WorldWideScience

Sample records for parabolic trough collectors

  1. Tracking local control of a parabolic trough collector

    International Nuclear Information System (INIS)

    Ajona, J.I.; Alberdi, J.; Gamero, E.; Blanco, J.

    1992-01-01

    In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)

  2. Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    Flat plate collectors have relatively low efficiency at the typical supply temperatures of district heating networks (70–95 °C). Parabolic trough collectors retain their high efficiency at these temperatures. To maximize the advantages of flat plate collectors and parabolic trough collectors in l...... for this type of hybrid solar district heating plants with flat plate collectors and parabolic trough collectors in the Nordic region, but also introduce a novel design concept of solar district heating plants to other high solar radiation areas....... in large solar heating plants for a district heating network, a hybrid solar collector field with 5960 m2 flat plate collectors and 4039 m2 parabolic trough collectors in series was constructed in Taars, Denmark. The design principle is that the flat plate collectors preheat the return water from...

  3. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  4. Humidification dehumidification desalination system using parabolic trough solar air collector

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.; Zubair, M. Ifras; Atif, Maimoon; Gandhidasan, Palanichamy; Al-Dini, Salem A.; Antar, Mohamed A.

    2015-01-01

    This paper deals with a detailed thermodynamic analysis to assess the performance of an HDH system with an integrated parabolic trough solar collector (PTSC). The HDH system considered is an open air, open water, air heated system that uses a PTSC as an air heater. Two different configurations were considered of the HDH system. In the first configuration, the solar air heater was placed before the humidifier whereas in the second configuration the solar air heater was placed between the humidifier and the dehumidifier. The current study revealed that PTSCs are well suited for air heated HDH systems for high radiation location, such as Dhahran, Saudi Arabia. The comparison between the two HDH configurations demonstrates that the gained output ratio (GOR) of the first configuration is, on average, about 1.5 whereas for the second configuration the GOR increases up to an average value of 4.7. The study demonstrates that the HDH configuration with the air heater placed between the humidifier and the dehumidifier has a better performance and a higher productivity. - Highlights: • Thermodynamic analysis of an HDH system driven by a parabolic trough solar collector was conducted. • The first configuration reveals a GOR of 1.5 while the second configuration reveals a GOR of 4.7. • Effective heating of the HDH system was obtained through parabolic trough solar collector

  5. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  6. A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector

    International Nuclear Information System (INIS)

    Jafari Mosleh, H.; Jahangiri Mamouri, S.; Shafii, M.B.; Hakim Sima, A.

    2015-01-01

    Highlights: • A new desalination uses a combination of heat pipe and parabolic trough collector. • A twin-glass evacuated tube is used to decrease the thermal losses from heat pipe. • Adding oil into the space between heat pipe and tube collector enhances the yield. • The yield and efficiency reach up to 0.933 kg/(m 2 h) and 65.2%, respectively. - Abstract: The solar collectors have been commonly used in desalination systems. Recent investigations show that the use of a linear parabolic trough collector in solar stills can improve the efficiency of a desalination system. In this work, a combination of a heat pipe and a twin-glass evacuated tube collector is utilized with a parabolic trough collector. Results show that the rate of production and efficiency can reach to 0.27 kg/(m 2 h) and 22.1% when aluminum conducting foils are used in the space between the heat pipe and the twin-glass evacuated tube collector to transfer heat from the tube collector to the heat pipe. When oil is used as a medium for the transfer of heat, filling the space between heat pipe and twin-glass evacuated tube collector, the production and efficiency can increase to 0.933 kg/(m 2 h) and 65.2%, respectively

  7. Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region

    International Nuclear Information System (INIS)

    Marif, Yacine; Benmoussa, Hocine; Bouguettaia, Hamza; Belhadj, Mohamed M.; Zerrouki, Moussa

    2014-01-01

    Highlights: • The parabolic trough collector performance is examined. • The finite difference method is proposed and validated. • Two fluids are considered water and TherminolVP-1™. - Abstract: In order to determine the optical and thermal performance of a solar parabolic trough collector under the climate conditions of Algerian Sahara, a computer program based on one dimensional implicit finite difference method with energy balance approach has been developed. The absorber pipe, glass envelope and fluid were divided into several segments and the partial derivation in the differential equations was replaced by the backward finite difference terms in each segment. Two fluids were considered, liquid water and TherminolVP-1™ synthetic oil. Furthermore, the intensity of the direct solar radiation was estimated by monthly average values of the atmospheric Linke turbidity factor for different tracking systems. According to the simulation findings, the one axis polar East–West and horizontal East–West tracking systems were most desirable for a parabolic trough collector throughout the whole year. In addition, it is found that the thermal efficiency was about 69.73–72.24%, which decreases with the high synthetic oil fluid temperatures and increases in the lower water temperature by 2%

  8. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  9. Theoretical Study of the Compound Parabolic Trough Solar Collector

    OpenAIRE

    Dr. Subhi S. Mahammed; Dr. Hameed J. Khalaf; Tadahmun A. Yassen

    2012-01-01

    Theoretical design of compound parabolic trough solar collector (CPC) without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67)% at mass flow rate between (0.02-0.03) kg/s at concentration ratio of (3.8) without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  10. Theoretical Study of the Compound Parabolic Trough Solar Collector

    Directory of Open Access Journals (Sweden)

    Dr. Subhi S. Mahammed

    2012-06-01

    Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  11. Analysis and validation of a quasi-dynamic model for a solar collector field with flat plate collectors and parabolic trough collectors in series for district heating

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2018-01-01

    performance of the hybrid solar district heating plants is also presented. The measured and simulated results show that the integration of parabolic trough collectors in solar district heating plants can guarantee that the system produces hot water with relatively constant outlet temperature. The daily energy......A quasi-dynamic TRNSYS simulation model for a solar collector field with flat plate collectors and parabolic trough collectors in series was described and validated. A simplified method was implemented in TRNSYS in order to carry out long-term energy production analyses of the whole solar heating...... plant. The advantages of the model include faster computation with fewer resources, flexibility of different collector types in solar heating plant configuration and satisfactory accuracy in both dynamic and long-term analyses. In situ measurements were taken from a pilot solar heating plant with 5960 m...

  12. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Directory of Open Access Journals (Sweden)

    Guoying Xu

    2015-12-01

    Full Text Available Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC. The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  13. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Science.gov (United States)

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112

  14. Parabolic Trough Solar Collector Initial Trials

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2012-03-01

    Full Text Available This paper discusses initial trials of parabolic trough solar collector (PTSC in Bandung. PTSC model consists of concentrator, absorber and tracking system. Concentrator designs are made with 2m aperture width, 6m length and 0.75m focal distance. The design is equipped with an automatic tracking system which is driven using 12V and 24Watt DC motor with 0.0125rpm rotational speed. Absorber/receiver is designed with evacuated tube type, with 1 inch core diameter and tube made of AISI304 and coated with black oxide, the outer tube is borosilicate glass with a 70 mm diameter and 1.5 m length. Working fluid stored in single type of thermal storage tank, a single phase with 37.7 liter volume. PTSC model testing carried out for 2 hours and 10 minutes produces heat output and input of 11.5 kW and 0.64 kW respectively. 

  15. Optical and thermal performance of large-size parabolic-trough solar collectors from outdoor experiments: A test method and a case study

    International Nuclear Information System (INIS)

    Valenzuela, Loreto; López-Martín, Rafael; Zarza, Eduardo

    2014-01-01

    This article presents an outdoor test method to evaluate the optical and thermal performance of parabolic-trough collectors of large size (length ≥ 100 m), similar to those currently installed in solar thermal power plants. Optical performance in line-focus collectors is defined by three parameters, peak-optical efficiency and longitudinal and transversal incidence angle modifiers. In parabolic-troughs, the transversal incidence angle modifier is usually assumed equal to 1, and the incidence angle modifier is referred to the longitudinal incidence angle modifier, which is a factor less than or equal to 1 and must be quantified. These measurements are performed by operating the collector at low fluid temperatures for reducing heat losses. Thermal performance is measured during tests at various operating temperatures, which are defined within the working temperature range of the solar field, and for the condition of maximum optical response. Heat losses are measured from both the experiments performed to measure the overall efficiency and the experiments done by operating the collector to ensure that absorber pipes are not exposed to concentrated solar radiation. The set of parameters describing the performance of a parabolic-trough collector of large size has been measured following the test procedures proposed and explained in the article. - Highlights: • Outdoor test procedures of parabolic-trough solar collector (PTC) of large size working at high temperature are described. • Optical performance measured with cold fluid temperature and thermal performance measured in the complete temperature range. • Experimental data obtained in the testing of a PTC prototype are explained

  16. Object-oriented simulation model of a parabolic trough solar collector: Static and dynamic validation

    Science.gov (United States)

    Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana

    2017-06-01

    A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).

  17. Tracking local control of a parabolic trough collector. Control local de Seguimiento cilindro parabolico ACE 20

    Energy Technology Data Exchange (ETDEWEB)

    Ajona Maeztu, J.I.; Alberdi Primicia, J.; Gamero Aranda, E.; Blanco, J.

    1991-01-01

    In the local control, the sun position related to the trough collector is measured by two photo-resistors. the provided electronic signal is then compared with reference levels in order to get a set of 8 logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of a P.R.O.M. memory which is programmed with the logical ecuations of the control system. the memory output lines give the control commands of the parabolic trough collector motor. (author)

  18. Tracking local control of a parabolic trough collector; Control local de Seguimiento cilindro parabolico ACE 20

    Energy Technology Data Exchange (ETDEWEB)

    Ajona Maeztu, J.I.; Alberdi Primicia, J.; Gamero Aranda, E.; Blanco, J.

    1991-12-31

    In the local control, the sun position related to the trough collector is measured by two photo-resistors. the provided electronic signal is then compared with reference levels in order to get a set of 8 logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of a P.R.O.M. memory which is programmed with the logical ecuations of the control system. the memory output lines give the control commands of the parabolic trough collector motor. (author)

  19. Tracking local control of a parabolic trough collector; Control local de seguimiento cilindro parabolico ACE20

    Energy Technology Data Exchange (ETDEWEB)

    Ajona, J I; Alberdi, J; Gamero, E; Blanco, J

    1992-07-01

    In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)

  20. Thermodynamic analysis of a new design of temperature controlled parabolic trough collector

    International Nuclear Information System (INIS)

    Ceylan, İlhan; Ergun, Alper

    2013-01-01

    Highlights: • This new design parabolic trough collector has been made as temperature control. • The TCPTC system is very appropriate for the industrial systems which require high temperatures. • With TCPTC can provide hot water with low solar radiation. • TCPTC system costs are cheaper than other systems (thermo siphon systems, pomp systems, etc.). - Abstract: Numerous types of solar water heater are used throughout the world. These heaters can be classified into two groups as pumped systems and thermo siphon systems. However, water temperature cannot be controlled by these systems. In this study, a new temperature-controlled parabolic trough collector (TCPTC) was designed and analyzed experimentally. The analysis was made at a temperature range of 40–100 °C, with at intervals of 10 °C. A detailed analysis was performed by calculating energy efficiencies, exergy efficiencies, water temperatures and water amounts. The highest energy efficiency of TCPTC was calculated as 61.2 for 100 °C. As the set temperature increased, the energy efficiency increased as well. The highest exergy efficiency was calculated as 63 for 70 °C. However, as the set temperature increased, the exergy efficiency did not increase. Optimum exergy efficiency was obtained for 70 °C

  1. Impact of pressure losses in small-sized parabolic-trough collectors for direct steam generation

    International Nuclear Information System (INIS)

    Lobón, David H.; Valenzuela, Loreto

    2013-01-01

    Using PTC (parabolic-trough solar collectors) for industrial thermal processes in the temperature range up to 300 °C is not new, but in recent years there is a boosted interest in this type of concentrating solar technology. One of the problems that arise when designing PTC solar fields is how to deal with the pressure losses which are critical when producing saturated steam directly in the collectors. Depending on the characteristics of the collector, mainly on the receiver diameter, and on the nominal process conditions defined, a solar field configuration can be feasible or not. This paper presents a sensitivity analysis done using a software tool developed to study the thermo-hydraulic behaviour of PTC systems using water-steam as heat transfer fluid. In the case study presented, a small-sized PTC designed for industrial process heat applications is considered, which has a focal length of 0.2 m, an aperture area of 2 m 2 , and its receiver pipe has an inner diameter of 15 mm. Varied process conditions are inlet water pressure, temperature, and mass flow rate, solar irradiance and incidence angle of solar radiation. Results show that working pressure definition is particularly critical to make feasible or not the direct steam generation in solar collectors. - Highlights: • DSG (Direct steam generation) in small-sized parabolic-trough collectors. • Thermo-hydraulic sensitivity analysis. • Influence of working pressure and receiver geometry in DSG process

  2. Improvement Design of Parabolic Trough

    Science.gov (United States)

    Ihsan, S. I.; Safian, M. A. I. M.; Taufek, M. A. M.; Mohiuddin, A. K. M.

    2017-03-01

    The performance of parabolic trough solar collector (PTSC) has been evaluated using different heat transfer working fluids; namely water and SAE20 W50 engine oil. New and slightly improved PTSC was developed to run the experimental study. Under the meteorological conditions of Malaysia, authors found that PTSC can operate at a higher temperature than water collector but the performance efficiency of collector using engine oil is much lower than the water collector.

  3. Two new methods used to simulate the circumferential solar flux density concentrated on the absorber of a parabolic trough solar collector

    Science.gov (United States)

    Guo, Minghuan; Wang, Zhifeng; Sun, Feihu

    2016-05-01

    The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed

  4. Thermal and optical study of parabolic trough collectors of Shiraz solar power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Yaghoubi, M.; Vadiee, A.; Hessami, R. [Shiraz Univ, Shiraz (Iran, Islamic Republic of); Kanan, P. [Renewable Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2007-07-01

    The construction of the first 250 KW solar power plant in Shiraz, Iran was discussed. The power plant is comprised of a steam and oil cycle which includes 48 parabolic trough collectors (PTCs). Solar thermal power plants based on PTCs are currently the most successful solar technologies for electricity generation. These power plants are basically composed of a solar collector field and a power block. The solar collector field is designed to collect heat from the sun which it is continuously tracking. The reflecting surface concentrates direct solar radiation in the optical focal line of the collector where the heat collecting element (HCE) is located. The HCE absorbs the reflected energy and transmits it to the heat transfer fluid which is pumped to the conventional power block where electricity is generated. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. However, it is necessary to characterize the optical performance and determine the optical losses of PTCs in order to improve the optical efficiency of these systems and to ensure the desired power quality. In this study, thermocouple sensors were used to record the collector oil inlet and outlet temperature along with the ambient temperature in the PTCs. In addition to measuring the wind speed, the solar beam radiation intensity was measured along with the oil's mass flow rate. All parameters were measured as a function of time. Based on these measurements, the intercept factor value and collector's incidence angle was determined and compared with other large size constructed commercial parabolic collectors. The maximum beam radiation during the experimental period was 735 2mW. The useful heat gain and the collector's instantaneous efficiency as a whole was evaluated on an hourly basis. All these parameters were strongly influenced by the incident beam radiation and found to follow each other. The optical and thermal

  5. Air-borne shape measurement of parabolic trough collector fields

    Science.gov (United States)

    Prahl, Christoph; Röger, Marc; Hilgert, Christoph

    2017-06-01

    The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.

  6. Study of a new solar adsorption refrigerator powered by a parabolic trough collector

    International Nuclear Information System (INIS)

    El Fadar, A.; Mimet, A.; Azzabakh, A.; Perez-Garcia, M.; Castaing, J.

    2009-01-01

    This paper presents the study of solar adsorption cooling machine, where the reactor is heated by a parabolic trough collector (PTC) and is coupled with a heat pipe (HP). This reactor contains a porous medium constituted of activated carbon, reacting by adsorption with ammonia. We have developed a model, based on the equilibrium equations of the refrigerant, adsorption isotherms, heat and mass transfer within the adsorbent bed and energy balance in the hybrid system components. From real climatic data, the model computes the performances of the machine. In comparison with other systems powered by flat plate or evacuated tube collectors, the predicted results, have illustrated the ability of the proposed system to achieve a high performance due to high efficiency of PTC, and high flux density of heat pipe

  7. Thermo-economic optimization of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2018-01-01

    heating network in this study. The results also show that parabolic trough collectors are economically feasible for district heating networks in Denmark. The generic and multivariable levelized cost of heat method can guide engineers and designers on the design, construction and control of large...... to optimize the hybrid solar district heating systems based on levelized cost of heat. It is found that the lowest net levelized cost of heat of hybrid solar heating plants could reach about 0.36 DKK/kWh. The system levelized cost of heat can be reduced by 5–9% by use of solar collectors in the district...

  8. Simulation of solar lithium bromide-water absorption cooling system with parabolic trough collector

    International Nuclear Information System (INIS)

    Mazloumi, M.; Naghashzadegan, M.; Javaherdeh, K.

    2008-01-01

    Ahwaz is one of the sweltering cities in Iran where an enormous amount of energy is being consumed to cool residential places in a year. The aim of this research is to simulate a solar single effect lithium bromide-water absorption cooling system in Ahwaz. The solar energy is absorbed by a horizontal N-S parabolic trough collector and stored in an insulated thermal storage tank. The system has been designed to supply the cooling load of a typical house where the cooling load peak is about 17.5 kW (5 tons of refrigeration), which occurs in July. A thermodynamic model has been used to simulate the absorption cycle. The working fluid is water, which is pumped directly to the collector. The results showed that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 57.6 m 2 , which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy

  9. Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors

    International Nuclear Information System (INIS)

    Liang, Hongbo; You, Shijun; Zhang, Huan

    2016-01-01

    A PTC (parabolic trough solar collector) focuses direct solar radiation reflected by the reflector onto a receiver located on its focal line. The solar flux distribution on the absorber is non-uniform generally, thus it needs to carry out optical simulation to analyze the concentrated flux density and optical performance. In this paper, three different optical models based on ray tracing for a PTC were proposed and compared in detail. They were proved to be feasible and reliable in comparison with other literature. Model 1 was based on MCM (Monte Carlo Method). Model 2 initialized photon distribution with FVM (Finite Volume Method), and calculated reflection, transmission, and absorption by means of MCM. Model 3 utilized FVM to determine ray positions initially, while it changed the photon energy by multiplying reflectivity, transmissivity and absorptivity. The runtime and computation effort of Model 3 were approximately 40% and 60% of that of Model 1 in the present work. Moreover, the simulation result of Model 3 was not affected by the algorithm for generating random numbers, however, it needed to take account of suitable grid configurations for different sections of the system. Additionally, effects of varying the geometric parameters for a PTC on optical efficiency were estimated. Effect of offsetting the absorber in width direction of aperture was greater than that in its normal direction at the same offset distance, which was more obvious with offset distance increasing. Furthermore, absorber offset at the opposite direction of tracking error was beneficial for improving optical performance. The larger rim angle (≤90°) was, the less sensitive optical efficiency was to tracking error for the same aperture width of a PTC. In contrast, a larger aperture width was more sensitive to tracking error for a certain rim angle. - Highlights: • Three different optical models for parabolic trough solar collectors were derived. • Their running time, computation

  10. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  11. Performance Evaluation of Dual-axis Tracking System of Parabolic Trough Solar Collector

    Science.gov (United States)

    Ullah, Fahim; Min, Kang

    2018-01-01

    A parabolic trough solar collector with the concentration ratio of 24 was developed in the College of Engineering; Nanjing Agricultural University, China with the using of the TracePro software an optical model built. Effects of single-axis and dual-axis tracking modes, azimuth and elevating angle tracking errors on the optical performance were investigated and the thermal performance of the solar collector was experimentally measured. The results showed that the optical efficiency of the dual-axis tracking was 0.813% and its year average value was 14.3% and 40.9% higher than that of the eat-west tracking mode and north-south tracking mode respectively. Further, form the results of the experiment, it was concluded that the optical efficiency was affected significantly by the elevation angle tracking errors which should be kept below 0.6o. High optical efficiency could be attained by using dual-tracking mode even though the tracking precision of one axis was degraded. The real-time instantaneous thermal efficiency of the collector reached to 0.775%. In addition, the linearity of the normalized efficiency was favorable. The curve of the calculated thermal efficiency agreed well with the normalized instantaneous efficiency curve derived from the experimental data and the maximum difference between them was 10.3%. This type of solar collector should be applied in middle-scale thermal collection systems.

  12. A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors

    International Nuclear Information System (INIS)

    Liang, Hongbo; Fan, Man; You, Shijun; Zheng, Wandong; Zhang, Huan; Ye, Tianzhen; Zheng, Xuejing

    2017-01-01

    Highlights: •Four optical models for parabolic trough solar collectors were compared in detail. •Characteristics of Monte Carlo Method and Finite Volume Method were discussed. •A novel method was presented combining advantages of different models. •The method was suited to optical analysis of collectors with different geometries. •A new kind of cavity receiver was simulated depending on the novel method. -- Abstract: The PTC (parabolic trough solar collector) is widely used for space heating, heat-driven refrigeration, solar power, etc. The concentrated solar radiation is the only energy source for a PTC, thus its optical performance significantly affects the collector efficiency. In this study, four different optical models were constructed, validated and compared in detail. On this basis, a novel coupled method was presented by combining advantages of these models, which was suited to carry out a mass of optical simulations of collectors with different geometrical parameters rapidly and accurately. Based on these simulation results, the optimal configuration of a collector with highest efficiency can be determined. Thus, this method was useful for collector optimization and design. In the four models, MCM (Monte Carlo Method) and FVM (Finite Volume Method) were used to initialize photons distribution, as well as CPEM (Change Photon Energy Method) and MCM were adopted to describe the process of reflecting, transmitting and absorbing. For simulating reflection, transmission and absorption, CPEM was more efficient than MCM, so it was utilized in the coupled method. For photons distribution initialization, FVM saved running time and computation effort, whereas it needed suitable grid configuration. MCM only required a total number of rays for simulation, whereas it needed higher computing cost and its results fluctuated in multiple runs. In the novel coupled method, the grid configuration for FVM was optimized according to the “true values” from MCM of

  13. Modeling, Simulation and Performance Evaluation of Parabolic Trough

    African Journals Online (AJOL)

    Mekuannint

    Mekuannint Mesfin and Abebayehu Assefa. Department of Mechanical Engineering. Addis Ababa University ... off design weather conditions as well. Keywords: Parabolic Trough Collector (PTC);. Heat Transfer ... of a conventional Rankine cycle power plant with solar fields that are used to increase the temperature of heat ...

  14. Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chen, Xingying; Chu, Yinghao; Xu, Chang; Liu, Qunming; Zhou, Ling

    2017-01-01

    Highlights: •A nonlinear dynamic model of recirculation DSG parabolic trough is developed. •Collector row, water separator and spray attemperator are modeled, respectively. •The dynamic behaviors of the collector field are simulated and analyzed. •Transfer functions of water level and outlet fluid temperature are derived. •Multi-model switching generalized predictive control strategy is developed. -- Abstract: This work describes and evaluates a new nonlinear dynamic model, and a new generalized predictive control scheme for a collector field of direct steam generation parabolic troughs in recirculation mode. Modeling the dynamic behaviors of collector fields is essential to design, testing and validation of automatic control systems for direct steam generation parabolic troughs. However, the behaviors of two-phase heat transfer fluids impose challenges to simulating and developing process control schemes. In this work, a new nonlinear dynamic model is proposed, based on the nonlinear distributed parameter and the nonlinear lumped parameter methods. The proposed model is used to simulate and analyze the dynamic behaviors of the entire collector field for recirculation mode direct steam generation parabolic troughs under different weather conditions, without excessive computational costs. Based on the proposed model, transfer functions for both the water level of the separator and outlet steam temperatures are derived, and a new multi-model switching generalized predictive control scheme is developed for simulated control of the plant behaviors for a wide region of operational conditions. The proposed control scheme achieves excellent control performance and robustness for systems with long delay, large inertia and time-varying parameters, and efficiently solves the model mismatching problem in direct steam generation parabolic troughs. The performances of the model and control scheme are validated with design data from the project of Integration of Direct

  15. A finite-volume model of a parabolic trough photovoltaic/thermal collector: Energetic and exergetic analyses

    International Nuclear Information System (INIS)

    Calise, Francesco; Palombo, Adolfo; Vanoli, Laura

    2012-01-01

    This paper presents a detailed finite-volume model of a concentrating photovoltaic/thermal (PVT) solar collector. The PVT solar collector consists in a parabolic trough concentrator and a linear triangular receiver. The bottom surfaces of the triangular receiver are equipped with triple-junction cells whereas the top surface is covered by an absorbing surface. The cooling fluid (water) flows inside a channel along the longitudinal direction of the PVT collector. The system was discretized along its axis and, for each slice of the discretized computational domain, mass and energy balances were considered. The model allows one to evaluate both thermodynamic and electrical parameters along the axis of the PVT collector. Then, for each slice of the computational domain, exergy balances were also considered in order to evaluate the corresponding exergy destruction rate and exergetic efficiency. Therefore, the model also calculates the magnitude of the irreversibilities inside the collector and it allows one to detect where these irreversibilities occur. A sensitivity analysis is also performed with the scope to evaluate the effect of the variation of the main design/environmental parameters on the energetic and exergetic performance of the PVT collector. -- Highlights: ► The paper investigates an innovative concentrating photovoltaic thermal solar collector. ► The collector is equipped with triple-junction photovoltaic layers. ► A local exergetic analysis is performed in order to detect sources of irreversibilities. ► Irreversibilities are mainly due to the heat transfer between sun and PVT collector.

  16. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTrough analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m2 +/- $6/m2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.

  17. Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle

    International Nuclear Information System (INIS)

    He, Ya-Ling; Mei, Dan-Hua; Tao, Wen-Quan; Yang, Wei-Wei; Liu, Huai-Liang

    2012-01-01

    Highlights: ► A parabolic trough solar power generation system with ORC is numerically simulated. ► The effects of key parameters on collector field and system performance are studied. ► Collector heat loss increases with small absorber and glass tube interlayer pressure. ► Heat collecting efficiency increases with initial increase of absorber HTO flow rate. ► Recommended thermal storage system volumes are different in year four typical days. -- Abstract: A model for a typical parabolic trough solar thermal power generation system with Organic Rankine Cycle (PT-SEGS–ORC) was built within the transient energy simulation package TRNSYS, which is formed by integrating several submodels for the trough collector system, the single-tank thermal storage system, the auxiliary power system and the heat-electricity conversion system. With this model, the effects of several key parameters, including the interlayer pressure between the absorber tube and the glass tube (p inter ), the flow rate of high temperature oil in the absorber tube (v), solar radiation intensity (I dn ) and incidence angle (θ), on the performance of the parabolic trough collector field based on the meteorological data of Xi’an city were examined. The study shows that the heat loss of the solar collector (q loss ) increases sharply with the increase in p inter at beginning and then reaches to an approximately constant value. The variation of heat collecting efficiency (η hc ) with v is quite similar to the variation of q loss with p inter . However, I dn and θ exhibit opposite effect on η hc . In addition, it is found that the optimal volume of the thermal storage system is sensitively dependent on the solar radiation intensity. The optimal volumes are 100, 150, 50, and 0 m 3 for spring equinox, summer solstice, autumnal equinox and winter solstice, respectively.

  18. Performance study on evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough

    International Nuclear Information System (INIS)

    Selvakumar, P.; Somasundaram, P.; Thangavel, P.

    2014-01-01

    Highlights: • Instant hot water at temperatures between 40 °C and 68 °C in the low solar radiation range of 240–540 W/m 2 . • Usage of therminol D-12 and parabolic trough in low temperature application. • Stability of thermal and flow properties of therminol D-12 are studied. - Abstract: Fossil fuels and electrical energy are widely used for instant hot water generation in rural and urban areas. Also, conventional solar water heaters do not support instant hot water generation because of various problems. A new system with evacuated tube collector using synthetic oil as heat transfer fluid coupled with parabolic trough is developed and studied experimentally for instant hot water generation in the presence of low solar irradiance. Among the different grades of therminol, therminol D-12 is chosen for the study because of its thermal stability. Parabolic trough is coupled to evacuated tube to enhance the flow as well as heating characteristics of therminol. Heating efficiency and temperature characteristics are determined for the newly developed system under low solar irradiance conditions. Instant hot water can be produced by the new system at a temperature of 60 °C in the presence of low solar radiation. This newly developed system has the ability to check the fossil fuel consumption and electrical energy consumption for instant hot water generation in household applications. The stability of the heat transfer fluid is also ensured by repeated experiments

  19. Full parabolic trough qualification from prototype to demonstration loop

    Science.gov (United States)

    Janotte, Nicole; Lüpfert, Eckhard; Pottler, Klaus; Schmitz, Mark

    2017-06-01

    On the example of the HelioTrough® collector development the full accompanying and supporting qualification program for large-scale parabolic trough collectors for solar thermal power plants is described from prototype to demonstration loop scale. In the evaluation process the actual state and the optimization potential are assessed. This includes the optical and geometrical performance determined by concentrator shape, deformation, assembly quality and local intercept factor values. Furthermore, its mechanical performance in terms of tracking accuracy and torsional stiffness and its thermal system performance on the basis of the overall thermal output and heat loss are evaluated. Demonstration loop tests deliver results of collector modules statistical slope deviation of 1.9 to 2.6 mrad, intercept factor above 98%, peak optical performance of 81.6% and heat loss coefficients from field tests. The benefit of such a closely monitored development lies in prompt feedback on strengths, weaknesses and potential improvements on the new product at any development stage from first module tests until demonstration loop evaluation. The product developer takes advantage of the achieved technical maturity, already before the implementation in a commercial power plant. The well-understood performance characteristics allow the reduction of safety margins making the new HelioTrough collector competitive from the start.

  20. Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kutscher, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-05-01

    Two Schott 2008 model year PTR70 HCEs were tested on NREL's heat loss test stand from 100 - 500 deg C in 50 deg C increments. Absorber emittance was determined from the laboratory testing so that the performance of the HCEs could be modeled in a parabolic trough collector. Collector/HCE simulation results for many different field operation conditions were used to create heat loss correlationcoefficients for Excelergy and SAM. SAM estimates that the decreased emittance of the 2008 PTR70 will decrease the LCOE for parabolic trough power plants by 0.5 cents/kWh and increase the electricity generated by 5% relative to previous PTR70s. These conclusions assume that the 2008 PTR70 is supplied at the same cost and with the same optical performance as earlier PTR70 models.

  1. The impact of internal longitudinal fins in parabolic trough collectors operating with gases

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Daniil, Ilias; Antonopoulos, Kimon A.

    2017-01-01

    Highlights: • In this study, the impact of internal fins in PTC operating with gases is presented. • Air, helium and CO_2 are tested in smooth absorber and with fins of 5–10 mm and 15 mm. • Greater fin length leads to higher thermal efficiency and 10 mm is the optimum length exergetically. • Helium is the best working fluid exergetically, with CO_2 and air to follow. • Up to 290 °C, helium performs better energetically, while CO_2 in higher temperatures. - Abstract: In this study, the use of internal fins in parabolic trough collectors operating with gas working fluids is examined. Air, helium and carbon dioxide are the investigated working fluids, while Eurotrough ET-150 is the examined solar collector. The design and the simulation of this solar collector are performed with the commercial software Solidworks Flow Simulation. The internal fins lead to higher thermal efficiency but also to higher pressure losses; something very important for the solar fields of Concentrated Power Plants. Thus, the collector is examined energetically and exergetically in order to take into account the increase in the useful output with the simultaneous greater need of pumping power. Various fin lengths are examined and finally the fin of 10 mm was proved to be the most appropriate exergetically. In working fluid comparison, helium is the most efficient working fluid exergetically for all the examined cases. In the thermal efficiency comparison, helium performs better up to 290 °C, while carbon dioxide is the best choice in higher temperature levels. Moreover, the optimum mass flow rate for the helium was proved to be 0.03 kg/s and for the other working fluids the value of 0.015 kg/s seems to lead to the most satisfying results.

  2. Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers.

    Science.gov (United States)

    Ries, H; Spirkl, W

    1996-05-01

    For parabolic trough solar collectors with tubular absorbers, we design new tailored secondary concentrators. The design is applicable for any rim angle of a parabolic reflector. With the secondary, the concentration can be increased by a factor of more than 2 with a compact secondary reflector consisting of a single piece, even for the important case of a rim angle of 90 deg. The parabolic reflector can be used without changes; the reduced absorber is still tubular but smaller than the original absorber and slightly displaced toward the primary.

  3. Estimation of the temperature, heat gain and heat loss by solar parabolic trough collector under Algerian climate using different thermal oils

    International Nuclear Information System (INIS)

    Ouagued, Malika; Khellaf, Abdallah; Loukarfi, Larbi

    2013-01-01

    Highlights: • Estimation of direct solar radiations for different tracking systems at six typical locations in Algeria. • PTC thermal model uses energy balances from the HTF to the atmosphere. • The model depends on the collector type, nature of HTF, optical properties, and ambient conditions. • Estimation of temperature, heat gain and energy cost of thermal oils used in the model. • Comparison between monthly mean heat gain of the various thermal oils for six Algerian locations. - Abstract: Algeria is blessed with a very important renewable, and more particularly solar, energy potential. This potential opens for Algeria reel opportunities to cope with the increasing energy demand and the growing environmental problems link to the use of fossil fuel. In order to develop and to promote concrete actions in the areas of renewable energy and energy efficiency, Algeria has introduced a national daring program for the period 2011–2030. In this program, solar energy, and more particularly solar thermal energy plays an important role. In this paper, the potential of direct solar irradiance in Algeria and the performance of solar parabolic trough collector (PTC) are estimated under the climate conditions of the country. These two factors are treated as they play an important role in the design of solar thermal plant. In order to determine the most promising solar sites in Algeria, monthly mean daily direct solar radiation have been estimated and compared for different locations corresponding to different climatic region. Different tilted and tracking collectors are considered so as to determine the most efficient system for the PTC. In order to evaluate the performance of a tracking solar parabolic trough collector, a heat transfer model is developed. The receiver, heat collector element (HCE), is divided into several segments and heat balance is applied in each segment over a section of the solar receiver. Different oils are considered to determine the thermal

  4. Two new designs of parabolic solar collectors

    Directory of Open Access Journals (Sweden)

    Karimi Sadaghiyani Omid

    2014-01-01

    Full Text Available In this work, two new compound parabolic trough and dish solar collectors are presented with their working principles. First, the curves of mirrors are defined and the mathematical formulation as one analytical method is used to trace the sun rays and recognize the focus point. As a result of the ray tracing, the distribution of heat flux around the inner wall can be reached. Next, the heat fluxes are calculated versus several absorption coefficients. These heat flux distributions around absorber tube are functions of angle in polar coordinate system. Considering, the achieved heat flux distribution are used as a thermal boundary condition. After that, Finite Volume Methods (FVM are applied for simulation of absorber tube. The validation of solving method is done by comparing with Dudley's results at Sandia National Research Laboratory. Also, in order to have a good comparison between LS-2 and two new designed collectors, some of their parameters are considered equal with together. These parameters are consist of: the aperture area, the measures of tube geometry, the thermal properties of absorber tube, the working fluid, the solar radiation intensity and the mass flow rate of LS-2 collector are applied for simulation of the new presented collectors. After the validation of the used numerical models, this method is applied to simulation of the new designed models. Finally, the outlet results of new designed collector are compared with LS-2 classic collector. Obviously, the obtained results from the comparison show the improving of the new designed parabolic collectors efficiency. In the best case-study, the improving of efficiency are about 10% and 20% for linear and convoluted models respectively.

