heterologous PIV3 and Sendai L and P proteins; however, the heterologous L protein does not function in transcription of either the PIV3 or Sendai template. The PIV3 C protein binds PIV3 L and inhibits RNA synthesis in vitro and in vivo. Significant homology exists between the C proteins of PIV3 and Sendai and complex formation occurs between the PIV3 and Sendai heterologous C and L proteins. In addition, the heterologous C proteins can inhibit transcription at ∼50% of the level of the homologous protein. These data suggest that while the C proteins may be functionally somewhat interchangeable, the L and P proteins are specific for each virus

  11. Safety and infectivity of two doses of live-attenuated recombinant cold-passaged human parainfluenza type 3 virus vaccine rHPIV3cp45 in HPIV3-seronegative young children.

    Science.gov (United States)

    Englund, Janet A; Karron, Ruth A; Cunningham, Coleen K; Larussa, Philip; Melvin, Ann; Yogev, Ram; Handelsman, Ed; Siberry, George K; Thumar, Bhavanji; Schappell, Elizabeth; Bull, Catherine V; Chu, Helen Y; Schaap-Nutt, Anne; Buchholz, Ursula; Collins, Peter L; Schmidt, Alexander C

    2013-11-19

    Human parainfluenza virus type 3 (HPIV3) is a common cause of upper and lower respiratory tract illness in infants and young children. Live-attenuated cold-adapted HPIV3 vaccines have been evaluated in infants but a suitable interval for administration of a second dose of vaccine has not been defined. HPIV3-seronegative children between the ages of 6 and 36 months were randomized 2:1 in a blinded study to receive two doses of 10⁵ TCID₅₀ (50% tissue culture infectious dose) of live-attenuated, recombinant cold-passaged human PIV3 vaccine (rHPIV3cp45) or placebo 6 months apart. Serum antibody levels were assessed prior to and approximately 4-6 weeks after each dose. Vaccine virus infectivity, defined as detection of vaccine-HPIV3 in nasal wash and/or a≥4-fold rise in serum antibody titer, and reactogenicity were assessed on days 3, 7, and 14 following immunization. Forty HPIV3-seronegative children (median age 13 months; range 6-35 months) were enrolled; 27 (68%) received vaccine and 13 (32%) received placebo. Infectivity was detected in 25 (96%) of 26 evaluable vaccinees following doses 1 and 9 of 26 subject (35%) following dose 2. Among those who shed virus, the median duration of viral shedding was 12 days (range 6-15 days) after dose 1 and 6 days (range 3-8 days) after dose 2, with a mean peak log₁₀ viral titer of 3.4 PFU/mL (SD: 1.0) after dose 1 compared to 1.5 PFU/mL (SD: 0.92) after dose 2. Overall, reactogenicity was mild, with no difference in rates of fever and upper respiratory infection symptoms between vaccine and placebo groups. rHPIV3cp45 was immunogenic and well-tolerated in seronegative young children. A second dose administered 6 months after the initial dose was restricted in those previously infected with vaccine virus; however, the second dose boosted antibody responses and induced antibody responses in two previously uninfected children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. [Effect of extracted ZG from gardenia on Hep-2 cell membrane post infected with parainfluenza virus type 1 (PIV-1)].

    Science.gov (United States)

    Guo, Shan-Shan; Huang, Yang; Zhao, Ye; Gao, Ying-Jie; Gong, Wen-Feng; Cui, Xiao-Lan

    2007-09-01

    In order to study the anti-viral mechanism of extracted ZG from Gardenia, the effect of extracted ZG on Hep-2 cell membrane potential, Na -K+-ATPase activity and membrane fluidity post infected with parainfluenza virus type 1 (PIV-1) was observed. Acetylcholine which was fluorescent labeled with DiBAC4 (3) was taken as positive control to observe the changes of membrane potential and was measured by flow cytometer. The phosphorus determination method and spectrophotometer were used to measure the Na+-K+-ATPase activity of Hep-2 cell membrane post PIV-1 infection. Hep-2 cell membrane phospholipids was labeled with fluorescent NBD-C6-HPC and membrane fluidity was measured by confocal laser scanning microscope. The results demonstated that after PIV-1 infection the Hep-2 cell membrane potential decreased significantly and the membrane was in the state of hyperpolarization, Na+-K+-ATPase activity increased and membrane fluidity decreased significantly. There was no apparent interferring effect of extracted ZG on the changes of membrane potential and Na+-K+-ATPase activity post PIV-1 infection, while membrane fluidity was improved significantly. Acetylcholine improved the state of hyperpolarization. The changes of membrane potential, Na -K+-ATPase activity and membrane fluidity might be the biomechanism of PIV-1 infectoin. The extracted ZG improved membrane fluidity to prevent from PIV-1 infection by protecting the cell membrane, which was probably the mechanism of anti-PIV-1 activity of the extracted ZG, but ZG probably had nothing to do with membrane potential and Na+-K+-ATPase activity.

  13. Activity of Ingavirin (6-[2-(1H-Imidazol-4-ylethylamino]-5-oxo-hexanoic Acid Against Human Respiratory Viruses in in Vivo Experiments

    Directory of Open Access Journals (Sweden)

    Oleg I. Kiselev

    2011-11-01

    Full Text Available Respiratory viral infections constitute the most frequent reason for medical consultations in the World. They can be associated with a wide range of clinical manifestations ranging from self-limited upper respiratory tract infections to more devastating conditions such as pneumonia. In particular, in serious cases influenza A leads to pneumonia, which is particularly fatal in patients with cardiopulmonary diseases, obesity, young children and the elderly. In the present study, we show a protective effect of the low-molecular weight compound Ingavirin (6-[2-(1H-imidazol-4-ylethylamino]-5-oxohexanoic acid against influenza A (H1N1 virus, human parainfluenza virus and human adenovirus infections in animals. Mortality, weight loss, infectious titer of the virus in tissues and tissue morphology were monitored in the experimental groups of animals. The protective action of Ingavirin was observed as a reduction of infectious titer of the virus in the lung tissue, prolongation of the life of the infected animals, normalization of weight dynamics throughout the course of the disease, lowering of mortality of treated animals compared to a placebo control and normalization of tissue structure. In case of influenza virus infection, the protective activity of Ingavirin was similar to that of the reference compound Tamiflu. Based on the results obtained, Ingavirin should be considered as an important part of anti-viral prophylaxis and therapy.

  14. The Role of the Hendra Virus and Nipah Virus Attachment Glycoproteins in Receptor Binding and Antibody Neutralization

    Science.gov (United States)

    2014-01-31

    of important human (measles (MeV), mumps, human parainfluenza and respiratory syncytial virus (RSV)) and animal ( canine distemper virus (CDV...occurrence of a natural canine infection (6; 7). Since the emergence of HeV there have been a total of 86 horse fatalities, 2 canine infections and 7...Infectious Diseases 6. Anonymous. 2011. HENDRA VIRUS, EQUINE - AUSTRALIA (21): (QUEENSLAND) CANINE . Pro-Med-mail, Archive No. 20110802.2324

  15. Transmission pattern of parainfluenza 3 virus in guinea pig breeding herds.

    Science.gov (United States)

    Blomqvist, Gunilla A M; Martin, Krister; Morein, Bror

    2002-07-01

    In searching for the cause of experimental variations in respiratory research data, serology revealed the prevalence of antibodies against parainfluenza virus type 3 (PIV 3) in guinea pigs. The aim of the present study was to explore the transmission rate, course, and kinetics of enzootic PIV 3 infection in guinea pig breeding units. In the first part of the study, blood samples to be analyzed for PIV 3 antibodies were collected from guinea pigs of a PIV 3-positive breeding colony at different times after birth. In the same breeding unit, 6 of 12 2-week-old guinea pigs were relocated and separately housed. The PIV 3 serum antibody titers of the two groups were compared at various times from birth to 13 weeks after birth. In the second part of the study, the spread of infectious virus and virus persistence were explored by housing seronegative sentinel animals together with 2- to 3-week-old guinea pigs from three different PIV 3-positive breeding units. The guinea pigs remaining in the breeding colony as well as those removed and housed separately showed declining serum antibody titers for about 1 month after birth, thereafter the titers were stable until about 8 weeks after birth. Five weeks later, the mean antibody titer of the guinea pigs remaining in the breeding colony had increased to a markedly higher level than that of the relocated, separately housed guinea pigs. Seroconversion was demonstrated in 7 of the 14 sentinels housed with the 2- to 3-week-old guinea pigs from PIV 3-positive breeding units. Sentinels housed together with PIV 3-positive guinea pigs 24 weeks after the start of the experiment did not seroconvert. We conclude that young guinea pigs born to PIV 3-positive mothers were protected by maternal immunity against infection with PIV 3 during their first 14 days of life. The guinea pig offspring became infected during the period from about 2 weeks until 8 weeks after birth, as demonstrated by seroconversion of sentinel animals and an increasing

  16. Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses.

    OpenAIRE

    Sattar, S. A.; Springthorpe, V. S.; Karim, Y.; Loro, P.

    1989-01-01

    The chemical disinfection of virus-contaminated non-porous inanimate surfaces was investigated using coxsackievirus B3, adenovirus type 5, parainfluenza virus type 3 and coronavirus 229E as representatives of important nosocomial viral pathogens. A 10 microliter amount of the test virus, suspended in either faeces or mucin, was placed onto each stainless steel disk (about 1 cm in diameter) and the inoculum allowed to dry for 1 h under ambient conditions. Sixteen disinfectant formulations were...

  17. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein.

    Science.gov (United States)

    Welch, Brett D; Liu, Yuanyuan; Kors, Christopher A; Leser, George P; Jardetzky, Theodore S; Lamb, Robert A

    2012-10-09

    The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein.

  18. Nation-wide surveillance of human acute respiratory virus infections between 2013 and 2015 in Korea.

    Science.gov (United States)

    Kim, Jeong-Min; Jung, Hee-Dong; Cheong, Hyang-Min; Lee, Anna; Lee, Nam-Joo; Chu, Hyuk; Lee, Joo-Yeon; Kim, Sung Soon; Choi, Jang-Hoon

    2018-07-01

    The prevalence of eight respiratory viruses detected in patients with acute respiratory infections (ARIs) in Korea was investigated through analysis of data recorded by the Korea Influenza and Respiratory Viruses Surveillance System (KINRESS) from 2013 to 2015. Nasal aspirate and throat swabs specimens were collected from 36 915 patients with ARIs, and viral nucleic acids were detected by real-time (reverse-transcription) polymerase chain reaction for eight respiratory viruses, including human respiratory syncytial viruses (HRSVs), influenza viruses (IFVs), human parainfluenza viruses (HPIVs), human coronaviruses (HCoVs), human rhinovirus (HRV), human adenovirus (HAdV), human bocavirus (HBoV), and human metapneumovirus (HMPV). The overall positive rate of patient specimens was 49.4% (18 236/36 915), 5% of which carried two or more viruses simultaneously. HRV (15.6%) was the most predominantly detected virus, followed by IFVs (14.6%), HAdV (7.5%), HPIVs (5.8%), HCoVs (4.2%), HRSVs (3.6%), HBoV (1.9%), and HMPV (1.6%). Most of the ARIs were significantly correlated with clinical symptoms of fever, cough, and runny nose. Although HRV and HAdV were frequently detected throughout the year in patients, other respiratory viruses showed apparent seasonality. HRSVs and IFVs were the major causative agents of acute respiratory diseases in infants and young children. Overall, this study demonstrates a meaningful relationship between viral infection and typical manifestations of known clinical features as well as seasonality, age distribution, and co-infection among respiratory viruses. Therefore, these data could provide useful information for public health management and to enhance patient care for primary clinicians. © 2018 Wiley Periodicals, Inc.

  19. PRESENCE OF RESPIRATORY VIRUSES IN EQUINES IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Dalva Assunção Portari Mancini

    2014-06-01

    Full Text Available Equines are susceptible to respiratory viruses such as influenza and parainfluenza. Respiratory diseases have adversely impacted economies all over the world. This study was intended to determine the presence of influenza and parainfluenza viruses in unvaccinated horses from some regions of the state of São Paulo, Brazil. Blood serum collected from 72 equines of different towns in this state was tested by hemagglutination inhibition test to detect antibodies for both viruses using the corresponding antigens. About 98.6% (71 and 97.2% (70 of the equines responded with antibody protective titers (≥ 80 HIU/25µL H7N7 and H3N8 subtypes of influenza A viruses, respectively. All horses (72 also responded with protective titers (≥ 80 HIU/25µL against the parainfluenza virus. The difference between mean antibody titers to H7N7 and H3N8 subtypes of influenza A viruses was not statistically significant (p > 0.05. The mean titers for influenza and parainfluenza viruses, on the other hand, showed a statistically significant difference (p < 0.001. These results indicate a better antibody response from equines to parainfluenza 3 virus than to the equine influenza viruses. No statistically significant differences in the responses against H7N7 and H3N8 subtypes of influenza A and parainfluenza 3 viruses were observed according to the gender (female, male or the age (≤ 2 to 20 years-old groups. This study provides evidence of the concomitant presence of two subtypes of the equine influenza A (H7N7 and H3N8 viruses and the parainfluenza 3 virus in equines in Brazil. Thus, it is advisable to vaccinate equines against these respiratory viruses.

  20. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C

    2009-01-01

    effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype......, or function in any of the tissues examined. These findings demonstrate that CXCR3 controls virus-specific effector CD4(+) T cell migration in vivo, and suggest that blocking CXCR3-mediated recruitment may limit T cell-induced immunopathology during respiratory virus infections....

  1. Frecuencia de virus respiratorios y características clínicas de niños que acuden a un hospital en México Frequency of respiratory viruses and clinical characteristics in children attending a care center in Mexico City

    Directory of Open Access Journals (Sweden)

    Rosa María Wong-Chew

    2010-12-01

    Full Text Available OBJETIVO. Describir la frecuencia de virus respiratorios y características clínicas en niños con cuadros respiratorios de un hospital de tercer nivel en México. MATERIAL Y MÉTODOS. Se incluyeron niños con diagnóstico de infección respiratoria y un resultado positivo por inmunofluorescencia de enero 2004 a octubre 2006. RESULTADOS. De 986 muestras nasofaríngeas, 138 (14% fueron positivas. La frecuencia fue: 80% virus sincicial respiratorio (VSR, 8% parainfluenza 1, 5% parainfluenza3, 2% adenovirus, 2% influenza A, 1% parainfluenza 2 y 1% influenza B. CONCLUSIONES. La frecuencia de virus respiratorios fue de 14%. El VSR se identificó asociado con más frecuencia, a neumonía y bronquiolitis en menores de 3 años.OBJECTIVE. To describe the frequency of respiratory viruses and clinical characteristics in children with respiratory signs and symptoms in a tertiary care center in Mexico. MATERIAL AND METHODS. Patients with a clinical diagnosis of respiratory infection and a positive immunofluorescence result (Light Diagnostics from January 2004 to October 2006 were included. RESULTS. From the 986 nashopharyngeal samples, 138 (14% were positive by immunofluorescence. The frequency was: 80% RSV, 8% parainfluenza 1, 5% parainfluenza 3, 2% adenovirus, 2% influenza A, 1% parainfluenza 2 and 1% influenza B. CONCLUSIONS. Respiratory viruses were detected in 14% of samples tested. RSV was the most frequently identified virus and was associated with pneumonia and bronchiolitis in children younger than 3 years old.

  2. Differential impact of respiratory syncytial virus and parainfluenza virus on the frequency of acute otitis media is explained by lower adaptive and innate immune responses in otitis-prone children.

    Science.gov (United States)

    Verhoeven, David; Xu, Qingfu; Pichichero, Michael E

    2014-08-01

    Acute otitis media (AOM) is a leading cause of bacterial pediatric infections associated with viral upper respiratory infections (URIs). We examined the differential impact of respiratory syncytial virus (RSV) and parainfluenza virus URIs on the frequency of AOM caused by Streptococcus pneumoniae (Spn) and nontypeable Haemophilus influenzae (NTHi) in stringently defined otitis-prone (sOP) and non-otitis-prone (NOP) children as a potential mechanism to explain increased susceptibility to AOM. Peripheral blood and nasal washes were obtained from sOP and NOP children (n = 309). Colonization events and antiviral responses consisting of total specific immunoglobulin G (IgG) responses, neutralizing antibody responses, and T-cell responses were determined. Isolated neutrophils were infected with varying multiplicities of infection of both viruses, and opsonophagocytosis potential was measured. A significant increase was found in frequency of AOM events caused by Spn and NTHi, with a concurrent RSV infection in sOP children. These results correlated with diminished total RSV-specific IgG, higher viral nasal burdens, and lower IgG neutralizing capacity. The sOP children had diminished T-cell responses to RSV that correlated with lower Toll-like receptor 3/7 transcript and decreased expression of HLA-DR on antigen-presenting cells. RSV interfered with the Spn phagocytic capacity of neutrophils in a dose-dependent manner. Parainfluenza virus infections did not differentially affect AOM events in sOP and NOP children. Lower innate and adaptive immune responses to RSV in sOP children may slow the kinetics of viral clearance from the nasopharynx and allow for viral interference with antibacterial immune responses, thus contributing to increased frequency of AOMs. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Prevalence of human papilloma virus and human herpes virus types 1-7 in human nasal polyposis.

    Science.gov (United States)

    Zaravinos, Apostolos; Bizakis, John; Spandidos, Demetrios A

    2009-09-01

    This study aimed to investigate the prevalence of human papilloma virus (HPV), herpes simplex virus-1/-2 (HSV-1/-2), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpes virus-6/-7 (HHV-6/-7) in 23 human nasal polyps by applying PCR. Two types of control tissues were used: adjacent inferior/middle turbinates from the patients and inferior/middle turbinates from 13 patients undergoing nasal corrective surgery. EBV was the virus most frequently detected (35%), followed by HPV (13%), HSV-1 (9%), and CMV (4%). The CMV-positive polyp was simultaneously positive for HSV-1. HPV was also detected in the adjacent turbinates (4%) and the adjacent middle turbinate (4%) of one of the HPV-positive patients. EBV, HSV, and CMV were not detected in the adjacent turbinates of the EBV-, HSV- or CMV-positive patients. All mucosae were negative for the VZV, HHV-6, and HHV-7. This is the first study to deal with the involvement of a comparable group of viruses in human nasal polyposis. The findings support the theory that the presence of viral EBV markedly influences the pathogenesis of these benign nasal tumors. The low incidence of HPV detected confirms the hypothesis that HPV is correlated with infectious mucosal lesions to a lesser extent than it is with proliferative lesions, such as inverted papilloma. The low incidence of HSV-1 and CMV confirms that these two herpes viruses may play a minor role in the development of nasal polyposis. Double infection with HSV-1 and CMV may also play a minor, though causative, role in nasal polyp development. VZV and HHV-6/-7 do not appear to be involved in the pathogenesis of these mucosal lesions.

  4. Efficacy of a parainfluenza virus 5 (PIV5-based H7N9 vaccine in mice and guinea pigs: antibody titer towards HA was not a good indicator for protection.

    Directory of Open Access Journals (Sweden)

    Zhuo Li

    Full Text Available H7N9 has caused fatal infections in humans. A safe and effective vaccine is the best way to prevent large-scale outbreaks in the human population. Parainfluenza virus 5 (PIV5, an avirulent paramyxovirus, is a promising vaccine vector. In this work, we generated a recombinant PIV5 expressing the HA gene of H7N9 (PIV5-H7 and tested its efficacy against infection with influenza virus A/Anhui/1/2013 (H7N9 in mice and guinea pigs. PIV5-H7 protected the mice against lethal H7N9 challenge. Interestingly, the protection did not require antibody since PIV5-H7 protected JhD mice that do not produce antibody against lethal H7N9 challenge. Furthermore, transfer of anti-H7 serum did not protect mice against H7N9 challenge. PIV5-H7 generated high HAI titers in guinea pigs, however it did not protect against H7N9 infection or transmission. Intriguingly, immunization of guinea pigs with PIV5-H7 and PIV5 expressing NP of influenza A virus H5N1 (PIV5-NP conferred protection against H7N9 infection and transmission. Thus, we have obtained a H7N9 vaccine that protected both mice and guinea pigs against lethal H7N9 challenge and infection respectively.

  5. Role of Bibersteinia trehalosi, respiratory syncytial virus, and parainfluenza-3 virus in bighorn sheep pneumonia.

    Science.gov (United States)

    Dassanayake, Rohana P; Shanthalingam, Sudarvili; Subramaniam, Renuka; Herndon, Caroline N; Bavananthasivam, Jegarubee; Haldorson, Gary J; Foreyt, William J; Evermann, James F; Herrmann-Hoesing, Lynn M; Knowles, Donald P; Srikumaran, Subramaniam

    2013-02-22

    Pneumonic bighorn sheep (BHS) have been found to be culture- and/or sero-positive for Bibersteinia trehalosi, respiratory syncytial virus (RSV), and parainfluenza-3 virus (PI-3). The objective of this study was to determine whether these pathogens can cause fatal pneumonia in BHS. In the first study, two groups of four BHS each were intra-tracheally administered with leukotoxin-positive (Group I) or leukotoxin-negative (Group II) B. trehalosi. All four animals in Group I developed severe pneumonia, and two of them died within 3 days. The other two animals showed severe pneumonic lesions on euthanasia and necropsy. Animals in Group II neither died nor showed gross pneumonic lesions on necropsy, suggesting that leukotoxin-positive, but not leukotoxin-negative, B. trehalosi can cause fatal pneumonia in BHS. In the second study, two other groups of four BHS (Groups III and IV) were intra-nasally administered with a mixture of RSV and PI-3. Four days later, RSV/PI-3-inoculated Group IV and another group of four BHS (Group V, positive control) were intra-nasally administered with Mannheimia haemolytica, the pathogen that consistently causes fatal pneumonia in BHS. All four animals in group III developed pneumonia, but did not die during the study period. However all four animals in Group IV, and three animals in Group V developed severe pneumonia and died within two days of M. haemolytica inoculation. The fourth animal in Group V showed severe pneumonic lesions on euthanasia and necropsy. These findings suggest that RSV/PI-3 can cause non-fatal pneumonia, but are not necessary predisposing agents for M. haemolytica-caused pneumonia of BHS. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Replacement of the Ectodomains of the Hemagglutinin-Neuraminidase and Fusion Glycoproteins of Recombinant Parainfluenza Virus Type 3 (PIV3) with Their Counterparts from PIV2 Yields Attenuated PIV2 Vaccine Candidates

    OpenAIRE

    Tao, Tao; Skiadopoulos, Mario H.; Davoodi, Fatemeh; Riggs, Jeffrey M.; Collins, Peter L.; Murphy, Brian R.

    2000-01-01

    We sought to develop a live attenuated parainfluenza virus type 2 (PIV2) vaccine strain for use in infants and young children, using reverse genetic techniques that previously were used to rapidly produce a live attenuated PIV1 vaccine candidate. The PIV1 vaccine candidate, designated rPIV3-1cp45, was generated by substituting the full-length HN and F proteins of PIV1 for those of PIV3 in the attenuated cp45 PIV3 vaccine candidate (T. Tao et al., J. Virol. 72:2955–2961, 1998; M. H. Skiadopoul...

  7. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses.

    Science.gov (United States)

    Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-09-01

    In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up

  8. Epiglottitis with an abscess caused by Haemophilus parainfluenzae

    DEFF Research Database (Denmark)

    Juul, Marie Louise; Johansen, Helle Krogh; Homøe, Preben

    2014-01-01

    A healthy 23-year-old man was admitted under the diagnosis of acute epiglottitis. Flexible fiber laryngoscopic examination showed a swollen epiglottis with an abscess. Microbiologic swab showed Haemophilus parainfluenzae, non-haemolytic Streptococcus and non-haemolytic Streptococcus salivarius. O....... Only in 1984 a case of acute epiglottitis due to H. parainfluenzae has been described in the literature. Still, in this case we think that H. parainfluenzae was the most likely pathogen causing the abscess....

  9. Structure of the Paramyxovirus Parainfluenza Virus 5 Nucleoprotein in Complex with an Amino-Terminal Peptide of the Phosphoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Megha; Leser, George P.; Kors, Christopher A.; Lamb, Robert A.; Sundquist, Wesley I.

    2017-12-13

    Parainfluenza virus 5 (PIV5) belongs to the familyParamyxoviridae, which consists of enveloped viruses with a nonsegmented negative-strand RNA genome encapsidated by the nucleoprotein (N). Paramyxovirus replication is regulated by the phosphoprotein (P) through protein-protein interactions with N and the RNA polymerase (L). The chaperone activity of P is essential to maintain the unassembled RNA-free form of N in order to prevent nonspecific RNA binding and premature N oligomerization. Here, we determined the crystal structure of unassembled PIV5 N in complex with a P peptide (N0P) derived from the N terminus of P (P50) at 2.65 Å. The PIV5 N0P consists of two domains: an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a hinge region. The cleft at the hinge region of RNA-bound PIV5 N was previously shown to be an RNA binding site. The N0P structure shows that the P peptide binds to the CTD of N and extends toward the RNA binding site to inhibit N oligomerization and, hence, RNA binding. Binding of P peptide also keeps the PIV5 N in the open form. A molecular dynamics (MD) analysis of both the open and closed forms of N shows the flexibility of the CTD and the preference of the N protein to be in an open conformation. The gradual opening of the hinge region, to release the RNA, was also observed. Together, these results advance our knowledge of the conformational swapping of N required for the highly regulated paramyxovirus replication.

    IMPORTANCEParamyxovirus replication is regulated by the interaction of P with N and L proteins. Here, we report the crystal structure of unassembled parainfluenza virus 5 (PIV5) N chaperoned with P peptide. Our results provide a detailed understanding of the binding of P to N. The conformational switching of N between closed and open forms during its initial interaction with P, as well as

  10. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    OpenAIRE

    Jiae Kim; Jiae Kim; Kristina K. Peachman; Kristina K. Peachman; Ousman Jobe; Ousman Jobe; Elaine B. Morrison; Atef Allam; Atef Allam; Linda Jagodzinski; Sofia A. Casares; Mangala Rao

    2017-01-01

    Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP) models for studying human immunodeficiency virus (HIV)-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several...

  11. Molecular epidemiology and environmental contamination during an outbreak of parainfluenza virus 3 in a haematology ward.

    Science.gov (United States)

    Kim, T; Jin, C E; Sung, H; Koo, B; Park, J; Kim, S-M; Kim, J Y; Chong, Y P; Lee, S-O; Choi, S-H; Kim, Y S; Woo, J H; Lee, J-H; Lee, J-H; Lee, K-H; Shin, Y; Kim, S-H

    2017-12-01

    Although fomites or contaminated surfaces have been considered as transmission routes, the role of environmental contamination by human parainfluenza virus type 3 (hPIV-3) in healthcare settings is not established. To describe an hPIV-3 nosocomial outbreak and the results of environmental sampling to elucidate the source of nosocomial transmission and the role of environmental contamination. During an hPIV-3 outbreak between May and June 2016, environmental surfaces in contact with clustered patients were swabbed and respiratory specimens used from infected patients and epidemiologically unlinked controls. The epidemiologic relatedness of hPIV-3 strains was investigated by sequencing of the haemagglutinin-neuraminidase and fusion protein genes. Of 19 hPIV-3-infected patients, eight were haematopoietic stem cell recipients and one was a healthcare worker. In addition, four had upper and 12 had lower respiratory tract infections. Of the 19 patients, six (32%) were community-onset infections (symptom onset within environmental swabs up to 12 days after negative respiratory polymerase chain reaction conversion. At least one-third of a peak season nosocomial hPIV-3 outbreak originated from nosocomial transmission, with multiple importations of hPIV-3 from the community, providing experimental evidence for extensive environmental hPIV-3 contamination. Direct contact with the contaminated surfaces and fomites or indirect transmission from infected healthcare workers could be responsible for nosocomial transmission. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Cholesterol is required for stability and infectivity of influenza A and respiratory syncytial viruses.

    Science.gov (United States)

    Bajimaya, Shringkhala; Frankl, Tünde; Hayashi, Tsuyoshi; Takimoto, Toru

    2017-10-01

    Cholesterol-rich lipid raft microdomains in the plasma membrane are considered to play a major role in the enveloped virus lifecycle. However, the functional role of cholesterol in assembly, infectivity and stability of respiratory RNA viruses is not fully understood. We previously reported that depletion of cellular cholesterol by cholesterol-reducing agents decreased production of human parainfluenza virus type 1 (hPIV1) particles by inhibiting virus assembly. In this study, we analyzed the role of cholesterol on influenza A virus (IAV) and respiratory syncytial virus (RSV) production. Unlike hPIV1, treatment of human airway cells with the agents did not decrease virus particle production. However, the released virions were less homogeneous in density and unstable. Addition of exogenous cholesterol to the released virions restored virus stability and infectivity. Collectively, these data indicate a critical role of cholesterol in maintaining IAV and RSV membrane structure that is essential for sustaining viral stability and infectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Horvath, A; Andersen, I; Junker, K

    2001-01-01

    . These studies were extended to comprise five mouse-adapted influenza A strains, two swine influenza A strains, a mink influenza A virus, a ferret influenza A reassortant virus, a influenza B virus and a parainfluenza 3 virus. The HA activity of all these viruses was inhibited by SAP. Western blotting showed......Serum amyloid P component (SAP) binds in vitro Ca(2+)-dependently to several ligands including oligosaccharides with terminal mannose and galactose. We have earlier reported that SAP binds to human influenza A virus strains, inhibiting hemagglutinin (HA) activity and virus infectivity in vitro...... that SAP bound to HA trimers, monomers and HA1 and HA2 subunits of influenza A virus. Binding studies indicated that galactose, mannose and fucose moieties contributed to the SAP reacting site(s). Intranasal administration of human SAP to mice induced no demonstrable toxic reactions, and circulating...

  14. Viral Causes of Lymphoma: The History of Epstein-Barr Virus and Human T-Lymphotropic Virus 1.

    Science.gov (United States)

    Esau, Daniel

    2017-01-01

    In 1964, Epstein, Barr, and Achong published a report outlining their discovery of viral particles in lymphoblasts isolated from a patient with Burkitt lymphoma. The Epstein-Barr virus (EBV) was the first human cancer virus to be described, and its discovery paved the way for further investigations into the oncogenic potential of viruses. In the decades following the discovery of EBV, multinational research efforts led to the discovery of further viral causes of various human cancers. Lymphomas are perhaps the cancer type that is most closely associated with oncogenic viruses: infection with EBV, human T-lymphotropic virus 1 (HTLV-1), human immunodeficiency virus (HIV), Kaposi sarcoma-associated herpesvirus/human herpesvirus 8, and hepatitis C virus have all been associated with lymphomagenesis. Lymphomas have also played an important role in the history of oncoviruses, as both the first human oncovirus (EBV) and the first human retrovirus (HTLV-1) were discovered through isolates taken from patients with unique lymphoma syndromes. The history of the discovery of these 2 key oncoviruses is presented here, and their impact on further medical research, using the specific example of HIV research, is briefly discussed.

  15. Viral Causes of Lymphoma: The History of Epstein-Barr Virus and Human T-Lymphotropic Virus 1

    Directory of Open Access Journals (Sweden)

    Daniel Esau

    2017-09-01

    Full Text Available In 1964, Epstein, Barr, and Achong published a report outlining their discovery of viral particles in lymphoblasts isolated from a patient with Burkitt lymphoma. The Epstein-Barr virus (EBV was the first human cancer virus to be described, and its discovery paved the way for further investigations into the oncogenic potential of viruses. In the decades following the discovery of EBV, multinational research efforts led to the discovery of further viral causes of various human cancers. Lymphomas are perhaps the cancer type that is most closely associated with oncogenic viruses: infection with EBV, human T-lymphotropic virus 1 (HTLV-1, human immunodeficiency virus (HIV, Kaposi sarcoma-associated herpesvirus/human herpesvirus 8, and hepatitis C virus have all been associated with lymphomagenesis. Lymphomas have also played an important role in the history of oncoviruses, as both the first human oncovirus (EBV and the first human retrovirus (HTLV-1 were discovered through isolates taken from patients with unique lymphoma syndromes. The history of the discovery of these 2 key oncoviruses is presented here, and their impact on further medical research, using the specific example of HIV research, is briefly discussed.

  16. Caveolin-1 influences human influenza A virus (H1N1 multiplication in cell culture

    Directory of Open Access Journals (Sweden)

    Hemgård Gun-Viol

    2010-05-01

    Full Text Available Abstract Background The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication. Results Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1 as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1 strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1 virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK, a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction. Conclusion As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.

  17. Detection of 12 respiratory viruses by duplex real time PCR assays in respiratory samples.

    Science.gov (United States)

    Arvia, Rosaria; Corcioli, Fabiana; Ciccone, Nunziata; Della Malva, Nunzia; Azzi, Alberta

    2015-12-01

    Different viruses can be responsible for similar clinical manifestations of respiratory infections. Thus, the etiological diagnosis of respiratory viral diseases requires the detection of a large number of viruses. In this study, 6 duplex real-time PCR assays, using EvaGreen intercalating dye, were developed to detect 12 major viruses responsible for respiratory diseases: influenza A and B viruses, enteroviruses (including enterovirus spp, and rhinovirus spp), respiratory syncytial virus, human metapneumovirus, coronaviruses group I (of which CoV 229E and CoV NL63 are part) and II (including CoV OC43 and CoV HKU1), parainfluenza viruses type 1, 2, 3 and 4, human adenoviruses and human bocaviruses. The 2 target viruses of each duplex reaction were distinguishable by the melting temperatures of their amplicons. The 6 duplex real time PCR assays were applied for diagnostic purpose on 202 respiratory samples from 157 patients. One hundred fifty-seven samples were throat swabs and 45 were bronchoalveolar lavages. The results of the duplex PCR assays were confirmed by comparison with a commercial, validated, assay; in addition, the positive results were confirmed by sequencing. The analytical sensitivity of the duplex PCR assays varied from 10(3) copies/ml to 10(4) copies/ml. For parainfluenza virus 2 only it was 10(5) copies/ml. Seventy clinical samples (35%) from 55 patients (30 children and 25 adults) were positive for 1 or more viruses. In adult patients, influenza A virus was the most frequently detected respiratory virus followed by rhinoviruses. In contrast, respiratory syncytial virus was the most common virus in children, followed by enteroviruses, influenza A virus and coronavirus NL63. The small number of samples/patients does not allow us to draw any epidemiological conclusion. Altogether, the results of this study indicate that the 6 duplex PCR assays described in this study are sensitive, specific and cost-effective. Thus, this assay could be

  18. Bronchiolitis in Abha, Southwest Saudi Arabia: viral etiology and ...

    African Journals Online (AJOL)

    Other viruses isolated were: Influenza virus A (11%), influenza virus B (7%), Parainfluenza viruses (18%), parainfluenza virus type 1 (4%), parainfluenza virus type 2 (2%) and parainfluenza virus type 3 (13 %). Conclusions: Respiratory syncytial virus was the most frequent cause of admitted-cases of bronchiolitis, followed ...

  19. Infection of Parainfluenza type 3 (PI-3 as one of the causative agent of pneumonia in sheep and goats

    Directory of Open Access Journals (Sweden)

    Indrawati Sendow

    2002-03-01

    Full Text Available Serological survey was conducted to obtain the prevalence of Parainfluenza type 3 (PI-3 reactor as one of the causative agent of pneumonia in sheep and goats in abatoir at Jakarta and some small holder farms in Indonesia. Serological test using serum neutralization from 724 goat sera and 109 sheep sera indicated that only 1% of goats were serologically reactors and none of sheep sera had antibodies against PI-3 virus. Isolation of the virus from 56 bronchus and trachea swab and 345 lungs indicated that only one sampel from lung showed cythopathic effect (CPE in Madin Darby Bovine Kidney (MDBK cell lines identification of the virus using serum neutralization test indicated that the virus neutralized reference PI-3 antisera. The isolate came from one lung (7% of 24 that showed histopathologically pneumonia intertitialis that usually caused by viral infection.

  20. Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses.

    Science.gov (United States)

    Sattar, S A; Springthorpe, V S; Karim, Y; Loro, P

    1989-06-01

    The chemical disinfection of virus-contaminated non-porous inanimate surfaces was investigated using coxsackievirus B3, adenovirus type 5, parainfluenza virus type 3 and coronavirus 229E as representatives of important nosocomial viral pathogens. A 10 microliter amount of the test virus, suspended in either faeces or mucin, was placed onto each stainless steel disk (about 1 cm in diameter) and the inoculum allowed to dry for 1 h under ambient conditions. Sixteen disinfectant formulations were selected for this study based on the findings of an earlier investigation with a human rotavirus. After 1 min exposure to 20 microliters of the disinfectant, the virus from the disks was immediately eluted into tryptose phosphate broth and plaque assayed. Using an efficacy criterion of a 3 log10 or greater reduction in virus infectivity titre and irrespective of the virus suspending medium, only the following five disinfectants proved to be effective against all the four viruses tested: (1) 2% glutaraldehyde normally used as an instrument soak, (2) a strongly alkaline mixture of 0.5% sodium o-benzyl-p-chlorophenate and 0.6% sodium lauryl sulphate, generally used as a domestic disinfectant cleaner for hard surfaces, (3) a 0.04% solution of a quaternary ammonium compound containing 7% hydrochloric acid, which is the basis of many toilet bowl cleaners, (4) chloramine T at a minimum free chlorine level of 3000 p.p.m. and (5) sodium hypochlorite at a minimum free chlorine concentration of 5000 p.p.m. Of those chemicals suitable for use as topical antiseptics, 70% ethanol alone or products containing at least 70% ethanol were ineffective only against coxsackievirus B3. These results emphasize the care needed in selecting chemical disinfectants for routine use in infection control.

  1. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    Science.gov (United States)

    Kim, Jiae; Peachman, Kristina K.; Jobe, Ousman; Morrison, Elaine B.; Allam, Atef; Jagodzinski, Linda; Casares, Sofia A.; Rao, Mangala

    2017-01-01

    Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP) models for studying human immunodeficiency virus (HIV)-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several different types of humanized mice have been developed with varying levels of reconstitution of human CD45+ cells. In this study, we utilized humanized Rag1KO.IL2RγcKO.NOD mice expressing HLA class II (DR4) molecule (DRAG mice) infused with HLA-matched hematopoietic stem cells from umbilical cord blood to study early events after HIV-1 infection, since the mucosal tissues of these mice are highly enriched for human lymphocytes and express the receptors and coreceptors needed for HIV-1 entry. We examined the various tissues on days 4, 7, 14, and 21 after an intravaginal administration of a single dose of purified primary HIV-1. Plasma HIV-1 RNA was detected as early as day 7, with 100% of the animals becoming plasma RNA positive by day 21 post-infection. Single cells were isolated from lymph nodes, bone marrow, spleen, gut, female reproductive tissue, and brain and analyzed for gag RNA and strong stop DNA by quantitative (RT)-PCR. Our data demonstrated the presence of HIV-1 viral RNA and DNA in all of the tissues examined and that the virus was replication competent and spread rapidly. Bone marrow, gut, and lymph nodes were viral RNA positive by day 4 post-infection, while other tissues and plasma became positive typically between 7 and 14 days post-infection. Interestingly, the brain was the last tissue to become HIV-1 viral RNA and DNA positive by day 21 post-infection. These data support the notion that humanized DRAG mice could serve as an excellent model for studying the

  2. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    Directory of Open Access Journals (Sweden)

    Jiae Kim

    2017-10-01

    Full Text Available Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP models for studying human immunodeficiency virus (HIV-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several different types of humanized mice have been developed with varying levels of reconstitution of human CD45+ cells. In this study, we utilized humanized Rag1KO.IL2RγcKO.NOD mice expressing HLA class II (DR4 molecule (DRAG mice infused with HLA-matched hematopoietic stem cells from umbilical cord blood to study early events after HIV-1 infection, since the mucosal tissues of these mice are highly enriched for human lymphocytes and express the receptors and coreceptors needed for HIV-1 entry. We examined the various tissues on days 4, 7, 14, and 21 after an intravaginal administration of a single dose of purified primary HIV-1. Plasma HIV-1 RNA was detected as early as day 7, with 100% of the animals becoming plasma RNA positive by day 21 post-infection. Single cells were isolated from lymph nodes, bone marrow, spleen, gut, female reproductive tissue, and brain and analyzed for gag RNA and strong stop DNA by quantitative (RT-PCR. Our data demonstrated the presence of HIV-1 viral RNA and DNA in all of the tissues examined and that the virus was replication competent and spread rapidly. Bone marrow, gut, and lymph nodes were viral RNA positive by day 4 post-infection, while other tissues and plasma became positive typically between 7 and 14 days post-infection. Interestingly, the brain was the last tissue to become HIV-1 viral RNA and DNA positive by day 21 post-infection. These data support the notion that humanized DRAG mice could serve as an excellent model

  3. Relative Contribution of Cellular Complement Inhibitors CD59, CD46, and CD55 to Parainfluenza Virus 5 Inhibition of Complement-Mediated Neutralization

    Directory of Open Access Journals (Sweden)

    Yujia Li

    2018-04-01

    Full Text Available The complement system is a part of the innate immune system that viruses need to face during infections. Many viruses incorporate cellular regulators of complement activation (RCA to block complement pathways and our prior work has shown that Parainfluenza virus 5 (PIV5 incorporates CD55 and CD46 to delay complement-mediated neutralization. In this paper, we tested the role of a third individual RCA inhibitor CD59 in PIV5 interactions with complement pathways. Using a cell line engineered to express CD59, we show that small levels of functional CD59 are associated with progeny PIV5, which is capable of blocking assembly of the C5b-C9 membrane attack complex (MAC. PIV5 containing CD59 (PIV5-CD59 showed increased resistance to complement-mediated neutralization in vitro comparing to PIV5 lacking regulators. Infection of A549 cells with PIV5 and RSV upregulated CD59 expression. TGF-beta treatment of PIV5-infected cells also increased cell surface CD59 expression and progeny virions were more resistant to complement-mediated neutralization. A comparison of individual viruses containing only CD55, CD46, or CD59 showed a potency of inhibiting complement-mediated neutralization, which followed a pattern of CD55 > CD46 > CD59.

  4. Release of Virus from Lymphoid Tissue Affects Human Immunodeficiency Virus Type 1 and Hepatitis C Virus Kinetics in the Blood

    NARCIS (Netherlands)

    Müller, Viktor; Marée, Athanasius F.M.; Boer, R.J. de

    2000-01-01

    Kinetic parameters of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infections have been estimated from plasma virus levels following perturbation of the chronically infected (quasi-) steady state. We extend previous models by also considering the large pool of virus

  5. Engineering of a parainfluenza virus type 5 fusion protein (PIV-5 F): development of an autonomous and hyperfusogenic protein by a combinational mutagenesis approach.

    Science.gov (United States)

    Terrier, O; Durupt, F; Cartet, G; Thomas, L; Lina, B; Rosa-Calatrava, M

    2009-12-01

    The entry of enveloped viruses into host cells is accomplished by fusion of the viral envelope with the target cell membrane. For the paramyxovirus parainfluenza virus type 5 (PIV-5), this fusion involves an attachment protein (HN) and a class I viral fusion protein (F). We investigated the effect of 20 different combinations of 12 amino-acid substitutions within functional domains of the PIV-5 F glycoprotein, by performing cell surface expression measurements, quantitative fusion and syncytia assays. We found that combinations of mutations conferring an autonomous phenotype with mutations leading to an increased fusion activity were compatible and generated functional PIV-5 F proteins. The addition of mutations in the heptad-repeat domains led to both autonomous and hyperfusogenic phenotypes, despite the low cell surface expression of the corresponding mutants. Such engineering approach may prove useful not only for deciphering the fundamental mechanism behind viral-mediated membrane fusion but also in the development of potential therapeutic applications.

  6. Recombinant human parainfluenza virus type 2 with mutations in V that permit cellular interferon signaling are not attenuated in non-human primates

    Science.gov (United States)

    Schaap-Nutt, Anne; D’Angelo, Christopher; Amaro-Carambot, Emerito; Nolan, Sheila M.; Davis, Stephanie; Wise, Shenelle-Marie; Higgins, Caraline; Bradley, Konrad; Kim, Olivia; Mayor, Reina; Skiadopoulos, Mario H.; Collins, Peter L.; Murphy, Brian R.; Schmidt, Alexander C.

    2010-01-01

    The HPIV2 V protein inhibits type I interferon (IFN) induction and signaling. To manipulate the V protein, whose coding sequence overlaps that of the polymerase-associated phosphoprotein (P), without altering the P protein, we generated an HPIV2 virus in which P and V are expressed from separate genes (rHPIV2-P+V). rHPIV2-P+V replicated like HPIV2-WT in vitro and in non-human primates. HPIV2-P+V was modified by introducing two separate mutations into the V protein to create rHPIV2-L101E/L102E and rHPIV2-Δ122–127. In contrast to HPIV2-WT, both mutant viruses were unable to degrade STAT2, leaving virus-infected cells susceptible to IFN. Neither mutant, nor HPIV2-WT, induced significant amounts of IFN-β in infected cells. Surprisingly, neither rHPIV2-L101E/L102E nor rHPIV2-Δ122–127 was attenuated in two species of non-human primates. This indicates that loss of HPIV2's ability to inhibit IFN signaling is insufficient to attenuate virus replication in vivo as long as IFN induction is still inhibited. PMID:20667570

  7. Parainfluenza virus type 5 (PIV-5) morphology revealed by cryo-electron microscopy.

    Science.gov (United States)

    Terrier, Olivier; Rolland, Jean-Paul; Rosa-Calatrava, Manuel; Lina, Bruno; Thomas, Daniel; Moules, Vincent

    2009-06-01

    The knowledge of parainfluenza type 5 (PIV-5) virion morphology is essentially based on the observation of negatively stained preparations in conventional transmission electron microscopy (CTEM). In this study, the ultrastructure of frozen-hydrated intact PIV-5 was examined by cryo-electron microscopy (cryo-EM). Cryo-EM revealed a majority of spherical virions (70%), with a lower pleiomorphy than originally observed in CTEM. Phospholipid bilayer thickness, spike length and glycoprotein spikes density were measured. About 2000 glycoprotein spikes were present in an average-sized spherical virion. Altogether, these data depict a more precise view of PIV-5 morphology.

  8. West Nile virus meningitis in a patient with human immunodeficiency virus type 1 infection

    Directory of Open Access Journals (Sweden)

    D. Pilalas

    2017-09-01

    Full Text Available The emergence of West Nile virus lineage 2 in central Macedonia, Greece, in 2010 resulted in large outbreaks for 5 consecutive years. We report a case of viral meningitis in an individual infected with human immunodeficiency virus type 1, which preceded the recognition of the outbreak and was confirmed retrospectively as West Nile virus neuroinvasive disease.

  9. Virus load in chimpanzees infected with human immunodeficiency virus type 1: effect of pre-exposure vaccination

    NARCIS (Netherlands)

    ten Haaft, P.; Cornelissen, M.; Goudsmit, J.; Koornstra, W.; Dubbes, R.; Niphuis, H.; Peeters, M.; Thiriart, C.; Bruck, C.; Heeney, J. L.

    1995-01-01

    Many reports indicate that a long-term asymptomatic state following human immunodeficiency virus type 1 (HIV-1) infection is associated with a low amount of circulating virus. To evaluate the possible effect of stabilizing a low virus load by non-sterilizing pre-exposure vaccination, a quantitative

  10. Development and application of radioimmunoassay and enzyme immunoassays in microbiological and immunological diagnosis. 3. Comparative studies for the detection of virus antibodies with passive hemagglutination test, radioimmunoassay and enzyme immunoassay, resp

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, H; Struy, H; Morenz, J [Medizinische Akademie, Magdeburg (German Democratic Republic)

    1982-06-01

    Radioimmuno- and enzyme immunoassays (solid phase RIA and ELISA) developed by the authors for the determination of antibodies of adeno-2- and parainfluenza-1-viruses are described and the detection sensibility for antibodies is compared with that of the conventional passive hemagglutination test. The sensibility of the radioimmunoassay for the detection of IgG antibodies against adeno-2-viruses is nearly 10 times higher than that of the passive hemagglutination. RIA and ELISA show no essential differences in their detection sensibilities in the detection of IgG antibodies against parainfluenza-1-viruses.

  11. 9 CFR 113.316 - Canine Parainfluenza Vaccine.

    Science.gov (United States)

    2010-01-01

    ... furnished or approved by Animal and Plant Health Inspection Service. (4) The rectal temperature of each dog...: (1) Twenty-five canine parainfluenza susceptible dogs (20 vaccinates and 5 controls) shall be used as test animals. Nasal swabs shall be collected from each dog on the day the first dose of vaccine is...

  12. Identification of Human H1N2 and Human-Swine Reassortant H1N2 and H1N1 Influenza A Viruses among Pigs in Ontario, Canada (2003 to 2005)†

    OpenAIRE

    Karasin, Alexander I.; Carman, Suzanne; Olsen, Christopher W.

    2006-01-01

    Since 2003, three novel genotypes of H1 influenza viruses have been recovered from Canadian pigs, including a wholly human H1N2 virus and human-swine reassortants. These isolates demonstrate that human-lineage H1N2 viruses are infectious for pigs and that viruses with a human PB1/swine PA/swine PB2 polymerase complex can replicate in pigs.

  13. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    Science.gov (United States)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  14. Clinical and Molecular Epidemiology of Human Parainfluenza Viruses 1-4 in Children from Viet Nam.

    Science.gov (United States)

    Linster, Martin; Do, Lien Anh Ha; Minh, Ngo Ngoc Quang; Chen, Yihui; Zhe, Zhu; Tuan, Tran Anh; Tuan, Ha Manh; Su, Yvonne C F; van Doorn, H Rogier; Moorthy, Mahesh; Smith, Gavin J D

    2018-05-01

    HPIVs are serologically and genetically grouped into four species that account for up to 10% of all hospitalizations due to acute respiratory infection in children under the age of five. Genetic and epidemiological data for the four HPIVs derived from two pediatric cohorts in Viet Nam are presented. Respiratory samples were screened for HPIV1-4 by real-time PCR. Demographic and clinical data of patients infected with different HPIV were compared. We used a hemi-nested PCR approach to generate viral genome sequences from HPIV-positive samples and conducted a comprehensive phylogenetic analysis. In total, 170 samples tested positive for HPIV. HPIV3 was most commonly detected in our cohort and 80 co-detections of HPIV with other respiratory viruses were found. Phylogenetic analyses suggest local endemic circulation as well as punctuated introductions of new HPIV lineages. Viral gene flow analysis revealed that Viet Nam is a net importer of viral genetic diversity. Epidemiological analyses imply similar disease severity for all HPIV species. HPIV sequences from Viet Nam formed local clusters and were interspersed with sequences from diverse geographic regions. Combined, this new knowledge will help to investigate global HPIV circulation patterns in more detail and ultimately define more suitable vaccine strains.

  15. H5N1 Influenza A Virus PB1-F2 Relieves HAX-1-Mediated Restriction of Avian Virus Polymerase PA in Human Lung Cells.

    Science.gov (United States)

    Mazel-Sanchez, B; Boal-Carvalho, I; Silva, F; Dijkman, R; Schmolke, M

    2018-06-01

    Highly pathogenic influenza A viruses (IAV) from avian hosts were first reported to directly infect humans 20 years ago. However, such infections are rare events, and our understanding of factors promoting or restricting zoonotic transmission is still limited. One accessory protein of IAV, PB1-F2, was associated with pathogenicity of pandemic and zoonotic IAV. This short (90-amino-acid) peptide does not harbor an enzymatic function. We thus identified host factors interacting with H5N1 PB1-F2, which could explain its importance for virulence. PB1-F2 binds to HCLS1-associated protein X1 (HAX-1), a recently identified host restriction factor of the PA subunit of IAV polymerase complexes. We demonstrate that the PA of a mammal-adapted H1N1 IAV is resistant to HAX-1 imposed restriction, while the PA of an avian-origin H5N1 IAV remains sensitive. We also showed HAX-1 sensitivity for PAs of A/Brevig Mission/1/1918 (H1N1) and A/Shanghai/1/2013 (H7N9), two avian-origin zoonotic IAV. Inhibition of H5N1 polymerase by HAX-1 can be alleviated by its PB1-F2 through direct competition. Accordingly, replication of PB1-F2-deficient H5N1 IAV is attenuated in the presence of large amounts of HAX-1. Mammal-adapted H1N1 and H3N2 viruses do not display this dependence on PB1-F2 for efficient replication in the presence of HAX-1. We propose that PB1-F2 plays a key role in zoonotic transmission of avian H5N1 IAV into humans. IMPORTANCE Aquatic and shore birds are the natural reservoir of influenza A viruses from which the virus can jump into a variety of bird and mammal host species, including humans. H5N1 influenza viruses are a good model for this process. They pose an ongoing threat to human and animal health due to their high mortality rates. However, it is currently unclear what restricts these interspecies jumps on the host side or what promotes them on the virus side. Here we show that a short viral peptide, PB1-F2, helps H5N1 bird influenza viruses to overcome a human restriction

  16. Comparative studies on virus detection in acute respiratory diseases in humans by means of RIA and cultivation

    International Nuclear Information System (INIS)

    Ehrlicher, L.

    1982-01-01

    In winter 1981, 146 patients with an acute respiratory infection were examined. Nasopharyngeal specimens were obtained by intranasal catheter. Comparative investigations were performed by cultivation in tissue culture and by a four-layer radioimmunoassay. In the radioimmunoassay, polystyrene beads were used as the solid phase, ginea pig antivirus immunoglobulins as the captive antibodies, rabbit anti-virus immunoglobulins as the secondary antibodies and 125 I-labelled sheep anti-rabbit immunoglobulins were used as the indicator antibodies. The radioimmunoassay was developed for the detection of adenovirus, respiratory syncytial virus, influenza A and B virus and parainfluenza type 1, type 2 and type 3 virus. Tissue culture seems to be more sensitive for detection of adenovirus and influenza A virus, though some infections with influenza A virus could only be diagnosed by the radioimmunoassay. In other cases (respiratory syncytial virus, influenza B virus) antigen detection by radioimmunoassay is more efficient. Presently the combination of both antigen-detection-systems still is the optimal diagnostic procedure for detecting virus infections of the respiratory tract. (orig./MG) [de

  17. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    Science.gov (United States)

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  18. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    Science.gov (United States)

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains. © INRA, EDP Sciences, 2010.

  19. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    International Nuclear Information System (INIS)

    Noisakran, Sansanee; Sengsai, Suchada; Thongboonkerd, Visith; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Chen, Shui-Tein; Puttikhunt, Chunya

    2008-01-01

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells

  20. Influenza A H5N1 clade 2.3.4 virus with a different antiviral susceptibility profile replaced clade 1 virus in humans in northern Vietnam.

    Directory of Open Access Journals (Sweden)

    Mai T Q Le

    2008-10-01

    Full Text Available Prior to 2007, highly pathogenic avian influenza (HPAI H5N1 viruses isolated from poultry and humans in Vietnam were consistently reported to be clade 1 viruses, susceptible to oseltamivir but resistant to amantadine. Here we describe the re-emergence of human HPAI H5N1 virus infections in Vietnam in 2007 and the characteristics of the isolated viruses.Respiratory specimens from patients suspected to be infected with avian influenza in 2007 were screened by influenza and H5 subtype specific polymerase chain reaction. Isolated H5N1 strains were further characterized by genome sequencing and drug susceptibility testing. Eleven poultry outbreak isolates from 2007 were included in the sequence analysis. Eight patients, all of them from northern Vietnam, were diagnosed with H5N1 in 2007 and five of them died. Phylogenetic analysis of H5N1 viruses isolated from humans and poultry in 2007 showed that clade 2.3.4 H5N1 viruses replaced clade 1 viruses in northern Vietnam. Four human H5N1 strains had eight-fold reduced in-vitro susceptibility to oseltamivir as compared to clade 1 viruses. In two poultry isolates the I117V mutation was found in the neuraminidase gene, which is associated with reduced susceptibility to oseltamivir. No mutations in the M2 gene conferring amantadine resistance were found.In 2007, H5N1 clade 2.3.4 viruses replaced clade 1 viruses in northern Vietnam and were susceptible to amantadine but showed reduced susceptibility to oseltamivir. Combination antiviral therapy with oseltamivir and amantadine for human cases in Vietnam is recommended.

  1. Haemophilus parainfluenzae Strain ATCC 33392 Forms Biofilms In Vitro and during Experimental Otitis Media Infections.

    Science.gov (United States)

    Pang, Bing; Swords, W Edward

    2017-09-01

    Haemophilus parainfluenzae is a nutritionally fastidious, Gram-negative bacterium with an oropharyngeal/nasopharyngeal carriage niche that is associated with a range of opportunistic infections, including infectious endocarditis and otitis media (OM). These infections are often chronic/recurrent in nature and typically involve bacterial persistence within biofilm communities that are highly resistant to host clearance. This study addresses the primary hypothesis that H. parainfluenzae forms biofilm communities that are important determinants of persistence in vivo The results from in vitro biofilm studies confirmed that H. parainfluenzae formed biofilm communities within which the polymeric matrix was mainly composed of extracellular DNA and proteins. Using a chinchilla OM infection model, we demonstrated that H. parainfluenzae formed surface-associated biofilm communities containing bacterial and host components that included neutrophil extracellular trap (NET) structures and that the bacteria mainly persisted in these biofilm communities. We also used this model to examine the possible interaction between H. parainfluenzae and its close relative Haemophilus influenzae , which is also commonly carried within the same host environments and can cause OM. The results showed that coinfection with H. influenzae promoted clearance of H. parainfluenzae from biofilm communities during OM infection. The underlying mechanisms for bacterial persistence and biofilm formation by H. parainfluenzae and knowledge about the survival defects of H. parainfluenzae during coinfection with H. influenzae are topics for future work. Copyright © 2017 American Society for Microbiology.