  5. An air-based corrugated cavity-receiver for solar parabolic trough concentrators

    International Nuclear Information System (INIS)

    Bader, Roman; Pedretti, Andrea; Barbato, Maurizio; Steinfeld, Aldo

    2015-01-01

    Highlights: • We analyze a novel tubular cavity-receiver for solar parabolic trough collectors. • Four-fold solar concentration ratio is reached compared to conventional receivers. • Efficient operation at up to 500 °C is possible. • The pumping power requirement is found to be acceptably low. - Abstract: A tubular cavity-receiver that uses air as the heat transfer fluid is evaluated numerically using a validated heat transfer model. The receiver is designed for use on a large-span (9 m net concentrator aperture width) solar parabolic trough concentrator. Through the combination of a parabolic primary concentrator with a nonimaging secondary concentrator, the collector reaches a solar concentration ratio of 97.5. Four different receiver configurations are considered, with smooth or V-corrugated absorber tube and single- or double-glazed aperture window. The collector’s performance is characterized by its optical efficiency and heat loss. The optical efficiency is determined with the Monte Carlo ray-tracing method. Radiative heat exchange inside the receiver is calculated with the net radiation method. The 2D steady-state energy equation, which couples conductive, convective, and radiative heat transfer, is solved for the solid domains of the receiver cross-section, using finite-volume techniques. Simulations for Sevilla/Spain at the summer solstice at solar noon (direct normal solar irradiance: 847 W m −2 , solar incidence angle: 13.9°) yield collector efficiencies between 60% and 65% at a heat transfer fluid temperature of 125 °C and between 37% and 42% at 500 °C, depending on the receiver configuration. The optical losses amount to more than 30% of the incident solar radiation and constitute the largest source of energy loss. For a 200 m long collector module operated between 300 and 500 °C, the isentropic pumping power required to pump the HTF through the receiver is between 11 and 17 kW

  6. Automatic control of plants of direct steam generation with cylinder-parabolic solar collectors; Control automatico de plantas de generacion directa de vapor con colectores solares cilindro-parabolicos

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela Gutierrez, L.

    2008-07-01

    The main objective of this dissertation has been the contributions to the operation in automatic mode of a new generation of direct steam generation solar plants with parabolic-trough collectors. The dissertation starts introducing the parabolic-trough collectors solar thermal technology for the generation of process steam or steam for a Rankine cycle in the case of power generation generation, which is currently the most developed and commercialized technology. Presently, the parabolic-trough collectors technology is based on the configuration known as heat-exchanger system, based in the use of a heat transfer fluid in the solar field which is heated during the recirculation through the absorber tubes of the solar collectors, transferring later on the that thermal energy to a heat-exchanger for steam generation. Direct steam generation in the absorber tubes has always been shown as an ideal pathway to reduce generation cost by 15% and increase conversion efficiency by 20% (DISS, 1999). (Author)

  7. Optimization of a Solar-Driven Trigeneration System with Nanofluid-Based Parabolic Trough Collectors

    Directory of Open Access Journals (Sweden)

    Evangelos Bellos

    2017-06-01

    Full Text Available The objective of this work was to optimize and to evaluate a solar-driven trigeneration system which operates with nanofluid-based parabolic trough collectors. The trigeneration system includes an organic Rankine cycle (ORC and an absorption heat pump operating with LiBr-H2O which is powered by the rejected heat of the ORC. Toluene, n-octane, Octamethyltrisiloxane (MDM and cyclohexane are the examined working fluids in the ORC. The use of CuO and Al2O3 nanoparticles in the Syltherm 800 (base fluid is investigated in the solar field loop. The analysis is performed with Engineering Equation Solver (EES under steady state conditions in order to give the emphasis in the exergetic optimization of the system. Except for the different working fluid investigation, the system is optimized by examining three basic operating parameters in all the cases. The pressure in the turbine inlet, the temperature in the ORC condenser and the nanofluid concentration are the optimization variables. According to the final results, the combination of toluene in the ORC with the CuO nanofluid is the optimum choice. The global maximum exergetic efficiency is 24.66% with pressure ratio is equal to 0.7605, heat rejection temperature 113.7 °C and CuO concentration 4.35%.

  8. Low-cost small scale parabolic trough collector design for manufacturing and deployment in Africa

    Science.gov (United States)

    Orosz, Matthew; Mathaha, Paul; Tsiu, Anadola; Taele, B. M.; Mabea, Lengeta; Ntee, Marcel; Khakanyo, Makoanyane; Teker, Tamer; Stephens, Jordan; Mueller, Amy

    2016-05-01

    Concentrating Solar Power is expanding its deployment on the African subcontinent, highlighting the importance of efforts to indigenize manufacturing of this technology to increase local content and therefore local economic benefits of these projects. In this study a design for manufacturing (DFM) exercise was conducted to create a locally produced parabolic trough collector (the G4 PTC). All parts were sourced or fabricated at a production facility in Lesotho, and several examples of the design were prototyped and tested with collaborators in the Government of Lesotho's Appropriate Technology Services division and the National University of Lesotho. Optical and thermal performance was simulated and experimentally validated, and pedagogical pre-commercial versions of the PTC have been distributed to higher education partners in Lesotho and Europe. The cost to produce the PTC is 180 USD/m2 for a locally manufactured heat collection element (HCE) capable of sustaining 250C operation at ~65% efficiency. A version with an imported evacuated HCE can operate at 300°C with 70% efficiency. Economically relevant applications for this locally produced PTC include industrial process heat and distributed generation scenarios where cogeneration is required.

  9. Modeling and simulations of a 30 MWe solar electric generating system using parabolic trough collectors in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Usta, Yasemin [Anyl Asansor Ltd (Turkey)], email: syusta@gmail.com; Baker, Derek [Middle East Technical University (Turkey)], email: dbaker@metu.edu.tr; Kaftanoglu, Bilgin [Atilim University (Turkey)], email: bilgink@atilim.edu.tr

    2011-07-01

    With the energy crisis and the increasing concerns about climate change, the interest in concentrating solar power (CSP) systems is growing in Turkey. The aim of this paper is to develop a model of a CSP system using a field of parabolic trough collectors and to assess the predicted performance of the system. A model was developed for a 30MWe solar generating system in Antalya, Turkey, using TRNSYS software, the solar thermal electric components library and information on an existing system in Kramer Junction, California, United States. Annual simulations were then performed for both systems in Antalya and California using weather data. It was found that the predictions were in good agreement with published data. In addition results showed that Antalya's system would generate 30% less than Kramer Junction's system on an annual basis. This paper provides useful information on modeling and simulation of CSP systems.

  10. Parabolic-trough technology roadmap: A pathway for sustained commercial development and deployment of parabolic-trough technology

    International Nuclear Information System (INIS)

    David Kearney; Hank Price

    1999-01-01

    Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop

  11. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  12. Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.

    2014-01-01

    Highlights: • As the solar irradiation increases, the exergetic efficiency increases. • The R134a combined cycle has best exergetic performance, 26%. • The R600a combined cycle has the lowest exergetic efficiency, 20%. • The main source of exergy destruction is the solar collector. • There is an exergetic improvement potential of 75% in the systems considered. - Abstract: In this paper, detailed exergy analysis of selected thermal power systems driven by parabolic trough solar collectors (PTSCs) is presented. The power is produced using either a steam Rankine cycle (SRC) or a combined cycle, in which the SRC is the topping cycle and an organic Rankine cycle (ORC) is the bottoming cycle. Seven refrigerants for the ORC were examined: R134a, R152a, R290, R407c, R600, R600a, and ammonia. Key exergetic parameters were examined: exergetic efficiency, exergy destruction rate, fuel depletion ratio, irreversibility ratio, and improvement potential. For all the cases considered it was revealed that as the solar irradiation increases, the exergetic efficiency increases. Among the combined cycles examined, the R134a combined cycle demonstrates the best exergetic performance with a maximum exergetic efficiency of 26% followed by the R152a combined cycle with an exergetic efficiency of 25%. Alternatively, the R600a combined cycle has the lowest exergetic efficiency, 20–21%. This study reveals that the main source of exergy destruction is the solar collector where more than 50% of inlet exergy is destructed, or in other words more than 70% of the total destructed exergy. In addition, more than 13% of the inlet exergy is destructed in the evaporator which is equivalent to around 19% of the destructed exergy. Finally, this study reveals that there is an exergetic improvement potential of 75% in the systems considered

  13. The effect and contribution of wind generated rotation on outlet temperature and heat gain of LS-2 parabolic trough solar collector

    Directory of Open Access Journals (Sweden)

    Sadaghiyani Omid Karimi

    2013-01-01

    Full Text Available The Monte Carlo ray tracing method is applied and coupled with finite volume numerical methods to study effect of rotation on outlet temperature and heat gain of LS-2 parabolic trough concentrator (PTC. Based on effect of sunshape, curve of mirror and use of MCRT, heat flux distribution around of inner wall of evacuated tube is calculated. After calculation of heat flux, the geometry of LS-2 Luz collector is created and finite volume method is applied to simulate. The obtained results are compared with Dudley et al test results for irrotational cases to validate these numerical solving models. Consider that, for rotational models ,the solving method separately with K.S. Ball's results. In this work, according to the structure of mentioned collector, we use plug as a flow restriction. In the rotational case studies, the inner wall rotates with different angular speeds. We compare results of rotational collector with irrotational. Also for these two main states, the location of plug changed then outlet temperature and heat gain of collector are studied. The results show that rotation have positive role on heat transfer processing and the rotational plug in bottom half of tube have better effectual than upper half of tube. Also the contribution of rotation is calculated in the all of case studies. Working fluid of these study is one of the oil derivatives namely Syltherm-800. The power of wind can be used to rotate tube of collector.

  14. Design and performance characteristics of solar adsorption refrigeration system using parabolic trough collector: Experimental and statistical optimization technique

    International Nuclear Information System (INIS)

    Abu-Hamdeh, Nidal H.; Alnefaie, Khaled A.; Almitani, Khalid H.

    2013-01-01

    Highlights: • The successes of using olive waste/methanol as an adsorbent/adsorbate pair. • The experimental gross cycle coefficient of performance obtained was COP a = 0.75. • Optimization showed expanding adsorbent mass to a certain range increases the COP. • The statistical optimization led to optimum tank volume between 0.2 and 0.3 m 3 . • Increasing the collector area to a certain range increased the COP. - Abstract: The current work demonstrates a developed model of a solar adsorption refrigeration system with specific requirements and specifications. The recent scheme can be employed as a refrigerator and cooler unit suitable for remote areas. The unit runs through a parabolic trough solar collector (PTC) and uses olive waste as adsorbent with methanol as adsorbate. Cooling production, COP (coefficient of performance, and COP a (cycle gross coefficient of performance) were used to assess the system performance. The system’s design optimum parameters in this study were arrived to through statistical and experimental methods. The lowest temperature attained in the refrigerated space was 4 °C and the equivalent ambient temperature was 27 °C. The temperature started to decrease steadily at 20:30 – when the actual cooling started – until it reached 4 °C at 01:30 in the next day when it rose again. The highest COP a obtained was 0.75

  15. Two non-tracking solar collectors: Design criteria and performance analysis

    International Nuclear Information System (INIS)

    Ratismith, Wattana; Inthongkhum, Anusorn; Briggs, John

    2014-01-01

    Highlights: • A collector module designed to capture solar radiation efficiently is proposed. • Two different compound parabolic trough designs are examined and tested. • A novel design with a flat base trough and vertical absorber operates efficiently in direct and diffuse sunlight. - Abstract: We propose fixed (non-tracking) configurations of solar light collector modules which are designed to operate efficiently throughout the day, i.e. for varying incident angles of direct sunlight, and in conditions of diffuse solar irradiation. We present two trough designs of compound parabolic collector (CPC) type. One, a more conventional double-parabolic trough, has the absorber plate perpendicular to the vertical axis of the trough cross-section. The other, of a new flat-base shape, has the absorber plate parallel. The collectors have two novel features appropriate to non-tracking. The first is a smoothing of the power output over the day by the simple expedient of arranging three troughs tilted at different angles. The second is the original design of the flat-base trough allowing optimal interception of the caustic surfaces of this non-focussing device. By ray-tracing analysis of the different trough shapes and absorber plate orientation, we emphasise the design criteria for achievement of a high intercept factor throughout the day without tracking and demonstrate the superiority of the flat-base collector over the double-parabolic design. In test experiments we show that the high temperatures (≈180 °C) necessary for some industrial process heat applications can be achieved. Also test results of the efficiency of the proposed systems are presented which indicate that the flat-base trough with vertical absorber plate is superior to the double-parabolic trough with horizontal absorber plate

  16. Thermo-economic design optimization of parabolic trough solar plants for industrial process heat applications with memetic algorithms

    International Nuclear Information System (INIS)

    Silva, R.; Berenguel, M.; Pérez, M.; Fernández-Garcia, A.

    2014-01-01

    Highlights: • A thermo-economic optimization of a parabolic-trough solar plant for industrial process heat applications is developed. • An analysis of the influence of economic cost functions on optimal design point location is presented. • A multi-objective optimization approach to the design routine is proposed. • A sensitivity analysis of the optimal point location to economic, operational, and ambient conditions is developed. • Design optimization of a parabolic trough plant for a reference industrial application is developed. - Abstract: A thermo-economic design optimization of a parabolic trough solar plant for industrial processes with memetic algorithms is developed. The design domain variables considered in the optimization routine are the number of collectors in series, number of collector rows, row spacing, and storage volume. Life cycle savings, levelized cost of energy, and payback time objective functions are compared to study the influence on optimal design point location. Furthermore a multi-objective optimization approach is proposed to analyze the design problem from a multi-economic criteria point of view. An extensive set of optimization cases are performed to estimate the influence of fuel price trend, plant location, demand profile, operation conditions, solar field orientation, and radiation uncertainty on optimal design. The results allow quantifying as thermo-economic design optimization based on short term criteria as the payback time leads to smaller plants with higher solar field efficiencies and smaller solar fractions, while the consideration of optimization criteria based on long term performance of the plants, as life cycle savings based optimization, leads to the reverse conclusion. The role of plant location and future evolution of gas prices in the thermo-economic performance of the solar plant has been also analyzed. Thermo-economic optimization of a parabolic trough solar plant design for the reference industrial

  17. Optical design of two-axes parabolic trough collector and two-section Fresnel lens for line-to-spot solar concentration.

    Science.gov (United States)

    Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto

    2015-06-01

    Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.

  18. Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.

    2011-01-01

    As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

  19. Theoretical investigation of solar humidification-dehumidification desalination system using parabolic trough concentrators

    International Nuclear Information System (INIS)

    Mohamed, A.M.I.; El-Minshawy, N.A.

    2011-01-01

    Highlights: → We evaluated the performance of sea water HDD system powered by solar PTC. → The proposed design to the expected desalination plant performance was introduced. → The collector thermal efficiency was a function of solar radiation value. → The highest fresh water productivity is found to be in the summer season. → The production time reaches 42% of the day time in the summer season. - Abstract: This paper deals with the status of solar energy as a clean and renewable energy applications in desalination. The object of this research is to theoretically investigate the principal operating parameters of a proposed desalination system based on air humidification-dehumidification principles. A parabolic trough solar collector is adapted to drive and optimize the considered desalination system. A test set-up of the desalination system was designed and a theoretical simulation model was constructed to evaluate the performance and productivity of the proposed solar humidification-dehumidification desalination system. The theoretical simulation model was developed in which the thermodynamic models of each component of the considered were set up respectively. The study showed that, parabolic trough solar collector is the suitable to drive the proposed desalination system. A comparison study had been presented to show the effect of the different parameters on the performance and the productivity of the system. The productivity of the proposed system showed also an increase with the increase of the day time till an optimum value and then decreased. The highest fresh water productivity is found to be in the summer season, when high direct solar radiation and long solar time are always expected. The production time reaches a maximum value in the summer season, which is 42% of the day.

  20. Control scheme for direct steam generation in parabolic troughs under recirculation operation mode

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, L.; Zarza, E. [CIEMAT, Plataforma Solar de Almeria, Ctra. Senes s/n, P.O. Box 22, E-04200 Tabernas, Almeria (Spain); Berenguel, M. [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, E-04120 Almeria (Spain); Camacho, E.F. [Universidad de Sevilla, Dpto. de Ingenieria de Sistemas y Automatica, Camino de los Descubrimientos s/n, E-41092 Sevilla (Spain)

    2006-01-15

    Electricity production using solar thermal energy is one of the main research areas at present in the field of renewable energies, these systems being characterised by the need of reliable control systems aimed at maintaining desired operating conditions in the face of changes in solar radiation, which is the main source of energy. A new prototype of solar system with parabolic trough collectors was implemented at the Plataforma Solar de Almeria (PSA, South-East Spain) to investigate the direct steam generation process under real solar conditions in the parabolic solar collector field of a thermal power plant prototype. This paper presents details and some results of the application of a control scheme designed and tested for the recirculation operation mode, for which the main objective is to obtain steam at constant temperature and pressure at the outlet of the solar field, so that changes produced in the inlet water conditions and/or solar radiation will only affect the amount of steam produced by the solar field. The steam quality and consequently the nominal efficiency of the plant are thus maintained. (author)

  1. Feasibility Study on the Use of a Solar Thermoelectric Cogenerator Comprising a Thermoelectric Module and Evacuated Tubular Collector with Parabolic Trough Concentrator

    Science.gov (United States)

    Miao, L.; Zhang, M.; Tanemura, S.; Tanaka, T.; Kang, Y. P.; Xu, G.

    2012-06-01

    We have designed a new solar thermoelectric cogeneration system consisting of an evacuated tubular solar collector (ETSC) with a parabolic trough concentrator (PTC) and thermoelectric modules (TEMs) to supply both thermal energy and electricity. The main design concepts are (1) the hot side of the TEM is bonded to the solar selective absorber installed in an evacuated glass tube, (2) the cold side of the TEM is also bonded to the heat sink, and (3) the outer circulated water is heated by residual solar energy after TEM generation. We present an example solar thermal simulation based on energy balance and heat transfer as used in solar engineering to predict the electrical conversion efficiency and solar thermal conversion efficiency for different values of parameters such as the solar insolation, concentration ratio, and TEM ZT values.

  2. Exergetic and Thermoeconomic Analyses of Solar Air Heating Processes Using a Parabolic Trough Collector

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Hernández-Román

    2014-08-01

    Full Text Available This paper presents a theoretical and practical analysis of the application of the thermoeconomic method. A furnace for heating air is evaluated using the methodology. The furnace works with solar energy, received from a parabolic trough collector and with electricity supplied by an electric power utility. The methodology evaluates the process by the first and second law of thermodynamics as the first step then the cost analysis is applied for getting the thermoeconomic cost. For this study, the climatic conditions of the city of Queretaro (Mexico are considered. Two periods were taken into account: from July 2006 to June 2007 and on 6 January 2011. The prototype, located at CICATA-IPN, Qro, was analyzed in two different scenarios i.e., with 100% of electricity and 100% of solar energy. The results showed that thermoeconomic costs for the heating process with electricity, inside the chamber, are less than those using solar heating. This may be ascribed to the high cost of the materials, fittings, and manufacturing of the solar equipment. Also, the influence of the mass flow, aperture area, length and diameter of the receiver of the solar prototype is a parameter for increasing the efficiency of the prototype in addition to the price of manufacturing. The optimum design parameters are: length is 3 to 5 m, mass flow rate is 0.03 kg/s, diameter of the receiver is around 10 to 30 mm and aperture area is 3 m2.

  3. Performance analysis of solar parabolic trough collectors driven combined supercritical CO2 and organic Rankine cycle

    Directory of Open Access Journals (Sweden)

    Harwinder Singh

    2018-06-01

    Full Text Available In this paper, attempts have been made on the detailed energy and exergy analysis of solar parabolic trough collectors (SPTCs driven combined power plant. The combination of supercritical CO2 (SCO2 cycle and organic Rankine cycle (ORC integrated with SPTCs has been used to produce power, in which SCO2 cycle and ORC are arranged as a topping and bottoming cycle. Five organic working fluids like R134a, R1234yf, R407c, R1234ze, and R245fa were selected for a low temperature bottoming ORC. Five key exergetic parameters such as exergetic efficiency, exergy destruction rate, fuel depletion ratio, irreversibility ratio, and improvement potential were also examined. It was revealed that exergetic and thermal efficiency of all the combined cycles enhances as the direct normal irradiance increases from 0.5 kW/m2 to 0.95 kW/m2. As can be seen, R407c combined cycle has the maximum exergetic as well as thermal efficiency which is around 78.07% at 0.95 kW/m2 and 43.49% at 0.95 kW/m2, respectively. Alternatively, the R134a and R245fa combined cycle yields less promising results with the marginal difference in their performance. As inferred from the study that SCO2 turbine and evaporator has a certain amount of exergy destruction which is around 9.72% and 8.54% of the inlet exergy, and almost 38.10% of the total exergy destruction in case of R407c combined cycle. Moreover, the maximum amount of exergy destructed by the solar collector field which is more than 25% of the solar inlet exergy and around 54% of the total destructed exergy. Finally, this study concludes that R407c combined cycle has a minimum fuel depletion ratio of 0.2583 for a solar collector and possess the highest power output of 3740 kW. Keywords: Supercritical CO2cycle, Organic Rankine cycle, Exergetic performance, SPTCs, Organic fluids

  4. Small-Sized Parabolic Trough Collector System for Solar Dehumidification Application: Design, Development, and Potential Assessment

    Directory of Open Access Journals (Sweden)

    Ghulam Qadar Chaudhary

    2018-01-01

    Full Text Available The current study presents a numerical and real-time performance analysis of a parabolic trough collector (PTC system designed for solar air-conditioning applications. Initially, a thermodynamic model of PTC is developed using engineering equation solver (EES having a capacity of around 3 kW. Then, an experimental PTC system setup is established with a concentration ratio of 9.93 using evacuated tube receivers. The experimental study is conducted under the climate of Taxila, Pakistan in accordance with ASHRAE 93-1986 standard. Furthermore, PTC system is integrated with a solid desiccant dehumidifier (SDD to study the effect of various operating parameters such as direct solar radiation and inlet fluid temperature and its impact on dehumidification share. The experimental maximum temperature gain is around 5.2°C, with the peak efficiency of 62% on a sunny day. Similarly, maximum thermal energy gain on sunny and cloudy days is 3.07 kW and 2.33 kW, respectively. Afterwards, same comprehensive EES model of PTC with some modifications is used for annual transient analysis in TRNSYS for five different climates of Pakistan. Quetta revealed peak solar insolation of 656 W/m2 and peak thermal energy 1139 MJ with 46% efficiency. The comparison shows good agreement between simulated and experimental results with root mean square error of around 9%.

  5. Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors

    International Nuclear Information System (INIS)

    Cakici, Duygu Melek; Erdogan, Anil; Colpan, Can Ozgur

    2017-01-01

    In this study, the thermodynamic performance of an integrated geothermal powered supercritical regenerative organic Rankine cycle (ORC) and parabolic trough solar collectors (PTSC) is assessed. A thermal model based on the principles of thermodynamics (mass, energy, and exergy balances) and heat transfer is first developed for the components of this integrated system. This model gives the performance assessment parameters of the system such as the electrical and exergetic efficiencies, total exergy destruction and loss, productivity lack, fuel depletion ratio, and improvement potential rate. To validate this model, the data of an existing geothermal power plant based on a supercritical ORC and literature data for the PTSC are used. After validation, parametric studies are conducted to assess the effect of some of the important design and operating parameters on the performance of the system. As a result of these studies, it is found that the integration of ORC and PTSC systems increases the net power output but decreases the electrical and exergetic efficiencies of the integrated system. It is also shown that R134a is the most suitable working fluid type for this system; and the PTSCs and air cooled condenser are the main sources of the exergy destructions. - Highlights: • A geothermal power plant integrated with PTSC is investigated. • Different approaches for defining the exergetic efficiency are used. • The PTSCs and ACC are the main sources of the exergy destructions. • R134a gives the highest performance for any number of collectors studied.

  6. Experimental Investigation of a Solar Greenhouse Heating System Equipped with a Parabolic Trough Solar Concentrator and a Double-Purpose Flat Plate Solar Collector

    Directory of Open Access Journals (Sweden)

    M Jafari

    2017-10-01

    Full Text Available Introduction Greenhouses provide a suitable environment in which all the parameters required for growing the plants can be controlled throughout the year. Greenhouse heating is one of the most important issues in productivity of a greenhouse. In many countries, heating costs in the greenhouses are very high, having almost 60-80% of the total production costs. In recent years, several studies have attempted to reduce the heating costs of the greenhouses by applying more energy efficient equipment and using the renewable energy sources as alternatives or supplementary to the fossil fuels. In the present study a novel solar greenhouse heating system equipped with a parabolic trough solar concentrator (PTC and a flat-plate solar collector has been developed. Therefore, the aim of this paper is to investigate the performance of the proposed heating system at different working conditions. Materials and Methods The presented solar greenhouse heating system was comprised of a parabolic trough solar concentrator (PTC, a heat storage tank, a pump and a flat plate solar collector. The PTC was constructed from a polished stainless steel sheet (as the reflector and a vacuum tube receiver. The PTC was connected to the tank by using insulated tubes and a water pump was utilized to circulate the working fluid trough the PTC and the heat exchanger installed between walls of the tank. The uncovered solar collector was located inside the greenhouse. During the sunshine time, a fraction of the total solar radiation received inside the greenhouse is absorbed by the solar collector. This rises the temperature of the working fluid inside the collector which led to density reduction and natural flow of the fluid. In other words, the collector works as a natural flow flat plate solar collector during the sunshine time. At night, when the greenhouse temperature is lower than tank temperature, the fluid flows in a reverse direction through the solar collector and the

  7. Adaptive Energy-based Bilinear Control of First-Order 1-D Hyperbolic PDEs: Application to a One-Loop Parabolic Solar Collector Trough

    KAUST Repository

    Mechhoud, Sarra; Laleg-Kirati, Taous-Meriem

    2017-01-01

    In this paper, the adaptive bilinear control of a first-order 1-D hyperbolic partial differential equation (PDE) with an unknown time-varying source term is investigated where only boundary measurements are available. By means of boundary injection, the bilinear adaptive law is developed in the Lyapunov approach. It consists of a state observer and an input adaptation law combined with a bilinear control method derived using an energy-like principle. Both global asymptotic practical convergence of the tracking error and input-to-state stability of the system are guaranteed. A potential application of this control strategy is the one-loop solar collector parabolic trough where the solar irradiance is the unknown input (source term) and the flow rate is the control variable. The objective is to drive the boundary temperature at the outlet to track a desired profile. Simulation results are provided to illustrate the performance of the proposed method.

  8. Adaptive Energy-based Bilinear Control of First-Order 1-D Hyperbolic PDEs: Application to a One-Loop Parabolic Solar Collector Trough

    KAUST Repository

    Mechhoud, Sarra

    2017-12-14

    In this paper, the adaptive bilinear control of a first-order 1-D hyperbolic partial differential equation (PDE) with an unknown time-varying source term is investigated where only boundary measurements are available. By means of boundary injection, the bilinear adaptive law is developed in the Lyapunov approach. It consists of a state observer and an input adaptation law combined with a bilinear control method derived using an energy-like principle. Both global asymptotic practical convergence of the tracking error and input-to-state stability of the system are guaranteed. A potential application of this control strategy is the one-loop solar collector parabolic trough where the solar irradiance is the unknown input (source term) and the flow rate is the control variable. The objective is to drive the boundary temperature at the outlet to track a desired profile. Simulation results are provided to illustrate the performance of the proposed method.

  9. Parabolic Trough Solar Power for Competitive U.S. Markets

    International Nuclear Information System (INIS)

    Price, Henry W.

    1998-01-01

    Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 1990. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a result of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive U.S. power market

  10. A Novel Parabolic Trough Concentrating Solar Heating for Cut Tobacco Drying System

    Directory of Open Access Journals (Sweden)

    Jiang Tao Liu

    2014-01-01

    Full Text Available A novel parabolic trough concentrating solar heating for cut tobacco drying system was established. The opening width effect of V type metal cavity absorber was investigated. A cut tobacco drying mathematical model calculated by fourth-order Runge-Kutta numerical solution method was used to simulate the cut tobacco drying process. And finally the orthogonal test method was used to optimize the parameters of cut tobacco drying process. The result shows that the heating rate, acquisition factor, and collector system efficiency increase with increasing the opening width of the absorber. The simulation results are in good agreement with experimental data for cut tobacco drying process. The relative errors between simulated and experimental values are less than 8%, indicating that this mathematical model is accurate for the cut tobacco airflow drying process. The optimum preparation conditions are an inlet airflow velocity of 15 m/s, an initial cut tobacco moisture content of 26%, and an inlet airflow temperature of 200°C. The thermal efficiency of the dryer and the final cut tobacco moisture content are 66.32% and 14.15%, respectively. The result shows that this parabolic trough concentrating solar heating will be one of the heat recourse candidates for cut tobacco drying system.

  11. Real-time dynamic analysis for complete loop of direct steam generation solar trough collector

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chu, Yinghao; Chen, Xingying; Shen, Bingbing; Xu, Chang; Zhou, Ling; Wang, Pei

    2016-01-01

    Highlights: • A nonlinear distribution parameter dynamic model has been developed. • Real-time local heat transfer coefficient and friction coefficient are adopted. • The dynamic behavior of the solar trough collector loop are simulated. • High-frequency chattering of outlet fluid flow are analyzed and modeled. • Irradiance disturbance at subcooled water region generates larger influence. - Abstract: Direct steam generation is a potential approach to further reduce the levelized electricity cost of solar trough. Dynamic modeling of the collector loop is essential for operation and control of direct steam generation solar trough. However, the dynamic behavior of fluid based on direct steam generation is complex because of the two-phase flow in the pipeline. In this work, a nonlinear distribution parameter model has been developed to model the dynamic behaviors of direct steam generation parabolic trough collector loops under either full or partial solar irradiance disturbance. Compared with available dynamic model, the proposed model possesses two advantages: (1) real-time local values of heat transfer coefficient and friction resistance coefficient, and (2) considering of the complete loop of collectors, including subcooled water region, two-phase flow region and superheated steam region. The proposed model has shown superior performance, particularly in case of sensitivity study of fluid parameters when the pipe is partially shaded. The proposed model has been validated using experimental data from Solar Thermal Energy Laboratory of University of New South Wales, with an outlet fluid temperature relative error of only 1.91%. The validation results show that: (1) The proposed model successfully outperforms two reference models in predicting the behavior of direct steam generation solar trough. (2) The model theoretically predicts that, during solar irradiance disturbance, the discontinuities of fluid physical property parameters and the moving back and

  12. Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Baniasadi, Ehsan; Afshari, Ebrahim

    2016-01-01

    Highlights: • The performance of an integrated nano-fluid based solar Rankine cycle is studied. • The effect of solar intensity, ambient temperature, and volume fraction is evaluated. • The concept of Finite Time Thermodynamics is applied. • It is shown that CuO/oil nano-fluid has the best performance from exergy perspective. - Abstract: In this paper, the performance of an integrated Rankine power cycle with parabolic trough solar system and a thermal storage system is simulated based on four different nano-fluids in the solar collector system, namely CuO, SiO_2, TiO_2 and Al_2O_3. The effects of solar intensity, dead state temperature, and volume fraction of different nano-particles on the performance of the integrated cycle are studied using second law of thermodynamics. Also, the genetic algorithm is applied to optimize the net output power of the solar Rankine cycle. The solar thermal energy is stored in a two-tank system to improve the overall performance of the system when sunlight is not available. The concept of Finite Time Thermodynamics is applied for analyzing the performance of the solar collector and thermal energy storage system. This study reveals that by increasing the volume fraction of nano-particles, the exergy efficiency of the system increases. At higher dead state temperatures, the overall exergy efficiency is increased, and higher solar irradiation leads to considerable increase of the output power of the system. It is shown that among the selected nano-fluids, CuO/oil has the best performance from exergy perspective.

  13. PERFORMANCE CHARACTERISTICS OF PARABOLIC SOLAR COLLECTOR WATER HEATER SYSTEM FITTED WITH NAIL TWISTED TAPES ABSORBER

    Directory of Open Access Journals (Sweden)

    K. SYED JAFAR

    2017-03-01

    Full Text Available In this paper, the experimental heat transfer, friction loss and thermal performance data for water flowing through the absorber tube fitted with two different twisted tape configurations in parabolic trough collector (PTC are presented. In the present work, a relative experimental study is carried out to investigate the performance of a PTC influenced by heat transfer through fluidabsorber wall mixing mechanism. The major findings of this experiment show that heat transport enhancement in the nail twisted tape collector perform significantly better than plain twisted tapes and also show that the smallest twisted tape ratio enhances the system performance remarkably maximizing the collector efficiency. The results suggest that the twisted tape and nail twisted tape would be a better option for high thermal energy collection in laminar region of the PTC system.

  14. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  15. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  16. Wind load design methods for ground-based heliostats and parabolic dish collectors

    Energy Technology Data Exchange (ETDEWEB)

    Peterka, J A; Derickson, R G [Colorado State Univ., Fort Collins, CO (United States). Fluid Dynamics and Diffusion Lab.

    1992-09-01

    The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.

  17. Sensitivity analysis on the effect of key parameters on the performance of parabolic trough solar collectors

    Science.gov (United States)

    Muhlen, Luis S. W.; Najafi, Behzad; Rinaldi, Fabio; Marchesi, Renzo

    2014-04-01

    Solar troughs are amongst the most commonly used technologies for collecting solar thermal energy and any attempt to increase the performance of these systems is welcomed. In the present study a parabolic solar trough is simulated using a one dimensional finite element model in which the energy balances for the fluid, the absorber and the envelope in each element are performed. The developed model is then validated using the available experimental data . A sensitivity analysis is performed in the next step in order to study the effect of changing the type of the working fluid and the corresponding Reynolds number on the overall performance of the system. The potential improvement due to the addition of a shield on the upper half of the annulus and enhancing the convection coefficient of the heat transfer fluid is also studied.

  18. Sensitivity analysis on the effect of key parameters on the performance of parabolic trough solar collectors

    International Nuclear Information System (INIS)

    Muhlen, Luis S W; Najafi, Behzad; Rinaldi, Fabio; Marchesi, Renzo

    2014-01-01

    Solar troughs are amongst the most commonly used technologies for collecting solar thermal energy and any attempt to increase the performance of these systems is welcomed. In the present study a parabolic solar trough is simulated using a one dimensional finite element model in which the energy balances for the fluid, the absorber and the envelope in each element are performed. The developed model is then validated using the available experimental data . A sensitivity analysis is performed in the next step in order to study the effect of changing the type of the working fluid and the corresponding Reynolds number on the overall performance of the system. The potential improvement due to the addition of a shield on the upper half of the annulus and enhancing the convection coefficient of the heat transfer fluid is also studied.

  19. Control concepts for direct steam generation in parabolic troughs

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, Loreto; Zarza, Eduardo [CIEMAT, Plataforma Solar de Almeria, Tabernas (Almeria) (Spain); Berenguel, Manuel [Universidad de Almeria, Dept. de Lenguajes y Computacion, Almeria (Spain); Camacho, Eduardo F. [Universidad de Sevilla, Dept. de Ingenieria de Sistemas y Automatica, Sevilla (Spain)

    2005-02-01

    A new prototype parabolic-trough collector system was erected at the Plataforma Solar de Almeria (PSA) (1996-1998) to investigate direct steam generation (DSG) in a solar thermal power plant under real solar conditions. The system has been under evaluation for efficiency, cost, control and other parameters since 1999. The main objective of the control system is to obtain steam at constant temperature and pressure at the solar field outlet, so that changes in inlet water conditions and/or in solar radiation affect the amount of steam, but not its quality or the nominal plant efficiency. This paper presents control schemes designed and tested for two operating modes, 'Recirculation', for which a proportional-integral-derivative (PI/PID) control functions scheme has been implemented, and 'Once-through', requiring more complex control strategies, for which the scheme is based on proportional-integral (PI), feedforward and cascade control. Experimental results of both operation modes are discussed. (Author)

  20. Year-round performance assessment of a solar parabolic trough collector under climatic condition of Bhiwani, India: A case study

    International Nuclear Information System (INIS)

    Kumar, Devander; Kumar, Sudhir

    2015-01-01

    Highlights: • Year-round performance of SPTC under the various climatic conditions is presented. • A detailed thermo-optical model for PTC system is developed. • A comparison of developed thermal model is done with experimental data of SNL. • Developed model is very helpful and effective tool in analyzing the PTC system. • Enlightens the importance of mini-level SPTC as a promising system to fulfill the energy demands. - Abstract: Solar parabolic trough collector (SPTC) is a well-known solar thermal system applied for solar electric generation. Nowadays, major attention is directed toward improving the performance of solar thermal systems with optimization of solar field production. In this research work, a comprehensive thermo-optical modeling has been proposed to evaluate the performance of a mini-level SPTC considering various heat equilibriums with the environment. Here, receiver wall temperature is considered as the base for modeling. Collector consists of a non-evacuated receiver tube with black paint coating and enveloped with glass cover. Available meteorological data in terms of global and diffuse solar insolations, air temperatures and wind speeds have been used as inputs for performance evaluation of SPTC with horizontal and inclined aperture planes. The validation of the proposed analytical model is justified with existing experimental results and yielded a close agreement. The developed model is successfully applied to a SPTC in order to estimate the through-out year performance characteristics in terms of water temperature rise, heat energy generation, optical and thermal efficiency for the climactic conditions of Bhiwani. The results enlighten that using 0.010 kg/s mass flow rate of water and aperture area of around 1.34 m"2, collector achieved maximum rise in water temperature 11.1 °C and 12.2 °C on horizontal and inclined planes, respectively in the month of April. The uppermost heat energy generation is found to be 2.38 kW h/day in May

  1. Adoption of nanofluids in low-enthalpy parabolic trough solar collectors: Numerical simulation of the yearly yield

    International Nuclear Information System (INIS)

    Coccia, Gianluca; Di Nicola, Giovanni; Colla, Laura; Fedele, Laura; Scattolini, Mauro

    2016-01-01

    Highlights: • Nanofluids could be adopted to increase the efficiency of low-enthalpy PTCs. • We present the results of a numerical simulation performed on a nanofluid-based PTC. • Six water-based nanofluids at different weight concentrations were investigated. • The simulation was validated by experimental tests on two prototypes of PTC. • Results are compared with water: only four concentrations gave better efficiency. - Abstract: Energy demand in the world is continuously increasing and fossil fuels resources must be replaced by renewable resources with lower environmental risk factors, in particular CO_2 emissions. Concentrating solar collectors appear to be very promising for that purpose. Thus, this work presents a numerical analysis for the evaluation of the yearly yield of a low-enthalpy parabolic trough solar collector (PTC). To increase the thermal efficiency of such systems, six water-based nanofluids at different weight concentrations are investigated: Fe_2O_3 (5, 10, 20 wt%), SiO_2 (1, 5, 25 wt%), TiO_2 (1, 10, 20, 35 wt%), ZnO (1, 5, 10 wt%), Al_2O_3 (0.1, 1, 2 wt%), and Au (0.01 wt%). The simulation environment was validated by experimental tests using water as heat transfer fluid, in two prototypes of PTC located in the city of Ancona (central Italy), while the convective heat transfer coefficient of nanofluids was measured through a dedicated apparatus. A typical meteorological year was built to perform the simulation, which presents a time-resolution of one hour. A specific arrangement for the PTC was defined, while different inlet fluid temperatures were considered at a mass flow rate of 0.50 kg/s: 40, 50, 60, 70, and 80 °C. For this last temperature, the variation in flow rate was also studied (at 1 kg/s and 1.5 kg/s). Results show that only Au, TiO_2, ZnO, and Al_2O_3 nanofluids at the lower concentrations, present very small improvements compared to the use of water, while increasing the concentration of nanoparticles no advantage

  2. Norwich Technologies' Advanced Low-Cost Receivers for Parabolic Troughs

    Energy Technology Data Exchange (ETDEWEB)

    Stettenheim, Joel [Norwich Technologies, White River Junction, VT (United States); McBride, Troy O. [Norwich Technologies, White River Junction, VT (United States); Brambles, Oliver J. [Norwich Technologies, White River Junction, VT (United States); Cashin, Emil A. [Norwich Technologies, White River Junction, VT (United States)

    2013-12-31

    This report summarizes the successful results of our SunShot project, Advanced Low-Cost Receivers for Parabolic Troughs. With a limited budget of $252K and in only 12 months, we have (1) developed validated optical and thermal models and completed rigorous optimization analysis to identify key performance characteristics as part of developing first-generation laboratory prototype designs, (2) built optical and thermal laboratory prototypes and test systems with associated innovative testing protocols, and (3) performed extensive statistically relevant testing. We have produced fully functioning optical and thermal prototypes and accurate, validated models shown to capture important underlying physical mechanisms. The test results from the first-generation prototype establish performance exceeding the FOA requirement of thermal efficiency >90% for a CSP receiver while delivering an exit fluid temperature of > 650 °C and a cost < $150/kWth. Our vacuum-free SunTrap receiver design provides improvements over conventional vacuum-tube collectors, allowing dramatic reductions in thermal losses at high operating temperature.

  3. Theoretical and Experimental Optical Evaluation and Comparison of Symmetric 2D CPC and V-Trough Collector for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Damasen Ikwaba Paul

    2015-01-01

    Full Text Available This paper presents theoretical and experimental optical evaluation and comparison of symmetric Compound Parabolic Concentrator (CPC and V-trough collector. For direct optical properties comparison, both concentrators were deliberately designed to have the same geometrical concentration ratio (1.96, aperture area, absorber area, and maximum concentrator length. The theoretical optical evaluation of the CPC and V-trough collector was carried out using a ray-trace technique while the experimental optical efficiency and solar energy flux distributions were analysed using an isolated cell PV module method. Results by simulation analysis showed that for the CPC, the highest optical efficiency was 95% achieved in the interval range of 0° to ±20° whereas the highest outdoor experimental optical efficiency was 94% in the interval range of 0° to ±20°. For the V-tough collector, the highest optical efficiency for simulation and outdoor experiments was about 96% and 93%, respectively, both in the interval range of 0° to ±5°. Simulation results also showed that the CPC and V-trough exhibit higher variation in non-illumination intensity distributions over the PV module surface for larger incidence angles than lower incidence angles. On the other hand, the maximum power output for the cells with concentrators varied depending on the location of the cell in the PV module.

  4. Optimized molten salt receivers for ultimate trough solar fields

    Science.gov (United States)

    Riffelmann, Klaus-J.; Richert, Timo; Kuckelkorn, Thomas

    2016-05-01

    Today parabolic trough collectors are the most successful concentrating solar power (CSP) technology. For the next development step new systems with increased operation temperature and new heat transfer fluids (HTF) are currently developed. Although the first power tower projects have successfully been realized, up to now there is no evidence of an all-dominant economic or technical advantage of power tower or parabolic trough. The development of parabolic trough technology towards higher performance and significant cost reduction have led to significant improvements in competitiveness. The use of molten salt instead of synthetic oil as heat transfer fluid will bring down the levelized costs of electricity (LCOE) even further while providing dispatchable energy with high capacity factors. FLABEG has developed the Ultimate TroughTM (UT) collector, jointly with sbp Sonne GmbH and supported by public funds. Due to its validated high optical accuracy, the collector is very suitable to operate efficiently at elevated temperatures up to 550 °C. SCHOTT will drive the key-innovations by introducing the 4th generation solar receiver that addresses the most significant performance and cost improvement measures. The new receivers have been completely redesigned to provide a product platform that is ready for high temperature operation up to 550 °C. Moreover distinct product features have been introduced to reduce costs and risks in solar field assembly and installation. The increased material and design challenges incurred with the high temperature operation have been reflected in sophisticated qualification and validation procedures.

  5. Modeling, Simulation and Performance Evaluation of Parabolic Trough

    African Journals Online (AJOL)

    Mekuannint

    Heat Transfer Fluid (HTF); TRNSYS power plant model; STEC library; Solar Advisor Model (SAM);. TRNSYS solar field model; Solar Electric. Generation System (SEGS). INTRODUCTION. Parabolic troughs are currently most used means of power generation option of solar sources. Solar electric generation systems (SEGs) ...

  6. Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid

    International Nuclear Information System (INIS)

    Mwesigye, Aggrey; Huan, Zhongjie; Meyer, Josua P.

    2015-01-01

    Highlights: • Thermodynamic analysis of a parabolic trough receiver with nanofluids is presented. • Syltherm800–Al 2 O 3 nanofluid is used as the heat transfer fluid in the receiver. • Influence of nanoparticle volume fraction on receiver performance is investigated. • There is an optimal Reynolds number at each temperature and volume fraction. • Receiver thermal and thermodynamic performance improves below some Reynolds number. - Abstract: In this paper, results of a thermodynamic analysis using the entropy generation minimisation method for a parabolic trough receiver tube making use of a synthetic oil–Al 2 O 3 nanofluid as a heat transfer fluid are presented. A parabolic trough collector system with a rim angle of 80° and a concentration ratio of 86 was used. The temperature of the nanofluid considered was in the range of 350–600 K. The nanofluid thermal physical properties are temperature dependent. The Reynolds number varies from 3,560 to 1,151,000, depending on the temperature considered and volume fraction of nanoparticles in the base fluid. Nanoparticle volume fractions in the range 0 ⩽ ϕ ⩽ 8% were used. The local entropy generation rates due to fluid flow and heat transfer were determined numerically and used for the thermodynamic analysis. The study shows that using nanofluids improves the thermal efficiency of the receiver by up to 7.6%. There is an optimal Reynolds number at each inlet temperature and volume fraction for which the entropy generated is a minimum. The optimal Reynolds number decreases as the volume fraction increases. There is also a Reynolds number at every inlet temperature and volume fraction beyond which use of nanofluids is thermodynamically undesirable

  7. Field test of thermoelectric generator using parabolic trough solar concentrator for power generation

    Science.gov (United States)

    Viña, Rommel R.; Alagao, Feliciano B.

    2018-03-01

    A 2.4587 square meter effective area cylindrical parabolic solar concentrator was fabricated. The trough concentrator is a 4-ft by 8-ft metal sheet with solar mirror film adhered on it and it is laid on a frame with steel tubes bent in a shape of a parabola. On the focal region of the parabolic trough is the 1.22-m by 0.10-m absorber plate made of copper and coated flat black. This plate served as high temperature reservoir of the eight equally spaced TEC1-12710T125 thermoelectric modules. On the cold side of the modules is a 2.5-in. by 1-in. rectangular aluminum tube with coolant flowing inside. The coolant loop included a direct contact cooling tower which maintained the module cold side assembly inlet temperature of about 28°C. Collector temperature was also kept below the 125°C module maximum operating temperature by controlling the effective area. This was accomplished by adjusting the reflector covering. Using a dummy load and with 8 modules in series, tests results indicated current readings up to 179.4 mA with a voltage of 10.6 VDC and 27% of reflector area or voltage reading up to 12.7 VDC with a current of 165 mA. A steady voltage of 12 VDC was achieved with the use of a voltage regulator. A voltage above 12 VDC will be required to charge a storage battery. Overall results showed the potential of thermoelectric generator (TEG) in combination with solar energy in power generation.

  8. Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region

    Directory of Open Access Journals (Sweden)

    Praveen R. P.

    2018-03-01

    Full Text Available The Middle East is one among the areas of the world that receive high amounts of direct solar radiation. As such, the region holds a promising potential to leverage clean energy. Owing to rapid urbanization, energy demands in the region are on the rise. Along with the global push to curb undesirable outcomes such as air pollution, emissions of greenhouse gases, and climate change, an urgent need has arisen to explore and exploit the abundant renewable energy sources. This paper presents the design, performance analysis and optimization of a 100 MWe parabolic trough collector Solar Power Plant with thermal energy storage intended for use in the Middle Eastern regions. Two representative sites in the Middle East which offer an annual average direct normal irradiance (DNI of more than 5.5 kWh/m2/day has been chosen for the analysis. The thermodynamic aspect and annual performance of the proposed plant design is also analyzed using the System Advisor Model (SAM version 2017.9.5. Based on the analysis carried out on the initial design, annual power generated from the proposed concentrating solar power (CSP plant design in Abu Dhabi amounts to 333.15 GWh whereas that in Aswan recorded a value of 369.26 GWh, with capacity factors of 38.1% and 42.19% respectively. The mean efficiency of the plants in Abu Dhabi and Aswan are found to be 14.35% and 14.98% respectively. The optimization of the initial plant design is also carried out by varying two main design parameters, namely the solar multiple and full load hours of thermal energy storage (TES. Based on the findings of the study, the proposed 100 MW parabolic trough collector solar power plant with thermal energy storage can contribute to the sustainable energy future of the Middle East with reduced dependency on fossil fuels.

  9. Experimental validation of energy parameters in parabolic trough collector with plain absorber and analysis of heat transfer enhancement techniques

    Science.gov (United States)

    Bilal, F. R.; Arunachala, U. C.; Sandeep, H. M.

    2018-01-01

    The quantum of heat loss from the receiver of the Parabolic Trough Collector is considerable which results in lower thermal efficiency of the system. Hence heat transfer augmentation is essential which can be attained by various techniques. An analytical model to evaluate the system with bare receiver performance was developed using MATLAB. The experimental validation of the model resulted in less than 5.5% error in exit temperature using both water and thermic oil as heat transfer fluid. Further, heat transfer enhancement techniques were incorporated in the model which included the use of twisted tape inserts, nanofluid, and a combination of both for further enhancement. It was observed that the use of evacuated glass cover in the existing setup would increase the useful heat gain up to 5.3%. Fe3O4/H2O nanofluid showed a maximum enhancement of 56% in the Nusselt number for the volume concentration of 0.6% at highest Reynolds number. Similarly, twisted tape turbulators (with twist ratio of 2) taken alone with water exhibited 59% improvement in Nusselt number. Combining both the heat transfer augmentation techniques at their best values revealed the Nusselt number enhancement up to 87%. It is concluded that, use of twisted tape with water is the best method for heat transfer augmentation since it gives the maximum effective thermal efficiency amongst all for the range of Re considered. The first section in your paper

  10. OUT Success Stories: Solar Trough Power Plants

    Science.gov (United States)

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  11. Economic optimization of a Kalina cycle for a parabolic trough solar thermal power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, J. G.

    2015-01-01

    -water mixture evaporates and condenses with a temperature glide, thus providing a better match with the heat source/sink temperature profile. This better match results in reduced thermal irreversibility, but at the cost of relatively larger heat exchanger areas. The parabolic trough collector is the most mature...... heat transfer correlations, and appropriate cost functions were used to estimate the costs for the various plant components. The optimal capital investment costs were determined for several values of the turbine inlet ammonia mass fraction and among the compared cases, the Kalina cycle has the minimum......The Kalina cycle has recently seen increased interest as a replacement for the more traditional steam Rankine cycle for geothermal, solar, ocean thermal energy conversion and waste heat recovery applications. The Kalina cycle uses a mixture of ammonia and water as the working fluid. The ammonia...

  12. On-line monitoring of H2 generation and the HTF degradation in parabolic trough solar thermal power plants: Development of an optical sensor based on an innovative approach

    Science.gov (United States)

    Pagola, Iñigo; Funcia, Ibai; Sánchez, Marcelino; Gil, Javier; González-Vallejo, Victoria; Bedoya, Maxi; Orellana, Guillermo

    2017-06-01

    The work presented in this paper offers a robust, effective and economically competitive method for online detection and monitoring of the presence of molecular hydrogen in the heat transfer fluids of parabolic trough collector plants. The novel method is based on a specific fluorescent sensor according to the ES2425002 patent ("Method for the detection and quantification of hydrogen in a heat transfer fluid").

  13. Investigation on the dynamic behaviour of a parabolic trough power plant during strongly cloudy days

    International Nuclear Information System (INIS)

    Al-Maliki, Wisam Abed Kattea; Alobaid, Falah; Starkloff, Ralf; Kez, Vitali; Epple, Bernd

    2016-01-01

    Highlights: • A detailed dynamic model of a parabolic trough solar thermal power plant is done. • Simulated results are compared to the experimental data from the real power plant. • Discrepancy between model result and real data is caused by operation strategy. • The model strategy increased the operating hours of power plant by around 2.5–3 h. - Abstract: The objective of this study is the development of a full scale dynamic model of a parabolic trough power plant with a thermal storage system, operated by the Actividades de Construcción y Servicios Group in Spain. The model includes solar field, thermal storage system and the power block and describes the heat transfer fluid and steam/water paths in detail. The parabolic trough power plant is modelled using Advanced Process Simulation Software (APROS). To validate the model, the numerical results are compared to the measured data, obtained from “Andasol II” during strongly cloudy periods in the summer days. The comparisons show a qualitative agreement between the dynamic simulation model and the measurements. The results confirm that the thermal storage enables the parabolic trough power plant to provide a constant power rate when the storage energy discharge is available, despite significant oscillations in the solar radiation.

  14. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  15. Performance Analysis of Fractional-Order PID Controller for a Parabolic Distributed Solar Collector

    KAUST Repository

    Elmetennani, Shahrazed; N'Doye, Ibrahima; Salama, Khaled N.; Laleg-Kirati, Taous-Meriem

    2017-01-01

    This paper studies the performance of a fractional-order proportional integral derivative (FOPID) controller designed for parabolic distributed solar collectors. The control problem addressed in concentrated solar collectors aims at forcing

  16. Numerical and experimental investigation on a new type of compound parabolic concentrator solar collector

    International Nuclear Information System (INIS)

    Zheng, Wandong; Yang, Lin; Zhang, Huan; You, Shijun; Zhu, Chunguang

    2016-01-01

    Highlights: • A serpentine compound parabolic concentrator solar collector is proposed. • A mathematical model for the new collector is developed and verified by experiments. • The thermal efficiency of the collector can be up to 60.5% during the experiments. • The effects of key parameters on the thermal performance are mathematically studied. - Abstract: In order to improve the thermal efficiency, reduce the heat losses and achieve high freezing resistance of the solar device for space heating in cold regions, a new type of serpentine compound parabolic concentrator solar collector is presented in this paper, which is a combination of a compound parabolic concentrator solar collector and a flat plate solar collector. A detailed mathematical model for the new collector based on the analysis of heat transfer is developed and then solved by the software tool Matlab. The numerical results are compared with the experimental data and the maximum deviation is 8.07%, which shows a good agreement with each other. The experimental results show that the thermal efficiency of the collector can be as high as 60.5%. The model is used to predict the thermal performance of the new collector. The effects of structure and operating parameters on the thermal performance are mathematically discussed. The numerical and experimental results show that the new collector is more suitable to provide low temperature hot water for space heating in cold regions and the mathematical model will be much helpful in the designing and optimizing of the solar collectors.

  17. Performance comparison of solar parabolic trough system with glass and film reflector

    International Nuclear Information System (INIS)

    Xu, Qian; Li, Longlong; Li, Huairui; Huang, Weidong; Li, Yongping

    2014-01-01

    Highlights: • Solar trough model should consider refractive surface error with glass reflector. • Solar trough system with glass mirror has less efficiency than that with film mirror. • Solar trough system has very low efficiency in a winter day at high latitude. - Abstract: This paper considers the refractive surface error transfer process to present an optical performance model of solar trough system as well as the reflective surface error. We validate the optical model through comparing the calculation results with the experimental data. The optimized design parameters are presented based on the maximization of the annual average net heat efficiency. The results show that maximum relative error of 20% for the optical efficiency may produce if the refractive surface error transfer process is ignored. It indicates that the refractive surface error should be considered in predicting the performance of the solar trough system especially for the glass reflector as well as the reflective surface error. We apply the model to compare the performance of solar parabolic trough system with vacuum tube receiver under two kinds of reflectors, which are glass mirror and film mirror. The results indicate that both parabolic trough systems with a vacuum tube receiver and a north–south axis tracking system are relatively inefficient in winter days, and the net energy output in the winter solstice is less than one sixth of the summer. The net heat efficiency of solar trough system with film mirror is 50% less than that of the system with the glass mirror at noon of the winter solstice and latitude 40 if the design and parameter of the two systems are the same. The results indicate that film reflector is more preferable than glass reflector especially in high latitude if they have the same optical property

  18. On purpose simulation model for molten salt CSP parabolic trough

    Science.gov (United States)

    Caranese, Carlo; Matino, Francesca; Maccari, Augusto

    2017-06-01

    The utilization of computer codes and simulation software is one of the fundamental aspects for the development of any kind of technology and, in particular, in CSP sector for researchers, energy institutions, EPC and others stakeholders. In that extent, several models for the simulation of CSP plant have been developed with different main objectives (dynamic simulation, productivity analysis, techno economic optimization, etc.), each of which has shown its own validity and suitability. Some of those models have been designed to study several plant configurations taking into account different CSP plant technologies (Parabolic trough, Linear Fresnel, Solar Tower or Dish) and different settings for the heat transfer fluid, the thermal storage systems and for the overall plant operating logic. Due to a lack of direct experience of Molten Salt Parabolic Trough (MSPT) commercial plant operation, most of the simulation tools do not foresee a suitable management of the thermal energy storage logic and of the solar field freeze protection system, but follow standard schemes. ASSALT, Ase Software for SALT csp plants, has been developed to improve MSPT plant's simulations, by exploiting the most correct operational strategies in order to provide more accurate technical and economical results. In particular, ASSALT applies MSPT specific control logics for the electric energy production and delivery strategy as well as the operation modes of the Solar Field in off-normal sunshine condition. With this approach, the estimated plant efficiency is increased and the electricity consumptions required for the plant operation and management is drastically reduced. Here we present a first comparative study on a real case 55 MWe Molten Salt Parabolic Trough CSP plant placed in the Tibetan highlands, using ASSALT and SAM (System Advisor Model), which is a commercially available simulation tool.

  19. Tube collector with integrated tracking parabolic concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Grass, C.; Benz, N.; Hacker, Z.; Timinger, A. [ZAE Bayern, Bavarian Centre for Applied Energy Research, Muenchen (Germany)

    2000-07-01

    Low concentrating CPC collectors usually do not track the sun and are mounted in east-west direction with a latitude dependent slope angle. They are most suitable for maximum working temperatures up to 200 250 deg. C. We present a novel evacuated tube-collector with a trough-like concentrating mirror. Single-axis tracking of the mirror is realized with a magnetic mechanism. The mirror is mounted inside the evacuated tube and hence protected from environmental influences. One axis tracking in combination with a small acceptance angle allows for higher concentration as compared to non-tracking concentrating collectors. Ray-tracing analysis shows a half acceptance angle of about 5 deg. at a geometrical concentration ratio of 3.2. The losses of evacuated tube collectors are dominated by the radiation losses of the absorber. Hence, reducing the absorber size can lead to higher efficiencies at high operating temperature levels. With the presented collector we aim for operating temperatures up to 400 deg. C. At temperatures of 300 deg. C we expect efficiencies of 65 %. This allows for application in industrial process heat generation, high efficient solar cooling and power generation. A first prototype was tested at the ZAE Bayern. The optical efficiency was measured to be 75 %. (au)

  20. The cost of integration of parabolic trough CSP plants in isolated Mediterranean power systems

    International Nuclear Information System (INIS)

    Poullikkas, Andreas; Hadjipaschalis, Ioannis; Kourtis, George

    2010-01-01

    In this work, a technical and economic analysis concerning the integration of parabolic trough concentrated solar power (CSP) technologies, with or without thermal storage capability, in an existing typical small isolated Mediterranean power generation system, in the absence of a feed-in tariff scheme, is carried out. In addition to the business as usual (BAU) scenario, five more scenarios are examined in the analysis in order to assess the electricity unit cost with the penetration of parabolic trough CSP plants of 50 MWe or 100 MWe, with or without thermal storage capability. Based on the input data and assumptions made, the simulations indicated that the scenario with the utilization of a single parabolic trough CSP plant (either 50 MWe or 100 MWe and with or without thermal storage capability) in combination with BAU will effect an insignificant change in the electricity unit cost of the generation system compared to the BAU scenario. In addition, a sensitivity analysis on natural gas price, showed that increasing fuel prices and the existence of thermal storage capability in the CSP plant make this scenario marginally more economically attractive compared to the BAU scenario. (author)

  1. Alignment method for parabolic trough solar concentrators

    Science.gov (United States)

    Diver, Richard B [Albuquerque, NM

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  2. Bilinear reduced order approximate model of parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low

  3. DEVELOPMENT AND PRELIMINARY TESTING OF A PARABOLIC TROUGH SOLAR WATER HEATER

    Directory of Open Access Journals (Sweden)

    O. A. Lasode

    2011-06-01

    Full Text Available Solar energy is a high-temperature, high-energy radiant energy source, with tremendous advantages over other alternative energy sources. It is a reliable, robust renewable resource which is largely undeveloped. The design and fabrication of parabolic trough solar water heater for water heating was executed. The procedure employed includes the design, construction and testing stages. The equipment which is made up of the reflector surface (curved mirror, reflector support, absorber pipe and a stand was fabricated using locally sourced materials. The results obtained. compared favourably with other research works in the literature. It depicts that employing a suitable design, selection of time of heating and proper focusing of the reflected rays to the focal spot region, solar radiation can efficiently be utilized for water heating in a tropical environment. This work presents a parabolic trough solar water heater as a suitable renewable energy technology for reducing water-heating costs.

  4. Performance of an absorbing concentrating solar collectors

    International Nuclear Information System (INIS)

    Imadojemu, H.

    1990-01-01

    This paper reports on a comparison of the efficiency of an absorbing fluid parabolic trough concentrating solar collector and a traditional concentrating collector that was made. In the absorbing fluid collector, black liquid flows through a glass tube absorber while the same black liquid flows through a selective black coated copper tube absorber while the same black fluid flows through a selective black coated copper tube absorber in the traditional collector. After a careful study of the properties of available black liquids, a mixture of water and black ink was chosen as the black absorbing medium or transfer fluid. In the black liquid glass collector there is a slightly improved efficiency based on beam radiation as a result of the direct absorption process and an increase in the effective transmittance absorptance. At worst the efficiency of this collector equals that of the traditional concentrating collector when the efficiency is based on total radiation. The collector's reflecting surfaces were made of aluminum sheet, parabolic line focus and with cylindrical receivers. The ease of manufacture and reduced cost per unit energy collected, in addition to the clean and pollution free mode of energy conversion, makes it very attractive

  5. Multi-parameter optimization design of parabolic trough solar receiver

    International Nuclear Information System (INIS)

    Guo, Jiangfeng; Huai, Xiulan

    2016-01-01

    Highlights: • The optimal condition can be obtained by multi-parameter optimization. • Exergy and thermal efficiencies are employed as objective function. • Exergy efficiency increases at the expense of heat losses. • The heat obtained by working fluid increases as thermal efficiency grows. - Abstract: The design parameters of parabolic trough solar receiver are interrelated and interact with one another, so the optimal performance of solar receiver cannot be obtained by the convectional single-parameter optimization. To overcome the shortcoming of single-parameter optimization, a multi-parameter optimization of parabolic trough solar receiver is employed based on genetic algorithm in the present work. When the thermal efficiency is taken as the objective function, the heat obtained by working fluid increases while the average temperature of working fluid and wall temperatures of solar receiver decrease. The average temperature of working fluid and the wall temperatures of solar receiver increase while the heat obtained by working fluid decreases generally by taking the exergy efficiency as an objective function. Assuming that the solar radiation intensity remains constant, the exergy obtained by working fluid increases by taking exergy efficiency as the objective function, which comes at the expense of heat losses of solar receiver.

  6. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.

    2011-01-01

    Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal

  7. Solar water disinfecting system using compound parabolic concentrating collector

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)

    2000-05-31

    Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)

  8. A numerical analysis of the energy behavior of a parabolic trough ...

    African Journals Online (AJOL)

    The solar power is a clean and a durable energy; there are several techniques for using them. When necessary to elevated temperatures of heat transfer fluid, this energy must concentration. This paper presents the efficiencies study of a linear solar concentrator of a parabolic trough type. This study was conducted on the ...

  9. Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem

    2016-01-01

    This brief addresses the control problem of distributed parabolic solar collectors in order to maintain the field outlet temperature around a desired level. The objective is to design an efficient controller to force the outlet fluid temperature

  10. Parabolic trough solar concentrators: a technology which can contribute towards pakistan's energy future

    International Nuclear Information System (INIS)

    Masood, R.

    2013-01-01

    The utilization of solar thermal energy has got prime importance in Pakistan due to the current energy scarcity and escalating cost scenario in the country. Parabolic Trough Solar Concentrator is one of the most reliable technologies for utilization of solar thermal energy. In solar thermal power generation, Parabolic Trough Solar Concentrators are most successful as almost 96 percent of total solar thermal power is generated across the world by utilizing this technology. Its high reliability, operational compatibility, comparative low cost and high efficiency adds to its high value among other resources. Fortunately, Pakistan lies in the high Solar Insolation Zone; thus, a huge potential exists to benefit from this technology. This technology may cater to the Pakistan's seasonal increased electricity demand. Apart from electric power generation, this technology may also have cost-effective solutions for Pakistan's other industries, like steam generation, preheating of boiler make-up water, air-conditioning, and hot water production for food, textile, dairy and leather industries. However, economic justification of such projects would be possible only on accomplishing an indigenous technology base. Globally, this is a proven technology, but in Pakistan there is hardly any development in this field. In this study, an effort has been made by designing and fabricating an experimental Parabolic Trough Solar Water Heater by utilizing locally available materials and manufacturing capabilities. On achieving encouraging results, a solar boiler (steam generator) is proposed to be manufactured locally. (author)

  11. Heat transfer analysis of parabolic trough solar receiver

    International Nuclear Information System (INIS)

    Padilla, Ricardo Vasquez; Demirkaya, Gokmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.

    2011-01-01

    Highlights: → In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. → The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. → Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented. → The proposed heat transfer model was validated with experimental data obtained from Sandia National Laboratory. → Our results showed a better agreement with experimental data compared to other models. -- Abstract: Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.

  12. The modelling of solar radiation quantities and intensities in a two dimensional compound parabolic collector

    OpenAIRE

    2010-01-01

    M.Ing. A dissertation presented on the basic solar design principles such as sun-earth geometry, energy wavelengths, optics, incidence angles, parabolic collector configurations and design, materials for solar applications, efficiencies, etc to be considered in Solar Concentrating Collector design. These principles were applied in the design and fabrication of a prototype solar collector. The solar collector was tested to verify and correct mathematical models that were generated from exis...

  13. Ray tracing for optimization of compound parabolic concentrators for solar collectors of enclosed design

    OpenAIRE

    YURCHENKO, VLADIMIR; YURCHENKO, EDUARD; ÇİYDEM, MEHMET; TOTUK, ONAT

    2015-01-01

    We present our developments in computer simulations and optimization of compound parabolic concentrators (CPCs) for solar heat collectors. Issues of both the optical and thermal optimization of CPC collectors of enclosed design are discussed. Ray tracing results for a CPC with a V-shaped absorber are presented. A range of optimal values for the apex angle of a V-shaped absorber is proposed for a CPC collector of typical design.

  14. EXERGY AND CARBON CREDITS FOR SERIES CONNECTED N PHOTOVOLTAIC THERMAL - COMPOUND PARABOLIC CONCENTRATOR (PVT-CPC) COLLECTOR: AT CONSTANT OUTLET TEMPERATURE

    OpenAIRE

    Rohit Tripathi 1,*, G. N. Tiwari 2

    2017-01-01

    In the present study, overall energy and exergy performance of partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) (25% covered by glass to glass PV module) collector connected in series have been carried out at constant outlet temperature mode. Further, comparison in performance for partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) [case (i)] and N compound parabolic concentrators (CPC) collector [case (ii)] connected in s...

  15. Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region. A case study for the island of Cyprus

    International Nuclear Information System (INIS)

    Poullikkas, Andreas

    2009-01-01

    In this work a feasibility study is carried out in order to investigate whether the installation of a parabolic trough solar thermal technology for power generation in the Mediterranean region is economically feasible. The case study takes into account the available solar potential for Cyprus, as well as all available data concerning current renewable energy sources policy of the Cyprus Government, including the relevant feed-in tariff. In order to identify the least cost feasible option for the installation of the parabolic trough solar thermal plant a parametric cost-benefit analysis is carried out by varying parameters, such as, parabolic trough solar thermal plant capacity, parabolic trough solar thermal capital investment, operating hours, carbon dioxide emission trading system price, etc. For all above cases the electricity unit cost or benefit before tax, as well as after tax cash flow, net present value, internal rate of return and payback period are calculated. The results indicate that under certain conditions such projects can be profitable. (author)

  16. Performance and Simulation of a Stand-alone Parabolic Trough Solar Thermal Power Plant

    Science.gov (United States)

    Mohammad, S. T.; Al-Kayiem, H. H.; Assadi, M. K.; Gilani, S. I. U. H.; Khlief, A. K.

    2018-05-01

    In this paper, a Simulink® Thermolib Model has been established for simulation performance evaluation of Stand-alone Parabolic Trough Solar Thermal Power Plant in Universiti Teknologi PETRONAS, Malaysia. This paper proposes a design of 1.2 kW parabolic trough power plant. The model is capable to predict temperatures at any system outlet in the plant, as well as the power output produced. The conditions that are taken into account as input to the model are: local solar radiation and ambient temperatures, which have been measured during the year. Other parameters that have been input to the model are the collector’s sizes, location in terms of latitude and altitude. Lastly, the results are presented in graphical manner to describe the analysed variations of various outputs of the solar fields obtained, and help to predict the performance of the plant. The developed model allows an initial evaluation of the viability and technical feasibility of any similar solar thermal power plant.

  17. Optimising position control of a solar parabolic trough

    Directory of Open Access Journals (Sweden)

    Puramanathan Naidoo

    2011-03-01

    Full Text Available In today’s climate of growing energy needs and increasing environmental concerns, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is solar energy. This study is based on the implementation of a mathematical computation – the PSA (Plataforma Solar de Almeria computation developed at PSA (the European Test Centre for solar energy applications – embedded in a control algorithm to locate the position of the sun. Tests were conducted on a solar parabolic trough (SPT constructed at the Solar Thermal Applications Research Laboratory of the Mangosuthu University of Technology (Durban, South Africa for optimal position control using the PSA value. The designed control algorithm embedded in an industrial Siemens S7-314 C-2PtP programmable logic controller compared the PSA computation to a measured position of the SPT to optimally rotate the SPT to a desired position with the constant movement of the sun. The two main angles of the sun relative to the position of the SPT on earth, the zenith angle and the azimuth angle, both calculated in the PSA from the vertical and horizontal planes, respectively, were applied to the control algorithm to generate an appropriate final tracking angle within a 0.007 radian (0° 24′ 3.6″ tolerance, in accordance to the construction specifications and solar collector testing standards of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE, 1991. These values, together with the longitude and latitude applicable to the geographical location of the SPT, were processed in the control software to rotate the SPT to an optimal position with respect to the position of the sun in its daily path, for solar-to-thermal conversion.