  2. Influenza A H5N1 clade 2.3.4 virus with a different antiviral susceptibility profile replaced clade 1 virus in humans in northern Vietnam

    NARCIS (Netherlands)

    Le, Mai T. Q.; Wertheim, Heiman F. L.; Nguyen, Hien D.; Taylor, Walter; Hoang, Phuong V. M.; Vuong, Cuong D.; Nguyen, Hang L. K.; Nguyen, Ha H.; Nguyen, Thai Q.; Nguyen, Trung V.; van, Trang D.; Ngoc, Bich T.; Bui, Thinh N.; Nguyen, Binh G.; Nguyen, Liem T.; Luong, San T.; Phan, Phuc H.; Pham, Hung V.; Nguyen, Tung; Fox, Annette; Nguyen, Cam V.; Do, Ha Q.; Crusat, Martin; Farrar, Jeremy; Nguyen, Hien T.; de Jong, Menno D.; Horby, Peter

    2008-01-01

    BACKGROUND: Prior to 2007, highly pathogenic avian influenza (HPAI) H5N1 viruses isolated from poultry and humans in Vietnam were consistently reported to be clade 1 viruses, susceptible to oseltamivir but resistant to amantadine. Here we describe the re-emergence of human HPAI H5N1 virus infections

  3. Analysis of microRNAs Expression Profiles in Madin-Darby Bovine Kidney Cells Infected With Caprine Parainfluenza Virus Type 3

    Directory of Open Access Journals (Sweden)

    Jizong Li

    2018-03-01

    Full Text Available Caprine parainfluenza virus type 3 (CPIV3 is a newly emerging pathogenic respiratory agent infecting both young and adult goats, and it was identified in eastern China in 2013. Cellular microRNAs (miRNAs have been reported to be important modulators of the intricate virus-host interactions. In order to elucidate the role of miRNAs in madin-darby bovine kidney (MDBK cells during CPIV3 infection. In this study, we performed high-throughput sequencing technology to analyze small RNA libraries in CPIV3-infected and mock-infected MDBK cells. The results showed that a total of 249 known and 152 novel candidate miRNAs were differentially expressed in MDBK cells after CPIV3 infection, and 22,981 and 22,572 target genes were predicted, respectively. In addition, RT-qPCR assay was used to further confirm the expression patterns of 13 of these differentially expressed miRNAs and their mRNA targets. Functional annotation analysis showed these up- and downregulated target genes were mainly involved in MAPK signaling pathway, Jak-STAT signaling pathway, Toll-like receptor signaling pathway, p53 signaling pathway, focal adhesion, NF-kappa B signaling pathway, and apoptosis, et al. To our knowledge, this is the first report of the comparative expression of miRNAs in MDBK cells after CPIV3 infection. Our finding provides information concerning miRNAs expression profile in response to CPIV3 infection, and offers clues for identifying potential candidates for antiviral therapies against CPIV3.

  4. Avian influenza viruses in humans.

    Science.gov (United States)

    Malik Peiris, J S

    2009-04-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.

  5. Herpes viruses and human papilloma virus in nasal polyposis and controls

    Directory of Open Access Journals (Sweden)

    Dimitrios Ioannidis

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Chronic rhinosinusitis with nasal polyps is a multifactorial disease entity with an unclear pathogenesis. Contradictory data exist in the literature on the potential implication of viral elements in adult patients with chronic rhinosinusitis. OBJECTIVE: To compare the prevalence of human herpes viruses (1-6 and Human Papilloma Virus in adult patients with chronic rhinosinusitis with nasal polyps and healthy controls. METHODS: Viral DNA presence was evaluated by real-time polymerase chain reaction application to nasal polyps specimens from 91 chronic rhinosinusitis with nasal polyps patients and nasal turbinate mucosa from 38 healthy controls. RESULTS: Epstein-Barr virus positivity was higher in nasal polyps (24/91; 26.4% versus controls (4/38; 10.5%, but the difference did not reach significance (p = 0.06. Human herpes virus-6 positivity was lower in nasal polyps (13/91; 14.29% versus controls (10/38; 26.32%,p = 0.13. In chronic rhinosinusitis with nasal polyps group, 1 sample was herpes simplex virus-1-positive (1/91; 1.1%, and another was cytomegalovirus-positive (1/91; 1.1%, versus none in controls. No sample was positive for herpes simplex virus-2, varicella-zoster virus, high-risk-human papilloma viruses (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and low-risk-human papilloma viruses (6, 11. CONCLUSION: Differences in Epstein-Barr virus and human herpes virus-6 positivity among patients with chronic rhinosinusitis with nasal polyps and healthy controls are not statistically significant, weakening the likelihood of their implication in chronic rhinosinusitis with nasal polyps pathogenesis.

  6. Humans and ferrets with prior H1N1 influenza virus infections do not exhibit evidence of original antigenic sin after infection or vaccination with the 2009 pandemic H1N1 influenza virus.

    Science.gov (United States)

    O'Donnell, Christopher D; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J; Subbarao, Kanta

    2014-05-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus.

  7. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

    Science.gov (United States)

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

  8. The role of infections and coinfections with newly identified and emerging respiratory viruses in children

    Directory of Open Access Journals (Sweden)

    Debiaggi Maurizia

    2012-10-01

    Full Text Available Abstract Acute respiratory infections are a major cause of morbidity in children both in developed and developing countries. A wide range of respiratory viruses, including respiratory syncytial virus (RSV, influenza A and B viruses, parainfluenza viruses (PIVs, adenovirus, rhinovirus (HRV, have repeatedly been detected in acute lower respiratory tract infections (LRTI in children in the past decades. However, in the last ten years thanks to progress in molecular technologies, newly discovered viruses have been identified including human Metapneumovirus (hMPV, coronaviruses NL63 (HcoV-NL63 and HKU1 (HcoV-HKU1, human Bocavirus (HBoV, new enterovirus (HEV, parechovirus (HpeV and rhinovirus (HRV strains, polyomaviruses WU (WUPyV and KI (KIPyV and the pandemic H1N1v influenza A virus. These discoveries have heavily modified previous knowledge on respiratory infections mainly highlighting that pediatric population is exposed to a variety of viruses with similar seasonal patterns. In this context establishing a causal link between a newly identified virus and the disease as well as an association between mixed infections and an increase in disease severity can be challenging. This review will present an overview of newly recognized as well as the main emerging respiratory viruses and seek to focus on the their contribution to infection and co-infection in LRTIs in childhood.

  9. Avian Influenza Virus (H5N1): a Threat to Human Health

    OpenAIRE

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, ...

  10. Detection and Characterization of Clade 1 Reassortant H5N1 Viruses Isolated from Human Cases in Vietnam during 2013.

    Directory of Open Access Journals (Sweden)

    Sharmi W Thor

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 is endemic in Vietnamese poultry and has caused sporadic human infection in Vietnam since 2003. Human infections with HPAI H5N1 are of concern due to a high mortality rate and the potential for the emergence of pandemic viruses with sustained human-to-human transmission. Viruses isolated from humans in southern Vietnam have been classified as clade 1 with a single genome constellation (VN3 since their earliest detection in 2003. This is consistent with detection of this clade/genotype in poultry viruses endemic to the Mekong River Delta and surrounding regions. Comparison of H5N1 viruses detected in humans from southern Vietnamese provinces during 2012 and 2013 revealed the emergence of a 2013 reassortant virus with clade 1.1.2 hemagglutinin (HA and neuraminidase (NA surface protein genes but internal genes derived from clade 2.3.2.1a viruses (A/Hubei/1/2010-like; VN12. Closer analysis revealed mutations in multiple genes of this novel genotype (referred to as VN49 previously associated with increased virulence in animal models and other markers of adaptation to mammalian hosts. Despite the changes identified between the 2012 and 2013 genotypes analyzed, their virulence in a ferret model was similar. Antigenically, the 2013 viruses were less cross-reactive with ferret antiserum produced to the clade 1 progenitor virus, A/Vietnam/1203/2004, but reacted with antiserum produced against a new clade 1.1.2 WHO candidate vaccine virus (A/Cambodia/W0526301/2012 with comparable hemagglutination inhibition titers as the homologous antigen. Together, these results indicate changes to both surface and internal protein genes of H5N1 viruses circulating in southern Vietnam compared to 2012 and earlier viruses.

  11. A novel H6N1 virus-like particle vaccine induces long-lasting cross-clade antibody immunity against human and avian H6N1 viruses.

    Science.gov (United States)

    Yang, Ji-Rong; Chen, Chih-Yuan; Kuo, Chuan-Yi; Cheng, Chieh-Yu; Lee, Min-Shiuh; Cheng, Ming-Chu; Yang, Yu-Chih; Wu, Chia-Ying; Wu, Ho-Sheng; Liu, Ming-Tsan; Hsiao, Pei-Wen

    2016-02-01

    Avian influenza A(H6N1) virus is one of the most common viruses isolated from migrating birds and domestic poultry in many countries. The first and only known case of human infection by H6N1 virus in the world was reported in Taiwan in 2013. This led to concern that H6N1 virus may cause a threat to public health. In this study, we engineered a recombinant H6N1 virus-like particle (VLP) and investigated its vaccine effectiveness compared to the traditional egg-based whole inactivated virus (WIV) vaccine. The H6N1-VLPs exhibited similar morphology and functional characteristics to influenza viruses. Prime-boost intramuscular immunization in mice with unadjuvanted H6N1-VLPs were highly immunogenic and induced long-lasting antibody immunity. The functional activity of the VLP-elicited IgG antibodies was proved by in vitro seroprotective hemagglutination inhibition and microneutralization titers against the homologous human H6N1 virus, as well as in vivo viral challenge analyses which showed H6N1-VLP immunization significantly reduced viral load in the lung, and protected against human H6N1 virus infection. Of particular note, the H6N1-VLPs but not the H6N1-WIVs were able to confer cross-reactive humoral immunity; antibodies induced by H6N1-VLP vaccine robustly inhibited the hemagglutination activities and in vitro replication of distantly-related heterologous avian H6N1 viruses. Furthermore, the H6N1-VLPs were found to elicit significantly greater anti-HA2 antibody responses in immunized mice than H6N1-WIVs. Collectively, we demonstrated for the first time a novel H6N1-VLP vaccine that effectively provides broadly protective immunity against both human and avian H6N1 viruses. These results, which uncover the underlying mechanisms for induction of wide-range immunity against influenza viruses, may be useful for future influenza vaccine development. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Herpes viruses and human papilloma virus in nasal polyposis and controls.

    Science.gov (United States)

    Ioannidis, Dimitrios; Lachanas, Vasileios A; Florou, Zoe; Bizakis, John G; Petinaki, Efthymia; Skoulakis, Charalampos E

    2015-01-01

    Chronic rhinosinusitis with nasal polyps is a multifactorial disease entity with an unclear pathogenesis. Contradictory data exist in the literature on the potential implication of viral elements in adult patients with chronic rhinosinusitis. To compare the prevalence of human herpes viruses (1-6) and Human Papilloma Virus in adult patients with chronic rhinosinusitis with nasal polyps and healthy controls. Viral DNA presence was evaluated by real-time polymerase chain reaction application to nasal polyps specimens from 91 chronic rhinosinusitis with nasal polyps patients and nasal turbinate mucosa from 38 healthy controls. Epstein-Barr virus positivity was higher in nasal polyps (24/91; 26.4%) versus controls (4/38; 10.5%), but the difference did not reach significance (p=0.06). Human herpes virus-6 positivity was lower in nasal polyps (13/91; 14.29%) versus controls (10/38; 26.32%, p=0.13). In chronic rhinosinusitis with nasal polyps group, 1 sample was herpes simplex virus-1-positive (1/91; 1.1%), and another was cytomegalovirus-positive (1/91; 1.1%), versus none in controls. No sample was positive for herpes simplex virus-2, varicella-zoster virus, high-risk-human papilloma viruses (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) and low-risk-human papilloma viruses (6, 11). Differences in Epstein-Barr virus and human herpes virus-6 positivity among patients with chronic rhinosinusitis with nasal polyps and healthy controls are not statistically significant, weakening the likelihood of their implication in chronic rhinosinusitis with nasal polyps pathogenesis. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  13. Pathogenesis of a genotype C strain of bovine parainfluenza virus type 3 infection in albino guinea pigs.

    Science.gov (United States)

    Shi, Hong-Fei; Zhu, Yuan-Mao; Dong, Xiu-Mei; Cai, Hong; Ma, Lei; Wang, Shu; Yan, Hao; Wang, Xue-Zhi; Xue, Fei

    2014-08-08

    Bovine parainfluenza virus type 3 (BPIV3) is one of the most important of the known viral respiratory tract agents of both young and adult cattle and widespread among cattle around the world. Up to present, three genotypes A, B and C of BPIV3 have been described on the basis of genetic and phylogenetic analysis and only limited studies on the pathogenesis of the genotype A of BPIV3 infection in calves and laboratory animals have been performed. The report about experimental infections of the genotypes B and C of BPIV3 in laboratory animals and calves was scant. Therefore, an experimental infection of guinea pigs with the Chinese BPIV3 strain SD0835 of the genotype C was performed. Sixteen guinea pigs were intranasally inoculated with the suspension of SD0835, while eight control guinea pigs were also intranasally inoculated with the same volume of supernatant from uninfected MDBK cells. The virus-inoculated guinea pigs displayed a few observable clinical signs that were related to the respiratory tract disease and two of the sixteen experimentally infected guinea pigs died at 2 and 3 days post inoculation (PI), respectively, and apparent gross pneumonic lesions were observed at necropsy. The gross pneumonic lesions in guinea pigs inoculated with SD0835 consisted of dark red, slightly depressed, irregular areas of consolidation in the lung lobes from the second to 9th day of infection at necropsy, and almost complete consolidation and atelectasis of the lung lobes were seen at 7 days PI. Histopathological changes including alveoli septa thickening and focal cellulose pneumonia were also observed in the lungs of guinea pigs experimentally infected with SD0835. Viral replication was detectable by virus isolation and titration, real-time RT-PCR and immunohistochemistry (IHC) staining in the respiratory tissues of guinea pigs as early as 24h after intranasal inoculation with SD0835. The results of virus isolation and titration showed that guinea pigs were permissive for

  14. Achados de tomografia computadorizada de alta resolução em pneumonia pelo vírus parainfluenza pós-transplante de medula óssea: relato de caso

    Directory of Open Access Journals (Sweden)

    Emerson L. Gasparetto

    2004-11-01

    Full Text Available RESUMO: Paciente feminina, de 19 anos, transplantada de medula óssea devido a leucemia mielóide crónica, apresentando tosse seca e coriza no 67.º dia após o procedimento. A radiografia de tórax não evidenciou alterações. A tomografia computadorizada de alta resolução do tórax revelou consolidação subsegmentar na periferia do lobo inferior esquerdo e áreas de redução da atenuação nos terços superior e médio dos pulmões. O lavado broncoalveolar demonstrou pesquisa positiva por imunoflorescência direta para anticorpos anti-vírus parainfluenza. Foi instituído tratamento com ribavirina aerolizada durante 10 dias, havendo melhoria clínico-radiológica do quadro infeccioso.REV PORT PNEUMOL 2004; X (6: 485-489 ABSTRACT: Nineteen year-old female patient, who underwent bone marrow transplantation because of chronic myelogenous leukemia, presented with dry cough and coriza sixty-seven days after the procedure. The chest radiograph was normal. The high resolution computed tomography showed a subsegmental air-space consolidation at the periphery of the left inferior lobe and areas of low attenuation at the superior and middle lung zones. The bronchoalveolar lavage demonstrated positive direct fluorescence antibody testing against parainfluenza virus. Treatment with aerolizated ribavirin was instituted during 10 days and the patient showed clinical-radiological improvement.REV PORT PNEUMOL 2004; X (6: 485-489 Palavras-chave: Vírus parainfluenza, tomografia computadorizada de alta resolução, transplante de medula óssea, Key-words: Parainfluenza virus, high resolution computed tomography, bone marrow transplantation

  15. Avian influenza virus (H5N1): a threat to human health

    NARCIS (Netherlands)

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes.

  16. The CD8 T Cell Response to Respiratory Virus Infections.

    Science.gov (United States)

    Schmidt, Megan E; Varga, Steven M

    2018-01-01

    Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.

  17. Incidence of respiratory viruses in Peruvian children with acute respiratory infections.

    Science.gov (United States)

    del Valle Mendoza, Juana; Cornejo-Tapia, Angela; Weilg, Pablo; Verne, Eduardo; Nazario-Fuertes, Ronald; Ugarte, Claudia; del Valle, Luis J; Pumarola, Tomás

    2015-06-01

    Acute respiratory infections are responsible for high morbi-mortality in Peruvian children. However, the etiological agents are poorly identified. This study, conducted during the pandemic outbreak of H1N1 influenza in 2009, aims to determine the main etiological agents responsible for acute respiratory infections in children from Lima, Peru. Nasopharyngeal swabs collected from 717 children with acute respiratory infections between January 2009 and December 2010 were analyzed by multiplex RT-PCR for 13 respiratory viruses: influenza A, B, and C virus; parainfluenza virus (PIV) 1, 2, 3, and 4; and human respiratory syncytial virus (RSV) A and B, among others. Samples were also tested with direct fluorescent-antibodies (DFA) for six respiratory viruses. RT-PCR and DFA detected respiratory viruses in 240 (33.5%) and 85 (11.9%) cases, respectively. The most common etiological agents were RSV-A (15.3%), followed by influenza A (4.6%), PIV-1 (3.6%), and PIV-2 (1.8%). The viruses identified by DFA corresponded to RSV (5.9%) and influenza A (1.8%). Therefore, respiratory syncytial viruses (RSV) were found to be the most common etiology of acute respiratory infections. The authors suggest that active surveillance be conducted to identify the causative agents and improve clinical management, especially in the context of possible circulation of pandemic viruses. © 2015 Wiley Periodicals, Inc.

  18. Human immunodeficiency virus type-1 (HIV-1) genetic diversity and ...

    African Journals Online (AJOL)

    The presence of human immunodeficiency virus (HIV) type-1 diversity has an impact on vaccine efficacy and drug resistance. It is important to know the circulating genetic variants and associated drug-resistance mutations in the context of scale up of antiretroviral therapy (ART) in Nigeria. The objective of this study was to ...

  19. Recent advances in the development of vaccines for Ebola virus disease.

    Science.gov (United States)

    Ohimain, Elijah Ige

    2016-01-04

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China.

    Science.gov (United States)

    Peng, Xiuming; Wu, Haibo; Xu, Lihua; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Xie, Tiansheng; Lu, Xiangyun; Wu, Nanping

    2016-06-01

    Pandemic outbreaks of H1N1 swine influenza virus have been reported since 2009. Reassortant H1N2 viruses that contain genes from the pandemic H1N1 virus have been isolated in Italy and the United States. However, there is limited information regarding the molecular characteristics of reassortant H1N2 swine influenza viruses in eastern China. Active influenza surveillance programs in Zhejiang Province identified a novel H1N2 influenza virus isolated from pigs displaying clinical signs of influenza virus infection. Whole-genome sequencing was performed and this strain was compared with other influenza viruses available in GenBank. Phylogenetic analysis suggested that the novel strain contained genes from the 2009 pandemic human H1N1 and swine H3N2 viruses. BALB/c mice were infected with the isolated virus to assess its virulence in mice. While the novel H1N2 isolate replicated well in mice, it was found to be less virulent. These results provide additional evidence that swine serve as intermediate hosts or 'mixing vessels' for novel influenza viruses. They also emphasize the importance of surveillance in the swine population for use as an early warning system for influenza outbreaks in swine and human populations.

  1. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages.

    Science.gov (United States)

    Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo

    2014-01-01

    Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.

  2. Association of interferon lambda-1 with herpes simplex viruses-1 and -2, Epstein-Barr virus, and human cytomegalovirus in chronic periodontitis.

    Science.gov (United States)

    Muzammil; Jayanthi, D; Faizuddin, Mohamed; Noor Ahamadi, H M

    2017-05-01

    Periodontal tissues facilitate the homing of herpes viruses that elicit the immune-inflammatory response releasing the interferons (IFN). IFN lambda-11) can suppress the replication of viruses, and induces the antiviral mechanism. The aim of the present study was to evaluate the association between IFN-λ1 and periodontal herpes viruses in the immunoregulation of chronic periodontal disease. The cross-sectional study design included 30 chronic periodontitis patients with a mean age of 42.30 ± 8.63 years. Gingival crevicular fluid collected was assessed for IFN-λ1 using enzyme-linked immunosorbent assay and four herpes viruses were detected using multiplex polymerase chain reaction technique. IFN-λ1 levels were compared between virus-positive and -negative patients for individual and total viruses. Fifty per cent (n = 15) of patients were positive for the four herpes viruses together; 50% (n = 15), 30% (n = 9), 26.7% (n = 8), and 40% (n = 12) were positive for herpes simplex virus (HSV)-1, Epstein-Barr virus, HSV-2, and human cytomegalovirus, respectively. The mean concentrations of IFN-λ1 in virus-positive patients (14.38 ± 13.95) were lower than those of virus-negative patients (228.26 ± 215.35). INF-λ1 levels in individual virus groups were also lower in virus-positive patients compared to virus-negative patients, with P viruses in the pathogenesis of chronic periodontitis. © 2015 Wiley Publishing Asia Pty Ltd.

  3. A reverse genetic analysis of human Influenza A virus H1N2

    OpenAIRE

    Anton, Aline

    2010-01-01

    Reassortment between influenza A viruses of different subtypes rarely appears. Even in a community where H1N1 and H3N2 viruses co-circulate, reassortment to produce persistent viruses of mixed gene segments does not readily occur. H1N2 viruses, that circulated between 2001-2003 were considered to have arisen through the reassortment of the two human influenza subtypes H1N1 and H3N2. Due to the fact they make such a rare appearance, H1N2 viruses used to have new characteristics compared to the...

  4. Proteotyping for the rapid identification of influenza virus and other biopathogens.

    Science.gov (United States)

    Downard, Kevin M

    2013-11-21

    The influenza virus is one of the most deadly infectious agents known to man and has been responsible for the deaths of some hundred million lives throughout human history. The need to rapidly and reliably survey circulating virus strains down to the molecular level is ever present. This tutorial describes the development and application of a new proteotyping approach that harnesses the power of high resolution of mass spectrometry to characterise the influenza virus, and by extension other bacterial and viral pathogens. The approach is shown to be able to type, subtype, and determine the lineage of human influenza virus strains through the detection of one or more signature peptide ions in the mass spectrum of whole virus digests. Pandemic strains can be similarly distinguished from seasonal ones, and new computer algorithms have been written to allow reassorted strains that pose the greatest pandemic risk to be rapidly identified from such datasets. The broader application of the approach is further demonstrated here for the parainfluenza virus, a virus which can be life threatening to children and presents similar clinical symptoms to influenza.

  5. Construction and characterisation of a recombinant fowlpox virus that expresses the human papilloma virus L1 protein

    Directory of Open Access Journals (Sweden)

    Zanotto Carlo

    2011-11-01

    Full Text Available Abstract Background Human papilloma virus (HPV-16 is the most prevalent high-risk mucosal genotype. Virus-like-particle (VLP-based immunogens developed recently have proven to be successful as prophylactic HPV vaccines, but are still too expensive for developing countries. Although vaccinia viruses expressing the HPV-16 L1 protein (HPV-L1 have been studied, fowlpox-based recombinants represent efficient and safer vectors for immunocompromised hosts due to their ability to elicit a complete immune response and their natural host-range restriction to avian species. Methods A new fowlpox virus recombinant encoding HPV-L1 (FPL1 was engineered and evaluated for the correct expression of HPV-L1 in vitro, using RT-PCR, immunoprecipitation, Western blotting, electron microscopy, immunofluorescence, and real-time PCR assays. Results The FPL1 recombinant correctly expresses HPV-L1 in mammalian cells, which are non-permissive for the replication of this vector. Conclusion This FPL1 recombinant represents an appropriate immunogen for expression of HPV-L1 in human cells. The final aim is to develop a safe, immunogenic, and less expensive prophylactic vaccine against HPV.

  6. MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells

    NARCIS (Netherlands)

    Saeland, E.; Jong, de M.A.W.P.; Nabatov, A.; Kalay, H.; Kooijk, van Y.; Geijtenbeek, T.B.H.

    2009-01-01

    Mother-to-child transmission of human immunodeficiency virus-1 (HIV-1) occurs frequently via breast-feeding. HIV-1 targets DC-SIGN+ dendritic cells (DCs) in mucosal areas that allow efficient transmission of the virus to T cells. Here, we demonstrate that the epithelial mucin MUC1, abundant in milk,

  7. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  8. Human Immunodeficiency Virus Type 1-Hepatitis C Virus Coinfection: Intraindividual Comparison of Cellular Immune Responses against Two Persistent Viruses

    OpenAIRE

    Lauer, Georg M.; Nguyen, Tam N.; Day, Cheryl L.; Robbins, Gregory K.; Flynn, Theresa; McGowan, Katherine; Rosenberg, Eric S.; Lucas, Michaela; Klenerman, Paul; Chung, Raymond T.; Walker, Bruce D.

    2002-01-01

    Both human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) lead to chronic infection in a high percentage of persons, and an expanding epidemic of HIV-1-HCV coinfection has recently been identified. These individuals provide an opportunity for simultaneous assessment of immune responses to two viral infections associated with chronic plasma viremia. In this study we analyzed the breadth and magnitude of the CD8+- and CD4+-T-lymphocyte responses in 22 individuals infected wit...

  9. Clinical and epidemiological characteristics of acute respiratory virus infections in Vietnamese children.

    Science.gov (United States)

    Tran, D N; Trinh, Q D; Pham, N T K; Vu, M P; Ha, M T; Nguyen, T Q N; Okitsu, S; Hayakawa, S; Mizuguchi, M; Ushijima, H

    2016-02-01

    Information about viral acute respiratory infections (ARIs) is essential for prevention, diagnosis and treatment, but it is limited in tropical developing countries. This study described the clinical and epidemiological characteristics of ARIs in children hospitalized in Vietnam. Nasopharyngeal samples were collected from children with ARIs at Ho Chi Minh City Children's Hospital 2 between April 2010 and May 2011 in order to detect respiratory viruses by polymerase chain reaction. Viruses were found in 64% of 1082 patients, with 12% being co-infections. The leading detected viruses were human rhinovirus (HRV; 30%), respiratory syncytial virus (RSV; 23·8%), and human bocavirus (HBoV; 7·2%). HRV was detected all year round, while RSV epidemics occurred mainly in the rainy season. Influenza A (FluA) was found in both seasons. The other viruses were predominant in the dry season. HRV was identified in children of all age groups. RSV, parainfluenza virus (PIV) 1, PIV3 and HBoV, and FluA were detected predominantly in children aged 24 months, respectively. Significant associations were found between PIV1 with croup (P < 0·005) and RSV with bronchiolitis (P < 0·005). HBoV and HRV were associated with hypoxia (P < 0·05) and RSV with retraction (P < 0·05). HRV, RSV, and HBoV were detected most frequently and they may increase the severity of ARIs in children.

  10. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  11. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity

    DEFF Research Database (Denmark)

    Chen, Li-Mei; Blixt, Klas Ola; Stevens, James

    2012-01-01

    Acquisition of a2-6 sialoside receptor specificity by a2-3 specific highly-pathogenic avian influenza viruses (H5N1) is thought to be a prerequisite for efficient transmission in humans. By in vitro selection for binding a2-6 sialosides, we identified four variant viruses with amino acid....... Unlike the wild type H5N1, this mutant virus was transmitted by direct contact in the ferret model although not by airborne respiratory droplets. However, a reassortant virus with the mutant hemagglutinin, a human N2 neuraminidase and internal genes from an H5N1 virus was partially transmitted via...... respiratory droplets. The complex changes required for airborne transmissibility in ferrets suggest that extensive evolution is needed for H5N1 transmissibility in humans....

  12. SURVEILLANCE FOR ANTIBODIES AGAINST SIX CANINE VIRUSES IN WILD RACCOONS (PROCYON LOTOR) IN JAPAN.

    Science.gov (United States)

    Aoki, Emiko; Soma, Takehisa; Yokoyama, Mayumi; Matsubayashi, Makoto; Sasai, Kazumi

    2017-10-01

    Raccoons (Procyon lotor) are found worldwide. They are frequently seen in crowded inner cities as well as in forests or wooded areas, often living in proximity to humans and their pets. We examined sera from 100 wild raccoons in Japan for antibodies to six canine viruses with veterinary significance to assess their potential as reservoirs. We also aimed to understand the distribution of potentially infected wildlife. We found that 7% of samples were seropositive for canine distemper virus (CDV), 10% for canine parvovirus type 2, 2% for canine adenovirus type 1, 6% for canine adenovirus type 2, and 7% for canine coronavirus. No samples were found to be seropositive for canine parainfluenza virus. Seropositivity rates for canine distemper virus and canine parvovirus type 2 were significantly different between areas, and younger raccoons (Canis lupus familiaris), our results suggest that they can act as reservoirs for some of these important canine viruses and might be involved in viral transmission. Further study should include isolation and analysis of canine viruses in wild raccoons from a wider area.

  13. Adenovirus 2, Bordetella bronchiseptica, and Parainfluenza Molecular Diagnostic Assay Results in Puppies After vaccination with Modified Live Vaccines.

    Science.gov (United States)

    Ruch-Gallie, R; Moroff, S; Lappin, M R

    2016-01-01

    Canine adenovirus 2, parainfluenza, and Bordetella bronchiseptica cause respiratory disease in dogs, and each has a modified live intranasal vaccine available. Molecular diagnostic assays to amplify specific nucleic acids are available for each of these agents. If positive molecular diagnostic assay results are common after vaccination, the positive predictive value of the diagnostic assays for disease would be decreased. To determine the impact of administration of commercially available modified live topical adenovirus 2, B. bronchiseptica, and parainfluenza vaccine has on the results of a commercially available PCR panel. Eight puppies from a research breeding facility negative for these pathogens. Blinded prospective pilot study. Puppies were vaccinated with a single dose of modified live topical adenovirus 2, B. bronchiseptica, and parainfluenza and parenteral dose of adenovirus 2, canine distemper virus, and parvovirus. Nasal and pharyngeal swabs were collected on multiple days and submitted for PCR assay. Nucleic acids of all 3 organisms contained in the topical vaccine were detected from both samples multiple times through 28 days after vaccination with higher numbers of positive samples detected between days 3 and 10 after vaccination. Vaccine status should be considered when interpreting respiratory agent PCR results if modified live vaccines have been used. Development of quantitative PCR and wild-type sequencing are necessary to improve positive predictive value of these assays by distinguishing vaccinate from natural infection. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Reproduction and fertility in human immunodeficiency virus type-1 infection

    NARCIS (Netherlands)

    van Leeuwen, E.; Prins, J. M.; Jurriaans, S.; Boer, K.; Reiss, P.; Repping, S.; van der Veen, F.

    2007-01-01

    Human immunodeficiency virus type-1 (HIV-1) affects mostly men and women in their reproductive years. For those who have access to highly active antiretroviral therapy (HAART), the course of HIV-1 infection has shifted from a lethal to a chronic disease. As a result of this, many patients with HIV-1

  15. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  16. Evaluation of a multiplex real-time PCR assay for the detection of respiratory viruses in clinical specimens.

    Science.gov (United States)

    Rheem, Insoo; Park, Joowon; Kim, Tae-Hyun; Kim, Jong Wan

    2012-11-01

    In this study, we evaluated the analytical performance and clinical potential of a one-step multiplex real-time PCR assay for the simultaneous detection of 14 types of respiratory viruses using the AdvanSure RV real-time PCR Kit (LG Life Sciences, Korea). Three hundred and twenty clinical specimens were tested with the AdvanSure RV real-time PCR Kit and conventional multiplex reverse transcription (RT)-PCR assay. The assay results were analyzed and the one-step AdvanSure RV real-time PCR Kit was compared with the conventional multiplex RT-PCR assay with respect to the sensitivity and specificity of the detection of respiratory viruses. The limit of detection (LOD) was 1.31 plaque-forming units (PFU)/mL for human rhinoviruses (hRVs), 4.93 PFU/mL for human coronavirus HCoV-229E/NL63, 2.67 PFU/mL for human coronavirus HCoV-OC43, 18.20 PFU/mL for parainfluenza virus 1 (PIV)-1, 24.57 PFU/mL for PIV-2, 1.73 PFU/mL for PIV-3, 1.79 PFU/mL for influenza virus group (Flu) A, 59.51 PFU/mL for FluB, 5.46 PFU/mL for human respiratory syncytial virus (hRSV)-A, 17.23 PFU/mL for hRSV-B, 9.99 PFU/mL for human adenovirus (ADVs). The cross-reactivity test for this assay against 23 types of non-respiratory viruses showed negative results for all viruses tested. The agreement between the one-step AdvanSure multiplex real-time PCR assay and the conventional multiplex RT-PCR assay was 98%. The one-step AdvanSure RV multiplex real-time PCR assay is a simple assay with high potential for specific, rapid and sensitive laboratory diagnosis of respiratory viruses compared to conventional multiplex RT-PCR.

  17. Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa.

    Science.gov (United States)

    Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm; Knebel-Mörsdorf, Dagmar

    2017-11-15

    Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo , we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of

  18. Longitudinal study of acute respiratory diseases in Rio de Janeiro: occurrence of respiratory viruses during four consecutive years Estudo longitudinal sobre doença repiratória aguda no Rio de Janeiro: ocorrência de vírus respiratório durante quatro anos consecutivos

    Directory of Open Access Journals (Sweden)

    Jussara P. Nascimento

    1991-08-01

    Full Text Available The occurrence of different viruses in nasopharyngeal secretions from children less than 5 years old with acute respiratory infections (ARI was investigated over a period of 4 years (1982-1985 in Rio de Janeiro. Of the viruses known to be associated with ARI, all but influenza C and parainfluenza types 1, 2 and 4 were found. Viruses were found more frequently in children attending emergency or pediatric wards than in outpatients. This was clearly related to the high incidence of respiratory syncytial virus (RSV in the more severe cases of ARI. RSV positive specimens appeared mainly during the fall, over four consecutive years, showing a clear seasonal ocurrence of this virus. Emergency wards provide the best source of data for RSV surveillance, showing sharp increase in the number of positive cases coinciding with increased incidence of ARI cases. Adenovirus were the second most frequent viruses isolated and among these serotypes 1,2 and 7 were predominant. Influenza virus and parainfluenza virus type 3 were next in frequency. Influenza A virus were isolated with equal frequency in outpatient departments, emergency and pediatric wards. Influenza B was more frequent among outpatients. Parainfluenza type 3 caused outbreaks in the shanty town population annually during the late winter or spring and were isolated mainly from outpatients. Herpesvirus, enterovi-rus and rhinovirus were found less frequently. Other viruses than RSV and parainfluenza type 3 did not show a clear seasonal incidence.Investigamos, durante um período de 4 anos (1982 a 1985, a ocorrência de vírus em secreções de nasofaringe coletadas de crianças com menos de 5 anos de idade apresentando quadro clínico de infecção respiratória aguda (IRA, residentes na cidade do Rio de Janeiro. Foram encontrados todos os vírus conhecidos como associados a IRA, com excessão do vírus influenza C e parainfluenza 1, 2 e 4. Vírus foram isolados mais freqüentemente de crian

  19. Immunological responses against human papilloma virus and human papilloma virus induced laryngeal cancer.

    Science.gov (United States)

    Chitose, Shun-ichi; Sakazaki, T; Ono, T; Kurita, T; Mihashi, H; Nakashima, T

    2010-06-01

    This study aimed to clarify the local immune status in the larynx in the presence of infection or carcinogenesis associated with human papilloma virus. Cytological samples (for human papilloma virus detection) and laryngeal secretions (for immunoglobulin assessment) were obtained from 31 patients with laryngeal disease, during microscopic laryngeal surgery. On histological examination, 12 patients had squamous cell carcinoma, four had laryngeal papilloma and 15 had other benign laryngeal disease. Cytological samples were tested for human papilloma virus DNA using the Hybrid Capture 2 assay. High risk human papilloma virus DNA was detected in 25 per cent of patients (three of 12) with laryngeal cancer. Low risk human papilloma virus DNA was detected only in three laryngeal papilloma patients. The mean laryngeal secretion concentrations of immunoglobulins M, G and A and secretory immunoglobulin A in human papilloma virus DNA positive patients were more than twice those in human papilloma virus DNA negative patients. A statistically significant difference was observed between the secretory immunoglobulin A concentrations in the two groups. Patients with laryngeal cancer had higher laryngeal secretion concentrations of each immunoglobulin type, compared with patients with benign laryngeal disease. The study assessed the mean laryngeal secretion concentrations of each immunoglobulin type in the 12 laryngeal cancer patients, comparing human papilloma virus DNA positive patients (n = 3) and human papilloma virus DNA negative patients (n = 9); the mean concentrations of immunoglobulins M, G and A and secretory immunoglobulin A tended to be greater in human papilloma virus DNA positive cancer patients, compared with human papilloma virus DNA negative cancer patients. These results suggest that the local laryngeal immune response is activated by infection or carcinogenesis due to human papilloma virus. The findings strongly suggest that secretory IgA has inhibitory activity

  20. Founder virus population related to route of virus transmission: a determinant of intrahost human immunodeficiency virus type 1 evolution?

    NARCIS (Netherlands)

    Lukashov, V. V.; Goudsmit, J.

    1997-01-01

    We and others have shown that in individual human immunodeficiency virus type 1 (HIV-1) infection, the adaptive evolution of HIV-1 is influenced by host immune competence. In this study, we tested the hypothesis that in addition to selective forces operating within the host, transmission bottlenecks

  1. Prevalence of human immunodeficiency virus, hepatitis C virus ...

    African Journals Online (AJOL)

    Background. Human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV) and syphilis remain major infections around the world. In Angola, about 166 000 individuals are living with HIV, representing a prevalence of 1.98% in adults between 15 and 49 years of age. In a 2003 study in Luanda, 4.5% ...

  2. Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase.

    Science.gov (United States)

    Rota, Paola; La Rocca, Paolo; Piccoli, Marco; Montefiori, Marco; Cirillo, Federica; Olsen, Lars; Orioli, Marica; Allevi, Pietro; Anastasia, Luigi

    2018-02-06

    Neuraminidase activity is essential for the infection and propagation of paramyxoviruses, including human parainfluenza viruses (hPIVs) and the Newcastle disease virus (NDV). Thus, many inhibitors have been developed based on the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid inhibitor (DANA) backbone. Along this line, herein we report a series of neuraminidase inhibitors, having C4 (p-toluenesulfonamido and azido substituents) and C5 (N-perfluorinated chains) modifications to the DANA backbone, resulting in compounds with 5- to 15-fold greater potency than the currently most active compound, the N-trifluoroacetyl derivative of DANA (FANA), toward the NDV hemagglutinin-neuraminidase (NDV-HN). Remarkably, these inhibitors were found to be essentially inactive against the human sialidase NEU3, which is present on the outer layer of the cell membrane and is highly affected by the current NDV inhibitor FANA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology

    Directory of Open Access Journals (Sweden)

    Jessica M Hogestyn

    2018-01-01

    Full Text Available Human herpesviruses (HVs have developed ingenious mechanisms that enable them to traverse the defenses of the central nervous system (CNS. The ability of HVs to enter a state of latency, a defining characteristic of this viral family, allows them to persist in the human host indefinitely. As such, HVs represent the most frequently detected pathogens in the brain. Under constant immune pressure, these infections are largely asymptomatic in healthy hosts. However, many neurotropic HVs have been directly connected with CNS pathology in the context of other stressors and genetic risk factors. In this review, we discuss the potential mechanisms by which neurotropic HVs contribute to neurodegenerative disease (NDD pathology by highlighting two prominent members of the HV family, herpes simplex virus 1 (HSV-1 and human herpesvirus 6 (HHV-6. We (i introduce the infectious pathways and replicative cycles of HSV-1 and HHV-6 and then (ii review the clinical evidence supporting associations between these viruses and the NDDs Alzheimer's disease (AD and multiple sclerosis (MS, respectively. We then (iii highlight and discuss potential mechanisms by which these viruses exert negative effects on neurons and glia. Finally, we (iv discuss how these viruses could interact with other disease-modifying factors to contribute to the initiation and/or progression of NDDs.

  4. Phenotype Variation in Human Immunodeficiency virus Type 1 Transmission and Disease Progression

    Directory of Open Access Journals (Sweden)

    Mariangela Cavarelli

    2009-01-01

    Full Text Available Human immunodeficiency virus type I (HIV-1 infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed.

  5. Phenotype variation in human immunodeficiency virus type 1 transmission and disease progression.

    Science.gov (United States)

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2009-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed.

  6. [Differences in oligomerization of nucleocapsid protein of epidemic human influenza A(H1N1), A(H1N2) and B viruses].

    Science.gov (United States)

    Prokudina, E N; Semenova, N P; Chumakov, V M; Burtseva, E I; Slepushkin, A N

    2003-01-01

    A comparative analysis of involving the nucleocapsid protein (NP) into shaping-up of SDS-resistant oligomers was carried out presently in circulating epidemic strains of human influenza, viruses A and B. The study results of viral isolates obtained from clinical samples and recent standard strains revealed that the involvement of NP in the SDS-resistant oligomers, which are different in various subtypes of influenza A viruses. According to this sign, the human viruses A(9H3N2) are close to the avian ones, in which, as proved by us previously, virtually the entire NP transforms itself into the oligomers resistant to SDS. About 10-20% of NP are involved in shaping-up the virus influenza A(H1N1) of SDS-resistant oligomers. No SDS-resistant NP-oligomers were detected in influenza of type B. It is suggested that the prevalence of human viruses A(H3N2) in NP-oligomers are the peculiarities of NP structure and of the presence of the PB1 protein from avian influenza virus.

  7. Modulation of TIP60 by Human Papilloma Virus in Breast Cancer

    Science.gov (United States)

    2013-04-01

    1 AG________ Award Number: W81XWH-11-1-0687 Title Modulation of TIP60 by Human Papilloma Virus in Breast Cancer... Human Papilloma Virus in Breast Cancer 5b. GRANT NUMBER 1 H 11 1 06 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Betty Diamond 5d. PROJECT...virus (EBV), Hepatitis B Virus (HBV), Hepatitis C virus (HCV), Human Papilloma virus (HPV), Human T-cell lymphotropic virus (HTLV-1) and Kaposi’s

  8. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Yasuha Arai

    2016-04-01

    Full Text Available A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation.

  9. Molecular characterization of pandemic H1N1 influenza viruses isolated from turkeys and pathogenicity of a human pH1N1 isolate in turkeys.

    Science.gov (United States)

    Berhane, Yohannes; Ojkic, Davor; Neufeld, James; Leith, Marsha; Hisanaga, Tamiko; Kehler, Helen; Ferencz, Arpad; Wojcinski, Helen; Cottam-Birt, Colleen; Suderman, Matthew; Handel, Katherine; Alexandersen, Soren; Pasick, John

    2010-12-01

    Suspected human-to-animal transmission of the 2009 pandemic H1N1 (pH1N1) virus has been reported in several animal species, including pigs, dogs, cats, ferrets, and turkeys. In this study we describe the genetic characterization of pH1N1 viruses isolated from breeder turkeys that was associated with a progressive drop in egg production. Sequence analysis of all eight gene segments from three viruses isolated from this outbreak demonstrated homology with other human and swine pH1N1 isolates. The susceptibility of turkeys to a human pH1N1 isolate was further evaluated experimentally. The 50% turkey infectious dose (TID50) for the human isolate A/Mexico/LnDRE/4487/2009 was determined by inoculating groups of 8-10-week-old turkeys with serial 10-fold dilutions of virus by oronasal and cloacal routes. We estimated the TID50 to be between 1 x 10(5) and 1 x 10(6) TCID50. The pathogenesis of pH1N1 in oronasally or cloacally inoculated juvenile turkeys was also examined. None of the turkeys exhibited clinical signs, and no significant difference in virus shedding or seroconversion was observed between the two inoculation groups. More than 50% of the turkeys in both oronasal and cloacal groups shed virus beginning at 2 days postinoculation (dpi). All birds that actively shed virus seroconverted by 14 dpi. Virus antigen was demonstrated by immunohistochemistry in the cecal tonsils and bursa of Fabricius in two of the birds that were infected by the cloacal route. Virus transmission to naive contact turkeys was at best doubtful. This report provides additional evidence that pH1N1 can cross the species barrier and cause disease outbreaks in domestic turkeys. However, it appears that the reproductive status of the host as well as environmental factors such as concurrent infections, stress, the presence or absence of litter, and stocking density may also contribute to efficient infection and transmission of this agent.

  10. Enhanced replication of herpes simplex virus type 1 in human cells

    International Nuclear Information System (INIS)

    Miller, C.S.; Smith, K.O.

    1991-01-01

    The effects of DNA-damaging agents on the replication of herpes simplex virus type 1 (HSV-1) were assessed in vitro. Monolayers of human lung fibroblast cell lines were exposed to DNA-damaging agents (methyl methanesulfonate [MMS], methyl methanethiosulfonate [MMTS], ultraviolet light [UV], or gamma radiation [GR]) at specific intervals, before or after inoculation with low levels of HSV-1. The ability of cell monolayers to support HSV-1 replication was measured by direct plaque assay and was compared with that of untreated control samples. In this system, monolayers of different cell lines infected with identical HSV-1 strains demonstrated dissimilar levels of recovery of the infectious virus. Exposure of DNA-repair-competent cell cultures to DNA-damaging agents produced time-dependent enhanced virus replication. Treatment with agent before virus inoculation significantly (p less than 0.025) increased the number of plaques by 10 to 68%, compared with untreated control cultures, while treatment with agent after virus adsorption significantly increased (p less than 0.025) the number of plaques by 7 to 15%. In a parallel series of experiments, cells deficient in DNA repair (xeroderma pigmentosum) failed to support enhanced virus replication. These results suggest that after exposure to DNA-damaging agents, fibroblasts competent in DNA repair amplify the replication of HSV-1, and that DNA-repair mechanisms that act on a variety of chromosomal lesions may be involved in the repair and biological activation of HSV-1 genomes

  11. Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees

    NARCIS (Netherlands)

    Goudsmit, J.; Debouck, C.; Meloen, R. H.; Smit, L.; Bakker, M.; Asher, D. M.; Wolff, A. V.; Gibbs, C. J.; Gajdusek, D. C.

    1988-01-01

    Chimpanzees are susceptible to infection by divergent strains of human immunodeficiency virus type 1 (HIV-1), none of which cause clinical or immunological abnormalities. Chimpanzees were inoculated with one of four strains of HIV-1: human T-lymphotropic virus (HTLV) type IIIB, lymphadenopathy virus

  12. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    International Nuclear Information System (INIS)

    Pan, Yang; Sasaki, Tadahiro; Kubota-Koketsu, Ritsuko; Inoue, Yuji; Yasugi, Mayo; Yamashita, Akifumi; Ramadhany, Ririn; Arai, Yasuha; Du, Anariwa; Boonsathorn, Naphatsawan; Ibrahim, Madiha S.

    2014-01-01

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses

  13. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yang [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Sasaki, Tadahiro [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Kubota-Koketsu, Ritsuko [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Inoue, Yuji [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Yasugi, Mayo [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Yamashita, Akifumi; Ramadhany, Ririn; Arai, Yasuha [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Du, Anariwa [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Boonsathorn, Naphatsawan [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Ibrahim, Madiha S. [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhour University, Damanhour (Egypt); and others

    2014-07-18

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.

  14. Characterization of Chemokine Receptor Utilization of Viruses in the Latent Reservoir for Human Immunodeficiency Virus Type 1

    Science.gov (United States)

    Pierson, Theodore; Hoffman, Trevor L.; Blankson, Joel; Finzi, Diana; Chadwick, Karen; Margolick, Joseph B.; Buck, Christopher; Siliciano, Janet D.; Doms, Robert W.; Siliciano, Robert F.

    2000-01-01

    Latently infected resting CD4+ T cells provide a long-term reservoir for human immunodeficiency virus type 1 (HIV-1) and are likely to represent the major barrier to virus eradication in patients on combination antiretroviral therapy. The mechanisms by which viruses enter the latent reservoir and the nature of the chemokine receptors involved have not been determined. To evaluate the phenotype of the virus in this compartment with respect to chemokine receptor utilization, full-length HIV-1 env genes were cloned from latently infected cells and assayed functionally. We demonstrate that the majority of the viruses in the latent reservoir utilize CCR5 during entry, although utilization of several other receptors, including CXCR4, was observed. No alternative coreceptors were shown to be involved in a systematic fashion. Although R5 viruses are present in the latent reservoir, CCR5 was not expressed at high levels on resting CD4+ T cells. To understand the mechanism by which R5 viruses enter latent reservoir, the ability of an R5 virus, HIV-1 Ba-L, to infect highly purified resting CD4+ T lymphocytes from uninfected donors was evaluated. Entry of Ba-L could be observed when virus was applied at a multiplicity approaching 1. However, infection was limited to a subset of cells expressing low levels of CCR5 and markers of immunologic memory. Naive cells could not be infected by an R5 virus even when challenged with a large inoculum. Direct cell fractionation studies showed that latent virus is present predominantly in resting memory cells but also at lower levels in resting naive cells. Taken together, these findings provide support for the hypothesis that the direct infection of naive T cells is not the major mechanism by which the latent infection of resting T cells is established. PMID:10933689

  15. [A case of pulmonary abscess in which Haemophilus parainfluenzae and Streptococcus intermedius were isolated by percutaneous needle aspiration].

    Science.gov (United States)

    Miyamoto, Atsushi; Tsuboi, Eiyasu; Takaya, Hisashi; Sugino, Keishi; Sakamoto, Susumu; Kawabata, Masateru; Kishi, Kazuma; Narui, Koji; Homma, Sakae; Nakatani, Tatsuo; Nakata, Koichiro; Yoshimura, Kunihiko

    2006-08-01

    Some microbes, including the Bacteroides species, Staphylococcus aureus and Streptococcus milleri groups, can cause pulmonary abscess. Haemophilus parainfluenzae is usually categorized as one of the normal flora which colonizes in the ears and the nasopharynx, and it has been long considered that H. parainfluenzae has little pathogenicity in the lower respiratory tract and lung parenchymal. In this report, we present a case of pulmonary abscess caused by both H. parainfluenzae and Streptococcus intermedius. The patient was a 75-year-old man who had had total esophageo-gastrectomy because of esophageal cancer. He presented with purulent sputum, and chest X-ray film showed a dense consolidation in the right upper lung field. CT-guided transcutaneous fine needle aspiration was performed as a diagnostic procedure. Since both H. parainfluenzae and S. intermedius had been isolated from the lesion, pulmonary abscess caused by these two pathogens was diagnosed. The patient was treated with panipenem/betamipron, and his symptoms and pulmonary infiltrates on the chest X-ray film improved thereafter. So far, very few cases have been reported in which H. parainfluenzae caused lower respiratory tract infection. Although S. intermedius is known as one of the pathogens of pulmonary abscess, it is possible that H. parainfluenzae could also be pathogenic in infectious diseases of the lung.

  16. Highly Pathogenic Avian Influenza A(H5N1) Viruses at the Animal-Human Interface in Vietnam, 2003-2010.

    Science.gov (United States)

    Creanga, Adrian; Hang, Nguyen Le Khanh; Cuong, Vuong Duc; Nguyen, Ha T; Phuong, Hoang Vu Mai; Thanh, Le Thi; Thach, Nguyen Co; Hien, Pham Thi; Tung, Nguyen; Jang, Yunho; Balish, Amanda; Dang, Nguyen Hoang; Duong, Mai Thuy; Huong, Ngo Thu; Hoa, Do Ngoc; Tho, Nguyen Dang; Klimov, Alexander; Kapella, Bryan K; Gubareva, Larisa; Kile, James C; Hien, Nguyen Tran; Mai, Le Quynh; Davis, C Todd

    2017-09-15

    Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Bile salt-stimulated lipase from human milk binds DC-SIGN and inhibits human immunodeficiency virus type 1 transfer to CD4+ T cells

    NARCIS (Netherlands)

    Naarding, Marloes A.; Dirac, Annette M.; Ludwig, Irene S.; Speijer, Dave; Lindquist, Susanne; Vestman, Eva-Lotta; Stax, Martijn J.; Geijtenbeek, Teunis B. H.; Pollakis, Georgios; Hernell, Olle; Paxton, William A.

    2006-01-01

    A wide range of pathogens, including human immunodeficiency virus type 1 (HIV-1), hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, Mycobacterium, Leishmania, and Helicobacter pylori, can interact with dendritic cell (DC)-specific ICAM3-grabbing nonintegrin (DC-SIGN), expressed on DCs

  18. Genetic makeup of amantadine-resistant and oseltamivir-resistant human influenza A/H1N1 viruses.

    Science.gov (United States)

    Zaraket, Hassan; Saito, Reiko; Suzuki, Yasushi; Baranovich, Tatiana; Dapat, Clyde; Caperig-Dapat, Isolde; Suzuki, Hiroshi

    2010-04-01

    The emergence and widespread occurrence of antiviral drug-resistant seasonal human influenza A viruses, especially oseltamivir-resistant A/H1N1 virus, are major concerns. To understand the genetic background of antiviral drug-resistant A/H1N1 viruses, we performed full genome sequencing of prepandemic A/H1N1 strains. Seasonal influenza A/H1N1 viruses, including antiviral-susceptible viruses, amantadine-resistant viruses, and oseltamivir-resistant viruses, obtained from several areas in Japan during the 2007-2008 and 2008-2009 influenza seasons were analyzed. Sequencing of the full genomes of these viruses was performed, and the phylogenetic relationships among the sequences of each individual genome segment were inferred. Reference genome sequences from the Influenza Virus Resource database were included to determine the closest ancestor for each segment. Phylogenetic analysis revealed that the oseltamivir-resistant strain evolved from a reassortant oseltamivir-susceptible strain (clade 2B) which circulated in the 2007-2008 season by acquiring the H275Y resistance-conferring mutation in the NA gene. The oseltamivir-resistant lineage (corresponding to the Northern European resistant lineage) represented 100% of the H1N1 isolates from the 2008-2009 season and further acquired at least one mutation in each of the polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), hemagglutinin (HA), and neuraminidase (NA) genes. Therefore, a reassortment event involving two distinct oseltamivir-susceptible lineages, followed by the H275Y substitution in the NA gene and other mutations elsewhere in the genome, contributed to the emergence of the oseltamivir-resistant lineage. In contrast, amantadine-resistant viruses from the 2007-2008 season distinctly clustered in clade 2C and were characterized by extensive amino acid substitutions across their genomes, suggesting that a fitness gap among its genetic components might have driven these mutations to maintain it in the

  19. Epidemiological studies on viral infections and co-infections : Human immunodeficiency virus, hepatitis C virus and human papillomavirus

    NARCIS (Netherlands)

    van Santen, D.K.

    2018-01-01

    The research described in this thesis aimed to increase our understanding of the incidence, disease progression and treatment of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and human papillomavirus (HPV) infections and co-infections in key populations. Chapter 1 contains an overview

  20. Natural HIV-1 NEF accelerates virus replication in primary human lymphocytes

    NARCIS (Netherlands)

    de Ronde, A.; Klaver, B.; Keulen, W.; Smit, L.; Goudsmit, J.

    1992-01-01

    HIV-1 NEF genes were isolated directly from peripheral blood lymphocyte DNA of two HIV-1-infected individuals and cloned into an HXB-2-infectious molecular clone. The effect of NEF on virus production in T-cell lines and primary human lymphocytes was studied. Naturally occurring NEF accelerates

  1. 78 FR 29755 - Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus...

    Science.gov (United States)

    2013-05-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0473] Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus Cure... an opportunity for public comment on human immunodeficiency virus (HIV) Patient-Focused Drug...

  2. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    Science.gov (United States)

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  3. 78 FR 46969 - Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus...

    Science.gov (United States)

    2013-08-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0473] Human Immunodeficiency Virus Patient-Focused Drug Development and Human Immunodeficiency Virus Cure... for the notice of public meeting entitled ``Human Immunodeficiency Virus (HIV) Patient-Focused Drug...

  4. Studies on the antibody response of mice and humans after immunization with potential influenza virus A (H1N1) vaccines

    International Nuclear Information System (INIS)

    Poumbourios, P.; Jackson, D.C.; Oxford, J.S.

    1993-01-01

    The antibody response of mice and adult humans to immunization with subunit vaccines derived from a pair of antigenically distinct influenza A H1N1 viruses isolate in eggs was investigated. Although the haemagglutinin molecule of each virus differed by only three amino acid residues, highly specific antibody responses were elicited in mice as determined by haemagglutination inhibition and radioimmunoprecipitation assays. Results from competitive radioimmunoassays using monoclonal antibodies of known specificity and a study of the reactivity of mouse antisera with H1N1 field strains indicated that the marked differences in the antibody responses to the two vaccines was due to an amino acid substitution in the distal tip of the haemagglutinin molecule. In contrast, cross reactive antibody responses were elicited in humans presumably due to exposure to viruses related to the candidate vaccine prior to vaccination. Although immunogenic differences are apparent in this pair of antigenically distinct viruses in naive laboratory animals, these differences are not apparent following vaccination of humans that had prior exposure to related viruses. 21 refs., 5 tabs., 4 figs

  5. Haemophilus parainfluenzae Mural Endocarditis: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Luca T. Giurgea

    2016-01-01

    Full Text Available Haemophilus parainfluenzae, which uncommonly causes endocarditis, has never been documented to cause mural involvement. A 62-year-old immunocompetent female without predisposing risk factors for endocarditis except for poor dentition presented with fever, emesis, and dysmetria. Echocardiography found a mass attached to the left ventricular wall with finger-like projections. Computed tomography showed evidence of embolic phenomena to the brain, kidneys, spleen, and colon. Cardiac MRI revealed involvement of the chordae tendineae of the anterior papillary muscles. Blood cultures grew Haemophilus parainfluenzae. The patient was treated successfully with ceftriaxone with resolution of symptoms, including neurologic deficits. After eleven days of antibiotics a worsening holosystolic murmur was discovered. Worsening mitral regurgitation on echocardiography was only found three weeks later. Nine weeks after presentation, intraoperative evaluation revealed chord rupture but no residual vegetation and mitral repair was performed. Four weeks after surgery, the patient was back to her baseline. This case illustrates the ability of Haemophilus parainfluenzae to form large mural vegetations with high propensity of embolization in otherwise normal cardiac tissue among patients with dental risk factors. It also underscores the importance of physical examination in establishing a diagnosis of endocarditis and monitoring for progression of disease.