  18. Performance Analysis of Fractional-Order PID Controller for a Parabolic Distributed Solar Collector

    KAUST Repository

    Elmetennani, Shahrazed

    2017-09-01

    This paper studies the performance of a fractional-order proportional integral derivative (FOPID) controller designed for parabolic distributed solar collectors. The control problem addressed in concentrated solar collectors aims at forcing the produced heat to follow a desired reference despite the unevenly varying solar irradiance. In addition to the unpredictable variations of the energy source, the parabolic solar collectors are subject to inhomogeneous distributed efficiency parameters affecting the heat production. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness with respect to disturbances. Thus, we propose a control strategy based on FOPID to achieve the control objectives. First, the FOPID controller is designed based on a linear approximate model describing the system dynamics under nominal working conditions. Then, the FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. Numerical simulations are carried out to evaluate the performance of the proposed FOPID controller. A comparison to the robust integer order PID is also provided. Robustness tests are performed for the nominal model to show the effectiveness of the FOPID. Furthermore, the proposed FOPID is numerically tested to control the distributed solar collector under real working conditions.

  19. Evaluation of Surface Slope Irregularity in Linear Parabolic Solar Collectors

    Directory of Open Access Journals (Sweden)

    F. Francini

    2012-01-01

    Full Text Available The paper describes a methodology, very simple in its application, for measuring surface irregularities of linear parabolic collectors. This technique was principally developed to be applied in cases where it is difficult to use cumbersome instruments and to facilitate logistic management. The instruments to be employed are a digital camera and a grating. If the reflector surface is defective, the image of the grating, reflected on the solar collector, appears distorted. Analyzing the reflected image, we can obtain the local slope of the defective surface. These profilometric tests are useful to identify and monitor the mirror portions under mechanical stress and to estimate the losses caused by the light rays deflected outside the absorber.

  20. Comparison of the optics of non-tracking and novel types of tracking solar thermal collectors for process heat applications up to 300{sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Grass, C.; Schoelkopf, W.; Staudacher, L.; Hacker, Z. [Bavarian Centre for Applied Energy Research, ZAE Bayern Division 4, Garching (Germany)

    2004-03-01

    Evacuated CPC (compound parabolic concentrator) collectors with non-tracking reflectors are compared with two novel tracking collectors: a parabolic trough and an evacuated tube collector with integrated tracking reflector. Non-tracking low concentrating CPC collectors are mostly mounted in east-west direction with a latitude dependent slope angle. They are suitable at most for working temperatures up to 200-250 {sup o}C. We present a tracking evacuated tube-collector with a trough-like concentrating mirror. Single-axis tracking of the mirror is realized with a magnetic mechanism. The mirror is mounted inside the evacuated tube and hence protected from environmental influences. One axis tracking in combination with a small acceptance angle allows for higher concentration as compared to non-tracking concentrating collectors. Ray-tracing analysis shows a half acceptance angle of about 5.7{sup o} at geometrical concentration ratio of 3.2. Losses of well constructed evacuated tube collectors (heat conductivity through the manifolds inside the thermally insulated terminating housing are low) are dominated by radiation losses of the absorber. Hence, reducing the absorber size can lead to higher efficiencies at high operating temperature levels. With the presented collector we aim for operating temperatures up to 350 {sup o}C. At temperatures of 300 {sup o}C we expect with anti-reflective coating of the glass tube and a selective absorber coating efficiencies of 0.65. This allows for application in industrial process heat generation, high efficient solar cooling and power generation. A first prototype, equipped with a standard glass tube and a black paint absorber coating, was tested at ZAE Bayern. The optical efficiency was measured to be 0.71. This tube-collector is compared by ray-tracing with non-tracking market available tube-collectors with geometrical concentration ratios up to 1.1 and with a low cost parabolic trough collector of Industrial Solar Technology (IST

  1. Solar Heating of Buildings and Domestic Hot Water. Revision.

    Science.gov (United States)

    1980-05-01

    tracking mechanism and can collect only direct radiation. Figure 2-9(c) shows a compound parabolic mirror collector . The design of the mirrors allow the...linear-trough, fresnel lens tube collector (c compound parabolic mirror IFigurc 2-9. Cirnicntrating coll’ectors lr solar cncrgy. Direct radiation is...the parabolic trough, the linear-trough fresnel lens, and the compound parabolic mirror. -Figure 2-9(a) shows a linear concentrating or parabolic

  2. Survey mirrors and lenses and their required surface accuracy. Volume 2. Concentrator optical performance software (COPS) user's manual. Final report for September 15, 1978-December 1, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The mathematical modeling of 11 different concentrating collectors is documented and instructions are given for use of the computer code. The 11 concentrators modeled are: faceted mirror concentration; fixed mirror, two-axis tracking receiver; parabolic trough collector; linear Fresnel; incremental reflector; inflated cylindrical concentrator; CPC-involute reflector with evacuated receiver; CPC-parabolic/involute reflector; V trough collectors, imaging collapsing concentrator; and parabolic dish collector. (MHR)

  3. Preliminary experimental study of post-combustion carbon capture integrated with solar thermal collectors

    International Nuclear Information System (INIS)

    Wang, Fu; Zhao, Jun; Li, Hailong; Deng, Shuai; Yan, Jinyue

    2017-01-01

    Highlights: • A solar assisted chemical absorption pilot system with two types of collectors (parabolic trough and linear Fresnel reflector) has been constructed. • Performance of two types of solar collectors has been investigated and compared at steady and transient states. • The operations of the pilot system with and without solar assisted have been tested. • The pilot system responds to the temperature of the heat transfer fluid regularly. - Abstract: The amine-based chemical absorption for CO_2 capture normally needs to extract steam from the steam turbine cycle for solvent regeneration. Integrating solar thermal energy enables the reduction of steam extraction and therefore, can reduce the energy penalty caused by CO_2 capture. In this paper, a pilot system of the solar thermal energy assisted chemical absorption was built to investigate the system performance. Two types of solar thermal energy collectors, parabolic trough and linear Fresnel reflector, were tested. It was found that the values of operation parameters can meet the requirements of designed setting parameters, and the solar collectors can provide the thermal energy required by the reboiler, while its contribution was mainly determined by solar irradiation. The solvent regeneration was investigated by varying the heat input. The results show that the response time of the reboiler heat duty is longer than those of the reboiler temperature and desorber pressure. This work provides a better understanding about the overall operation and control of the system.

  4. Study on a Mid-Temperature Trough Solar Collector with Multisurface Concentration

    Directory of Open Access Journals (Sweden)

    Zhengliang Li

    2015-01-01

    Full Text Available A new trough solar concentrator which is composed of multiple reflection surfaces is developed in this paper. The concentrator was analyzed firstly by using optical software. The variation curves of the collecting efficiency affected by tracking error and the deviation angle were given out. It is found that the deviation tolerance for the collector tracking system is about 8 degrees when the receiver is a 90 mm flat. The trough solar concentrators were tested under real weather conditions. The experiment results indicate that, the new solar concentrator was validated to have relative good collecting efficiency, which can be more than 45 percent when it operated in more 145°C. It also has the characteristics of rdust, wind, and snow resistance and low tracking precision requirements.

  5. Optical and Structural Characterization of Nickel Coatings for Solar Collector Receivers

    OpenAIRE

    Pratesi, S.; Sani, E.; De Lucia, M.

    2014-01-01

    The development of spectrally selective materials is gaining an increasing role in solar thermal technology. The ideal spectrally selective solar absorber requires high absorbance at the solar spectrum wavelengths and low emittance at the wavelengths of thermal spectrum. Selective coating represents a promising route to improve the receiver efficiency for parabolic trough collectors (PTCs). In this work, we describe an intermediate step in the fabrication of black-chrome based solar absorbers...

  6. An experimental study of thermal characterization of parabolic trough receivers

    International Nuclear Information System (INIS)

    Lei, Dongqiang; Li, Qiang; Wang, Zhifeng; Li, Jian; Li, Jianbin

    2013-01-01

    Highlights: ► A new test stand of heat loss has been developed at IEECAS. ► A correlation between heat loss and absorber temperature is presented, 270 W/m 400 °C. ► The ratio of end loss in total heat loss increases with decreasing the temperature. ► The emittance test stand using a high vacuum system and vacuum gauge is built. ► Emittance first decreases, then rapidly increases with increasing the temperature. - Abstract: The receiver is a key component of the parabolic trough solar station. The receiver requires the most challenging technology and has a decisive influence on the thermal and economic performance of a power plant. The Institute of Electrical Engineering Chinese Academy Sciences (IEECAS) and Himin Solar Co., Ltd. (HSC) cooperated to develop solar receivers for the first 50 MW parabolic trough project in Inner Mongolia, China. This paper examines overall heat loss, end loss and thermal emittance of the coating of a newly designed receiver in order to evaluate its thermal characterization. A series of heat loss tests are conducted in a newly developed test stand following the steady state equilibrium method. The tests provide a correlation between heat loss and the absorber temperature. This paper presents a new testing method to accurately test the coating emittance. The method uses a receiver with a high vacuum system and a vacuum gauge to maintain continuous exhaust and high vacuum throughout the heat loss testing. A heat loss comparison between the receiver and other existing receivers provides a reference that enabled further optimization. Theoretical and experimental analysis examines the effects of end loss both with and without a heat insulator and a coil heater. The emittance curves of different coatings are acquired and the reasons for initial emittance decrease and then remarkable increase versus temperature are analyzed

  7. Bilinear reduced order approximate model of parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2015-07-01

    This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low dimensional bilinear state representation, enables the reproduction of the heat transfer dynamics along the collector tube for system analysis. Moreover, presented as a reduced order bilinear state space model, the well established control theory for this class of systems can be applied. The approximation efficiency has been proven by several simulation tests, which have been performed considering parameters of the Acurex field with real external working conditions. Model accuracy has been evaluated by comparison to the analytical solution of the hyperbolic distributed model and its semi discretized approximation highlighting the benefits of using the proposed numerical scheme. Furthermore, model sensitivity to the different parameters of the gaussian interpolation has been studied.

  8. Strategic Plan Outline for the Army Utilities Modernization Program: Fiscal Years 2008-2013

    Science.gov (United States)

    2006-11-01

    mechanism to keep the trough reflector pointed at the sun throughout the day, and compound parabolic concentrating collectors , which do not re- quire... collectors are used in commercial and industrial applications and are of the following types: parabolic -trough collectors , which use a tracking...section of a PV cell ...................................................................................................149 H9 Solar collector types

  9. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  10. A point focusing double parabolic trough concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Murphree, Quincy C. [Kentucky Mountain Bible College, Vancleve, KY (United States)

    2001-07-01

    This article shows that a point focusing solar concentrator can be made from two reflective parabolic troughs, a primary and a secondary, by orienting their longitudinal axes in perpendicular directions and separating them by the difference of their focal lengths along the optical axis. This offers a new alternative to the conventional 3-D paraboloidal concentrator permitting more flexibility in designs for applications requiring high concentrations. Both advantages and disadvantages are discussed. The intensity concentration ratio distribution is calculated in the focal plane and has elliptically shaped contours due to the inherent compensation of errant rays by the concave secondary. The ratio of the major to minor axes was 2.61 for the case considered, resulting in a concentration {approx}2.61 times that of a comparable concentrator without the compensation afforded by a concave secondary. Still, geometrical constraints limit the concentration to about 2000 suns for mirror quality errors of 5 mr. Optimisation of the compensation effect holds potential for improved performance for other concentrator designs. Finally, the functional dependence of the peak concentration and shading factor upon design parameters are presented. (Author)

  11. Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2016-11-09

    This brief addresses the control problem of distributed parabolic solar collectors in order to maintain the field outlet temperature around a desired level. The objective is to design an efficient controller to force the outlet fluid temperature to track a set reference despite the unpredictable varying working conditions. In this brief, a bilinear model-based robust Lyapunov control is proposed to achieve the control objectives with robustness to the environmental changes. The bilinear model is a reduced order approximate representation of the solar collector, which is derived from the hyperbolic distributed equation describing the heat transport dynamics by means of a dynamical Gaussian interpolation. Using the bilinear approximate model, a robust control strategy is designed applying Lyapunov stability theory combined with a phenomenological representation of the system in order to stabilize the tracking error. On the basis of the error analysis, simulation results show good performance of the proposed controller, in terms of tracking accuracy and convergence time, with limited measurement even under unfavorable working conditions. Furthermore, the presented work is of interest for a large category of dynamical systems knowing that the solar collector is representative of physical systems involving transport phenomena constrained by unknown external disturbances.

  12. Survey of Thermal Storage for Parabolic Trough Power Plants; Period of Performance: September 13, 1999 - June 12, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Pilkington Solar International GmbH

    2000-09-29

    The purpose of this report is to identify and selectively review previous work done on the evaluation and use of thermal energy storage systems applied to parabolic trough power plants. Appropriate storage concepts and technical options are first discussed, followed by a review of previous work.

  13. A review of Andasol 3 and perspective for parabolic trough CSP plants in South Africa

    Science.gov (United States)

    Dinter, Frank; Möller, Lucas

    2016-05-01

    Andasol 3 is a 50 MW parabolic trough concentrating solar power plant with thermal energy storage in Andalusia, southern Spain. Having started operating in 2011 as one of the first plants of its kind in Spain it has been followed by more than 50 in the country since. For the reason that CSP plants with storage have the potential to compete against fossil fuel fired plants much better than any other renewable energy source a long-term review of such a plant operating on a commercial scale is needed. With data at hand documenting Andasol 3's operation over the course of one year between July 2013 and June 2014 we intend to provide such a review. We calculated the plants overall efficiency, its capacity factor, the gross energy generation as well as auxiliary powers on a monthly basis to reflect upon its overall performance. It was also looked at the benefits caused by the thermal energy storage and especially how steadily and reliably the plant was able to operate. With basic background information about physical, geographical and meteorological aspects influencing the solar resource, its variation and a CSP plant's performance a qualitative estimation for a parabolic trough plant located in South Africa was made.

  14. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC)

    OpenAIRE

    Ahed Hameed Jaaz; Husam Abdulrasool Hasan; Kamaruzzaman Sopian; Abdul Amir H. Kadhum; Tayser Sumer Gaaz; Ahmed A. Al-Amiery

    2017-01-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar ce...

  15. Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator

    International Nuclear Information System (INIS)

    Xu, Rong Ji; Zhang, Xiao Hui; Wang, Rui Xiang; Xu, Shu Hui; Wang, Hua Sheng

    2017-01-01

    Highlights: • Solar collector integrates compound parabolic concentrator and pulsating heat pipe. • Concentrator of a concentration ratio 3.4 matches well heat flux of heat pipe. • Solar collector efficiency increases with decreasing absorber thermal resistance. • Maximum 50% efficiency of the integrated solar collector has been achieved. - Abstract: The paper reports an experimental investigation of a newly proposed solar collector that integrates a closed-end pulsating heat pipe (PHP) and a compound parabolic concentrator (CPC). The PHP is used as an absorber due to its simple structure and high heat transfer capacity. The CPC has a concentration ratio of 3.4 and can be readily manufactured by three-dimensional printing. The CPC can significantly increase the incident solar irradiation intensity to the PHP absorber and also reduce the heat loss due to the decrease in the area of the hot surface. A prototype of the solar collector has been built, consisting of a PHP absorber bent by 4 mm diameter copper tube, CPC arrayed by 10 × 2 CPC units with the collection area of 300 × 427.6 mm 2 , a hot water tank and a glass cover. HFE7100 was utilized as the working fluid at a filling ratio of 40%. The operating characteristics and thermal efficiency of the solar collector were experimentally studied. The steady and periodic temperature fluctuations of the evaporation and condensation sections of the PHP absorber indicate that the absorber works well with a thermal resistance of about 0.26 °C/W. It is also found that, as the main factor to the the thermal performance of the collector, thermal resistance of the PHP absorber decreases with increasing evaporation temperature. The collector apparently shows start-up, operational and shutdown stages at the starting and ending temperatures of 75 °C. When the direct normal irradiance is 800 W/m 2 , the instantaneous thermal efficiency of the solar collector can reach up to 50%.

  16. Integrated function nonimaging concentrating collector tubes for solar thermal energy

    Science.gov (United States)

    Winston, R.; Ogallagher, J. J.

    1982-09-01

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 sq m panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200 C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100 to 300 C range including industrial progress heat, air conditioning and Rankine engine operation.

  17. Utilization of parabolic solar collector in wood drying; Utilizacao de coletor solar parabolico na secagem de madeira

    Energy Technology Data Exchange (ETDEWEB)

    Souza Mendes, Alfredo de

    1986-12-31

    This study was concerned to concept, to project and to build a parabolic solar collector as a generation source of thermic energy to the conventional drying of wood, jointed to a drying environment and to evaluate its efficiency. In this sense, prototypes of a solar collector and a conventional dry kiln were built. The collector with linear focus, was provided with a solar photoelectric tracking system. The dry kiln had semiautomatic control of temperature and a capacity to dry 0,3 m deg 3 of wood. All the steps of the construction of the system are presented with details. (author). 14 figs., 8 tabs., 73 refs

  18. Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-27

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  19. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  20. Fabrication of trough-shaped solar collectors

    Science.gov (United States)

    Schertz, William W.

    1978-01-01

    There is provided a radiant energy concentration and collection device formed of a one-piece thin-walled plastic substrate including a plurality of nonimaging troughs with certain metallized surfaces of the substrate serving as reflective side walls for each trough. The one-piece plastic substrate is provided with a seating surface at the bottom of each trough which conforms to the shape of an energy receiver to be seated therein.

  1. The performance of solar collector CPC (compound parabolic concentrator) type with three pipes covered by glass tubes

    Science.gov (United States)

    Gaos, Yogi Sirodz; Yulianto, Muhamad; Juarsa, Mulya; Nurrohman, Marzuki, Edi; Yuliaji, Dwi; Budiono, Kabul

    2017-03-01

    Indonesia is a tropical country that has potential energy of solar radiation worth of 4.5 until 4.8 kWh/m2. However, this potential has not been utilized regularly. This paper will discuss the performance of solar collector compound parabolic concentrator (CPC) type with water as the working fluid. This CPC solar collector utilized three pipes covered by glass tubes. This paper has contribution to provide the temperature achievement between three pipes covered by glass tubes with and without glass cover of solar collector CPC type. The research conducted by varying the water flow rate of 1 l/m up to 6 l/m with three pipes arranged in series and parallel. From the results, the used of solar collector CPC type in the current study shows that the decrease of solar radiation, which was caused by climate change, did not influence the heat absorbance by water in the pipe. Therefore, the design of the solar collector in this research has potential to be used in future when solar radiation are used as the energy source.

  2. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C.

    2010-07-01

    This report describes a component-based cost model developed for parabolic trough solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), assisted by WorleyParsons Group Inc., for use with NREL's Solar Advisor Model (SAM). This report includes an overview and explanation of the model, two summary contract reports from WorleyParsons, and an Excel spreadsheet for use with SAM. The cost study uses a reference plant with a 100-MWe capacity and six hours of thermal energy storage. Wet-cooling and dry-cooling configurations are considered. The spreadsheet includes capital and operating cost by component to allow users to estimate the impact of changes in component costs.

  3. EVALUATION OF A SOLAR DESALINATION SYSTEM, TYPE CYLINDRICAL PARABOLIC CONCENTRATOR FOR SEA WATER

    Directory of Open Access Journals (Sweden)

    Carolina Mercado

    2015-12-01

    Full Text Available In this work, the methodology for the design, construction and commissioning of a solar desalinator, based on a parabolic trough collector and a solar still occurs, is presented. The energy is supplied through the solar collector, which is connected to the distiller. The equipment was set up on the premises of the Universidad Católica del Norte. It is compact, modular, low cost, easy maintenance and long life, with an average production capacity of distilled water of 2.37 l / d, however, it has to be considered that this rate is directly related with weather conditions and sea water flow entering the system, generating an average percentage of 34.04% efficiency. The results obtained with the respective findings, conclusions and recommendations for future projects associated to renewable energy equipment designed analyzed.

  4. Research Article Special Issue

    African Journals Online (AJOL)

    pc

    2018-03-07

    Mar 7, 2018 ... In this research, the solar tracking system using automated circuits for the parabolic trough ... In section 2, prototype design. Then .... parabolic trough concentrating collector are water heater, air heater and heat exchanger.

  5. A comparative Thermal Analysis of conventional parabolic receiver tube and Cavity model tube in a Solar Parabolic Concentrator

    Science.gov (United States)

    Arumugam, S.; Ramakrishna, P.; Sangavi, S.

    2018-02-01

    Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.

  6. Second Generation Novel High Temperature Commercial Receiver & Low Cost High Performance Mirror Collector for Parabolic Solar Trough

    Energy Technology Data Exchange (ETDEWEB)

    Stettenheim, Joel [Norwich Technologies, White River Junction, VT (United States)

    2016-02-29

    Norwich Technologies (NT) is developing a disruptively superior solar field for trough concentrating solar power (CSP). Troughs are the leading CSP technology (85% of installed capacity), being highly deployable and similar to photovoltaic (PV) systems for siting. NT has developed the SunTrap receiver, a disruptive alternative to vacuum-tube concentrating solar power (CSP) receivers, a market currently dominated by the Schott PTR-70. The SunTrap receiver will (1) operate at higher temperature (T) by using an insulated, recessed radiation-collection system to overcome the energy losses that plague vacuum-tube receivers at high T, (2) decrease acquisition costs via simpler structure, and (3) dramatically increase reliability by eliminating vacuum. It offers comparable optical efficiency with thermal loss reduction from ≥ 26% (at presently standard T) to ≥ 55% (at high T), lower acquisition costs, and near-zero O&M costs.

  7. Thermal Modeling of a Hybrid Thermoelectric Solar Collector with a Compound Parabolic Concentrator

    Science.gov (United States)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.

    2013-07-01

    In this study radiant light from the sun is used by a hybrid thermoelectric (TE) solar collector and a compound parabolic concentrator (CPC) to generate electricity and thermal energy. The hybrid TE solar collector system described in this report is composed of transparent glass, an air gap, an absorber plate, TE modules, a heat sink to cool the water, and a storage tank. Incident solar radiation falls on the CPC, which directs and reflects the radiation to heat up the absorber plate, creating a temperature difference across the TE modules. The water, which absorbs heat from the hot TE modules, flows through the heat sink to release its heat. The results show that the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold sides of the TE modules. A maximum power output of 1.03 W and a conversion efficiency of 0.6% were obtained when the temperature difference was 12°C. The thermal efficiency increased as the water flow rate increased. The maximum thermal efficiency achieved was 43.3%, corresponding to a water flow rate of 0.24 kg/s. These experimental results verify that using a TE solar collector with a CPC to produce both electrical power and thermal energy seems to be feasible. The thermal model and calculation method can be applied for performance prediction.

  8. Technical Manual for the SAM Physical Trough Model

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  9. LCOE reduction potential of parabolic trough and solar tower CSP technology until 2025

    Science.gov (United States)

    Dieckmann, Simon; Dersch, Jürgen; Giuliano, Stefano; Puppe, Michael; Lüpfert, Eckhard; Hennecke, Klaus; Pitz-Paal, Robert; Taylor, Michael; Ralon, Pablo

    2017-06-01

    Concentrating Solar Power (CSP), with an installed capacity of 4.9 GW by 2015, is a young technology compared to other renewable power generation technologies. A limited number of plants and installed capacity in a small challenging market environment make reliable and transparent cost data for CSP difficult to obtain. The International Renewable Energy Agency (IRENA) and the DLR German Aerospace Center gathered and evaluated available cost data from various sources for this publication in order to yield transparent, reliable and up-to-date cost data for a set of reference parabolic trough and solar tower plants in the year 2015 [1]. Each component of the power plant is analyzed for future technical innovations and cost reduction potential based on current R&D activities, ongoing commercial developments and growth in market scale. The derived levelized cost of electricity (LCOE) for 2015 and 2025 are finally contrasted with published power purchase agreements (PPA) of the NOOR II+III power plants in Morocco. At 7.5% weighted average cost of capital (WACC) and 25 years economic life time, the levelized costs of electricity for plants with 7.5 (trough) respectively 9 (tower) full-load hours thermal storage capacity decrease from 14-15 -ct/kWh today to 9-10 -ct/kWh by 2025 for both technologies at direct normal irradiation of 2500 kWh/(m².a). The capacity factor increases from 41.1% to 44.6% for troughs and from 45.5% to 49.0% for towers. Financing conditions are a major cost driver and offer potential for further cost reduction with the maturity of the technology and low interest rates (6-7 - ct/kWh for 2% WACC at 2500 kWh/(m2.a) in 2025).

  10. Output feedback control of heat transport mechanisms in parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2016-08-05

    This paper presents an output feedback control for distributed parabolic solar collectors. The controller aims at forcing the outlet temperature to track a desired reference in order to manage the produced heat despite the external disturbances. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a constant velocity, which allows to control the transient behavior and the response time of the closed loop. The designed controller depends only on the accessible measured variables which makes it easy for real time implementation and useful for industrial plants. Simulation results show the efficiency of the reference tracking closed loop under different working conditions.

  11. Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector

    International Nuclear Information System (INIS)

    Menbari, Amir; Alemrajabi, Ali Akbar; Rezaei, Amin

    2016-01-01

    Highlights: • The effect of CuO/Water on a direct absorption parabolic collector is investigated. • The power-law is used for simulating the turbulent flow into the receiver pipe. • In this collector the solar irradiance is absorbed directly and converted to heat. • Nanofluid as the working fluid improves the thermal efficiency of the collector. - Abstract: Direct absorption solar collectors (DASCs) form a new class of collectors that directly harvest sun beams via a working fluid. They offer several advantages over their conventional surface absorption counterparts such as reduced surface heat loss and increased solar irradiance absorption. The optical and thermo-physical properties of the working fluid may be improved and system efficiency may be enhanced in direct absorption solar collectors (DASCs) by introducing nanoparticles into the base fluid. The present study investigates, both analytically and experimentally, the effects of CuO/Water nanofluid on the efficiency of a direct absorption parabolic trough collector (DAPTC). The theoretical analysis of DAPTC is based on the power-law with the objective of simulating a turbulent flow into the receiver pipe. Comparison of the results obtained from the model and the experimental measurements reveals a good agreement between the two sets of data, indicating that they can be exploited to validate the numerical solution. Moreover, modeling results indicate that the average radial temperature and energy generation terms due to the solar irradiance absorbed and scattered by the nanoparticles decrease with increasing distance from the receiver pipe wall. It is also found that the solar irradiance is absorbed and converted into a significant amount of sensible heat along the length of the receiver pipe. Finally, the results of both the numerical and the experimental investigations of the DAPTC collector show that the thermal efficiency of the system improves as a result of increased nanoparticle volume fraction

  12. Solar photovoltaic reflective trough collection structure

    Science.gov (United States)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  13. Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector

    International Nuclear Information System (INIS)

    Abdelhamid, Mahmoud; Widyolar, Bennett K.; Jiang, Lun; Winston, Roland; Yablonovitch, Eli; Scranton, Gregg; Cygan, David; Abbasi, Hamid; Kozlov, Aleksandr

    2016-01-01

    Highlights: • A novel hybrid concentrating photovoltaic thermal (PV/T) collector is developed. • Thermal component achieves 60× concentration using nonimaging optics. • GaAs solar cells used as spectrally selective mirrors for low energy photons. • Thermal efficiencies of 37% at 365 °C and electrical efficiencies of 8% achieved. • Combined electric efficiency reaches 25% of DNI for system cost of $283.10/m"2". - Abstract: A novel double stage high-concentration hybrid solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record thin film single-junction gallium arsenide (GaAs) solar cells has been developed. We present a detailed design and simulation of the system, experimental setup, prototype, system performance, and economic analysis. The system uses a parabolic trough (primary concentrator) to focus sunlight towards a secondary nonimaging compound parabolic concentrator (CPC) to simultaneously generate electricity from single junction GaAs solar cells, as well as high temperature dispatchable heat. This study is novel in that (a) the solar cells inside the vacuum tube act as spectrally selective mirrors for lower energy photons to maximize the system exergy, and (b) secondary concentrator allows the thermal component to reach a concentration ratio ∼60×, which is significantly higher than conventional PV/T concentration ratios. The maximum outlet temperature reached was 365 °C, and on average the thermal efficiency of the experiment was around 37%. The maximum electrical efficiency was around 8%. The total system electricity generation is around 25% of incoming DNI, by assuming the high temperature stream is used to power a steam turbine. The installed system cost per unit of parabolic trough aperture area is $283.10 per m"2.

  14. Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated

    Directory of Open Access Journals (Sweden)

    Ahed Hameed Jaaz

    2018-06-01

    Full Text Available The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC along with the thermal photovoltaic module (PVT where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work. Keywords: Photovoltaic thermal collectors, Electrical performance, Thermal performance, Compound parabolic concentrator, Jet impingement

  15. Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough.

    Science.gov (United States)

    Diaz, Liliana Ruiz; Cocilovo, Byron; Miles, Alexander; Pan, Wei; Blanche, Pierre-Alexandre; Norwood, Robert A

    2018-05-14

    Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.

  16. Hybrid solar collector using nonimaging optics and photovoltaic components

    Science.gov (United States)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  17. Side-by-side comparisons of evacuated compound parabolic concentrator and flat plate solar collector systems at temperatures of 90 to 100C

    Science.gov (United States)

    Allen, J. W.; Schertz, W. W.; Wantroba, A. S.

    1987-03-01

    This collector system study is an extension of a previous system study in which Argonne National Laboratory (ANL) compared the performance of three solar energy systems operated side by side for over a year. In the present system study, four solar energy systems were operated side by side for part of a year. Two of the collector systems used commercially available compound parabolic concentrator (CPC) collectors, one used a commercially available flat plate collector, and one used an experimental CPC collector built by The University of Chicago. The collectors were mounted in fixed positions; they did not track the Sun, and their tilt angles were not seasonally adjusted. All of the collector arrays faced south and were tilted at 42 deg with respect to the horizon (to match the 42 deg N latitude at ANL). All four collector systems started each day with their storage temperatures at 90 C. During the day, each system was operated by its own solar controller. At the end of the day, the tanks were mixed and the temperature changes in the tanks were measured. The change in storage energy was calculated from the temperature change, the heat capacity of the storage system, and the pump energy.

  18. A stationary evacuated collector with integrated concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Snail, K.A.; O' Gallagher, J.J.; Winston, R.

    1984-01-01

    A comprehensive set of experimental tests and detailed optical and thermal models are presented for a newly developed solar thermal collector. The new collector has an optical efficiency of 65 per cent and achieves thermal efficiencies of better than 50 per cent at fluid temperatures of 200/sup 0/C without tracking the sun. The simultaneous features of high temperature operation and a fully stationary mount are made possible by combining vacuum insulation, spectrally selective coatings, and nonimaging concentration in a novel way. These 3 design elements are ''integrated'' together in a self containe unit by shaping the outer glass envelope of a conventional evacuated tube into the profile of a nonimaging CPC-type concentrator. This permits the use of a first surface mirror and eliminates the need for second cover glazing. The new collector has been given the name ''Integrated Stationary Evacuated Concentrator'', or ISEC collector. Not only is the peak thermal efficiency of the ISEC comparable to that of commercial tracking parabolic troughs, but projections of the average yearly energy delivery also show competitive performance with a net gain for temperatures below 200/sup 0/C. In addition, the ISEC is less subject to exposure induced degradation and could be mass produced with assembly methods similar to those used with fluorescent lamps. Since no tracking or tilt adjustments are ever required and because its sensitive optical surfaces are protected from the environment, the ISEC collector provides a simple, easily maintained solar thermal collector for the range 100-300/sup 0/C which is suitable for most climates and atmospheric conditions. Potential applications include space heating, air conditioning, and industrial process heat.

  19. Performance evaluation and simulation of a Compound Parabolic Concentrator (CPC) trough Solar Thermal Power Plant in Puerto Rico under solar transient conditions

    Science.gov (United States)

    Feliciano-Cruz, Luisa I.

    The increasing fossil fuel costs as well as the need to move in a somewhat sustainable future has led the world in a quest for exploiting the free and naturally available energy from the Sun to produce electric power, and Puerto Rico is no exception. This thesis proposes the design of a simulation model for the analysis and performance evaluation of a Solar Thermal Power Plant in Puerto Rico and suggests the use of the Compound Parabolic Concentrator as the solar collector of choice. Optical and thermal analysis of such collectors will be made using local solar radiation data for determining the viability of this proposed project in terms of the electric power produced and its cost.

  20. Performance and durability testing of parabolic trough receivers

    Science.gov (United States)

    Lei, Dongqiang; Fu, Xuqiang; Zhao, Dongming; Yuan, Guofeng; Wang, Zhifeng; Guo, Minghuan

    2017-06-01

    The paper describes the key performance and durability testing facilities of the parabolic trough receiver developed by Institute of Electrical Engineering, Chinese Academy of Sciences. The indoor heat loss test can be applied at 4-7 different temperature levels within 200-550 on receivers. The optical efficiency test bench consists of 12 metal halide lamps as the solar simulator and a 5 m length half-elliptical cylinder reflector with flat end reflectors. 3 ultra-precision temperature sensors are used in receiver each end to get the temperature difference. The residual gas analysis test bench is applied to analyze and predict the vacuum lifetime of the receiver. It can test the variations of composition and partial pressure of residual gases with temperature and time in the receiver annulus space by a high sensitivity quadrupole mass spectrometer gas analyzer. A coating accelerated ageing test bench, which is also used to test the thermal cycle, has been developed. This test bench uses the absorber tube of the recevier as the resistance heater to heat up the whole receiver. The coating lifetime can be predicted by the Arrhenius parameters. For the cycling test, the compressed air is used to directly cool the inner surface of the absorber tube. The thermal cycling test is performed with temperature cycles from 150 °C to 450 °C for 160 cycles. The maximum thermal cycling frequency is 8 cycles per day. The mechanical fatigue test bench is used to test the bellows and the glass-to-metal seals durability at the same time. Both bellows are expanded and compressed to 6.5 mm in turn with 10,000 cycles. A new rotating test bench was also developed to test the thermal efficiency of the receiver.

  1. Improved Large Aperture Collector Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, Deven [Abengoa Solar LLC, Lakewood, CO (United States); Farr, Adrian [Abengoa Solar LLC, Lakewood, CO (United States)

    2015-12-01

    The parabolic trough is the most established CSP technology and carries a long history of design experimentation dating back to the 1970’s. This has led to relatively standardized collector architectures, a maturing global supply chain, and a fairly uniform cost reduction strategy. Abengoa has deployed more than 1,500MWe of CSP troughs across several countries and has built and tested full-scale prototypes of many R&D concepts. The latest trough R&D efforts involved efforts to internalize non-CSP industry experience including a preliminary DFMA principles review done with Boothroyd Dewhurst, a construction literature review by the Arizona State University School of Construction Management, and two more focused manufacturing engineering subcontracts done by Ricardo Inc. and the nonprofit Edison Welding Institute. The first two studies highlighted strong opportunities in lowering part count, standardizing components and fasteners, developing modular designs to support prefabrication and automation, and devising simple, error-proof manual assembly methods. These principles have delivered major new cost savings in otherwise “mature” products in analogous industries like automotive, truck trailer manufacture, metal building fabrication, and shipbuilding. For this reason, they were core in the design development of the SpaceTube® collector, and arguably key to its early successes. The latter two studies were applied specifically to the first-generation SpaceTube® design and were important in setting the direction of the present SolarMat project. These studies developed a methodology to analyze the costs of manufacture and assembly, and identify new tooling concepts for more efficient manufacture. Among the main opportunities identified in these studies were the automated mirror arm manufacturing concept and the need for a less infrastructure-intensive assembly line, both of which now form central pillars of the SolarMat project strategy. These new designs will be

  2. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC).

    Science.gov (United States)

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A

    2017-08-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current I SC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  3. Parabolic dish collectors - A solar option

    Science.gov (United States)

    Truscello, V. C.

    1981-05-01

    A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.

  4. Phase 0: goal study for the technical and economic evaluation of the Compound Parabolic Concentrator (CPC) concept applied to solar thermal and photovoltaic collectors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1975-06-01

    This report presents the results of a quick, six-week technical and economic evaluation of the compound parabolic concentrator (CPC) solar collector. The purpose of this effort was to provide an initial phase of a goals study that is directed toward recommending relative priorities for development of the compound parabolic concentrator concept. The findings of this study are of a very preliminary nature. Conclusions based on study findings at this depth should be considered preliminary and subject to revision and review in later phases.

  5. Design and Implementation of PLC-Based Automatic Sun tracking System for Parabolic Trough Solar Concentrator

    Directory of Open Access Journals (Sweden)

    Wang Jinping

    2016-01-01

    Full Text Available A sun-tracking system for parabolic trough solar concentrators (PTCs is a control system used to orient the concentrator toward the sun always, so that the maximum energy can be collected. The work presented here is a design and development of PLC based sun tracking control system for PTC. Sun tracking control system consists of a Programmable Logic Controller (PLC and a single axis hydraulic drives tracking control system. Hydraulic drives and the necessary tracking angle algorithm have been designed and developed to perform the technical tasks. A PLC unit was employed to control and monitor the mechanical movement of the PTC and to collect and store data related to the tracking angle of PTC. It is found that the tracking error of the system is less than 0.6°. Field experience shows that tracking algorithm act stable and reliable and suit for PTCs.

  6. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT Collector with Jet Impingement and Compound Parabolic Concentrator (CPC

    Directory of Open Access Journals (Sweden)

    Ahed Hameed Jaaz

    2017-08-01

    Full Text Available This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT collector and compound parabolic concentrators (CPC on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C. It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  7. Dynamic Modeling of the Solar Field in Parabolic Trough Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Lourdes A. Barcia

    2015-11-01

    Full Text Available Parabolic trough solar power plants use a thermal fluid to transfer thermal energy from solar radiation to a water-steam Rankine cycle in order to drive a turbine that, coupled to an electrical generator, produces electricity. These plants have a heat transfer fluid (HTF system with the necessary elements to transform solar radiation into heat and to transfer that thermal energy to the water-steam exchangers. In order to get the best possible performance in the Rankine cycle and, hence, in the thermal plant, it is necessary that the thermal fluid reach its maximum temperature when leaving the solar field (SF. Also, it is mandatory that the thermal fluid does not exceed the maximum operating temperature of the HTF, above which it degrades. It must be noted that the optimal temperature of the thermal fluid is difficult to obtain, since solar radiation can change abruptly from one moment to another. The aim of this document is to provide a model of an HTF system that can be used to optimize the control of the temperature of the fluid without interfering with the normal operation of the plant. The results obtained with this model will be contrasted with those obtained in a real plant.

  8. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 1: Preferred Plant Size, 20 January 2005 - 31 December 2005

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, B.

    2006-07-01

    The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII/IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII/IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes. An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps: (1) Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected. (2) Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb{sub f}/in{sup 2} and 703 F, and reheat steam conditions of 239 lb{sub f}/in{sup 2} and 703 F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA. (3) The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: (a) a solar-only project without thermal storage, and (b) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas. (4) For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump

  9. Design of a nanopatterned long focal-length planar focusing collector for concentrated solar power

    Science.gov (United States)

    Ding, Qing; Choubal, Aakash; Toussaint, Kimani C.

    2017-02-01

    Concentrated solar power (CSP) facilities heavily utilize parabolic troughs to collect and concentrate sunlight onto receivers that deliver solar thermal energy to heat engines for generating electricity. However, parabolic troughs are bulky and heavy and result in a large capital investment for CSP plants, thereby making it difficult for CSP technology to be competitive with photovoltaics. We present the design of a planar focusing collector (PFC) with focal length beyond the micron scale. The PFC design is based on the use of a nanostructured silver surface for linearly polarized singlewavelength light. The designed PFC consists of metallic nanogrooves on a dielectric substrate. The geometric properties, namely the width and depth, of a single-unit nanogroove allows for full control of the optical phase at desired spatial coordinates along the nanogroove short-axis for a single wavelength. Moreover, we show numerically that such phase control can be used to construct a phase front that mimics that of a cylindrical lens. In addition, we determine the concentration ratio by comparing the width of our PFC design to the cross-sectional width of its focal spot. We also determine the conversion efficiency at long focal lengths by evaluating the ratio of the collected optical power to the incoming optical power. Finally, we examine the focusing behavior across multiple wavelengths and angles of incidence. Our work shows how nano-optics and plasmonics could contribute to this important area of CSP technology.

  10. Optimization, selection and feasibility study of solar parabolic trough power plants for Algerian conditions

    International Nuclear Information System (INIS)

    Boukelia, T.E.; Mecibah, M.S.; Kumar, B.N.; Reddy, K.S.

    2015-01-01

    Highlights: • Evaluation of solar resources in the absence of measured data. • Optimization of 2 PTSTPPs integrated with TES and FBS and using oil and salt as HTFs. • 4E comparative study of the two optimized plants alongside the Andasol 1 plant. • The salt plant resulting as the best one and has been chosen for the viability study. • Tamanrasset is the best location for construction of PTSTPPs. - Abstract: In the present study, optimization of two parabolic trough solar thermal power plants integrated with thermal energy storage (TES), and fuel backup system (FBS) has been performed. The first plant uses Therminol VP-1 as heat transfer fluid in the solar field and the second plant uses molten salt. The optimization is carried out with solar multiple (SM) and full load hours of TES as the parameters, with an objective of minimizing the levelized cost of electricity (LCOE) and maximizing the annual energy yield. A 4E (energy–exergy–environment–economic) comparison of the optimized plants alongside the Andasol 1 as reference plant is studied. The molten salt plant resulting as the best technology, from the optimization and 4E comparative study has been chosen for the viability analysis of ten locations in Algeria with semi-arid and arid climatic conditions. The results indicate that Andasol 1 reference plant has the highest mean annual energy efficiency (17.25%) and exergy efficiency (23.30%). Whereas, the highest capacity factor (54.60%) and power generation (236.90 GW h) are exhibited by the molten salt plant. The molten salt plant has least annual water usage of about 800,482 m 3 , but demands more land for the operation. Nevertheless the oil plant emits the lowest amount of CO 2 gas (less than 40.3 kilo tonnes). From the economic viewpoint, molten salt seems to be the best technology compared to other plants due to its lowest investment cost (less than 360 million dollars) and lower levelized cost of electricity (LCOE) (8.48 ¢/kW h). The

  11. Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.

    Science.gov (United States)

    Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-11-20

    While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries.

  12. Thermal Energy Recovery through Optimal Salt concentration in a Parabolic Trough Systems

    Directory of Open Access Journals (Sweden)

    Ramsurn Rikesh

    2018-01-01

    Full Text Available Making a PVT system hybrid is to support the use of thermal and electrical energy simultaneously or independently, to control the thermal effect to improve electrical efficiency or vice-versa. This project makes use of the Parabolic Trough design with emphasis on making the system to be sustainable and also increasing the thermal efficiency of the system. Polystyrene and acrylic foam is utilized to maximize the heat retention capability of the system. To power, the pump that moves the heat transfer fluid (tested with salt water proportions within the copper tube, a set of solar PV panel is to support its power demand making it sustainable. The closed loop setup designed achieved an improved thermal efficiency level of 66.2%, which contributes to having a reliable heat energy source for applications such as hot showers. The novel setup design also makes use of PV cells to support other energy demands through power electronic control designs. Using a similar heat dissipation technique, a novel setup has been designed to improve the voltage supply by making use of liquid cooling and translucent glass PV panels. Cooling the PV panel restored up to 11.7% of its rated voltage supply. This is achieved by keeping the PV panels within its best thermal operating conditions using an energy efficient electronically controlled cooling system.

  13. A comparison of prototype compound parabolic collector-reactors (CPC) on the road to SOLARDETOX technology.

    Science.gov (United States)

    Funken, K H; Sattler, C; Milow, B; De Oliveira, L; Blanco, J; Fernández, P; Malato, S; Brunott, M; Dischinge, N; Tratzky, S; Musci, M; de Oliveira, J C

    2001-01-01

    Solar photocatalytic detoxification of non-biodegradable chlorinated hydrocarbon solvents (NBCS) is carried out in different concentrating and non concentrating devices using TiO2 as a photocatalyst fixed on the inner surface of the reaction tubes or as a slurry catalyst which has to be removed from the treated water. The reaction is most effective using 200 mg/l of TiO2 as a slurry in a non concentrating CPC reactor. The concentrating parabolic trough reactor has a poor activity because of its minor irradiated reactor surface. Catalyst coated glass tubes are less efficient then the used slurry catalyst. Their advantage is that no catalyst has not to be removed from the treated water and there is no loss of activity during treatment. Yet their physical stability is not sufficient to be competitive to the slurry catalyst. Nevertheless the degradation results are very promising and will possibly lead to commercial applications of this technology.

  14. A thermal-optical analysis comparison between symmetric tubular absorber compound parabolic concentrating solar collector with and without envelope

    International Nuclear Information System (INIS)

    Tchinda, R.

    2005-11-01

    Equations describing the heat transfer in symmetric, compound parabolic concentrating solar collectors (CPCs) with and without envelope have been established. The model takes into account the non linear behavior of these two systems. A theoretical numerical model has been developed to outline the effect of the envelope on the thermal and optical performance of CPCs. The effects of the flow rate, the plate length, the selective coating, etc. are studied. The over-all thermal loss coefficient and the enclosure absorption factor for both types are defined. It is found that the efficient configuration has an envelope. Theoretical computed values are in good agreement with the experimental values published in the literature. (author)

  15. Photovoltaic applications of Compound Parabolic Concentrator (CPC)

    Science.gov (United States)

    Winston, R.

    1975-01-01

    The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.

  16. Exergy Analyses of Fabricated Compound Parabolic Solar Collector with Evacuated Tubes at Different Operating Conditions: Indore (India)

    Science.gov (United States)

    Geete, Ankur; Dubey, Akash; Sharma, Ankush; Dubey, Anshul

    2018-05-01

    In this research work, compound parabolic solar collector (CPC) with evacuated tubes is fabricated. Main benefit of CPC is that there is no requirement of solar tracking system. With fabricated CPC; outlet temperatures of flowing fluid, instantaneous efficiencies, useful heat gain rates and inlet exergies (with and without considering Sun's cone angle) are experimentally found. Observations are taken at different time intervals (1200, 1230, 1300, 1330 and 1400 h), mass flow rates (1.15, 0.78, 0.76, 0.86 and 0.89 g/s), ambient temperatures and with various dimensions of solar collector. This research work is concluded as; maximum instantaneous efficiency is 69.87% which was obtained with 0.76 g/s flow rate of water at 1300 h and 42°C is the maximum temperature difference which was also found at same time. Maximum inlet exergies are 139.733 and 139.532 kW with and without considering Sun's cone angle at 1300 h, respectively. Best thermal performance from the fabricated CPC with evacuated tubes is found at 1300 h. Maximum inlet exergy is 141.365 kW which was found at 1300 h with 0.31 m aperture width and 1.72 m absorber pipe length.

  17. Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Malay K. [Boston Univ., MA (United States); Horenstein, Mark N. [Boston Univ., MA (United States); Joglekar, Nitin R. [Boston Univ., MA (United States)

    2015-03-31

    The feasibility of integrating and retrofitting transparent electrodynamic screens (EDS) on the front surfaces of solar collectors was established as a means to provide active self-cleaning properties for parabolic trough and heliostat reflectors, solar panels, and Fresnel lenses. Prototype EDS-integrated solar collectors, including second-surface glass mirrors, metallized Acrylic-film mirrors, and dielectric mirrors, were produced and tested in environmental test chambers for removing the dust layer deposited on the front surface of the mirrors. The evaluation of the prototype EDS-integrated mirrors was conducted using dust and environmental conditions that simulate the field conditions of the Mojave Desert. Test results showed that the specular reflectivity of the mirrors could be maintained at over 90% over a wide range of dust loadings ranging from 0 to 10 g/m2, with particle diameter varying from 1 to 50 μm. The measurement of specular reflectivity (SR) was performed using a D&S Reflectometer at wavelength 660 nm. A non-contact reflectometer was designed and constructed for rapid measurement of specular reflectivity at the same wavelength. The use of this new noncontact instrument allowed us to measure SR before and after EDS activation. Several EDS prototypes were constructed and evaluated with different electrode configurations, electrode materials, and encapsulating dielectric materials.

  18. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

    Directory of Open Access Journals (Sweden)

    Van Duong

    2014-03-01

    Full Text Available This paper explores the benefits and drawbacks of using carbon dioxide in solar thermal systems at medium and high operating temperatures. For medium temperatures, application of CO2 in non-imaging-optics based compound parabolic concentrators (CPC combined with evacuated-tube collectors is studied. These collectors have been shown to obtain efficiencies higher than 40% operating at around 200℃ without the need of tracking. Validated numerical models of external compound parabolic concentrators (XCPCs are used to simulate their performance using CO2 as working fluid. For higher temperatures, a mathematical model is implemented to analyze the operating performance of a parabolic trough solar collector (PTC using CO2 at temperatures between 100℃ and 600℃.

  19. Dynamic modeling of a solar ORC with compound parabolic collectors: Annual production and comparison with steady-state simulation

    International Nuclear Information System (INIS)

    Baccioli, A.; Antonelli, M.; Desideri, U.

    2017-01-01

    Highlights: • A small scale solar ORC was investigated during a year-long simulation. • The system was operated without a thermal storage. • High flexibility thanks to a sliding-velocity control and volumetric expander. • Influence of ORC and solar field parameters considered. • Strong influence of concentration factor and system inertia. - Abstract: In this paper the dynamic behavior of a small low-concentration solar plant with static Compound Parabolic Collectors (CPC) and an ORC power unit with rotary volumetric expander has been analyzed. The plant has been simulated in transient conditions for a year-long operation and for three different sites respectively located in northern, central and southern Italy, in order to evaluate the influence of the latitude on the production. Hourly discretized data for solar radiation and for ambient temperature have been used. The adoption of a sliding-velocity control strategy, has allowed to operate without any storage system with a solar multiple (S.M.) of 1, reducing the amplitude of the solar field and simplifying the control system. Different collectors tilt angles and concentration factors, as well as thermodynamic parameters of the cycle have been tested, to evaluate the optimal working conditions for each locality. Results highlighted that specific production increased with the concentration ratio, and with the decrease of latitude. The comparison with the steady-state analysis showed that this type of control strategy is suited for those configurations having a smaller number of collectors, since the thermal inertia of the solar field is not recovered at all during the plant shut-down phase.

  20. ParaTrough v1.0: Librería en Modelica para Simulación de Plantas Termosolares

    Directory of Open Access Journals (Sweden)

    Juan A. Romera Cabrerizo

    2017-10-01

    Full Text Available Resumen: El presente trabajo describe una librería desarrollada en Modelica que utiliza el entorno Dymola 6.1 para modelar y simular plantas termosolares de tecnología de colector cilindro-parabólico. El actual software de modelado y simulación es cada vez más potente gracias a los avances en computación y programación, pudiendo conseguir estimaciones muy precisas del comportamiento de estas plantas térmicas. Como mejora a otras propuestas actuales, la librería ParaTrough se ofrece como una herramienta pública, gratuita bajo licencia Modelica License 2, de código libre, flexible, modular, y por lo tanto fácilmente ampliable y modificable para los requerimientos específicos de cada planta y proceso en particular. En la versión 1.0 contemplada en este artículo, esta librería se puede usar para el modelado y simulación del recurso solar y del sistema de fluido de transferencia calorífica sin cambio de fase. Los modelos han sido validados con datos reales de una planta en operación, Andasol 3, en los términos municipales de Aldeire y La Calahorra (Granada. El objetivo de ParaTrough es poder ser utilizada gratuitamente y de forma amigable por analistas de procesos para uno o varios de los siguientes casos: evaluación del rendimiento, detección de fallos, exploración de nuevos modos de operación y optimización de la planta. Aunque en futuras versiones se puedan añadir otros elementos, esta aportación cubre una nueva área de aplicación específica para el software de Modelica y en su estado actual facilita la operación y mantenimiento de estas plantas. Abstract: This paper describes a Modelica-based library developed to the modeling and simulation of solar thermal plants with parabolic trough collectors. The Dymola 6.1 environment has been used. Unlike other commercial tools, the ParaTrough library is offered as a free open source tool, under Modelica License 2. Its modular code makes it easily extensible and modifiable to

  1. Floor cooler for floor trough of a nuclear reactor

    International Nuclear Information System (INIS)

    Friedrich, H.J.

    1985-01-01

    Cooling pipes are situated below the floor trough of a BWR, which are connected to the annular distribution or collection pipes. The distribution and collection pipes are connected by parallel hairpin pipes with involute shape to the centre of the floor trough. These hairpin pipes are situated in a lower plane than the annular distribution pipe to the centre and in a higher plane from the centre to the outer annular collector pipe. (orig./HP) [de

  2. Simulation of thermal fluid dynamics in parabolic trough receiver tubes with direct steam generation using the computer code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Alexander; Merk, Bruno [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Hirsch, Tobias; Pitz-Paal, Robert [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Solarforschung

    2014-06-15

    In the present feasibility study the system code ATHLET, which originates from nuclear engineering, is applied to a parabolic trough test facility. A model of the DISS (DIrect Solar Steam) test facility at Plataforma Solar de Almeria in Spain is assembled and the results of the simulations are compared to measured data and the simulation results of the Modelica library 'DissDyn'. A profound comparison between ATHLET Mod 3.0 Cycle A and the 'DissDyn' library reveals the capabilities of these codes. The calculated mass and energy balance in the ATHLET simulations are in good agreement with the results of the measurements and confirm the applicability for thermodynamic simulations of DSG processes in principle. Supplementary, the capabilities of the 6-equation model with transient momentum balances in ATHLET are used to study the slip between liquid and gas phases and to investigate pressure wave oscillations after a sudden valve closure. (orig.)

  3. Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

    OpenAIRE

    Rohit Tripathi; Sumit Tiwari; G. N. Tiwari

    2016-01-01

    In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, Ind...

  4. A non-linear steady state characteristic performance curve for medium temperature solar energy collectors

    Science.gov (United States)

    Eames, P. C.; Norton, B.

    A numerical simulation model was employed to investigate the effects of ambient temperature and insolation on the efficiency of compound parabolic concentrating solar energy collectors. The limitations of presently-used collector performance characterization curves were investigated and a new approach proposed.

  5. Truncation of CPC solar collectors and its effect on energy collection

    Science.gov (United States)

    Carvalho, M. J.; Collares-Pereira, M.; Gordon, J. M.; Rabl, A.

    1985-01-01

    Analytic expressions are derived for the angular acceptance function of two-dimensional compound parabolic concentrator solar collectors (CPC's) of arbitrary degree of truncation. Taking into account the effect of truncation on both optical and thermal losses in real collectors, the increase in monthly and yearly collectible energy is also evaluated. Prior analyses that have ignored the correct behavior of the angular acceptance function at large angles for truncated collectors are shown to be in error by 0-2 percent in calculations of yearly collectible energy for stationary collectors.

  6. Development and analysis of a new integrated power and cooling ...

    Indian Academy of Sciences (India)

    It consists of characteristics of Rankine cycle and vapour .... Solar thermal integrated plant material flow details with respect to figure 1 at Tsep .... Design features of parabolic trough collector with vacuum tube at the focal line have been col-.

  7. Solar thermal power: the seamless solar link to the conventional power world

    International Nuclear Information System (INIS)

    Geyer, Michael; Quaschning, Volker

    2000-01-01

    This article focuses on solar thermal power generation and describes two solar thermal power concepts, namely, the parabolic trough or solar farm, and the solar central receiver or power tower. Details are given of grid-connected parabolic trough power plants in California and recent developments in collector design and absorber tubes, and the operation of power tower plants with different heat transfer media. Market issues are discussed, and solar thermal power projects under development, and application for support for solar thermal power projects under the Global Environment Facility's Operational Programme by Egypt, India, Iran, Mexico and Morocco are reported

  8. A solar collector for air-conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kose, E. [Microtherm Energietechnik GmbH, 25 - Lods (France)

    1999-03-01

    A high performance Compound Parabolic Concentrator (CPC) collector is presented. It comprises dewar type tubular vacuum tubes with an absorber coating of very low emittance, a moderately concentrating reflector and a simple thermosyphon heat removal system. The reflectors car be designed with respect to the specific needs; reflector material, concentration, truncation and symmetry car be chosen freely. The collector allows the construction of cooling systems with higher COP's without using tracking systems. Land use and costs are greatly reduced. For a certain application (optimum yearly gain in Munich with a constant collector temperature of 180 deg C) the reflector was optimized, it is a fairly asymmetrical design. A symmetrical design with a similar performance has been tested, the results are shown. (author)

  9. Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Concentrating solar power plant with organic Rankine cycle. • Thermo-economic analysis of solar organic Rankine cycle. • Performance evaluation for different working fluids. • Comparison diagram to select appropriate working fluid. - Graphical Abstract: Display Omitted - Abstract: Organic Rankine cycle (ORC), powered by line-focusing concentrating solar collectors (parabolic trough collector and linear Fresnel reflector), is a promising option for modular scale. ORC based power block, with dry working fluids, offers higher design and part-load efficiencies compared to steam Rankine cycle (SRC) in small-medium scale, with temperature sources up to 400 °C. However, the cost of ORC power block is higher compared to the SRC power block. Similarly, parabolic trough collector (PTC) system has higher optical efficiency and higher cost compared to linear Fresnel reflector (LFR) system. The thermodynamic efficiencies and power block costs also vary with working fluids of the Rankine cycle. In this paper, thermo-economic comparisons of organic Rankine and steam Rankine cycles powered by line-focusing concentrating solar collectors are reported. A simple selection methodology, based on thermo-economic analysis, and a comparison diagram for working fluids of power generating cycles are also proposed. Concentrating solar power plants with any collector technology and any power generating cycle can be compared using the proposed methodology.

  10. Current status of the second generation of parabolic trough solar concentrator for heat generation process designed at the IIE; Estado actual de la segunda generacion del concentrador solar de canal parabolico para generacion de calor de proceso disenado en el IIE

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Berumen, Carlos; Ramirez Benitez, Juan Rafael; Beltran Adan, Jose [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: cramos@iie.org.mx; rramirez@iie.org.mx; jose.beltran@iie.org.mx

    2010-11-15

    The transformation industry normally uses thermal energy within its process, it obtains this energy burning fossils fuel, a new option is to use new technologies like the thermal solar technology like the parabolic trough, this is a long parabolic mirror used to reflect the sunlight and focused on an absorber tube with a heat-conducting fluid inside. The Instituto de Investigaciones Electricas (IIE) developed a prototype of parabolic trough that is operating in different industries, in this article are showing some improvements to the design, giving like result the second generation of the prototype of parabolic trough of the IIE. [Spanish] La industria de la transformacion normalmente utiliza energia termica dentro de su proceso, los medios convencionales para obtener esta energia es el quemar combustibles fosiles, una opcion que aplica nuevas tecnologias es el uso de la tecnologia termosolar a concentracion que le permitira a la industria utilizar el sol como fuente de energia primaria. El uso de esta tecnologia permitira a las empresas generar calor de proceso sin contaminar el ambiente, lo que dara como resultado empresas competitivas y autosuficientes. Para alcanzar temperaturas utiles a estas aplicaciones se requiere concentrar la energia solar en un area mas pequena, siendo la tecnologia mas extendida la de canal parabolico, el principio de operacion de esta tecnologia es la de concentrar la radiacion solar en el eje receptor preparado con una pintura especial para una mejor absorcion del calor y una cubierta de vidrio para evitar perdidas termicas, dentro del tubo circula un fluido caloportador el cual lleva el calor util hacia el proceso. El Instituto de Investigaciones Electricas (IIE) desarrollo un prototipo de canal parabolico, actualmente estan operando en diferentes industrias, resultado de estas aplicaciones se llevo a cabo una evaluacion del prototipo, se detectaron algunos puntos de mejoras al diseno, los cuales se exponen en este articulo, dando

  11. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  12. Mechatronic Prototype of Parabolic Solar Tracker.

    Science.gov (United States)

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-06-15

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  13. Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Blair, N.; Dobos, A.

    2010-10-01

    Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

  14. Cascade system using both trough system and dish system for power generation

    International Nuclear Information System (INIS)

    Zhang, Cheng; Zhang, Yanping; Arauzo, Inmaculada; Gao, Wei; Zou, Chongzhe

    2017-01-01

    Highlights: • A novel solar cascade system using both trough and dish collectors is proposed. • Heat rejected by the Stirling engines is collected by the condensed water. • The directions to increase the efficiency improvement has been pointed out • Influence of flow type of heating/cooling fluids of Stirling engines is considered. - Abstract: This paper represents a novel solar thermal cascade system using both trough and dish systems for power generation. An effective structure using the condensed fluid of Rankine cycle to cool the Stirling engines to use the heat released by Stirling engines was proposed. The cascade system model with different fluid circuits was developed. The models of some important components of the system, such as dish collector, trough collector and Stirling engine array, are presented with detail explanation in this paper. Corresponding stand-alone systems were also developed for comparison. Simulations were conducted with the models to find out efficiency difference between cascade system and corresponding stand-alone systems. The directions to increase the efficiency difference were also considered. Results show that the cascade system can achieve a higher efficiency with a high solar irradiance (>550 W/m"2). The flow type of fluids between heating and cooling Stirling engine array is also required to concern on designing a cascade system with Stirling engine array.

  15. Thermal analysis of a solar collector consisting of V cavities for water heating; Analise termica de um coletor solar composto de cavidades V para aquecimento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Michel Fabio de Souza

    2009-03-15

    The solar water heating is carried through, in Brazil, by means of solar heaters compound for collectors flat plate of the type plate-and-pipes, devices that operate in stationary position and they do not require tracking of the sun. A compound collector for some formed V-trough concentrators can be an alternative to the conventional solar collectors flat plate. This compound collector for V-trough is considered, each one, for side-walls which are specularly reflecting surfaces associates in V (equivalent to a triangular gutter). Next to the vertex to each V-trough concentrators an absorber tube is fixed, for flow of the fluid to be heated. Interconnection of the absorbers tubes forms a similar tubular network existing in solar collectors of the type the plate and pipe. V-trough concentrators with the absorbers tubes are made use in series in the interior a prismatic box, which have one of its faces consisting by a glass covering and directed toward incidence of the solar radiation. An analysis of thermal performance of these devices operating stationary and without tracking of the sun is researched. A mathematical model for the computational simulation of the optical and thermal performance of these concentrative devices is elaborated, whose implementation was carried through software EES (Engineering Equation Solver). The efficiency optics of V-trough concentrators with cylindrical absorbers is calculated from the adaptation of the methodology used for Fraidenraich (1994), proposal for Hollands (1971) for V-trough cavities with plain absorbers. The thermal analysis of the considered collector was based on the applied methodology the CPC for Hsieh (1981) and Leao (1989). Relative results to the thermal performance of V-trough concentrators suggest that these configurations are not competitive, technique and economically, with the conventional plain collectors. Although some geometric configurations presented next thermal efficiencies to the conventional plain

  16. Alternative Sources of Energy for U.S. Air Force Bases

    Science.gov (United States)

    2009-08-01

    two fluids. Osmotic Pressure – The pressure differential produced by osmosis. Parabolic Trough – A type of solar thermal energy collector in which...project and solar parabolic dish work at Kirtland AFB/Sandia, New Mexico. Collectively, the inputs from the briefings and visits formed the basis for...sulfur compounds , necessitating the use of scrubbers in-line with the fuel system. Nevertheless, 40 hydrocarbon-based fuel cells or high efficiency

  17. An evaluation of thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines with open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Marinelli, Valerio

    2012-01-01

    A performance analysis of innovative solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle, with and without intercooling and regeneration, is presented. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it seems able to compete well with other more complex plants operating with different heat transfer fluids. -- Highlights: ► Innovative CPS solar plants, operating with air in open Joule–Brayton cycle, are proposed. ► They are attractive for their simplicity and present interesting values of global efficiency. ► They seem able to compete well with other more complex solar plants.

  18. Thermodynamic model to study a solar collector for its application to Stirling engines

    International Nuclear Information System (INIS)

    Abdollahpour, Amir; Ahmadi, Mohammad H.; Mohammadi, Amir H.

    2014-01-01

    Highlights: • A thermodynamic model is presented to study a solar collector for its application to Stirling engines. • The parabolic collector is analyzed based on optical and thermal. • Effects of changing some conditions and parameters are studied. - Abstract: Energy production through clean and green sources has been paid attention over the last decades owing to high energy consumption and environmental emission. Solar energy is one of the most useful energy sources. Due to high investment cost of centralized generation of electricity and considerable loss in the network, it is necessary to look forward to decentralized electricity generation technologies. Stirling engines have high efficiency and are able to be coupled with solar energy which cannot be applied in internal combustion engines. Solar Stirling engines can be commercialized and used to generate decentralized electricity in small to medium levels. One of the most important steps to set up an efficient solar Stirling engine is choosing and designing the collector. In this study, a solar parabolic collector with 3500 W of power for its application to Stirling engines was designed and analyzed (It is the thermal inlet power for a Stirling engine). We studied the parabolic collector based on optical and thermal analysis. In this case, solar energy is focused by a concentrating mirror and transferred to a pipe containing fluid. MATLAB software was used for obtaining the parameters of the collector, with respect to the geographic, temporal, and environmental conditions, fluid inlet temperature and some other considerations. After obtaining the results of the design, we studied the effects of changing some conditions and parameters such as annular space pressure, type of the gas, wind velocity, environment temperature and absorber pipe coating

  19. Converting PETAL, the 25m solar collector, into an astronimcal research facility

    Science.gov (United States)

    Ribak, Erez N.; Laor, Ari; Faiman, David; Biyukov, Sergy; Brosch, Noah

    2003-02-01

    We propose to modify the solar collector PETAL (Photon Energy Transformation &Astrophysics Laboratory) for astronomy. The mirror is a segmented parabolic dish collector, which has a relatively poor imaging quality. The conversion can be done by either of two principal methods: (1) phasing the surface of the collector itself or significant sections thereof; (2) transforming the structure into an optical interferometer by mounting small telescopes around its rim, and using fiber optics to combine the light at a common focus.

  20. Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt

    International Nuclear Information System (INIS)

    Boukelia, T.E.; Mecibah, M.S.; Kumar, B.N.; Reddy, K.S.

    2015-01-01

    Thermodynamic, economic and environmental analyses of concentrating solar power plants assist in identifying an effective and viable configuration. In this paper, a 4E (energy-exergy-environmental-economic) comparative study of 8 different configurations of parabolic trough solar thermal power plants with two different working fluids (Therminol VP-1 -oil and molten solar salt), with and without integrated thermal energy storage or/and backup fuel system is presented. The results of the comparative study indicate relevant differences among the 8 configurations. The molten solar salt configuration with integrated thermal energy storage and fossil fuel backup system exhibits the highest overall energy efficiency (18.48%) compared to other configurations. Whereas, the highest overall exergy efficiency (21.77%), capacity factor (38.20%) and annual energy generation (114 GWh) are found for the oil based configuration with integrated thermal energy storage and fossil fuel backup system. The results indicate that the configurations based on molten salt are better in terms of environmental and economical parameters. The configurations with integrated thermal energy storage and fossil fuel backup system are found to be techno-economical, but on the other hand are less environment friendly. A detailed comparison of these plants after optimization must be performed before drawing a final conclusion about the best configuration to be adopted in parabolic trough solar thermal power plant. - Highlights: • 4E comparative study of 8 configurations of PTSTPP with two different fluids. • Comparison of the configurations with and without integrated TES (thermal energy storage) and FBS (fuel backup system). • The overall energy efficiency of the salt plant with TES and FBS is the highest. • The overall exergy efficiency of the oil plant with TES and FBS is the highest. • The salt plants are the best configurations in terms of environ–eco parameters

  1. Mechatronic Prototype of Parabolic Solar Tracker

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2016-06-01

    Full Text Available In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  2. a numerical analysis of the energy behavior of a parabolic trough ...

    African Journals Online (AJOL)

    M. Ghodbane

    A computer program was developed in Matlab after discretization equations. For the calculation of energy balance was asks these assumptions: The heat transfer fluid is incompressible;. The parabolic shape is symmetrical;. The ambient temperature around the concentrator is uniform;. The effect of the shadow of ...

  3. Performance Evaluation of a Solar Adsorption Refrigeration System with a Wing Type Compound Parabolic Concentrator

    OpenAIRE

    Umair, Muhammad; Akisawa, Atsushi; Ueda, Yuki

    2014-01-01

    Simulation study of a solar adsorption refrigeration system using a wing type compound parabolic concentrator (CPC) is presented. The system consists of the wing type collector set at optimum angles, adsorption bed, a condenser and a refrigerator. The wing type collector captures the solar energy efficiently in the morning and afternoon and provides the effective temperature for a longer period of time compared to that achieved by a linear collector. The objectives of the study were to evalua...

  4. Design and experimental investigation of a stretched parabolic linear Fresnel reflector collecting system

    International Nuclear Information System (INIS)

    Zhu, Yanqing; Shi, Jifu; Li, Yujian; Wang, Leilei; Huang, Qizhang; Xu, Gang

    2016-01-01

    Highlights: • A parabolic primary mirror field is designed to reduce the gap between adjacent mirrors. • The movable receiver can reduce the end losses. • The thermal efficiency of 66% is achieved at Guangzhou in winter. - Abstract: This paper proposes a stretched parabolic linear Fresnel reflector (SPLFR) collecting system. The primary optical mirror field of the SPLFR collecting system and the second-stage concentrator of compound parabolic collector are designed. The mirrors located at the parabolic line are close to each other, which effectively reduce the gap between the adjacent mirrors. The end losses of the receiver are very important, especially in a small-scale collecting system. A movable receiver is introduced for the reduction of the end losses. Moreover, a stretched structure of SPLFR is designed for wind resistance. Finally, the thermal performance of the SPLFR collecting system with fixed and movable receiver located in Guangzhou is tested. The maximum thermal efficiency obtained by this collecting system with movable receiver is 66% which avoid the end losses effectively, and the solar collector thermal loss coefficient is 1.32 W/m"2 °C. The results show that the SPLFR collecting system has excellent thermal performance and a promising application future. Meanwhile, this system will provide a valuable reference for concentrating solar power technology.

  5. Evaluation of the solar water disinfection process (SODIS) against Cryptosporidium parvum using a 25-L static solar reactor fitted with a compound parabolic collector (CPC).

    Science.gov (United States)

    Fontán-Sainz, María; Gómez-Couso, Hipólito; Fernández-Ibáñez, Pilar; Ares-Mazás, Elvira

    2012-02-01

    Water samples of 0, 5, and 30 nephelometric turbidity units (NTU) spiked with Cryptosporidium parvum oocysts were exposed to natural sunlight using a 25-L static solar reactor fitted with a compound parabolic collector (CPC). The global oocyst viability was calculated by the evaluation of the inclusion/exclusion of the fluorogenic vital dye propidium iodide and the spontaneous excystation. After an exposure time of 8 hours, the global oocyst viabilities were 21.8 ± 3.1%, 31.3 ± 12.9%, and 45.0 ± 10.0% for turbidity levels of 0, 5, and 30 NTU, respectively, and these values were significantly lower (P 10 times).

  6. Project, fabrication, assembly and tests of different prototypes for CPS compound parabolic solar collectors; Projeto, fabricacao, montagem e testes de diferentes prototipos de coletores solares parabolicos compostos CPCs

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Jose H.M. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica]. E-mail: henrique@daem.des.cefemg.br

    2000-07-01

    This work presents the results of the experiment involving the design, fabrication, assembly and tests of composite parabolic solar collectors prototypes with acceptance half-angles of 3 deg C, 6.5 deg C, 11 deg C, 14 deg C and 19.5 deg C of the tube type absorber and 14 deg C rectangular absorber. Field test were performed on all the prototypes for determination of thermal efficiency, time constants and optical efficiencies represented by the modified incidence angles. Tests were performed for the determination of the heat transfer global coefficients on each prototype. (author)

  7. Modular Trough Power Plant Cycle and Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Price, H.; Hassani, V.

    2002-01-01

    This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

  8. Hierarchic control of the production of energy by means of plants of distributed solar collectors; Control jerarquico de la produccion de energia mediante plantas de colectores solares distribuidos

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Cirre, C. R.