  6. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses

    Science.gov (United States)

    Hendricks, Gabriel L.; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C.; Viswanathan, Karthik; Albers, Leila; Comolli, James C.; Shriver, Zachary; Knipe, David M.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Trevejo, Jose M.

    2016-01-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as ‘molecular sinks’ and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. PMID:25637710

  7. Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates.

    Science.gov (United States)

    Saunders, Kevin O; Santra, Sampa; Parks, Robert; Yates, Nicole L; Sutherland, Laura L; Scearce, Richard M; Balachandran, Harikrishnan; Bradley, Todd; Goodman, Derrick; Eaton, Amanda; Stanfield-Oakley, Sherry A; Tartaglia, James; Phogat, Sanjay; Pantaleo, Giuseppe; Esteban, Mariano; Gomez, Carmen E; Perdiguero, Beatriz; Jacobs, Bertram; Kibler, Karen; Korber, Bette; Montefiori, David C; Ferrari, Guido; Vandergrift, Nathan; Liao, Hua-Xin; Tomaras, Georgia D; Haynes, Barton F

    2018-04-15

    A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge. IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model. Copyright © 2018 American Society for Microbiology.

  8. Validation of statistical models for estimating hospitalization associated with influenza and other respiratory viruses.

    Directory of Open Access Journals (Sweden)

    Lin Yang

    Full Text Available BACKGROUND: Reliable estimates of disease burden associated with respiratory viruses are keys to deployment of preventive strategies such as vaccination and resource allocation. Such estimates are particularly needed in tropical and subtropical regions where some methods commonly used in temperate regions are not applicable. While a number of alternative approaches to assess the influenza associated disease burden have been recently reported, none of these models have been validated with virologically confirmed data. Even fewer methods have been developed for other common respiratory viruses such as respiratory syncytial virus (RSV, parainfluenza and adenovirus. METHODS AND FINDINGS: We had recently conducted a prospective population-based study of virologically confirmed hospitalization for acute respiratory illnesses in persons <18 years residing in Hong Kong Island. Here we used this dataset to validate two commonly used models for estimation of influenza disease burden, namely the rate difference model and Poisson regression model, and also explored the applicability of these models to estimate the disease burden of other respiratory viruses. The Poisson regression models with different link functions all yielded estimates well correlated with the virologically confirmed influenza associated hospitalization, especially in children older than two years. The disease burden estimates for RSV, parainfluenza and adenovirus were less reliable with wide confidence intervals. The rate difference model was not applicable to RSV, parainfluenza and adenovirus and grossly underestimated the true burden of influenza associated hospitalization. CONCLUSION: The Poisson regression model generally produced satisfactory estimates in calculating the disease burden of respiratory viruses in a subtropical region such as Hong Kong.

  9. Para influenza virus 3 infection in cattle and small ruminants in Sudan

    Directory of Open Access Journals (Sweden)

    Intisar Kamil Saeed

    2016-09-01

    Results: Positive results were found in 29 (12.8% cattle, 31 (9.8% sheep and 11 (47.8% goat samples. All the studied areas showed positive results. Highest prevalence (66.7% was detected in the sheep and goats in Khartoum, followed by in goats in Nyala (33.3% at western Sudan. Sequence analyses of PIV3 of different regions of Sudan indicated that these were similar in sequence and length. The BLAST analysis indicated that the test sequences were closely related to the available annotated sequences at the GenBank. All these sequences matched with Bovine parainfluenza virus 3 except two those were matching with Swine parainfluenza virus 3. Conclusion: The results prove the existence of PIV3 infection in cattle, sheep and goats in the studied areas in Sudan and suggest its possible role in the respiratory infections. Genetic analysis indicate that the virus is mostly similar with bovine PIV3. [J Adv Vet Anim Res 2016; 3(3.000: 236-241

  10. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R., E-mail: grw7@cornell.edu

    2014-07-25

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.

  11. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    International Nuclear Information System (INIS)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R.

    2014-01-01

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza

  12. Analysis of Select Herpes Simplex Virus 1 (HSV-1) Proteins for Restriction of Human Immunodeficiency Virus Type 1 (HIV-1): HSV-1 gM Protein Potently Restricts HIV-1 by Preventing Intracellular Transport and Processing of Env gp160.

    Science.gov (United States)

    Polpitiya Arachchige, Sachith; Henke, Wyatt; Pramanik, Ankita; Kalamvoki, Maria; Stephens, Edward B

    2018-01-15

    Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways. IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4 + T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell. Copyright © 2018 American Society for Microbiology.

  13. Canine adenovirus type 1 in a fennec fox (Vulpes zerda).

    Science.gov (United States)

    Choi, Jeong-Won; Lee, Hyun-Kyoung; Kim, Seong-Hee; Kim, Yeon-Hee; Lee, Kyoung-Ki; Lee, Myoung-Heon; Oem, Jae-Ku

    2014-12-01

    A 10-mo-old female fennec fox (Vulpes zerda) with drooling suddenly died and was examined postmortem. Histologic examination of different tissue samples was performed. Vacuolar degeneration and diffuse fatty change were observed in the liver. Several diagnostic methods were used to screen for canine parvovirus, canine distemper virus, canine influenza virus, canine coronavirus, canine parainfluenza virus, and canine adenovirus (CAdV). Only CAdV type 1 (CAdV-1) was detected in several organs (liver, lung, brain, kidney, spleen, and heart), and other viruses were not found. CAdV-1 was confirmed by virus isolation and nucleotide sequencing.

  14. Respiratory virus laboratory pandemic planning and surveillance in central Viet Nam, 2008-2010.

    Science.gov (United States)

    Tran, Thomas; Chien, Bui Trong; Papadakis, Georgina; Druce, Julian; Birch, Chris; Chibo, Doris; An, Truong Phuoc; Trang, Le Thi Kim; Trieu, Nguyen Bao; Thuy, Doan Thi Thanh; Catton, Mike; Mai, Trinh Xuan

    2012-07-01

    Laboratory capacity is needed in central Viet Nam to provide early warning to public health authorities of respiratory outbreaks of importance to human health, for example the outbreak of influenza A(H1N1) pandemic in 2009. Polymerase chain reaction (PCR) procedures established as part of a capacity-building process were used to conduct prospective respiratory surveillance in a region where few previous studies have been undertaken. Between October 2008 and September 2010, nose and throat swabs from adults and children (approximately 20 per week) presenting with an acute respiratory illness to the Ninh Hoa General Hospital were collected. Same-day PCR testing and result reporting for 13 respiratory viruses were carried out by locally trained scientists. Of 2144 surveillance samples tested, 1235 (57.6%) were positive for at least one virus. The most common were influenza A strains (17.9%), with pandemic influenza A(H1N1) 2009 and seasonal H3N2 strain accounting for 52% and 43% of these, respectively. Other virus detections included: rhinovirus (12.4%), enterovirus (8.9%), influenza B (8.3%), adenovirus (5.3%), parainfluenza (4.7%), respiratory syncytial virus (RSV) (3.9%), human coronavirus (3.0%) and human metapneumovirus (0.3%). The detection rate was greatest in the 0-5 year age group. Viral co-infections were identified in 148 (6.9%) cases. The outbreak in 2009 of the influenza A(H1N1) pandemic strain provided a practical test of the laboratory's pandemic plan. This study shows that the availability of appropriate equipment and molecular-based testing can contribute to important individual and public health outcomes in geographical locations susceptible to emerging infections.

  15. Binding of human papilloma virus L1 virus-like particles to dendritic cells is mediated through heparan sulfates and induces immune activation

    NARCIS (Netherlands)

    de Witte, Lot; Zoughlami, Younes; Aengeneyndt, Birgit; David, Guido; van Kooyk, Yvette; Gissmann, Lutz; Geijtenbeek, Teunis B. H.

    2007-01-01

    Immunization using human papilloma virus (HPV)-L1 virus-like particles (VLPs) induces a robust and effective immune response, which has recently resulted in the implementation of the HPV-L1 VLP vaccination in health programs. However, during infection, HPV can escape immune surveillance leading to

  16. Transmission dynamics of pandemic influenza A(H1N1)pdm09 virus in humans and swine in backyard farms in Tumbes, Peru.

    Science.gov (United States)

    Tinoco, Yeny O; Montgomery, Joel M; Kasper, Mathew R; Nelson, Martha I; Razuri, Hugo; Guezala, Maria C; Azziz-Baumgartner, Eduardo; Widdowson, Marc-Alain; Barnes, John; Gilman, Robert H; Bausch, Daniel G; Gonzalez, Armando E

    2016-01-01

    We aimed to determine the frequency of pH1N1 transmission between humans and swine on backyard farms in Tumbes, Peru. Two-year serial cross-sectional study comprising four sampling periods: March 2009 (pre-pandemic), October 2009 (peak of the pandemic in Peru), April 2010 (1st post-pandemic period), and October 2011 (2nd post-pandemic period). Backyard swine serum, tracheal swabs, and lung sample were collected during each sampling period. We assessed current and past pH1N1 infection in swine through serological testing, virus culture, and RT-PCR and compared the results with human incidence data from a population-based active surveillance cohort study in Peru. Among 1303 swine sampled, the antibody prevalence to pH1N1 was 0% pre-pandemic, 8% at the peak of the human pandemic (October 2009), and 24% in April 2010 and 1% in October 2011 (post-pandemic sampling periods). Trends in swine seropositivity paralleled those seen in humans in Tumbes. The pH1N1 virus was isolated from three pigs during the peak of the pandemic. Phylogenetic analysis revealed that these viruses likely represent two separate human-to-swine transmission events in backyard farm settings. Our findings suggest that human-to-swine pH1N1 transmission occurred during the pandemic among backyard farms in Peru, emphasizing the importance of interspecies transmission in backyard pig populations. Continued surveillance for influenza viruses in backyard farms is warranted. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  17. Contact variables for exposure to avian influenza H5N1 virus at the human-animal interface.

    Science.gov (United States)

    Rabinowitz, P; Perdue, M; Mumford, E

    2010-06-01

    Although the highly pathogenic avian influenza H5N1 virus continues to cause infections in both avian and human populations, the specific zoonotic risk factors remain poorly understood. This review summarizes available evidence regarding types of contact associated with transmission of H5N1 virus at the human-animal interface. A systematic search of the published literature revealed five analytical studies and 15 case reports describing avian influenza transmission from animals to humans for further review. Risk factors identified in analytical studies were compared, and World Health Organization-confirmed cases, identified in case reports, were classified according to type of contact reported using a standardized algorithm. Although cases were primarily associated with direct contact with sick/unexpectedly dead birds, some cases reported only indirect contact with birds or contaminated environments or contact with apparently healthy birds. Specific types of contacts or activities leading to exposure could not be determined from data available in the publications reviewed. These results support previous reports that direct contact with sick birds is not the only means of human exposure to avian influenza H5N1 virus. To target public health measures and disease awareness messaging for reducing the risk of zoonotic infection with avian influenza H5N1 virus, the specific types of contacts and activities leading to transmission need to be further understood. The role of environmental virus persistence, shedding of virus by asymptomatic poultry and disease pathophysiology in different avian species relative to human zoonotic risk, as well as specific modes of zoonotic transmission, should be determined.

  18. Respiratory Viruses in Febrile Neutropenic Patients with Respiratory Symptoms

    Directory of Open Access Journals (Sweden)

    Mohsen Meidani

    2018-01-01

    Full Text Available Background: Respiratory infections are a frequent cause of fever in neutropenic patients, whereas respiratory viral infections are not frequently considered as a diagnosis, which causes high morbidity and mortality in these patients. Materials and Methods: This prospective study was performed on 36 patients with neutropenia who admitted to hospital were eligible for inclusion with fever (single temperature of >38.3°C or a sustained temperature of >38°C for more than 1 h, upper and lower respiratory symptoms. Sampling was performed from the throat of the patient by the sterile swab. All materials were analyzed by quantitative real-time multiplex polymerase chain reaction covering the following viruses; influenza, parainfluenza virus (PIV, rhinovirus (RV, human metapneumovirus, and respiratory syncytial virus (RSV. Results: RV was the most frequently detected virus and then RSV was the most. PIV was not present in any of the tested samples. Furthermore, no substantial differences in the distribution of specific viral species were observed based on age, sex, neutropenia duration, hematological disorder, and respiratory tract symptoms and signs (P > 0.05. Conclusion: Our prospective study supports the hypothesis that respiratory viruses play an important role in the development of neutropenic fever, and thus has the potential to individualize infection treatment and to reduce the extensive use of antibiotics in immunocompromised patients with neutropenia.

  19. Epidemiology of parainfluenza infection in England and Wales, 1998-2013: any evidence of change?

    Science.gov (United States)

    Zhao, H; Harris, R J; Ellis, J; Donati, M; Pebody, R G

    2017-04-01

    Human parainfluenza virus (HPIV) infections are one of the commonest causes of upper and lower respiratory tract infections. In order to determine if there have been any recent changes in HPIV epidemiology in England and Wales, laboratory surveillance data between 1998 and 2013 were analysed. The UK national laboratory surveillance database, LabBase, and the newly established laboratory-based virological surveillance system, the Respiratory DataMart System (RDMS), were used. Descriptive analysis was performed to examine the distribution of cases by year, age, sex and serotype, and to examine the overall temporal trend using the χ 2 test. A random-effects model was also employed to model the number of cases. Sixty-eight per cent of all HPIV detections were due to HPIV type 3 (HPIV-3). HPIV-3 infections were detected all year round but peaked annually between March and June. HPIV-1 and HPIV-2 circulated at lower levels accounting for 20% and 8%, respectively, peaking during the last quarter of the year with a biennial cycle. HPIV-4 was detected in smaller numbers, accounting for only 4% and also mainly observed in the last quarter of the year. However, in recent years, HPIV-4 detection has been reported much more commonly with an increase from 0% in 1998 to 3·7% in 2013. Although an overall higher proportion of HPIV infection was reported in infants (43·0%), a long-term decreasing trend in proportion in infants was observed. An increase was also observed in older age groups. Continuous surveillance will be important in tracking any future changes.

  20. Comparison of automated microarray detection with real-time PCR assays for detection of respiratory viruses in specimens obtained from children.

    Science.gov (United States)

    Raymond, Frédéric; Carbonneau, Julie; Boucher, Nancy; Robitaille, Lynda; Boisvert, Sébastien; Wu, Whei-Kuo; De Serres, Gaston; Boivin, Guy; Corbeil, Jacques

    2009-03-01

    Respiratory virus infections are a major health concern and represent the primary cause of testing consultation and hospitalization for young children. We developed and compared two assays that allow the detection of up to 23 different respiratory viruses that frequently infect children. The first method consisted of single TaqMan quantitative real-time PCR assays in a 96-well-plate format. The second consisted of a multiplex PCR followed by primer extension and microarray hybridization in an integrated molecular diagnostic device, the Infiniti analyzer. Both of our assays can detect adenoviruses of groups A, B, C, and E; coronaviruses HKU1, 229E, NL63, and OC43; enteroviruses A, B, C, and D; rhinoviruses of genotypes A and B; influenza viruses A and B; human metapneumoviruses (HMPV) A and B, human respiratory syncytial viruses (HRSV) A and B; and parainfluenza viruses of types 1, 2, and 3. These tests were used to identify viruses in 221 nasopharyngeal aspirates obtained from children hospitalized for respiratory tract infections. Respiratory viruses were detected with at least one of the two methods in 81.4% of the 221 specimens: 10.0% were positive for HRSV A, 38.0% for HRSV B, 13.1% for influenzavirus A, 8.6% for any coronaviruses, 13.1% for rhinoviruses or enteroviruses, 7.2% for adenoviruses, 4.1% for HMPV, and 1.5% for parainfluenzaviruses. Multiple viral infections were found in 13.1% of the specimens. The two methods yielded concordant results for 94.1% of specimens. These tests allowed a thorough etiological assessment of respiratory viruses infecting children in hospital settings and would assist public health interventions.

  1. Comparison of Automated Microarray Detection with Real-Time PCR Assays for Detection of Respiratory Viruses in Specimens Obtained from Children▿

    Science.gov (United States)

    Raymond, Frédéric; Carbonneau, Julie; Boucher, Nancy; Robitaille, Lynda; Boisvert, Sébastien; Wu, Whei-Kuo; De Serres, Gaston; Boivin, Guy; Corbeil, Jacques

    2009-01-01

    Respiratory virus infections are a major health concern and represent the primary cause of testing consultation and hospitalization for young children. We developed and compared two assays that allow the detection of up to 23 different respiratory viruses that frequently infect children. The first method consisted of single TaqMan quantitative real-time PCR assays in a 96-well-plate format. The second consisted of a multiplex PCR followed by primer extension and microarray hybridization in an integrated molecular diagnostic device, the Infiniti analyzer. Both of our assays can detect adenoviruses of groups A, B, C, and E; coronaviruses HKU1, 229E, NL63, and OC43; enteroviruses A, B, C, and D; rhinoviruses of genotypes A and B; influenza viruses A and B; human metapneumoviruses (HMPV) A and B, human respiratory syncytial viruses (HRSV) A and B; and parainfluenza viruses of types 1, 2, and 3. These tests were used to identify viruses in 221 nasopharyngeal aspirates obtained from children hospitalized for respiratory tract infections. Respiratory viruses were detected with at least one of the two methods in 81.4% of the 221 specimens: 10.0% were positive for HRSV A, 38.0% for HRSV B, 13.1% for influenzavirus A, 8.6% for any coronaviruses, 13.1% for rhinoviruses or enteroviruses, 7.2% for adenoviruses, 4.1% for HMPV, and 1.5% for parainfluenzaviruses. Multiple viral infections were found in 13.1% of the specimens. The two methods yielded concordant results for 94.1% of specimens. These tests allowed a thorough etiological assessment of respiratory viruses infecting children in hospital settings and would assist public health interventions. PMID:19158263

  2. Successful topical respiratory tract immunization of primates against Ebola virus.

    Science.gov (United States)

    Bukreyev, Alexander; Rollin, Pierre E; Tate, Mallory K; Yang, Lijuan; Zaki, Sherif R; Shieh, Wun-Ju; Murphy, Brian R; Collins, Peter L; Sanchez, Anthony

    2007-06-01

    Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.

  3. Infection of endothelial cells by common human viruses.

    Science.gov (United States)

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  4. Microarray multiplex assay for the simultaneous detection and discrimination of hepatitis B, hepatitis C, and human immunodeficiency type-1 viruses in human blood samples

    International Nuclear Information System (INIS)

    Hsia, Chu Chieh; Chizhikov, Vladimir E.; Yang, Amy X.; Selvapandiyan, Angamuthu; Hewlett, Indira; Duncan, Robert; Puri, Raj K.; Nakhasi, Hira L.; Kaplan, Gerardo G.

    2007-01-01

    Hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus type-1 (HIV-1) are transfusion-transmitted human pathogens that have a major impact on blood safety and public health worldwide. We developed a microarray multiplex assay for the simultaneous detection and discrimination of these three viruses. The microarray consists of 16 oligonucleotide probes, immobilized on a silylated glass slide. Amplicons from multiplex PCR were labeled with Cy-5 and hybridized to the microarray. The assay detected 1 International Unit (IU), 10 IU, 20 IU of HBV, HCV, and HIV-1, respectively, in a single multiplex reaction. The assay also detected and discriminated the presence of two or three of these viruses in a single sample. Our data represent a proof-of-concept for the possible use of highly sensitive multiplex microarray assay to screen and confirm the presence of these viruses in blood donors and patients

  5. Virulent PB1-F2 residues: effects on fitness of H1N1 influenza A virus in mice and changes during evolution of human influenza A viruses.

    Science.gov (United States)

    Alymova, Irina V; McCullers, Jonathan A; Kamal, Ram P; Vogel, Peter; Green, Amanda M; Gansebom, Shane; York, Ian A

    2018-05-10

    Specific residues of influenza A virus (IAV) PB1-F2 proteins may enhance inflammation or cytotoxicity. In a series of studies, we evaluated the function of these virulence-associated residues in the context of different IAV subtypes in mice. Here, we demonstrate that, as with the previously assessed pandemic 1968 (H3N2) IAV, PB1-F2 inflammatory residues increase the virulence of H1N1 IAV, suggesting that this effect might be a universal feature. Combining both inflammatory and cytotoxic residues in PB1-F2 enhanced virulence further, compared to either motif alone. Residues from these virulent motifs have been present in natural isolates from human seasonal IAV of all subtypes, but there has been a trend toward a gradual reduction in the number of virulent residues over time. However, human IAV of swine and avian origin tend to have more virulent residues than do the human-adapted seasonal strains, raising the possibility that donation of PB1 segments from these zoonotic viruses may increase the severity of some seasonal human strains. Our data suggest the value of surveillance of virulent residues in both human and animal IAV to predict the severity of influenza season.

  6. Human Respiratory Syncytial Virus and Human Metapneumovirus

    Directory of Open Access Journals (Sweden)

    Luciana Helena Antoniassi da Silva

    2009-08-01

    Full Text Available The human respiratory syncytial virus (hRSV and the human metapneumovírus (hMPV are main etiological agents of acute respiratory infections (ARI. The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV is the best characterized agent viral of this group, associated with respiratory diseases in lower respiratory tract. Recently, a new human pathogen belonging to the subfamily Pneumovirinae was identified, the human metapneumovirus (hMPV, which is structurally similar to the hRSV, in genomic organization, viral structure, antigenicity and clinical symptoms.  The subfamily Pneumovirinae contains two genera: genus Pneumovirus contains hRSV, the bovine (bRSV, as well as the ovine and caprine respiratory syncytial virus and pneumonia virus of mice, the second genus Metapneumovirus, consists of avian metapneumovirus (aMPV and human metapneumovirus (hMPV. In this work, we present a brief narrative review of the literature on important aspects of the biology, epidemiology and clinical manifestations of infections by two respiratory viruses.

  7. Etiology and Clinical Characteristics of Single and Multiple Respiratory Virus Infections Diagnosed in Croatian Children in Two Respiratory Seasons

    Directory of Open Access Journals (Sweden)

    Sunčanica Ljubin-Sternak

    2016-01-01

    Full Text Available The aim of this study was to determine the causative agent of acute respiratory infection (ARI in hospitalized children, as well as investigate the characteristics of ARIs with single and multiple virus detection in two respiratory seasons. In 2010 and 2015, nasopharyngeal and pharyngeal swabs from a total of 134 children, admitted to the hospital due to ARI, were tested using multiplex PCR. Viral etiology was established in 81.3% of the patients. Coinfection with two viruses was diagnosed in 27.6% of the patients, and concurrent detection of three or more viruses was diagnosed in 12.8% of the patients. The most commonly diagnosed virus in both seasons combined was respiratory syncytial virus (RSV (28.6%, followed by parainfluenza viruses (PIVs types 1–3 (18.4%, rhinovirus (HRV (14.3%, human metapneumovirus (10.1%, adenovirus (AdV (7.1%, influenza viruses types A and B (4.8%, and coronaviruses (4.2%. In 2015, additional pathogens were investigated with the following detection rate: enterovirus (13.2%, bocavirus (HBoV (10.5%, PIV-4 (2.6%, and parechovirus (1.3%. There were no statistical differences between single and multiple virus infection regarding patients age, localization of infection, and severity of disease (P>0.05. AdV, HRV, HBoV, and PIVs were significantly more often detected in multiple virus infections compared to the other respiratory viruses (P<0.001.

  8. Human-like PB2 627K influenza virus polymerase activity is regulated by importin-α1 and -α7.

    Directory of Open Access Journals (Sweden)

    Ben Hudjetz

    2012-01-01

    Full Text Available Influenza A viruses may cross species barriers and transmit to humans with the potential to cause pandemics. Interplay of human- (PB2 627K and avian-like (PB2 627E influenza polymerase complexes with unknown host factors have been postulated to play a key role in interspecies transmission. Here, we have identified human importin-α isoforms (α1 and α7 as positive regulators of human- but not avian-like polymerase activity. Human-like polymerase activity correlated with efficient recruitment of α1 and α7 to viral ribonucleoprotein complexes (vRNPs without affecting subcellular localization. We also observed that human-like influenza virus growth was impaired in α1 and α7 downregulated human lung cells. Mice lacking α7 were less susceptible to human- but not avian-like influenza virus infection. Thus, α1 and α7 are positive regulators of human-like polymerase activity and pathogenicity beyond their role in nuclear transport.

  9. Determinants in the Ig Variable Domain of Human HAVCR1 (TIM-1) Are Required To Enhance Hepatitis C Virus Entry.

    Science.gov (United States)

    Kachko, Alla; Costafreda, Maria Isabel; Zubkova, Iryna; Jacques, Jerome; Takeda, Kazuyo; Wells, Frances; Kaplan, Gerardo; Major, Marian E

    2018-03-15

    Hepatitis C virus (HCV) is the leading cause of chronic hepatitis in humans. Several host molecules participate in HCV cell entry, but this process remains unclear. The complete unraveling of the HCV entry process is important to further understand viral pathogenesis and develop therapeutics. Human hepatitis A virus (HAV) cellular receptor 1 (HAVCR1), CD365, also known as TIM-1, functions as a phospholipid receptor involved in cell entry of several enveloped viruses. Here, we studied the role of HAVCR1 in HCV infection. HAVCR1 antibody inhibited entry in a dose-dependent manner. HAVCR1 soluble constructs neutralized HCV, which did not require the HAVCR1 mucinlike region and was abrogated by a mutation of N to A at position 94 (N94A) in the Ig variable (IgV) domain phospholipid-binding pocket, indicating a direct interaction of the HAVCR1 IgV domain with HCV virions. However, knockout of HAVCR1 in Huh7 cells reduced but did not prevent HCV growth. Interestingly, the mouse HAVCR1 ortholog, also a phospholipid receptor, did not enhance infection and a soluble form failed to neutralize HCV, although replacement of the mouse IgV domain with the human HAVCR1 IgV domain restored the enhancement of HCV infection. Mutations in the cytoplasmic tail revealed that direct HAVCR1 signaling is not required to enhance HCV infection. Our data show that the phospholipid-binding function and other determinant(s) in the IgV domain of human HAVCR1 enhance HCV infection. Although the exact mechanism is not known, it is possible that HAVCR1 facilitates entry by stabilizing or enhancing attachment, leading to direct interactions with specific receptors, such as CD81. IMPORTANCE Hepatitis C virus (HCV) enters cells through a multifaceted process. We identified the human hepatitis A virus cellular receptor 1 (HAVCR1), CD365, also known as TIM-1, as a facilitator of HCV entry. Antibody blocking and silencing or knockout of HAVCR1 in hepatoma cells reduced HCV entry. Our findings that the

  10. Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    Lina Sun

    Full Text Available BACKGROUND: The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs, AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model. CONCLUSIONS/SIGNIFICANCE: Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines.

  11. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    Science.gov (United States)

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  12. Anticorpos neutralizantes contra os vírus da cinomose e da parainfluenza em cães de canis dos municípios de Novo Hamburgo e Porto Alegre, RS, Brasil Neutralizing antibodies to distemper and parainfluenza viruses in dogs in shelter kennels in the municipalities of Novo Hamburgo and Porto Alegre, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Tamahine Larronda Schmidt Hartmann

    2007-08-01

    Full Text Available No presente estudo, foi realizada uma pesquisa em busca de anticorpos neutralizantes contra os vírus da cinomose (CDV e da parainfluenza (CPIV caninos em amostras de soro de 173 cães recolhidos a canis municipais em Novo Hamburgo (n=82 e Porto Alegre (n=91, RS. A pesquisa de anticorpos neutralizantes foi realizada pela técnica de soroneutralização frente a duas amostras vacinais de CDV (Rockborn e Snyder Hill e frente a uma amostra de CPIV (V660. Em relação ao CDV, 95,9% das amostras de soros foram negativas para anticorpos neutralizantes contra a amostra Snyder Hill e 90,7% soronegativas para a amostra Rockborn. Entre os soropositivos (n=20; 11,6%, somente três deles apresentaram anticorpos neutralizantes frente às duas amostras de CDV testadas, indicando pouca reatividade cruzada entre as mesmas. Quanto ao CPIV, a prevalência de anticorpos neutralizantes encontrada frente à amostra V660 foi de 51,4%. Esses achados indicam que a maioria dos cães examinados não teve contato prévio com o CDV, seja por infecção natural ou por imunização prévia. O CPIV, porém, parece estar amplamente difundido na população canina examinada, provavelmente por exposição natural ao vírus.In this report a serological survey was carried out in search for antibodies to canine distemper virus (CDV and canine parainfluenza virus (CPIV in 173 sera from dogs withdraw in kennels of the municipalities of Novo Hamburgo (n=82 and Porto Alegre (n=91, RS, Brazil. Neutralizing antibodies were evaluated against two CDV strains used for vaccine production (Rockborn and Snyder Hill as well as one strain of CPIV (V660. Search for anti-CDV neutralizing antibodies revealed that 95.9% of sera were negative for antibodies to CDV Snyder Hill and 90.7% were negative for antibodies to CDV Rockborn. Among the positive sera (n=20; 11.6 % only three of those had neutralizing antibodies to both CDV strains, indicating a low degree of cross reactivity between those. As

  13. Production of a Dendritic Cell-Based Vaccine Containing Inactivated Autologous Virus for Therapy of Patients with Chronic Human Immunodeficiency Virus Type 1 Infection▿

    OpenAIRE

    Whiteside, Theresa L.; Piazza, Paolo; Reiter, Amanda; Stanson, Joanna; Connolly, Nancy C.; Rinaldo, Charles R.; Riddler, Sharon A.

    2008-01-01

    In preparation for a pilot clinical trial in patients with chronic human immunodeficiency virus type 1 (HIV-1) infection, a novel dendritic cell (DC)-based vaccine is being manufactured. The trial will test the hypothesis that isolated endogenous virus presented by DCs serves as a potent immunogen for activation of CD8+ and CD4+ T cells specific for a broad range of autologous HIV-1 antigens. Production of the vaccine under good manufacture practice conditions involves (i) autologous virus is...

  14. Multicenter evaluation of the new Abbott Realtime assays for quantitative detection of human immunodeficiency virus type 1 and hepatitis C virus RNA

    NARCIS (Netherlands)

    M. Schutten (Martin); D. Peters (D.); N. Back (Nicole); A.W. van den Beld (Annewieke); B. Beuselinck (B.); V. Foulongne (V.); A.M. Geretti (Anna Maria); L. Pandiani (L.); M. Tiemann; H.G.M. Niesters (Bert)

    2007-01-01

    textabstractThe analytical performances of the new Abbott RealTime hepatitis C virus (HCV) and human immunodeficiency virus type 1 viral load assays were compared at nine laboratories with different competitor assays. These included the Abbott LcX, Bayer Versant bDNA, Roche COBAS Amplicor, and Roche

  15. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China

    OpenAIRE

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and...

  16. In vivo neutralization of hepatitis B virus infection by an anti-preS1 humanized antibody in chimpanzees

    International Nuclear Information System (INIS)

    Hong, Hyo Jeong; Ryu, Chun Jeih; Hur, Hyangsuk; Kim, Seho; Oh, Han Kyu; Oh, Mee Sook; Park, Song Yong

    2004-01-01

    Previously, we generated a murine monoclonal antibody (mAb), KR127, that recognizes amino acids (aa) 37-45 of the preS1 of hepatitis B virus (HBV). In this study, we have constructed a humanized version of KR127 and evaluated its HBV-neutralizing activity in chimpanzees. A study chimpanzee was given a single intravenous dose of the humanized antibody, followed by intravenous challenge with adr subtype of wild type HBV, while a control chimpanzee was only challenged with the virus. The result showed that the study chimpanzee did not develop HBV infection during 1 year, while the control chimpanzee was infected, indicating that the humanized antibody exhibited in vivo virus-neutralizing activity and thus protected the chimpanzee from HBV infection. In addition, the humanized antibody bound to the preS1 of all subtypes of HBV. We first demonstrate that an anti-preS1 mAb can neutralize HBV infection in vivo. This humanized antibody will be useful for the immunoprophylaxis of HBV infection

  17. Respiratory virus laboratory pandemic planning an surveillance in central Viet Nam, 2008-2010

    Directory of Open Access Journals (Sweden)

    Trinh Xuan Mai

    2012-07-01

    Full Text Available Introduction: Laboratory capacity is needed in central Viet Nam to provide early warning to public health authorities of respiratory outbreaks of importance to human health, for example the outbreak of influenza A(H1N1 pandemic in 2009. Polymerase chain reaction (PCR procedures established as part of a capacity-building process were used to conduct prospective respiratory surveillance in a region where few previous studies have been undertaken.Methods: Between October 2008 and September 2010, nose and throat swabs from adults and children (approximately 20 per week presenting with an acute respiratory illness to the Ninh Hoa General Hospital were collected. Same-day PCR testing and result reporting for 13 respiratory viruses were carried out by locally trained scientists.Results: Of 2144 surveillance samples tested, 1235 (57.6% were positive for at least one virus. The most common were influenza A strains (17.9%, with pandemic influenza A(H1N1 2009 and seasonal H3N2 strain accounting for 52% and 43% of these, respectively. Other virus detections included: rhinovirus (12.4%, enterovirus (8.9%, influenza B (8.3%, adenovirus (5.3%, parainfluenza (4.7%, respiratory syncytial virus (RSV (3.9%, human coronavirus (3.0% and human metapneumovirus (0.3%. The detection rate was greatest in the 0–5 year age group. Viral co-infections were identified in 148 (6.9% cases.Discussion: The outbreak in 2009 of the influenza A(H1N1 pandemic strain provided a practical test of the laboratory’s pandemic plan. This study shows that the availability of appropriate equipment and molecular-based testing can contribute to important individual and public health outcomes in geographical locations susceptible to emerging infections.

  18. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    Science.gov (United States)

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Radioimmunoassay of measles virus hemagglutinin protein G

    International Nuclear Information System (INIS)

    Lund, G.A.; Salmi, A.A.

    1982-01-01

    Guinea pig and rabbit antisera from animals immunized with purified measles virus hemagglutinin (G) protein were used to establish a solid-phase four-layer radioimmunoassay for quantitative measurement of the G protein. The sensitivity of the assay was 2 ng of purified G protein, and 200 μg of protein from uninfected Vero cells neither decreased the sensitivity nor reacted non-specifically in the assay. Radioimmunoassay standard dose-response curves were established and unknown values interpolated from these using the logit program of a desktop computer. Using this procedure, a measles virus growth curve in infected Vero cells was determined by measurement of G protein production. Under these same conditions, hemagglutination was not sensitive enough to detect early hemagglutinin production. Viral antigens in canine distemper virus, Newcastle disease virus, parainfluenza viruses 1-4, simian virus 5, and respiratory syncytial virus-infected cell lysates did not cross-react in the radioimmunoassay. A small degree of cross-reactivity was detected with mumps viral antigens, both with Vero cell-derived (wild-type strain) and egg-derived (Enders strain) purified virus preparations and with a cell lysate antigen prepared from wild-type mumps virus-infected Vero cells. (Auth.)

  20. Radioimmunoassay of measles virus hemagglutinin protein G

    Energy Technology Data Exchange (ETDEWEB)

    Lund, G A; Salmi, A A [Turku Univ. (Finland)

    1982-08-01

    Guinea pig and rabbit antisera from animals immunized with purified measles virus hemagglutinin (G) protein were used to establish a solid-phase four-layer radioimmunoassay for quantitative measurement of the G protein. The sensitivity of the assay was 2 ng of purified G protein, and 200 ..mu..g of protein from uninfected Vero cells neither decreased the sensitivity nor reacted non-specifically in the assay. Radioimmunoassay standard dose-response curves were established and unknown values interpolated from these using the logit program of a desktop computer. Using this procedure, a measles virus growth curve in infected Vero cells was determined by measurement of G protein production. Under these same conditions, hemagglutination was not sensitive enough to detect early hemagglutinin production. Viral antigens in canine distemper virus, Newcastle disease virus, parainfluenza viruses 1-4, simian virus 5, and respiratory syncytial virus-infected cell lysates did not cross-react in the radioimmunoassay. A small degree of cross-reactivity was detected with mumps viral antigens, both with Vero cell-derived (wild-type strain) and egg-derived (Enders strain) purified virus preparations and with a cell lysate antigen prepared from wild-type mumps virus-infected Vero cells.

  1. Broadly-reactive human monoclonal antibodies elicited following pandemic H1N1 influenza virus exposure protect mice from highly pathogenic H5N1 challenge.

    Science.gov (United States)

    Nachbagauer, Raffael; Shore, David; Yang, Hua; Johnson, Scott K; Gabbard, Jon D; Tompkins, S Mark; Wrammert, Jens; Wilson, Patrick C; Stevens, James; Ahmed, Rafi; Krammer, Florian; Ellebedy, Ali H

    2018-06-13

    Broadly cross-reactive antibodies that recognize conserved epitopes within the influenza virus hemagglutinin (HA) stalk domain are of particular interest for their potential use as therapeutic and prophylactic agents against multiple influenza virus subtypes including zoonotic virus strains. Here, we characterized four human HA stalk-reactive monoclonal antibodies (mAbs) for their binding breadth and affinity, in vitro neutralization capacity, and in vivo protective potential against an highly pathogenic avian influenza virus. The monoclonal antibodies were isolated from individuals shortly following infection with (70-1F02 and 1009-3B05) or vaccination against (05-2G02 and 09-3A01) A(H1N1)pdm09. Three of the mAbs bound HAs from multiple strains of group 1 viruses, and one mAb, 05-2G02, bound to both group 1 and group 2 influenza A HAs. All four antibodies prophylactically protected mice against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) strain. Two mAbs, 70-1F02 and 09-3A01, were further tested for their therapeutic efficacy against the same strain and showed good efficacy in this setting as well. One mAb, 70-1F02, was co-crystallized with H5 HA and showed similar heavy chain only interactions as a the previously described anti-stalk antibody CR6261. Finally, we showed that antibodies that compete with these mAbs are prevalent in serum from an individual recently infected with A(H1N1)pdm09 virus. The antibodies described here can be developed into broad-spectrum antiviral therapeutics that could be used to combat infections with zoonotic or emerging pandemic influenza viruses. IMPORTANCE The rise in zoonotic infections of humans with emerging influenza viruses is a worldwide public health concern. The majority of recent zoonotic human influenza cases were caused by H7N9 and H5Nx viruses and were associated with high morbidity and mortality. In addition, seasonal influenza viruses are estimated to cause up to 650,000 deaths annually

  2. Gene promoter methylation and protein expression of BRMS1 in uterine cervix in relation to high-risk human papilloma virus infection and cancer.

    Science.gov (United States)

    Panagopoulou, Maria; Lambropoulou, Maria; Balgkouranidou, Ioanna; Nena, Evangelia; Karaglani, Makrina; Nicolaidou, Christina; Asimaki, Anthi; Konstantinidis, Theocharis; Constantinidis, Theodoros C; Kolios, George; Kakolyris, Stylianos; Agorastos, Theodoros; Chatzaki, Ekaterini

    2017-04-01

    Cervical cancer is strongly related to certain high-risk types of human papilloma virus infection. Breast cancer metastasis suppressor 1 (BRMS1) is a tumor suppressor gene, its expression being regulated by DNA promoter methylation in several types of cancers. This study aims to evaluate the methylation status of BRMS1 promoter in relation to high-risk types of human papilloma virus infection and the development of pre-cancerous lesions and describe the pattern of BRMS1 protein expression in normal, high-risk types of human papilloma virus-infected pre-cancerous and malignant cervical epithelium. We compared the methylation status of BRMS1 in cervical smears of 64 women with no infection by high-risk types of human papilloma virus to 70 women with proven high-risk types of human papilloma virus infection, using real-time methylation-specific polymerase chain reaction. The expression of BRMS1 protein was described by immunohistochemistry in biopsies from cervical cancer, pre-cancerous lesions, and normal cervices. Methylation of BRMS1 promoter was detected in 37.5% of women with no high-risk types of human papilloma virus infection and was less frequent in smears with high-risk types of human papilloma virus (11.4%) and in women with pathological histology (cervical intraepithelial neoplasia) (11.9%). Methylation was detected also in HeLa cervical cancer cells. Immunohistochemistry revealed nuclear BRMS1 protein staining in normal high-risk types of human papilloma virus-free cervix, in cervical intraepithelial neoplasias, and in malignant tissues, where staining was occasionally also cytoplasmic. In cancer, expression was stronger in the more differentiated cancer blasts. In conclusion, BRMS1 promoter methylation and aberrant protein expression seem to be related to high-risk types of human papilloma virus-induced carcinogenesis in uterine cervix and is worthy of further investigation.

  3. Evolutionary trajectory of the VP1 gene of human enterovirus 71 genogroup B and C viruses

    NARCIS (Netherlands)

    S.M.G. van der Sanden (Sabine); H.G.A.M. van der Avoort (Harrie); P. Lemey (Philippe); G. Uslu (Gökhan); M.P.G. Koopmans D.V.M. (Marion)

    2010-01-01

    textabstractFrom 1963 to 1986, human enterovirus 71 (HEV71) infections in the Netherlands were successively caused by viruses of subgenogroups B0, B1 and B2. A genogroup shift occurred in 1987, after which viruses of subgenogroups C1 and C2 were detected exclusively. This is in line with HEV71

  4. Whole-Genome Characterization of a Novel Human Influenza A(H1N2) Virus Variant, Brazil.

    Science.gov (United States)

    Resende, Paola Cristina; Born, Priscila Silva; Matos, Aline Rocha; Motta, Fernando Couto; Caetano, Braulia Costa; Debur, Maria do Carmo; Riediger, Irina Nastassja; Brown, David; Siqueira, Marilda M

    2017-01-01

    We report the characterization of a novel reassortant influenza A(H1N2) virus not previously reported in humans. Recovered from a a pig farm worker in southeast Brazil who had influenza-like illness, this virus is a triple reassortant containing gene segments from subtypes H1N2 (hemagglutinin), H3N2 (neuraminidase), and pandemic H1N1 (remaining genes).

  5. A single amino acid substitution within the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein renders simian-human immunodeficiency virus (SHIVKU-1bMC33) susceptible to rimantadine

    International Nuclear Information System (INIS)

    Hout, David R.; Gomez, Lisa M.; Pacyniak, Erik; Miller, Jean-Marie; Hill, M. Sarah; Stephens, Edward B.

    2006-01-01

    Previous studies from our laboratory have shown that the transmembrane domain (TM) of the Vpu protein of human immunodeficiency virus type 1 (HIV-1) contributes to the pathogenesis of SHIV KU-1bMC33 in macaques and that the TM domain of Vpu could be replaced with the M2 protein viroporin from influenza A virus. Recently, we showed that the replacement of the TM domain of Vpu with that of the M2 protein of influenza A virus resulted in a virus (SHIV M2 ) that was sensitive to rimantadine [Hout, D.R., Gomez, M.L., Pacyniak, E., Gomez, L.M., Inbody, S.H., Mulcahy, E.R., Culley, N., Pinson, D.M., Powers, M.F., Wong, S.W., Stephens, E.B., 2006. Substitution of the transmembrane domain of Vpu in simian human immunodeficiency virus (SHIV KU-1bMC33 ) with that of M2 of influenza A results in a virus that is sensitive to inhibitors of the M2 ion channel and is pathogenic for pig-tailed macaques. Virology 344, 541-558]. Based on previous studies of the M2 protein which have shown that the His-X-X-X-Trp motif within the M2 is essential to the function of the M2 proton channel, we have constructed a novel SHIV in which the alanine at position 19 of the TM domain was replaced with a histidine residue resulting in the motif His-Ile-Leu-Val-Trp. The SHIV VpuA19H replicated with similar kinetics as the parental SHIV KU-1bMC33 and pulse-chase analysis revealed that the processing of viral proteins was similar to SHIV KU-1bMC33 . This SHIV VpuA19H virus was found to be more sensitive to the M2 ion channel blocker rimantadine than SHIV M2 . Electron microscopic examination of SHIV VpuA19H -infected cells treated with rimantadine revealed an accumulation of viral particles at the cell surface and within intracellular vesicles, which was similar to that previously observed to SHIV M2 -infected cells treated with rimantadine. These data indicate that the Vpu protein of HIV-1 can be converted into a rimantadine-sensitive ion channel with the alteration of one amino acid and provide

  6. Respiratory virus laboratory pandemic planning and surveillance in central Viet Nam, 2008–2010

    Science.gov (United States)

    Chien, Bui Trong; Papadakis, Georgina; Druce, Julian; Birch, Chris; Chibo, Doris; An, Truong Phuoc; Trang, Le Thi Kim; Trieu, Nguyen Bao; Thuy, Doan Thi Thanh; Catton, Mike; Mai, Trinh Xuan

    2012-01-01

    Introduction Laboratory capacity is needed in central Viet Nam to provide early warning to public health authorities of respiratory outbreaks of importance to human health, for example the outbreak of influenza A(H1N1) pandemic in 2009. Polymerase chain reaction (PCR) procedures established as part of a capacity-building process were used to conduct prospective respiratory surveillance in a region where few previous studies have been undertaken. Methods Between October 2008 and September 2010, nose and throat swabs from adults and children (approximately 20 per week) presenting with an acute respiratory illness to the Ninh Hoa General Hospital were collected. Same-day PCR testing and result reporting for 13 respiratory viruses were carried out by locally trained scientists. Results Of 2144 surveillance samples tested, 1235 (57.6%) were positive for at least one virus. The most common were influenza A strains (17.9%), with pandemic influenza A(H1N1) 2009 and seasonal H3N2 strain accounting for 52% and 43% of these, respectively. Other virus detections included: rhinovirus (12.4%), enterovirus (8.9%), influenza B (8.3%), adenovirus (5.3%), parainfluenza (4.7%), respiratory syncytial virus (RSV) (3.9%), human coronavirus (3.0%) and human metapneumovirus (0.3%). The detection rate was greatest in the 0–5 year age group. Viral co-infections were identified in 148 (6.9%) cases. Discussion The outbreak in 2009 of the influenza A(H1N1) pandemic strain provided a practical test of the laboratory’s pandemic plan. This study shows that the availability of appropriate equipment and molecular-based testing can contribute to important individual and public health outcomes in geographical locations susceptible to emerging infections. PMID:23908924

  7. Absolute level of Epstein-Barr virus DNA in human immunodeficiency virus type 1 infection is not predictive of AIDS-related non-Hodgkin lymphoma

    NARCIS (Netherlands)

    van Baarle, Debbie; Wolthers, Katja C.; Hovenkamp, Egbert; Niesters, Hubert G. M.; Osterhaus, Albert D. M. E.; Miedema, Frank; van Oers, Marinus H. J.

    2002-01-01

    To study whether Epstein-Barr virus (EBV) load can be used to predict the occurrence of acquired immunodeficiency syndrome-related non-Hodgkin lymphoma (AIDS-NHL), we determined EBV load longitudinally for individuals infected with human immunodeficiency virus type 1. EBV load in peripheral blood

  8. Intercontinental circulation of human influenza A(H1N2) reassortant viruses during the 2001-2002 influenza season.

    Science.gov (United States)

    Xu, Xiyan; Smith, Catherine B; Mungall, Bruce A; Lindstrom, Stephen E; Hall, Henrietta E; Subbarao, Kanta; Cox, Nancy J; Klimov, Alexander

    2002-11-15

    Reassortant influenza A viruses bearing the H1 subtype of hemagglutinin (HA) and the N2 subtype of neuraminidase (NA) were isolated from humans in the United States, Canada, Singapore, Malaysia, India, Oman, Egypt, and several countries in Europe during the 2001-2002 influenza season. The HAs of these H1N2 viruses were similar to that of the A/New Caledonia/20/99(H1N1) vaccine strain both antigenically and genetically, and the NAs were antigenically and genetically related to those of recent human H3N2 reference strains, such as A/Moscow/10/99(H3N2). All 6 internal genes of the H1N2 reassortants examined originated from an H3N2 virus. This article documents the first widespread circulation of H1N2 reassortants on 4 continents. The current influenza vaccine is expected to provide good protection against H1N2 viruses, because it contains the A/New Caledonia/20/99(H1N1) and A/Moscow/10/99(H3N2)-like viruses, which have H1 and N2 antigens that are similar to those of recent H1N2 viruses.

  9. Virus-induced exacerbations in asthma and COPD

    Directory of Open Access Journals (Sweden)

    Daisuke eKurai

    2013-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by chronic airway inflammation and/or airflow limitation due to pulmonary emphysema. Chronic bronchitis, pulmonary emphysema, and bronchial asthma may all be associated with airflow limitation; therefore, exacerbation of asthma may be associated with the pathophysiology of COPD. Furthermore, recent studies have suggested that the exacerbation of asthma, namely virus-induced asthma, may be associated with a wide variety of respiratory viruses.COPD and asthma have different underlying pathophysiological processes and thus require individual therapies. Exacerbation of both COPD and asthma, which are basically defined and diagnosed by clinical symptoms, is associated with a rapid decline in lung function and increased mortality. Similar pathogens, including human rhinovirus, respiratory syncytial virus, influenza virus, parainfluenza virus and coronavirus, are also frequently detected during exacerbation of asthma and/or COPD. Immune response to respiratory viral infections, which may be related to the severity of exacerbation in each disease, varies in patients with both COPD and asthma. In this regard, it is crucial to recognize and understand both the similarities and differences of clinical features in patients with COPD and/or asthma associated with respiratory viral infections, especially in the exacerbative stage.In relation to definition, epidemiology, and pathophysiology, this review aims to summarize current knowledge concerning exacerbation of both COPD and asthma by focusing on the clinical significance of associated respiratory virus infections.

  10. Characteristics of primary infection of a European human immunodeficiency virus type 1 clade B isolate in chimpanzees

    NARCIS (Netherlands)

    Bogers, W. M.; Koornstra, W. H.; Dubbes, R. H.; ten Haaft, P. J.; Verstrepen, B. E.; Jhagjhoorsingh, S. S.; Haaksma, A. G.; Niphuis, H.; Laman, J. D.; Norley, S.; Schuitemaker, H.; Goudsmit, J.; Hunsmann, G.; Heeney, J. L.; Wigzell, H.

    1998-01-01

    The aim of the study was to select, from a panel of candidate European human immunodeficiency virus type 1 (HIV-1) clade B primary virus isolates, one isolate based on replication properties in chimpanzee peripheral blood mononuclear cells (PBMC). Secondly, to evaluate the in vivo kinetics of

  11. JST Thesaurus Headwords and Synonyms: human T-lymphotropic virus 1 [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term human T-lymphotropic virus 1 名詞 一...般 * * * * HTLV1 HTLV1 エイチティーエルブイイチ Thesaurus2015 200906096931199548 C LS07 UNKNOWN_2 human T - lymphotropic virus 1

  12. Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria.

    Directory of Open Access Journals (Sweden)

    Menno R van den Bergh

    Full Text Available High rates of potentially pathogenic bacteria and respiratory viruses can be detected in the upper respiratory tract of healthy children. Investigating presence of and associations between these pathogens in healthy individuals is still a rather unexplored field of research, but may have implications for interpreting findings during disease.We selected 986 nasopharyngeal samples from 433 6- to 24-month-old healthy children that had participated in a randomized controlled trial. We determined the presence of 20 common respiratory viruses using real-time PCR. Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Staphylococcus aureus were identified by conventional culture methods. Information on risk factors was obtained by questionnaires. We performed multivariate logistic regression analyses followed by partial correlation analysis to identify the overall pattern of associations. S. pneumoniae colonization was positively associated with the presence of H. influenzae (adjusted odds ratio 1.60, 95% confidence interval 1.18-2.16, M. catarrhalis (1.78, 1.29-2.47, human rhinoviruses (1.63, 1.19-2.22 and enteroviruses (1.97, 1.26-3.10, and negatively associated with S. aureus presence (0.59, 0.35-0.98. H. influenzae was positively associated with human rhinoviruses (1.63, 1.22-2.18 and respiratory syncytial viruses (2.78, 1.06-7.28. M. catarrhalis colonization was positively associated with coronaviruses (1.99, 1.01-3.93 and adenoviruses (3.69, 1.29-10.56, and negatively with S. aureus carriage (0.42, 0.25-0.69. We observed a strong positive association between S. aureus and influenza viruses (4.87, 1.59-14.89. In addition, human rhinoviruses and enteroviruses were positively correlated (2.40, 1.66-3.47, as were enteroviruses and human bocavirus, WU polyomavirus, parainfluenza viruses, and human parechovirus. A negative association was observed between human rhinoviruses and coronaviruses.Our data revealed high viral and

  13. Multicenter evaluation of the new Abbott RealTime assays for quantitative detection of human immunodeficiency virus type 1 and hepatitis C virus RNA

    NARCIS (Netherlands)

    Schutten, Martin; Peters, D; Back, N K T; Beld, M; Beuselinck, K; Foulongne, V; Geretti, A-M; Pandiani, L; Tiemann, C; Niesters, H G M

    The analytical performances of the new Abbott RealTime hepatitis C virus (HCV) and human immunodeficiency virus type 1 viral load assays were compared at nine laboratories with different competitor assays. These included the Abbott LcX, Bayer Versant bDNA, Roche COBAS Amplicor, and Roche COBAS

  14. Multicenter evaluation of the new Abbott RealTime assays for quantitative detection of human immunodeficiency virus type 1 and hepatitis C virus RNA

    NARCIS (Netherlands)

    Schutten, M.; Peters, D.; Back, N. K. T.; Beld, M.; Beuselinck, K.; Foulongne, V.; Geretti, A.-M.; Pandiani, L.; Tiemann, C.; Niesters, H. G. M.

    2007-01-01

    The analytical performances of the new Abbott RealTime hepatitis C virus (HCV) and human immunodeficiency virus type 1 viral load assays were compared at nine laboratories with different competitor assays. These included the Abbott LcX, Bayer Versant bDNA, Roche COBAS Amplicor, and Roche COBAS

  15. Multiple Restrictions of Human Immunodeficiency Virus Type 1 in Feline Cells▿

    Science.gov (United States)

    Münk, Carsten; Zielonka, Jörg; Constabel, Hannelore; Kloke, Björn-Philipp; Rengstl, Benjamin; Battenberg, Marion; Bonci, Francesca; Pistello, Mauro; Löchelt, Martin; Cichutek, Klaus

    2007-01-01

    The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity ∼10- to ∼40-fold. PMID:17459941

  16. Human immunodeficiency virus type 1 (HIV-1 reservoirs: mechanisms of latency and therapeutic strategies = Reservorios del virus de inmunodeficiencia humana tipo 1 (VIH-1: mecanismos de latencia y estrategias terapéuticas

    Directory of Open Access Journals (Sweden)

    Arcia Anaya, Eliuth David

    2014-07-01

    Full Text Available The human immunodeficiency virus type 1 can establish a latent infection in different kind of cells, which constitute the cellular reservoirs for the virus and allow its maintenance in the body indefinitely, even in patients with antiretroviral treatment. The main reservoirs of the HIV-1 are resting CD4+ T cells, although cells like monocytes/macrophages, dendritic cells, and other cells like hematopoietic stem cells and mast cells may be reservoirs of the virus. There are different mechanisms that contribute to the establishment and maintenance of latency in those cells, and include transcriptional interference, low availability of transcription factors, chromatin condensation, some microRNA that block viral translation, and so on. The knowledge of these mechanisms is crucial for the development of new drugs that may eliminate the virus from the body and lead to a cure.

  17. JST Thesaurus Headwords and Synonyms: human T‐lymphotropic virus 1 [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term human T‐lymphotropic virus 1 名詞 一...般 * * * * HTLV1 HTLV1 エイチティーエルブイイチ Thesaurus2015 200906096931199548 C LS07 UNKNOWN_2 human T ‐ lymphotropic virus 1

  18. 45 CFR 96.128 - Requirements regarding human immunodeficiency virus.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Requirements regarding human immunodeficiency virus. 96.128 Section 96.128 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL... human immunodeficiency virus. (a) In the case of a designated State as described in paragraph (b) of...

  19. Seasonal patterns in human A (H5N1 virus infection: analysis of global cases.

    Directory of Open Access Journals (Sweden)

    Maya B Mathur

    Full Text Available Human cases of highly pathogenic avian influenza (HPAI A (H5N1 have high mortality. Despite abundant data on seasonal patterns in influenza epidemics, it is unknown whether similar patterns exist for human HPAI H5N1 cases worldwide. Such knowledge could help decrease avian-to-human transmission through increased prevention and control activities during peak periods.We performed a systematic search of published human HPAI H5N1 cases to date, collecting month, year, country, season, hemisphere, and climate data. We used negative binomial regression to predict changes in case incidence as a function of season. To investigate hemisphere as a potential moderator, we used AIC and the likelihood-ratio test to compare the season-only model to nested models including a main effect or interaction with hemisphere. Finally, we visually assessed replication of seasonal patterns across climate groups based on the Köppen-Geiger climate classification.We identified 617 human cases (611 with complete seasonal data occurring in 15 countries in Southeast Asia, Africa, and the Middle East. Case occurrence was much higher in winter (n = 285, p = 0.03 than summer (n = 64, and the winter peak occurred across diverse climate groups. There was no significant interaction between hemisphere and season.Across diverse climates, HPAI H5N1 virus infection in humans increases significantly in winter. This is consistent with increased poultry outbreaks and HPAI H5N1 virus transmission during cold and dry conditions. Prioritizing prevention and control activities among poultry and focusing public health messaging to reduce poultry exposures during winter months may help to reduce zoonotic transmission of HPAI H5N1 virus in resource-limited settings.