    2008-07-01

    This work presents several different approaches to hierarchical control algorithms designed for a parabolic-trough solar collector field to demonstrate the possibility of maximizing hypothetical profit possible from this type of plant by improving and increasing plant automation. This study was developed in the current world power supply scenario, posing the possibility of using renewable energies (among which is solar thermal power), which the author is interested in contributing to advancing through research on improved plant operation control. The design was made for the ACUREX distributed solar collector field at the Plataforma Solar de Almeria. The control structures implemented to improve production in the solar collector field are based on a simple two-layered hierarchical control. One regulation layer (Layer 1) in which two proposals have been implemented: a control scheme developed using the feedback linearization technique and another proposal consisting on parallel deed forward control with an I-PD (Integral-Proportional Derivative) control. three proposals were implemented in the top layer (Layer 2) for generating the setpoint, the first one based on a physical model, the second one based on a fuzzy model, and the last uses the physical model and an optimization function for finding the optimum setpoint. (Author)

  9. Design of a solar concentrator considering arbitrary surfaces

    Science.gov (United States)

    Jiménez-Rodríguez, Martín.; Avendaño-Alejo, Maximino; Verduzco-Grajeda, Lidia Elizabeth; Martínez-Enríquez, Arturo I.; García-Díaz, Reyes; Díaz-Uribe, Rufino

    2017-10-01

    We study the propagation of light in order to efficiently redirect the reflected light on photocatalytic samples placed inside a commercial solar simulator, and we have designed a small-scale prototype of Cycloidal Collectors (CCs), resembling a compound parabolic collector. The prototype consists of either cycloidal trough or cycloidal collector having symmetry of rotation, which has been designed considering an exact ray tracing assuming a bundle of rays propagating parallel to the optical axis and impinging on a curate cycloidal surface, obtaining its caustic surface produced by reflection.

  10. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  11. thermic oil and molten salt

    African Journals Online (AJOL)

    Boukelia T.E, Mecibah M.S and Laouafi A

    1 mai 2016 ... [27] Zavoico, AB. Solar Power Tower Design Basis Document. Tech. rep, Sandia National. Laboratories, SAND2001-2100, 2001. How to cite this article: Boukelia T.E, Mecibah M.S and Laouafi A. Performance simulation of parabolic trough solar collector using two fluids (thermic oil and molten salt).

  12. Thermal behaviour of solar air heater with compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, Rene

    2008-01-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computer code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Predictions for the performance of the solar heater also exhibit reasonable agreement, with experimental data with an average error of 7%

  13. An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors

    International Nuclear Information System (INIS)

    Amelio, Mario; Ferraro, Vittorio; Marinelli, Valerio; Summaria, Antonio

    2014-01-01

    An evaluation of the performance of an innovative solar system integrated in a combined cycle plant is presented, in which the heat transfer fluid flowing in linear parabolic collectors is the same oxidant air that is introduced into the combustion chamber of the plant. This peculiarity allows a great simplification of the plant. There is a 22% saving of fossil fuel results in design conditions and 15.5% on an annual basis, when the plant works at nominal volumetric flow rate in the daily hours. The net average year efficiency is 60.9% against the value of 51.4% of a reference combined cycle plant without solar integration. Moreover, an economic evaluation of the plant is carried out, which shows that the extra-cost of the solar part is recovered in about 5 years. - Highlights: • A model to calculate an innovative ISCCS (Integrated solar Combined Cycle Systems) solar plant is presented. • The plant uses air as heat transfer fluid as well as oxidant in the combustor. • The plant presents a very high thermodynamic efficiency. • The plant is very simple in comparison with existing ISCCS

  14. Solar powered adsorption refrigerator with CPC collection system: Collector design and experimental test

    International Nuclear Information System (INIS)

    Gonzalez, Manuel I.; Rodriguez, Luis R.

    2007-01-01

    Solar adsorption cooling systems are usually based on the flat plate collector, whereas little attention has been paid to concentrating collectors. Compound parabolic concentrators (CPC) are a versatile class of solar collectors that can be adapted to a large variety of applications and geometries. This work presents a CPC collector whose tubular receiver contains the sorption bed and where only a portion of the receiver is exposed to sunlight. Geometric characteristics of the proposed CPC, such as the profile, the length and the height of the reflective sheet are given. A prototype of a solar adsorption chiller using this type of collector and the activated carbon-methanol working pair is described, and typical experimental results are reported. In particular, the measured solar COP ranges from 0.078 to 0.096

  15. Analysis of environmental effect of hybrid solar-assisted desalination cycle in Sirdarya Thermal Power Plant, Uzbekistan

    International Nuclear Information System (INIS)

    Alikulov, Khusniddin; Xuan, Tran Dang; Higashi, Osamu; Nakagoshi, Nobukazu; Aminov, Zarif

    2017-01-01

    Highlights: • A hybrid solar-assisted desalination cycle was designed and stimulated. • Maximum of 21,064.00 kW effective solar heat can be achieved. • The use of parabolic-trough collectors in the Multi Effect Distillation is potential. • The cycle can be applied in other regions with high Direct Normal Irradiation. - Abstract: This study was to investigate possible reduction of fossil fuel consumption and carbon dioxide emission in one of energy sectors of Sirdarya Thermal Power Plant (TPP), Uzbekistan. A hybrid solar-assisted desalination cycle has been designed and simulated for partially supplying saturated steam with 200 °C, 8 bar, and 32 t/h parameters to a Multi Effect Distillation (MED) process in the Sirdarya Thermal Power Plant. The outcome of the parental design model stated that maximum, 21,064.00 kW effective solar heat can be achieved, which is equivalent to 31.76 t/h of saturated steam with 200 °C and 8 bar parameters. Total saved fossil fuel in each month proved that it is possible to reduce fossil fuel (heavy oil and natural gas) consumption with 59.64, 95.24, 389.96, and 298.26 tons during available Direct Normal Irradiation (DNI) by using parabolic-trough collectors. Moreover, the above-mentioned fossil fuel savings accounted for CO_2 reduction with amounts of 182.50, 255.46, 1045.87 & 799.96 tons per each consistent month. Findings proved that integration of parabolic-trough collectors into the MED process is feasible in terms of high DNI availability and demand for retrofitting old existing heat-consuming facilities in Sirdarya Thermal Power Plant. Besides, the cycle also can be applied in other regions of Uzbekistan with high DNI for generating solar heat. Therefore, conducted study is eligible to be applied on the research site by taking into account of sufficient meteorological data and required steam parameters.

  16. First steeps in industrial applications of solar photocatalysis in water detoxification. La utilizacion industrial de la fotocatalisis solar en la descontaminacion de aguas

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J; Malato, S; Romero, M; Herrero, J; Sanchez, M

    1992-01-01

    A solar photocatalytic water detoxification loop for the destruction of toxic organic compounds dissolved in water has been developed at the Plataforma Solar de Almeria using parabolic trough collectors. In this report, the loop and its main design and control parameters are described as a flexible facility ready to be used for testing. (Author)

  17. Optical performance effects of the misalignment of nonimaging optics solar collectors

    Science.gov (United States)

    Ferry, Jonathan; Ricketts, Melissa; Winston, Roland

    2017-09-01

    The use of non-imaging optics in the application of high temperature solar thermal collectors can be extremely advantageous in eliminating the need to track the sun. The stationary nature of non-imaging optics collectors, commonly called compound parabolic concentrators (CPC's), present a unique design challenge when orienting them to collect sunlight. Many facilities throughout the world that adopt CPCs are not situated to orient the collectors in the ideal angle facing the sun. This East-West misalignment can adversely affect the optical and power performance of the CPC collector. To characterize how this misalignment effects CPCs, reverse raytracing simulations are conducted for varying offset angles of the collectors from solar South. Optical performance is analyzed for an ideal East-West oriented CPC with a 40-degree acceptance angle. Direction cosine plots are used to develop a ratio of annual solar collection by the CPC over the total annual solar input. From these simulations, average annual collector performance is given for offset angles ranging from 0 to 90 degrees for different Earth Latitudes in 10 degree increments.

  18. Thermal behaviour of a solar air heater with a compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, R.

    2005-11-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computed code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Prediction for the performance of the solar heater also exhibits reasonable agreement with experimental data with an average error of 7%. (author)

  19. Solarthermische Kraftwerksentwicklung (STKE) - development of solar thermal power plants. Technical aspects. Final report; Solarthermische Kraftwerksentwicklung (STKE). Technischer Teil. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pitz-Paal, R.

    2000-01-01

    This project started on 1 January 1996 with DM 3.7 million funds from the BMFT. Originally scheduled for three years, it was extended by a further 11 months for various reasons. Its intention was to reduce the cost of future solar thermal power plants. Particular emphasis was given to the parabolic trough technology asit is closest to commercialisation. Three strategies were involved: 1. Further development and qualification of components for the parabolic trough collector (WG PAREX); 2. Development of instruments for measuring radiation flux distribution in parabolic trough collectors (WG PARMESAN); 3. Development, verification and application of software tools for analysing the complex dynamic response of solar thermal power plants (WG SISTA). [German] Das hier dargestellte Projekt begann am 1.1.1996 und wurde vom Bundesministerium fuer Forschung und Technologie (BMFT) mit etwa 3,7 Mio. DM gefoerdert. Es hatte eine geplante Laufzeit von drei Jahren, wurde aber aufgrund von unterschiedlichen Verzoegerungen (Mitarbeiterwechsel, Defekte an Versuchsanlagen) kostenneutral um 11 Monate verlaengert. Gesamtziel des Projekts war es, zur Kostensenkung bei zukuenftigen solarthermischen Kraftwerken beizutragen. Dabei stand insbesondere die Parabolrinnentechnik im Vordergrund, da sie im Vergleich zu anderen solarthermischen Technologien einer weiteren kommerziellen Vermarktung derzeit am naechsten steht. Es wurden drei Schwerpunkte verfolgt: 1. Die Weiterentwicklung und Qualifizierung von Komponenten fuer den Parabolrinnenkollektor (Arbeitspaket 'Parabolrinnenexperimente', kurz PAREX) 2. Die Entwicklung von Messtechnik zur Bestimmung von Strahlungsflussverteilung bei Parabolrinnenkollektoren (AP 'Parabolrinnen-Messanlage', kurz PARMESAN) 3. Die Erstellung, Verifikation und Anwendung von Softwarewerkzeugen zur Analyse des komplexen dynamischen Verhaltens von solarthermischen Kraftwerken (AP 'Simulation solarthermischer Anlagen', kurz SISTA) (orig.)

  20. Development of compound parabolic concentrators for solar energy

    Energy Technology Data Exchange (ETDEWEB)

    O' Gallagher, J.; Winston, R.

    1983-10-01

    The compound parabolic concentrator (CPC) is not a specific collector, but a family of collectors based on a general design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle = thetac. This maximum limit exceeds by a factor of 2 to 4 that attainable by systems using focussing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to about 10x), collection of circumsolar and some diffuse radiation and relaxed tolerances. Because of these advantages, CPC type concentrators have applications in solar energy wherever concentration is desired, e.g., for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for both non-evacuated and evacuated thermal collector applications are discussed with particular emphasis on the most recent advances. The use of CPC type elements as secondary concentrators is illustrated in the context of higher concentration photovoltaic applications.

  1. The rise of non-imaging optics for rooftop solar collectors

    Science.gov (United States)

    Rosengarten, Gary; Stanley, Cameron; Ferrari, Dave; Blakers, Andrew; Ratcliff, Tom

    2016-09-01

    In this paper we explore the use of non-imaging optics for rooftop solar concentrators. Specifically, we focus on compound parabolic concentrators (CPCs), which form an ideal shape for cylindrical thermal absorbers, and for linear PV cells (allowing the use of more expensive but more efficient cells). Rooftops are ideal surfaces for solar collectors as they face the sky and are generally free, unused space. Concentrating solar radiation adds thermodynamic value to thermal collectors (allowing the attainment of higher temperature) and can add efficiency to PV electricity generation. CPCs allow that concentration over the day without the need for tracking. Hence they have become ubiquitous in applications requiring low concentration.

  2. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  3. Effects assessment of 10 functioning years on the main components of the molten salt PCS experimental facility of ENEA

    Science.gov (United States)

    Gaggioli, Walter; Di Ascenzi, Primo; Rinaldi, Luca; Tarquini, Pietro; Fabrizi, Fabrizio

    2016-05-01

    In the frame of the Solar Thermodynamic Laboratory, ENEA has improved CSP Parabolic Trough technologies by adopting new advanced solutions for linear tube receivers and by implementing a binary mixture of molten salt (60% NaNO3 and 40% KNO3) [1] as both heat transfer fluid and heat storage medium in solar field and in storage tanks, thus allowing the solar plants to operate at high temperatures up to 550°C. Further improvements have regarded parabolic mirror collectors, piping and process instrumentation. All the innovative components developed by ENEA, together with other standard parts of the plant, have been tested and qualified under actual solar operating conditions on the PCS experimental facility at the ENEA Casaccia Research Center in Rome (Italy). The PCS (Prova Collettori Solari, i.e. Test of Solar Collectors) facility is the main testing loop built by ENEA and it is unique in the world for what concerns the high operating temperature and the fluid used (mixture of molten salt). It consists in one line of parabolic trough collectors (test section of 100 m long life-size solar collectors) using, as heat transfer fluid, the aforesaid binary mixture of molten salt up to 10 bar, at high temperature in the range 270° and 550°C and a flow rate up to 6.5 kg/s. It has been working since early 2004 [2] till now; it consists in a unique closed loop, and it is totally instrumented. In this paper the effects of over ten years qualification tests on the pressurized tank will be presented, together with the characterization of the thermal losses of the piping of the molten salt circuit, and some observations performed on the PCS facility during its first ten years of operation.

  4. Dynamic testing of solar collectors under special consideration of the correction of the inclination angle and reduction of the test duration; Dynamische Pruefung von Sonnenkollektoren unter besonderer Beruecksichtigung der Einfallswinkelkorrektur und der Reduzierung der Pruefdauer

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Stephan

    2011-07-01

    Solar thermal systems are gaining more and more market shares. At the beginning of the last decade only systems for swimming pool heating and domestic hot water heating were available on the market. Today the system variety includes additionally solar thermal systems for space heating, solar thermal cooling, process heat and solar thermal power plants. Independent of the purpose of the solar thermal system, it is always the collector that converts the solar irradiance into heat and is thus the most important component within a solar thermal system. The high number of applications results also in a large variety of different collector concepts. The differences between flat plate collectors, evacuated tubular collectors (with or without heat pipes). CPC collectors, parabolic trough collectors. Fresnel collectors and others is not limited to geometry and working principles but include as well the thermal performance, especially when the thermal behaviour under different angles of incidence and fractions of diffuse irradiance is taking into account. For the test of solar thermal collectors and for the optimisation of solar thermal systems a mathematical model is necessary to describe the thermal performance of the solar collector. Thus this thesis is dealing with the mathematic modelling and the experimental testing of solar thermal collectors. Based on already existing procedures a numerical model and a new procedure for the test of thermal collectors is introduced. The numerical model enables the description of the thermal behaviour for most collectors available on the market. The numerical model and the test procedure were developed paying special attention to the incidence angle modifier and the reduction of testing time. As basis for the general numerical model and the test procedure part one of the thesis describes and discusses the parameters needed to characterise the thermal performance of solar thermal collectors. It is shown that some of the influencing

  5. Principles of solar engineering

    CERN Document Server

    Goswami, D Yogi

    2015-01-01

    Introduction to Solar Energy ConversionGlobal Energy Needs and ResourcesSolar EnergyEnergy StorageEconomics of Solar SystemsSummary of RE ResourcesForecast of Future Energy MixReferencesFundamentals of Solar RadiationThe Physics of the Sun and Its Energy TransportThermal Radiation FundamentalsSun-Earth Geometric RelationshipSolar RadiationEstimation of Terrestrial Solar RadiationModels Based on Long-Term Measured Horizontal Solar RadiationMeasurement of Solar RadiationSolar Radiation Mapping Using Satellite DataReferencesSuggested ReadingsSolar Thermal CollectorsRadiative Properties and Characteristics of MaterialsFlat-Plate CollectorsTubular Solar Energy CollectorsExperimental Testing of CollectorsConcentrating Solar CollectorsParabolic Trough ConcentratorCompound-Curvature Solar ConcentratorsCentral Receiver CollectorFresnel Reflectors and LensesSolar Concentrator SummaryReferencesSuggested ReadingThermal Energy Storage and TransportThermal Energy StorageTypes of TESDesign of Storage SystemEnergy Transport ...

  6. Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schuknecht, Nate [Project Manager; White, David [Principle Investigator; Hoste, Graeme [Research Engineer

    2014-09-11

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  7. Double-pass photovoltaic / thermal (PV/T) solar collector with advanced heat transfer features

    International Nuclear Information System (INIS)

    Mohd Nazari Abu Bakar; Baharudin Yatim; Mohd Yusof Othman; Kamaruzzaman Sopian

    2006-01-01

    The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPR and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic / thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPR) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. The thermal, electrical and combined electrical and thermal efficiencies of the collector are presented and discussed

  8. Techno-Economic Assessment of Heat Transfer Fluid Buffering for Thermal Energy Storage in the Solar Field of Parabolic Trough Solar Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Jorge M. Llamas

    2017-08-01

    Full Text Available Currently, operating parabolic trough (PT solar thermal power plants, either solar-only or with thermal storage block, use the solar field as a heat transfer fluid (HTF thermal storage system to provide extra thermal capacity when it is needed. This is done by circulating heat transfer fluid into the solar field piping in order to create a heat fluid buffer. In the same way, by oversizing the solar field, it can work as an alternative thermal energy storage (TES system to the traditionally applied methods. This paper presents a solar field TES model for a standard solar field from a 50-MWe solar power plant. An oversized solar model is analyzed to increase the capacity storage system (HTF buffering. A mathematical model has been developed and different simulations have been carried out over a cycle of one year with six different solar multiples considered to represent the different oversized solar field configurations. Annual electricity generation and levelized cost of energy (LCOE are calculated to find the solar multiple (SM which makes the highest solar field thermal storage capacity possible within the minimum LCOE.

  9. Coolidge solar powered irrigation pumping project

    Science.gov (United States)

    Larson, D. L.

    1980-01-01

    A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.

  10. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States

    Energy Technology Data Exchange (ETDEWEB)

    Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies of interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.

  11. Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires

    Science.gov (United States)

    Gordon, Jeffrey M.; Kashin, Peter

    1994-01-01

    Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while ensuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric compound parabolic luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illuminance offer significant improvements in flux homogeneity relative to alternative designs to date.

  12. Determination of the optimum design through different funding scenarios for future parabolic trough solar power plant in Algeria

    International Nuclear Information System (INIS)

    Trad, Ameur; Ait Ali, Mohand Ameziane

    2015-01-01

    Highlights: • Seven technical design options have been simulated. • The integration of auxiliary heating and TES stabilize electricity generation. • Impact of TES on the technical and economic performance of PTSPP projects. • Different funding scenarios to assess the profitability of CSP plant. • Sensitivity analysis plays an important role in building energy analysis. - Abstract: The purpose of this study is to determine an optimum design for a projected parabolic trough solar power plant (PTSPP) under Algerian climate through different funding scenarios. In this paper, seven different (d1–d7) designs for PTSPP have been developed for the Naâma site. Plant size, technology type, storage capacity, location of the plant, Operation and Maintenance (O and M) costs, replacement costs, fuel consumption, net CO 2 emission, levelized electricity cost, net power generation, specific investment costs and discount rate are the basis factors to determine the optimum sustainable design for PTSPP. The most attractive designs of each base technology were selected as D1, D2 and D3. The preferable design of three funding scenarios was finally selected on economic, financial and sensitivity analysis. It is finally concluded that, under the most favorable economic conditions allowed in this study, design D3 is the most advantageous in terms of benefit to cost ratio: its power output will be 100 MW el with 8 full load hours thermal energy storage. It was also found that for design D3 under funding scenario S2, the project will require an upfront grant of 396 MEUR. This corresponds to around 56% of the total investment cost and the payback period will be approximately 7 years

  13. ANALYSIS OF MEASURED AND MODELED SOLAR RADIATION AT THE TARS SOLAR HEATING PLANT IN DENMARK

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    , such as solar radiation, inlet and outlet temperature for the solar collector field, flow rate and pressure, ambient temperature, Wind speed and wind direction were measured. Global horizontal radiation, direct normal irradiation (DNI) and total radiation on the tilted collector plane of the flat plate...... collector field have been measured in Tars solar heating plant. To determine the accuracy of modeled and measured solar radiation in Tars solar heating plant, monthly comparisons of measured and calculated radiation using 6 empirical models have been carried out. Comparisons of measured and modeled total......A novel combined solar heating plant with tracking parabolic trough collectors (PTC) and flat plate collectors (FPC) has been constructed and put into operation in Tars, 30 km north of Aalborg, Denmark in August 2015. To assess the operation performance of the plant, detailed parameters...

  14. Studies with Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC

    CERN Document Server

    Solfaroli Camillocci, Matteo; Timko, Helga; Wenninger, Jorg; CERN. Geneva. ATS Department

    2018-01-01

    Measurements performed with a Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC. Three attempts have been performed with a pilot bunch and one with nominal bunch (1.1x1011 p/bunch).

  15. Tradeoffs for Renewable Energy Projects: Environmental, Planning, and Mission Considerations

    Science.gov (United States)

    2010-04-01

    parabolic trough solar system for heating, cooling and hot water at Fort Huachuca, AZ from October 1979 (est.)  a solar pool heating system at Fort... collectors commercially applied Passive solar energy use Heat, cold, light, ventila- tion Demonstrations and applica- tions Artificial photosynthesis H2...the technologies that convert those energies into more usable forms is that renewable en- ERDC/CERL SR-10-2 36 ergy generally emits fewer compounds

  16. Design experiences of the first solar parabolic thermal power plant for various regions in Iran

    International Nuclear Information System (INIS)

    Azizian, K.; Yaghoubi, M.; Kenary, A.

    2002-01-01

    The basic design is made for a 250 kw solar power plant. The main element of the plant is the collectors. Base on system simulation, a parabolic collector constructed and tested for one year. The model is first validated with experimental measurement and a detail numerical model is also developed to study effects of various optical properties of mirrors and receiver on the thermal performance of the collectors. It is observed that due to poor optical properties of the present collector, it would not be able to produce hot oil with desired temperature. Improving the material of the mirrors and the receiver tube, thermal performances exceed substantially from the design conditions. By considering available optical properties simulation is made to estimate yearly steady and unsteady behavior and the performance of the power plant for three locations: Shiraz, Yazd and Lar in Iran. Comparison of the yearly performance of the cycle shows that unsteady behavior reveals different results and simulations approach a reliable technique to study such cycle

  17. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  18. Dielectric compound parabolic concentrating solar collector with frustrated total internal reflection absorber

    Science.gov (United States)

    Hull, J. R.

    Since its introduction, the concept of nonimaging solar concentrators, as exemplified by the compound parabolic concentrator (CPC) design, has greatly enhanced the ability to collect solar energy efficiently in thermal and photovoltaic devices. When used as a primary concentrator, a CPC can provide significant concentration without the complication of a tracking mechanism and its associated maintenance problems. When used as a secondary, a CPC provides higher total concentration, or for a fixed concentration, tolerates greater tracking error in the primary.

  19. Photovoltaic concentrator technology development project. Sixth project integration meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  20. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    Science.gov (United States)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.

    1979-01-01

    This paper presents the performance and cost of four 10-MWe advanced solar thermal electric power plants sited in various regions of the continental United States. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs, and energy costs. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrator (CPC) comprise the advanced concepts studied. This paper contains a discussion of the regional insolation data base, a description of the solar systems' performances and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades.

  1. Irradiation distribution diagrams and their use for estimating collectable energy

    International Nuclear Information System (INIS)

    Ronnelid, M.; Karlsson, B.

    1997-01-01

    A method for summarising annual or seasonal solar irradiation data in irradiation distribution diagrams, including both direct and diffuse irradiation, is outlined. The practical use of irradiation distribution diagrams is discussed in the paper. Examples are given for the calculation of collectable irradiation on flat plate collectors or trough-like concentrators like the compound parabolic concentrator (CPC), and for the calculation of overhang geometries for windows to prevent overheating of buildings. (author)

  2. Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process

    International Nuclear Information System (INIS)

    Nixon, J.D.; Dey, P.K.; Davies, P.A.

    2010-01-01

    This study of concentrating solar thermal power generation sets out to evaluate the main existing collection technologies using the framework of the Analytical Hierarchy Process (AHP). It encompasses parabolic troughs, heliostat fields, linear Fresnel reflectors, parabolic dishes, compound parabolic concentrators and linear Fresnel lenses. These technologies are compared based on technical, economic and environmental criteria. Within these three categories, numerous sub-criteria are identified; similarly sub-alternatives are considered for each technology. A literature review, thermodynamic calculations and an expert workshop have been used to arrive at quantitative and qualitative assessments. The methodology is applied principally to a case study in Gujarat in north-west India, though case studies based on the Sahara Desert, Southern Spain and California are included for comparison. A sensitivity analysis is carried out for Gujarat. The study concludes that the linear Fresnel lens with a secondary compound parabolic collector, or the parabolic dish reflector, is the preferred technology for north-west India.

  3. Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.D.; Davies, P.A. [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET (United Kingdom); Dey, P.K. [Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET (United Kingdom)

    2010-12-15

    This study of concentrating solar thermal power generation sets out to evaluate the main existing collection technologies using the framework of the Analytical Hierarchy Process (AHP). It encompasses parabolic troughs, heliostat fields, linear Fresnel reflectors, parabolic dishes, compound parabolic concentrators and linear Fresnel lenses. These technologies are compared based on technical, economic and environmental criteria. Within these three categories, numerous sub-criteria are identified; similarly sub-alternatives are considered for each technology. A literature review, thermodynamic calculations and an expert workshop have been used to arrive at quantitative and qualitative assessments. The methodology is applied principally to a case study in Gujarat in north-west India, though case studies based on the Sahara Desert, Southern Spain and California are included for comparison. A sensitivity analysis is carried out for Gujarat. The study concludes that the linear Fresnel lens with a secondary compound parabolic collector, or the parabolic dish reflector, is the preferred technology for north-west India. (author)

  4. Stationary nonimaging concentrator as a second stage element in tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Kritchman, E.M.; O' Gallagher, J.; Snail, K.A.; Winston, R.

    1983-06-01

    The University of Chicago solar energy group and GTE Research have developed an Integrated Stationary Evacuated Concentration (ISEC) collector tube. In this paper the increase in concentration of line focus concentrators that can be achieved using the evacuated CPC collector tube as a second stage element is examined. Three primary elements of the overall concentration are analyzed: a flat parabolic absorber trough, a flat Fresnel lens, and a color and coma corrected Fresnel lens. The three examples demonstrate that high concentration ratios may be achieved by using the already fabricated ISEC as a second stage element. The ISEC also suppresses thermal losses due to conduction, convection, and infrared radiation.

  5. Analysis of heat transfer in different CPC solar collectors: A CFD approach

    International Nuclear Information System (INIS)

    Antonelli, M.; Francesconi, M.; Di Marco, P.; Desideri, U.

    2016-01-01

    Highlights: • We made a CFD simulation with a validated model. • We analyzed the influence of the geometrical parameters of the collector. • We established a correspondence between the Nusselt number and the characteristic dimensions and parameters of the collector. - Abstract: In this paper a methodology is proposed to estimate thermal heat losses inside compound parabolic collectors (CPC) to be used in designing and validating new collectors' concepts and materials. CFD simulations were carried out on different CPCs, taking into account the effective working conditions and the presence of radiative heat transfer as well as the absence of adiabatic walls. The CFD model was validated considering a previous work reported in literature. The results were employed to develop some correlations by interpolation of numerical data, to express the Nusselt number on the receiver. We used these correlations to calculate heat losses of the receiver and to show the influence of different parameters such as the shape of receiver itself, tilt angle and concentration ratio. The variation of terms of the correlation as a function of characteristic length and concentration was studied. These results might be employed for a preliminary estimation procedure of a CPC collector efficiency and to propose sizing criteria of general validity for this class of devices.

  6. Influence of Nano-Fluid and Receiver Modification in Solar Parabolic Trough Collector Performance

    Science.gov (United States)

    Dharani Kumar, M.; Yuvaraj, G.; Balaji, D.; Pravinraj, R.; shanmugasundaram, Prabhu

    2018-02-01

    Utilization of natural renewal sources in India is very high over the past decades. Solar power is a prime source of energy available plenty in the world. In this work solar energy is modified into thermal energy by using copper absorber tube with fins. Due to low heat transfer coefficient results leading to higher thermal losses and lower thermal efficiency. In order to increase the heat transfer coefficient copper receiver tube with fins is used and as well as solid has higher thermal conductivity compare to fluid (Tio2) nano fluid is used to improve the heat transfer rate. The analyses have been carried out and take the account of parameters such as solar radiation with time variation, mass flow rate of water, temperatures.

  7. Design, simulation and optimization of a solar dish collector with spiral-coil thermal absorber

    Directory of Open Access Journals (Sweden)

    Pavlović Saša R.

    2016-01-01

    Full Text Available The efficient conversion of solar radiation into heat at high temperature levels requires the use of concentrating solar collectors. The goal of this paper is to present the optical and the thermal analysis of a parabolic dish concentrator with a spiral coil receiver. The parabolic dish reflector consists of 11 curvilinear trapezoidal reflective petals constructed by PMMA with silvered mirror layer and has a diameter of 3.8 m, while its focal distance is 2.26m. This collector is designed with commercial software SolidWorks and simulated, optically and thermally in its Flow Simulation Studio. The optical analysis proved that the ideal position of the absorber is at 2.1m from the reflector in order to maximize the optical efficiency and to create a relative uniform heat flux over the absorber. In thermal part of the analysis, the energetic efficiency was calculated approximately 65%, while the exergetic efficiency is varied from 4% to 15% according to the water inlet temperature. Moreover, other important parameters as the heat flux and temperature distribution over the absorber are presented. The pressure drop of the absorber coil is calculated at 0.07bar, an acceptable value.

  8. Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Nafey, A.S.; Sharaf, M.A. [Department of Engineering Science, Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2010-11-15

    Organic Rankine cycles (ORC) have unique properties that are well suited to solar power generation. In this work design and performance calculations are performed using MatLab/SimuLink computational environment. The cycle consists of thermal solar collectors (Flat Plate Solar Collector (FPC), or Parabolic Trough Collector (PTC), or Compound Parabolic Concentrator (CPC)) for heat input, expansion turbine for work output, condenser unit for heat rejection, pump unit, and Reverse Osmosis (RO) unit. Reverse osmosis unit specifications used in this work is based on Sharm El-Shiekh RO desalination plant. Different working fluids such as: butane, isobutane, propane, R134a, R152a, R245ca, and R245fa are examined for FPC. R113, R123, hexane, and pentane are investigated for CPC. Dodecane, nonane, octane, and toluene are allocated for PTC. The proposed process units are modeled and show a good validity with literatures. Exergy and cost analysis are performed for saturation and superheated operating conditions. Exergy efficiency, total exergy destruction, thermal efficiency, and specific capital cost are evaluated for direct vapor generation (DVG) process. Toluene and Water achieved minimum results for total solar collector area, specific total cost and the rate of exergy destruction. (author)

  9. Computational engineering applied to the concentrating solar power technology

    International Nuclear Information System (INIS)

    Giannuzzi, Giuseppe Mauro; Miliozzi, Adio

    2006-01-01

    Solar power plants based on parabolic-trough collectors present innumerable thermo-structural problems related on the one hand to the high temperatures of the heat transfer fluid, and on the other to the need og highly precise aiming and structural resistance. Devising an engineering response to these problems implies analysing generally unconventional solutions. At present, computational engineering is the principal investigating tool; it speeds the design of prototype installations and significantly reduces the necessary but costly experimental programmes [it

  10. Exergy, Energy, and Dynamic Parameter Analysis of Indigenously Developed Low-Concentration Photovoltaic System

    OpenAIRE

    Pankaj Yadav; Brijesh Tripathi; Manoj Kumar

    2013-01-01

    Piecewise linear parabolic trough collector (PLPTC) is designed and developed to concentrate solar radiation on monocrystalline silicon based photovoltaic module. A theoretical model is used to perform electrical energy and exergy analysis of low-concentration photovoltaic (LCPV) system working under actual test conditions (ATC). The exergy efficiency of LCPV system is in the range from 5.1% to 4.82% with increasing rate of input exergy rate from 30.81 W to 96.12 W, when conce...

  11. THESEUS: the first-scale 50 MEw THErmal Solar EUropean power station for the Island of Crete, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Aringhof, Rainer [Pilkington Solar International (United States)

    1996-03-01

    The first solar power plant to receive funding from the European Union is to be constructed on the Island of Crete, Greece. This utility-scale 50 MWe plant is based on technology known as THERMIE (THErmal Solar European power station) and it represents a major breakthrough for Europe`s small solar thermal power community. The proposed THESEUS project uses an advanced parabolic trough collector field as the primary heat source and will be constructed between 1977 and 1999. (UK)

  12. Energetic and financial investigation of a stand-alone solar-thermal Organic Rankine Cycle power plant

    International Nuclear Information System (INIS)

    Tzivanidis, Christos; Bellos, Evangelos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • A stand-alone solar driven Organic Rankine Cycle is optimized parametrically. • The system is optimized energetically and financially. • Nine working fluids are tested with cyclohexane to be the most suitable. • A collecting area of 25,000 m"2 parabolic trough collectors is the optimum solution. • The maximum IRR is 13.46% and the payback period is about 9 years. - Abstract: The use of solar thermal energy for electricity production is a clean and sustainable way to cover the increasing energy needs of our society. The most mature technology for capturing solar energy in high temperature levels is the parabolic trough collectors (PTC). In this study, an Organic Rankine Cycle (ORC) coupled with PTC is analyzed parametrically in order to be optimized financially and energetically. The first step is the thermodynamic investigation of the ORC by using various working fluids. The second step is the energetic and financial investigation of the total system which includes the solar field, the storage tank and the ORC module. By testing many combinations of collecting areas and storage tank volumes, finally cyclohexane proved to be the most suitable working fluid for producing 1 MW_e_l with PTC. Specifically, in the optimum situation a solar field of 25,000 m"2 with storage tank of about 300 m"3 leads to a payback period of 9 years and to an internal rate of return (IRR) equal to 13.46%. Moreover, an economic comparison for different commercial collectors is presented, with Eurotrough ET-150 being the financially optimum solution for this case study.

  13. Participation in multilateral effort to develop high performance integrated CPC evacuated collectors

    Science.gov (United States)

    Winston, R.; Ogallagher, J. J.

    1992-05-01

    The University of Chicago Solar Energy Group has had a continuing program and commitment to develop an advanced evacuated solar collector integrating nonimaging concentration into its design. During the period from 1985-1987, some of our efforts were directed toward designing and prototyping a manufacturable version of an Integrated Compound Parabolic Concentrator (ICPC) evacuated collector tube as part of an international cooperative effort involving six organizations in four different countries. This 'multilateral' project made considerable progress towards a commercially practical collector. One of two basic designs considered employed a heat pipe and an internal metal reflector CPC. We fabricated and tested two large diameter (125 mm) borosilicate glass collector tubes to explore this concept. The other design also used a large diameter (125 mm) glass tube but with a specially configured internal shaped mirror CPC coupled to a U-tube absorber. Performance projections in a variety of systems applications using the computer design tools developed by the International Energy Agency (IEA) task on evacuated collectors were used to optimize the optical and thermal design. The long-term goal of this work continues to be the development of a high efficiency, low cost solar collector to supply solar thermal energy at temperatures up to 250 C. Some experience and perspectives based on our work are presented and reviewed. Despite substantial progress, the stability of research support and the market for commercial solar thermal collectors were such that the project could not be continued. A cooperative path involving university, government, and industrial collaboration remains the most attractive near term option for developing a commercial ICPC.

  14. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    Science.gov (United States)

    Widyolar, Bennett K.

    A solar thermal cooling system using novel non-tracking External Compound Parabolic Concentrators (XCPC) has been built at the University of California, Merced and operated for two cooling seasons. Its performance in providing power for space cooling has been analyzed. This solar cooling system is comprised of 53.3 m2 of XCPC trough collectors which are used to power a 23 kW double effect (LiBr) absorption chiller. This is the first system that combines both XCPC and absorption chilling technologies. Performance of the system was measured in both sunny and cloudy conditions, with both clean and dirty collectors. It was found that these collectors are well suited at providing thermal power to drive absorption cooling systems and that both the coinciding of available thermal power with cooling demand and the simplicity of the XCPC collectors compared to other solar thermal collectors makes them a highly attractive candidate for cooling projects.

  15. An improved model to evaluate thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines in open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Imineo, Francesco; Marinelli, Valerio

    2013-01-01

    An improved model to analyze the performance of solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle is presented. In the new model, the effect of the incident angle modifier is included, to take into account the variation of the optical efficiency with the incidence angle of the irradiance, and the effect of the reheating of the fluid also has been studied. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine, with and without reheating of the fluid in the solar field. When reheating is used, the efficiency of the plant is increased. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it is able to compete well with other more complex plants operating with different heat transfer fluids. - Highlights: ► An improved model to calculate an innovative CPS solar plant is presented. ► The plant works with air in an open Joule–Brayton cycle. ► The reheating of the air increases the thermodynamic efficiency. ► The plant is very simple and competes well with other more complex solar plants

  16. Performance Evaluation of a Solar Adsorption Refrigeration System with a Wing Type Compound Parabolic Concentrator

    Directory of Open Access Journals (Sweden)

    Muhammad Umair

    2014-03-01

    Full Text Available Simulation study of a solar adsorption refrigeration system using a wing type compound parabolic concentrator (CPC is presented. The system consists of the wing type collector set at optimum angles, adsorption bed, a condenser and a refrigerator. The wing type collector captures the solar energy efficiently in the morning and afternoon and provides the effective temperature for a longer period of time compared to that achieved by a linear collector. The objectives of the study were to evaluate the system behavior, the effect of wing length, and to compare the performance of the systems with wing type and linear CPCs. A detailed dynamic simulation model was developed based on mass and energy balance equations. The simulation results show that the system performance with wing type CPC increases by up to 6% in the summer and up to 2% in the winter, compared to the performance with a linear CPC having same collector length. The ice production also increases up to 13% in the summer with the wing type CPC. This shows that the wing type CPC is helpful to increase the performance of the system compared to the linear CPC with the same collector length and without the need for tracking.

  17. A two-stage compound parabolic concentrator system with a large entrance over the exit aperture ratio

    International Nuclear Information System (INIS)

    Angelescu, Tatiana; Radu, A. A.

    2000-01-01

    Certain optical designs in the field of high energy gamma ray astronomy components of the Cherenkov light, collected by the mirror of telescope, be concentrated on the photo-cathodes of the photomultiplier tubes, with the help of the light collectors having large entrance and small exit apertures. Mathematical restrictions imposed by the design of the compound parabolic concentrator (CPC) implied that for a given cut-off angle and an entrance aperture, the exit aperture of the CPC should not exceed a limit value. If this value is larger than the active diameter of the photocathode, an additional concentrator must be added to the system in order to transfer the light collected, from the exit aperture of the compound parabolic concentrator to the photocathode of the photomultiplier tube. Different designs of a two-stage system composed by a a hollow compound parabolic concentrator and a solid, dielectric filled concentrator are evaluated in this paper, from the point of view of optical efficiency and manufacturability. (authors)

  18. Evaluation of the optical quality of compound parabolic concentrator solar collectors; Avaliacao da qualidade otica de coletores solares concentradores parabolicos compostos

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, P.O.; Krenzinger, A. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica

    1990-12-31

    This work presents a simulation of solar compound parabolic concentrators using the ray tracing technique. The program can be used as a computer aided design and quality control applications for parabolic mirrors. (author). 4 refs., 8 figs.

  19. Technical and economic analysis of integrating low-medium temperature solar energy into power plant

    International Nuclear Information System (INIS)

    Wang, Fu; Li, Hailong; Zhao, Jun; Deng, Shuai; Yan, Jinyue

    2016-01-01

    Highlights: • Seven configurations were studied regarding the integration of solar thermal energy. • Economic analysis was conducted on new built plants and retrofitted power plants. • Using solar thermal energy to preheat high pressure feedwater shows the best performance. - Abstract: In order to mitigate CO_2 emission and improve the efficiency of the utilization of solar thermal energy (STE), solar thermal energy is proposed to be integrated into a power plant. In this paper, seven configurations were studied regarding the integration of STE. A 300 MWe subcritical coal-fired plant was selected as the reference, chemical absorption using monoethanolamine solvent was employed for CO_2 ​capture, and parabolic trough collectors and evacuated tube collectors were used for STE collection. Both technical analysis and economic evaluation were conducted. Results show that integrating solar energy with post-combustion CO_2​ capture can effectively increase power generation and reduce the electrical efficiency penalty caused by CO_2 capture. Among the different configurations, Config-2 and Config-6, which use medium temperature STE to replace high pressure feedwater without and with CO_2 capture, show the highest net incremental solar efficiency. When building new plants, integrating solar energy can effectively reduce the levelized cost of electricity (LCOE). The lowest LCOE, 99.28 USD/MWh, results from Config-6, with a parabolic trough collector price of 185 USD/m"2. When retrofitting existing power plants, Config-6 also shows the highest net present value (NPV), while Config-2 has the shortest payback time at a carbon tax of 50 USD/ton CO_2. In addition, both LCOE and NPV/payback time are clearly affected by the relative solar load fraction, the price of solar thermal collectors and the carbon tax. Comparatively, the carbon tax can affect the configurations with CO_2 capture more clearly than those without CO_2 capture.

  20. Modeling and performance simulation of 100 MW PTC based solar thermal power plant in Udaipur India

    Directory of Open Access Journals (Sweden)

    Deepak Bishoyi

    2017-09-01

    Full Text Available Solar energy is a key renewable energy source and the most abundant energy source on the globe. Solar energy can be converted into electric energy by using two different processes: by means of photovoltaic (PV conversion and the thermodynamic cycles. Concentrated solar power (CSP is viewed as one of the most promising alternatives in the field of solar energy utilization. Lifetime and efficiency of PV system are very less compared to the CSP technology. A 100 MW parabolic trough solar thermal power plant with 6 h of thermal energy storage has been evaluated in terms of design and thermal performance, based on the System Advisor Model (SAM. A location receiving an annual DNI of 2248.17 kW h/m2 in Rajasthan is chosen for the technical feasibility of hypothetical CSP plant. The plant design consists of 194 solar collector loops with each loop comprising of 8 parabolic trough collectors. HITEC solar salt is chosen as an HTF due to its excellent thermodynamic properties. The designed plant can generate annual electricity of 285,288,352 kW h with the plant efficiency of 21%. The proposed design of PTC based solar thermal power plant and its performance analysis encourages further innovation and development of solar thermal power plants in India.

  1. Performance of double -pass solar collector with CPC and fins for heat transfer enhancement

    Science.gov (United States)

    Alfegi, Ebrahim M. A.; Abosbaia, Alhadi A. S.; Mezughi, Khaled M. A.; Sopian, Kamaruzzaman

    2013-06-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  2. Development of a selective surface vacuum collector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, H.; Simonis, F.

    1980-01-01

    To make solar energy useful for cooling applications a flat plate high performance collector, which can supply solar energy at 100 to 150/sup 0/C, has been developed. To achieve a reasonable efficiency at these temperatures the thermal heat loss must be very small. This has been obtained by (1) concentration of sunlight (c = 1.6); (2) evacuation of the collector housing to eliminate convection currents (pressure less than or equal to 4kPa); (3) spectral selective coating on the absorber; and (4) a low conductive gas in the collector housing (pressure approx. = 2kPa). The collector consists of a metal box with a glass cover hermetically sealed to it in the way double glazing units are manufactured. The sides of the V-trough concentrators support the glass cover. Measurements have been performed concerning heat loss factor and durability of the vacuum. The first prototype, fitted with a spectral selective coating of tin-oxide on enameled steel (epsilon = 0.25) showed a heat-loss of 2.0 W/m/sup 2/ /sup 0/C at 90/sup 0/C, being in reasonable agreement with calculations. Improvements with respect to the spectral selective coating and the use of a low conductive gas are necessary and will lead to a heat loss factor of about 1 W/m/sup 2/ /sup 0/C. Measurements have shown that in the chosen system the desired vacuum level can be maintained for at least 10 to 15 years.

  3. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    Science.gov (United States)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  4. The sun as a production factor; Die Sonne als Produktionsfaktor

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [AEE - Institut fuer Nachhaltige Technologien, Gleisdorf (Austria)

    2008-04-15

    So far the solar power hardly was used for production processes or for the heating of production halls. Typical areas of utilization of solar power are food and beverage industry, textile and chemical industry as well as simple wash processes. This is due to the low process temperatures between 30 and 90 C. Apart from low-temperature processes a large, potential exists in the middle temperature range to approximately 250 C which would be capable of being developed for solarthermal plants. At present, available collectors do not achieve the necessary temperature level with appropriate efficiencies. Under this aspect, in the context of the IEA task 33/IV three categories are developed by medium temperature collectors with a work temperature from 80 to 250 C: (a) Flat glazing with multiple glazing and anti-reflection coating; (b) Stationary CPC collectors; (c) Small parabolic trough collectors and Fresnell collectors. The previous work in the context of the IEA task 33/IV shows that the potential in the medium temperature range can be also used by the development of more efficient collectors and an adjusted system engineering.

  5. Operational performance of the development of a 15 kW parabolic trough mid-temperature solar receiver/reactor for hydrogen production

    International Nuclear Information System (INIS)

    Hong, Hui; Liu, Qibin; Jin, Hongguang

    2012-01-01

    Highlights: ► A 15 kW solar chemical receiver/reactor for hydrogen production was developed. ► The solar thermochemical efficiency of the receiver/reactor was in the range of 20–28%. ► Hydrogen production exceeding 80% was achieved. ► The research results extend the application of mid-temperature solar thermal energy. -- Abstract: In this paper, we report the operational performance and energy conversion efficiency of a developed 15 kW solar chemical receiver/reactor for hydrogen production. A concentrated solar heat of around 200–300 °C was utilized to provide process heat to drive methanol steam reforming. A modified 15 kW direct-irradiation solar reactor coupled with a linear receiver positioned along the focal line of a one-axis parabolic trough concentrator was used. The experiments were conducted from 200 to 300 °C under a mean solar flux of 300–800 W/m 2 and a reactant feeding rate of 6 kg/h. Reactants were continuously fed, and the attained conversion rate of methanol was more than 70% at 700 W/m 2 . The typical solar thermochemical efficiency of solar thermal energy converted into chemical energy was in the 20–28% range. The overall energy efficiency of input solar power conversion into chemical energy reached up to 17% and may be further increased by improving solar field efficiency. Hydrogen production exceeding 80% was achieved. In addition, preliminary economic evaluation was performed, and methods for further improvement were proposed. This paper proves that solar hydrogen production is feasible by combining solar thermal energy with alternative fuel at around 200–300 °C, which is much lower than the temperature of other solar thermochemical processes. This may offer an economic approach to solar fuel production and extend the application of mid-temperature solar thermal energy.

  6. High-temperature stable absorber coatings for linear concentrating solar thermal power plants; Hochtemperaturstabile Absorberschichten fuer linear konzentrierende solarthermische Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Christina

    2009-03-23

    This work describes the development of new absorber coatings for different applications - para-bolic trough and linear Fresnel collectors - and operating conditions - absorber in vacuum or in air. The demand for higher efficiencies of solar thermal power plants using parabolic trough technology results in higher temperatures in the collectors and on the absorber tubes. As heat losses increase strongly with increasing temperatures, the need for a lower emissivity of the absorber coating at constant absorptivity arises. The linear Fresnel application envisions ab-sorber tubes stable in air at high temperatures of about 450 C, which are to date commercially not available. This work comprises the theoretical background, the modeling and the fabrication of absorber tubes including the technology transfer to a production-size inline sputter coater. In annealing tests and accompanying optical measurements, degradation processes have been observed and specified more precisely by material characterization techniques. The simulations provided the capability of different materials used as potential IR-reflector. The highest selectivity can be achieved by applying silver which consequently has been chosen for the application in absorber coatings of the parabolic trough technology. Thin silver films how-ever need to be stabilized when used at high temperatures. Appropriate barrier layers as well as process and layer parameters were identified. A high selectivity was achieved and stability of the absorber coating for 1200 h at 500 C in vacuum has been demonstrated. For the application in air, silver was also analyzed as a potential IR-reflector. Even though the stability could be increased considerably, it nevertheless proved to be insufficient. The main factors influencing stability in a positive way are the use of higher quality polishing, additional barrier layers and adequate process parameters. This knowledge was applied for developing coatings which are stable in air at

  7. Performance of double –pass solar collector with CPC and fins for heat transfer enhancement

    International Nuclear Information System (INIS)

    Alfegi, Ebrahim M A; Abosbaia, Alhadi A S; Mezughi, Khaled M A; Sopian, Kamaruzzaman

    2013-01-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m 2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  8. Fuzzy Universal Model Approximator for Distributed Solar Collector Field Control

    KAUST Repository

    Elmetennani, Shahrazed

    2014-07-01

    This paper deals with the control of concentrating parabolic solar collectors by forcing the outlet oil temperature to track a set reference. A fuzzy universal approximate model is introduced in order to accurately reproduce the behavior of the system dynamics. The proposed model is a low order state space representation derived from the partial differential equation describing the oil temperature evolution using fuzzy transform theory. The resulting set of ordinary differential equations simplifies the system analysis and the control law design and is suitable for real time control implementation. Simulation results show good performance of the proposed model.

  9. A comparison of three different types of collectors for process heat uses; Vergleich von drei verschiedenen Kollektortypen fuer Prozesswaermeanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Brunold, S. [Solarenergie Pruef- und Forschungsstelle SPF-ITR, Rapperswil (Switzerland); Frey, R. [Solarenergie Pruef- und Forschungsstelle SPF-ITR, Rapperswil (Switzerland); Frei, U. [Solarenergie Pruef- und Forschungsstelle SPF-ITR, Rapperswil (Switzerland)

    1995-12-31

    A comparison of the measured and simulated values of three collector types shows that evacuated tube collectors are superior to transparent-insulation flat collectors in the case of high-temperature uses. At temperatures of 150 C and above good results were obtained using evacuated tube collectors with compound parabolic concentrators manufactured by Microtherm. CORTEC collectors are suited for temperatures in the range of 100 C to 150 C provided that the surface ratio is irrelevant. Costs play a decisive role when selecting systems. The results obtained show that improved transparent-insulation flat collectors can compete with evacuated tube collectors in the 100 C to 150 C temperature range. (orig.) [Deutsch] Ein Vergleich der gemessenen und simulierten Werte der drei Kollektoren zeigt, dass die Vakuumroehrenkollektoren fuer den Einsatz in Hochtemperaturanwendungen dem mit transparenter Waermedaemmung isolierten Flachkollektor ueberlegen sind. Der Vakuumroehrenkollektor mit CPC von Microtherm erzielt gute Resultate ab 150 C und mehr. Wogegen der CORTEC-Kollektor fuer den Einsatz im Temperaturbereich zwischen 100 C und 150 C geeignet ist, solange das Flaechenverhaeltnis keine Rolle spielt. Wie fuer die meisten Anwendungen spielen die Kosten eine entscheidende Rolle fuer die Wahl des eingesetzten Systems. Die Resultate zeigen, dass ein verbesserter mit TWD ausgeruesteter Flachkollektor im Temperaturbereich von 100 C bis 150 C konkurrenzfaehig zu Vakuumroehrenkollektoren sein kann. (orig.)

  10. A Concentrator Photovoltaic System Based on a Combination of Prism-Compound Parabolic Concentrators

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2016-08-01

    Full Text Available We present a cost-effective concentrating photovoltaic system composed of a prism and a compound parabolic concentrator (P-CPC. In this approach, the primary collector consists of a prism, a solid compound parabolic concentrator (CPC, and a slab waveguide. The prism, which is placed on the input aperture of CPC, directs the incoming sunlight beam to be parallel with the main axes of parabolic rims of CPC. Then, the sunlight is reflected at the parabolic rims and concentrated at the focal point of these parabolas. A slab waveguide is coupled at the output aperture of the CPC to collect focused sunlight beams and to guide them to the solar cell. The optical system was modeled and simulated with commercial ray tracing software (LightTools™. Simulation results show that the optical efficiency of a P-CPC can achieve up to 89%. when the concentration ratio of the P-CPC is fixed at 50. We also determine an optimal geometric structure of P-CPC based on simulation. Because of the simplicity of the P-CPC structure, a lower-cost mass production process is possible. A simulation based on optimal structure of P-CPC was performed and the results also shown that P-CPC has high angular tolerance for input sunlight. The high tolerance of the input angle of sunlight allows P-CPC solar concentrator utilize a single sun tracking system instead of a highly precise dual suntracking system as cost effective solution.

  11. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector

    International Nuclear Information System (INIS)

    Liu, Zhen-Hua; Hu, Ren-Lin; Lu, Lin; Zhao, Feng; Xiao, Hong-shen

    2013-01-01

    Highlights: • A novel solar air collector with simplified CPC and open thermosyphon is designed and tested. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • Nanofluid effectively improves thermal performance of the above solar air collector. • Solar air collector with open thermosyphon is better than that with concentric tube. - Abstract: A novel evacuated tubular solar air collector integrated with simplified CPC (compound parabolic concentrator) and special open thermosyphon using water based CuO nanofluid as the working fluid is designed to provide air with high and moderate temperature. The experimental system has two linked panels and each panel includes an evacuated tube, a simplified CPC and an open thermosyphon. Outdoor experimental study has been carried out to investigate the actual solar collecting performance of the designed system. Experimental results show that air outlet temperature and system collecting efficiency of the solar air collector using nanofluid as the open thermosyphon’s working fluid are both higher than that using water. Its maximum air outlet temperature exceeds 170 °C at the air volume rate of 7.6 m 3 /h in winter, even though the experimental system consists of only two collecting panels. The solar collecting performance of the solar collector integrated with open thermosyphon is also compared with that integrated with common concentric tube. Experimental results show that the solar collector integrated with open thermosyphon has a much better collecting performance

  12. Optimized concentrating/passive tracking solar collector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sterne, K E; Johnson, A L; Grotheer, R H

    1979-01-01

    A concentrating solar collector having about half the material cost of other collectors with similar performance is described. The selected design is a Compound Parabolic Concentrator (CPC) which concentrates solar energy throughout the year without requiring realignment. Output is a fluid heated to 100/sup 0/C with good efficiency. The optical design of the reflector surface was optimized, yielding a 2.0:1 concentration ratio with a 60/sup 0/C acceptance angle and a low profile. Double glazing was chosen consisting of a polyester film outer glazing and an inner glazing of glass tubes around the absorbers. The selectively coated steel absorber tubes are connected in series with flexible plastic tubing. Much development effort went into the materials for the reflector subassembly. A laminate of metalized plastic film over plaster was chosen for the reflective surface. The reflector is rigidized by attaching filled epoxy header plates at each end. Aluminum side rails and an insulating back complete the structure. The finished design resulted in a material cost of $21.40 per square meter in production quantities. Performance testing of a prototype produced a 50% initial efficiency rating. This is somewhat lower than expected, and is due to materials and processes used in the prototype for the outer glazing, reflective surface and absorber coating. However, the efficiency curve drops only slightly with increasing temperature differential, showing the inherent advantage of the concentrator over flat plate collectors.

  13. Trough for piglets

    DEFF Research Database (Denmark)

    2006-01-01

    A trough is disclosed for supplying piglets with mineral supplements in the suckling period. The trough is designed to awaken the piglets' curiosity and thus make them root in the bottom of the trough, where the mineral supplements are dispensed in form of a dry powder mixture, and thus reduce...

  14. Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas

    International Nuclear Information System (INIS)

    Zhai, H.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2009-01-01

    In this study, a small scale hybrid solar heating, chilling and power generation system, including parabolic trough solar collector with cavity receiver, a helical screw expander and silica gel-water adsorption chiller, etc., was proposed and extensively investigated. The system has the merits of effecting the power generation cycle at lower temperature level with solar energy more efficiently and can provide both thermal energy and power for remote off-grid regions. A case study was carried out to evaluate an annual energy and exergy efficiency of the system under the climate of northwestern region of China. It is found that both the main energy and exergy loss take place at the parabolic trough collector, amount to 36.2% and 70.4%, respectively. Also found is that the studied system can have a higher solar energy conversion efficiency than the conventional solar thermal power generation system alone. The energy efficiency can be increased to 58.0% from 10.2%, and the exergy efficiency can be increased to 15.2% from 12.5%. Moreover, the economical analysis in terms of cost and payback period (PP) has been carried out. The study reveals that the proposed system the PP of the proposed system is about 18 years under present energy price conditions. The sensitivity analysis shows that if the interest rate decreases to 3% or energy price increase by 50%, PP will be less than 10 years. (author)

  15. Design of optimal and ideal 2-D concentrators with the collector immersed in a dielectric tube

    Science.gov (United States)

    Minano, J. C.; Ruiz, J. M.; Luque, A.

    1983-12-01

    A method is presented for designing ideal and optimal 2-D concentrators when the collector is placed inside a dielectric tube, for the particular case of a bifacial solar collector. The prototype 2-D (cylindrical geometry) concentrator is the compound parabolic concentrator or CPC, and from the beginning of development, it was found by Winston (1978) that filling up the concentrator with a transparent dielectric medium results in a big improvement of the optical properties. The method reported here is based on the extreme ray principle of design and avoids the use of differential equations by means of a proper appliction of Fermat's principle. One advantage of these concentrators is that they allow the size to be small compared with classical CPCs.

  16. Transient simulation of a solar heating system for a small-scale ethanol-water distillation plant: Thermal, environmental and economic performance

    International Nuclear Information System (INIS)

    Vargas-Bautista, Juan Pablo; García-Cuéllar, Alejandro Javier; Pérez-García, Santiago L.; Rivera-Solorio, Carlos I.

    2017-01-01

    Highlights: • Thermal simulation of a small solar ethanol distillation plant is performed. • The optimum collector area is obtained for two different thermal collectors types. • Higher solar fraction was found for parabolic trough collectors. • Economic analysis is performed for different scenarios to evaluate feasibility. - Abstract: The thermal, environmental and economic performance of a small-scale ethanol distillation system, where solar energy is used as primary energy source, was studied. Two different concentrations of ethanol at the feed stream (5 wt.% and 10 wt.%) were analysed to obtain a distillate product of 95 wt.% ethanol (hydrous ethanol). Evacuated tube solar collectors (ETC) and parabolic trough collectors (PTC) were considered for the solar heating system. A case of study for a specific geographical place (Monterrey, México) was developed herein to evaluate the solar ethanol distillation system; the results can be extended to other locations, weather conditions and operational parameters. The thermal results from the simulation showed that through an adequate selection of the solar collector area and an appropriate sizing of the different equipment of the solar distillation system, PTC represents a better option where energy savings of 80% and 71% can be achieved for 5 wt.% and 10 wt.% ethanol at the feed stream, respectively. However, the economic feasibility of the solar distillation system is achieved using ETC for a price of hydrous ethanol of 1.75 USD/L and a feed stream of 10 wt.% ethanol, reaching an internal rate of return (IRR) of 18.8% and payback period of 5.2 years. As an important technical result, selected ETC presented advantages over PTC where an average distillate product of 3.6 and 3.4 ml at 95 wt.% ethanol can be obtained per unit of solar energy (kW h) captured per area (m"2) of solar collector using 5 wt.% and 10 wt.% ethanol at the feed stream, respectively (36% more than PTC). The reduction of greenhouse gases (GHG

  17. Experimental analysis of distinct design of a batch solar water heater with integrated collector storage system

    Directory of Open Access Journals (Sweden)

    Varghese Jaji

    2007-01-01

    Full Text Available The performance of a new design of batch solar water heater has been studied. In this system, the collector and storage were installed in one unit. Unlike the conventional design consisting of small diameter water tubes, it has a single large diameter drum which serves the dual purpose of absorber tube and storage tank. In principle it is a compound parabolic collector. The drum is sized to have a storage capacity of 100 liter to serve a family of four persons. The tests were carried out with a single glass cover and two glass covers. The tests were repeated for several days. Performance analysis of the collector has revealed that it has maximum mean daily efficiency with two glass covers as high as 37.2%. The maximum water temperature in the storage tank of 60°C has been achieved for a clear day operation at an average solar beam radiation level of 680 W/m2 and ambient temperature of 32°C. To judge the operating characteristics and to synchronize utility pattern of the collector, the different parameters such as efficiency, mean plate temperature and mass flow rate has been investigated.

  18. Parabolic dune development modes according to shape at the southern fringes of the Hobq Desert, Inner Mongolia, China

    Science.gov (United States)

    Guan, Chao; Hasi, Eerdun; Zhang, Ping; Tao, Binbin; Liu, Dan; Zhou, Yanguang

    2017-10-01

    a long and narrow trough between nebkhas by the "funnelling effect". This process forces sand towards lee slopes, which transform from concave (original barchans) into convex, ultimately resulting in the formation of palmate parabolic dunes.

  19. Yanqing solar field: Dynamic optical model and operational safety analysis

    International Nuclear Information System (INIS)

    Zhao, Dongming; Wang, Zhifeng; Xu, Ershu; Zhu, Lingzhi; Lei, Dongqiang; Xu, Li; Yuan, Guofeng

    2017-01-01

    Highlights: • A dynamic optical model of the Yanqing solar field was built. • Tracking angle characteristics were studied with different SCA layouts and time. • The average energy flux was simulated across four clear days. • Influences of defocus angles for energy flux were analyzed. - Abstract: A dynamic optical model was established for the Yanqing solar field at the parabolic trough solar thermal power plant and a simulation was conducted on four separate days of clear weather (March 3rd, June 2nd, September 25th, December 17th). The solar collector assembly (SCA) was comprised of a North-South and East-West layout. The model consisted of the following modules: DNI, SCA operational, and SCA optical. The tracking angle characteristics were analyzed and the results showed that the East-West layout of the tracking system was the most viable. The average energy flux was simulated for a given time period and different SCA layouts, yielding an average flux of 6 kW/m 2 , which was then used as the design and operational standards of the Yanqing parabolic trough plant. The mass flow of North-South layout was relatively stable. The influences of the defocus angles on both the average energy flux and the circumferential flux distribution were also studied. The results provided a theoretical basis for the following components: solar field design, mass flow control of the heat transfer fluid, design and operation of the tracking system, operational safety of SCAs, and power production prediction in the Yanqing 1 MW parabolic trough plant.

  20. Exergy Analysis of a Pilot Parabolic Solar Dish-Stirling System

    Directory of Open Access Journals (Sweden)

    Ehsan Gholamalizadeh

    2017-09-01

    Full Text Available Energy and exergy analyses were carried out for a pilot parabolic solar dish-Stirling System. The system was set up at a site at Kerman City, located in a sunny desert area of Iran. Variations in energy and exergy efficiency were considered during the daytime hours of the average day of each month in a year. A maximum collector energy efficiency and total energy efficiency of 54% and 12.2%, respectively, were predicted in July, while during the period between November and February the efficiency values were extremely low. The maximum collector exergy efficiency was 41.5% in July, while the maximum total exergy efficiency reached 13.2%. The values of energy losses as a percentage of the total losses of the main parts of the system were also reported. Results showed that the major energy and exergy losses occurred in the receiver. The second biggest portion of energy losses occurred in the Stirling engine, while the portion of exergy loss in the concentrator was higher compared to the Stirling engine. Finally, the performance of the Kerman pilot was compared to that of the EuroDish project.

  1. Analysis of predicted and measured performance of an integrated compound parabolic concentrator (ICPC)

    Energy Technology Data Exchange (ETDEWEB)

    Winston, R.; O' Gallagher, J.J.; Muschaweck, J.; Mahoney, A.R.; Dudley, V.

    1999-07-01

    A variety of configurations of evacuated Integrated Compound Parabolic Concentrator (ICPC) tubes have been under development for many years. A particularly favorable optical design corresponds to the unit concentration limit for a fin CPC solution which is then coupled to a practical, thin, wedge-shaped absorber. Prototype collector modules using tubes with two different fin orientations (horizontal and vertical) have been fabricated and tested. Comprehensive measurements of the optical characteristics of the reflector and absorber have been used together with a detailed ray trace analysis to predict the optical performance characteristics of these designs. The observed performance agrees well with the predicted performance.

  2. A novel portable device to measure the temperature of both the inner and the outer tubes of a parabolic receiver in the field

    Science.gov (United States)

    Hermoso, J. L. Navarro; Espinosa-Rueda, Guillermo; Martinez, Noelia; Heras, Carlos; Osta, Marta

    2016-05-01

    The performance of parabolic trough (PT) receiver tubes (RT) has a direct impact on Solar Thermal Energy (STE) plant production. As a result, one major need of operation and maintenance (O&M) in STE plants is to monitor the state of the receiver tube as a key element in the solar field. However the lack of specific devices so far has limited the proper evaluation of operating receiver tubés thermal performance. As a consequence non-accurate approximations have been accepted until now using infrared thermal images of the glass outer tube. In order to fulfill this need, Abengoa has developed a unique portable device for evaluating the thermal performance and vacuum state of parabolic trough receiver tubes placed in the field. The novel device described in this paper, simultaneously provides the temperature of both the inner steel tube and the outer glass tube enabling a check on manufacturers specifications. The on-field evaluation of any receiver tube at any operating temperature has become possible thanks to this new measuring device. The features and usability of this new measurement system as a workable portable device in operating solar fields provide a very useful tool for all companies in the sector contributing to technology progress. The originality of the device, patent pending P201431969, is not limited to the CSP sector, also having scientific significance in the general measuring instruments field. This paper presents the work carried out to develop and validate the device, also detailing its functioning properties and including the excellent results obtained in the laboratory to determine its accuracy and standard deviation. This information was validated with data collected by O&M teams using this instrument in a commercial CSP plant. The relevance of the device has been evidenced by evaluating a wide sample of RT and the results are discussed in this paper. Finally, all the on field collected data is used to demonstrate the high impact that using

  3. Economic aspects of Solar Thermal Technologies for electricity generation

    International Nuclear Information System (INIS)

    Meinecke, W.

    1993-01-01

    Economic results of German studies are presented, which compare the four solar thermal technologies for electricity generation (parabolic trough collector system, central receiver system, parabolic dish/Stirling system, solar chimney plant). These studies were carried out by Interatom (today Siemens/KWU) in Bergisch Gladbach, Flachglas Solartechnik in Koln and Schlaich Bergermann and Partner in Stuggart under contract of DLR in Koln. Funds were made available by the German Ministry of Research and Development (BMFT). The results indicate that all of the investigated technologies have the potential to reduce the generating costs and that in the future costs of below 0.30 DM/kWh could be expected under excellent insolation conditions (e.G. 2850 kWh/m''2 a direct insolation as in California/USA). (Author) 25 refs

  4. Direct tracking error characterization on a single-axis solar tracker

    International Nuclear Information System (INIS)

    Sallaberry, Fabienne; Pujol-Nadal, Ramon; Larcher, Marco; Rittmann-Frank, Mercedes Hannelore

    2015-01-01

    Highlights: • The solar tracker of a small-size parabolic trough collector was tested. • A testing procedure for the tracking error characterization of a single-axis tracker was proposed. • A statistical analysis on the tracking error distribution was done regarding different variables. • The optical losses due to the tracking error were calculated based on a ray-tracing simulation. - Abstract: The solar trackers are devices used to orientate solar concentrating systems in order to increase the focusing of the solar radiation on a receiver. A solar concentrator with a medium or high concentration ratio needs to be orientated correctly by an accurate solar tracking mechanism to avoid losing the sunrays out from the receiver. Hence, to obtain an appropriate operation, it is important to know the accuracy of a solar tracker in regard to the required precision of the concentrator in order to maximize the collector optical efficiency. A procedure for the characterization of the accuracy of a solar tracker is presented for a single-axis solar tracker. More precisely, this study focuses on the estimation of the positioning angle error of a parabolic trough collector using a direct procedure. A testing procedure, adapted from the International standard IEC 62817 for photovoltaic trackers, was defined. The results show that the angular tracking error was within ±0.4° for this tracker. The optical losses due to the tracking were calculated using the longitudinal incidence angle modifier obtained by ray-tracing simulation. The acceptance angles for various transversal angles were analyzed, and the average optical loss, due to the tracking, was 0.317% during the whole testing campaign. The procedure presented in this work showed that the tracker precision was adequate for the requirements of the analyzed optical system.

  5. Energy matrices evaluation and exergoeconomic analysis of series connected N partially covered (glass to glass PV module) concentrated-photovoltaic thermal collector: At constant flow rate mode

    International Nuclear Information System (INIS)

    Tripathi, Rohit; Tiwari, G.N.; Dwivedi, V.K.

    2017-01-01

    Highlights: • Fluid, other than water has been chosen for achieving higher outlet temperature. • Mass flow rate and number of collector have been optimized. • Three PVT systems have been compared for evaluating annual energy and exergy. • Life cycle cost analysis has been evaluated to obtain exergetic cost. • Proposed PVT systems have been compared on the basis of energy matrices. - Abstract: In present analysis, a comparative study has been carried out to evaluate the annual performances of three systems or cases at constant flow rate, namely: case (i): partially covered (25% PV module) N concentrated photovoltaic thermal collectors connected in series, case (ii): fully covered (100% PV module) N concentrated photovoltaic thermal collectors in series and case (iii): N (0% PV module) convectional compound parabolic concentrator collector connected in series. Comparison for three cases has also been carried out by considering fluid namely: ethylene glycol for higher outlet temperature and better thermal performance which can be applicable for heating and steaming or small industry purpose. The embodied energy, energy matrices, uniform annual cost, exergetic cost and carbon credits are also evaluated for same systems. The energy payback time is found to be 5.58 years and energy production factor is to be 0.17 on energy basis for case (iii) which is maximum. The exergetic cost has computed as 17.85 Rs/kW h for 30 years of life time of the system. It is observed that N conventional compound parabolic concentrator collector [case (iii)] is most suitable for steam cooking or space heating but not self-sustainable to run the dc power motor due to unavailability of electrical power.

  6. High-performance, low-cost solar collectors for disinfection of contaminated water.

    Science.gov (United States)

    Vidal, A; Diaz, A I

    2000-01-01

    Although the germicidal action of sunlight has long been recognized, its potential for practical applications has to be researched more thoroughly. This paper summarizes the progress made toward a commercially practical collector for solar disinfection applications. Nontracking compound parabolic collectors (CPCs), developed originally for capturing solar photons for thermal energy applications, were examined as potential solar photoreactors. A field demonstration of solar disinfection treatment using commercially manufactured solar reactors was conducted. Field tests showed successful destruction of Escherichia coli and Enterococcus faecalis and have provided data for full-scale design of water treatment systems. From above observations, a throughput value of 50 L/m2 h for the low-cost CPC reactor tested was estimated. For a 190 m3/d (0.05 MGD) facility, the estimated total costs for disinfection using UV-A is U.S. $0.19/m3 ($0.70/1000 gal). The use of near-UV sunlight to disinfect water supplies seems promising in rural communities of developing countries where treated water is unavailable.