  20. Human Respiratory Syncytial Virus and Human Metapneumovirus

    OpenAIRE

    Luciana Helena Antoniassi da Silva; Fernando Rosado Spilki; Adriana Gut Lopes Riccetto; Emilio Elias Baracat; Clarice Weis Arns

    2009-01-01

    The human respiratory syncytial virus (hRSV) and the human metapneumovírus (hMPV) are main etiological agents of acute respiratory infections (ARI). The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV) is the best characterized agent viral of this group, associated with respiratory diseases in...

  1. Subclinical avian influenza A(H5N1) virus infection in human, Vietnam

    NARCIS (Netherlands)

    Le, Mai Quynh; Horby, Peter; Fox, Annette; Nguyen, Hien Tran; Le Nguyen, Hang Khanh; Hoang, Phuong Mai Vu; Nguyen, Khanh Cong; de Jong, Menno D.; Jeeninga, Rienk E.; Rogier van Doorn, H.; Farrar, Jeremy; Wertheim, Heiman F. L.

    2013-01-01

    Laboratory-confirmed cases of subclinical infection with avian influenza A(H5N1) virus in humans are rare, and the true number of these cases is unknown. We describe the identification of a laboratory-confirmed subclinical case in a woman during an influenza A(H5N1) contact investigation in northern

  2. Absolute level of Epstein-Barr Virus (EBV) DNA in human immunodeficiency virus type 1 infection is not predictive of AIDS-related non-Hodgkin lymphoma.

    NARCIS (Netherlands)

    D. van Baarle (Debbie); K.C. Wolthers (Katja); E. Hovenkamp (Egbert); A.D.M.E. Osterhaus (Albert); F. Miedema (Frank); M.H.J. van Oers (Marinus); H.G.M. Niesters (Bert)

    2002-01-01

    textabstractTo study whether Epstein-Barr virus (EBV) load can be used to predict the occurrence of acquired immunodeficiency syndrome-related non-Hodgkin lymphoma (AIDS-NHL), we determined EBV load longitudinally for individuals infected with human immunodeficiency virus type 1. EBV load in

  3. Semen quality remains stable during 96 weeks of untreated human immunodeficiency virus-1 infection

    NARCIS (Netherlands)

    van Leeuwen, Elisabeth; Wit, Ferdinand W.; Prins, Jan M.; Reiss, Peter; van der Veen, Fulco; Repping, Sjoerd

    2008-01-01

    OBJECTIVE: To evaluate semen parameters during the natural course of asymptomatic human immunodeficiency virus-1 (HIV-1) infection. DESIGN: A longitudinal cohort study. SETTING: HIV outpatient clinic of the Academic Medical Center in Amsterdam, the Netherlands. PATIENT(S): 55 men infected with

  4. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways.

    Directory of Open Access Journals (Sweden)

    Margaret A Scull

    2009-05-01

    Full Text Available Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE, we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C, avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C. These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C, rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2 or A/PR/8/34 (H1N1 genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA and neuraminidase (NA from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and

  5. Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection

    NARCIS (Netherlands)

    An, Dong Sung; Poon, Betty; Tsong Fang, Raphael Ho; Weijer, Kees; Blom, Bianca; Spits, Hergen; Chen, Irvin S. Y.; Uittenbogaart, Christel H.

    2007-01-01

    The goal of this study was to develop a small-animal model to study human immunodeficiency virus type 1 (HIV-1) pathogenesis in blood and primary and secondary lymphoid organs. Rag2(-/-)gamma(c)(-/-) mice that are neonatally injected with human CD34(+) cells develop a functional human immune system

  6. Quantitation of human immunodeficiency virus type 1 in breast milk.

    Science.gov (United States)

    Ghosh, M K; Kuhn, L; West, J; Semrau, K; Decker, D; Thea, D M; Aldrovandi, G M

    2003-06-01

    The distribution and stability of human immunodeficiency virus type 1 (HIV-1) in breast milk (BM) components remain largely unknown. Inhibitory effects, if any, of BM on HIV RNA and DNA PCR amplification are poorly understood. We have addressed these issues by using virus-spiked BM samples from HIV-negative women. BM samples from HIV-negative women were spiked with HIV-1 virions or cells containing a single integrated copy of HIV DNA (8E5/LAV). After incubation under different experimental conditions, viral RNA was detected by the Roche Amplicor UltraSensitive assay in whole-milk, skim milk, and lipid fractions. We found excellent correlation between HIV-1 input copy and recovery in whole milk (r = 0.965, P milk (r = 0.972, P 0.982). The effects of incubation duration and temperature and repeated freeze-thaw cycles on HIV RNA recovery were analyzed. HIV RNA levels were remarkably stable in whole milk after three freeze-thaw cycles and for up to 30 h at room temperature. Our findings improve the understanding of the dynamics of HIV detection in BM and the conditions for BM sample collection, storage, and processing.

  7. Changes in the topology of gene expression networks by human immunodeficiency virus type 1 (HIV-1) integration in macrophages.

    Science.gov (United States)

    Soto-Girón, María Juliana; García-Vallejo, Felipe

    2012-01-01

    One key step of human immunodeficiency virus type 1 (HIV-1) infection is the integration of its viral cDNA. This process is mediated through complex networks of host-virus interactions that alter several normal cell functions of the host. To study the complexity of disturbances in cell gene expression networks by HIV-1 integration, we constructed a network of human macrophage genes located close to chromatin regions rich in proviruses. To perform the network analysis, we selected 28 genes previously identified as the target of cDNA integration and their transcriptional profiles were obtained from GEO Profiles (NCBI). A total of 2770 interactions among the 28 genes located around the HIV-1 proviruses in human macrophages formed a highly dense main network connected to five sub-networks. The overall network was significantly enriched by genes associated with signal transduction, cellular communication and regulatory processes. To simulate the effects of HIV-1 integration in infected macrophages, five genes with the most number of interaction in the normal network were turned off by putting in zero the correspondent expression values. The HIV-1 infected network showed changes in its topology and alteration in the macrophage functions reflected in a re-programming of biosynthetic and general metabolic process. Understanding the complex virus-host interactions that occur during HIV-1 integration, may provided valuable genomic information to develop new antiviral treatments focusing on the management of some specific gene expression networks associated with viral integration. This is the first gene network which describes the human macrophages genes interactions related with HIV-1 integration. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Role of the DIS hairpin in replication of human immunodeficiency virus type 1

    NARCIS (Netherlands)

    Berkhout, B.; van Wamel, J. L.

    1996-01-01

    The virion-associated genome of human immunodeficiency virus type 1 consists of a noncovalently linked dimer of two identical, unspliced RNA molecules. A hairpin structure within the untranslated leader transcript is postulated to play a role in RNA dimerization through base pairing of the

  9. A historical perspective of influenza A(H1N2) virus.

    Science.gov (United States)

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals.

  10. The use of human cornea organotypic cultures to study herpes simplex virus type 1 (HSV-1)-induced inflammation.

    Science.gov (United States)

    Drevets, Peter; Chucair-Elliott, Ana; Shrestha, Priyadarsini; Jinkins, Jeremy; Karamichos, Dimitrios; Carr, Daniel J J

    2015-10-01

    To determine the utility of human organotypic cornea cultures as a model to study herpes simplex virus type 1 (HSV-1)-induced inflammation and neovascularization. Human organotypic cornea cultures were established from corneas with an intact limbus that were retrieved from donated whole globes. One cornea culture was infected with HSV-1 (10(4) plaque-forming units), while the other cornea from the same donor was mock-infected. Supernatants were collected at intervals post-culture with and without infection to determine viral titer (by plaque assay) and pro-angiogenic and proinflammatory cytokine concentration by suspension array analysis. In some experiments, the cultured corneas were collected and evaluated for HSV-1 antigens by immunohistochemical means. Another set of experiments measured susceptibility of human three-dimensional cornea fibroblast constructs, in the presence and absence of TGF-β1, to HSV-1 infection in terms of viral replication and the inflammatory response to infection as a comparison to the organotypic cornea cultures. Organotypic cornea cultures and three-dimensional fibroblast constructs exhibited varying degrees of susceptibility to HSV-1. Fibroblast constructs were more susceptible to infection in terms of infectious virus recovered in a shorter period of time. There were changes in the levels of select pro-angiogenic or proinflammatory cytokines that were dictated as much by the cultures producing them as by whether they were infected with HSV-1 or treated with TGF-β1. Organotypic cornea and three-dimensional fibroblast cultures are likely useful for the identification and short-term study of novel antiviral compounds and virus replication, but are limited in the study of the local immune response to infection.

  11. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, M. van; Koopmans, M.; Du Ry van Beest Holle, M.; Meijer, Adam; Klinkenberg, D.; Donnelly, C.A.; Heesterbeek, J.A.P.

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  12. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, van R.M.; Koopmans, M.; Du Ry Beest Holle, van M.; Meijer, A.; Klinkenberg, D.; Donnelly, C.; Heesterbeek, J.A.P.

    2007-01-01

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  13. Etiology and clinical characterization of respiratory virus infections in adult patients attending an emergency department in Beijing.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Yu

    Full Text Available BACKGROUND: Acute respiratory tract infections (ARTIs represent a serious global health burden. To date, few reports have addressed the prevalence of respiratory viruses (RVs in adults with ARTIs attending an emergency department (ED. Therefore, the potential impact of respiratory virus infections on such patients remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: To determine the epidemiological and clinical profiles of common and recently discovered respiratory viruses in adults with ARTIs attending an ED in Beijing, a 1-year consecutive study was conducted from May, 2010, to April, 2011. Nose and throat swab samples from 416 ARTI patients were checked for 13 respiratory viruses using multiple reverse transcription polymerase chain reaction(RT-PCR assays for common respiratory viruses, including influenza viruses (Flu A, B, and adenoviruses (ADVs, picornaviruses (PICs, respiratory syncytial virus (RSV, parainfluenza viruses (PIVs 1-3, combined with real-time RT-PCR for human metapneumovirus (HMPV and human coronaviruses (HCoVs, -OC43, -229E, -NL63, and -HKU1. Viral pathogens were detected in 52.88% (220/416 of patient samples, and 7.21% (30/416 of patients tested positive for more than one virus. PICs (17.79% were the dominant agents detected, followed by FluA (16.11%, HCoVs (11.78%, and ADV (11.30%. HMPV, PIVs, and FluB were also detected (<3%, but not RSV. The total prevalence and the dominant virus infections detected differed significantly between ours and a previous report. Co-infection rates were high for HCoV-229E (12/39, 30.76%, PIC (22/74, 29.73%, ADV (12/47, 25.53% and FluA (15/67, 22.39%. Different patterns of clinical symptoms were associated with different respiratory viruses. CONCLUSIONS: The pattern of RV involvement in adults with ARTIs attending an ED in China differs from that previously reported. The high prevalence of viruses (PIC, FluA, HCoVs and ADV reported here strongly highlight the need for the development of safe and

  14. Viral gene products and replication of the human immunodeficiency type 1 virus.

    Science.gov (United States)

    Morrow, C D; Park, J; Wakefield, J K

    1994-05-01

    The acquired immunodeficiency syndrome (AIDS) epidemic represents a modern-day plague that has not only resulted in a tragic loss of people from a wide spectrum of society but has reshaped our viewpoints regarding health care, the treatment of infectious diseases, and social issues regarding sexual behavior. There is little doubt now that the cause of the disease AIDS is a virus known as the human immunodeficiency virus (HIV). The HIV virus is a member of a large family of viruses termed retroviruses, which have as a hallmark the capacity to convert their RNA genome into a DNA form that then undergoes a process of integration into the host cell chromosome, followed by the expression of the viral genome and translation of viral proteins in the infected cell. This review describes the organization of the HIV-1 viral genome, the expression of viral proteins, as well as the functions of the accessory viral proteins in HIV replication. The replication of the viral genome is divided into two phases, the early phase and the late phase. The early phase consists of the interaction of the virus with the cell surface receptor (CD4 molecule in most cases), the uncoating and conversion of the viral RNA genome into a DNA form, and the integration into the host cell chromosome. The late phase consists of the expression of the viral proteins from the integrated viral genome, the translation of viral proteins, and the assembly and release of the virus. Points in the HIV-1 life cycle that are targets for therapeutic intervention are also discussed.

  15. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    Science.gov (United States)

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  16. A riboswitch regulates RNA dimerization and packaging in human immunodeficiency virus type 1 virions

    NARCIS (Netherlands)

    Ooms, Marcel; Huthoff, Hendrik; Russell, Rodney; Liang, Chen; Berkhout, Ben

    2004-01-01

    The genome of retroviruses, including human immunodeficiency virus type I (HIV-1), consists of two identical RNA strands that are packaged as noncovalently linked dimers. The core packaging and dimerization signals are located in the downstream part of the untranslated leader of HIV-1 RNA-the Psi

  17. Haemophilus parainfluenzae Endocarditis Associated With Maxillary Sinusitis and Complicated by Cerebral Emboli in a Young Man

    Directory of Open Access Journals (Sweden)

    Anthony E. Duzenli MD

    2017-04-01

    Full Text Available HACEK endocarditis is often difficult to diagnose given the slow-growing characteristics of the organisms involved. Haemophilus parainfluenzae, one of the HACEK organisms, is an uncommon cause of endocarditis. We describe a case of a previously healthy young man with H parainfluenzae endocarditis that was associated with maxillary sinusitis and severe systemic complications, including septic cerebral emboli and mitral valve perforation. Previously reported cases have also described a predilection for younger people, cardiac valve pathology, and a high prevalence of stroke.

  18. Persistence of hepatitis C virus in a white population: associations with human leukocyte antigen class 1.

    LENUS (Irish Health Repository)

    Fanning, Liam J

    2012-02-03

    The aim of this study was to define novel associations between human leukocyte antigen (HLA) class 1 alleles and persistence or clearance of the hepatitis C virus (HCV) in a white population. All individuals in the study were seropositive for anti-HCV antibodies. Viral status was determined by the Roche HCV Amplicor test. HLA-A, -B, -C allelic group profile was molecularly defined by reverse line probe hybridization. The strongest individual allelic group associations with persistent HCV infection were HLA A*11 (p = 0.044) and Cw*04 (p = 0.006). However, only the HLA C*04 association survived correction for multiple comparisons. Further analysis of alleles in linkage with HLA Cw*04 revealed that the haplotype HLA A*11, Cw*04 was present in 11 individuals, 10 of whom were viremic (p = 0.05). No gene dosage effect was observed. No association between HLA class 1 allelic groups and aviremia and virus load was evident in this white population. HLA B*44 is associated with low virus load in human immunodeficiency virus disease, but this association was not evident in this HCV-infected population. Novel HLA class 1 alleles associated with persistence of HCV have been identified.

  19. Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism.

    Science.gov (United States)

    Shipley, Mackenzie M; Mangold, Colleen A; Kuny, Chad V; Szpara, Moriah L

    2017-12-01

    Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitro IMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and, in rare

  20. Theories about evolutionary origins of human hepatitis B virus in primates and humans.

    Science.gov (United States)

    Souza, Breno Frederico de Carvalho Dominguez; Drexler, Jan Felix; Lima, Renato Santos de; Rosário, Mila de Oliveira Hughes Veiga do; Netto, Eduardo Martins

    2014-01-01

    The human hepatitis B virus causes acute and chronic hepatitis and is considered one of the most serious human health issues by the World Health Organization, causing thousands of deaths per year. There are similar viruses belonging to the Hepadnaviridae family that infect non-human primates and other mammals as well as some birds. The majority of non-human primate virus isolates were phylogenetically close to the human hepatitis B virus, but like the human genotypes, the origins of these viruses remain controversial. However, there is a possibility that human hepatitis B virus originated in primates. Knowing whether these viruses might be common to humans and primates is crucial in order to reduce the risk to humans. To review the existing knowledge about the evolutionary origins of viruses of the Hepadnaviridae family in primates. This review was done by reading several articles that provide information about the Hepadnaviridae virus family in non-human primates and humans and the possible origins and evolution of these viruses. The evolutionary origin of viruses of the Hepadnaviridae family in primates has been dated back to several thousand years; however, recent analyses of genomic fossils of avihepadnaviruses integrated into the genomes of several avian species have suggested a much older origin of this genus. Some hypotheses about the evolutionary origins of human hepatitis B virus have been debated since the '90s. One theory suggested a New World origin because of the phylogenetic co-segregation between some New World human hepatitis B virus genotypes F and H and woolly monkey human hepatitis B virus in basal sister-relationship to the Old World non-human primates and human hepatitis B virus variants. Another theory suggests an Old World origin of human hepatitis B virus, and that it would have been spread following prehistoric human migrations over 100,000 years ago. A third theory suggests a co-speciation of human hepatitis B virus in non-human primate

  1. [Human Metapneumovirus (hMPV) associated to severe bronchial asthmatic crisis].

    Science.gov (United States)

    López, M A; Kusznierz, G F; Imaz, M S; Cociglio, R; Tedeschi, F A; Zalazar, F E

    2006-01-01

    Human Metapneumovirus (hMPV) is a recently reported agent of acute infection in the respiratory tract. It has been found in children as well as in young adults and elders. The clinical manifestations produced by hMPV are indistinguishable from those by common respiratory virus, and can evolve from asymptomatic infection into severe pneumonia. On the other hand, some authors have described cases of bronchial asthma exacerbation associated with hMPV infection. In this work we report a case of a child who presented a severe bronchial asthmatic crisis with a suspected viral associated infection. Immunofluorescence tests yielded negative results for sincitial respiratory virus, adenovirus, a-b influenza virus and parainfluenza 1, 2, 3, virus. In an attempt to detect the presence of hMPV, a RT-PCR was carried out to amplify sequences from both N and F genes. Using this approach, a positive result for hMPV was obtained. To our knowledge, this is the first description of a case of asthma exacerbation associated to hMPV in our region. In addition, these results are similar to previous reports where it was hypothesized that, like RSV, hMPV can trigger a respiratory chronic disease as asthma.

  2. A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918

    Directory of Open Access Journals (Sweden)

    Carter Robert W

    2012-10-01

    Full Text Available Abstract Background The H1N1 influenza A virus has been circulating in the human population for over 95 years, first manifesting itself in the pandemic of 1917–1918. Initial mortality was extremely high, but dropped exponentially over time. Influenza viruses have high mutation rates, and H1N1 has undergone significant genetic changes since 1918. The exact nature of H1N1 mutation accumulation over time has not been fully explored. Methods We have made a comprehensive historical analysis of mutational changes within H1N1 by examining over 4100 fully-sequenced H1N1 genomes. This has allowed us to examine the genetic changes arising within H1N1 from 1918 to the present. Results We document multiple extinction events, including the previously known extinction of the human H1N1 lineage in the 1950s, and an apparent second extinction of the human H1N1 lineage in 2009. These extinctions appear to be due to a continuous accumulation of mutations. At the time of its disappearance in 2009, the human H1N1 lineage had accumulated over 1400 point mutations (more than 10% of the genome, including approximately 330 non-synonymous changes (7.4% of all codons. The accumulation of both point mutations and non-synonymous amino acid changes occurred at constant rates (μ = 14.4 and 2.4 new mutations/year, respectively, and mutations accumulated uniformly across the entire influenza genome. We observed a continuous erosion over time of codon-specificity in H1N1, including a shift away from host (human, swine, and bird [duck] codon preference patterns. Conclusions While there have been numerous adaptations within the H1N1 genome, most of the genetic changes we document here appear to be non-adaptive, and much of the change appears to be degenerative. We suggest H1N1 has been undergoing natural genetic attenuation, and that significant attenuation may even occur during a single pandemic. This process may play a role in natural pandemic cessation and has apparently

  3. Spirometry filters can be used to detect exhaled respiratory viruses.

    Science.gov (United States)

    Mitchell, Alicia B; Mourad, Bassel; Tovey, Euan; Buddle, Lachlan; Peters, Matthew; Morgan, Lucy; Oliver, Brian G

    2016-09-26

    Respiratory viruses are very common in the community and contribute to the burden of illness for patients with chronic respiratory diseases, including acute exacerbations. Traditional sampling methods are invasive and problematic to repeat. Accordingly, we explored whether respiratory viruses could be isolated from disposable spirometry filters and whether detection of viruses in this context represented presence in the upper or lower respiratory tract. Discovery (n  =  53) and validation (n  =  49) cohorts were recruited from a hospital outpatient department during two different time periods. Spirometry mouthpiece filters were collected from all participants. Respiratory secretions were sampled from the upper and lower respiratory tract by nasal washing (NW), sputum, and bronchoalveolar lavage (BAL). All samples were examined using RT-PCR to identify a panel of respiratory viruses (rhinovirus, respiratory syncytial virus, influenza A, influenza B, parainfluenza virus 1, 2 & 3, and human metapneumovirus). Rhinovirus was quantified using qPCR. Paired filter-NW samples (n  =  29), filter-sputum samples (n  =  24), filter-BAL samples (n  =  39) and filter-NW-BAL samples (n  =  10) provided a range of comparisons. At least one virus was detected in any sample in 85% of participants in the discovery cohort versus 45% in the validation cohort. Overall, 72% of viruses identified in the paired comparator method matched those detected in spirometry filters. There was a high correlation between viruses identified in spirometry filters compared with viruses identified in both the upper and lower respiratory tract using traditional sampling methods. Our results suggest that examination of spirometry filters may be a novel and inexpensive sampling method for the presence of respiratory viruses in exhaled breath.

  4. Genetic Reassortment Among the Influenza Viruses (Avian Influenza, Human Influenza and Swine Influenza in Pigs

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-12-01

    Full Text Available Influenza A virus is a hazardous virus and harm to respiratory tract. The virus infect birds, pigs, horses, dogs, mammals and humans. Pigs are important hosts in ecology of the influenza virus because they have two receptors, namely NeuAc 2,3Gal and NeuAc 2,6Gal which make the pigs are sensitive to infection of influenza virus from birds and humans and genetic reassortment can be occurred. Classical swine influenza H1N1 viruses had been circulated in pigs in North America and other countries for 80 years. In 1998, triple reassortant H3N2 swine influenza viruses that contains genes of human influenza A virus (H3N2, swine influenza virus (H1N1 and avian influenza are reported as cause an outbreaks in pigs in North America. Furthermore, the circulation of triple reassortant H3N2 swine influenza virus resulting reassortant H1N1 swine influenza and reassortant H1N2 swine influenza viruses cause infection in humans. Humans who were infected by triple reassortant swine influenza A virus (H1N1 usually made direct contact with pigs. Although without any clinical symptoms, pigs that are infected by triple reassortant swine influenza A (H1N1 can transmit infection to the humans around them. In June 2009, WHO declared that pandemic influenza of reassortant H1N1 influenza A virus (novel H1N1 has reached phase 6. In Indonesia until 2009, there were 1005 people were infected by H1N1 influenza A and 5 of them died. Novel H1N1 and H5N1 viruses have been circulated in humans and pigs in Indonesia. H5N1 reassortant and H1N1 viruses or the seasonal flu may could arise because of genetic reassortment between avian influenza and humans influenza viruses that infect pigs together.

  5. [Phylogenetic analysis of human/swine/avian gene reassortant H1N2 influenza A virus isolated from a pig in China].

    Science.gov (United States)

    Chen, Yixiang; Meng, Xueqiong; Liu, Qi; Huang, Xia; Huang, Shengbin; Liu, Cuiquan; Shi, Kaichuang; Guo, Jiangang; Chen, Fangfang; Hu, Liping

    2008-04-01

    Our aim in this study was to determine the genetic characterization and probable origin of the H1N2 swine influenza virus (A/Swine/Guangxi/13/2006) (Sw/GX/13/06) from lung tissue of a pig in Guangxi province, China. Eight genes of Sw/GX/13/06 were cloned and genetically analyzed. The hemagglutinin (HA), nucleoprotein (NP), matrix (M) and non-structural (NS) genes of Sw/GX/13/06 were most closely related to genes from the classical swine H1N1 influenza virus lineage. The neuraminidase (NA) and PB1 genes were most closely related to the corresponding genes from the human influenza H3N2 virus lineage. The remaining two genes PA and PB2 polymerase genes were most closely related to the genes from avian influenza virus lineage. Phylogenetic analyses revealed that Sw/GX/13/06 was a human/swine/avian H1N2 virus, and closely related to H1N2 viruses isolated from pigs in United States (1999-2001) and Korea (2002). To our knowledge, Sw/GX/13/06 was the first triple-reassortant H1N2 influenza A virus isolated from a pig in China. Whether the Sw/GX/13/06 has a potential threat to breeding farm and human health remains to be further investigated.

  6. Assessing Human Immunodeficiency Virus Type 1 Tropism: Comparison of Assays Using Replication-Competent Virus versus Plasma-Derived Pseudotyped Virions ▿

    Science.gov (United States)

    Hosoya, Noriaki; Su, Zhaohui; Wilkin, Timothy; Gulick, Roy M.; Flexner, Charles; Hughes, Michael D.; Skolnik, Paul R.; Giguel, Françoise; Greaves, Wayne L.; Coakley, Eoin; Kuritzkes, Daniel R.

    2009-01-01

    Detection of CXCR4-using human immunodeficiency virus by the Trofile assay was compared to that by assays using virus isolates or replication-competent recombinants. Concordance with the Trofile assay was good, but assays using replicating viruses did not increase substantially the ability to detect the presence of CXCR4-using virus. PMID:19494074

  7. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses

    NARCIS (Netherlands)

    D.A.J. van Riel (Debby); M.A. den Bakker (Michael); L.M.E. Leijten (Lonneke); S. Chutinimitkul (Salin); V.J. Munster (Vincent); E. de Wit (Emmie); G.F. Rimmelzwaan (Guus); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2010-01-01

    textabstractInfluenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by

  8. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...

  9. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt.

    Directory of Open Access Journals (Sweden)

    Yohei Watanabe

    2011-05-01

    Full Text Available Highly pathogenic avian influenza A virus subtype H5N1 is currently widespread in Asia, Europe, and Africa, with 60% mortality in humans. In particular, since 2009 Egypt has unexpectedly had the highest number of human cases of H5N1 virus infection, with more than 50% of the cases worldwide, but the basis for this high incidence has not been elucidated. A change in receptor binding affinity of the viral hemagglutinin (HA from α2,3- to α2,6-linked sialic acid (SA is thought to be necessary for H5N1 virus to become pandemic. In this study, we conducted a phylogenetic analysis of H5N1 viruses isolated between 2006 and 2009 in Egypt. The phylogenetic results showed that recent human isolates clustered disproportionally into several new H5 sublineages suggesting that their HAs have changed their receptor specificity. Using reverse genetics, we found that these H5 sublineages have acquired an enhanced binding affinity for α2,6 SA in combination with residual affinity for α2,3 SA, and identified the amino acid mutations that produced this new receptor specificity. Recombinant H5N1 viruses with a single mutation at HA residue 192 or a double mutation at HA residues 129 and 151 had increased attachment to and infectivity in the human lower respiratory tract but not in the larynx. These findings correlated with enhanced virulence of the mutant viruses in mice. Interestingly, these H5 viruses, with increased affinity to α2,6 SA, emerged during viral diversification in bird populations and subsequently spread to humans. Our findings suggested that emergence of new H5 sublineages with α2,6 SA specificity caused a subsequent increase in human H5N1 influenza virus infections in Egypt, and provided data for understanding the virus's pandemic potential.

  10. Detection of viruses and atypical bacteria associated with acute respiratory infection of children in Hubei, China.

    Science.gov (United States)

    Wu, Zegang; Li, Yan; Gu, Jian; Zheng, Hongyun; Tong, Yongqing; Wu, Qing

    2014-02-01

    Acute respiratory infection is the major cause of disease and death in children, particularly in developing countries. However, the spectrum of pathogenic viruses and atypical bacteria that exist in many of these countries remains incompletely characterized. The aim of this study was to examine the spectrum of pathogenic viruses and atypical bacteria associated with acute respiratory infection in children under the age of 16. A total of 10 435 serum sera specimens were collected from hospitalized children presenting with acute respiratory infection symptoms. Indirect immunofluorescence assays were performed to detect immunoglobulin M antibodies against nine common pathogens: mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila, coxiella burnetii and chamydophila pneumonia. Of the 10 435 specimens examined, 7046 tested positive for at least one pathogen. Among all of the tested pathogens, mycoplasma pneumonia had the highest detection rate (56.9%). Influenza virus A and influenza virus B epidemics occurred during both winter and summer. The detection rate of respiratory syncytial virus and adenovirus was higher in spring. Cases of mixed infection were more complex: 4136 specimens (39.6%) tested positive for ≥2 pathogens. There were statistically significant difference in detection rates of mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila and chamydophila pneumonia among different age groups (P acute respiratory infection among children in Hubei of China were mycoplasma pneumonia, influenza virus B and respiratory syncytial virus. The detection rates for each pathogen displayed specific seasonal and age group variations. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  11. Theories about evolutionary origins of human hepatitis B virus in primates and humans

    Directory of Open Access Journals (Sweden)

    Breno Frederico de Carvalho Dominguez Souza

    2014-09-01

    Conclusion: Some hypotheses about the evolutionary origins of human hepatitis B virus have been debated since the ‘90s. One theory suggested a New World origin because of the phylogenetic co-segregation between some New World human hepatitis B virus genotypes F and H and woolly monkey human hepatitis B virus in basal sister-relationship to the Old World non-human primates and human hepatitis B virus variants. Another theory suggests an Old World origin of human hepatitis B virus, and that it would have been spread following prehistoric human migrations over 100,000 years ago. A third theory suggests a co-speciation of human hepatitis B virus in non-human primate hosts because of the proximity between the phylogeny of Old and New World non-human primate and their human hepatitis B virus variants. The importance of further research, related to the subject in South American wild fauna, is paramount and highly relevant for understanding the origin of human hepatitis B virus.

  12. Evaluation of the suitability of a plant virus, pepper mild mottle virus, as a surrogate of human enteric viruses for assessment of the efficacy of coagulation-rapid sand filtration to remove those viruses.

    Science.gov (United States)

    Shirasaki, N; Matsushita, T; Matsui, Y; Yamashita, R

    2018-02-01

    Here, we evaluated the removal of three representative human enteric viruses - adenovirus (AdV) type 40, coxsackievirus (CV) B5, and hepatitis A virus (HAV) IB - and one surrogate of human caliciviruses - murine norovirus (MNV) type 1 - by coagulation-rapid sand filtration, using water samples from eight water sources for drinking water treatment plants in Japan. The removal ratios of a plant virus (pepper mild mottle virus; PMMoV) and two bacteriophages (MS2 and φX174) were compared with the removal ratios of human enteric viruses to assess the suitability of PMMoV, MS2, and φX174 as surrogates for human enteric viruses. The removal ratios of AdV, CV, HAV, and MNV, evaluated via the real-time polymerase chain reaction (PCR) method, were 0.8-2.5-log 10 when commercially available polyaluminum chloride (PACl, basicity 1.5) and virgin silica sand were used as the coagulant and filter medium, respectively. The type of coagulant affected the virus removal efficiency, but the age of silica sand used in the rapid sand filtration did not. Coagulation-rapid sand filtration with non-sulfated, high-basicity PACls (basicity 2.1 or 2.5) removed viruses more efficiently than the other aluminum-based coagulants. The removal ratios of MS2 were sometimes higher than those of the three human enteric viruses and MNV, whereas the removal ratios of φX174 tended to be smaller than those of the three human enteric viruses and MNV. In contrast, the removal ratios of PMMoV were similar to and strongly correlated with those of the three human enteric viruses and MNV. Thus, PMMoV appears to be a suitable surrogate for human enteric viruses for the assessment of the efficacy of coagulation-rapid sand filtration to remove viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. R5 strains of human immunodeficiency virus type 1 from rapid progressors lacking X4 strains do not possess X4-type pathogenicity in human thymus

    NARCIS (Netherlands)

    Berkowitz, R. D.; van't Wout, A. B.; Kootstra, N. A.; Moreno, M. E.; Linquist-Stepps, V. D.; Bare, C.; Stoddart, C. A.; Schuitemaker, H.; McCune, J. M.

    1999-01-01

    Some individuals infected with only R5 strains of human immunodeficiency virus type 1 progress to AIDS as quickly as individuals harboring X4 strains. We determined that three R5 viruses were much less pathogenic than an X4 virus in SCID-hu Thy/Liv mice, suggesting that R5 virus-mediated rapid

  14. Herpes Simplex Virus Type-2 and Human Immunodeficiency Virus ...

    African Journals Online (AJOL)

    Objectives: To estimate the seroprevalence of Herpes Simplex Type 2 (HSV-2) and its association with Human Immunodeficiency Virus type 1 (HIV-1) infections in rural Kilimanjaro Tanzania. Methods: A cross-sectional survey was conducted in Oria village from March to June 2005 involving all individuals aged 15-44 years ...

  15. Curcumin ameliorates hippocampal neuron damage induced by human immunodeficiency virus-1

    OpenAIRE

    Tang, Hongmei; Pan, Rui; Fang, Wenli; Xing, Yanyan; Chen, Dexi; Chen, Xiaobao; Yu, Yuanyuan; Wang, Junbing; Gong, Zheng; Xiong, Guoyin; Dong, Jun

    2013-01-01

    Our previous studies have shown that infection with the gp120 V3 loop can cause human immunodeficiency virus-1 associated neurocognitive disorders. Curcumin has been shown to improve these effects to some degree, but the precise mechanisms remain unknown. The present study analyzed the neuroprotective effect and mechanism of curcumin in relation to hippocampal neurons. Results showed that 1 nmol/L gp120 V3 loop suppressed the growth of synapses. After administration of 1 μmol/L curcumin, syna...

  16. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model.

    Science.gov (United States)

    Arunorat, Jirapat; Charoenvisal, Nataya; Woonwong, Yonlayong; Kedkovid, Roongtham; Jittimanee, Supattra; Sitthicharoenchai, Panchan; Kesdangsakonwut, Sawang; Poolperm, Pariwat; Thanawongnuwech, Roongroje

    2017-10-01

    Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Persistence of human immunodeficiency virus type 1 subtype B DNA in dried-blood samples on FTA filter paper.

    Science.gov (United States)

    Li, Chung-Chen; Beck, Ingrid A; Seidel, Kristy D; Frenkel, Lisa M

    2004-08-01

    The stability of human immunodeficiency virus type 1 (HIV-1) DNA in whole blood collected on filter paper (FTA Card) was evaluated. After >4 years of storage at room temperature in the dark our qualitative assay detected virus at a rate similar to that of our initial test (58 of 60, 97%; P = 0.16), suggesting long-term HIV-1 DNA stability.

  18. A human-like H1N2 influenza virus detected during an outbreak of acute respiratory disease in swine in Brazil.

    Science.gov (United States)

    Schaefer, Rejane; Rech, Raquel Rubia; Gava, Danielle; Cantão, Mauricio Egídio; da Silva, Marcia Cristina; Silveira, Simone; Zanella, Janice Reis Ciacci

    2015-01-01

    Passive monitoring for detection of influenza A viruses (IAVs) in pigs has been carried out in Brazil since 2009, detecting mostly the A(H1N1)pdm09 influenza virus. Since then, outbreaks of acute respiratory disease suggestive of influenza A virus infection have been observed frequently in Brazilian pig herds. During a 2010-2011 influenza monitoring, a novel H1N2 influenza virus was detected in nursery pigs showing respiratory signs. The pathologic changes were cranioventral acute necrotizing bronchiolitis to subacute proliferative and purulent bronchointerstitial pneumonia. Lung tissue samples were positive for both influenza A virus and A(H1N1)pdm09 influenza virus based on RT-qPCR of the matrix gene. Two IAVs were isolated in SPF chicken eggs. HI analysis of both swine H1N2 influenza viruses showed reactivity to the H1δ cluster. DNA sequencing was performed for all eight viral gene segments of two virus isolates. According to the phylogenetic analysis, the HA and NA genes clustered with influenza viruses of the human lineage (H1-δ cluster, N2), whereas the six internal gene segments clustered with the A(H1N1)pdm09 group. This is the first report of a reassortant human-like H1N2 influenza virus derived from pandemic H1N1 virus causing an outbreak of respiratory disease in pigs in Brazil. The emergence of a reassortant IAV demands the close monitoring of pigs through the full-genome sequencing of virus isolates in order to enhance genetic information about IAVs circulating in pigs.

  19. Replication of swine and human influenza viruses in juvenile and layer turkey hens.

    Science.gov (United States)

    Ali, Ahmed; Yassine, Hadi; Awe, Olusegun O; Ibrahim, Mahmoud; Saif, Yehia M; Lee, Chang-Won

    2013-04-12

    Since the first reported isolation of swine influenza viruses (SIVs) in turkeys in the 1980s, transmission of SIVs to turkeys was frequently documented. Recently, the 2009 pandemic H1N1 virus, that was thought to be of swine origin, was detected in turkeys with a severe drop in egg production. In this study, we assessed the infectivity of different mammalian influenza viruses including swine, pandemic H1N1 and seasonal human influenza viruses in both juvenile and layer turkeys. In addition, we investigated the potential influenza virus dissemination in the semen of experimentally infected turkey toms. Results showed that all mammalian origin influenza viruses tested can infect turkeys. SIVs were detected in respiratory and digestive tracts of both juvenile and layer turkeys. Variations in replication efficiencies among SIVs were observed especially in the reproductive tract of layer turkeys. Compared to SIVs, limited replication of seasonal human H1N1 and no detectable replication of recent human-like swine H1N2, pandemic H1N1 and seasonal human H3N2 viruses was noticed. All birds seroconverted to all tested viruses regardless of their replication level. In turkey toms, we were able to detect swine H3N2 virus in semen and reproductive tract of infected toms by real-time RT-PCR although virus isolation was not successful. These data suggest that turkey hens could be affected by diverse influenza strains especially SIVs. Moreover, the differences in the replication efficiency we demonstrated among SIVs and between SIV and human influenza viruses in layer turkeys suggest a possible use of turkeys as an animal model to study host tropism and pathogenesis of influenza viruses. Our results also indicate a potential risk of venereal transmission of influenza viruses in turkeys. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Genomic analysis of influenza A virus from captive wild boars in Brazil reveals a human-like H1N2 influenza virus.

    Science.gov (United States)

    Biondo, Natalha; Schaefer, Rejane; Gava, Danielle; Cantão, Mauricio E; Silveira, Simone; Mores, Marcos A Z; Ciacci-Zanella, Janice R; Barcellos, David E S N

    2014-01-10

    Influenza is a viral disease that affects human and several animal species. In Brazil, H1N1, H3N2 and 2009 pandemic H1N1 A(H1N1)pdm09 influenza A viruses (IAV) circulate in domestic swine herds. Wild boars are also susceptible to IAV infection but in Brazil until this moment there are no reports of IAV infection in wild boars or in captive wild boars populations. Herein the occurrence of IAV in captive wild boars with the presence of lung consolidation lesions during slaughter was investigated. Lung samples were screened by RT-PCR for IAV detection. IAV positive samples were further analyzed by quantitative real-time PCR (qRRT-PCR), virus isolation, genomic sequencing, histopathology and immunohistochemistry (IHC). Eleven out of 60 lungs (18.3%) were positive for IAV by RT-PCR and seven out of the eleven were also positive for A(H1N1)pdm09 by qRRT-PCR. Chronic diffuse bronchopneumonia was observed in all samples and IHC analysis was negative for influenza A antigen. Full genes segments of H1N2 IAV were sequenced using Illumina's genome analyzer platform (MiSeq). The genomic analysis revealed that the HA and NA genes clustered with IAVs of the human lineage and the six internal genes were derived from the H1N1pdm09 IAV. This is the first report of a reassortant human-like H1N2 influenza virus infection in captive wild boars in Brazil and indicates the need to monitor IAV evolution in Suidae populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid, Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene

    OpenAIRE

    Casimiro, Danilo R.; Chen, Ling; Fu, Tong-Ming; Evans, Robert K.; Caulfield, Michael J.; Davies, Mary-Ellen; Tang, Aimin; Chen, Minchun; Huang, Lingyi; Harris, Virginia; Freed, Daniel C.; Wilson, Keith A.; Dubey, Sheri; Zhu, De-Min; Nawrocki, Denise

    2003-01-01

    Cellular immune responses, particularly those associated with CD3+ CD8+ cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defecti...

  2. Clustering patterns of cytotoxic T-lymphocyte epitopes in human immunodeficiency virus type 1 (HIV-1) proteins reveal imprints of immune evasion on HIV-1 global variation

    DEFF Research Database (Denmark)

    Yusim, K.; Kesmir, Can; Gaschen, B.

    2002-01-01

    The human cytotoxic T-lymphocyte (CTL) response to human immunodeficiency virus type 1 (HIV-1) has been intensely studied, and hundreds of CTL epitopes have been experimentally defined, published, and compiled in the HIV Molecular Immunology Database. Maps of CTL epitopes on HIV-1 protein sequenc...

  3. Molecular Determinants of Human T-lymphotropic Virus Type 1 Transmission and Spread

    Directory of Open Access Journals (Sweden)

    Patrick L. Green

    2011-07-01

    Full Text Available Human T-lymphotrophic virus type-1 (HTLV-1 infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL, or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.

  4. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs.

    Science.gov (United States)

    Han, Jae Yeon; Park, Sung Jun; Kim, Hye Kwon; Rho, Semi; Nguyen, Giap Van; Song, Daesub; Kang, Bo Kyu; Moon, Hyung Jun; Yeom, Min Joo; Park, Bong Kyun

    2012-05-01

    Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

  5. Establishment of New Transmissible and Drug-Sensitive Human Immunodeficiency Virus Type 1 Wild Types due to Transmission of Nucleoside Analogue-Resistant Virus

    NARCIS (Netherlands)

    Ronde, Anthony de; Dooren, Maaike van; Hoek, Lian van der; Bouwhuis, Denise; Rooij, Esther de; Gemen, Bob van; Boer, R.J. de; Goudsmit, Jaap

    2000-01-01

    Sequence analysis of human immunodeficiency virus type 1 (HIV-1) from 74 persons with acute infections identified eight strains with mutations in the reverse transcriptase (RT) gene at positions 41, 67, 68, 70, 215, and 219 associated with resistance to the nucleoside analogue zidovudine (AZT).

  6. Establishment of new transmissible and drug-sensitive human immunodeficiency virus type 1 wild types due to transmission of nucleoside analogue-resistant virus

    NARCIS (Netherlands)

    de Ronde, A.; van Dooren, M.; van der Hoek, L.; Bouwhuis, D.; de Rooij, E.; van Gemen, B.; de Boer, R.; Goudsmit, J.

    2001-01-01

    Sequence analysis of human immunodeficiency virus type 1 (HIV-1) from 74 persons with acute infections identified eight strains with mutations in the reverse transcriptase (RT) gene at positions 41, 67, 68, 70, 215, and 219 associated with resistance to the nucleoside analogue zidovudine (AZT).

  7. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    Science.gov (United States)

    Yea, Carmen; Cheung, Rose; Collins, Carol; Adachi, Dena; Nishikawa, John; Tellier, Raymond

    2009-01-01

    Although the human parainfluenza virus 4 (HPIV4) has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada). The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97%) with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized. PMID:21994536

  8. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    Directory of Open Access Journals (Sweden)

    Carmen Yea

    2009-06-01

    Full Text Available Although the human parainfluenza virus 4 (HPIV4 has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada. The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97% with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized.

  9. Evolution and adaptation of the pandemic A/H1N1 2009 influenza virus

    Directory of Open Access Journals (Sweden)

    Ducatez MF

    2011-07-01

    Full Text Available Mariette F Ducatez, Thomas P Fabrizio, Richard J WebbyDepartment of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USAAbstract: The emergence of the 2009 H1N1 pandemic influenza virus [A(H1N1pdm09] has provided the public health community with many challenges, but also the scientific community with an opportunity to monitor closely its evolution through the processes of drift and shift. To date, and despite having circulated in humans for nearly two years, little antigenic variation has been observed in the A(H1N1pdm09 viruses. However, as the A(H1N1pdm09 virus continues to circulate and the immunologic pressure within the human population increases, future antigenic change is almost a certainty. Several coinfections of A(H1N1pdm09 and seasonal A(H1N1 or A(H3N2 viruses have been observed, but no reassortant viruses have been described in humans, suggesting a lack of fitness of reassortant viruses or a lack of opportunities for interaction of different viral lineages. In contrast, multiple reassortment events have been detected in swine populations between A(H1N1 pdm09 and other endemic swine viruses. Somewhat surprisingly, many of the well characterized influenza virus virulence markers appear to have limited impact on the phenotype of the A(H1N1pdm09 viruses when they have been introduced into mutant viruses in laboratory settings. As such, it is unclear what the evolutionary path of the pandemic virus will be, but the monitoring of any changes in the circulating viruses will remain a global public and animal health priority.Keywords: influenza, pandemic, evolution, adaptation

  10. Timing of HAART initiation and clinical outcomes in human immunodeficiency virus type 1 seroconverters

    NARCIS (Netherlands)

    Jonsson, Michele; Fusco, Jennifer S.; Cole, Stephen R.; Thomas, James C.; Porter, Kholoud; Kaufman, Jay S.; Davidian, Marie; White, Alice D.; Hartmann, Katherine E.; Eron, Joseph J.; del Amo, Julia; Meyer, Laurence; Bucher, Heiner C.; Chene, Geneviève; Pillay, Deenan; Prins, Maria; Rosinska, Magda; Sabin, Caroline; Touloumi, Giota; Lodi, Sara; Coughlin, Kate; Walker, Sarah; Babiker, Abdel; de Luca, Andrea; Fisher, Martin; Muga, Roberto; Kaldor, John; Kelleher, Tony; Ramacciotti, Tim; Gelgor, Linda; Cooper, David; Smith, Don; Gill, John; Jørgensen, Louise Bruun; Nielsen, Claus; Pedersen, Court; Lutsar, Irja; Dabis, Francois; Thiebaut, Rodolphe; Masquelier, Bernard; Costagliola, Dominique; Guiguet, Marguerite; Vanhems, Philippe; Chaix, Marie-Laure; Ghosn, Jade; Boufassa, Faroudy; Hamouda, Osamah; Geskus, Ronald; van der Helm, Jannie; Schuitemaker, Hanneke

    2011-01-01

    To estimate the clinical benefit of highly active antiretroviral therapy (HAART) initiation vs deferral in a given month in patients with CD4 cell counts less than 800/μL. In this observational cohort study of human immunodeficiency virus type 1 seroconverters from CASCADE (Concerted Action on

  11. Human antibodies that neutralize primary human immunodeficiency virus type 1 in vitro do not provide protection in an in vivo model.

    NARCIS (Netherlands)

    M. Schutten (Martin); K. Tenner-Racz; P. Racz; D.W. van Bekkum (Dirk); A.D.M.E. Osterhaus (Albert)

    1996-01-01

    textabstractRecently, conflicting data have been published about the ability of antibodies which efficiently neutralize T cell-adapted human immunodeficiency virus type 1 (HIV-1) strains to neutralize primary HIV-1 strains in vitro and in vivo. Here we present data indicating that such antibodies

  12. Human papilloma virus vaccine associated uveitis.

    Science.gov (United States)

    Holt, Henry D; Hinkle, David M; Falk, Naomi S; Fraunfelder, Frederick T; Fraunfelder, Frederick W

    2014-03-01

    To report a possible association between human papilloma virus (HPV) vaccination and uveitis. Spontaneous reports from the National Registry of Drug-Induced Ocular Side effects, World Health Organization and Food and Drug Administration were collected on uveitis associated with human papilloma virus vaccination. A MEDLINE search was performed using keywords "uveitis," "iritis," "iridocyclitis," "human papilloma virus," "Cervarix", and "Gardasil." Data garnered from spontaneous reports included the age, gender, adverse drug reaction (ADR), date of administration, concomitant administration of other vaccinations, time until onset of ADR, other systemic reactions, and dechallenge and rechallenge data. A total of 24 case reports of uveitis associated with human papilloma virus vaccination were identified, all cases were female, and the median age was 17. Median time from HPV vaccination to reported ADR was 30 days (range 0-476 days). According to World Health Organization criteria, the relationship between human papilloma virus vaccination and uveitis is "possible." Causality assessments are based on the time relationship of drug administration, uveitis development and re-challenge data. Clinicians should be aware of a possible bilateral uveitis and papillitis following HPV vaccination.

  13. Solubilization of glycoproteins of envelope viruses by detergents

    International Nuclear Information System (INIS)

    Berezin, V.E.; Zaides, V.M.; Artamsnov, A.F.; Isaeva, E.S.; Zhdanov, V.M.

    1986-01-01

    The action of a number of known ionic and nonionic detergents, as well as the new nonionic detergent MESK, on envelope viruses was investigated. It was shown that the nonionic detergents MESK, Triton X-100, and octyl-β-D-glucopyranoside selectively solubilize the outer glycoproteins of the virus particles. The nonionic detergent MESK has the mildest action. Using MESK, purified glycoproteins of influenza, parainfluenza, Venezuelan equine encephalomyelitis, vesicular stomatitis, rabies, and herpes viruses were obtained. The procedure for obtaining glycoproteins includes incubation of the virus suspension with the detergent MESK, removal of subvirus structures by centrifuging, and purification of glycoproteins from detergents by dialysis. Isolated glycoproteins retain a native structure and biological activity and possess high immunogenicity. The detergent MESK is promising for laboratory tests and with respect to the production of subunit vaccines

  14. Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells

    International Nuclear Information System (INIS)

    Wang Enxiu; Obeng-Adjei, Nyamekye; Ying Qihua; Meertens, Laurent; Dragic, Tanya; Davey, Robert A.; Ross, Susan R.

    2008-01-01

    Mouse mammary tumor virus (MMTV) is a pH-dependent virus that uses mouse transferrin receptor 1 (TfR1) for entry into cells. Previous studies demonstrated that MMTV could induce pH 5-dependent fusion-from-with of mouse cells. Here we show that the MMTV envelope-mediated cell-cell fusion requires both the entry receptor and low pH (pH 5). Although expression of the MMTV envelope and TfR1 was sufficient to mediate low pH-dependent syncytia formation, virus infection required trafficking to a low pH compartment; infection was independent of cathepsin-mediated proteolysis. Human TfR1 did not support virus infection, although envelope-mediated syncytia formation occurred with human cells after pH 5 treatment and this fusion depended on TfR1 expression. However, although the MMTV envelope bound human TfR1, virus was only internalized and trafficked to a low pH compartment in cells expressing mouse TfR1. Thus, while human TfR1 supported cell-cell fusion, because it was not internalized when bound to MMTV, it did not function as an entry receptor. Our data suggest that MMTV uses TfR1 for all steps of entry: cell attachment, induction of the conformational changes in Env required for membrane fusion and internalization to an appropriate acidic compartment

  15. Characterization of an artificial swine-origin influenza virus with the same gene combination as H1N1/2009 virus: a genesis clue of pandemic strain.

    Science.gov (United States)

    Zhao, Xueli; Sun, Yipeng; Pu, Juan; Fan, Lihong; Shi, Weimin; Hu, Yanxin; Yang, Jun; Xu, Qi; Wang, Jingjing; Hou, Dongjun; Ma, Guangpeng; Liu, Jinhua

    2011-01-01

    Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1) with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus). Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.

  16. Characterization of an artificial swine-origin influenza virus with the same gene combination as H1N1/2009 virus: a genesis clue of pandemic strain.

    Directory of Open Access Journals (Sweden)

    Xueli Zhao

    Full Text Available Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1 with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus. Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.

  17. Human cytomegalovirus and Epstein-Barr virus type 1 in periodontal abscesses.

    Science.gov (United States)

    Saygun, I; Yapar, M; Ozdemir, A; Kubar, A; Slots, J

    2004-04-01

    Recent studies have linked herpesviruses to severe types of periodontal disease, but no information exists on their relationship to periodontal abscesses. The present study determined the presence of human cytomegalovirus (HCMV) and Epstein-Barr virus type 1 (EBV-1) in periodontal abscesses and the effect of treatment on the subgingival occurrence of these viruses. Eighteen adults with periodontal abscesses participated in the study. Subgingival samples were collected from each patient with sterile curettes from an abscess-affected site and a healthy control site. HCMV and EBV-1 were identified by polymerase chain reaction at the time of the abscess and at 4 months after surgical and systemic doxycycline therapy. HCMV was detected in 66.7% of periodontal abscess sites and in 5.6% of healthy sites (P=0.002). EBV-1 occurred in 72.2% of abscess sites but not in any healthy site (Pabscess sites. Posttreatment, HCMV and EBV-1 were not found in any study site. HCMV and EBV-1 genomes are commonly found in periodontal abscesses. These data favor a model in which a herpesvirus infection of the periodontium impairs the host defense and serves as a platform for the entrance of bacterial pathogens into gingival tissue with subsequent risk of abscess development.

  18. Vaccinia virus recombinants expressing chimeric proteins of human immunodeficiency virus and gamma interferon are attenuated for nude mice.

    OpenAIRE

    Giavedoni, L D; Jones, L; Gardner, M B; Gibson, H L; Ng, C T; Barr, P J; Yilma, T

    1992-01-01

    We have developed a method for attenuating vaccinia virus recombinants by expressing a fusion protein of a lymphokine and an immunogen. Chimeric genes were constructed that coded for gamma interferon (IFN-gamma) and structural proteins of the human immunodeficiency virus type 1 (HIV-1). In this study, we describe the biological and immunological properties of vaccinia virus recombinants expressing chimeric genes of murine or human IFN-gamma with glycoprotein gp120, gag, and a fragment of gp41...

  19. RNASEK is required for internalization of diverse acid-dependent viruses.

    Science.gov (United States)

    Hackett, Brent A; Yasunaga, Ari; Panda, Debasis; Tartell, Michael A; Hopkins, Kaycie C; Hensley, Scott E; Cherry, Sara

    2015-06-23

    Viruses must gain entry into cells to establish infection. In general, viruses enter either at the plasma membrane or from intracellular endosomal compartments. Viruses that use endosomal pathways are dependent on the cellular factors that control this process; however, these genes have proven to be essential for endogenous cargo uptake, and thus are of limited value for therapeutic intervention. The identification of genes that are selectively required for viral uptake would make appealing drug targets, as their inhibition would block an early step in the life cycle of diverse viruses. At this time, we lack pan-antiviral therapeutics, in part because of our lack of knowledge of such cellular factors. RNAi screening has begun to reveal previously unknown genes that play roles in viral infection. We identified dRNASEK in two genome-wide RNAi screens performed in Drosophila cells against West Nile and Rift Valley Fever viruses. Here we found that ribonuclease kappa (RNASEK) is essential for the infection of human cells by divergent and unrelated positive- and negative-strand-enveloped viruses from the Flaviviridae, Togaviridae, Bunyaviridae, and Orthomyxoviridae families that all enter cells from endosomal compartments. In contrast, RNASEK was dispensable for viruses, including parainfluenza virus 5 and Coxsackie B virus, that enter at the plasma membrane. RNASEK is dispensable for attachment but is required for uptake of these acid-dependent viruses. Furthermore, this requirement appears specific, as general endocytic uptake of transferrin is unaffected in RNASEK-depleted cells. Therefore, RNASEK is a potential host cell Achilles' heel for viral infection.

  20. Induction of immunity to human immunodeficiency virus type-1 by vaccination.

    Science.gov (United States)

    McElrath, M Juliana; Haynes, Barton F

    2010-10-29

    Recent findings have brought optimism that development of a successful human immunodeficiency virus type-1 (HIV-1) vaccine lies within reach. Studies of early events in HIV-1 infection have revealed when and where HIV-1 is potentially vulnerable to vaccine-targeted immune responses. With technical advances in human antibody production, clues about how antibodies recognize HIV-1 envelope proteins have uncovered new targets for immunogen design. A recent vaccine regimen has shown modest efficacy against HIV-1 acquisition. However, inducing long-term T and B cell memory and coping with HIV-1 diversity remain high priorities. Mediators of innate immunity may play pivotal roles in blocking infection and shaping immunity; vaccine strategies to capture these activities are under investigation. Challenges remain in integrating basic, preclinical and clinical research to improve predictions of types of immunity associated with vaccine efficacy, to apply these insights to immunogen design, and to accelerate evaluation of vaccine efficacy in persons at-risk for infection. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV, Bovine Leukemia Virus (BLV, Human Papilloma Virus (HPV, and Epstein–Barr Virus (EBV

    Directory of Open Access Journals (Sweden)

    James S. Lawson

    2018-01-01

    Full Text Available BackgroundAlthough the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV, bovine leukemia virus (BLV, human papilloma viruses (HPVs, and Epstein–Barr virus (EBV-also known as human herpes virus type 4. Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence.The evidenceMMTV and human breast cancer—the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer—the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer—the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer—the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal.ConclusionThe influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  2. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV).

    Science.gov (United States)

    Lawson, James S; Salmons, Brian; Glenn, Wendy K

    2018-01-01

    Although the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein-Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence. MMTV and human breast cancer-the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer-the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer-the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer-the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal. The influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  3. Reassortant swine influenza viruses isolated in Japan contain genes from pandemic A(H1N1) 2009.

    Science.gov (United States)

    Kanehira, Katsushi; Takemae, Nobuhiro; Uchida, Yuko; Hikono, Hirokazu; Saito, Takehiko

    2014-06-01

    In 2013, three reassortant swine influenza viruses (SIVs)-two H1N2 and one H3N2-were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human-like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human-like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human-lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human-lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  4. Real-Time Detection of a Virus Using Detection Dogs

    Directory of Open Access Journals (Sweden)

    Craig eAngle

    2016-01-01

    Full Text Available Viral infections are ubiquitous in humans, animals, and plants. Real-time methods to identify viral infections are limited and do not exist for use in harsh or resource-constrained environments. Previous research identified that tissues produce unique volatile organic compounds (VOC and demonstrated that VOC concentrations change during pathologic states including infection, neoplasia, or metabolic disease. Patterns of VOC expression may be pathogen-specific and may be associated with an odor that could be used for disease detection.We investigated the ability of two trained dogs to detect cell cultures infected with bovine viral diarrhea virus (BVDV and to discriminate BVDV-infected cell cultures from uninfected cell cultures and from cell cultures infected with bovine herpes virus 1 (BHV 1 and bovine parainfluenza virus 3 (BPIV 3. Dogs were trained to recognize cell cultures infected with two different biotypes of BVDV propagated in MDBK cells using one of three culture media. For detection trials, one target and seven distractors were presented on a scent wheel by a dog handler unaware of the location of targets and distractors.Detection of BVDV- infected cell cultures by Dog 1 had a diagnostic sensitivity of 0.850 (95% CI: 0.701 - 0.942, which was lower than Dog 2 (0.967, 95% CI: 0.837 - 0.994. Both dogs exhibited very high diagnostic specificity (0.981, 95% CI: 0.960 - 0.993 and (0.993, 95% CI: 0.975 - 0.999, respectively.These findings demonstrate that trained dogs can differentiate between cultured cells infected with BVDV, BHV1, and BPIV3 and are a realistic real-time mobile pathogen sensing technology for viral pathogens. The ability to discriminate between target and distractor samples plausibly results from expression of unique VOC patterns virus-infected and uninfected cells.

  5. Real-Time Detection of a Virus Using Detection Dogs.

    Science.gov (United States)

    Angle, T Craig; Passler, Thomas; Waggoner, Paul L; Fischer, Terrence D; Rogers, Bart; Galik, Patricia K; Maxwell, Herris S

    2015-01-01

    Viral infections are ubiquitous in humans, animals, and plants. Real-time methods to identify viral infections are limited and do not exist for use in harsh or resource-constrained environments. Previous research identified that tissues produce unique volatile organic compounds (VOC) and demonstrated that VOC concentrations change during pathologic states, including infection, neoplasia, or metabolic disease. Patterns of VOC expression may be pathogen specific and may be associated with an odor that could be used for disease detection. We investigated the ability of two trained dogs to detect cell cultures infected with bovine viral diarrhea virus (BVDV) and to discriminate BVDV-infected cell cultures from uninfected cell cultures and from cell cultures infected with bovine herpes virus 1 (BHV 1) and bovine parainfluenza virus 3 (BPIV 3). Dogs were trained to recognize cell cultures infected with two different biotypes of BVDV propagated in Madin-Darby bovine kidney cells using one of three culture media. For detection trials, one target and seven distractors were presented on a scent wheel by a dog handler unaware of the location of targets and distractors. Detection of BVDV-infected cell cultures by Dog 1 had a diagnostic sensitivity of 0.850 (95% CI: 0.701-0.942), which was lower than Dog 2 (0.967, 95% CI: 0.837-0.994). Both dogs exhibited very high diagnostic specificity (0.981, 95% CI: 0.960-0.993) and (0.993, 95% CI: 0.975-0.999), respectively. These findings demonstrate that trained dogs can differentiate between cultured cells infected with BVDV, BHV1, and BPIV3 and are a realistic real-time mobile pathogen sensing technology for viral pathogens. The ability to discriminate between target and distractor samples plausibly results from expression of unique VOC patterns in virus-infected and -uninfected cells.

  6. Influenza and other respiratory viruses in three Central American countries

    Science.gov (United States)

    Laguna‐Torres, Victor A.; Sánchez‐Largaespada, José F.; Lorenzana, Ivette; Forshey, Brett; Aguilar, Patricia; Jimenez, Mirna; Parrales, Eduardo; Rodriguez, Francisco; García, Josefina; Jimenez, Ileana; Rivera, Maribel; Perez, Juan; Sovero, Merly; Rios, Jane; Gamero, María E.; Halsey, Eric S.; Kochel, Tadeusz J.

    2010-01-01

    Please cite this paper as: Laguna‐Torres et al. (2011) Influenza and other respiratory viruses in three Central American countries. Influenza and Other Respiratory Viruses 5(2), 123–134. Background  Despite the disease burden imposed by respiratory diseases on children in Central America, there is a paucity of data describing the etiologic agents of the disease. Aims  To analyze viral etiologic agents associated with influenza‐like illness (ILI) in participants reporting to one outpatient health center, one pediatric hospital, and three general hospitals in El Salvador, Honduras, and Nicaragua Material & Methods  Between August 2006 and April 2009, pharyngeal swabs were collected from outpatients and inpatients. Patient specimens were inoculated onto cultured cell monolayers, and viral antigens were detected by indirect and direct immunofluorescence staining. Results  A total of 1,756 patients were enrolled, of whom 1,195 (68.3%) were under the age of 5; and 183 (10.4%) required hospitalization. One or more viral agents were identified in 434 (24.7%) cases, of which 17 (3.9%) were dual infections. The most common viruses isolated were influenza A virus (130; 7.4% of cases), respiratory syncytial virus (122; 6.9%), adenoviruses (63; 3.6%), parainfluenza viruses (57; 3.2%), influenza B virus (47; 2.7% of cases), and herpes simplex virus 1 (22; 1.3%). In addition, human metapneumovirus and enteroviruses (coxsackie and echovirus) were isolated from patient specimens. Discussion  When compared to the rest of the population, viruses were isolated from a significantly higher percentage of patients age 5 or younger. The prevalence of influenza A virus or influenza B virus infections was similar between the younger and older age groups. RSV was the most commonly detected pathogen in infants age 5 and younger and was significantly associated with pneumonia (p < 0.0001) and hospitalization (p < 0.0001). Conclusion  Genetic analysis of influenza

  7. RNAi suppressors encoded by pathogenic human viruses

    NARCIS (Netherlands)

    de Vries, Walter; Berkhout, Ben

    2008-01-01

    RNA silencing or RNAi interference (RNAi) serves as an innate antiviral mechanism in plants, fungi and animals. Human viruses, like plant viruses, encode suppressor proteins or RNAs that block or modulate the RNAi pathway. This review summarizes the mechanisms by which pathogenic human viruses

  8. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  9. Swine Influenza Virus Antibodies in Humans, Western Europe, 2009

    Science.gov (United States)

    Gerloff, Nancy A.; Kremer, Jacques R.; Charpentier, Emilie; Sausy, Aurélie; Olinger, Christophe M.; Weicherding, Pierre; Schuh, John; Van Reeth, Kristien

    2011-01-01

    Serologic studies for swine influenza viruses (SIVs) in humans with occupational exposure to swine have been reported from the Americas but not from Europe. We compared levels of neutralizing antibodies against 3 influenza viruses—pandemic (H1N1) 2009, an avian-like enzootic subtype H1N1 SIV, and a 2007–08 seasonal subtype H1N1—in 211 persons with swine contact and 224 matched controls in Luxembourg. Persons whose profession involved contact with swine had more neutralizing antibodies against SIV and pandemic (H1N1) 2009 virus than did the controls. Controls also had antibodies against these viruses although exposure to them was unlikely. Antibodies against SIV and pandemic (H1N1) 2009 virus correlated with each other but not with seasonal subtype H1N1 virus. Sequential exposure to variants of seasonal influenza (H1N1) viruses may have increased chances for serologic cross-reactivity with antigenically distinct viruses. Further studies are needed to determine the extent to which serologic responses correlate with infection. PMID:21392430

  10. The 2009 A (H1N1) influenza virus pandemic: A review.

    Science.gov (United States)

    Girard, Marc P; Tam, John S; Assossou, Olga M; Kieny, Marie Paule

    2010-07-12

    In March and early April 2009 a new swine-origin influenza virus (S-OIV), A (H1N1), emerged in Mexico and the USA. The virus quickly spread worldwide through human-to-human transmission. In view of the number of countries and communities which were reporting human cases, the World Health Organization raised the influenza pandemic alert to the highest level (level 6) on June 11, 2009. The propensity of the virus to primarily affect children, young adults and pregnant women, especially those with an underlying lung or cardiac disease condition, and the substantial increase in rate of hospitalizations, prompted the efforts of the pharmaceutical industry, including new manufacturers from China, Thailand, India and South America, to develop pandemic H1N1 influenza vaccines. All currently registered vaccines were tested for safety and immunogenicity in clinical trials on human volunteers. All were found to be safe and to elicit potentially protective antibody responses after the administration of a single dose of vaccine, including split inactivated vaccines with or without adjuvant, whole-virion vaccines and live-attenuated vaccines. The need for an increased surveillance of influenza virus circulation in swine is outlined. Copyright 2010. Published by Elsevier Ltd.

  11. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals

    NARCIS (Netherlands)

    D.A.J. van Riel (Debby); V.J. Munster (Vincent); E. de Wit (Emmie); G.F. Rimmelzwaan (Guus); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2007-01-01

    textabstractViral attachment to the host cell is critical for tissue and species specificity of virus infections. Recently, pattern of viral attachment (PVA) in human respiratory tract was determined for highly pathogenic avian influenza virus of subtype H5N1. However, PVA of human influenza viruses

  12. Neutralizing antibody response during human immunodeficiency virus type 1 infection: type and group specificity and viral escape

    DEFF Research Database (Denmark)

    Arendrup, M; Sönnerborg, A; Svennerholm, B

    1993-01-01

    The paradox that group-specific neutralizing antibodies (NA) exist in the majority of human immunodeficiency virus type 1 (HIV-1)-infected patients, whereas the NA response against autologous HIV-1 virus isolates is highly type-specific, motivated us to study the type- and group-specific NA...... demonstrated, suggesting that the majority of the change in neutralization sensitivity is driven by the selective pressure of type-specific NA. Furthermore, no differences were observed in sensitivity to neutralization by anti-carbohydrate neutralizing monoclonal antibodies or the lectin concanavalin A...

  13. Reduced Hepatitis B Virus (HBV)-Specific CD4+ T-Cell Responses in Human Immunodeficiency Virus Type 1-HBV-Coinfected Individuals Receiving HBV-Active Antiretroviral Therapy

    OpenAIRE

    Chang, J. Judy; Wightman, Fiona; Bartholomeusz, Angeline; Ayres, Anna; Kent, Stephen J.; Sasadeusz, Joseph; Lewin, Sharon R.

    2005-01-01

    Functional hepatitis B virus (HBV)-specific T cells are significantly diminished in individuals chronically infected with HBV compared to individuals with self-limiting HBV infection or those on anti-HBV therapy. In individuals infected with human immunodeficiency virus type 1 (HIV-1), coinfection with HBV is associated with an increased risk of worsening liver function following antiviral therapy and of more rapid HBV disease progression. Total HBV-specific T-cell responses in subjects with ...

  14. Human papilloma virus prevalence in laryngeal squamous cell carcinoma.

    Science.gov (United States)

    Gungor, A; Cincik, H; Baloglu, H; Cekin, E; Dogru, S; Dursun, E

    2007-08-01

    To determine the prevalence and type of human papilloma virus deoxyribonucleic acid (DNA) in cases of laryngeal squamous cell carcinoma. We analysed the prevalence of human papilloma virus infection in archived paraffin block specimens taken from 99 cases of laryngeal squamous cell carcinoma between 1990 and 2005, using polymerase chain reaction techniques. Biopsy specimens from five proven verrucous skin lesions were used as positive controls, and peripheral blood samples from five healthy volunteers were used as negative controls. Four test samples were found to have inadequate deoxyribonucleic acid purity and were therefore excluded from the study. Human papilloma virus deoxyribonucleic acid was detected in seven of 95 cases of laryngeal squamous cell carcinoma (7.36 per cent). Human papilloma virus genotyping revealed double human papilloma virus infection in three cases and single human papilloma virus infection in the remaining four cases. The human papilloma virus genotypes detected were 6, 11 and 16 (the latter detected in only one case). In our series, a very low human papilloma virus prevalence was found among laryngeal squamous cell carcinoma cases. The human papilloma virus genotypes detected were mostly 6 and/or 11, and 16 in only one case. To the best of our knowledge, this is the first report of human papilloma virus prevalence in laryngeal squamous cell carcinoma, based on polymerase chain reaction genotyping in a Turkish population.

  15. H5N1 whole-virus vaccine induces neutralizing antibodies in humans which are protective in a mouse passive transfer model.

    Directory of Open Access Journals (Sweden)

    M Keith Howard

    Full Text Available BACKGROUND: Vero cell culture-derived whole-virus H5N1 vaccines have been extensively tested in clinical trials and consistently demonstrated to be safe and immunogenic; however, clinical efficacy is difficult to evaluate in the absence of wide-spread human disease. A lethal mouse model has been utilized which allows investigation of the protective efficacy of active vaccination or passive transfer of vaccine induced sera following lethal H5N1 challenge. METHODS: We used passive transfer of immune sera to investigate antibody-mediated protection elicited by a Vero cell-derived, non-adjuvanted inactivated whole-virus H5N1 vaccine. Mice were injected intravenously with H5N1 vaccine-induced rodent or human immune sera and subsequently challenged with a lethal dose of wild-type H5N1 virus. RESULTS: Passive transfer of H5N1 vaccine-induced mouse, guinea pig and human immune sera provided dose-dependent protection of recipient mice against lethal challenge with wild-type H5N1 virus. Protective dose fifty values for serum H5N1 neutralizing antibody titers were calculated to be ≤1∶11 for all immune sera, independently of source species. CONCLUSIONS: These data underpin the confidence that the Vero cell culture-derived, whole-virus H5N1 vaccine will be effective in a pandemic situation and support the use of neutralizing serum antibody titers as a correlate of protection for H5N1 vaccines.

  16. LR1: a candidate RNA virus of Leishmania.

    OpenAIRE

    Tarr, P I; Aline, R F; Smiley, B L; Scholler, J; Keithly, J; Stuart, K

    1988-01-01

    Although viruses are important biological agents and useful molecular tools, little is known about the viruses of parasites. We report here the discovery of a candidate for an RNA virus in a kinetoplastid parasite. This potential virus, which we term LR1, is present in the promastigote form of the human pathogen Leishmania braziliensis guyanensis CUMC1-1A but not in 11 other stocks of Leishmania that were examined nor in Trypanosoma brucei. The candidate viral RNA has a size of approximately ...

  17. Different evolutionary trends of swine H1N2 influenza viruses in Italy compared to European viruses.

    Science.gov (United States)

    Moreno, Ana; Gabanelli, Elena; Sozzi, Enrica; Lelli, Davide; Chiapponi, Chiara; Ciccozzi, Massimo; Zehender, Gianguglielmo; Cordioli, Paolo

    2013-12-01

    European H1N2 swine influenza viruses (EU H1N2SIVs) arose from multiple reassortment events among human H1N1, human H3N2, and avian influenza viruses. We investigated the evolutionary dynamics of 53 Italian H1N2 strains by comparing them with EU H1N2 SIVs. Hemagglutinin (HA) phylogeny revealed Italian strains fell into four groups: Group A and B (41 strains) had a human H1 similar to EU H1N2SIVs, which probably originated in 1986. However Group B (38 strains) formed a subgroup that had a two-amino acid deletion at positions 146/147 in HA. Group C (11 strains) contained an avian H1 that probably originated in 1996, and Group D (1 strain) had an H1 characteristic of the 2009 pandemic strain. Neuraminidase (NA) phylogeny suggested a series of genomic reassortments had occurred. Group A had an N2 that originated from human H3N2 in the late 1970s. Group B had different human N2 that most likely arose from a reassortment with the more recent human H3N2 virus, which probably occurred in 2000. Group C had an avian-like H1 combined with an N2 gene from one of EU H1N2SIVs, EU H3N2SIVs or Human H3N2. Group D was part of the EU H3N2SIVs clade. Although selection pressure for HA and NA was low, several positively selected sites were identified in both proteins, some of which were antigenic, suggesting selection influenced the evolution of SIV. The data highlight different evolutionary trends between European viruses and currently circulating Italian B strains and show the establishment of reassortant strains involving human viruses in Italian pigs.

  18. Saffold virus infection associated with human myocarditis

    DEFF Research Database (Denmark)

    Nielsen, Trine Skov; Nielsen, Alex Yde; Banner, Jytte

    2016-01-01

    BACKGROUND: Saffold virus was described in 2007 as one of the first human viruses within the genus cardioviruses. Cardioviruses may cause severe infections of the myocardium in animals, and several studies have associated saffold virus with human disease. As a result, saffold virus has been...... isolated from different anatomical compartments, including the myocardium, but, until now, it has not been possible to demonstrate the accompanying histopathological signs of inflammation. OBJECTIVES: The aim of the study was to examine if saffold virus is capable of causing invasive infection in the human...... myocardium. STUDY DESIGN: Using real-time PCR, we retrospectively examined formalin-fixed paraffin embedded cardiac tissue specimens from 150 deceased individuals diagnosed with myocarditis at autopsy. The results were compared with histological findings. RESULTS AND CONCLUSIONS: Saffold virus was detected...

  19. Full-Genome Analysis of Avian Influenza A(H5N1) Virus from a Human, North America, 2013

    Science.gov (United States)

    Pabbaraju, Kanti; Tellier, Raymond; Wong, Sallene; Li, Yan; Bastien, Nathalie; Tang, Julian W.; Drews, Steven J.; Jang, Yunho; Davis, C. Todd; Tipples, Graham A.

    2014-01-01

    Full-genome analysis was conducted on the first isolate of a highly pathogenic avian influenza A(H5N1) virus from a human in North America. The virus has a hemagglutinin gene of clade 2.3.2.1c and is a reassortant with an H9N2 subtype lineage polymerase basic 2 gene. No mutations conferring resistance to adamantanes or neuraminidase inhibitors were found. PMID:24755439

  20. Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4(+)-T-cell lines

    NARCIS (Netherlands)

    van 't Wout, Angélique B.; Lehrman, Ginger K.; Mikheeva, Svetlana A.; O'Keeffe, Gemma C.; Katze, Michael G.; Bumgarner, Roger E.; Geiss, Gary K.; Mullins, James I.

    2003-01-01

    The expression levels of approximately 4,600 cellular RNA transcripts were assessed in CD4(+)-T-cell lines at different times after infection with human immunodeficiency virus type 1 strain BRU (HIV-1(BRU)) using DNA microarrays. We found that several classes of genes were inhibited by HIV-1(BRU)

  1. Transformation of human fibroblasts by ionizing radiation, a chemical carcinogen, or simian virus 40 correlates with an increase in susceptibility to the autonomous parvoviruses H-1 virus and minute virus of mice

    International Nuclear Information System (INIS)

    Cornelis, J.J.; Becquart, P.; Duponchel, N.; Salome, N.; Avalosse, B.L.; Namba, M.; Rommelaere, J.

    1988-01-01

    Morphologically altered and established human fibroblasts, obtained either by 60 Co gamma irradiation, treatment with the carcinogen 4-nitroquinoline 1-oxide, or simian virus 40 (SV40) infection, were compared with their normal finite-life parental strains for susceptibility to the autonomous parvoviruses H-1 virus and the prototype strain of minute virus of mice (MVMp). All transformed cells suffered greater virus-induced killing than their untransformed progenitors. The cytotoxic effect of H-1 virus was more severe than that of MVMp. Moreover, the level of viral DNA replication was much (10- to 85-fold) enhanced in the transformants compared with their untransformed parent cells. Thus, in this system, cell transformation appears to correlate with an increase in both DNA amplification and cytotoxicity of the parvoviruses. However, the accumulation of parvovirus DNA in the transformants was not always accompanied by the production of infectious virus. Like in vitro-transformed fibroblasts, a fibrosarcoma-derived cell line was sensitive to the killing effect of both H-1 virus and MVMp and amplified viral DNA to high extents. The results indicate that oncogenic transformation can be included among cellular states which modulate permissiveness to parvoviruses under defined growth conditions

  2. Links between human LINE-1 retrotransposons and hepatitis virus-related hepatocellular carcinoma

    Science.gov (United States)

    Honda, Tomoyuki

    2016-05-01

    Hepatocellular carcinoma (HCC) accounts for approximately 80% of liver cancers, the third most frequent cause of cancer mortality. The most prevalent risk factors for HCC are infections by hepatitis B or hepatitis C virus. Findings suggest that hepatitis virus-related HCC might be a cancer in which LINE-1 retrotransposons, often termed L1, activity plays a potential role. Firstly, hepatitis viruses can suppress host defense factors that also control L1 mobilization. Secondly, many recent studies also have indicated that hypomethylation of L1 affects the prognosis of HCC patients. Thirdly, endogenous L1 retrotransposition was demonstrated to activate oncogenic pathways in HCC. Fourthly, several L1 chimeric transcripts with host or viral genes are found in hepatitis virus-related HCC. Such lines of evidence suggest a linkage between L1 retrotransposons and hepatitis virus-related HCC. Here, I briefly summarize current understandings of the association between hepatitis virus-related HCC and L1. Then, I discuss potential mechanisms of how hepatitis viruses drive the development of HCC via L1 retrotransposons. An increased understanding of the contribution of L1 to hepatitis virus-related HCC may provide unique insights related to the development of novel therapeutics for this disease.

  3. [Infections which humans in the household transmit to dogs and cats].

    Science.gov (United States)

    Mayr, A

    1989-04-01

    An overview of the most important infections which can be transmitted from humans to pet dogs and cats is presented. Two quite different sources of infection stand diametrically opposite each other: 1. The transmission of active human infections to dogs and cats and 2. the transmission of infectious agents by feeding raw meat, offal, unsterilized milk products, kitchen scraps and contaminated feedstuffs. Humans can be the source of the following infections: 1. Zoonoses with reciprocal modes of transmission, e.g. Campylobacter and E. coli infections, trichophyton and microsporum infections, reo-, parainfluenza-, adeno, rota- and corona infections. 2. Zoonoses in which the main direction of infection is human----animal, e.g. tuberculosis and influenza A. 3. Infections originally pathogenic to humans which meet an impasse in dogs and cats (blind alley hosts), e.g. herpes simplex, varicella-zoster, measles and Corynebacterium diphtheriae. Listeria, salmonella, campylobacteria, toxoplasma, fungi, yeasts and viruses are transmitted via feed. The most dangerous virus infection to be transmitted to cats and dogs via raw pork leftovers is Aujeszky's disease. The dog or cat, which is the last link in the infection chain, suffers an agonizing death. The other infections originating from feed must be assessed quite differently. They are links in infection chains, which spread pathogens and endanger the health of man and animal in turn. A typical example is toxoplasmosis. Man becomes infected via sporulated oocysts from feces. Pet cats mainly become infected via raw pork containing cysts.

  4. Clinical pathophysiology of human T-lymphotropic virus-type1-associated myelopathy/tropical spastic paraparesis

    Directory of Open Access Journals (Sweden)

    Yoshihisa eYamano

    2012-11-01

    Full Text Available Human T-lymphotropic virus type 1 (HTLV-1, a human retrovirus, is the causative agent of a progressive neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. HAM/TSP is a chronic inflammatory disease of the central nervous system and is characterized by unremitting myelopathic symptoms such as spastic paraparesis, lower limb sensory disturbance, and bladder/bowel dysfunction. Approximately 0.25%–3.8% of HTLV-1-infected individuals develop HAM/TSP, which is more common in women than in men. Since the discovery of HAM/TSP, significant advances have been made with respect to elucidating the virological, molecular, and immunopathological mechanisms underlying this disease. These findings suggest that spinal cord invasion by HTLV-1-infected T cells triggers a strong virus-specific immune response and increases proinflammatory cytokine and chemokine production, leading to chronic lymphocytic inflammation and tissue damage in spinal cord lesions. However, little progress has been made in the development of an optimal treatment for HAM/TSP, more specifically in the identification of biomarkers for predicting disease progression and of molecular targets for novel therapeutic strategies targeting the underlying pathological mechanisms. This review summarizes current clinical and pathophysiological knowledge on HAM/TSP and discusses future focus areas for research on this disease.

  5. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral

    Directory of Open Access Journals (Sweden)

    Claire M. Smith

    2016-08-01

    Full Text Available Defective interfering (DI viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8 was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1; it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral.

  6. Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro

    Directory of Open Access Journals (Sweden)

    Meyer Adam G

    2009-11-01

    Full Text Available Abstract Background Using a recently described monolayer assay amenable to high throughput screening format for the identification of potential Nipah virus and Hendra virus antivirals, we have partially screened a low molecular weight compound library (>8,000 compounds directly against live virus infection and identified twenty eight promising lead molecules. Initial single blind screens were conducted with 10 μM compound in triplicate with a minimum efficacy of 90% required for lead selection. Lead compounds were then further characterised to determine the median efficacy (IC50, cytotoxicity (CC50 and the in vitro therapeutic index in live virus and pseudotype assay formats. Results While a number of leads were identified, the current work describes three commercially available compounds: brilliant green, gentian violet and gliotoxin, identified as having potent antiviral activity against Nipah and Hendra virus. Similar efficacy was observed against pseudotyped Nipah and Hendra virus, vesicular stomatitis virus and human parainfluenza virus type 3 while only gliotoxin inhibited an influenza A virus suggesting a non-specific, broad spectrum activity for this compound. Conclusion All three of these compounds have been used previously for various aspects of anti-bacterial and anti-fungal therapy and the current results suggest that while unsuitable for internal administration, they may be amenable to topical antiviral applications, or as disinfectants and provide excellent positive controls for future studies.

  7. Detección de virus influenza A, B y subtipos A (H1N1 pdm09, A (H3N2 por múltiple RT-PCR en muestras clínicas

    Directory of Open Access Journals (Sweden)

    Pool Marcos

    Full Text Available Objetivos. Estandarizar la técnica de reacción en cadena de la polimerasa en tiempo real (RT-PCR múltiple para la detección de virus influenza A, B y tipificación de subtipos A (H1N1 pdm09, A (H3N2 en muestras clínicas. Materiales y métodos. Se analizaron 300 muestras de hisopado nasofaríngeo. Esta metodología fue estandarizada en dos pasos: la primera reacción detectó el gen de la matriz del virus de influenza A, gen de la nucleoproteína del virus influenza B y el gen GAPDH de las células huésped. La segunda reacción detectó el gen de la hemaglutinina de los subtipos A (H1N1 pandémico (pdm09 y A (H3N2. Resultados. Se identificaron 109 muestras positivas a influenza A y B, de las cuales 72 fueron positivas a influenza A (36 positivas a influenza A (H1N1 pdm09 y 36 positivos a influenza A (H3N2 y 37 muestras positivas a influenza B. 191 fueron negativas a ambos virus mediante RT-PCR en tiempo real multiplex. Se encontró una sensibilidad y especificidad del 100% al analizar los resultados de ambas reacciones. El límite de detección viral fue del rango de 7 a 9 copias/µL por virus. Los resultados no mostraron ninguna reacción cruzada con otros virus tales como adenovirus, virus sincitial respiratorio, parainfluenza (1,2 y 3, metapneumovirus, subtipos A (H1N1 estacional, A (H5N2 y VIH. Conclusiones. La RT-PCR múltiple demostró ser una prueba muy sensible y específica para la detección de virus influenza A, B y subtipos A (H1N1, H3N2 y su uso puede ser conveniente en brotes estacionales.

  8. A Historical Perspective of Influenza A(H1N2) Virus

    OpenAIRE

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase ...

  9. Inhibitory effect of 1,2,4-triazole-ciprofloxacin hybrids on Haemophilus parainfluenzae and Haemophilus influenzae biofilm formation in vitro under stationary conditions.

    Science.gov (United States)

    Kosikowska, Urszula; Andrzejczuk, Sylwia; Plech, Tomasz; Malm, Anna

    2016-10-01

    Haemophilus parainfluenzae and Haemophilus influenzae, upper respiratory tract microbiota representatives, are able to colonize natural and artificial surfaces as biofilm. The aim of the present study was to assay the effect of ten 1,2,4-triazole-ciprofloxacin hybrids on planktonic or biofilm-forming haemophili cells in vitro under stationary conditions on the basis of MICs (minimal inhibitory concentrations) and MBICs (minimal biofilm inhibitory concentrations). In addition, anti-adhesive properties of these compounds were examined. The reference strains of H. parainfluenzae and H. influenzae were included. The broth microdilution microtiter plate (MTP) method with twofold dilution of the compounds, or ciprofloxacin (reference agent) in 96-well polystyrene microplates, was used. The optical density (OD) reading was made spectrophotometrically at a wavelength of 570 nm (OD570) both to measure bacterial growth and to detect biofilm-forming cells under the same conditions with 0.1% crystal violet. The following values of parameters were estimated for 1,2,4-triazole-ciprofloxacin hybrids - MIC = 0.03-15.63 mg/L, MBIC = 0.03-15.63 mg/L, MBIC/MIC = 0.125-8, depending on the compound, and for ciprofloxacin - MIC = 0.03-0.06 mg/L, MBIC = 0.03-0.12 mg/L, MBIC/MIC = 1-2. The observed strong anti-adhesive properties (95-100% inhibition) of the tested compounds were reversible during long-term incubation at subinhibitory concentrations. Thus, 1,2,4-triazole-ciprofloxacin hybrids may be considered as starting compounds for designing improved agents not only against planktonic but also against biofilm-forming Haemophilus spp. cells. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. Human Immunodeficiency Virus and Hepatitis C Virus Co-infection ...

    African Journals Online (AJOL)

    Human Immunodeficiency Virus and Hepatitis C Virus Co-infection in Cameroon: Investigation of the Genetic Diversity and Virulent ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES ... DNA sequencing, and bioinformatics tools for sequence management and analysis.

  11. Ebola virus: bioterrorism for humans

    Directory of Open Access Journals (Sweden)

    Pramodkumar Pyarelal Gupta

    2015-01-01

    Full Text Available Ebola virus disease is a severe, often fatal, zoonotic infection caused by a virus of the Filoviridae family (genus Ebolavirus. Ebola virus (EBOV spreads by human to human transmission through contacts with body fluids from infected patients. Initial stages of EBOV are non-specific which makes the differential diagnosis broad. Here in this review article we focused on to show the details of EBOV, from its first case right up to the possible targets to cure this lethal disease. In this study we have shown the statistical survey, epidemiology, disease ontology, different genes coding for different proteins in EBOV and future aspects of it.

  12. PD-L1 Expression Induced by the 2009 Pandemic Influenza A(H1N1 Virus Impairs the Human T Cell Response

    Directory of Open Access Journals (Sweden)

    Nuriban Valero-Pacheco

    2013-01-01

    Full Text Available PD-L1 expression plays a critical role in the impairment of T cell responses during chronic infections; however, the expression of PD-L1 on T cells during acute viral infections, particularly during the pandemic influenza virus (A(H1N1pdm09, and its effects on the T cell response have not been widely explored. We found that A(H1N1pdm09 virus induced PD-L1 expression on human dendritic cells (DCs and T cells, as well as PD-1 expression on T cells. PD-L1 expression impaired the T cell response against A(H1N1pdm09 by promoting CD8+ T cell death and reducing cytokine production. Furthermore, we found increased PD-L1 expression on DCs and T cells from influenza-infected patients from the first and second 2009 pandemic waves in Mexico City. PD-L1 expression on CD8+ T cells correlated inversely with T cell proportions in patients infected with A(H1N1pdm09. Therefore, PD-L1 expression on DCs and T cells could be associated with an impaired T cell response during acute infection with A(H1N1pdm09 virus.

  13. Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China.

    Science.gov (United States)

    Qiao, Chuanling; Liu, Liping; Yang, Huanliang; Chen, Yan; Xu, Huiyang; Chen, Hualan

    2014-12-01

    The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. Transmissions of the pandemic 2009/H1N1 virus from humans to poultry and other species of mammals were reported from several continents during the course of the 2009 H1N1 pandemic. Reassortant H1N1, H1N2, and H3N2 viruses containing genes of the pandemic 2009/H1N1 viruses appeared in pigs in some countries. In winter of 2012, a total of 2600 nasal swabs were collected from healthy pigs in slaughterhouses located throughout 10 provinces in China. The isolated viruses were subjected to genetic and antigenic analysis. Two novel triple-reassortant H1N2 influenza viruses were isolated from swine in China in 2012, with the HA gene derived from Eurasian avian-like swine H1N1, the NA gene from North American swine H1N2, and the six internal genes from the pandemic 2009/H1N1 viruses. The two viruses had similar antigenic features and some significant changes in antigenic characteristics emerged when compared to the previously identified isolates. We inferred that the novel reassortant viruses in China may have arisen from the accumulation of the three types of influenza viruses, which further indicates that swine herds serve as "mixing vessels" for influenza viruses. Influenza virus reassortment is an ongoing process, and our findings highlight the urgent need for continued influenza surveillance among swine herds. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Molecular epidemiology of endemic human t-lymphotropic virus type 1 in a rural community in guinea-bissau

    NARCIS (Netherlands)

    C. van Tienen (Carla); T.I. de Silva (Thushan); L.C.J. Alcantara (Luiz); C. Onyango (Clayton); S. Jarju (Sheikh); N. Gonçalves (Nato); T. Vincent (Tim); P. Aaby; H. Whittle (Hilton); M. Schim van der Loeff (Maarten); M. Cotten (Matthew)

    2012-01-01

    textabstractBackground: Human T-Lymphotropic Virus Type 1 (HTLV-1) infection causes lethal adult T-cell leukemia (ATL) and severely debilitating HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in up to 5% of infected adults. HTLV-1 is endemic in parts of Africa and the highest

  15. The novel human influenza A(H7N9) virus is naturally adapted to efficient growth in human lung tissue.

    Science.gov (United States)

    Knepper, Jessica; Schierhorn, Kristina L; Becher, Anne; Budt, Matthias; Tönnies, Mario; Bauer, Torsten T; Schneider, Paul; Neudecker, Jens; Rückert, Jens C; Gruber, Achim D; Suttorp, Norbert; Schweiger, Brunhilde; Hippenstiel, Stefan; Hocke, Andreas C; Wolff, Thorsten

    2013-10-08

    A novel influenza A virus (IAV) of the H7N9 subtype has been isolated from severely diseased patients with pneumonia and acute respiratory distress syndrome and, apparently, from healthy poultry in March 2013 in Eastern China. We evaluated replication, tropism, and cytokine induction of the A/Anhui/1/2013 (H7N9) virus isolated from a fatal human infection and two low-pathogenic avian H7 subtype viruses in a human lung organ culture system mimicking infection of the lower respiratory tract. The A(H7N9) patient isolate replicated similarly well as a seasonal IAV in explanted human lung tissue, whereas avian H7 subtype viruses propagated poorly. Interestingly, the avian H7 strains provoked a strong antiviral type I interferon (IFN-I) response, whereas the A(H7N9) virus induced only low IFN levels. Nevertheless, all viruses analyzed were detected predominantly in type II pneumocytes, indicating that the A(H7N9) virus does not differ in its cellular tropism from other avian or human influenza viruses. Tissue culture-based studies suggested that the low induction of the IFN-β promoter correlated with an efficient suppression by the viral NS1 protein. These findings demonstrate that the zoonotic A(H7N9) virus is unusually well adapted to efficient propagation in human alveolar tissue, which most likely contributes to the severity of lower respiratory tract disease seen in many patients. Humans are usually not infected by avian influenza A viruses (IAV), but this large group of viruses contributes to the emergence of human pandemic strains. Transmission of virulent avian IAV to humans is therefore an alarming event that requires assessment of the biology as well as pathogenic and pandemic potentials of the viruses in clinically relevant models. Here, we demonstrate that an early virus isolate from the recent A(H7N9) outbreak in Eastern China replicated as efficiently as human-adapted IAV in explanted human lung tissue, whereas avian H7 subtype viruses were unable to

  16. Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells

    International Nuclear Information System (INIS)

    Tada, Hiroomi; Lashgari, M.; Amini, S.; Khalili, K.; Rappaport, J.; Wong-Staal, F.

    1990-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC virus (JCV), a human papovavirus. PML is a relatively rare disease seen predominantly in immunocompromised individuals and is a frequent complication observed in AIDS patients. The significantly higher incidence of PML in AIDS patients than in other immunosuppressive disorders has suggested that the presence of human immunodeficiency virus type 1 (HIV-1) in the brain may directly or indirectly contribute to the pathogenesis of this disease. In the present study the authors have examined the expression of the JCV genome in both glial and non-glial cells in the presence of HIV-1 regulatory proteins. They find that the HIV-1-encoded trans-regulatory protein tat increases the basal activity of the JCV late promoter, JCV L , in glial cells. They conclude that the presence of the HIV-1-encoded tat protein may positively affect the JCV lytic cycle in glial cells by stimulating JCV gene expression. The results suggest a mechanism for the relatively high incidence of PML in AIDS patients than in other immunosuppressive disorders. Furthermore, the findings indicate that the HIV-1 regulatory protein tat may stimulate other viral and perhaps cellular promoters, in addition to its own

  17. Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; El-Shesheny, Rabeh; Shehata, Mahmoud M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2018-02-01

    The majority of the Egyptian swine population was culled in the aftermath of the 2009 H1N1 pandemic, but small-scale growing remains. We sampled pigs from piggeries and an abattoir in Cairo. We found virological evidence of infection with avian H9N2 and H5N1 viruses as well as human pandemic H1N1 influenza virus. Serological evidence suggested previous exposure to avian H5N1 and H9N2, human pandemic H1N1, and swine avian-like and human-like viruses. This raises concern about potential reassortment of influenza viruses in pigs and highlights the need for better control and prevention of influenza virus infection in pigs.

  18. Epstein-Barr virus DNA loads in adult human immunodeficiency virus type 1-infected patients receiving highly active antiretroviral therapy

    Science.gov (United States)

    Ling, Paul D.; Vilchez, Regis A.; Keitel, Wendy A.; Poston, David G.; Peng, Rong Sheng; White, Zoe S.; Visnegarwala, Fehmida; Lewis, Dorothy E.; Butel, Janet S.

    2003-01-01

    Patients with human immunodeficiency virus type 1 (HIV-1) infection are at high risk of developing Epstein-Barr virus (EBV)-associated lymphoma. However, little is known of the EBV DNA loads in patients receiving highly active antiretroviral therapy (HAART). Using a real-time quantitative polymerase chain reaction assay, we demonstrated that significantly more HIV-1-infected patients receiving HAART than HIV-1-uninfected volunteers had detectable EBV DNA in blood (57 [81%] of 70 vs. 11 [16%] of 68 patients; P=.001) and saliva (55 [79%] of 68 vs. 37 [54%] of 68 patients; P=.002). The mean EBV loads in blood and saliva samples were also higher in HIV-1-infected patients than in HIV-1-uninfected volunteers (P=.001). The frequency of EBV detection in blood was associated with lower CD4+ cell counts (P=.03) among HIV-1-infected individuals, although no differences were observed in the EBV DNA loads in blood or saliva samples in the HIV-1-infected group. Additional studies are needed to determine whether EBV-specific CD4+ and CD8+ cells play a role in the pathogenesis of EBV in HIV-1-infected patients receiving HAART.

  19. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation.

    Science.gov (United States)

    Kennedy, Peter G E; Rovnak, Joel; Badani, Hussain; Cohrs, Randall J

    2015-07-01

    Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing

  20. Molecular Epidemiology of Endemic Human T-Lymphotropic Virus Type 1 in a Rural Community in Guinea-Bissau

    NARCIS (Netherlands)

    van Tienen, Carla; de Silva, Thushan I.; Alcantara, Luiz Carlos Junior; Onyango, Clayton O.; Jarju, Sheikh; Gonçalves, Nato; Vincent, Tim; Aaby, Peter; Whittle, Hilton; Schim van der Loeff, Maarten; Cotten, Matthew

    2012-01-01

    Background: Human T-Lymphotropic Virus Type 1 (HTLV-1) infection causes lethal adult T-cell leukemia (ATL) and severely debilitating HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in up to 5% of infected adults. HTLV-1 is endemic in parts of Africa and the highest prevalence in

  1. Hepatitis C virus infection in the human immunodeficiency virus infected patient

    DEFF Research Database (Denmark)

    Clausen, Louise Nygaard; Lundbo, Lene Fogt; Benfield, Thomas

    2014-01-01

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) share the same transmission routes; therefore, coinfection is frequent. An estimated 5-10 million individuals alone in the western world are infected with both viruses. The majority of people acquire HCV by injection drug use and...

  2. Genetic characterization of human T-cell lymphotropic virus type 1 in Mozambique: transcontinental lineages drive the HTLV-1 endemic.

    Directory of Open Access Journals (Sweden)

    Ana Carolina P Vicente

    2011-04-01

    Full Text Available Human T-Cell Lymphotropic Virus Type 1 (HTLV-1 is the etiological agent of adult T-cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. It has been estimated that 10-20 million people are infected worldwide, but no successful treatment is available. Recently, the epidemiology of this virus was addressed in blood donors from Maputo, showing rates from 0.9 to 1.2%. However, the origin and impact of HTLV endemic in this population is unknown.To assess the HTLV-1 molecular epidemiology in Mozambique and to investigate their relationship with HTLV-1 lineages circulating worldwide.Blood donors and HIV patients were screened for HTLV antibodies by using enzyme immunoassay, followed by Western Blot. PCR and sequencing of HTLV-1 LTR region were applied and genetic HTLV-1 subtypes were assigned by the neighbor-joining method. The mean genetic distance of Mozambican HTLV-1 lineages among the genetic clusters were determined. Human mitochondrial (mt DNA analysis was performed and individuals classified in mtDNA haplogroups.LTR HTLV-1 analysis demonstrated that all isolates belong to the Transcontinental subgroup of the Cosmopolitan subtype. Mozambican HTLV-1 sequences had a high inter-strain genetic distance, reflecting in three major clusters. One cluster is associated with the South Africa sequences, one is related with Middle East and India strains and the third is a specific Mozambican cluster. Interestingly, 83.3% of HIV/HTLV-1 co-infection was observed in the Mozambican cluster. The human mtDNA haplotypes revealed that all belong to the African macrohaplogroup L with frequencies representatives of the country.The Mozambican HTLV-1 genetic diversity detected in this study reveals that although the strains belong to the most prevalent and worldwide distributed Transcontinental subgroup of the Cosmopolitan subtype, there is a high HTLV diversity that could be correlated with at least 3 different HTLV-1 introductions

  3. Syrian Hamster as an Animal Model for the Study of Human Influenza Virus Infection.

    Science.gov (United States)

    Iwatsuki-Horimoto, Kiyoko; Nakajima, Noriko; Ichiko, Yurie; Sakai-Tagawa, Yuko; Noda, Takeshi; Hasegawa, Hideki; Kawaoka, Yoshihiro

    2018-02-15

    Ferrets and mice are frequently used as animal models for influenza research. However, ferrets are demanding in terms of housing space and handling, whereas mice are not naturally susceptible to infection with human influenza A or B viruses. Therefore, prior adaptation of human viruses is required for their use in mice. In addition, there are no mouse-adapted variants of the recent H3N2 viruses, because these viruses do not replicate well in mice. In this study, we investigated the susceptibility of Syrian hamsters to influenza viruses with a view to using the hamster model as an alternative to the mouse model. We found that hamsters are sensitive to influenza viruses, including the recent H3N2 viruses, without adaptation. Although the hamsters did not show weight loss or clinical signs of H3N2 virus infection, we observed pathogenic effects in the respiratory tracts of the infected animals. All of the H3N2 viruses tested replicated in the respiratory organs of the hamsters, and some of them were detected in the nasal washes of infected animals. Moreover, a 2009 pandemic (pdm09) virus and a seasonal H1N1 virus, as well as one of the two H3N2 viruses, but not a type B virus, were transmissible by the airborne route in these hamsters. Hamsters thus have the potential to be a small-animal model for the study of influenza virus infection, including studies of the pathogenicity of H3N2 viruses and other strains, as well as for use in H1N1 virus transmission studies. IMPORTANCE We found that Syrian hamsters are susceptible to human influenza viruses, including the recent H3N2 viruses, without adaptation. We also found that a pdm09 virus and a seasonal H1N1 virus, as well as one of the H3N2 viruses, but not a type B virus tested, are transmitted by the airborne route in these hamsters. Syrian hamsters thus have the potential to be used as a small-animal model for the study of human influenza viruses. Copyright © 2018 American Society for Microbiology.

  4. In vitro reassortment between endemic H1N2 and 2009 H1N1 pandemic swine influenza viruses generates attenuated viruses.

    Directory of Open Access Journals (Sweden)

    Ben M Hause

    Full Text Available The pandemic H1N1 (pH1N1 influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV, were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST cells with swine-derived endemic H1N2 (MN745 and pH1N1 (MN432 yielded two reassortant H1N2 viruses (R1 and R2, both possessing a matrix gene derived from pH1N1. In ST cells, the reassortant viruses had growth kinetics similar to the parental H1N2 virus and reached titers approximately 2 log(10 TCID(50/mL higher than the pH1N1 virus, while in A549 cells these viruses had similar growth kinetics. Intranasal challenge of pigs with H1N2, pH1N1, R1 or R2 found that all viruses were capable of infecting and transmitting between direct contact pigs as measured by real time reverse transcription PCR of nasal swabs. Lung samples were also PCR-positive for all challenge groups and influenza-associated microscopic lesions were detected by histology. Interestingly, infectious virus was detected in lung samples for pigs challenged with the parental H1N2 and pH1N1 at levels significantly higher than either reassortant virus despite similar levels of viral RNA. Results of our experiment suggested that the reassortant viruses generated through in vitro cell culture system were attenuated without gaining any selective growth advantage in pigs over the parental lineages. Thus, reassortant influenza viruses described in this study may provide a good system to study genetic basis of the attenuation and its mechanism.

  5. Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-α/β Responses That Distinctively Affect Viral Propagation in Human Cells

    Science.gov (United States)

    Matthaei, Markus; Budt, Matthias; Wolff, Thorsten

    2013-01-01

    The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN

  6. Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-α/β responses that distinctively affect viral propagation in human cells.

    Directory of Open Access Journals (Sweden)

    Markus Matthaei

    Full Text Available The fatal transmissions of highly pathogenic avian influenza A viruses (IAV of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to

  7. The oral microbiome in human immunodeficiency virus (HIV)-positive individuals.

    Science.gov (United States)

    Kistler, James O; Arirachakaran, Pratanporn; Poovorawan, Yong; Dahlén, Gunnar; Wade, William G

    2015-09-01

    Human immunodeficiency virus (HIV) infection is associated with a range of oral conditions, and increased numbers of disease-associated microbial species have previously been found in HIV-positive subjects. The aim of this study was to use next-generation sequencing to compare the composition of the oral microbiome in HIV-positive and -negative individuals. Plaque and saliva were collected from 37 HIV-positive individuals and 37 HIV-negative individuals, and their bacterial composition determined by pyrosequencing of partial 16S rRNA genes. A total of 855,222 sequences were analysed. The number of species-level operational taxonomic units (OTUs) detected was significantly lower in the saliva of HIV-positive individuals (mean = 303.3) than in that of HIV-negative individuals (mean = 365.5) (P PCoA) based on community membership (Jaccard index) and structure (Yue and Clayton measure of dissimilarity) showed significant separation of plaque and saliva samples [analysis of molecular variance (AMOVA), P PCoA plots did not show any clear separation based on HIV status. However, AMOVA indicated that there was a significant difference in the community membership of saliva between HIV-positive and -negative groups (P = 0.001). Linear discriminant analysis effect size revealed an OTU identified as Haemophilus parainfluenzae to be significantly associated with HIV-positive individuals, whilst Streptococcus mitis/HOT473 was most significantly associated with HIV-negative individuals. In conclusion, this study has confirmed that the microbial composition of saliva and plaque is different. The oral microbiomes of HIV-positive and -negative individuals were found to be similar overall, although there were minor but significant differences in the composition of the salivary microbiota of the two groups.

  8. Reassortment and evolution of current human influenza A and B viruses.

    Science.gov (United States)

    Xu, Xiyan; Lindstrom, Stephen E; Shaw, Michael W; Smith, Catherine B; Hall, Henrietta E; Mungall, Bruce A; Subbarao, Kanta; Cox, Nancy J; Klimov, Alexander

    2004-07-01

    During the 2001-2002 influenza season, human influenza A (H1N2) reassortant viruses were detected globally. The hemagglutinin (HA) of these H1N2 viruses was similar to that of the A/New Caledonia/20/99 (H1N1) vaccine strain both antigenically and genetically, while their neuraminidase (NA) was antigenically and genetically related to that of recent human influenza H3N2 reference viruses such as A/Moscow/10/99. All six internal genes of the H1N2 reassortants originated from an H3N2 virus. After being detected only in eastern Asia during the past 10 years, Influenza B/Victoria/2/87 lineage viruses reappeared in many countries outside of Asia in 2001. Additionally, reassortant influenza B viruses possessing an HA similar to that of B/Shandong/7/97, a recent B/Victoria/2/87 lineage reference strain, and an NA closely related to that of B/Sichuan/379/99, a recent B/Yamagata/16/88 lineage reference strain, were isolated globally and became the predominant influenza B epidemic strain. The current influenza vaccine is expected to provide good protection against H1N2 viruses because it contains A/New Caledonia/20/99 (H1N1) and A/Panama/2007/99 (H3N2) like viruses whose H1 HA or N2 NA are antigenically similar to those of recent circulating H1N2 viruses. On the other hand, widespread circulation of influenza B Victoria lineage viruses required inclusion of a strain from this lineage in influenza vaccines for the 2002-2003 season.

  9. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yi-Mo Deng

    Full Text Available BACKGROUND: Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. METHODOLOGY/PRINCIPAL FINDINGS: A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. CONCLUSIONS/SIGNIFICANCE: In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  10. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Science.gov (United States)

    Deng, Yi-Mo; Caldwell, Natalie; Barr, Ian G

    2011-01-01

    Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  11. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    International Nuclear Information System (INIS)

    Vafai, A.; Wellish, M.; Devlin, M.; Gilden, D.H.; Murray, R.S.

    1988-01-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteins in human sensory ganglia

  12. Human immunodeficiency virus and hepatitus B virus co-infection ...

    African Journals Online (AJOL)

    Human immunodeficiency virus and hepatitus B virus co-infection amog patients in Kano Nigeria. EE Nwokedi, MA Emokpae, AI Dutse. Abstract. No Abstract. Nigerian Journal of Medicine Vol. 15(3) July-September 2006: 227-229. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  13. Novel reassortant of swine influenza H1N2 virus in Germany.

    Science.gov (United States)

    Zell, Roland; Motzke, Susann; Krumbholz, Andi; Wutzler, Peter; Herwig, Volker; Dürrwald, Ralf

    2008-01-01

    European porcine H1N2 influenza viruses arose after multiple reassortment steps involving a porcine influenza virus with avian-influenza-like internal segments and human H1N1 and H3N2 viruses in 1994. In Germany, H1N2 swine influenza viruses first appeared in 2000. Two German H1N2 swine influenza virus strains isolated from pigs with clinical symptoms of influenza are described. They were characterized by the neutralization test, haemagglutination inhibition (HI) test and complete sequencing of the viral genomes. The data demonstrate that these viruses represent a novel H1N2 reassortant. The viruses showed limited neutralization by sera raised against heterologous A/sw/Bakum/1,832/00-like H1N2 viruses. Sera pools from recovered pigs showed a considerably lower HI reaction, indicative of diagnostic difficulties in using the HI test to detect these viruses with A/sw/Bakum/1,832/00-like H1N2 antigens. Genome sequencing revealed the novel combination of the human-like HAH1 gene of European porcine H1N2 influenza viruses and the NAN2 gene of European porcine H3N2 viruses.

  14. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    OpenAIRE

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus la...

  15. Making the invisible visible: searching for human T-cell lymphotropic virus types 1 and 2 (HTLV-1 and HTLV-2 in Brazilian patients with viral hepatitis B and C

    Directory of Open Access Journals (Sweden)

    Adele Caterino-de-Araujo

    Full Text Available With this study, the authors hope to alert clinicians regarding the presence of human T-cell lymphotropic virus type 1 and 2 (HTLV-1/-2 infections in patients with viral hepatitis B and C in Brazil. HTLV-1/-2 were detected in 1.3% of hepatitis B virus (HBV- and 5.3% of hepatitis C virus (HCV-infected blood samples sent for laboratory viral load measurements. A partial association of human immunodeficiency virus (HIV-1 and HTLV-1/-2 infection was detected in patients with HCV (HIV+, 27.3%, whereas this association was almost 100% in HBV-infected patients (HIV+, all except one. The high prevalence of HTLV-1/-2 infection among patients with hepatitis C was of concern, as HTLV-1/-2 could change the natural course of subsequent liver disease. The authors suggest including HTLV-1/-2 serology in the battery of tests used when following patients with viral hepatitis in Brazil, regardless of the HIV status.

  16. Making the invisible visible: searching for human T-cell lymphotropic virus types 1 and 2 (HTLV-1 and HTLV-2) in Brazilian patients with viral hepatitis B and C.

    Science.gov (United States)

    Caterino-de-Araujo, Adele; Alves, Fabiana Aparecida; Campos, Karoline Rodrigues; Lemos, Marcílio Figueiredo; Moreira, Regina Célia

    2018-02-01

    With this study, the authors hope to alert clinicians regarding the presence of human T-cell lymphotropic virus type 1 and 2 (HTLV-1/-2) infections in patients with viral hepatitis B and C in Brazil. HTLV-1/-2 were detected in 1.3% of hepatitis B virus (HBV)- and 5.3% of hepatitis C virus (HCV)-infected blood samples sent for laboratory viral load measurements. A partial association of human immunodeficiency virus (HIV)-1 and HTLV-1/-2 infection was detected in patients with HCV (HIV+, 27.3%), whereas this association was almost 100% in HBV-infected patients (HIV+, all except one). The high prevalence of HTLV-1/-2 infection among patients with hepatitis C was of concern, as HTLV-1/-2 could change the natural course of subsequent liver disease. The authors suggest including HTLV-1/-2 serology in the battery of tests used when following patients with viral hepatitis in Brazil, regardless of the HIV status.

  17. Vaccine induced antibodies to the first variable loop of human immunodeficiency virus type 1 gp120, mediate antibody-dependent virus inhibition in macaques.

    Science.gov (United States)

    Bialuk, Izabela; Whitney, Stephen; Andresen, Vibeke; Florese, Ruth H; Nacsa, Janos; Cecchinato, Valentina; Valeri, Valerio W; Heraud, Jean-Michel; Gordon, Shari; Parks, Robyn Washington; Montefiori, David C; Venzon, David; Demberg, Thorsten; Guroff, Marjorie Robert-; Landucci, Gary; Forthal, Donald N; Franchini, Genoveffa

    2011-12-09

    The role of antibodies directed against the hyper variable envelope region V1 of human immunodeficiency virus type 1 (HIV-1), has not been thoroughly studied. We show that a vaccine able to elicit strain-specific non-neutralizing antibodies to this region of gp120 is associated with control of highly pathogenic chimeric SHIV(89.6P) replication in rhesus macaques. The vaccinated animal that had the highest titers of antibodies to the amino terminus portion of V1, prior to challenge, had secondary antibody responses that mediated cell killing by antibody-dependent cellular cytotoxicity (ADCC), as early as 2 weeks after infection and inhibited viral replication by antibody-dependent cell-mediated virus inhibition (ADCVI), by 4 weeks after infection. There was a significant inverse correlation between virus level and binding antibody titers to the envelope protein, (R=-0.83, p=0.015), and ADCVI (R=-0.84 p=0.044). Genotyping of plasma virus demonstrated in vivo selection of three SHIV(89.6P) variants with changes in potential N-linked glycosylation sites in V1. We found a significant inverse correlation between virus levels and titers of antibodies that mediated ADCVI against all the identified V1 virus variants. A significant inverse correlation was also found between neutralizing antibody titers to SHIV(89.6) and virus levels (R=-0.72 p=0.0050). However, passive inoculation of purified immunoglobulin from animal M316, the macaque that best controlled virus, to a naïve macaque, resulted in a low serum neutralizing antibodies and low ADCVI activity that failed to protect from SHIV(89.6P) challenge. Collectively, while our data suggest that anti-envelope antibodies with neutralizing and non-neutralizing Fc(R-dependent activities may be important in the control of SHIV replication, they also demonstrate that low levels of these antibodies alone are not sufficient to protect from infection. Published by Elsevier Ltd.

  18. Positive Selection on Hemagglutinin and Neuraminidase Genes of H1N1 Influenza Viruses

    LENUS (Irish Health Repository)

    Li, Wenfu

    2011-04-21

    Abstract Background Since its emergence in March 2009, the pandemic 2009 H1N1 influenza A virus has posed a serious threat to public health. To trace the evolutionary path of these new pathogens, we performed a selection-pressure analysis of a large number of hemagglutinin (HA) and neuraminidase (NA) gene sequences of H1N1 influenza viruses from different hosts. Results Phylogenetic analysis revealed that both HA and NA genes have evolved into five distinct clusters, with further analyses indicating that the pandemic 2009 strains have experienced the strongest positive selection. We also found evidence of strong selection acting on the seasonal human H1N1 isolates. However, swine viruses from North America and Eurasia were under weak positive selection, while there was no significant evidence of positive selection acting on the avian isolates. A site-by-site analysis revealed that the positively selected sites were located in both of the cleaved products of HA (HA1 and HA2), as well as NA. In addition, the pandemic 2009 strains were subject to differential selection pressures compared to seasonal human, North American swine and Eurasian swine H1N1 viruses. Conclusions Most of these positively and\\/or differentially selected sites were situated in the B-cell and\\/or T-cell antigenic regions, suggesting that selection at these sites might be responsible for the antigenic variation of the viruses. Moreover, some sites were also associated with glycosylation and receptor-binding ability. Thus, selection at these positions might have helped the pandemic 2009 H1N1 viruses to adapt to the new hosts after they were introduced from pigs to humans. Positive selection on position 274 of NA protein, associated with drug resistance, might account for the prevalence of drug-resistant variants of seasonal human H1N1 influenza viruses, but there was no evidence that positive selection was responsible for the spread of the drug resistance of the pandemic H1N1 strains.

  19. Nonproductive human immunodeficiency virus type 1 infection of human fetal astrocytes: independence from CD4 and major chemokine receptors.

    Science.gov (United States)

    Sabri, F; Tresoldi, E; Di Stefano, M; Polo, S; Monaco, M C; Verani, A; Fiore, J R; Lusso, P; Major, E; Chiodi, F; Scarlatti, G

    1999-11-25

    Human immunodeficiency virus type 1 (HIV-1) infection of the brain is associated with neurological manifestations both in adults and in children. The primary target for HIV-1 infection in the brain is the microglia, but astrocytes can also be infected. We tested 26 primary HIV-1 isolates for their capacity to infect human fetal astrocytes in culture. Eight of these isolates, independent of their biological phenotype and chemokine receptor usage, were able to infect astrocytes. Although no sustained viral replication could be demonstrated, the virus was recovered by coculture with receptive cells such as macrophages or on stimulation with interleukin-1beta. To gain knowledge into the molecular events that regulate attachment and penetration of HIV-1 in astrocytes, we investigated the expression of several chemokine receptors. Fluorocytometry and calcium-mobilization assay did not provide evidence of expression of any of the major HIV-1 coreceptors, including CXCR4, CCR5, CCR3, and CCR2b, as well as the CD4 molecule on the cell surface of human fetal astrocytes. However, mRNA transcripts for CXCR4, CCR5, Bonzo/STRL33/TYMSTR, and APJ were detected by RT-PCR. Furthermore, infection of astrocytes by HIV-1 isolates with different chemokine receptor usage was not inhibited by the chemokines SDF-1beta, RANTES, MIP-1beta, or MCP-1 or by antibodies directed against the third variable region or the CD4 binding site of gp120. These data show that astrocytes can be infected by primary HIV-1 isolates via a mechanism independent of CD4 or major chemokine receptors. Furthermore, astrocytes are potential carriers of latent HIV-1 and on activation may be implicated in spreading the infection to other neighbouring cells, such as microglia or macrophages. Copyright 1999 Academic Press.

  20. Comparison of variable region 3 sequences of human immunodeficiency virus type 1 from infected children with the RNA and DNA sequences of the virus populations of their mothers.

    Science.gov (United States)

    Scarlatti, G; Leitner, T; Halapi, E; Wahlberg, J; Marchisio, P; Clerici-Schoeller, M A; Wigzell, H; Fenyö, E M; Albert, J; Uhlén, M

    1993-01-01

    We have compared the variable region 3 sequences from 10 human immunodeficiency virus type 1 (HIV-1)-infected infants to virus sequences from the corresponding mothers. The sequences were derived from DNA of uncultured peripheral blood mononuclear cells (PBMC), DNA of cultured PBMC, and RNA from serum collected at or shortly after delivery. The infected infants, in contrast to the mothers, harbored homogeneous virus populations. Comparison of sequences from the children and clones derived from DNA of the corresponding mothers showed that the transmitted virus represented either a minor or a major virus population of the mother. In contrast to an earlier study, we found no evidence of selection of minor virus variants during transmission. Furthermore, the transmitted virus variant did not show any characteristic molecular features. In some cases the transmitted virus was more related to the virus RNA population of the mother and in other cases it was more related to the virus DNA population. This suggests that either cell-free or cell-associated virus may be transmitted. These data will help AIDS researchers to understand the mechanism of transmission and to plan strategies for prevention of transmission. PMID:8446584

  1. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States.

    Science.gov (United States)

    Vincent, Amy L; Ma, Wenjun; Lager, Kelly M; Gramer, Marie R; Richt, Juergen A; Janke, Bruce H

    2009-10-01

    H1 influenza A viruses that were distinct from the classical swine H1 lineage were identified in pigs in Canada in 2003–2004; antigenic and genetic characterization identified the hemagglutinin (HA) as human H1 lineage. The viruses identified in Canadian pigs were human lineage in entirety or double (human–swine) reassortants. Here, we report the whole genome sequence analysis of four human-like H1 viruses isolated from U.S. swine in 2005 and 2007. All four isolates were characterized as triple reassortants with an internal gene constellation similar to contemporary U.S. swine influenza virus (SIV), with HA and neuraminidase (NA) most similar to human influenza virus lineages. A 2007 human-like H1N1 was evaluated in a pathogenesis and transmission model and compared to a 2004 reassortant H1N1 SIV isolate with swine lineage HA and NA. The 2007 isolate induced disease typical of influenza virus and was transmitted to contact pigs; however, the kinetics and magnitude differed from the 2004 H1N1 SIV. This study indicates that the human-like H1 SIV can efficiently replicate and transmit in the swine host and now co-circulates with contemporary SIVs as a distinct genetic cluster of H1 SIV.

  2. Different presence of Chlamydia pneumoniae, herpes simplex virus type 1, human herpes virus 6, and Toxoplasma gondii in schizophrenia: meta-analysis and analytical study

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Fernández J

    2015-03-01

    Full Text Available José Gutiérrez-Fernández,1 Juan de Dios Luna del Castillo,2 Sara Mañanes-González,1 José Antonio Carrillo-Ávila,1 Blanca Gutiérrez,3 Jorge A Cervilla,3 Antonio Sorlózano-Puerto1 1Department of Microbiology, 2Department of Statistics and Operation Research, 3Department of Psychiatry, Institute of Neurosciences and CIBERSAM, School of Medicine and Biohealth Research Institute (Instituto de Investigación Biosanitaria IBS-Granada, University of Granada, Granada, Spain Abstract: In the present study we have performed both a meta-analysis and an analytical study exploring the presence of Chlamydia pneumoniae, herpes simplex virus type 1, human herpes virus 6, and Toxoplasma gondii antibodies in a sample of 143 schizophrenic patients and 143 control subjects. The meta-analysis was performed on papers published up to April 2014. The presence of serum immunoglobulin G and immunoglobulin A was performed by enzyme-linked immunosorbent assay test. The detection of microbial DNA in total peripheral blood was performed by nested polymerase chain reaction. The meta-analysis showed that: 1 C. pneumoniae DNA in blood and brain are more common in schizophrenic patients; 2 there is association with parasitism by T. gondii, despite the existence of publication bias; and 3 herpes viruses were not more common in schizophrenic patients. In our sample only anti-Toxoplasma immunoglobulin G was more prevalent and may be a risk factor related to schizophrenia, with potential value for prevention. Keywords: meta-analysis, analytical study, Chlamydia pneumoniae, herpes simplex virus type 1, human herpes virus 6, Toxoplasma gondii, schizophrenia

  3. Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo

    Directory of Open Access Journals (Sweden)

    James M Fox

    2016-03-01

    Full Text Available Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1 infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1, HTLV-1 plasma RNA is sparse. The contribution of the “mitotic” spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC of asymptomatic carriers (ACs and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP or adult T cell leukaemia/lymphoma (ATLL. 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset.

  4. A random PCR screening system for the identification of type 1 human herpes simplex virus.

    Science.gov (United States)

    Yu, Xuelian; Shi, Bisheng; Gong, Yan; Zhang, Xiaonan; Shen, Silan; Qian, Fangxing; Gu, Shimin; Hu, Yunwen; Yuan, Zhenghong

    2009-10-01

    Several viral diseases exhibit measles-like symptoms. Differentiation of suspected cases of measles with molecular epidemiological techniques in the laboratory is useful for measles surveillance. In this study, a random PCR screening system was undertaken for the identification of isolates from patients with measles-like symptoms who exhibited cytopathic effects, but who had negative results for measles virus-specific reverse transcription (RT)-PCR and indirect immunofluorescence assays. Sequence analysis of random amplified PCR products showed that they were highly homologous to type 1 human herpes simplex virus (HSV-1). The results were further confirmed by an HSV-1-specific TaqMan real-time PCR assay. The random PCR screening system described in this study provides an efficient procedure for the identification of unknown viral pathogens. Measles-like symptoms can also be caused by HSV-1, suggesting the need to include HSV-1 in differential diagnoses of measles-like diseases.

  5. Maternal Proviral Load and Vertical Transmission of Human T Cell Lymphotropic Virus Type 1 in Guinea-Bissau

    NARCIS (Netherlands)

    van Tienen, Carla; McConkey, Samuel J.; de Silva, Thushan I.; Cotten, Matthew; Kaye, Steve; Sarge-Njie, Ramu; da Costa, Carlos; Gonçalves, Nato; Parker, Julia; Vincent, Tim; Jaye, Assan; Aaby, Peter; Whittle, Hilton; Schim van der Loeff, Maarten

    2012-01-01

    The relative importance of routes of transmission of human T cell lymphotropic virus type 1 (HTLV-1) in Guinea-Bissau is largely unknown; vertical transmission is thought to be important, but there are very few existing data. We aimed to examine factors associated with transmission in mothers and

  6. Swine Influenza Virus (H1N2) Characterization and Transmission in Ferrets, Chile.

    Science.gov (United States)

    Bravo-Vasquez, Nicolás; Karlsson, Erik A; Jimenez-Bluhm, Pedro; Meliopoulos, Victoria; Kaplan, Bryan; Marvin, Shauna; Cortez, Valerie; Freiden, Pamela; Beck, Melinda A; Hamilton-West, Christopher; Schultz-Cherry, Stacey

    2017-02-01

    Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus. The virus replicated efficiently in vitro and in vivo and transmitted in ferrets by respiratory droplet. Antigenically, it was distinct from other swine viruses. Hemagglutination inhibition analysis suggested that antibody titers to the swine Chilean H1N2 virus were decreased in persons born after 1990. Further studies are needed to characterize the potential risk to humans, as well as the ecology of influenza in swine in South America.

  7. Production of a Dendritic Cell-Based Vaccine Containing Inactivated Autologous Virus for Therapy of Patients with Chronic Human Immunodeficiency Virus Type 1 Infection▿

    Science.gov (United States)

    Whiteside, Theresa L.; Piazza, Paolo; Reiter, Amanda; Stanson, Joanna; Connolly, Nancy C.; Rinaldo, Charles R.; Riddler, Sharon A.

    2009-01-01

    In preparation for a pilot clinical trial in patients with chronic human immunodeficiency virus type 1 (HIV-1) infection, a novel dendritic cell (DC)-based vaccine is being manufactured. The trial will test the hypothesis that isolated endogenous virus presented by DCs serves as a potent immunogen for activation of CD8+ and CD4+ T cells specific for a broad range of autologous HIV-1 antigens. Production of the vaccine under good manufacture practice conditions involves (i) autologous virus isolation; (ii) superinfection of CD4+ T cells with the virus; (iii) inactivation of the virus in CD4+ T cells, T-cell apoptosis, and coincubation of T cells with autologous DCs; and (iv) product testing and release. Endogenous virus was isolated from peripheral blood-derived CD4+ T cells of three HIV-1-positive subjects by coincubation with autologous OKT-3-stimulated CD4+ T cells. CD4+ T-cell supernatants were tested for p24 levels by enzyme-linked immunosorbent assay (>25 ng/ml) and for the 50% tissue culture infective doses (TCID50; which ranged from 4,642 to 46,416/ml on day 19 of culture). Autologous CD4+ T cells that were separated on immunobeads (>95% purity) and superinfected with virus-expressed p24 (28 to 54%) had TCID50 of >400/ml on days 5 to 10. Virus inactivation with psoralen (20 μg/ml) and UVB irradiation (312 nm) reduced the TCID50 of the supernatants from 199,986 to 11/ml (>99%). 7-Amino-actinomycin D-positive, annexin V-positive CD4+ T cells were fed to autologous DCs generated by using the Elutra cell separation system and the Aastrom system. Flow analysis showed that DC loading was complete in 24 h. On the basis of these translational results and experience with the generation of DCs from HIV-1-infected patients in a previous clinical trial, the Investigational New Drug application for clinical vaccination was submitted and approved by the FDA (application no. BB-IND-13137). PMID:19038780

  8. Production of a dendritic cell-based vaccine containing inactivated autologous virus for therapy of patients with chronic human immunodeficiency virus type 1 infection.

    Science.gov (United States)

    Whiteside, Theresa L; Piazza, Paolo; Reiter, Amanda; Stanson, Joanna; Connolly, Nancy C; Rinaldo, Charles R; Riddler, Sharon A

    2009-02-01

    In preparation for a pilot clinical trial in patients with chronic human immunodeficiency virus type 1 (HIV-1) infection, a novel dendritic cell (DC)-based vaccine is being manufactured. The trial will test the hypothesis that isolated endogenous virus presented by DCs serves as a potent immunogen for activation of CD8(+) and CD4(+) T cells specific for a broad range of autologous HIV-1 antigens. Production of the vaccine under good manufacture practice conditions involves (i) autologous virus isolation; (ii) superinfection of CD4(+) T cells with the virus; (iii) inactivation of the virus in CD4(+) T cells, T-cell apoptosis, and coincubation of T cells with autologous DCs; and (iv) product testing and release. Endogenous virus was isolated from peripheral blood-derived CD4(+) T cells of three HIV-1-positive subjects by coincubation with autologous OKT-3-stimulated CD4(+) T cells. CD4(+) T-cell supernatants were tested for p24 levels by enzyme-linked immunosorbent assay (>25 ng/ml) and for the 50% tissue culture infective doses (TCID(50); which ranged from 4,642 to 46,416/ml on day 19 of culture). Autologous CD4(+) T cells that were separated on immunobeads (>95% purity) and superinfected with virus-expressed p24 (28 to 54%) had TCID(50) of >400/ml on days 5 to 10. Virus inactivation with psoralen (20 microg/ml) and UVB irradiation (312 nm) reduced the TCID(50) of the supernatants from 199,986 to 11/ml (>99%). 7-Amino-actinomycin D-positive, annexin V-positive CD4(+) T cells were fed to autologous DCs generated by using the Elutra cell separation system and the Aastrom system. Flow analysis showed that DC loading was complete in 24 h. On the basis of these translational results and experience with the generation of DCs from HIV-1-infected patients in a previous clinical trial, the Investigational New Drug application for clinical vaccination was submitted and approved by the FDA (application no. BB-IND-13137).

  9. Influenza A Viruses of Human Origin in Swine, Brazil.

    Science.gov (United States)

    Nelson, Martha I; Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-08-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil's swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009-2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance.

  10. A paramyxovirus-vectored intranasal vaccine against Ebola virus is immunogenic in vector-immune animals.

    Science.gov (United States)

    Yang, Lijuan; Sanchez, Anthony; Ward, Jerrold M; Murphy, Brian R; Collins, Peter L; Bukreyev, Alexander

    2008-08-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans. The virus can be transmitted by direct contact as well as by aerosol and is considered a potential bioweapon. Because direct immunization of the respiratory tract should be particularly effective against infection of mucosal surfaces, we previously developed an intranasal vaccine based on replication-competent human parainfluenza virus type 3 (HPIV3) expressing EBOV glycoprotein GP (HPIV3/EboGP) and showed that it is immunogenic and protective against a high dose parenteral EBOV challenge. However, because the adult human population has considerable immunity to HPIV3, which is a common human pathogen, replication and immunogenicity of the vaccine in this population might be greatly restricted. Indeed, in the present study, replication of the vaccine in the respiratory tract of HPIV3-immune guinea pigs was found to be restricted to undetectable levels. This restriction appeared to be based on both neutralizing antibodies and cellular or other components of the immunity to HPIV3. Surprisingly, even though replication of HPIV3/EboGP was highly restricted in HPIV3-immune animals, it induced a high level of EBOV-specific antibodies that nearly equaled that obtained in HPIV3-naive animals. We also show that the previously demonstrated presence of functional GP in the vector particle was not associated with increased replication in the respiratory tract nor with spread beyond the respiratory tract of HPIV3-naive guinea pigs, indicating that expression and functional incorporation of the attachment/penetration glycoprotein of this systemic virus did not mediate a change in tissue tropism.

  11. Evaluation of the efficacy and duration of immunity of a canine combination vaccine against virulent parvovirus, infectious canine hepatitis virus, and distemper virus experimental challenges.

    Science.gov (United States)

    Abdelmagid, Omar Y; Larson, Laurie; Payne, Laurie; Tubbs, Anna; Wasmoen, Terri; Schultz, Ronald

    2004-01-01

    The results of this study confirmed that dogs vaccinated subcutaneously with a commercially available multivalent vaccine containing modified-live canine distemper virus, canine adenovirus type 2, canine parvovirus type 2b, and canine parainfluenza virus antigens were protected against sequential experimental challenge 55 to 57 months after initial vaccination given at 7 to 8 weeks of age. All 10 vaccinates were protected against clinical diseases and mortality following parvovirus and infectious canine hepatitis experimental infections. All vaccinates were protected against mortality and 90% against clinical disease following distemper challenge. These data support at least a 4-year duration of immunity for these three "core" fractions in the combination vaccine.

  12. Grape seed extract for control of human enteric viruses.

    Science.gov (United States)

    Su, Xiaowei; D'Souza, Doris H

    2011-06-01

    Grape seed extract (GSE) is reported to have many pharmacological benefits, including antioxidant, anti-inflammatory, anticarcinogenic, and antimicrobial properties. However, the effect of this inexpensive rich source of natural phenolic compounds on human enteric viruses has not been well documented. In the present study, the effect of commercial GSE, Gravinol-S, on the infectivity of human enteric virus surrogates (feline calicivirus, FCV-F9; murine norovirus, MNV-1; and bacteriophage MS2) and hepatitis A virus (HAV; strain HM175) was evaluated. GSE at concentrations of 0.5, 1, and 2 mg/ml was individually mixed with equal volumes of each virus at titers of ∼7 log(10) PFU/ml or ∼5 log(10) PFU/ml and incubated for 2 h at room temperature or 37°C. The infectivity of the recovered viruses after triplicate treatments was evaluated by standardized plaque assays. At high titers (∼7 log(10) PFU/ml), FCV-F9 was significantly reduced by 3.64, 4.10, and 4.61 log(10) PFU/ml; MNV-1 by 0.82, 1.35, and 1.73 log(10) PFU/ml; MS2 by 1.13, 1.43, and 1.60 log(10) PFU/ml; and HAV by 1.81, 2.66, and 3.20 log(10) PFU/ml after treatment at 37°C with 0.25, 0.50, and 1 mg/ml GSE, respectively (P PFU/ml) at 37°C also showed viral reductions. Room-temperature treatments with GSE caused significant reduction of the four viruses, with higher reduction for low-titer FCV-F9, MNV-1, and HAV compared to high titers. Our results indicate that GSE shows promise for application in the food industry as an inexpensive novel natural alternative to reduce viral contamination and enhance food safety.

  13. Molecular and Serological Survey of Selected Viruses in Free-Ranging Wild Ruminants in Iran.

    Directory of Open Access Journals (Sweden)

    Farhid Hemmatzadeh

    Full Text Available A molecular and serological survey of selected viruses in free-ranging wild ruminants was conducted in 13 different districts in Iran. Samples were collected from 64 small wild ruminants belonging to four different species including 25 Mouflon (Ovis orientalis, 22 wild goat (Capra aegagrus, nine Indian gazelle (Gazella bennettii and eight Goitered gazelle (Gazella subgutturosa during the national survey for wildlife diseases in Iran. Serum samples were evaluated using serologic antibody tests for Peste de petits ruminants virus (PPRV, Pestiviruses [Border Disease virus (BVD and Bovine Viral Diarrhoea virus (BVDV], Bluetongue virus (BTV, Bovine herpesvirus type 1 (BHV-1, and Parainfluenza type 3 (PI3. Sera were also ELISA tested for Pestivirus antigen. Tissue samples including spleen, liver, lung, tonsils, mesenteric and mediastinal lymph nodes and white blood cells (WBCs were tested using polymerase chain reaction (PCR for PPRV, Foot and Mouth Disease virus (FMDV, Pestivirus, BTV, Ovine herpesvirus type 2 (OvHV-2 and BHV-1. Serologic tests were positive for antibodies against PPRV (17%, Pestiviruses (2% and BTV (2%. No antibodies were detected for BHV-1 or PI3, and no Pestivirus antigen was detected. PCR results were positive for PPRV (7.8%, FMDV (11%, BTV (3%, OvHV-2 (31% and BHV-1 (1.5%. None of the samples were positive for Pestiviruses.

  14. Characterization of human coronavirus etiology in Chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays.

    Directory of Open Access Journals (Sweden)

    Roujian Lu

    Full Text Available BACKGROUND: In addition to SARS associated coronaviruses, 4 non-SARS related human coronaviruses (HCoVs are recognized as common respiratory pathogens. The etiology and clinical impact of HCoVs in Chinese adults with acute upper respiratory tract infection (URTI needs to be characterized systematically by molecular detection with excellent sensitivity. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we detected 4 non-SARS related HCoV species by real-time RT-PCR in 981 nasopharyngeal swabs collected from March 2009 to February 2011. All specimens were also tested for the presence of other common respiratory viruses and newly identified viruses, human metapneumovirus (hMPV and human bocavirus (HBoV. 157 of the 981 (16.0% nasopharyngeal swabs were positive for HCoVs. The species detected were 229E (96 cases, 9.8%, OC43 (42 cases, 4.3%, HKU1 (16 cases, 1.6% and NL63 (11 cases, 1.1%. HCoV-229E was circulated in 21 of the 24 months of surveillance. The detection rates for both OC43 and NL63 were showed significantly year-to-year variation between 2009/10 and 2010/11, respectively (P<0.001 and P = 0.003, and there was a higher detection frequency of HKU1 in patients aged over 60 years (P = 0.03. 48 of 157(30.57% HCoV positive patients were co-infected. Undifferentiated human rhinoviruses and influenza (Flu A were the most common viruses detected (more than 35% in HCoV co-infections. Respiratory syncytial virus (RSV, human parainfluenza virus (PIV and HBoV were detected in very low rate (less than 1% among adult patients with URTI. CONCLUSIONS/SIGNIFICANCE: All 4 non-SARS-associated HCoVs were more frequently detected by real-time RT-PCR assay in adults with URTI in Beijing and HCoV-229E led to the most prevalent infection. Our study also suggested that all non-SARS-associated HCoVs contribute significantly to URTI in adult patients in China.

  15. Determination of Coreceptor Usage of Human Immunodeficiency Virus Type 1 from Patient Plasma Samples by Using a Recombinant Phenotypic Assay

    Science.gov (United States)

    Trouplin, Virginie; Salvatori, Francesca; Cappello, Fanny; Obry, Veronique; Brelot, Anne; Heveker, Nikolaus; Alizon, Marc; Scarlatti, Gabriella; Clavel, François; Mammano, Fabrizio

    2001-01-01

    We developed a recombinant virus technique to determine the coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from plasma samples, the source expected to represent the most actively replicating virus population in infected subjects. This method is not subject to selective bias associated with virus isolation in culture, a step required for conventional tropism determination procedures. The addition of a simple subcloning step allowed semiquantitative evaluation of virus populations with a different coreceptor (CCR5 or CXCR4) usage specificity present in each plasma sample. This procedure detected mixtures of CCR5- and CXCR4-exclusive virus populations as well as dualtropic viral variants, in variable proportions. Sequence analysis of dualtropic clones indicated that changes in the V3 loop are necessary for the use of CXCR4 as a coreceptor, but the overall context of the V1-V3 region is important to preserve the capacity to use CCR5. This convenient technique can greatly assist the study of virus evolution and compartmentalization in infected individuals. PMID:11119595

  16. Functional analysis of the interaction of the human immunodeficiency virus type 1 Rev nuclear export signal with its cofactors

    International Nuclear Information System (INIS)

    Kiss, A.; Li, L.; Gettemeier, T.; Venkatesh, L.K.

    2003-01-01

    Human immunodeficiency virus type 1 (HIV-1) Rev-mediated nuclear export of viral RNAs involves the interaction of its leucine-rich nuclear export sequence (NES) with nuclear cofactors. In yeast two-hybrid screens of a human lymph node derived cDNA expression library, we identified the human nucleoporin Nup98 as a highly specific and potent interactor of the Rev NES. Using an extensive panel of nuclear export positive and negative mutants of the functionally homologous NESs of the HIV-1 Rev, human T cell leukemia virus type 1 (HTLV-1) Rex, and equine infectious anemia virus (EIAV) Rev proteins, physiologically significant interaction of hNup98 with the various NESs was demonstrated. Missense mutations in the yeast nuclear export factor Crm1p that abrogated Rev NES interaction with the XXFG repeat-containing nucleoporin, Rab/hRIP, had minimal effects on the interaction of GLFG repeat-containing hNup98. Functional analysis of Nup98 domains required for nuclear localization demonstrated that the entire ORF was required for efficient incorporation into the nuclear envelope. A putative nuclear localization signal was identified downstream of the GLFG repeat region. Whereas overexpression of both full-length Nup98 and the amino-terminal GLFG repeat region, but not the unique carboxy-terminal region, induced significant suppression of HIV unspliced RNA export, lower levels of exogenous Nup98 expression resulted in a relatively modest increase in unspliced RNA export. These results suggest a physiological role for hNup98 in modulating Rev-dependent RNA export during HIV infection

  17. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The importance of the fourth variable (V4 region of the human immunodeficiency virus 1 (HIV-1 envelope glycoprotein (Env in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS. In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS, greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.

  18. A Human Nuclear Shuttling Protein That Interacts with Human Immunodeficiency Virus Type 1 Matrix Is Packaged into Virions

    Science.gov (United States)

    Gupta, Kalpana; Ott, David; Hope, Thomas J.; Siliciano, Robert F.; Boeke, Jef D.

    2000-01-01

    Active nuclear import of the human immunodeficiency virus type 1 (HIV-1) preintegration complex (PIC) is essential for the productive infection of nondividing cells. Nuclear import of the PIC is mediated by the HIV-1 matrix protein, which also plays several critical roles during viral entry and possibly during virion production facilitating the export of Pr55Gag and genomic RNA. Using a yeast two-hybrid screen, we identified a novel human virion-associated matrix-interacting protein (VAN) that is highly conserved in vertebrates and expressed in most human tissues. Its expression is upregulated upon activation of CD4+ T cells. VAN is efficiently incorporated into HIV-1 virions and, like matrix, shuttles between the nucleus and cytoplasm. Furthermore, overexpression of VAN significantly inhibits HIV-1 replication in tissue culture. We propose that VAN regulates matrix nuclear localization and, by extension, both nuclear import of the PIC and export of Pr55Gag and viral genomic RNA during virion production. Our data suggest that this regulatory mechanism reflects a more global process for regulation of nucleocytoplasmic transport. PMID:11090181

  19. Role for nectin-1 in herpes simplex virus 1 entry and spread in human retinal pigment epithelial cells

    Science.gov (United States)

    Tiwari, Vaibhav; Oh, Myung-Jin; Kovacs, Maria; Shukla, Shripaad Y.; Valyi-Nagy, Tibor; Shukla, Deepak

    2009-01-01

    Herpes simplex virus 1 (HSV-1) demonstrates a unique ability to infect a variety of host cell types. Retinal pigment epithelial (RPE) cells form the outermost layer of the retina and provide a potential target for viral invasion and permanent vision impairment. Here we examine the initial cellular and molecular mechanisms that facilitate HSV-1 invasion of human RPE cells. High-resolution confocal microscopy demonstrated initial interaction of green fluorescent protein (GFP)-tagged virions with filopodia-like structures present on cell surfaces. Unidirectional movement of the virions on filopodia to the cell body was detected by live cell imaging of RPE cells, which demonstrated susceptibility to pH-dependent HSV-1 entry and replication. Use of RT-PCR indicated expression of nectin-1, herpes virus entry mediator (HVEM) and 3-O-sulfotransferase-3 (as a surrogate marker for 3-O-sulfated heparan sulfate). HVEM and nectin-1 expression was subsequently verified by flow cytometry. Nectin-1 expression in murine retinal tissue was also demonstrated by immunohistochemistry. Antibodies against nectin-1, but not HVEM, were able to block HSV-1 infection. Similar blocking effects were seen with a small interfering RNA construct specifically directed against nectin-1, which also blocked RPE cell fusion with HSV-1 glycoprotein-expressing Chinese hamster ovary (CHO-K1) cells. Anti-nectin-1 antibodies and F-actin depolymerizers were also successful in blocking the cytoskeletal changes that occur upon HSV-1 entry into cells. Our findings shed new light on the cellular and molecular mechanisms that help the virus to enter the cells of the inner eye. PMID:18803666

  20. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China.

    Science.gov (United States)

    Yu, Hai; Zhang, Peng-Chao; Zhou, Yan-Jun; Li, Guo-Xin; Pan, Jie; Yan, Li-Ping; Shi, Xiao-Xiao; Liu, Hui-Li; Tong, Guang-Zhi

    2009-08-21

    As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or "mixing vessels", and swine influenza virus surveillance in China should be given a high priority.

  1. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation

    Science.gov (United States)

    Kennedy, Peter G. E.; Rovnak, Joel; Badani, Hussain

    2015-01-01

    Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an ‘end-less’ state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is

  2. Systems-level comparison of host responses induced by pandemic and seasonal influenza A H1N1 viruses in primary human type I-like alveolar epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Guan Yi

    2010-10-01

    Full Text Available Abstract Background Pandemic influenza H1N1 (pdmH1N1 virus causes mild disease in humans but occasionally leads to severe complications and even death, especially in those who are pregnant or have underlying disease. Cytokine responses induced by pdmH1N1 viruses in vitro are comparable to other seasonal influenza viruses suggesting the cytokine dysregulation as seen in H5N1 infection is not a feature of the pdmH1N1 virus. However a comprehensive gene expression profile of pdmH1N1 in relevant primary human cells in vitro has not been reported. Type I alveolar epithelial cells are a key target cell in pdmH1N1 pneumonia. Methods We carried out a comprehensive gene expression profiling using the Affymetrix microarray platform to compare the transcriptomes of primary human alveolar type I-like alveolar epithelial cells infected with pdmH1N1 or seasonal H1N1 virus. Results Overall, we found that most of the genes that induced by the pdmH1N1 were similarly regulated in response to seasonal H1N1 infection with respect to both trend and extent of gene expression. These commonly responsive genes were largely related to the interferon (IFN response. Expression of the type III IFN IL29 was more prominent than the type I IFN IFNβ and a similar pattern of expression of both IFN genes was seen in pdmH1N1 and seasonal H1N1 infection. Genes that were significantly down-regulated in response to seasonal H1N1 but not in response to pdmH1N1 included the zinc finger proteins and small nucleolar RNAs. Gene Ontology (GO and pathway over-representation analysis suggested that these genes were associated with DNA binding and transcription/translation related functions. Conclusions Both seasonal H1N1 and pdmH1N1 trigger similar host responses including IFN-based antiviral responses and cytokine responses. Unlike the avian H5N1 virus, pdmH1N1 virus does not have an intrinsic capacity for cytokine dysregulation. The differences between pdmH1N1 and seasonal H1N1 viruses

  3. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity

    International Nuclear Information System (INIS)

    Skiadopoulos, Mario H.; Biacchesi, Stephane; Buchholz, Ursula J.; Amaro-Carambot, Emerito; Surman, Sonja R.; Collins, Peter L.; Murphy, Brian R.

    2006-01-01

    We evaluated the individual contributions of the three surface glycoproteins of human metapneumovirus (HMPV), namely the fusion F, attachment G, and small hydrophobic SH proteins, to the induction of serum HMPV-binding antibodies, serum HMPV-neutralizing antibodies, and protective immunity. Using reverse genetics, each HMPV protein was expressed individually from an added gene in recombinant human parainfluenza virus type 1 (rHPIV1) and used to infect hamsters once or twice by the intranasal route. The F protein was highly immunogenic and protective, whereas G and SH were only weakly or negligibly immunogenic and protective, respectively. Thus, in contrast to other paramyxoviruses, the HMPV attachment G protein is not a major neutralization or protective antigen. Also, although the SH protein of HMPV is a virion protein that is much larger than its counterparts in previously studied paramyxoviruses, it does not appear to be a significant neutralization or protective antigen

  4. Inhibition of human immunodeficiency virus type 1 (HIV-1) nuclear import via Vpr-Importin α interactions as a novel HIV-1 therapy

    International Nuclear Information System (INIS)

    Suzuki, Tatsunori; Yamamoto, Norio; Nonaka, Mizuho; Hashimoto, Yoshie; Matsuda, Go; Takeshima, Shin-nosuke; Matsuyama, Megumi; Igarashi, Tatsuhiko; Miura, Tomoyuki; Tanaka, Rie; Kato, Shingo; Aida, Yoko

    2009-01-01

    The development of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus (HIV) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. One such target is the interaction between Vpr, one of the accessory gene products of HIV-1 and Importin α, which is crucial, not only for the nuclear import of Vpr, but also for HIV-1 replication in macrophages. We have identified a potential parent compound, hematoxylin, which suppresses Vpr-Importin α interaction, thereby inhibiting HIV-1 replication in a Vpr-dependent manner. Analysis by real-time PCR demonstrated that hematoxylin specifically inhibited nuclear import step of pre-integration complex. Thus, hematoxylin is a new anti-HIV-1 inhibitor that targets the nuclear import of HIV-1 via the Vpr-Importin α interaction, suggesting that a specific inhibitor of the interaction between viral protein and the cellular factor may provide a new strategy for HIV-1 therapy.

  5. Women's awareness of the human papilloma virus and related health problems.

    Science.gov (United States)

    Akyuz, Aygul; Yılmaz, Cevriye; Yenen, Müfit Cemal; Yavan, Tülay; Kılıç, Ayşe

    2011-12-01

    This paper is a report of a study of women's awareness of the human papilloma virus and related health problems. Cervical cancer is an important cause of mortality, making up approximately 12% of all cancers in women. Awareness on the part of carriers of human papilloma virus is crucial in preventing transmission of the infection and protecting against cervical cancer. The study was performed as a cross-sectional descriptive study. The study consists of 79 human papilloma virus-positive women who had not been diagnosed with cervical cancer and 150 women who had not been diagnosed with human papilloma virus. Data were collected via questionnaires between November 2007 and April 2008. Percentages and chi-square test were used. A significantly higher percentage of women with positive human papilloma virus knew the definition of human papilloma virus, the fact that it is transmitted via sexual contact and that it can lead to cervical cancer than did women with negative human papilloma virus. It was established that approximately half the women with positive human papilloma virus presented at the hospital with a genital wart. None of the women knew that a Pap smear test was a necessary tool in the prevention of cervical cancer. Women with positive human papilloma virus have insufficient knowledge of human papilloma virus, sexually transmitted diseases, the health risks associated with human papilloma virus and the means of preventing these risks. It is therefore necessary to evaluate the education of health workers, and especially of nurses, on human papilloma virus and its prevention. © 2011 Blackwell Publishing Ltd.

  6. Comparison of neutralizing and hemagglutination-inhibiting antibody responses to influenza A virus vaccination of human immunodeficiency virus-infected individuals

    NARCIS (Netherlands)

    Benne, CA; Harmsen, M; Tavares, L; Kraaijeveld, CA; De Jong, JC

    A neutralization enzyme immunoassay (N-EIA) was used to determine the neutralizing serum antibody titers to influenza A/Taiwan/1/86 (H1N1) and Beijing/353/89 (H3N2) viruses after vaccination of 51 human immunodeficiency virus (HIV) type 1-infected individuals and 10 healthy noninfected controls

  7. Differential host determinants contribute to the pathogenesis of 2009 pandemic H1N1 and human H5N1 influenza A viruses in experimental mouse models.

    Science.gov (United States)

    Otte, Anna; Sauter, Martina; Alleva, Lisa; Baumgarte, Sigrid; Klingel, Karin; Gabriel, Gülsah

    2011-07-01

    Influenza viruses are responsible for high morbidities in humans and may, eventually, cause pandemics. Herein, we compared the pathogenesis and host innate immune responses of a seasonal H1N1, two 2009 pandemic H1N1, and a human H5N1 influenza virus in experimental BALB/c and C57BL/6J mouse models. We found that both 2009 pandemic H1N1 isolates studied (A/Hamburg/05/09 and A/Hamburg/NY1580/09) were low pathogenic in BALB/c mice [log mouse lethal dose 50 (MLD(50)) >6 plaque-forming units (PFU)] but displayed remarkable differences in virulence in C57BL/6J mice. A/Hamburg/NY1580/09 was more virulent (logMLD(50) = 3.5 PFU) than A/Hamburg/05/09 (logMLD(50) = 5.2 PFU) in C57BL/6J mice. In contrast, the H5N1 influenza virus was more virulent in BALB/c mice (logMLD(50) = 0.3 PFU) than in C57BL/6J mice (logMLD(50) = 1.8 PFU). Seasonal H1N1 influenza revealed marginal pathogenicity in BALB/c or C57BL/6J mice (logMLD(50) >6 PFU). Enhanced susceptibility of C57BL/6J mice to pandemic H1N1 correlated with a depressed cytokine response. In contrast, enhanced H5N1 virulence in BALB/c mice correlated with an elevated proinflammatory cytokine response. These findings highlight that host determinants responsible for the pathogenesis of 2009 pandemic H1N1 influenza viruses are different from those contributing to H5N1 pathogenesis. Our results show, for the first time to our knowledge, that the C57BL/6J mouse strain is more appropriate for the evaluation and identification of intrinsic pathogenicity markers of 2009 pandemic H1N1 influenza viruses that are "masked" in BALB/c mice. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Schistosomiasis and infection with human immunodeficiency virus 1 in rural Zimbabwe

    DEFF Research Database (Denmark)

    Erikstrup, Christian; Kallestrup, Per; Zinyama-Gutsire, Rutendo B L

    2008-01-01

    We previously reported that treatment for schistosomiasis in persons infected with human immunodeficiency virus 1 (HIV-1) attenuated HIV replication as measured by plasma HIV RNA. We investigated systemic inflammation as measured by plasma levels of soluble tumor necrosis factor-alpha receptor II...... (sTNF-rII), interleukin-8, (IL-8), and IL-10 during schistosomiasis and HIV co-infection and after schistosomiasis treatment. The cohort was composed of 378 persons who were or were not infected with HIV-1, Schistosoma haematobium, or S. mansoni. Schistosomiasis-infected persons were randomized...... to receive praziquantel (40 mg/kg) at baseline or at the three-month follow-up. sTNF-rII and IL-8 were positively associated with schistosomiasis intensity as measured by circulating anodic antigen (CAA), regardless of HIV status. Interleukin-10 was positively associated with CAA in HIV-negative participants...

  9. Predictors associated with the willingness to take human papilloma virus vaccination.

    Science.gov (United States)

    Naing, Cho; Pereira, Joanne; Abe, Tatsuki; Eh Zhen Wei, Daniel; Rahman Bajera, Ibrizah Binti Abdul; Kavinda Perera, Undugodage Heshan

    2012-04-01

    Human papilloma virus vaccine is considered to be the primary form of cervical cancer prevention. The objectives were (1) to determine knowledge about, and perception of human papilloma virus infection in relation to cervical cancer, (2) to explore the intention of the community to be vaccinated with human papilloma virus vaccine, and (3) to identify variables that could predict the likelihood of uptake of the vaccine. A cross-sectional survey was carried out in a semi-urban Town of Malaysia, using a pre-tested structured questionnaire. Summary statistics, Pearson chi-square test and a binary logistic regression were used for data analysis. A total of 232 respondents were interviewed. Overall, only a few had good knowledge related to human papilloma virus (14%) or vaccination (8%). Many had misconceptions that it could be transmitted through blood transfusion (57%). Sixty percent had intention to take vaccination. In the binary logistic model, willingness to take vaccination was significant with 'trusts that vaccination would be effective for prevention of cervical cancer' (P = 0.001), 'worries for themselves' (P human papilloma virus infection and cervical cancer would be helpful to increase the acceptability of vaccination program.

  10. Replacement of Murine Leukemia Virus Readthrough Mechanism by Human Immunodeficiency Virus Frameshift Allows Synthesis of Viral Proteins and Virus Replication

    Science.gov (United States)

    Brunelle, Marie-Noëlle; Brakier-Gingras, Léa; Lemay, Guy

    2003-01-01

    Retroviruses use unusual recoding strategies to synthesize the Gag-Pol polyprotein precursor of viral enzymes. In human immunodeficiency virus, ribosomes translating full-length viral RNA can shift back by 1 nucleotide at a specific site defined by the presence of both a slippery sequence and a downstream stimulatory element made of an extensive secondary structure. This so-called frameshift mechanism could become a target for the development of novel antiviral strategies. A different recoding strategy is used by other retroviruses, such as murine leukemia viruses, to synthesize the Gag-Pol precursor; in this case, a stop codon is suppressed in a readthrough process, again due to the presence of a specific structure adopted by the mRNA. Development of antiframeshift agents will greatly benefit from the availability of a simple animal and virus model. For this purpose, the murine leukemia virus readthrough region was rendered inactive by mutagenesis and the frameshift region of human immunodeficiency virus was inserted to generate a chimeric provirus. This substitution of readthrough by frameshift allows the synthesis of viral proteins, and the chimeric provirus sequence was found to generate infectious viruses. This system could be a most interesting alternative to study ribosomal frameshift in the context of a virus amenable to the use of a simple animal model. PMID:12584361

  11. Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation.

    Directory of Open Access Journals (Sweden)

    Renee W Y Chan

    Full Text Available Influenza H5N1 virus continues to be enzootic in poultry and transmits zoonotically to humans. Although a swine-origin H1N1 virus has emerged to become pandemic, its virulence for humans remains modest in comparison to that seen in zoonotic H5N1 disease. As human respiratory epithelium is the primary target cells for influenza viruses, elucidating the viral tropism and host innate immune responses of influenza H5N1 virus in human bronchial epithelium may help to understand the pathogenesis. Here we established primary culture of undifferentiated and well differentiated normal human bronchial epithelial (NHBE cells and infected with highly pathogenic influenza H5N1 virus (A/Vietnam/3046/2004 and a seasonal influenza H1N1 virus (A/Hong Kong/54/1998, the viral replication kinetics and cytokine and chemokine responses were compared by qPCR and ELISA. We found that the in vitro culture of the well differentiated NHBE cells acquired the physiological properties of normal human bronchi tissue which express high level of alpha2-6-linked sialic acid receptors and human airway trypsin-like (HAT protease, in contrast to the low expression in the non-differentiated NHBE cells. When compared to H1N1 virus, the H5N1 virus replicated more efficiently and induced a stronger type I interferon response in the undifferentiated NHBE cells. In contrast, in well differentiated cultures, H5N1 virus replication was less efficient and elicited a lower interferon-beta response in comparison with H1N1 virus. Our data suggest that the differentiation of bronchial epithelial cells has a major influence in cells' permissiveness to human H1N1 and avian H5N1 viruses and the host innate immune responses. The reduced virus replication efficiency partially accounts for the lower interferon-beta responses in influenza H5N1 virus infected well differentiated NHBE cells. Since influenza infection in the bronchial epithelium will lead to tissue damage and associate with the

  12. Effects of Physiotherapy in the Treatment of Neurogenic Bladder in Patients Infected With Human T-Lymphotropic Virus 1.

    Science.gov (United States)

    Andrade, Rosana C P; Neto, José A; Andrade, Luciana; Oliveira, Tatiane S; Santos, Dislene N; Oliveira, Cassius J V; Prado, Márcio J; Carvalho, Edgar M

    2016-03-01

    To evaluate the efficacy of physiotherapy for urinary manifestations in patients with human T-lymphotropic virus 1-associated lower urinary tract dysfunction. Open clinical trial was conducted with 21 patients attending the physiotherapy clinic of the Hospital Universitário, Bahia, Brazil. Combinations of behavioral therapy, perineal exercises, and intravaginal or intra-anal electrical stimulation were used. The mean age was 54 ± 12 years and 67% were female. After treatment, there was an improvement in symptoms of urinary urgency, frequency, incontinence, nocturia, and in the sensation of incomplete emptying (P Physiotherapy was effective in cases of human T-lymphotropic virus 1-associated neurogenic bladder, reducing symptoms, increasing perineal muscle strength, and improving urodynamic parameters and quality of life. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Direct isolation of H1N2 recombinant virus from a throat swab of a patient simultaneously infected with H1N1 and H3N2 influenza A viruses.

    OpenAIRE

    Nishikawa, F; Sugiyama, T

    1983-01-01

    Two H1N2 recombinant viruses were isolated by a plaquing method from a throat swab of a patient who was simultaneously infected with H1N1 and H3N2 influenza viruses during the Tokyo epidemic of 1981. This is the first direct evidence that recombination of influenza viruses occurred in the human body.

  14. Evaluation of twenty rapid antigen tests for the detection of human influenza A H5N1, H3N2, H1N1, and B viruses.

    Science.gov (United States)

    Taylor, Janette; McPhie, Kenneth; Druce, Julian; Birch, Chris; Dwyer, Dominic E

    2009-11-01

    Twenty rapid antigen assays were compared for their ability to detect influenza using dilutions of virus culture supernatants from human isolates of influenza A H5N1 (clade 1 and 2 strains), H3N2 and H1N1 viruses, and influenza B. There was variation amongst the rapid antigen assays in their ability to detect different influenza viruses. Six of the 12 assays labeled as distinguishing between influenza A and B had comparable analytical sensitivities for detecting both influenza A H5N1 strains, although their ability to detect influenza A H3N2 and H1N1 strains varied. The two assays claiming H5 specificity did not detect either influenza A H5N1 strains, and the two avian influenza-specific assays detected influenza A H5N1, but missed some influenza A H3N2 virus supernatants. Clinical trials of rapid antigen tests for influenza A H5N1 are limited. For use in a pandemic where novel influenza strains are circulating (such as the current novel influenza A H1N1 09 virus), rapid antigen tests should ideally have comparable sensitivity and specificity for the new strains as for co-circulating seasonal influenza strains.

  15. Human and bovine viruses in the Milwaukee River Watershed: hydrologically relevant representation and relations with environmental variables

    Science.gov (United States)

    Corsi, Steven R.; Borchardt, M. A.; Spencer, S. K.; Hughes, Peter E.; Baldwin, Austin K.

    2014-01-01

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  16. Viral infections and bovine mastitis: a review

    NARCIS (Netherlands)

    Wellenberg, G.J.; Poel, van der W.H.M.; Oirschot, van J.T.

    2002-01-01

    This review deals with the role of viruses in the aetiology of bovine mastitis. Bovine herpesvirus 1, bovine herpesvirus 4, foot-and-mouth disease virus, and parainfluenza 3 virus have been isolated from milk from cows with clinical mastitis. Intramammary inoculations of bovine herpesvirus 1 or

  17. Incorporation of 12-methoxydodecanoate into the human immunodeficiency virus 1 gag polyprotein precursor inhibits its proteolytic processing and virus production in a chronically infected human lymphoid cell line.

    OpenAIRE

    Bryant, M L; Ratner, L; Duronio, R J; Kishore, N S; Devadas, B; Adams, S P; Gordon, J I

    1991-01-01

    Covalent linkage of myristate (tetradecanoate; 14:0) to the NH2-terminal glycine residue of the human immunodeficiency virus 1 (HIV-1) 55-kDa gag polyprotein precursor (Pr55gag) is necessary for its proteolytic processing and viral assembly. We have shown recently that several analogs of myristate in which a methylene group is replaced by a single oxygen or sulfur atom are substrates for Saccharomyces cerevisiae and mammalian myristoyl-CoA:protein N-myristoyltransferase (EC 2.3.1.97; NMT) des...

  18. In vivo emergence of vicriviroc resistance in a human immunodeficiency virus type 1 subtype C-infected subject.

    Science.gov (United States)

    Tsibris, Athe M N; Sagar, Manish; Gulick, Roy M; Su, Zhaohui; Hughes, Michael; Greaves, Wayne; Subramanian, Mani; Flexner, Charles; Giguel, Françoise; Leopold, Kay E; Coakley, Eoin; Kuritzkes, Daniel R

    2008-08-01

    Little is known about the in vivo development of resistance to human immunodeficiency virus type 1 (HIV-1) CCR5 antagonists. We studied 29 subjects with virologic failure from a phase IIb study of the CCR5 antagonist vicriviroc (VCV) and identified one individual with HIV-1 subtype C who developed VCV resistance. Studies with chimeric envelopes demonstrated that changes within the V3 loop were sufficient to confer VCV resistance. Resistant virus showed VCV-enhanced replication, cross-resistance to another CCR5 antagonist, TAK779, and increased sensitivity to aminooxypentane-RANTES and the CCR5 monoclonal antibody HGS004. Pretreatment V3 loop sequences reemerged following VCV discontinuation, implying that VCV resistance has associated fitness costs.

  19. Antiviral activity against human immunodeficiency virus-1 in vitro by myristoylated-peptide from Heliothis virescens

    International Nuclear Information System (INIS)

    Ourth, Donald D.

    2004-01-01

    An insect antiviral compound was purified from Heliothis virescens larval hemolymph by gel-filtration high pressure liquid chromatography (HPLC) and C-18 reverse-phase HPLC and its structure was determined by mass spectrometry. The antiviral compound is an N-myristoylated-peptide containing six amino acids with calculated molecular weight of 916 Da. The N-terminus contains the fatty acid myristoyl, and the C-terminus contains histidine with two methyl groups giving the histidine a permanent positive charge. The remainder of the compound is essentially non-polar. The structure of the compound corresponds with the 'myristate plus basic' motif expressed by certain viral proteins in their binding to the cytoplasmic side of the plasma membrane to initiate viral assembly and budding from a host cell. The insect antiviral compound may inhibit viral assembly and/or budding of viruses from host cells that could include the human immunodeficiency virus-1 (HIV-1) and herpes simplex virus-1 that use this motif for exit from a host cell. Using the formazan assay, the myristoylated-peptide was effective against HIV-1, with a nine times increase in the viability and protection in vitro of treated CEM-SS cells when compared with infected but untreated control cells

  20. Influenza A Viruses of Human Origin in Swine, Brazil

    Science.gov (United States)

    Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-01-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil’s swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009–2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance. PMID:26196759

  1. Semen parameters of a semen donor before and after infection with human immunodeficiency virus type 1: Case report

    NARCIS (Netherlands)

    van Leeuwen, E.; Cornelissen, M.; de Vries, J. W.; Lowe, S. H.; Jurriaans, S.; Repping, S.; van der Veen, F.

    2004-01-01

    Semen samples from a donor who seroconverted for human immunodeficiency virus type 1 (HIV-1) during the period that he was donating at our clinic were stored before and after infection. Semen analysis was done on all of these samples before cryopreservation. Retrospectively, both qualitative and

  2. Proteomic analysis reveals the enhancement of human serum apolipoprotein A-1(APO A-1) in individuals infected with multiple dengue virus serotypes.

    Science.gov (United States)

    Manchala, Nageswar Reddy; Dungdung, Ranjeet; Pilankatta, Rajendra

    2017-10-01

    Human serum protein profiling of the individual infected with multiple dengue virus serotypes for identifying the potential biomarkers and to investigate the cause for the severity of dengue virus infection. Dengue virus NS1-positive serum samples were pooled into two groups (S2 and S3) based on the molecular serotyping and number of heterotypic infections. The pooled serum samples were subjected to two-dimensional gel electrophoresis (2DGE) to identify the differentially expressed proteins. The peptide masses of upregulated protein were detected by matrix-assisted laser desorption-ionisation time-of-flight MALDI-TOF mass spectrometry and analysed by MASCOT search engine. The results were compared with the control group (S1). The commonly upregulated protein was validated by quantitative ELISA and compared with control as well as single serotypic infected samples. Based on 2DGE, total thirteen proteins were differentially upregulated in S2 and S3 groups as compared to control. Some of the upregulated proteins were involved in mediating the complement activation of immune response. The apolipoprotein A-1 (APO A-1) was upregulated in S2 and S3 groups. Upon validation, APO A-1 levels were increased in line with the number of heterotypic infection of dengue viruses. Heterotypic infection of dengue viruses upregulate the serum proteins involved in the complement pathway in the early phase of infection. There was a significant increase in the level of APO A-1 in three different serotypic infections of dengue virus as compared to control. Further, the role of APO-A1 can be explored in elucidating the mechanism of dengue pathogenesis. © 2017 John Wiley & Sons Ltd.

  3. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin

    2017-01-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detec...

  4. Influenza AH1N2 Viruses, United Kingdom, 2001?02 Influenza Season

    OpenAIRE

    Ellis, Joanna S.; Alvarez-Aguero, Adriana; Gregory, Vicky; Lin, Yi Pu; Hay, A.; Zambon, Maria C.

    2003-01-01

    During the winter of 2001?02, influenza AH1N2 viruses were detected for the first time in humans in the U.K. The H1N2 viruses co-circulated with H3N2 viruses and a very small number of H1N1 viruses and were isolated in the community and hospitalized patients, predominantly from children

  5. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.

    Science.gov (United States)

    Qi, Li; Pujanauski, Lindsey M; Davis, A Sally; Schwartzman, Louis M; Chertow, Daniel S; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L; Slemons, Richard D; Walters, Kathie-Anne; Kash, John C; Taubenberger, Jeffery K

    2014-11-18

    Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections

  6. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  7. High burden of non-influenza viruses in influenza-like illness in the early weeks of H1N1v epidemic in France.

    Directory of Open Access Journals (Sweden)

    Nathalie Schnepf

    Full Text Available BACKGROUND: Influenza-like illness (ILI may be caused by a variety of pathogens. Clinical observations are of little help to recognise myxovirus infection and implement appropriate prevention measures. The limited use of molecular tools underestimates the role of other common pathogens. OBJECTIVES: During the early weeks of the 2009-2010 flu pandemic, a clinical and virological survey was conducted in adult and paediatric patients with ILI referred to two French University hospitals in Paris and Tours. Aims were to investigate the different pathogens involved in ILI and describe the associated symptoms. METHODS: H1N1v pandemic influenza diagnosis was performed with real time RT-PCR assay. Other viral aetiologies were investigated by the molecular multiplex assay RespiFinder19®. Clinical data were collected prospectively by physicians using a standard questionnaire. RESULTS: From week 35 to 44, endonasal swabs were collected in 413 patients. Overall, 68 samples (16.5% were positive for H1N1v. In 13 of them, other respiratory pathogens were also detected. Among H1N1v negative samples, 213 (61.9% were positive for various respiratory agents, 190 in single infections and 23 in mixed infections. The most prevalent viruses in H1N1v negative single infections were rhinovirus (62.6%, followed by parainfluenza viruses (24.2% and adenovirus (5.3%. 70.6% of H1N1v cases were identified in patients under 40 years and none after 65 years. There was no difference between clinical symptoms observed in patients infected with H1N1v or with other pathogens. CONCLUSION: Our results highlight the high frequency of non-influenza viruses involved in ILI during the pre-epidemic period of a flu alert and the lack of specific clinical signs associated with influenza infections. Rapid diagnostic screening of a large panel of respiratory pathogens may be critical to define and survey the epidemic situation and to provide critical information for patient management.

  8. Influenza human monoclonal antibody 1F1 interacts with three major antigenic sites and residues mediating human receptor specificity in H1N1 viruses.

    Directory of Open Access Journals (Sweden)

    Tshidi Tsibane

    Full Text Available Most monoclonal antibodies (mAbs to the influenza A virus hemagglutinin (HA head domain exhibit very limited breadth of inhibitory activity due to antigenic drift in field strains. However, mAb 1F1, isolated from a 1918 influenza pandemic survivor, inhibits select human H1 viruses (1918, 1943, 1947, and 1977 isolates. The crystal structure of 1F1 in complex with the 1918 HA shows that 1F1 contacts residues that are classically defined as belonging to three distinct antigenic sites, Sa, Sb and Ca(2. The 1F1 heavy chain also reaches into the receptor binding site (RBS and interacts with residues that contact sialoglycan receptors and determine HA receptor specificity. The 1F1 epitope is remarkably similar to the previously described murine HC63 H3 epitope, despite significant sequence differences between H1 and H3 HAs. Both antibodies potently inhibit receptor binding, but only HC63 can block the pH-induced conformational changes in HA that drive membrane fusion. Contacts within the RBS suggested that 1F1 may be sensitive to changes that alter HA receptor binding activity. Affinity assays confirmed that sequence changes that switch the HA to avian receptor specificity affect binding of 1F1 and a mAb possessing a closely related heavy chain, 1I20. To characterize 1F1 cross-reactivity, additional escape mutant selection and site-directed mutagenesis were performed. Residues 190 and 227 in the 1F1 epitope were found to be critical for 1F1 reactivity towards 1918, 1943 and 1977 HAs, as well as for 1I20 reactivity towards the 1918 HA. Therefore, 1F1 heavy-chain interactions with conserved RBS residues likely contribute to its ability to inhibit divergent HAs.

  9. Within-Host Evolution of Human Influenza Virus.

    Science.gov (United States)

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The role of human papilloma virus and herpes viruses in the etiology of nasal polyposis.

    Science.gov (United States)

    Koçoğlu, Mücahide Esra; Mengeloğlu, Fırat Zafer; Apuhan, Tayfun; Özsoy, Şeyda; Yilmaz, Beyhan

    2016-02-17

    The aim of this study was to investigate the etiological role of human papilloma virus (HPV), herpes simplex virus (HSV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpes virus-6 (HHV-6) and -7 (HHV-7) in the occurrence of nasal polyposis. Nasal polyp samples from 30 patients with nasal polyposis and normal nasal mucosa from 10 patients without nasal polyps were obtained. DNA was extracted from tissues. Real-time polymerase chain reaction was performed for all runs. No HSV-1, HSV-2, or VZV was detected in the samples. Among the patient samples, EBV and HHV-7 DNA were detected in 18 (60%), HHV-6 was detected in 20 (66.7%), and HPV was detected in 4 (13.3%) samples. Among the controls, CMV DNA was positive in one (10%). EBV was positive in 5 (50%), HHV-6 and HHV-7 were positive in 7 (70%), and HPV was positive in 2 (20%) samples. No significant difference was found among the groups with any test in terms of positivity. The association of Herpesviridae and HPV with the pathogenesis of nasal polyps was investigated in this study and no relationship was found. Thus, these viruses do not play a significant role in the formation of nasal polyps.

  11. Evolutionary trends of A(H1N1 influenza virus hemagglutinin since 1918.

    Directory of Open Access Journals (Sweden)

    Jun Shen

    2009-11-01

    Full Text Available The Pandemic (H1N1 2009 is spreading to numerous countries and causing many human deaths. Although the symptoms in humans are mild at present, fears are that further mutations in the virus could lead to a potentially more dangerous outbreak in subsequent months. As the primary immunity-eliciting antigen, hemagglutinin (HA is the major agent for host-driven antigenic drift in A(H3N2 virus. However, whether and how the evolution of HA is influenced by existing immunity is poorly understood for A(H1N1. Here, by analyzing hundreds of A(H1N1 HA sequences since 1918, we show the first evidence that host selections are indeed present in A(H1N1 HAs. Among a subgroup of human A(H1N1 HAs between 1918 approximately 2008, we found strong diversifying (positive selection at HA(1 156 and 190. We also analyzed the evolutionary trends at HA(1 190 and 225 that are critical determinants for receptor-binding specificity of A(H1N1 HA. Different A(H1N1 viruses appeared to favor one of these two sites in host-driven antigenic drift: epidemic A(H1N1 HAs favor HA(1 190 while the 1918 pandemic and swine HAs favor HA(1 225. Thus, our results highlight the urgency to understand the interplay between antigenic drift and receptor binding in HA evolution, and provide molecular signatures for monitoring future antigenically drifted 2009 pandemic and seasonal A(H1N1 influenza viruses.

  12. Evolution of R5 and X4 human immunodeficiency virus type 1 gag sequences in vivo: evidence for recombination

    International Nuclear Information System (INIS)

    Rij, Ronald P. van; Worobey, Michael; Visser, Janny A.; Schuitemaker, Hanneke

    2003-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection is in general established by CCR5-utilizing (R5) virus variants, which persist throughout the course of infection. R5 HIV-1 variants evolve into CXCR4-utilizing (X4) HIV-1 variants in approximately half of the infected individuals. We have previously observed an ongoing genetic evolution with a continuous divergence of envelope gp120 sequences of coexisting R5 and X4 virus variants over time. Here, we studied evolution of gag p17 sequences in two patients who developed X4 variants in the course of infection. In contrast to the envelope gp120 sequences, gag p17 sequences of R5 and X4 virus populations intermingled in phylogenetic trees and did not diverge from each other over time. Statistical evaluation using the Shimodaira-Hasegawa test indicated that the different genomic regions evolved along different topologies, supporting the hypothesis of recombination. Therefore, our data imply that recombination between R5 and X4 HIV-1 variants occurs in vivo

  13. From where did the 2009 'swine-origin' influenza A virus (H1N1 emerge?

    Directory of Open Access Journals (Sweden)

    Armstrong John S

    2009-11-01

    Full Text Available Abstract The swine-origin influenza A (H1N1 virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative

  14. Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells

    International Nuclear Information System (INIS)

    Wörmann, Xenia; Lesch, Markus; Welke, Robert-William; Okonechnikov, Konstantin; Abdurishid, Mirshat; Sieben, Christian; Geissner, Andreas; Brinkmann, Volker; Kastner, Markus; Karner, Andreas; Zhu, Rong; Hinterdorfer, Peter; Anish, Chakkumkal; Seeberger, Peter H.; Herrmann, Andreas

    2016-01-01

    The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less pathogenic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epithelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput sequencing of viral gene segments identified five dominant mutations, whose contribution to the enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two mutations within the hemagglutinin (HA) gene segment (HA_1 D130E, HA_2 I91L), near the receptor binding site and the stem domain. The adapted virus also replicated more efficiently in mice in vivo. Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of high titer cell culture strains for vaccine production. - Highlights: • We observed a spontaneous mutation of a 2009-pandemic H1N1 influenza virus in vitro. • The adaptation led to a 100-fold rise in replication rate in human A549 cells. • Adaptation was caused by two mutations in the HA gene segment. • Adaptation correlates with increased fusion pH and decreased receptor affinity.

  15. Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wörmann, Xenia [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Lesch, Markus [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Steinbeis Innovation gGmbH, Center for Systems Biomedicine, Falkensee (Germany); Welke, Robert-William [Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin (Germany); Okonechnikov, Konstantin; Abdurishid, Mirshat [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Sieben, Christian [Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin (Germany); Geissner, Andreas [Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany); Institute of Chemistry and Biochemistry, Free University, Berlin (Germany); Brinkmann, Volker [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Kastner, Markus [Institute for Biophysics, Johannes Kepler University, Linz (Austria); Karner, Andreas [Center for Advanced Bioanalysis GmbH (CBL), Linz (Austria); Zhu, Rong; Hinterdorfer, Peter [Institute for Biophysics, Johannes Kepler University, Linz (Austria); Anish, Chakkumkal [Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany); Seeberger, Peter H. [Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany); Institute of Chemistry and Biochemistry, Free University, Berlin (Germany); Herrmann, Andreas [Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin (Germany); and others

    2016-05-15

    The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less pathogenic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epithelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput sequencing of viral gene segments identified five dominant mutations, whose contribution to the enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two mutations within the hemagglutinin (HA) gene segment (HA{sub 1} D130E, HA{sub 2} I91L), near the receptor binding site and the stem domain. The adapted virus also replicated more efficiently in mice in vivo. Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of high titer cell culture strains for vaccine production. - Highlights: • We observed a spontaneous mutation of a 2009-pandemic H1N1 influenza virus in vitro. • The adaptation led to a 100-fold rise in replication rate in human A549 cells. • Adaptation was caused by two mutations in the HA gene segment. • Adaptation correlates with increased fusion pH and decreased receptor affinity.

  16. SEROPREVALENCE OF HUMAN HERPES VIRUS 8 (HHV8 ...

    African Journals Online (AJOL)

    Praise

    SEROPREVALENCE OF HUMAN HERPES VIRUS 8 (HHV8) INFECTION. AMONG COMMERCIAL SEX WORKERS IN JOS. Zakari1, H., Nimzing2, L., Agabi1, Y. A., Amagam3, P. and Dashen,1 M. M.. 1Department of Microbiology, Faculty of Natural Sciences, University o f Jos, Nigeria. 2Department of Medical Microbiology, ...

  17. Seroepidemiological study of parainfluenza 3 virus in bovines with reproductive failure, from monteria-colombia

    Directory of Open Access Journals (Sweden)

    César Betancur Hurtado

    2010-12-01

    Full Text Available The virus of the bovine Para influenza 3 is known to be a part of the bovine respiratory complex, along with another infectious agent as the bovine sincitialrespiratory virus, which has not as yet been diagnosed at the geographical area of this study. This work was carried out at Monteria, Colombia, in bovines from 28 farms, with the aim of finding the serological prevalence of the PI-3 virus. Blood samples were collected from 137 females, with a history of reproductive failure, and from 26 bulls from the same farms. The serological test used was the ELISA test. A descriptive analysis was carried out, recording data from positives and from negatives sera. A Chi-square test was used to test for association between the variables: sex, age, reproductive condition and type of production system, with serological reactivity to the PI-3virus. Concerning the results of the study, the point prevalence for the PI-3 virus found was 13, 5%, and under statistical bases, statistical significance was found between age groups and association was not found for the others variables taken in account for the study. According to the results, it was concluded that the PI-3 virus is present in bovines of Monteria, and that a part of the reproductive failure in females of the region, mostly the return to estrus and abortions, is due to the effect of that pathological entity. Finally, the authors recommend more extensive studies on PI-3 Infection, at the different cattle raising areas of Colombia, a country of 24 million heads.

  18. Can Plant Viruses Cross the Kingdom Border and Be Pathogenic to Humans?

    Directory of Open Access Journals (Sweden)

    Fanny Balique

    2015-04-01

    Full Text Available Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.

  19. Human and bovine viruses in the Milwaukee River watershed: Hydrologically relevant representation and relations with environmental variables

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, S.R., E-mail: srcorsi@usgs.gov [U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562 (United States); Borchardt, M.A.; Spencer, S.K. [U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr., Marshfield, WI 54449 (United States); Hughes, P.E.; Baldwin, A.K. [U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562 (United States)

    2014-08-15

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  20. Human and bovine viruses in the Milwaukee River watershed: Hydrologically relevant representation and relations with environmental variables

    International Nuclear Information System (INIS)

    Corsi, S.R.; Borchardt, M.A.; Spencer, S.K.; Hughes, P.E.; Baldwin, A.K.

    2014-01-01

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  1. A new laboratory-based surveillance system (Respiratory DataMart System) for influenza and other respiratory viruses in England: results and experience from 2009 to 2012.

    Science.gov (United States)

    Zhao, H; Green, H; Lackenby, A; Donati, M; Ellis, J; Thompson, C; Bermingham, A; Field, J; Sebastianpillai, P; Zambon, M; Watson, Jm; Pebody, R

    2014-01-23

    During the 2009 influenza A(H1N1) pandemic, a new laboratory-based virological sentinel surveillance system, the Respiratory DataMart System (RDMS), was established in a network of 14 Health Protection Agency (now Public Health England (PHE)) and National Health Service (NHS) laboratories in England. Laboratory results (both positive and negative) were systematically collected from all routinely tested clinical respiratory samples for a range of respiratory viruses including influenza, respiratory syncytial virus (RSV), rhinovirus, parainfluenza virus, adenovirus and human metapneumovirus (hMPV). The RDMS also monitored the occurrence of antiviral resistance of influenza viruses. Data from the RDMS for the 2009–2012 period showed that the 2009 pandemic influenza virus caused three waves of activity with different intensities during the pandemic and post pandemic periods. Peaks in influenza A(H1N1)pdm09 positivity (defined as number of positive samples per total number of samples tested) were seen in summer and autumn in 2009, with slightly higher peak positivity observed in the first post-pandemic season in 2010/2011. The influenza A(H1N1)pdm09 virus strain almost completely disappeared in the second postpandemic season in 2011/2012. The RDMS findings are consistent with other existing community-based virological and clinical surveillance systems. With a large sample size, this new system provides a robust supplementary mechanism, through the collection of routinely available laboratory data at minimum extra cost, to monitor influenza as well as other respiratory virus activity. A near real-time, daily reporting mechanism in the RDMS was established during the London 2012 Olympic and Paralympic Games. Furthermore, this system can be quickly adapted and used to monitor future influenza pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens.

  2. Methodological approaches to disinfection of human hepatitis B virus.

    OpenAIRE

    Prince, D L; Prince, H N; Thraenhart, O; Muchmore, E; Bonder, E; Pugh, J

    1993-01-01

    Three commercial disinfectants (two quaternary formulations and one phenolic) were tested against human hepatitis B virus (HHBV). The treated virus was assayed for infectivity by the chimpanzee assay and for morphological alteration by the Morphological Alteration and Disintegration Test. The same agents were tested against duck hepatitis B virus in a duck hepatocyte infectivity assay. It is apparent that human and duck hepatitis viruses were relatively susceptible to disinfection, becoming n...

  3. The Tat protein of human immunodeficiency virus-1 enhances hepatitis C virus replication through interferon gamma-inducible protein-10

    Directory of Open Access Journals (Sweden)

    Qu Jing

    2012-04-01

    Full Text Available Abstract Background Co-infection with human immunodeficiency virus-1 (HIV-1 and hepatitis C virus (HCV is associated with faster progression of liver disease and an increase in HCV persistence. However, the mechanism by which HIV-1 accelerates the progression of HCV liver disease remains unknown. Results HIV-1/HCV co-infection is associated with increased expression of interferon gamma-induced protein-10 (IP-10 mRNA in peripheral blood mononuclear cells (PBMCs. HCV RNA levels were higher in PBMCs of patients with HIV-1/HCV co-infection than in patients with HCV mono-infection. HIV-1 Tat and IP-10 activated HCV replication in a time-dependent manner, and HIV-1 Tat induced IP-10 production. In addition, the effect of HIV-1 Tat on HCV replication was blocked by anti-IP-10 monoclonal antibody, demonstrating that the effect of HIV-1 Tat on HCV replication depends on IP-10. Taken together, these results suggest that HIV-1 Tat protein activates HCV replication by upregulating IP-10 production. Conclusions HIV-1/HCV co-infection is associated with increased expression of IP-10 mRNA and replication of HCV RNA. Furthermore, both HIV-1 Tat and IP-10 activate HCV replication. HIV-1 Tat activates HCV replication by upregulating IP-10 production. These results expand our understanding of HIV-1 in HCV replication and the mechanism involved in the regulation of HCV replication mediated by HIV-1 during co-infection.

  4. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human p...

  5. Human papilloma virus vaccination: perceptions of young Korean women.

    Science.gov (United States)

    Kang, Hee Sun; Shin, Hyunsook; Hyun, Myung-Sun; Kim, Mi Ja

    2010-09-01

    This paper is a report of a descriptive study of young Korean women's perceptions of use of the human papilloma virus vaccine. In Korea, cervical cancer is one of the leading cancers in women, and the rate of human papilloma virus infection is increasing. A national media campaign has recently begun to promote human papilloma virus vaccination. However, research addressing the acceptability of this vaccine to women in Korea has been limited. Twenty-five Korean women, 21-30 years of age, participated in seven focus groups. The data were collected in 2007. Participants were concerned about the potential harmful effects of the human papilloma virus vaccine, a possible increase in unsafe sexual behaviours, and the high cost of the vaccine, which is not covered by health insurance. They suggested group vaccination at-cost or free of charge. They discussed ambivalence about the vaccination, the need for more information about the vaccine, and questions about its effectiveness. Most preferred to wait until more people have been vaccinated. There is a need for more aggressive dissemination of information about the safety and efficacy of the human papilloma virus vaccine. More reasonable cost, insurance coverage, or free vaccination using a group approach might increase young Korean women's acceptance and use of the human papilloma virus vaccine.

  6. Molecular cloning and characterization of human papilloma virus DNA derived from a laryngeal papilloma.

    OpenAIRE

    Gissmann, L; Diehl, V; Schultz-Coulon, H J; zur Hausen, H

    1982-01-01

    Papilloma virus DNA from a laryngeal papilloma was cloned in phage lambda L 47 and characterized after cleavage with different restriction enzymes. Hybridization with the DNAs of human papilloma virus types 1, 2, 3, 4, 5, and 8 showed no homology under stringent hybridization conditions. Human papilloma virus type 6 DNA, however, was partially identical to laryngeal papilloma virus DNA; different restriction enzyme fragments hybridizing with the other DNA were identified on each genome. The d...

  7. Nonstructural Protein L* Species Specificity Supports a Mouse Origin for Vilyuisk Human Encephalitis Virus.

    Science.gov (United States)

    Drappier, Melissa; Opperdoes, Fred R; Michiels, Thomas

    2017-07-15

    Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV. IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L

  8. Poly(ADP-ribose) polymerase inhibitors suppress UV-induced human immunodeficiency virus type 1 gene expression at the posttranscriptional level

    International Nuclear Information System (INIS)

    Yamagoe, S.; Kohda, T.; Oishi, M.

    1991-01-01

    Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed

  9. Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 1 Nef Proteins Show Distinct Patterns and Mechanisms of Src Kinase Activation

    Science.gov (United States)

    Greenway, Alison L.; Dutartre, Hélène; Allen, Kelly; McPhee, Dale A.; Olive, Daniel; Collette, Yves

    1999-01-01

    The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases. PMID:10364375

  10. The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity.

    Directory of Open Access Journals (Sweden)

    Ann R Hunt

    2010-07-01

    Full Text Available Venezuelan equine encephalitis virus (VEEV is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion and E2 (binds receptor and elicits virus neutralizing antibodies. Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs. Six E2 epitopes (E2(c,d,e,f,g,h bound VEEV-neutralizing antibody and mapped to amino acids (aa 182-207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE.We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants.Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115-119. Using a 9 A resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope.The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both prophylactically and therapeutically. Administration

  11. Human Papilloma Virus-Dependent HMGA1 Expression Is a Relevant Step in Cervical Carcinogenesis1

    Science.gov (United States)

    Mellone, Massimiliano; Rinaldi, Christian; Massimi, Isabella; Petroni, Marialaura; Veschi, Veronica; Talora, Claudio; Truffa, Silvia; Stabile, Helena; Frati, Luigi; Screpanti, Isabella; Gulino, Alberto; Giannini, Giuseppe

    2008-01-01

    HMGA1 is a member of a small family of architectural transcription factors involved in the coordinate assembly of multiprotein complexes referred to as enhanceosomes. In addition to their role in cell proliferation, differentiation, and development, high-mobility group proteins of the A type (HMGA) family members behave as transforming protoncogenes either in vitro or in animal models. Recent reports indicated that HMGA1 might counteract p53 pathway and provided an interesting hint on the mechanisms determining HMGA's transforming potential. HMGA1 expression is deregulated in a very large array of human tumors, including cervical cancer, but very limited information is available on the molecular mechanisms leading to HMGA1 deregulation in cancer cells. Here, we report that HMGA1 expression is sustained by human papilloma virus (HPV) E6/E7 proteins in cervical cancer, as demonstrated by either E6/E7 overexpression or by repression through RNA interference. Knocking down HMGA1 expression by means of RNA interference, we also showed that it is involved in cell proliferation and contributes to p53 inactivation in this type of neoplasia. Finally, we show that HMGA1 is necessary for the full expression of HPV18 E6 and E7 oncoproteins thus establishing a positive autoregulatory loop between HPV E6/E7 and HMGA1 expression. PMID:18670638

  12. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    Science.gov (United States)

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Influence of membrane fluidity on human immunodeficiency virus type 1 entry

    International Nuclear Information System (INIS)

    Harada, Shinji; Yusa, Keisuke; Monde, Kazuaki; Akaike, Takaaki; Maeda, Yosuke

    2005-01-01

    For penetration of human immunodeficiency virus type 1 (HIV-1), formation of fusion-pores might be required for accumulating critical numbers of fusion-activated gp41, followed by multiple-site binding of gp120 with receptors, with the help of fluidization of the plasma membrane and viral envelope. Correlation between HIV-1 infectivity and fluidity was observed by treatment of fluidity-modulators, indicating that infectivity was dependent on fluidity. A 5% decrease in fluidity suppressed the HIV-1 infectivity by 56%. Contrarily, a 5% increase in fluidity augmented the infectivity by 2.4-fold. An increased temperature of 40 deg C or treatment of 0.2% xylocaine after viral adsorption at room temperature enhanced the infectivity by 2.6- and 1.5-fold, respectively. These were inhibited by anti-CXCR4 peptide, implying that multiple-site binding was accelerated at 40 deg C or by xylocaine. Thus, fluidity of both the plasma membrane and viral envelope was required to form the fusion-pore and to complete the entry of HIV-1

  14. Adaptation of Pandemic H1N1 Influenza Viruses in Mice▿

    Science.gov (United States)

    Ilyushina, Natalia A.; Khalenkov, Alexey M.; Seiler, Jon P.; Forrest, Heather L.; Bovin, Nicolai V.; Marjuki, Henju; Barman, Subrata; Webster, Robert G.; Webby, Richard J.

    2010-01-01

    The molecular mechanism by which pandemic 2009 influenza A viruses were able to sufficiently adapt to humans is largely unknown. Subsequent human infections with novel H1N1 influenza viruses prompted an investigation of the molecular determinants of the host range and pathogenicity of pandemic influenza viruses in mammals. To address this problem, we assessed the genetic basis for increased virulence of A/CA/04/09 (H1N1) and A/TN/1-560/09 (H1N1) isolates, which are not lethal for mice, in a new mammalian host by promoting their mouse adaptation. The resulting mouse lung-adapted variants showed significantly enhanced growth characteristics in eggs, extended extrapulmonary tissue tropism, and pathogenicity in mice. All mouse-adapted viruses except A/TN/1-560/09-MA2 grew faster and to higher titers in cells than the original strains. We found that 10 amino acid changes in the ribonucleoprotein (RNP) complex (PB2 E158G/A, PA L295P, NP D101G, and NP H289Y) and hemagglutinin (HA) glycoprotein (K119N, G155E, S183P, R221K, and D222G) controlled enhanced mouse virulence of pandemic isolates. HA mutations acquired during adaptation affected viral receptor specificity by enhancing binding to α2,3 together with decreasing binding to α2,6 sialyl receptors. PB2 E158G/A and PA L295P amino acid substitutions were responsible for the significant enhancement of transcription and replication activity of the mouse-adapted H1N1 variants. Taken together, our findings suggest that changes optimizing receptor specificity and interaction of viral polymerase components with host cellular factors are the major mechanisms that contribute to the optimal competitive advantage of pandemic influenza viruses in mice. These modulators of virulence, therefore, may have been the driving components of early evolution, which paved the way for novel 2009 viruses in mammals. PMID:20592084

  15. Pandemic H1N1 2009 virus in Norwegian pigs naïve to influenza A viruses

    DEFF Research Database (Denmark)

    Germundsson, A.; Gjerset, B.; Hjulsager, Charlotte Kristiane

    In March-April 2009, a novel pandemic influenza A (H1N1) virus (pH1N1-09v) emerged in the human population. The first case of pH1N1v infection in pigs was reported from Canada in May 2009. In Norway, pH1N1v infection was recorded in a swine herd on the 10th of October of 2009. Here, we report...... isolated from a confirmed human case at the farm. The majority of the positive herds had a history of contact with humans that were diagnosed with pandemic influenza or with ILI. This suggests that infected humans are the most likely source for introduction of pH1N1-09v to the Norwegian pig herds...

  16. Polyploidization on SK-N-MC human neuroblastoma cells infected with herpes simplex virus 1.

    Science.gov (United States)

    Karalyan, Zaven; Izmailyan, Roza; Karalova, Elena; Abroyan, Liana; Hakobyan, Lina; Avetisyan, Aida; Semerjyan, Zara

    2016-01-01

    Polyploidization is one of the most dramatic changes occurring within cell genome owing to various reasons including under many viral infections. We examined the impact of herpes simplex virus-1 (HSV-1) on SK-N-MC human neuroblastoma cell line. The infected cells were followed from 6 hours up to 96 hours post infection (hpi). A large number of polyploid cells with giant nuclei was observed under the influence of HSV-1 at 24 hpi with the DNA content of 32c to 64c or more, in comparison with control SK-N-MC cells that were characterized by relatively moderate values of ploidy, i.e. 8с to 16с (where 1c is the haploid amount of nuclear DNA found in normal diploid populations in G0/G1). After 48-96 hpi, the population of polyploid cells with giant nuclei decreased to the benchmark level. The SK-NMC cells infected with HSV-1 for 24 hours were stained with gallocyanine and monitored for cytological features. The infected cells underwent virus induced cellcell and nuclei fusion with the formation of dense nuclei syncytium. The metabolic activity of HSV-1 infected cells was higher in both nuclei and nucleoli when compared to control cells.

  17. Polymicrobial infective endocarditis caused by Neisseria sicca and Haemophilus parainfluenzae

    Directory of Open Access Journals (Sweden)

    Nikoloz Koshkelashvili

    2016-01-01

    Full Text Available Infective endocarditis is a common clinical problem in industrialized countries. Risk factors include abnormal cardiac valves, a history of endocarditis, intracardiac devices, prosthetic valves and intravenous drug use. We report a case of polymicrobial infective endocarditis in a 33 year-old female with a history chronic heroin use caused by Neisseria sicca and Haemophilus parainfluenzae. We believe the patient was exposed to these microbes by cleansing her skin with saliva prior to injection. Pairing a detailed history with the consideration of atypical agents is crucial in the proper diagnosis and management of endocarditis in patients with high-risk injection behaviors.

  18. Identification of a Conserved Interface of Human Immunodeficiency Virus Type 1 and Feline Immunodeficiency Virus Vifs with Cullin 5.

    Science.gov (United States)

    Gu, Qinyong; Zhang, Zeli; Gertzen, Christoph G W; Häussinger, Dieter; Gohlke, Holger; Münk, Carsten

    2018-03-15

    Members of the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 [A3]) family of DNA cytidine deaminases are intrinsic restriction factors against retroviruses. In felids such as the domestic cat ( Felis catus ), the A3 genes encode the A3Z2, A3Z3, and A3Z2Z3 antiviral cytidine deaminases. Only A3Z3 and A3Z2Z3 inhibit viral infectivity factor (Vif)-deficient feline immunodeficiency virus (FIV). The FIV Vif protein interacts with Cullin (CUL), Elongin B (ELOB), and Elongin C (ELOC) to form an E3 ubiquitination complex to induce the degradation of feline A3s. However, the functional domains in FIV Vif for the interaction with Cullin are poorly understood. Here, we found that the expression of dominant negative CUL5 prevented the degradation of feline A3s by FIV Vif, while dominant negative CUL2 had no influence on the degradation of A3. In coimmunoprecipitation assays, FIV Vif bound to CUL5 but not CUL2. To identify the CUL5 interaction site in FIV Vif, the conserved amino acids from positions 47 to 160 of FIV Vif were mutated, but these mutations did not impair the binding of Vif to CUL5. By focusing on a potential zinc-binding motif (K175-C161-C184-C187) of FIV Vif, we found a conserved hydrophobic region (174IR175) that is important for the CUL5 interaction. Mutation of this region also impaired the FIV Vif-induced degradation of feline A3s. Based on a structural model of the FIV Vif-CUL5 interaction, the 52LW53 region in CUL5 was identified as mediating binding to FIV Vif. By comparing our results to the human immunodeficiency virus type 1 (HIV-1) Vif-CUL5 interaction surface (120IR121, a hydrophobic region that is localized in the zinc-binding motif), we suggest that the CUL5 interaction surface in the diverse HIV-1 and FIV Vifs is evolutionarily conserved, indicating a strong structural constraint. However, the FIV Vif-CUL5 interaction is zinc independent, which contrasts with the zinc dependence of HIV-1 Vif. IMPORTANCE Feline

  19. Productive infection of human skeletal muscle cells by pandemic and seasonal influenza A(H1N1 viruses.

    Directory of Open Access Journals (Sweden)

    Marion Desdouits

    Full Text Available Besides the classical respiratory and systemic symptoms, unusual complications of influenza A infection in humans involve the skeletal muscles. Numerous cases of acute myopathy and/or rhabdomyolysis have been reported, particularly following the outbreak of pandemic influenza A(H1N1 in 2009. The pathogenesis of these influenza-associated myopathies (IAM remains unkown, although the direct infection of muscle cells is suspected. Here, we studied the susceptibility of cultured human primary muscle cells to a 2009 pandemic and a 2008 seasonal influenza A(H1N1 isolate. Using cells from different donors, we found that differentiated muscle cells (i. e. myotubes were highly susceptible to infection by both influenza A(H1N1 isolates, whereas undifferentiated cells (i. e. myoblasts were partially resistant. The receptors for influenza viruses, α2-6 and α2-3 linked sialic acids, were detected on the surface of myotubes and myoblasts. Time line of viral nucleoprotein (NP expression and nuclear export showed that the first steps of the viral replication cycle could take place in muscle cells. Infected myotubes and myoblasts exhibited budding virions and nuclear inclusions as observed by transmission electron microscopy and correlative light and electron microscopy. Myotubes, but not myoblasts, yielded infectious virus progeny that could further infect naive muscle cells after proteolytic treatment. Infection led to a cytopathic effect with the lysis of muscle cells, as characterized by the release of lactate dehydrogenase. The secretion of proinflammatory cytokines by muscle cells was not affected following infection. Our results are compatible with the hypothesis of a direct muscle infection causing rhabdomyolysis in IAM patients.

  20. CCR5 Signal Transduction in Macrophages by Human Immunodeficiency Virus and Simian Immunodeficiency Virus Envelopes

    OpenAIRE

    Arthos, James; Rubbert, Andrea; Rabin, Ronald L.; Cicala, Claudia; Machado, Elizabeth; Wildt, Kathryne; Hanbach, Meredith; Steenbeke, Tavis D.; Swofford, Ruth; Farber, Joshua M.; Fauci, Anthony S.

    2000-01-01

    The capacity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelopes to transduce signals through chemokine coreceptors on macrophages was examined by measuring the ability of recombinant envelope proteins to mobilize intracellular calcium stores. Both HIV and SIV envelopes mobilized calcium via interactions with CCR5. The kinetics of these responses were similar to those observed when macrophages were treated with MIP-1β. Distinct differences in the capacity o...

  1. Molecular Diagnosis Of Human Boca virus Gastroenteritis

    International Nuclear Information System (INIS)

    Kassem, N.N.; Kamel, E.M.; Ismail, G.A.; Emam, E.K.; Saber, S.M.; EL Ashry, M.A.

    2012-01-01

    The idea that human boca virus (HBoV) infection possibly plays a role in gastroenteritis has been suggested because of the frequent manifestation of gastrointestinal symptoms. The purpose of this study was to investigate the role of HBoV In children with gastroenteritis. We studied the etiologic agents in 100 fecal samples in children suffered from acute gastroenteritis. Bacterial etiological agents were dtected by conventional bacteriological culture, and viral etiologic agents were detected by rotavirus latex agglutination and conventional PCR for HBoV and enteric adenovirus. Enteropathogenic E-Coli (EPEC) was detected in 4% of cases. Rotatavirus, enteric adenovirus and co infection between rotavirus and adenovirus were detected in 14%, 6% and 2% respectively. Human boca virus was detected in 1% of cases without associated respiratory symptoms or co infection with other pathogen which suggests its role in children gastroenteritis

  2. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia.

    Science.gov (United States)

    Schnell, Gretja; Spudich, Serena; Harrington, Patrick; Price, Richard W; Swanstrom, Ronald

    2009-04-01

    Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after systemic infection and can result in the subsequent development of HIV-1-associated dementia (HAD) in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1-associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA), targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF) were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t(1/2) mean = 2.27 days). However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t(1/2) range = 9.85 days to no initial decay). The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4(+) T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD.

  3. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia.

    Directory of Open Access Journals (Sweden)

    Gretja Schnell

    2009-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 invades the central nervous system (CNS shortly after systemic infection and can result in the subsequent development of HIV-1-associated dementia (HAD in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1-associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA, targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t(1/2 mean = 2.27 days. However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t(1/2 range = 9.85 days to no initial decay. The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4(+ T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD.

  4. Adaptive pathways of zoonotic influenza viruses: from exposure to establishment in humans.

    Science.gov (United States)

    Reperant, Leslie A; Kuiken, Thijs; Osterhaus, Albert D M E

    2012-06-22

    Human influenza viruses have their ultimate origin in avian reservoirs and may adapt, either directly or after passage through another mammalian species, to circulate independently in the human population. Three sets of barriers must be crossed by a zoonotic influenza virus before it can become a human virus: animal-to-human transmission barriers; virus-cell interaction barriers; and human-to-human transmission barriers. Adaptive changes allowing zoonotic influenza viruses to cross these barriers have been studied extensively, generating key knowledge for improved pandemic preparedness. Most of these adaptive changes link acquired genetic alterations of the virus to specific adaptation mechanisms that can be screened for, both genetically and phenotypically, as part of zoonotic influenza virus surveillance programs. Human-to-human transmission barriers are only sporadically crossed by zoonotic influenza viruses, eventually triggering a worldwide influenza outbreak or pandemic. This is the most devastating consequence of influenza virus cross-species transmission. Progress has been made in identifying some of the determinants of influenza virus transmissibility. However, interdisciplinary research is needed to further characterize these ultimate barriers to the development of influenza pandemics, at both the level of the individual host and that of the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Genetic analysis and antigenic characterization of swine origin influenza viruses isolated from humans in the United States, 1990-2010.

    Science.gov (United States)

    Shu, Bo; Garten, Rebecca; Emery, Shannon; Balish, Amanda; Cooper, Lynn; Sessions, Wendy; Deyde, Varough; Smith, Catherine; Berman, LaShondra; Klimov, Alexander; Lindstrom, Stephen; Xu, Xiyan

    2012-01-05

    Swine influenza viruses (SIV) have been recognized as important pathogens for pigs and occasional human infections with swine origin influenza viruses (SOIV) have been reported. Between 1990 and 2010, a total of twenty seven human cases of SOIV infections have been identified in the United States. Six viruses isolated from 1990 to 1995 were recognized as classical SOIV (cSOIV) A(H1N1). After 1998, twenty-one SOIV recovered from human cases were characterized as triple reassortant (tr_SOIV) inheriting genes from classical swine, avian and human influenza viruses. Of those twenty-one tr_SOIV, thirteen were of A(H1N1), one of A(H1N2), and seven of A(H3N2) subtype. SOIV characterized were antigenically and genetically closely related to the subtypes of influenza viruses circulating in pigs but distinct from contemporary influenza viruses circulating in humans. The diversity of subtypes and genetic lineages in SOIV cases highlights the importance of continued surveillance at the animal-human interface. Copyright © 2011. Published by Elsevier Inc.

  6. Respiratory viruses involved in influenza-like illness in a Greek pediatric population during the winter period of the years 2005-2008.

    Science.gov (United States)

    Pogka, Vasiliki; Kossivakis, Athanasios; Kalliaropoulos, Antonios; Moutousi, Afroditi; Sgouras, Dionyssios; Panagiotopoulos, Takis; Chrousos, George P; Theodoridou, Maria; Syriopoulou, Vassiliki P; Mentis, Andreas F

    2011-10-01

    Viruses are the major cause of pediatric respiratory tract infection and yet many suspected cases of illness remain uncharacterized. This study aimed to determine the distribution of several respiratory viruses in children diagnosed as having influenza-like illness, over the winter period of 2005-2008. Molecular assays including conventional and real time PCR protocols, were employed to screen respiratory specimens, collected by clinicians of the Influenza sentinel system and of outpatient pediatric clinics, for identification of several respiratory viruses. Of 1,272 specimens tested, 814 (64%) were positive for at least one virus and included 387 influenza viruses, 160 rhinoviruses, 155 respiratory syncytial viruses, 95 adenoviruses, 81 bocaviruses, 47 parainfluenza viruses, 44 metapneumoviruses, and 30 coronaviruses. Simultaneous presence of two or three viruses was observed in 173 of the above positive cases, 21% of which included influenza virus and rhinovirus. The majority of positive cases occurred during January and February. Influenza virus predominated in children older than 1 year old, with type B being the dominant type for the first season and subtypes A/H3N2 and A/H1N1 the following two winter seasons, respectively. Respiratory syncytial virus prevailed in children younger than 2 years old, with subtypes A and B alternating from year to year. This is the most comprehensive study of the epidemiology of respiratory viruses in Greece, indicating influenza, rhinovirus and respiratory syncytial virus as major contributors to influenza-like illness in children. Copyright © 2011 Wiley-Liss, Inc.

  7. Rapid Detection of Human Immunodeficiency Virus Types 1 and 2 by Use of an Improved Piezoelectric Biosensor

    Science.gov (United States)

    Severns, Virginia; Branch, Darren W.; Edwards, Thayne L.; Larson, Richard S.

    2013-01-01

    Disasters can create situations in which blood donations can save lives. However, in emergency situations and when resources are depleted, on-site blood donations require the rapid and accurate detection of blood-borne pathogens, including human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Techniques such as PCR and antibody capture by an enzyme-linked immunosorbent assay (ELISA) for HIV-1 and HIV-2 are precise but time-consuming and require sophisticated equipment that is not compatible with emergency point-of-care requirements. We describe here a prototype biosensor based on piezoelectric materials functionalized with specific antibodies against HIV-1 and HIV-2. We show the rapid and accurate detection of HIV-1 and HIV-2 in both simple and complex solutions, including human serum, and in the presence of a cross-confounding virus. We report detection limits of 12 50% tissue culture infective doses (TCID50s) for HIV-1 and 87 TCID50s for HIV-2. The accuracy, precision of measurements, and operation of the prototype biosensor compared favorably to those for nucleic acid amplification. We conclude that the biosensor has significant promise as a successful point-of-care diagnostic device for use in emergency field applications requiring rapid and reliable testing for blood-borne pathogens. PMID:23515541

  8. Exosomes from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Cells License Quiescent CD4+ T Lymphocytes To Replicate HIV-1 through a Nef- and ADAM17-Dependent Mechanism

    OpenAIRE

    Arenaccio, Claudia; Chiozzini, Chiara; Columba-Cabezas, Sandra; Manfredi, Francesco; Affabris, Elisabetta; Baur, Andreas; Federico, Maurizio

    2014-01-01

    Resting CD4+ T lymphocytes resist human immunodeficiency virus (HIV) infection. Here, we provide evidence that exosomes from HIV-1-infected cells render resting human primary CD4+ T lymphocytes permissive to HIV-1 replication. These results were obtained with transwell cocultures of HIV-1-infected cells with quiescent CD4+ T lymphocytes in the presence of inhibitors of exosome release and were confirmed using exosomes purified from supernatants of HIV-1-infected primary CD4+ T lymphocytes. We...

  9. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    Science.gov (United States)

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  10. No evidence of murine leukemia virus-related viruses in live attenuated human vaccines.

    Directory of Open Access Journals (Sweden)

    William M Switzer

    Full Text Available The association of xenotropic murine leukemia virus (MLV-related virus (XMRV in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents.All eight live attenuated vaccines, including Japanese encephalitis virus (JEV (SA-14-14-2, varicella (Varivax, measles, mumps, and rubella (MMR-II, measles (Attenuvax, rubella (Meruvax-II, rotavirus (Rotateq and Rotarix, and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells.We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans.

  11. Sexual transmission of human T-cell lymphotropic virus type 1

    Directory of Open Access Journals (Sweden)

    Arthur Paiva

    2014-06-01

    Full Text Available Human T-cell lymphotropic virus type 1 (HTLV-1 is endemic in many parts of the world and is primarily transmitted through sexual intercourse or from mother to child. Sexual transmission occurs more efficiently from men to women than women to men and might be enhanced by sexually transmitted diseases that cause ulcers and result in mucosal ruptures, such as syphilis, herpes simplex type 2 (HSV-2, and chancroid. Other sexually transmitted diseases might result in the recruitment of inflammatory cells and could increase the risk of HTLV-1 acquisition and transmission. Additionally, factors that are associated with higher transmission risks include the presence of antibodies against the viral oncoprotein Tax (anti-Tax, a higher proviral load in peripheral blood lymphocytes, and increased cervicovaginal or seminal secretions. Seminal fluid has been reported to increase HTLV replication and transmission, whereas male circumcision and neutralizing antibodies might have a protective effect. Recently, free virions were discovered in plasma, which reveals a possible new mode of HTLV replication. It is unclear how this discovery might affect the routes of HTLV transmission, particularly sexual transmission, because HTLV transmission rates are significantly higher from men to women than women to men.

  12. Molecular epidemiology of influenza A(H1N1pdm09 viruses from Pakistan in 2009-2010.

    Directory of Open Access Journals (Sweden)

    Uzma Bashir Aamir

    Full Text Available In early 2009, a novel influenza A(H1N1 virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.The first case of human infection with A(H1N1pdm09 in Pakistan was detected on 18(th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31(st August 2010. The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.Influenza A(H1N1pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.

  13. Prognostic value of the stromal cell-derived factor 1 3'A mutation in pediatric human immunodeficiency virus type 1 infection.

    Science.gov (United States)

    Tresoldi, Eleonora; Romiti, Maria Luisa; Boniotto, Michele; Crovella, Sergio; Salvatori, Francesca; Palomba, Elvia; Pastore, Angela; Cancrini, Caterina; de Martino, Maurizio; Plebani, Anna; Castelli, Guido; Rossi, Paolo; Tovo, Pier Angelo; Amoroso, Antonio; Scarlatti, Gabriella

    2002-03-01

    A mutation of the stromal cell-derived factor 1 gene (SDF-1 3'A) was shown to protect adults exposed to human immunodeficiency virus type 1 (HIV-1) from infection and to affect HIV disease progression in adults. The presence of this mutation in HIV-1-infected Kenyan children did not predict mother-to-child virus transmission. The SDF-1 3'A polymorphism was studied in 256 HIV-1-infected, 118 HIV-1-exposed but uninfected, and 170 unexposed and uninfected children of Italian origin, and the frequency of SDF-1 3'A heterozygosity and homozygosity in each of the 3 groups was similar. Of the 256 HIV-1-infected children, 194 were regularly followed up and were assigned to groups according to disease progression. The frequency of the SDF-1 3'A allele was substantially lower among children with long-term nonprogression than among children with rapid (P =.0329) or delayed (P =.0375) progression. We show that the presence of the SDF-1 3'A gene correlates with accelerated disease progression in HIV-1-infected children born to seropositive mothers but does not protect against mother-to-child HIV-1 transmission.

  14. Ammonia disinfection of hatchery waste for elimination of single-stranded RNA viruses.

    Science.gov (United States)

    Emmoth, Eva; Ottoson, Jakob; Albihn, Ann; Belák, Sándor; Vinnerås, Björn

    2011-06-01

    Hatchery waste, an animal by-product of the poultry industry, needs sanitation treatment before further use as fertilizer or as a substrate in biogas or composting plants, owing to the potential presence of opportunistic pathogens, including zoonotic viruses. Effective sanitation is also important in viral epizootic outbreaks and as a routine, ensuring high hygiene standards on farms. This study examined the use of ammonia at different concentrations and temperatures to disinfect hatchery waste. Inactivation kinetics of high-pathogenic avian influenza virus H7N1 and low-pathogenic avian influenza virus H5N3, as representatives of notifiable avian viral diseases, were determined in spiked hatchery waste. Bovine parainfluenza virus type 3, feline coronavirus, and feline calicivirus were used as models for other important avian pathogens, such as Newcastle disease virus, infectious bronchitis virus, and avian hepatitis E virus. Bacteriophage MS2 was also monitored as a stable indicator. Coronavirus was the most sensitive virus, with decimal reduction (D) values of 1.2 and 0.63 h after addition of 0.5% (wt/wt) ammonia at 14 and 25°C, respectively. Under similar conditions, high-pathogenic avian influenza H7N1 was the most resistant, with D values of 3.0 and 1.4 h. MS2 was more resistant than the viruses to all treatments and proved to be a suitable indicator of viral inactivation. The results indicate that ammonia treatment of hatchery waste is efficient in inactivating enveloped and naked single-stranded RNA viruses. Based on the D values and confidence intervals obtained, guidelines for treatment were proposed, and one was successfully validated at full scale at a hatchery, with MS2 added to hatchery waste.

  15. Prevalence of human T-cell lymphotropic virus types 1 and 2 in blood donors of the Caruaru Blood Center (Hemope

    Directory of Open Access Journals (Sweden)

    Waleska Mayara Gomes de Lima

    2013-01-01

    Full Text Available BACKGROUND: There is difficulty in gathering data on the prevalence of human T-cell lymphotropic virus in blood donors as confirmatory testing is not mandatory in Brazil. This suggests there may be an underreporting of the prevalence. OBJECTIVE: To estimate the prevalence of human T-cell lymphotropic virus types 1 and 2 in donors of a blood bank in Caruaru, Brazil. METHODS: This was an observational, epidemiological, descriptive, longitudinal and retrospective study with information about the serology of donors of the Caruaru Blood Center, Fundação de Hematologia e Hemoterapia de Pernambuco (Hemope from May 2006 to December 2010. The data were analyzed using the Excel 2010 computer program (Microsoft Office(r. RESULTS: Of 61,881 donors, 60 (0.096% individuals were identified as potential carriers of human T-cell lymphotropic virus types 1 and 2. Of these, 28 (0.045% were positive and 32 (0.051% had inconclusive results in the serological screening. Forty-five (0.072% were retested; 17 were positive (0.027% and 3 inconclusive (0.005%. After confirmatory tests, 8 were positive (0.013%. Six (75% of the confirmed cases were women. CONCLUSION: Epidemiological surveys like this are very important in order to create campaigns to attract donors and reduce the costs of laboratory tests.

  16. Respiratory viruses in children hospitalized for acute lower respiratory tract infection in Ghana.

    Science.gov (United States)

    Kwofie, Theophilus B; Anane, Yaw A; Nkrumah, Bernard; Annan, Augustina; Nguah, Samuel B; Owusu, Michael

    2012-04-10

    Acute respiratory tract infections are one of the major causes of morbidity and mortality among young children in developing countries. Information on the viral aetiology of acute respiratory infections in developing countries is very limited. The study was done to identify viruses associated with acute lower respiratory tract infection among children less than 5 years. Nasopharyngeal samples and blood cultures were collected from children less than 5 years who have been hospitalized for acute lower respiratory tract infection. Viruses and bacteria were identified using Reverse Transcriptase Real-Time Polymerase Chain Reaction and conventional biochemical techniques. Out of 128 patients recruited, 33(25.88%%, 95%CI: 18.5% to 34.2%) were positive for one or more viruses. Respiratory Syncytial Virus (RSV) was detected in 18(14.1%, 95%CI: 8.5% to 21.3%) patients followed by Adenoviruses (AdV) in 13(10.2%, 95%CI: 5.5% to 16.7%), Parainfluenza (PIV type: 1, 2, 3) in 4(3.1%, 95%CI: 0.9% to 7.8%) and influenza B viruses in 1(0.8%, 95%CI: 0.0 to 4.3). Concomitant viral and bacterial co-infection occurred in two patients. There were no detectable significant differences in the clinical signs, symptoms and severity for the various pathogens isolated. A total of 61.1% (22/36) of positive viruses were detected during the rainy season and Respiratory Syncytial Virus was the most predominant. The study has demonstrated an important burden of respiratory viruses as major causes of childhood acute respiratory infection in a tertiary health institution in Ghana. The data addresses a need for more studies on viral associated respiratory tract infection.

  17. Generation of a human immunodeficiency virus type 1 chronically infected monkey B cell line expressing low levels of endogenous TRIM5alpha.

    Science.gov (United States)

    Ridolfi, Barbara; Catone, Stefania; Sgarbanti, Marco; Sernicola, Leonardo; Battistini, Angela; Parolin, Cristina; Titti, Fausto; Borsetti, Alessandra

    2009-12-01

    Several innate cellular antiviral factors exist in mammalian cells that prevent the replication of retroviruses. Among them, the tripartite motif protein (TRIM)5alpha has been shown to block human immunodeficiency virus type 1 (HIV-1) infection in several types of Old World monkey cells. Here we report a novel HIV-1 chronically infected monkey B cell line, F6/HIV-1, characterized by very low levels of TRIM5alpha expression that allows HIV-1 to overcome the restriction. Virus produced by F6/HIV-1 cells fails to infect monkey cells but retains the ability to infect human peripheral blood mononuclear cells (PBMCs) and T cell lines, although with a reduced infectivity compared to the input virus. Ultrastructural analyses revealed the presence of budding virions at the F6/HIV-1 cells plasma membrane characterized by a typical conical core shell. To our knowledge F6/HIV-1 is the first monkey cell line chronically infected by HIV-1 and able to release infectious particles thus representing a useful tool to gain further insights into the molecular mechanisms of HIV-1 pathogenesis.

  18. Development of a sensitive real-time PCR for simultaneous detection and subtyping of influenza A and B viruses

    Directory of Open Access Journals (Sweden)

    Daniela Amicizia

    2005-03-01

    Full Text Available

    A new real-time PCR assay, using melting curve analysis, was developed for the rapid and reliable detection and sub-typing of influenza A and B.

    In order to evaluate it’s specificity, cell culture surnatants positive for Respiratory Syncytial Virus, Parainfluenza Viruses 1, 2 and 3, Measles Virus, Influenza A (to evaluate Influenza B primer and B (to evaluate Influenza A primer were tested and all of the results were negative.

    A series of Influenza A and B cell culture-grown viruses were diluted in virus transport medium, titrated and tested to determine the analytical sensibility which equated to 0.64, 0.026, 0.64, 0.62 PFU for A/H1N1, A/H3N2, Victoria-like and Yamagata-like B viruses, respectively. Twenty-five specimens, collected during the 2001/02 and 2002/03 seasons, which were positive for A/H1N1 (n = 7, A/H3N2 (n = 10, B Victoria-lineage (n = 5 and B Yamagata-lineage (n = 3, were tested in order to evaluate the assay’s clinical sensitivity, all of the results were positive.

    The new real-time PCR appears to be a suitable tool for virological surveillance and the diagnosis of respiratory infections.

  19. Detection methods for human enteric viruses in representative foods.

    Science.gov (United States)

    Leggitt, P R; Jaykus, L A

    2000-12-01

    Although viral foodborne disease is a significant problem, foods are rarely tested for viral contamination, and when done, testing is limited to shellfish commodities. In this work, we report a method to extract and detect human enteric viruses from alternative food commodities using an elution-concentration approach followed by detection using reverse transcription-polymerase chain reaction (RT-PCR). Fifty-gram lettuce or hamburger samples were artificially inoculated with poliovirus type 1 (PV1), hepatitis A virus (HAV), or the Norwalk virus and processed by the sequential steps of homogenization, filtration, Freon extraction (hamburger), and polyethylene glycol (PEG) precipitation. To reduce volumes further and remove RT-PCR inhibitors, a secondary PEG precipitation was necessary, resulting in an overall 10- to 20-fold sample size reduction from 50 g to 3 to 5 ml. Virus recoveries in secondary PEG concentrates ranged from 10 to 70% for PV1 and 2 to 4% for HAV as evaluated by mammalian cell culture infectivity assay. Total RNA from PEG concentrates was extracted to a small volume (30 to 40 microl) and subjected to RT-PCR amplification of viral RNA sequences. Detection limit studies indicated that viral RNA was consistently detected by RT-PCR at initial inoculum levels > or =102 PFU/50-g food sample for PV1 and > or =10(3) PFU/50-g food sample for HAV. In similar studies with the Norwalk virus, detection at inoculum levels > or =1.5 X 10(3) PCR-amplifiable units/50-g sample for both food products was possible. All RT-PCR amplicons were confirmed by subsequent Southern hybridization. The procedure reported represents progress toward the development of methods to detect human enteric viral contamination in foods other than shellfish.

  20. Does human bocavirus infection depend on helper viruses? A challenging case report

    Directory of Open Access Journals (Sweden)

    Brockmann Michael

    2011-08-01

    Full Text Available Abstract A case of severe diarrhoea associated with synergistic human bocavirus type 1 (HBoV and human herpes virus type 6 (HHV6 is reported. The case supports the hypotheses that HBoV infection under clinical conditions may depend on helper viruses, or that HBoV replicates by a mechanism that is atypical for parvoviruses, or that HBoV infection can be specifically treated with cidofovir.

  1. Human Immunodeficiency Virus (HIV) Seropositivity In African ...

    African Journals Online (AJOL)

    A seroprevalence study of Human immunodeficiency virus (HIV) infection in new patients attending the eye clinic of LAUTECH Teaching Hospital in Osogbo, Osun State, Nigeria showed that twenty-nine patients 2.7%) were positive to HIV1. No patient was positive to HIV 2. There were 21 males (72.4%) and 8 females ...

  2. Development of neurologic diseases in a patient with primate T lymphotropic virus type 1 (PTLV-1).

    Science.gov (United States)

    Enose-Akahata, Yoshimi; Caruso, Breanna; Haner, Benjamin; Charlip, Emily; Nair, Govind; Massoud, Raya; Billioux, Bridgette J; Ohayon, Joan; Switzer, William M; Jacobson, Steven

    2016-08-12

    Virus transmission from various wild and domestic animals contributes to an increased risk of emerging infectious diseases in human populations. HTLV-1 is a human retrovirus associated with acute T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 originated from ancient zoonotic transmission from nonhuman primates, although cases of zoonotic infections continue to occur. Similar to HTLV-1, the simian counterpart, STLV-1, causes chronic infection and leukemia and lymphoma in naturally infected monkeys, and combined are called primate T-lymphotropic viruses (PTLV-1). However, other clinical syndromes typically seen in humans such as a chronic progressive myelopathy have not been observed in nonhuman primates. Little is known about the development of neurologic and inflammatory diseases in human populations infected with STLV-1-like viruses following nonhuman primate exposure. We performed detailed laboratory analyses on an HTLV-1 seropositive patient with typical HAM/TSP who was born in Liberia and now resides in the United States. Using a novel droplet digital PCR for the detection of the HTLV-1 tax gene, the proviral load in PBMC and cerebrospinal fluid cells was 12.98 and 51.68 %, respectively; however, we observed a distinct difference in fluorescence amplitude of the positive droplet population suggesting possible mutations in proviral DNA. A complete PTLV-1 proviral genome was amplified from the patient's PBMC DNA using an overlapping PCR strategy. Phylogenetic analysis of the envelope and LTR sequences showed the virus was highly related to PTLV-1 from sooty mangabey monkeys (smm) and humans exposed via nonhuman primates in West Africa. These results demonstrate the patient is infected with a simian variant of PTLV-1, suggesting for the first time that PTLV-1smm infection in humans may be associated with a chronic progressive neurologic disease.

  3. Viruses and human cancers: challenges for preventive strategies.

    Science.gov (United States)

    de The, G

    1995-01-01

    Virus-associated human cancers provide unique opportunities for preventive strategies. The role of human papilloma viruses (HPV 16 and 18), hepatitis B virus (HBV), Epstein-Barr herpes virus (EBV), and retroviruses (human immunodeficiency virus [HIV] and human T-cell leukemia/lymphoma virus [HTLV]) in the development of common carcinomas and lymphomas represents a major cancer threat, particularly among individuals residing in developing countries, which account for 80% of the world's population. Even though these viruses are not the sole etiological agents of these cancers (as would be the case for infectious diseases), different approaches can be implemented to significantly decrease the incidence of virus-associated malignancies. The first approach is vaccination, which is available for HBV and possibly soon for EBV. The long delay between primary viral infection and development of associated tumors as well as the cost involved with administering vaccinations detracts from the feasibility of such an approach within developing countries. The second approach is to increase efforts to detect pre-cancerous lesions or early tumors using immunovirological means. This would allow early diagnosis and better treatment. The third strategy is linked to the existence of disease susceptibility genes, and suggests that counseling be provided for individuals carrying these genes to encourage them to modify their lifestyles and other conditions associated with increased cancer risks (predictive oncology). Specific recommendations include: a) increase international studies that explore the causes of the large variations in prevalence of common cancers throughout the world; b) conduct interdisciplinary studies involving laboratory investigation and social sciences, which may suggest hypotheses that may then be tested experimentally; and c) promote more preventive and health enhancement strategies in addition to curative and replacement therapies. PMID:8741797

  4. [Clinical aspects of human infection by the avian influenza virus].

    Science.gov (United States)

    Goubau, P

    2009-01-01

    The species barrier is not perfect for Influenza A and numerous transmissions of the virus from pigs or poultry to humans have been described these years. Appearing in 1997 and becoming epidemic in 2003, influenza A/H5N1 provoked many deadly enzootics in poultry batteries (highly pathogenic avian influenza of HPAI). Starting in Asia, many countries throughout Africa and Europe were affected. Sporadic human cases were described in direct contact with diseased chicken or other poultry. Half of the cases are lethal, but human to human transmission occurs with difficulty. From January 2003 to August 11th 2009, 438 cases were declared worldwide with 262 deaths. Many countries declared cases, but recently most cases occurred in Egypt. Measures in hospital were taken which were copied from the measures for SARS (Severe Acute Respiratory Syndrome), but these were probably excessive in this case, considering the low rate of secondary cases with A/H5N1. In many human infections, signs of severe respiratory distress develop and multi organ failure. It was feared that this deadly virus could become easily transmitted between humans, leading to a new pandemic. This was not the case up to now. The strong pathogenicity of the virus is still not completely explained, but the deep location of infection in the lungs and the deregulation of cytokine production by the target cells, particularly macrophages, may be part of the explanation.

  5. Isolation of a new herpes virus from human CD4+ T cells

    International Nuclear Information System (INIS)

    Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.; Katsafanas, G.; Roffman, E.; Danovich, R.M.; June, C.H.

    1990-01-01

    A new human herpes virus has been isolated from CD4 + T cells purified from peripheral blood mononuclear cells of a healthy individual (RK), following incubation of the cells under conditions promoting T-cell activation. The virus could not be recovered from nonactivated cells. Cultures of lymphocytes infected with the RK virus exhibited a cytopathic effect, and electron microscopic analyses revealed a characteristic herpes virus structure. RK virus DNA did not hybridize with large probes derived from herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, and human cytomegalovirus. The genetic relatedness of the RK virus to the recently identified T-lymphotropic human herpes virus 6 (HHV-6) was investigated by restriction enzyme analyses using 21 different enzymes and by blot hydridization analyses using 11 probes derived from two strains of HHV-6 (Z29 and U1102). Whereas the two HHV-6 strains exhibited only limited restriction enzyme polymorphism, cleavage of the RK virus DNA yielded distinct patterns. Of the 11 HHV-6 DNA probes tested, only 6 cross-hybridized with DNA fragments derived from the RK virus. Taken together, the maximal homology amounted to 31 kilobases of the 75 kilobases tested. The authors conclude that the RK virus is distinct from previously characterized human herpesviruses. The authors propose to designate it as the prototype of a new herpes virus, the seventh human herpes virus identified to date

  6. Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs

    International Nuclear Information System (INIS)

    Mochalova, Larisa; Gambaryan, Alexandra; Romanova, Julia; Tuzikov, Alexander; Chinarev, Alexander; Katinger, Dietmar; Katinger, Herman; Egorov, Andrej; Bovin, Nicolai

    2003-01-01

    To study the receptor specificity of modern human influenza H1N1 and H3N2 viruses, the analogs of natural receptors, namely sialyloligosaccharides conjugated with high molecular weight (about 1500 kDa) polyacrylamide as biotinylated and label-free probes, have been used. Viruses isolated from clinical specimens were grown in African green monkey kidney (Vero) or Madin-Darby canine kidney (MDCK) cells and chicken embryonated eggs. All Vero-derived viruses had hemagglutinin (HA) sequences indistinguishable from original viruses present in clinical samples, but HAs of three of seven tested MDCK-derived isolates had one or two amino acid substitutions. Despite these host-dependent mutations and differences in the structure of HA molecules of individual strains, all studied Vero- and MDCK-isolated viruses bound to Neu5Ac α2-6Galβ1-4GlcNAc (6'SLN) essentially stronger than to Neu5Acα2-6Galβ1-4Glc (6'SL). Such receptor-binding specificity has been typical for earlier isolated H1N1 human influenza viruses, but there is a new property of H3N2 viruses that has been circulating in the human population during recent years. Propagation of human viruses in chicken embryonated eggs resulted in a selection of variants with amino acid substitutions near the HA receptor-binding site, namely Gln226Arg or Asp225Gly for H1N1 viruses and Leu194Ile and Arg220Ser for H3N2 viruses. These HA mutations disturb the observed strict 6'SLN specificity of recent human influenza viruses

  7. Identification of Human Junctional Adhesion Molecule 1 as a Functional Receptor for the Hom-1 Calicivirus on Human Cells

    Directory of Open Access Journals (Sweden)

    Stanislav V. Sosnovtsev

    2017-02-01

    Full Text Available The Hom-1 vesivirus was reported in 1998 following the inadvertent transmission of the animal calicivirus San Miguel sea lion virus to a human host in a laboratory. We characterized the Hom-1 strain and investigated the mechanism by which human cells could be infected. An expression library of 3,559 human plasma membrane proteins was screened for reactivity with Hom-1 virus-like particles, and a single interacting protein, human junctional adhesion molecule 1 (hJAM1, was identified. Transient expression of hJAM1 conferred susceptibility to Hom-1 infection on nonpermissive Chinese hamster ovary (CHO cells. Virus infection was markedly inhibited when CHO cells stably expressing hJAM were pretreated with anti-hJAM1 monoclonal antibodies. Cell lines of human origin were tested for growth of Hom-1, and efficient replication was observed in HepG2, HuH7, and SK-CO15 cells. The three cell lines (of hepatic or intestinal origin were confirmed to express hJAM1 on their surface, and clustered regularly interspaced short palindromic repeats/Cas9-mediated knockout of the hJAM1 gene in each line abolished Hom-1 propagation. Taken together, our data indicate that entry of the Hom-1 vesivirus into these permissive human cell lines is mediated by the plasma membrane protein hJAM1 as a functional receptor.

  8. Human Immune System Mice for the Study of Human Immunodeficiency Virus-Type 1 Infection of the Central Nervous System

    Science.gov (United States)

    Evering, Teresa H.; Tsuji, Moriya

    2018-01-01

    Immunodeficient mice transplanted with human cell populations or tissues, also known as human immune system (HIS) mice, have emerged as an important and versatile tool for the in vivo study of human immunodeficiency virus-type 1 (HIV-1) pathogenesis, treatment, and persistence in various biological compartments. Recent work in HIS mice has demonstrated their ability to recapitulate critical aspects of human immune responses to HIV-1 infection, and such studies have informed our knowledge of HIV-1 persistence and latency in the context of combination antiretroviral therapy. The central nervous system (CNS) is a unique, immunologically privileged compartment susceptible to HIV-1 infection, replication, and immune-mediated damage. The unique, neural, and glia-rich cellular composition of this compartment, as well as the important role of infiltrating cells of the myeloid lineage in HIV-1 seeding and replication makes its study of paramount importance, particularly in the context of HIV-1 cure research. Current work on the replication and persistence of HIV-1 in the CNS, as well as cells of the myeloid lineage thought to be important in HIV-1 infection of this compartment, has been aided by the expanded use of these HIS mouse models. In this review, we describe the major HIS mouse models currently in use for the study of HIV-1 neuropathogenesis, recent insights from the field, limitations of the available models, and promising advances in HIS mouse model development. PMID:29670623

  9. Herpes Simplex Virus Suppressive Therapy in Herpes Simplex Virus-2/Human Immunodeficiency Virus-1 Coinfected Women Is Associated With Reduced Systemic CXCL10 But Not Genital Cytokines.

    Science.gov (United States)

    Andersen-Nissen, Erica; Chang, Joanne T; Thomas, Katherine K; Adams, Devin; Celum, Connie; Sanchez, Jorge; Coombs, Robert W; McElrath, M Juliana; Baeten, Jared M

    2016-12-01

    Herpes simplex virus type-2 (HSV-2) may heighten immune activation and increase human immunodeficiency virus 1 (HIV-1) replication, resulting in greater infectivity and faster HIV-1 disease progression. An 18-week randomized, placebo-controlled crossover trial of 500 mg valacyclovir twice daily in 20 antiretroviral-naive women coinfected with HSV-2 and HIV-1 was conducted and HSV-2 suppression was found to significantly reduce both HSV-2 and HIV-1 viral loads both systemically and the endocervical compartment. To determine the effect of HSV-2 suppression on systemic and genital mucosal inflammation, plasma specimens, and endocervical swabs were collected weekly from volunteers in the trial and cryopreserved. Plasma was assessed for concentrations of 31 cytokines and chemokines; endocervical fluid was eluted from swabs and assayed for 14 cytokines and chemokines. Valacyclovir significantly reduced plasma CXCL10 but did not significantly alter other cytokine concentrations in either compartment. These data suggest genital tract inflammation in women persists despite HSV-2 suppression, supporting the lack of effect on transmission seen in large scale efficacy trials. Alternative therapies are needed to reduce persistent mucosal inflammation that may enhance transmission of HSV-2 and HIV-1.

  10. Continental synchronicity of human influenza virus epidemics despite climactic variation.

    Science.gov (United States)

    Geoghegan, Jemma L; Saavedra, Aldo F; Duchêne, Sebastián; Sullivan, Sheena; Barr, Ian; Holmes, Edward C

    2018-01-01

    The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007-2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health responses in the

  11. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry

    International Nuclear Information System (INIS)

    Janas, Alicia M.; Dong, Chunsheng; Wang Jianhua; Wu Li

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) enters dendritic cells (DCs) through endocytosis and viral receptor-mediated fusion. Although endocytosis-mediated HIV-1 entry can generate productive infection in certain cell types, including human monocyte-derived macrophages, productive HIV-1 infection in DCs appears to be dependent on fusion-mediated viral entry. It remains to be defined whether endocytosed HIV-1 in DCs can initiate productive infection. Using HIV-1 infection and cellular fractionation assays to measure productive viral infection and entry, here we show that HIV-1 enters monocyte-derived DCs predominately through endocytosis; however, endocytosed HIV-1 cannot initiate productive HIV-1 infection in DCs. In contrast, productive HIV-1 infection in DCs requires fusion-mediated viral entry. Together, these results provide functional evidence in understanding HIV-1 cis-infection of DCs, suggesting that different pathways of HIV-1 entry into DCs determine the outcome of viral infection

  12. Saffold virus, a human Theiler's-like cardiovirus, is ubiquitous and causes infection early in life.

    Directory of Open Access Journals (Sweden)

    Jan Zoll

    2009-05-01

    Full Text Available The family Picornaviridae contains well-known human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and parechovirus. In addition, this family contains a number of viruses that infect animals, including members of the genus Cardiovirus such as Encephalomyocarditis virus (EMCV and Theiler's murine encephalomyelits virus (TMEV. The latter are important murine pathogens that cause myocarditis, type 1 diabetes and chronic inflammation in the brains, mimicking multiple sclerosis. Recently, a new picornavirus was isolated from humans, named Saffold virus (SAFV. The virus is genetically related to Theiler's virus and classified as a new species in the genus Cardiovirus, which until the discovery of SAFV did not contain human viruses. By analogy with the rodent cardioviruses, SAFV may be a relevant new human pathogen. Thus far, SAFVs have sporadically been detected by molecular techniques in respiratory and fecal specimens, but the epidemiology and clinical significance remained unclear. Here we describe the first cultivated SAFV type 3 (SAFV-3 isolate, its growth characteristics, full-length sequence, and epidemiology. Unlike the previously isolated SAFV-1 and -2 viruses, SAFV-3 showed efficient growth in several cell lines with a clear cytopathic effect. The latter allowed us to conduct a large-scale serological survey by a virus-neutralization assay. This survey showed that infection by SAFV-3 occurs early in life (>75% positive at 24 months and that the seroprevalence reaches >90% in older children and adults. Neutralizing antibodies were found in serum samples collected in several countries in Europe, Africa, and Asia. In conclusion, this study describes the first cultivated SAFV-3 isolate, its full-length sequence, and epidemiology. SAFV-3 is a highly common and widespread human virus causing infection in early childhood. This finding has important implications for understanding the impact of these ubiquitous viruses and their possible

  13. Stimulation of the human immunodeficiency virus type 1 enhancer by the human T-cell leukemia virus type I tax gene product involves the action of inducible cellular proteins.

    Science.gov (United States)

    Böhnlein, E; Siekevitz, M; Ballard, D W; Lowenthal, J W; Rimsky, L; Bogérd, H; Hoffman, J; Wano, Y; Franza, B R; Greene, W C

    1989-04-01

    The human immunodeficiency virus type 1 (HIV-1) preferentially infects CD4+ T lymphocytes and may exist as a latent provirus within these cells for extended periods. The transition to a productive retroviral infection results in T-cell death and clinically may lead to the acquired immune deficiency syndrome. Accelerated production of infectious HIV-1 virions appears to be closely linked to a heightened state of T-cell activation. The transactivator (Tax) protein of the type I human T-cell leukemia virus (HTLV-I) can produce such an activated T-cell phenotype and augments activity of the HIV-1 long terminal repeat. One Tax-responsive region within the HIV-1 long terminal repeat has been mapped to a locus composed of two 10-base-pair direct repeats sharing homology with the binding site for the eucaryotic transcription factor NF-kappaB (GGGACTTTCC). Tax-expressing Jurkat T cells contain one or more inducible cellular proteins that specifically associate with the HIV-1 enhancer at these binding sites. Microscale DNA affinity precipitation assays identified a Tax-inducible 86-kilodalton protein, HIVEN86A, as one of these HIV-1 enhancer-binding factors. The interaction of HIVEN86A, and presumably other cellular proteins, with the HIV-1 enhancer appears functionally important as oligonucleotides corresponding to this enhancer were sufficient to impart Tax inducibility to an unresponsive heterologous promoter. These findings suggest that the Tax-inducible cellular protein HIVEN86A plays an important role in the transcriptional activation of the HIV-1 enhancer. These specific protein-DNA interactions may also be important for the transition of HIV-1 from a latent to a productive mode of infection. Furthermore, these findings highlight an intriguing biological interplay between HTLV-1 and HIV-1 through a cellular transcriptional pathway that is normally involved in T-cell activation and growth.

  14. Evidence of cross-reactive immunity to 2009 pandemic influenza A virus in workers seropositive to swine H1N1 influenza viruses circulating in Italy.

    Directory of Open Access Journals (Sweden)

    Maria A De Marco

    Full Text Available BACKGROUND: Pigs play a key epidemiologic role in the ecology of influenza A viruses (IAVs emerging from animal hosts and transmitted to humans. Between 2008 and 2010, we investigated the health risk of occupational exposure to swine influenza viruses (SIVs in Italy, during the emergence and spread of the 2009 H1N1 pandemic (H1N1pdm virus. METHODOLOGY/PRINCIPAL FINDINGS: Serum samples from 123 swine workers (SWs and 379 control subjects (Cs, not exposed to pig herds, were tested by haemagglutination inhibition (HI assay against selected SIVs belonging to H1N1 (swH1N1, H1N2 (swH1N2 and H3N2 (swH3N2 subtypes circulating in the study area. Potential cross-reactivity between swine and human IAVs was evaluated by testing sera against recent, pandemic and seasonal, human influenza viruses (H1N1 and H3N2 antigenic subtypes. Samples tested against swH1N1 and H1N1pdm viruses were categorized into sera collected before (n. 84 SWs; n. 234 Cs and after (n. 39 SWs; n. 145 Cs the pandemic peak. HI-antibody titers ≥10 were considered positive. In both pre-pandemic and post-pandemic peak subperiods, SWs showed significantly higher swH1N1 seroprevalences when compared with Cs (52.4% vs. 4.7% and 59% vs. 9.7%, respectively. Comparable HI results were obtained against H1N1pdm antigen (58.3% vs. 7.7% and 59% vs. 31.7%, respectively. No differences were found between HI seroreactivity detected in SWs and Cs against swH1N2 (33.3% vs. 40.4% and swH3N2 (51.2 vs. 55.4% viruses. These findings indicate the occurrence of swH1N1 transmission from pigs to Italian SWs. CONCLUSION/SIGNIFICANCE: A significant increase of H1N1pdm seroprevalences occurred in the post-pandemic peak subperiod in the Cs (p<0.001 whereas SWs showed no differences between the two subperiods, suggesting a possible occurrence of cross-protective immunity related to previous swH1N1 infections. These data underline the importance of risk assessment and occupational health surveillance activities aimed

  15. Human T-cell lymphotropic virus type 1 and its oncogenesis

    Institute of Scientific and Technical Information of China (English)

    Lan-lan ZHANG; Jing-yun WEI; Long WANG; Shi-le HUANG; Ji-long CHEN

    2017-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL),a rapidly progressing clonal malignancy of CD4+ T lymphocytes.Exploring the host-HTLV-1 interactions and the molecular mechanisms underlying HTLV-1-mediated tumorigenesis is critical for developing efficient therapies against the viral infection and associated leukemia/lymphoma.It has been demonstrated to date that several HTLV-1 proteins play key roles in the cellular transformation and immortalization of infected T lymphocytes.Of note,the HTLV-1 oncoprotein Tax inhibits the innate IFN response through interaction with MAVS,STING and RIP1,causing the suppression of TBK1-mediated phosphorylation of IRF3/IRF7.The HTLV-1 protein HBZ disrupts genomic integrity and inhibits apoptosis and autophagy of the target cells.Furthermore,it is revealed that HBZ enhances the proliferation of ATL cells and facilitates evasion of the infected cells from immunosurveillance.These studies provide insights into the molecular mechanisms by which HTLV-1 mediates the formation of cancer as well as useful strategies for the development of new therapeutic interventions against ATL.In this article,we review the recent advances in the understanding of the pathogenesis,the underlying mechanisms,clinical diagnosis and treatment of the disease caused by HTLV-1 infection.In addition,we discuss the future direction for targeting HTLV-1-associated cancers and strategies against HTLV-1.

  16. Cross talk between animal and human influenza viruses.

    Science.gov (United States)

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2013-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the past decade, the first pandemic of the twenty-first century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assess the pandemic potential of H5N1 highly pathogenic avian influenza viruses.

  17. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease.

    Science.gov (United States)

    Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P; Qiu, Xiangguo

    2016-10-15

    Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is

  18. Influenza A virus protein PB1-F2 exacerbates IFN-beta expression of human respiratory epithelial cells.

    Science.gov (United States)

    Le Goffic, Ronan; Bouguyon, Edwige; Chevalier, Christophe; Vidic, Jasmina; Da Costa, Bruno; Leymarie, Olivier; Bourdieu, Christiane; Decamps, Laure; Dhorne-Pollet, Sophie; Delmas, Bernard

    2010-10-15

    The PB1-F2 protein of the influenza A virus (IAV) contributes to viral pathogenesis by a mechanism that is not well understood. PB1-F2 was shown to modulate apoptosis and to be targeted by the CD8(+) T cell response. In this study, we examined the downstream effects of PB1-F2 protein during IAV infection by measuring expression of the cellular genes in response to infection with wild-type WSN/33 and PB1-F2 knockout viruses in human lung epithelial cells. Wild-type virus infection resulted in a significant induction of genes involved in innate immunity. Knocking out the PB1-F2 gene strongly decreased the magnitude of expression of cellular genes implicated in antiviral response and MHC class I Ag presentation, suggesting that PB1-F2 exacerbates innate immune response. Biological network analysis revealed the IFN pathway as a link between PB1-F2 and deregulated genes. Using quantitative RT-PCR and IFN-β gene reporter assay, we determined that PB1-F2 mediates an upregulation of IFN-β expression that is dependent on NF-κB but not on AP-1 and IFN regulatory factor-3 transcription factors. Recombinant viruses knocked out for the PB1-F2 and/or the nonstructural viral protein 1 (the viral antagonist of the IFN response) genes provide further evidence that PB1-F2 increases IFN-β expression and that nonstructural viral protein 1 strongly antagonizes the effect of PB1-F2 on the innate response. Finally, we compared the effect of PB1-F2 variants taken from several IAV strains on IFN-β expression and found that PB1-F2-mediated IFN-β induction is significantly influenced by its amino acid sequence, demonstrating its importance in the host cell response triggered by IAV infection.

  19. The role of influenza, RSV and other common respiratory viruses in severe acute respiratory infections and influenza-like illness in a population with a high HIV sero-prevalence, South Africa 2012-2015.

    Science.gov (United States)

    Pretorius, Marthi A; Tempia, Stefano; Walaza, Sibongile; Cohen, Adam L; Moyes, Jocelyn; Variava, Ebrahim; Dawood, Halima; Seleka, Mpho; Hellferscee, Orienka; Treurnicht, Florette; Cohen, Cheryl; Venter, Marietjie

    2016-02-01

    Viruses detected in patients with acute respiratory infections may be the cause of illness or asymptomatic shedding. To estimate the attributable fraction (AF) and the detection rate attributable to illness for each of the different respiratory viruses We compared the prevalence of 10 common respiratory viruses (influenza A and B viruses, parainfluenza virus 1-3; respiratory syncytial virus (RSV); adenovirus, rhinovirus, human metapneumovirus (hMPV) and enterovirus) in both HIV positive and negative patients hospitalized with severe acute respiratory illness (SARI), outpatients with influenza-like illness (ILI), and control subjects who did not report any febrile, respiratory or gastrointestinal illness during 2012-2015 in South Africa. We enrolled 1959 SARI, 3784 ILI and 1793 controls with a HIV sero-prevalence of 26%, 30% and 43%, respectively. Influenza virus (AF: 86.3%; 95%CI: 77.7-91.6%), hMPV (AF: 85.6%; 95%CI: 72.0-92.6%), and RSV (AF: 83.7%; 95%CI: 77.5-88.2%) infections were associated with severe disease., while rhinovirus (AF: 46.9%; 95%CI: 37.6-56.5%) and adenovirus (AF: 36.4%; 95%CI: 20.6-49.0%) were only moderately associated. Influenza, RSV and hMPV can be considered pathogens if detected in ILI and SARI while rhinovirus and adenovirus were commonly identified in controls suggesting that they may cause only a proportion of clinical disease observed in positive patients. Nonetheless, they may be important contributors to disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Establishment of new transmissible and drug-sensitive human immunodeficiency virus type 1 wild types due to transmission of nucleoside analogue-resistant virus.

    Science.gov (United States)

    de Ronde, A; van Dooren, M; van Der Hoek, L; Bouwhuis, D; de Rooij, E; van Gemen, B; de Boer, R; Goudsmit, J

    2001-01-01

    Sequence analysis of human immunodeficiency virus type 1 (HIV-1) from 74 persons with acute infections identified eight strains with mutations in the reverse transcriptase (RT) gene at positions 41, 67, 68, 70, 215, and 219 associated with resistance to the nucleoside analogue zidovudine (AZT). Follow-up of the fate of these resistant HIV-1 strains in four newly infected individuals revealed that they were readily replaced by sensitive strains. The RT of the resistant viruses changed at amino acid 215 from tyrosine (Y) to aspartic acid (D) or serine (S), with asparagine (N) as a transient intermediate, indicating the establishment of new wild types. When we introduced these mutations and the original threonine (T)-containing wild type into infectious molecular clones and assessed their competitive advantage in vitro, the order of fitness was in accord with the in vivo observations: 215Y types with D, S, or N residues at position 215 may be warranted in order to estimate the threat to long-term efficacy of regimens including nucleoside analogues.

  1. Respiratory viruses among children with non-severe community-acquired pneumonia: A prospective cohort study.

    Science.gov (United States)

    Nascimento-Carvalho, Amanda C; Vilas-Boas, Ana-Luisa; Fontoura, Maria-Socorro H; Vuorinen, Tytti; Nascimento-Carvalho, Cristiana M

    2018-06-06

    Community-acquired pneumonia (CAP) causes a major burden to the health care system among children under-5 years worldwide. Information on respiratory viruses in non-severe CAP cases is scarce. To estimate the frequency of respiratory viruses among non-severe CAP cases. Prospective study conducted in Salvador, Brazil. Out of 820 children aged 2-59 months with non-severe CAP diagnosed by pediatricians (respiratory complaints and radiographic pulmonary infiltrate/consolidation), recruited in a clinical trial (ClinicalTrials.gov Identifier NCT01200706), nasopharyngeal aspirate samples were obtained from 774 (94.4%) patients and tested for 16 respiratory viruses by PCRs. Viruses were detected in 708 (91.5%; 95%CI: 89.3-93.3) cases, out of which 491 (69.4%; 95%CI: 65.9-72.7) harbored multiple viruses. Rhinovirus (46.1%; 95%CI: 42.6-49.6), adenovirus (38.4%; 95%CI: 35.0-41.8), and enterovirus (26.5%; 95%CI: 23.5-29.7) were the most commonly found viruses. The most frequent combination comprised rhinovirus plus adenovirus. No difference was found in the frequency of RSVA (16.1% vs. 14.6%; P = 0.6), RSVB (10.9% vs. 13.2%; P = 0.4) influenza (Flu) A (6.3% vs. 5.1%; P = 0.5), FluB (4.5% vs. 1.8%; P = 0.09), parainfluenza virus (PIV) 1 (5.1% vs. 2.8%; P = 0.2), or PIV4 (7.7% vs. 4.1%; P = 0.08), when children with multiple or sole virus detection were compared. Conversely, rhinovirus, adenovirus, enterovirus, bocavirus, PIV2, PIV3, metapneumovirus, coronavirus OC43, NL63, 229E were significantly more frequent among cases with multiple virus detection. Respiratory viruses were detected in over 90% of the cases, out of which 70% had multiple viruses. Several viruses are more commonly found in multiple virus detection whereas other viruses are similarly found in sole and in multiple virus detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Human immunodeficiency virus (HIV) seropositivity and hepatitis B ...

    African Journals Online (AJOL)

    Method: A total of 130 donors comprising 120 commercial donors and 10 voluntary donors were tested for antibodies to human immunodeficiency virus and hepatitis B surface antigen in Benin city using Immunocomb HIV - 1 and 2 Biospot kit and Quimica Clinica Aplicada direct latex agglutination method respectively.

  3. Genomic heterogeneity among human and nonhuman strains of hepatitis A virus

    International Nuclear Information System (INIS)

    Lemon, S.M.; Chao, S.F.; Jansen, R.W.; Binn, L.N.; LeDuc, J.W.

    1987-01-01

    Cloned cDNA probes derived from the P1 and P2 regions of the genome of HM175 virus, a reference strain of human hepatitis A virus (HAV), failed to hybridize under standard stringency criteria with RNA from PA21 and PA33 viruses, two epizootiologically related HAV strains recovered from naturally infected New World owl monkeys. Hybridization of these probes to PA21 RNA was only evident under reduced stringency conditions. However, cDNA representing the 5' nontranslated region of the MH175 genome hybridized equally to HM175 and PA21 RNA under standard stringency conditions, while a probe derived from the 3', 1400 bases of the genome yielded a reduced hybridization signal with PA21 RNA. In contrast, no differences could be discerned between HM175 virus and three other HAV strains of human origin (GR8, LV374, and MS1) in any region of the genome, unless increased stringency conditions were used. These results suggest that PA21 and PA33 are unique among HAV isolates and may represent a virus native to the owl monkey. Despite extremely poor homology within the P1 region, which encodes capsid polypeptides, monoclonal antibody analysis confirmed that the immunodominant neutralization epitopes of HAV were highly conserved between HM175 and PA21 viruses. These data provide molecular evidence for the existence of HAV strains unique to nonhuman species and indicate that strict conservation of antigenic function may accompany substantial genetic divergence in HAV

  4. The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy

    Science.gov (United States)

    Miao, L; Fraefel, C; Sia, K C; Newman, J P; Mohamed-Bashir, S A; Ng, W H; Lam, P Y P

    2014-01-01

    Background: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. Methods: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. Results: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. Conclusion: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers. PMID:24196790

  5. Epstein-Barr virus, human papillomavirus and mouse mammary tumour virus as multiple viruses in breast cancer.

    Science.gov (United States)

    Glenn, Wendy K; Heng, Benjamin; Delprado, Warick; Iacopetta, Barry; Whitaker, Noel J; Lawson, James S

    2012-01-01

    The purpose of this investigation is to determine if Epstein Barr virus (EBV), high risk human papillomavirus (HPV), and mouse mammary tumour viruses (MMTV) co-exist in some breast cancers. All the specimens were from women residing in Australia. For investigations based on standard PCR, we used fresh frozen DNA extracts from 50 unselected invasive breast cancers. For normal breast specimens, we used DNA extracts from epithelial cells from milk donated by 40 lactating women. For investigations based on in situ PCR we used 27 unselected archival formalin fixed breast cancer specimens and 18 unselected archival formalin fixed normal breast specimens from women who had breast reduction surgery. Thirteen of these fixed breast cancer specimens were ductal carcinoma in situ (dcis) and 14 were predominantly invasive ductal carcinomas (idc). EBV sequences were identified in 68%, high risk HPV sequences in 50%, and MMTV sequences in 78% of DNA extracted from 50 invasive breast cancer specimens. These same viruses were identified in selected normal and breast cancer specimens by in situ PCR. Sequences from more than one viral type were identified in 72% of the same breast cancer specimens. Normal controls showed these viruses were also present in epithelial cells in human milk - EBV (35%), HPV, 20%) and MMTV (32%) of 40 milk samples from normal lactating women, with multiple viruses being identified in 13% of the same milk samples. We conclude that (i) EBV, HPV and MMTV gene sequences are present and co-exist in many human breast cancers, (ii) the presence of these viruses in breast cancer is associated with young age of diagnosis and possibly an increased grade of breast cancer.

  6. Template Dimerization Promotes an Acceptor Invasion-Induced Transfer Mechanism during Human Immunodeficiency Virus Type 1 Minus-Strand Synthesis

    OpenAIRE

    Balakrishnan, Mini; Roques, Bernard P.; Fay, Philip J.; Bambara, Robert A.

    2003-01-01

    The biochemical mechanism of template switching by human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and the role of template dimerization were examined. Homologous donor-acceptor template pairs derived from the HIV-1 untranslated leader region and containing the wild-type and mutant dimerization initiation sequences (DIS) were used to examine the efficiency and distribution of transfers. Inhibiting donor-acceptor interaction was sufficient to reduce transfers in DIS-containin...

  7. The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.

    Science.gov (United States)

    Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro

    2013-12-01

    Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.

  8. Inhibitory function of adapter-related protein complex 2 alpha 1 subunit in the process of nuclear translocation of human immunodeficiency virus type 1 genome

    International Nuclear Information System (INIS)

    Kitagawa, Yukiko; Kameoka, Masanori; Shoji-Kawata, Sanae; Iwabu, Yukie; Mizuta, Hiroyuki; Tokunaga, Kenzo; Fujino, Masato; Natori, Yukikazu; Yura, Yoshiaki; Ikuta, Kazuyoshi

    2008-01-01

    The transfection of human cells with siRNA against adapter-related protein complex 2 alpha 1 subunit (AP2α) was revealed to significantly up-regulate the replication of human immunodeficiency virus type 1 (HIV-1). This effect was confirmed by cell infection with vesicular stomatitis virus G protein-pseudotyped HIV-1 as well as CXCR4-tropic and CCR5-tropic HIV-1. Viral adsorption, viral entry and reverse transcription processes were not affected by cell transfection with siRNA against AP2α. In contrast, viral nuclear translocation as well as the integration process was significantly up-regulated in cells transfected with siRNA against AP2α. Confocal fluorescence microscopy revealed that a subpopulation of AP2α was not only localized in the cytoplasm but was also partly co-localized with lamin B, importin β and Nup153, implying that AP2α negatively regulates HIV-1 replication in the process of nuclear translocation of viral DNA in the cytoplasm or the perinuclear region. We propose that AP2α may be a novel target for disrupting HIV-1 replication in the early stage of the viral life cycle

  9. Compartmentalized Human Immunodeficiency Virus Type 1 Originates from Long-Lived Cells in Some Subjects with HIV-1–Associated Dementia

    Science.gov (United States)

    Schnell, Gretja; Spudich, Serena; Harrington, Patrick; Price, Richard W.; Swanstrom, Ronald

    2009-01-01

    Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after systemic infection and can result in the subsequent development of HIV-1–associated dementia (HAD) in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1–associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA), targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF) were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t1/2 mean = 2.27 days). However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t1/2 range = 9.85 days to no initial decay). The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4+ T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD

  10. R5 human immunodeficiency virus type 1 with efficient DC-SIGN use is not selected for early after birth in vertically infected children.

    Science.gov (United States)

    Borggren, Marie; Navér, Lars; Casper, Charlotte; Ehrnst, Anneka; Jansson, Marianne

    2013-04-01

    The binding of human immunodeficiency virus (HIV) to C-type lectin receptors may result in either enhanced trans-infection of T-cells or virus degradation. We have investigated the efficacy of HIV-1 utilization of DC-SIGN, a C-type lectin receptor, in the setting of intrauterine or intrapartum mother-to-child transmission (MTCT). Viruses isolated from HIV-1-infected mothers at delivery and from their vertically infected children both shortly after birth and later during the progression of the disease were analysed for their use of DC-SIGN, binding and ability to trans-infect. DC-SIGN use of a child's earlier virus isolate tended to be reduced as compared with that of the corresponding maternal isolate. Furthermore, the children's later isolate displayed enhanced DC-SIGN utilization compared with that of the corresponding earlier virus. These results were also supported in head-to-head competition assays and suggest that HIV-1 variants displaying efficient DC-SIGN use are not selected for during intrauterine or intrapartum MTCT. However, viruses with increased DC-SIGN use may evolve later in paediatric HIV-1 infections.

  11. Significant rising antibody titres to influenza A are associated with an acute reduction in milk yield in cattle.

    Science.gov (United States)

    Crawshaw, Timothy R; Brown, Ian H; Essen, Steve C; Young, Stuart C L

    2008-10-01

    Sporadic cases of an acute fall in milk production, "milk drop", were investigated in a Holstein Friesian dairy herd in Devon. The investigation was a case control study with two controls per case. Paired blood samples demonstrated that rising antibody titres to human influenza A/England/333/80 (H1N1) and human influenza A/Eng/427/88 (H3N2) were associated with an acute fall in milk production. Rising titres to bovine respiratory syncytial virus (BRSV), bovine virus diarrhoea virus (BVD), infectious bovine rhinotracheitis (IBR) and parainfluenza virus 3 (PI3) were not associated with an acute fall in milk production. Cases with rises in antibody to influenza A had significantly higher respiratory scores and rectal temperatures than their controls. The mean loss of milk production for the cases with rises in antibody to influenza A compared to their controls was 159.9L. This study provides further evidence that influenza A persists in cattle and causes clinical disease.

  12. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers.

    Science.gov (United States)

    De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L

    1992-07-15

    The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents.

  13. Positive selection pressure introduces secondary mutations at Gag cleavage sites in human immunodeficiency virus type 1 harboring major protease resistance mutations

    DEFF Research Database (Denmark)

    Banke, S.; Lillemark, M.R.; Gerstoft, J.

    2009-01-01

    Human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) specifically target the HIV-1 protease enzyme. Mutations in the enzyme can result in PI resistance (termed PI mutations); however, mutations in the HIV-1 gag region, the substrate for the protease enzyme, might also lead to PI ...

  14. Management of human immunodeficiency virus (HIV) infection in ...

    African Journals Online (AJOL)

    Management of human immunodeficiency virus (HIV) infection in adults in resource-limited countries: Challenges and prospects in Nigeria. AG Habib. Abstract. No Abstract. Annals of Ibadan Postgraduate Medicine Vol. 3 (1) 2005: pp. 26-32. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL ...

  15. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    Science.gov (United States)

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  16. Pandemic influenza A/H1N1 virus incursion into Africa: countries ...

    African Journals Online (AJOL)

    Pandemic influenza A/H1N1 virus incursion into Africa: countries, hosts and ... features are important for planning control measures between countries and to ... in humans, infections in pigs earlier reported in America, Europe and Asia were ...

  17. Update: Increase in Human Infections with Novel Asian Lineage Avian Influenza A(H7N9) Viruses During the Fifth Epidemic - China, October 1, 2016-August 7, 2017.

    Science.gov (United States)

    Kile, James C; Ren, Ruiqi; Liu, Liqi; Greene, Carolyn M; Roguski, Katherine; Iuliano, A Danielle; Jang, Yunho; Jones, Joyce; Thor, Sharmi; Song, Ying; Zhou, Suizan; Trock, Susan C; Dugan, Vivien; Wentworth, David E; Levine, Min Z; Uyeki, Timothy M; Katz, Jacqueline M; Jernigan, Daniel B; Olsen, Sonja J; Fry, Alicia M; Azziz-Baumgartner, Eduardo; Davis, C Todd

    2017-09-08

    Among all influenza viruses assessed using CDC's Influenza Risk Assessment Tool (IRAT), the Asian lineage avian influenza A(H7N9) virus (Asian H7N9), first reported in China in March 2013,* is ranked as the influenza virus with the highest potential pandemic risk (1). During October 1, 2016-August 7, 2017, the National Health and Family Planning Commission of China; CDC, Taiwan; the Hong Kong Centre for Health Protection; and the Macao CDC reported 759 human infections with Asian H7N9 viruses, including 281 deaths, to the World Health Organization (WHO), making this the largest of the five epidemics of Asian H7N9 infections that have occurred since 2013 (Figure 1). This report summarizes new viral and epidemiologic features identified during the fifth epidemic of Asian H7N9 in China and summarizes ongoing measures to enhance pandemic preparedness. Infections in humans and poultry were reported from most areas of China, including provinces bordering other countries, indicating extensive, ongoing geographic spread. The risk to the general public is very low and most human infections were, and continue to be, associated with poultry exposure, especially at live bird markets in mainland China. Throughout the first four epidemics of Asian H7N9 infections, only low pathogenic avian influenza (LPAI) viruses were detected among human, poultry, and environmental specimens and samples. During the fifth epidemic, mutations were detected among some Asian H7N9 viruses, identifying the emergence of high pathogenic avian influenza (HPAI) viruses as well as viruses with reduced susceptibility to influenza antiviral medications recommended for treatment. Furthermore, the fifth-epidemic viruses diverged genetically into two separate lineages (Pearl River Delta lineage and Yangtze River Delta lineage), with Yangtze River Delta lineage viruses emerging as antigenically different compared with those from earlier epidemics. Because of its pandemic potential, candidate vaccine viruses

  18. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; Kayed, Ahmed S; Elabd, Mona A; Zaki, Shaimaa A; Abu Zeid, Dina; El Rifay, Amira S; Mousa, Adel A; Farag, Mohamed M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-01-01

    Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80) among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses.

  19. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers.

    Directory of Open Access Journals (Sweden)

    Mokhtar R Gomaa

    Full Text Available Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80 among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses.

  20. TIM-1 Promotes Hepatitis C Virus Cell Attachment and Infection.

    Science.gov (United States)

    Wang, Jing; Qiao, Luhua; Hou, Zhouhua; Luo, Guangxiang

    2017-01-15

    Human TIM and TAM family proteins were recently found to serve as phosphatidylserine (PS) receptors which promote infections by many different viruses, including dengue virus, West Nile virus, Ebola virus, Marburg virus, and Zika virus. In the present study, we provide substantial evidence demonstrating that TIM-1 is important for efficient infection by hepatitis C virus (HCV). The knockdown of TIM-1 expression significantly reduced HCV infection but not HCV RNA replication. Likewise, TIM-1 knockout in Huh-7.5 cells remarkably lowered HCV cell attachment and subsequent HCV infection. More significantly, the impairment of HCV infection in the TIM-1 knockout cells could be restored completely by ectopic expression of TIM-1 but not TIM-3 or TIM-4. Additionally, HCV infection and cell attachment were inhibited by PS but not by phosphatidylcholine (PC), demonstrating that TIM-1-mediated enhancement of HCV infection is PS dependent. The exposure of PS on the HCV envelope was confirmed by immunoprecipitation of HCV particles with a PS-specific monoclonal antibody. Collectively, these findings demonstrate that TIM-1 promotes HCV infection by serving as an attachment receptor for binding to PS exposed on the HCV envelope. TIM family proteins were recently found to enhance infections by many different viruses, including several members of the Flaviviridae family. However, their importance in HCV infection has not previously been examined experimentally. The TIM family proteins include three members in humans: TIM-1, TIM-3, and TIM-4. The findings derived from our studies demonstrate that TIM-1, but not TIM-3 or TIM-4, promotes HCV infection by functioning as an HCV attachment factor. Knockout of the TIM-1 gene resulted in a remarkable reduction of HCV cell attachment and infection. PS-containing liposomes blocked HCV cell attachment and subsequent HCV infection. HCV particles could also be precipitated with a PS-specific monoclonal antibody. These findings suggest that TIM-1

  1. In silico assessment of phosphorylation and O-β-GlcNAcylation sites in human NPC1 protein critical for Ebola virus entry.

    Science.gov (United States)

    Basharat, Zarrin; Yasmin, Azra

    2015-08-01

    Ebola is a highly pathogenic enveloped virus responsible for deadly outbreaks of severe hemorrhagic fever. It enters human cells by binding a multifunctional cholesterol transporter Niemann-Pick C1 (NPC1) protein. Post translational modification (PTM) information for NPC1 is crucial to understand Ebola virus (EBOV) entry and action due to changes in phosphorylation or glycosylation at the binding site. It is difficult and costly to experimentally assess this type of interaction, so in silico strategy was employed. Identification of phosphorylation sites, including conserved residues that could be possible targets for 21 predicted kinases was followed by interplay study between phosphorylation and O-β-GlcNAc modification of NPC1. Results revealed that only 4 out of 48 predicted phosphosites exhibited O-β-GlcNAc activity. Predicted outcomes were integrated with residue conservation and 3D structural information. Three Yin Yang sites were located in the α-helix regions and were conserved in studied vertebrate and mammalian species. Only one modification site S425 was found in β-turn region located near the N-terminus of NPC1 and was found to differ in pig, mouse, cobra and humans. The predictions suggest that Yin Yang sites may not be important for virus attachment to NPC1, whereas phosphosite 473 may be important for binding and hence entry of Ebola virus. This information could be useful in addressing further experimental studies and therapeutic strategies targeting PTM events in EBOV entry. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Human immunodeficiency virus type 1 quantitative cell microculture as a measure of antiviral efficacy in a multicenter clinical trial.

    Science.gov (United States)

    Fiscus, S A; DeGruttola, V; Gupta, P; Katzenstein, D A; Meyer, W A; LoFaro, M L; Katzman, M; Ragni, M V; Reichelderfer, P S; Coombs, R W

    1995-02-01

    A quantitative cell microculture assay (QMC) was used to measure the human immunodeficiency virus type 1 (HIV-1) peripheral blood mononuclear cell (PBMC)-associated titer in 109 subjects rolled in an open-label phase I/II study of didanosine monotherapy or combination therapy with zidovudine. The titer was inversely correlated with CD4+ cell count at baseline (r = .37, P = .001). After 12 weeks of therapy, subjects showed a significant decreases in virus titer and those with the highest baseline virus titers had the greatest increase in CD4+ cell number (r = .430, P = .002). The QMC assay was more sensitive (98%) for assessing the antiretroviral effect of therapy than was immune complex-dissociated HIV p24 antigen (32%) or plasma culture (3.4%). Estimated sample sizes for phase I/II clinical trials were derived using the within-subject QMC SD of .72 log10 infectious units per 10(6) PMBC.

  3. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus*

    Science.gov (United States)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J.; King, Sarah L.; Vakhrushev, Sergey Y.; Olofsson, Sigvard; Wandall, Hans H.

    2016-01-01

    Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a “bottom up” mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation. PMID:27129252

  4. NLRP3 polymorphism is associated with protection against human T-lymphotropic virus 1 infection

    Directory of Open Access Journals (Sweden)

    Anselmo Jiro Kamada

    2014-11-01

    Full Text Available Inter-individual heterogeneity in the response to human T-lymphotropic virus 1 (HTLV-1 infection has been partially attributed to host genetic background. The antiviral activity of the inflammasome cytoplasmic complex recognises viral molecular patterns and regulates immune responses via the activation of interleukin (IL-1 family (IL-1, IL-18 and IL-33 members. The association between polymorphisms in the inflammasome receptors NLRP1 and NLRP3 and HTLV-1 infection was evaluated in a northeastern Brazilian population (84 HTLV-1 carriers and 155 healthy controls. NLRP3 rs10754558 G/G was associated with protection against HTLV-1 infection (p = 0.012; odds ratio = 0.37. rs10754558 affects NLRP3 mRNA stability; therefore, our results suggest that higher NLRP3 expression may augment first-line defences, leading to the effective protection against HTLV-1 infection.

  5. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    Science.gov (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  6. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    Science.gov (United States)

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed

  7. Different neuraminidase inhibitor susceptibilities of human H1N1, H1N2, and H3N2 influenza A viruses isolated in Germany from 2001 to 2005/2006.

    Science.gov (United States)

    Bauer, Katja; Richter, Martina; Wutzler, Peter; Schmidtke, Michaela

    2009-04-01

    In the flu season 2005/2006 amantadine-resistant human influenza A viruses (FLUAV) of subtype H3N2 circulated in Germany. This raises questions on the neuraminidase inhibitor (NAI) susceptibility of FLUAV. To get an answer, chemiluminescence-based neuraminidase inhibition assays were performed with 51 H1N1, H1N2, and H3N2 FLUAV isolated in Germany from 2001 to 2005/2006. According to the mean IC(50) values (0.38-0.91 nM for oseltamivir and 0.76-1.13 nM for zanamivir) most H1N1 and H3N2 FLUAV were NAI-susceptible. But, about four times higher zanamivir concentrations were necessary to inhibit neuraminidase activity of H1N2 viruses. Two H1N1 isolates were less susceptible to both drugs in NA inhibition as well as virus yield reduction assays. Results from sequence analysis of viral hemagglutinin and neuraminidase genes and evolutionary analysis of N2 gene revealed (i) different subclades for N2 in H1N2 and H3N2 FLUAV that could explain the differences in zanamivir susceptibility among these viruses and (ii) specific amino acid substitutions in the neuraminidase segment of the two less NAI-susceptible H1N1 isolates. One H3N2 was isolate proved to be a mixture of a NA deletion mutant and full-length NA viruses.

  8. Crystallization and X-ray diffraction analysis of human CLEC5A (MDL-1), a dengue virus receptor

    International Nuclear Information System (INIS)

    Watson, Aleksandra A.; O’Callaghan, Christopher A.

    2009-01-01

    Recombinant human CLEC5A was crystallized in the trigonal space group P3 1 and X-ray diffraction data were collected to 1.56 Å resolution. The human C-type lectin-like protein CLEC5A (also known as MDL-1) is expressed on the surface of myeloid cells and plays a critical role in dengue-virus-induced disease by signalling through the transmembrane adaptor protein DAP12. The C-type lectin-like domain of CLEC5A was expressed in Escherichia coli, refolded and purified. Recombinant CLEC5A crystals were grown by sitting-drop vapour diffusion using polyethylene glycol 6000 as a precipitant. After optimization, crystals were grown which diffracted to 1.56 Å using synchrotron radiation. The results presented in this paper suggest that crystals producing diffraction of this quality will be suitable for structural determination of human CLEC5A

  9. Structural requirements for the binding of tRNA Lys3 to reverse transcriptase of the human immunodeficiency virus type 1

    NARCIS (Netherlands)

    Oude Essink, B. B.; Das, A. T.; Berkhout, B.

    1995-01-01

    Reverse transcription of the human immunodeficiency virus type 1 (HIV-1) RNA genome is primed by the cellular tRNA Lys3 molecule. Packaging of this tRNA primer during virion assembly is thought to be mediated by specific interactions with the reverse transcriptase (RT) protein. Portions of the tRNA

  10. Canine parvovirus type 2 vaccine protects against virulent challenge with type 2c virus.

    Science.gov (United States)

    Spibey, N; Greenwood, N M; Sutton, D; Chalmers, W S K; Tarpey, I

    2008-04-01

    The ability of dogs vaccinated with a live attenuated CPV type 2 (Nobivac Intervet) vaccine to resist challenge with a current CPV2c isolate was investigated. Six SPF beagle dogs were given the minimum recommended course of vaccination, comprising a single inoculation of vaccine (Nobivac Lepto+Nobivac Pi) at 8-10 weeks of age followed 3 weeks later with a parvovirus vaccine in combination with distemper, adenovirus and parainfluenza virus (Nobivac DHPPi) and a repeat leptospirosis vaccine. Six control dogs were kept unvaccinated. All animals were challenged orally with a type 2c isolate of CPV and monitored for clinical signs, virus shedding, white blood cell fluctuations and serological responses. All vaccinated dogs were fully protected; showing no clinical signs nor shedding challenge virus in the faeces, in contrast to control animals, which displayed all the typical signs of infection with pathogenic CPV and shed challenge virus in the faeces.

  11. Cell cycle regulation of human immunodeficiency virus type 1 integration in T cells: antagonistic effects of nuclear envelope breakdown and chromatin condensation

    International Nuclear Information System (INIS)

    Mannioui, Abdelkrim; Schiffer, Cecile; Felix, Nathalie

    2004-01-01

    We examined the influence of mitosis on the kinetics of human immunodeficiency virus type 1 integration in T cells. Single-round infection of cells arrested in G1b or allowed to synchronously proceed through division showed that mitosis delays virus integration until 18-24 h postinfection, whereas integration reaches maximum levels by 15 h in G1b-arrested cells. Subcellular fractionation of metaphase-arrested cells indicated that, while nuclear envelope disassembly facilitates docking of viral DNA to chromatin, chromosome condensation directly antagonizes and therefore delays integration. As a result of the balance between the two effects, virus integration efficiency is eventually up to threefold greater in dividing cells. At the single-cell level, using a green fluorescent protein-expressing reporter virus, we found that passage through mitosis leads to prominent asymmetric segregation of the viral genome in daughter cells without interfering with provirus expression

  12. Compatibility of a bivalent modified-live vaccine against Bordetella bronchiseptica and CPiV, and a trivalent modified-live vaccine against CPV, CDV and CAV-2.

    Science.gov (United States)

    Jacobs, A A C; Bergman, J G H E; Theelen, R P H; Jaspers, R; Helps, J M; Horspool, L J I; Paul, G

    2007-01-13

    Eight puppies (group 1) were vaccinated once with a bivalent modified-live vaccine against infectious tracheobronchitis by the intranasal route and at the same time with an injectable trivalent vaccine against canine parvovirus, canine distemper virus and canine adenovirus; a second group of eight puppies (group 2) was vaccinated only with the intranasal bivalent vaccine, and a further eight puppies (group 3) were vaccinated only with the injectable trivalent vaccine. Three weeks later they were all challenged with wildtype Bordetella bronchiseptica and canine parainfluenza virus by the aerosol route, and their antibody responses to the five vaccine organisms were determined. Oronasal swabs were taken regularly before and after the challenge for the isolation of bacteria and viruses, and the puppies were observed for clinical signs for three weeks after the challenge. There were no significant differences in the puppies' titres against canine parvovirus, canine distemper virus and canine adenovirus type 2 between the groups vaccinated with or without the bivalent intranasal vaccine. After the challenge the mean clinical scores of the two groups vaccinated with the intranasal vaccine were nearly 90 per cent lower (P=0.001) than the mean score of the group vaccinated with only the trivalent injectable vaccine, and the puppies in this group all became culture-positive for B bronchiseptica and canine parainfluenza virus. There were only small differences between the rates of isolation of B bronchiseptica from groups 1, 2 and 3, but significantly lower yields of canine parainfluenza virus were isolated from groups 1 and 2 than from group 3.

  13. HumanViCe: Host ceRNA network in virus infected cells in human

    Directory of Open Access Journals (Sweden)

    Suman eGhosal

    2014-07-01

    Full Text Available Host-virus interaction via host cellular components has been an important field of research in recent times. RNA interference mediated by short interfering RNAs and microRNAs (miRNA, is a widespread anti-viral defence strategy. Importantly, viruses also encode their own miRNAs. In recent times miRNAs were identified as key players in host-virus interaction. Furthermore, viruses were shown to exploit the host miRNA networks to suite their own need. The complex cross-talk between host and viral miRNAs and their cellular and viral targets forms the environment for viral pathogenesis. Apart from protein-coding mRNAs, non-coding RNAs may also be targeted by host or viral miRNAs in virus infected cells, and viruses can exploit the host miRNA mediated gene regulatory network via the competing endogenous RNA effect. A recent report showed that viral U-rich non-coding RNAs called HSUR, expressed in primate virus herpesvirus saimiri (HVS infected T cells, were able to bind to three host miRNAs, causing significant alteration in cellular level for one of the miRNAs. We have predicted protein coding and non protein-coding targets for viral and human miRNAs in virus infected cells. We identified viral miRNA targets within host non-coding RNA loci from AGO interacting regions in three different virus infected cells. Gene ontology (GO and pathway enrichment analysis of the genes comprising the ceRNA networks in the virus infected cells revealed enrichment of key cellular signalling pathways related to cell fate decisions and gene transcription, like Notch and Wnt signalling pathways, as well as pathways related to viral entry, replication and virulence. We identified a vast number of non-coding transcripts playing as potential ceRNAs to the immune response associated genes; e.g. APOBEC family genes, in some virus infected cells. All these information are compiled in HumanViCe, a comprehensive database that provides the potential ceRNA networks in virus

  14. GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1

    International Nuclear Information System (INIS)

    Jin Qingwen; Agrawal, Lokesh; VanHorn-Ali, Zainab; Alkhatib, Ghalib

    2006-01-01

    The human glucose transporter protein 1 (GLUT-1) functions as a receptor for human T cell leukemia virus (HTLV). GLUT-1 is a twelve-transmembrane cell surface receptor with six extracellular (ECL) and seven intracellular domains. To analyze HTLV-1 cytotropism, we utilized polyclonal antibodies to a synthetic peptide corresponding to the large extracellular domain of GLUT-1. The antibodies caused significant blocking of envelope (Env)-mediated fusion and pseudotyped virus infection of HeLa cells but had no significant effect on infection of U87 cells. This differential effect correlated with the detection of high-level surface expression of GLUT-1 on HeLa cells and very weak staining of U87 cells. To investigate this in terms of viral cytotropism, we cloned GLUT-1 cDNA from U87 cells and isolated two different versions of cDNA clones: the wild-type sequence (encoding 492 residues) and a mutant cDNA with a 5-base pair deletion (GLUT-1Δ5) between nucleotides 1329 and 1333. The deletion, also detected in genomic DNA, resulted in a frame-shift and premature termination producing a truncated protein of 463 residues. Transfection of the wild-type GLUT-1 but not GLUT-1Δ5 cDNA into CHO cells resulted in efficient surface expression of the human GLUT-1. Co-expression of GLUT-1 with GLUT-1Δ5 produces a trans-inhibition by GLUT-1Δ5 of GLUT-1-mediated HTLV-1 envelope (Env)-mediated fusion. Co-immunoprecipitation experiments demonstrated physical interaction of the wild-type and mutant proteins. Northern blot and RT-PCR analyses demonstrated lower GLUT-1 RNA expression in U87 cells. We propose two mechanisms to account for the impaired cell surface expression of GLUT-1 on U87 cells: low GLUT-1 RNA expression and the formation of GLUT-1/GLUT-1Δ5 heterodimers that are retained intracellularly. Significant RNAi-mediated reduction of endogenous GLUT-1 expression impaired HTLV-1 Env-mediated fusion with HeLa cells but not with U87 cells. We propose a GLUT-1-independent mechanism

  15. Respiratory viruses in children hospitalized for acute lower respiratory tract infection in Ghana

    Directory of Open Access Journals (Sweden)

    Kwofie Theophilus B

    2012-04-01

    Full Text Available Abstract Background Acute respiratory tract infections are one of the major causes of morbidity and mortality among young children in developing countries. Information on the viral aetiology of acute respiratory infections in developing countries is very limited. The study was done to identify viruses associated with acute lower respiratory tract infection among children less than 5 years. Method Nasopharyngeal samples and blood cultures were collected from children less than 5 years who have been hospitalized for acute lower respiratory tract infection. Viruses and bacteria were identified using Reverse Transcriptase Real-Time Polymerase Chain Reaction and conventional biochemical techniques. Results Out of 128 patients recruited, 33(25.88%%, 95%CI: 18.5% to 34.2% were positive for one or more viruses. Respiratory Syncytial Virus (RSV was detected in 18(14.1%, 95%CI: 8.5% to 21.3% patients followed by Adenoviruses (AdV in 13(10.2%, 95%CI: 5.5% to 16.7%, Parainfluenza (PIV type: 1, 2, 3 in 4(3.1%, 95%CI: 0.9% to 7.8% and influenza B viruses in 1(0.8%, 95%CI: 0.0 to 4.3. Concomitant viral and bacterial co-infection occurred in two patients. There were no detectable significant differences in the clinical signs, symptoms and severity for the various pathogens isolated. A total of 61.1% (22/36 of positive viruses were detected during the rainy season and Respiratory Syncytial Virus was the most predominant. Conclusion The study has demonstrated an important burden of respiratory viruses as major causes of childhood acute respiratory infection in a tertiary health institution in Ghana. The data addresses a need for more studies on viral associated respiratory tract infection.

  16. Aspects of gastrointestinal immunology and nutrition in human immunodeficiency virus-1 infection in Brazil

    Directory of Open Access Journals (Sweden)

    Castello-Branco Luiz RR

    2000-01-01

    Full Text Available Mucosal surfaces have a fundamental participation in many aspects of the human immunodeficiency virus (HIV infection pathogenesis. In Brazilian HIV-1 infected subjects, loss of weight and appetite are among the most debilitating symptoms. In this review we describe a defined mucosal immunogen that has profound but transient effects on HIV viral load, and we suggest that gut associated lymphoid tissue under constant immunostimulation is likely to provide a major contribution to the total levels of HIV. We also show that hypermetabolism appears to play a role in the wasting process in Brazilian patients coinfected with HIV and tuberculosis.

  17. Influenza A Viruses of Swine (IAV-S) in Vietnam from 2010 to 2015: Multiple Introductions of A(H1N1)pdm09 Viruses into the Pig Population and Diversifying Genetic Constellations of Enzootic IAV-S.

    Science.gov (United States)

    Takemae, Nobuhiro; Harada, Michiyo; Nguyen, Phuong Thanh; Nguyen, Tung; Nguyen, Tien Ngoc; To, Thanh Long; Nguyen, Tho Dang; Pham, Vu Phong; Le, Vu Tri; Do, Hoa Thi; Vo, Hung Van; Le, Quang Vinh Tin; Tran, Tan Minh; Nguyen, Thanh Duy; Thai, Phuong Duy; Nguyen, Dang Hoang; Le, Anh Quynh Thi; Nguyen, Diep Thi; Uchida, Yuko; Saito, Takehiko

    2017-01-01

    Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1

  18. A Review of the Antiviral Susceptibility of Human and Avian Influenza Viruses over the Last Decade

    Science.gov (United States)

    Oh, Ding Yuan; Hurt, Aeron C.

    2014-01-01

    Antivirals play an important role in the prevention and treatment of influenza infections, particularly in high-risk or severely ill patients. Two classes of influenza antivirals have been available in many countries over the last decade (2004–2013), the adamantanes and the neuraminidase inhibitors (NAIs). During this period, widespread adamantane resistance has developed in circulating influenza viruses rendering these drugs useless, resulting in the reliance on the most widely available NAI, oseltamivir. However, the emergence of oseltamivir-resistant seasonal A(H1N1) viruses in 2008 demonstrated that NAI-resistant viruses could also emerge and spread globally in a similar manner to that seen for adamantane-resistant viruses. Previously, it was believed that NAI-resistant viruses had compromised replication and/or transmission. Fortunately, in 2013, the majority of circulating human influenza viruses remain sensitive to all of the NAIs, but significant work by our laboratory and others is now underway to understand what enables NAI-resistant viruses to retain the capacity to replicate and transmit. In this review, we describe how the susceptibility of circulating human and avian influenza viruses has changed over the last ten years and describe some research studies that aim to understand how NAI-resistant human and avian influenza viruses may emerge in the future. PMID:24800107

  19. The humoral immune response to recombinant nucleocapsid antigen of canine distemper virus in dogs vaccinated with attenuated distemper virus or DNA encoding the nucleocapsid of wild-type virus.

    Science.gov (United States)

    Griot-Wenk, M E; Cherpillod, P; Koch, A; Zurbriggen, R; Bruckner, L; Wittek, R; Zurbriggen, A

    2001-06-01

    This study compared the humoral immune response against the nucleocapsid-(N) protein of canine distemper virus (CDV) of dogs vaccinated with a multivalent vaccine against parvo-, adeno-, and parainfluenza virus and leptospira combined with either the attenuated CDV Onderstepoort strain (n = 15) or an expression plasmid containing the N-gene of CDV (n = 30). The vaccinations were applied intramuscularly three times at 2-week intervals beginning at the age of 6 weeks. None of the pre-immune sera recognized the recombinant N-protein, confirming the lack of maternal antibodies at this age. Immunization with DNA vaccine for CDV resulted in positive serum N-specific IgG response. However, their IgG (and IgA) titres were lower than those of CDV-vaccinated dogs. Likewise, DNA-vaccinated dogs did not show an IgM peak. There was no increase in N-specific serum IgE titres in either group. Serum titres to the other multivalent vaccine components were similar in both groups.

  20. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    Science.gov (United States)

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.