  7. Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver

    International Nuclear Information System (INIS)

    Montes, María J.; Barbero, Rubén; Abbas, Rubén; Rovira, Antonio

    2016-01-01

    Highlights: • A thermal model for a single-tube Fresnel receiver has been developed. • A comparative analysis based on different design parameters, has been carried out. • A comparative analysis based on different working fluids, has been carried out. • The receiver thermal performance is characterized by energy and exergy efficiencies. - Abstract: Although most of recent commercial Solar Thermal Power Plants (STPP) installed worldwide are parabolic trough plants, it seems that Linear Fresnel Collectors (LFC) are becoming an attractive option to generate electricity from solar radiation. Contrary to parabolic trough collectors, the design of LFC receivers has many degrees of freedom, and two basic designs can be found in the literature: single-tube and multi-tube design. This article studies the single-tube design, for which a thermal model has been developed. This model has been thought to be accurate enough to characterize the heat transfer in a non-elementary geometry and flexible enough to support changes of the characteristic parameters in the receiver design. The thermal model proposed is based on a two-dimensional, steady-state energy balance, in the receiver cross section and along its length. One of the features of the model is the characterization of the convective and radiative heat transfer in the receiver cavity, as it is not an elementary geometry. Another feature is the possibility of studying the receiver performance with different working fluids, both single-phase or two-phase. At last, the receiver performance has been characterized by means of the energy and exergy efficiency. Both variables are important for a complete receiver thermal analysis, as will be shown in the paper. The model has been first applied to the comparative study of the thermal performance of LFC receivers based on the value of some parameters: selective coating emissivity in the tube and inlet fluid thermal properties, for the case of using water/steam. As a second

  8. Thermodynamic performance assessment of a novel environmentally-benign solar energy based integrated system

    International Nuclear Information System (INIS)

    Yuksel, Yunus Emre; Ozturk, Murat; Dincer, Ibrahim

    2016-01-01

    Highlights: • Development of a novel solar energy based system for multigenaration applications. • Evaluation of the exergy efficiency and destruction rate in each system component. • Investigation of the varying operating conditions on the system performance. • Evaluation of complete parametric studies and performance analysis of the system. - Abstract: In this paper, a novel solar energy based multigeneration system for producing electricity, hydrogen, hot water, heating and cooling is presented and analyzed thermodynamically for potential applications. The energy and exergy analyses are conducted for entire system and its sub-systems, which are a parabolic trough collector system, a double-stage organic Rankine cycle, a proton exchange membrane electrolyzer, a PEM fuel cycle and a quadruple effect absorption cooling system. The parametric studies are performed in order to indicate the impacts of some key indicators on the integrated system performance. These analyses are simulated by using the Engineering Equation Solver software. The results show that the increase in ambient temperature increases the exergetic coefficient performance of the Quadruple Effect Absorption Cooling System. In addition, the increase in solar intensity, temperature of absorber pipes inner surface and concentration of ammonia in working fluid mixture has the positive effect on produced electricity from the expanders and turbine, and hydrogen from the PEM electrolyzer. According to exergy analyses, the largest exergy destruction rates are obtained in the parabolic trough collector, PEM fuel cell and turbine. Therefore, any improvements in these components would lead to a better efficiency of the integrated system.

  9. Process Heat Generation Potential from Solar Concentration Technologies in Latin America: The Case of Argentina

    Directory of Open Access Journals (Sweden)

    Isidoro Lillo

    2017-03-01

    Full Text Available This paper evaluates the potential of solar concentration technologies—compound parabolic collector (CPC, linear Fresnel collector (LFC and parabolic trough collector (PTC—as an alternative to conventional sources of energy for industrial processes in Latin America, where high levels of solar radiation and isolated areas without energy supply exist. The analysis is addressed from energy, economic and environmental perspective. A specific application for Argentina in which fourteen locations are analyzed is considered. Results show that solar concentration technologies can be an economically and environmentally viable alternative. Levelized cost of energy (LCOE ranges between 2.5 and 16.9 c€/kWh/m2 and greenhouse gas (GHG emissions avoided range between 33 and 348 kgCO2/(m2·year. CPC technology stands out as the most recommendable technology when the working fluid temperature ranges from 373 K to 423 K. As the working fluid temperature increases the differences between the LCOE values of the CPC and LFC technologies decrease. When 523 K is reached LFC technology is the one which presents the lowest LCOE values for all analyzed sites, while the LCOE values of PTC technology are close to CPC technology values. Results show that solar concentration technologies have reached economic and environmental competitiveness levels under certain scenarios, mainly linked to solar resource available, thermal level requirements and solar technology cost.

  10. Forecasts of the capacity properties of Goterisskiy deposits of the eastern closure of the Predkopetdhskiy trough. [Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Odekov, O.A.; Tulayev, S.V.

    1982-01-01

    Primary sedimentation porosity varies due to gravitational compaction of sediments, therefore its regular reduction with increase of bed depth is suggested. Relationships for determining the value of sediment compaction, coefficient of rock compaction, value of porosity, which is forecasted for a certain horizon are given. Based on data for the territory of Eastern Turkmenistan the pattern of change of collector properties of the Shatlyk horizon of Murgaskaya gas-bearing region and its analogs is established. A general emperical formula of porosity for the Eastern Turkmenistan is presented. Graphs of the relationships of capacity properties of the Lower Goterisskiy deposits for Eastern Turkmenistan and for the region of the eastern closure of the Predkopetdhskiy trough are plotted. Evidence is given of the good prospects of the Lower Cretaceous and especially the Lower Goterisskiy deposits of the region for natural gas from collector properties and from tectonic and lithofacial reasons.

  11. Photo-Fenton treatment of saccharin in a solar pilot compound parabolic collector: Use of olive mill wastewater as iron chelating agent, preliminary results.

    Science.gov (United States)

    Davididou, K; Chatzisymeon, E; Perez-Estrada, L; Oller, I; Malato, S

    2018-03-14

    The aim of this work was to investigate the treatment of the artificial sweetener saccharin (SAC) in a solar compound parabolic collector pilot plant by means of the photo-Fenton process at pH 2.8. Olive mill wastewater (OMW) was used as iron chelating agent to avoid acidification of water at pH 2.8. For comparative purposes, Ethylenediamine-N, N-disuccinic acid (EDDS), a well-studied iron chelator, was also employed at circumneutral pH. Degradation products formed along treatment were identified by LC-QTOF-MS analysis. Their degradation was associated with toxicity removal, evaluated by monitoring changes in the bioluminescence of Vibrio fischeri bacteria. Results showed that conventional photo-Fenton at pH 2.8 could easily degrade SAC and its intermediates yielding k, apparent reaction rate constant, in the range of 0.64-0.82 L kJ -1 , as well as, eliminate effluent's chronic toxicity. Both OMW and EDDS formed iron-complexes able to catalyse H 2 O 2 decomposition and generate HO. OMW yielded lower SAC oxidation rates (k = 0.05-0.1 L kJ -1 ) than EDDS (k = 2.21-7.88 L kJ -1 ) possibly due to its higher TOC contribution. However, the degradation rates were improved (k = 0.13 L kJ -1 ) by increasing OMW dilution in the reactant mixture. All in all, encouraging results were obtained by using OMW as iron chelating agent, thus rendering this approach promising towards the increase of process sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. New fuzzy approximate model for indirect adaptive control of distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2014-06-01

    This paper studies the problem of controlling a parabolic solar collectors, which consists of forcing the outlet oil temperature to track a set reference despite possible environmental disturbances. An approximate model is proposed to simplify the controller design. The presented controller is an indirect adaptive law designed on the fuzzy model with soft-sensing of the solar irradiance intensity. The proposed approximate model allows the achievement of a simple low dimensional set of nonlinear ordinary differential equations that reproduces the dynamical behavior of the system taking into account its infinite dimension. Stability of the closed loop system is ensured by resorting to Lyapunov Control functions for an indirect adaptive controller.

  13. New fuzzy approximate model for indirect adaptive control of distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem

    2014-01-01

    This paper studies the problem of controlling a parabolic solar collectors, which consists of forcing the outlet oil temperature to track a set reference despite possible environmental disturbances. An approximate model is proposed to simplify the controller design. The presented controller is an indirect adaptive law designed on the fuzzy model with soft-sensing of the solar irradiance intensity. The proposed approximate model allows the achievement of a simple low dimensional set of nonlinear ordinary differential equations that reproduces the dynamical behavior of the system taking into account its infinite dimension. Stability of the closed loop system is ensured by resorting to Lyapunov Control functions for an indirect adaptive controller.

  14. Study of the parabolic and elliptic approaches validities for a turbulent co-flowing jet

    Directory of Open Access Journals (Sweden)

    Mahmoud Houda

    2012-01-01

    Full Text Available An axisymmetric turbulent jet discharged in a co-flowing stream was studied with the aid of parabolic and elliptic approaches. The simulations were performed with two in-house codes. Detailed comparisons of data show good agreement with the corresponding experiments; and different behaviors of jet dilution were found in initial region at different ranges of velocities ratios. It has been found that the two approaches give practically the same results for the velocities ratios Ru ≤ 1.5. Further from this value, the elliptic approach highlights the appearance of the fall velocity zone and that’s due to the presence of a trough low pressure. This fall velocity has not been detected by the parabolic approach and that’s due to the jet entrainment by the ambient flow. The intensity of this entrainment is directly related to the difference between the primary (jet and the secondary flow (co-flow. In fact, by increasing the velocities ratios Ru, the sucked flux by the outer stream becomes more important; the fall velocity intensifies and changes into a recirculation zone for Ru ≥ 5.

  15. Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector.

    Science.gov (United States)

    Isarain-Chávez, Eloy; Rodríguez, Rosa María; Cabot, Pere Lluís; Centellas, Francesc; Arias, Conchita; Garrido, José Antonio; Brillas, Enric

    2011-08-01

    The degradation of the beta-blockers atenolol, metoprolol tartrate and propranolol hydrochloride was studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF). Solutions of 10 L of 100 mg L⁻¹ of total organic carbon of each drug in 0.1 M Na₂SO₄ with 0.5 mM Fe²⁺ of pH 3.0 were treated in a recirculation flow plant with an electrochemical reactor coupled with a solar compound parabolic collector. Single Pt/carbon felt (CF) and boron-doped diamond (BDD)/air-diffusion electrode (ADE) cells and combined Pt/ADE-Pt/CF and BDD/ADE-Pt/CF cells were used. SPEF treatments were more potent with the latter cell, yielding 95-97% mineralization with 100% of maximum current efficiency and energy consumptions of about 0.250 kWh g TOC⁻¹. However, the Pt/ADE-Pt/CF cell gave much lower energy consumptions of about 0.080 kWh g TOC⁻¹ with slightly lower mineralization of 88-93%, then being more useful for its possible application at industrial level. The EF method led to a poorer mineralization and was more potent using the combined cells by the additional production of hydroxyl radicals (•OH) from Fenton's reaction from the fast Fe²⁺ regeneration at the CF cathode. Organics were also more rapidly destroyed at BDD than at Pt anode. The decay kinetics of beta-blockers always followed a pseudo first-order reaction, although in SPEF, it was accelerated by the additional production of •OH from the action of UV light of solar irradiation. Aromatic intermediates were also destroyed by hydroxyl radicals. Ultimate carboxylic acids like oxalic and oxamic remained in the treated solutions by EF, but their Fe(III) complexes were photolyzed by solar irradiation in SPEF, thus explaining its higher oxidation power. NO₃⁻ was the predominant inorganic ion lost in EF, whereas the SPEF process favored the production of NH₄⁺ ion and volatile N-derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Performance of evaporator-collector and air collector in solar assisted heat pump dryer

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Rahman, S.M.A.; Jahangeer, K.A.

    2008-01-01

    A solar assisted heat pump dryer has been designed, fabricated and tested. This paper presents the performance of the evaporator-collector and the air collector when operated under the same meteorological conditions. ASHRAE standard procedure for collector testing has been followed. The evaporator-collector of the heat pump is acting directly as the solar collector, and the temperature of the refrigerant at the inlet to the evaporator-collector always remained below the ambient temperature. Because of the rejection of sensible and latent heats of air at the dehumidifier, the temperature at the inlet to the air collector is lower than that of the ambient air. Hence, the thermal efficiency of the air collector also increases due to a reduction of losses from the collector. The efficiencies of the evaporator-collector and the air collector were found to vary between 0.8-0.86 and 0.7-0.75, respectively, when operated under the meteorological conditions of Singapore

  17. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  18. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    this kind of collectors. The modified simulation program has been used for the determination of the surplus in performance which solar heating systems with this type of solar collectors for combined preheating of ventilation air and domestic hot water will have. The simulation program and the efficiency......This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  19. ON TECTONIC PROBLEMS OF THE OKINAWA TROUGH

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Okinawa Trough is a very active tectonic zone at the margin of the Northwest Pacific and is typical of back-arc rifting at the young stage of tectonic evolution. Many scientists from Japan, China, Germany, France, the U.S.A. and Russia have done a lot of geologic and geophysical investigations there. It is well known that the Okinawa Trough is an active back-arc rift with extremely high heat flow, very strong hydrothermal circulation, strong volcanic and magmatic activity, frequent earthquakes, rapid subsidence and rifting, well-developed fault and central graben. But up to now, there are still some important tectonic problems about the Okinawa Trough that require clarification on some aspects such as the type of its crust, its forming time, its tectonic evolution, the distribution of its central grabens, the relationship between its high heat flow and tectonic activity. Based on the data obtained from seismic survey, geomagnetic and gravity measurements, submarine sampling and heat flow measurements in the last 15 years, the author discusses the following tectonic problems about the Okinawa Trough: (1) If the Okinawa Trough develops oceanic crust or not. (2) Is the South Okinawa Trough tectonically more active than the North Okinawa Trough with shallower water and few investigation data on it. (3) The formation time of the Okinawa Trough and its tectonic evolution. The Okinawa Trough has a very thin continental crust. Up to now, there is no evidence of oceanic crust in the Okinawa Trough. The North, Middle and South Okinawa Trough are all very strongly active areas. From 6 Ma B.P., the Okinawa Trough began to form. Since 2 Ma, the Okinawa Trough has been very active.

  20. Garbage collector interface

    OpenAIRE

    Ive, Anders; Blomdell, Anders; Ekman, Torbjörn; Henriksson, Roger; Nilsson, Anders; Nilsson, Klas; Robertz, Sven

    2002-01-01

    The purpose of the presented garbage collector interface is to provide a universal interface for many different implementations of garbage collectors. This is to simplify the integration and exchange of garbage collectors, but also to support incremental, non-conservative, and thread safe implementations. Due to the complexity of the interface, it is aimed at code generators and preprocessors. Experiences from ongoing implementations indicate that the garbage collector interface successfully ...

  1. High-temperature process-steam application at the Southern Union Refining Company, Hobbs, New Mexico (solar energy in the oil patch). Phase I design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-31

    Southern Union Refining Company's Famariss Energy Refinery has worked diligently with Monument Solar Corporation in the conceptual and detail design for this unique application of solar generated steam. An area closely adjacent to the refinery and fronting New Mexico State Highway No. 18 has been designated for the solar collector array. Space planned for the demonstration parabolic trough array is sufficiently large to handle an array of 25,200 square feet in size - an array more than twice the size of the 10,080 square feet proposed originally. The conceptual design, performance, safety, environmental impact, and economic analysis are described. Engineering drawings are included. (WHK)

  2. A technical and economic study on solar-assisted ammonia-based post-combustion CO_2 capture of power plant

    International Nuclear Information System (INIS)

    Liu, Liangxu; Zhao, Jun; Deng, Shuai; An, Qingsong

    2016-01-01

    Highlights: • We examine the probability of solar energy in different locations for SPCC technology. • Numerical relationship between STC areas, the SF, and the APCM were analyzed. • Economic strategies were analyzed under different sensitive factor prices. • The critical price of STCs which causing benefits shift in policy priorities was identified. - Abstract: The market of solar-assisted post-combustion CO_2 capture (SPCC) is emerging globally in recent years. It is considered as a promising technology to apply the ammonia as the absorbent to implement the SPCC technology in view of its low regeneration temperature and low regeneration heat duty. However, few literatures indicate which type of solar thermal collectors (STCs) involved in the ammonia-based SPCC power plant is more applicable. Therefore, in this paper, the maximum theoretical potential price of STCs which make the value of the levelized costs of electricity (LCOE) and the cost of CO_2 removed (COR) lower than that of the reference post-combustion CO_2 capture (PCC) power plant is estimated. The potential of ammonia-based SPCC technology in the selected locations is also estimated, based on the detailed solar radiation resource assessment (i.e. DNI, sunshine time) and the STCs performance. It would be more attractive to adopt the vacuum tube (VT) as the STC involved into the ammonia-based PCC power plant to capture CO_2 than parabolic trough collector (PTC). In order to achieve lower LCOE and COR than that of the reference PCC system, the price of the vacuum tube (VT) has to be reduced to 131.02 $/m"2, 91.76 $/m"2 and 57.10 $/m"2 for the location of M1(Lhasa), M2(Tianjin) and M3(Xi’an), respectively. And the price of the parabolic trough collector (PTC) has to be reduced to 139.09 $/m"2, 89.83 $/m"2 and 50.84 $/m"2, respectively.

  3. ON TECTONIC PROBLEMS OF THE OKINAWA TROUGH

    Institute of Scientific and Technical Information of China (English)

    李乃胜

    2001-01-01

    The Okinawa Trough is a very active tectonic zone at the margin of the Northwest Pacific and is typical of back-arc rifting at the young stage of tectonic evolution. Many scientists from Japan,China, Germany, France, the U. S.A. and Russia have done a lot of geologic and geophysical investigations there. It is well known that the Okinawa Trough is an active back-arc rift with extremely high heat flow, very strong hydrothermal circulation, strong volcanic and magmatic activity, frequent earthquakes,rapid subsidence and rifting, well-developed fault and central graben. But up to now, there are still some important tectonic problems about the Okinawa Trough that require clarification on some aspects such as the type of its crust, its forming time, its tectonic evolution, the distribution of its central grabens, the relationship between its high heat flow and tectonic activity. Based on the data obtained from seismic sur-vey, geomagnetic and gravity measurements, submarine sampling and heat flow measurements in the last 15 years, the author discusses the following tectonic problems about the Okinawa Trough: (1) If the Okinawa Trough develops oceanic crust or not. (2) Is the South Okinawa Trough tectonically more active than the North Okinawa Trough with shallower water and few investigation data on it. (3) The formation time of the Okinawa Trough and its tectonic evolution. The Okinawa Trough has a very thin continental crust. Up to now, there is no evidence of oceanic crust in the Okinawa Trough. The North, Middle and South Okinawa Trough are all very strongly active areas. From 6 Ma B.P. , the Okinawa Trough began to form. Since 2 Ma, the Okinawa Trough has been very active.

  4. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  5. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, Keith

    2013-06-25

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  6. Investigations on efficiencies of HT solar collectors for different flow rates and collector tilts

    DEFF Research Database (Denmark)

    Chen, Ziqian; Perers, Bengt; Furbo, Simon

    2013-01-01

    Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between the abso......Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates and tilt. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rates are obtained. The calculated efficiencies are in good...

  7. Thermal performance assessment of a large aperture concentrating collector in an industrial application in Chile

    Science.gov (United States)

    Murray, Clare; Pino, Alan; Cardemil, José Miguel; Escobar, Rodrigo

    2017-06-01

    The application of solar thermal energy to meet the heat demands of the food and beverage processing industry in Chile has huge potential. This paper presents an assessment of the first large aperture trough collector installed in Latin America. The collector preheats water for a boiler in a juice-concentrating factory, 100 km north of Santiago. An analysis of the system for a day in November indicates the system was not able to utilize the heat generated, resulting in rapid de- and refocusing of the collector and problems with sensor calibration. An analysis of a day in March indicates the tracking algorithm has not correctly aligned the collector with the sun's position. An investigation into the design document reveals that the meteorological data underestimates the actual irradiation values by 40%, resulting in an oversized system given the actual conditions. To increase the energy gain in the system it is proposed to increase the working pressure from the current value of 1.5bar to up to 5bar, which could increase the system utilization from 41% to 65% and reduce the dumped energy to near zero. The simulation results with actual weather data and a fixed inlet temperature indicate the annual solar fraction could increase from the design value of 8.1% to 31.8% with a working pressure of 5 bar. The plant presents multiple opportunities for improvement not only to the performance of the plant but also in the design and installation of solar thermal systems in Chile in the future.

  8. Radiation energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Bei Tse; Rabl, A

    1977-02-10

    The invention deals with a concentrating solar collector. Collectors of this kind often have considerable natural convection losses which are due, among other facts, to the location of the energy absorber at the outlet with the heated surface of the absorber facing the inlet opening of the collector. According to the invention, the collector is designed in such manner that the absorber is located inside a space in such a way that the radiation emitted by the absorber is reflected back to the absorber with the aid of mirror surfaces. Various designs are described.

  9. Modeling the photocatalytic mineralization in water of commercial formulation of estrogens 17-β estradiol (E2) and nomegestrol acetate in contraceptive pills in a solar powered compound parabolic collector.

    Science.gov (United States)

    Colina-Márquez, José; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2015-07-22

    Endocrine disruptors in water are contaminants of emerging concern due to the potential risks they pose to the environment and to the aquatic ecosystems. In this study, a solar photocatalytic treatment process in a pilot-scale compound parabolic collector (CPC) was used to remove commercial estradiol formulations (17-β estradiol and nomegestrol acetate) from water. Photolysis alone degraded up to 50% of estradiol and removed 11% of the total organic carbon (TOC). In contrast, solar photocatalysis degraded up to 57% of estrogens and the TOC removal was 31%, with 0.6 g/L of catalyst load (TiO2 Aeroxide P-25) and 213.6 ppm of TOC as initial concentration of the commercial estradiols formulation. The adsorption of estrogens over the catalyst was insignificant and was modeled by the Langmuir isotherm. The TOC removal via photocatalysis in the photoreactor was modeled considering the reactor fluid-dynamics, the radiation field, the estrogens mass balance, and a modified Langmuir-Hinshelwood rate law, that was expressed in terms of the rate of photon adsorption. The optimum removal of the estrogens and TOC was achieved at a catalyst concentration of 0.4 g/L in 29 mm diameter tubular CPC reactors which approached the optimum catalyst concentration and optical thickness determined from the modeling of the absorption of solar radiation in the CPC, by the six-flux absorption-scattering model (SFM).

  10. Modeling the Photocatalytic Mineralization in Water of Commercial Formulation of Estrogens 17-β Estradiol (E2 and Nomegestrol Acetate in Contraceptive Pills in a Solar Powered Compound Parabolic Collector

    Directory of Open Access Journals (Sweden)

    José Colina-Márquez

    2015-07-01

    Full Text Available Endocrine disruptors in water are contaminants of emerging concern due to the potential risks they pose to the environment and to the aquatic ecosystems. In this study, a solar photocatalytic treatment process in a pilot-scale compound parabolic collector (CPC was used to remove commercial estradiol formulations (17-β estradiol and nomegestrol acetate from water. Photolysis alone degraded up to 50% of estradiol and removed 11% of the total organic carbon (TOC. In contrast, solar photocatalysis degraded up to 57% of estrogens and the TOC removal was 31%, with 0.6 g/L of catalyst load (TiO2 Aeroxide P-25 and 213.6 ppm of TOC as initial concentration of the commercial estradiols formulation. The adsorption of estrogens over the catalyst was insignificant and was modeled by the Langmuir isotherm. The TOC removal via photocatalysis in the photoreactor was modeled considering the reactor fluid-dynamics, the radiation field, the estrogens mass balance, and a modified Langmuir–Hinshelwood rate law, that was expressed in terms of the rate of photon adsorption. The optimum removal of the estrogens and TOC was achieved at a catalyst concentration of 0.4 g/L in 29 mm diameter tubular CPC reactors which approached the optimum catalyst concentration and optical thickness determined from the modeling of the absorption of solar radiation in the CPC, by the six-flux absorption-scattering model (SFM.

  11. Fixed point of the parabolic renormalization operator

    CERN Document Server

    Lanford III, Oscar E

    2014-01-01

    This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point.   Inside, readers will find a detailed introduction into the theory of parabolic bifurcation,  Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization.   The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as graduate students wishi...

  12. On parabolic external maps

    DEFF Research Database (Denmark)

    Lomonaco, Luna; Petersen, Carsten Lunde; Shen, Weixiao

    2017-01-01

    We prove that any C1+BV degree d ≥ 2 circle covering h having all periodic orbits weakly expanding, is conjugate by a C1+BV diffeomorphism to a metrically expanding map. We use this to connect the space of parabolic external maps (coming from the theory of parabolic-like maps) to metrically expan...

  13. 241-AZ-101 pump removal trough analysis

    International Nuclear Information System (INIS)

    Coverdell, B.L.

    1995-01-01

    As part of the current Hanford mission of environmental cleanup, various long length equipment must be removed from highly radioactive waste tanks. The removal of equipment will utilize portions of the Equipment Removal System for Project W320 (ERS-W320), specifically the 50 ton hydraulic trailer system. Because the ERS-W320 system was designed to accommodate much heavier equipment it is adequate to support the dead weight of the trough, carriage and related equipment for 241AZ101 pump removal project. However, the ERS-W320 components when combined with the trough and its' related components must also be analyzed for overturning due to wind loads. Two troughs were designed, one for the 20 in. diameter carriage and one for the 36 in. diameter carriage. A proposed 52 in. trough was not designed and, therefore is not included in this document. In order to fit in the ERS-W320 strongback the troughs were design with the same widths. Structurally, the only difference between the two troughs is that more material was removed from the stiffener plates on the 36 in trough. The reduction in stiffener plate material reduces the allowable load. Therefore, only the 36 in. trough was analyzed

  14. Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators

    Science.gov (United States)

    Friedman, Robert P.; Gordon, Jeffrey M.; Ries, Harald

    1995-08-01

    Using the recently-invented tailored edge-ray concentrator (TERC) approach for the design of compact two-stage high-flux solar collectors--a focusing primary reflector and a nonimaging TERC secondary reflector--we present: 1) a new primary reflector shape based on the TERC approach and a secondary TERC tailored to its particular flux map, such that more compact concentrators emerge at flux concentration levels in excess of 90% of the thermodynamic limit; and 2) calculations and raytrace simulations result which demonstrate the V-cone approximations to a wide variety of TERCs attain the concentration of the TERC to within a few percent, and hence represent practical secondary concentrators that may be superior to corresponding compound parabolic concentrator or trumpet secondaries.

  15. Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated

    Science.gov (United States)

    Jaaz, Ahed Hameed; Sopian, Kamaruzzaman; Gaaz, Tayser Sumer

    2018-06-01

    The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV) could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC) along with the thermal photovoltaic module (PVT) where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work.

  16. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors

    International Nuclear Information System (INIS)

    Chen, Meijie; He, Yurong; Zhu, Jiaqi; Wen, Dongsheng

    2016-01-01

    Highlights: • An analysis coupled with Radiation transfer, Maxwell and Energy equation is developed. • Plasmonic Au and Ag nanofluids show better photo-thermal conversion properties. • Collector height and particle concentration exist optimum solutions for efficiency. - Abstract: A one-dimensional transient heat transfer analysis was carried out to analyze the effects of the Nanoparticle (NP) volume fraction, collector height, irradiation time, solar flux, and NP material on the collector efficiency. The numerical results were compared with the experimental results obtained by silver nanofluids to validate the model, and good agreement was obtained. The numerical results show that the collector efficiency increases as the collector height and NP volume fraction increase and then reaches a maximum value. An optimum collector height (∼10 mm) and particle concentration (∼0.03%) achieving a collector efficiency of 90% of the maximum efficiency can be obtained under the conditions used in the simulation. However, the collector efficiency decreases as the irradiation time increases owing to the increased heat loss. A high solar flux is desirable to maintain a high efficiency over a wide temperature range, which is beneficial for subsequent energy utilization. The modeling results also show silver and gold nanofluids obtain higher photothermal conversion efficiencies than the titanium dioxide nanofluid because their absorption spectra are similar to the solar radiation spectrum.

  17. Comprehensive investigation of process characteristics for oxy-steam combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zou, Chun; Zheng, Chuguang

    2015-01-01

    Highlights: • Oxy-steam combustion exhibits better performance than oxy-CO 2 combustion. • Cost of electricity in oxy-steam combustion is 6.62% less than oxy-CO 2 combustion. • The increase of oxygen concentration in oxidant can improve its system performance. • The decrease of excess oxygen coefficient can be helpful for its system performance. • Integration with solar technology can enhance its thermodynamic performance. - Abstract: Oxy-steam combustion, as an alternative option of oxy-fuel combustion technology, is considered as a promising CO 2 capture technology for restraining CO 2 emissions from power plants. To attain its comprehensive process characteristics, process simulation, thermodynamic assessment, and sensitivity analysis for oxy-steam combustion pulverized-coal-fired power plants are investigated whilst its corresponding CO 2 /O 2 recycled combustion (oxy-CO 2 combustion) power plant is served as the base case for comparison. Techno-economic evaluation and integration with solar parabolic trough collectors are also discussed to justify its economic feasibility and improve its thermodynamic performance further, respectively. It is found that oxy-steam combustion exhibits better performance than oxy-CO 2 combustion on both thermodynamic and economic aspects, in which the cost of electricity decreases about 6.62% whilst the net efficiency and exergy efficiency increase about 0.90 and 1.01 percentage points, respectively. The increment of oxygen concentration in oxidant (20–45 mol.%) and decrease of excess oxygen coefficient (1.01–1.09) in a certain range are favorable for improving oxy-steam combustion system performance. Moreover, its thermodynamic performance can be improved when considering solar parabolic trough collectors for heating recycled water, even though its cost of electricity increases about 2 $/(MW h)

  18. Controllability and stabilization of parabolic equations

    CERN Document Server

    Barbu, Viorel

    2018-01-01

    This monograph presents controllability and stabilization methods in control theory that solve parabolic boundary value problems. Starting from foundational questions on Carleman inequalities for linear parabolic equations, the author addresses the controllability of parabolic equations on a variety of domains and the spectral decomposition technique for representing them. This method is, in fact, designed for use in a wider class of parabolic systems that include the heat and diffusion equations. Later chapters develop another process that employs stabilizing feedback controllers with a finite number of unstable modes, with special attention given to its use in the boundary stabilization of Navier–Stokes equations for the motion of viscous fluid. In turn, these applied methods are used to explore related topics like the exact controllability of stochastic parabolic equations with linear multiplicative noise. Intended for graduate students and researchers working on control problems involving nonlinear diff...

  19. Tracking system for solar collectors

    Science.gov (United States)

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  20. Self-accelerating parabolic cylinder waves in 1-D

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2016-11-25

    Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.

  1. Design and modeling of low temperature solar thermal power station

    International Nuclear Information System (INIS)

    Shankar Ganesh, N.; Srinivas, T.

    2012-01-01

    Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.

  2. Optimum Settings for a Compound Parabolic Concentrator with Wings Providing Increased Duration of Effective Temperature for Solar-Driven Systems: A Case Study for Tokyo

    Directory of Open Access Journals (Sweden)

    Muhammad Umair

    2013-12-01

    Full Text Available We designed a compound parabolic concentrator (CPC with wings angled toward the east and west. Normally, solar collectors are straight, facing south, and the effective temperature is only achieved for a short period of time at midday. In the proposed design, the collector is divided into three parts, with the ends angled and tilted at different orientations. The objective was to increase the duration of the effective temperature period by capturing the maximum solar energy in the morning and afternoon without tracking by the collector. A simulation model was developed to evaluate the performance of the proposed CPC. The tilt and bending angles of the CPC wings were optimized for year-round operation in Tokyo, Japan. A 35° tilt for the south-facing central part of the CPC and a 45° tilt for the wings with 50° angles toward the east and west were found to be optimal. Analyses were conducted at these optimum settings with temperatures of 70, 80, and 90 °C as minimum requirements. The effective duration increased by up to 2 h in the winter and up to 2.53 h in the summer using the proposed CPC. The proposed CPC will improve the efficiency of solar-driven systems by providing useful heat for longer periods of time with the same collector length and without the need for tracking.

  3. PV-hybrid and thermoelectric collectors

    Energy Technology Data Exchange (ETDEWEB)

    Rockendorf, G.; Sillmann, R. [Institut fuer Solarenergieforschung GmbH, Emmerthal (Germany); Podlowski, L.; Litzenburger, B. [SolarWerk GmbH, Teltow (Germany)

    1999-07-01

    Two different principles of thermoelectric cogeneration solar collectors have been realized and investigated. Concerning the first principle, the thermoelectric collector (TEC) delivers electricity indirectly by first producing heat and subsequently generating electricity by means of a thermoelectric generator. Concerning the second principle, the photovoltaic-hybrid collector (PVHC) uses photovoltaic cells, which are cooled by a liquid heat-transfer medium. The characteristics of both collector types are described. Simulation modules have been developed and implemented in TRNSYS 14.1 (1994), in order to simulate their behaviour in typical domestic hot-water systems. The discussion of the results shows that the electric output of the PV-hybrid collector is significantly higher than that of the thermoelectric collector. (author)

  4. A parabolic model for dimple potentials

    International Nuclear Information System (INIS)

    Aydin, Melike Cibik; Uncu, Haydar; Deniz, Coskun

    2013-01-01

    We study the truncated parabolic function and demonstrate that it is a representation of the Dirac δ function. We also show that the truncated parabolic function, used as a potential in the Schrödinger equation, has the same bound state spectrum, tunneling and reflection amplitudes as the Dirac δ potential, as the width of the parabola approximates to zero. Dirac δ potential is used to model dimple potentials which are utilized to increase the phase-space density of a Bose–Einstein condensate in a harmonic trap. We show that a harmonic trap with a δ function at the origin is a limiting case of the harmonic trap with a symmetric truncated parabolic potential around the origin. Hence, the truncated parabolic is a better candidate for modeling the dimple potentials. (paper)

  5. Non-local quasi-linear parabolic equations

    International Nuclear Information System (INIS)

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  6. Gradient-type methods in inverse parabolic problems

    International Nuclear Information System (INIS)

    Kabanikhin, Sergey; Penenko, Aleksey

    2008-01-01

    This article is devoted to gradient-based methods for inverse parabolic problems. In the first part, we present a priori convergence theorems based on the conditional stability estimates for linear inverse problems. These theorems are applied to backwards parabolic problem and sideways parabolic problem. The convergence conditions obtained coincide with sourcewise representability in the self-adjoint backwards parabolic case but they differ in the sideways case. In the second part, a variational approach is formulated for a coefficient identification problem. Using adjoint equations, a formal gradient of an objective functional is constructed. A numerical test illustrates the performance of conjugate gradient algorithm with the formal gradient.

  7. Movements of the mid-latitude ionospheric trough

    International Nuclear Information System (INIS)

    Rodger, A.S.; Pinnock, M.

    1982-01-01

    A new method for monitoring the position and movement of large ionospheric structures is described. The technique uses data from an ionosonde nominally operating at vertical incidence, but relies on there being present a significant gradient in electron concentration. The position and dynamics of the poleward edge of the mid-latitude trough over Halley Bay, Antarctica (L = 4.2) is investigated using this method. Analyses show that the trough moves rapidly equatorward over Halley Bay in the early evening hours, during geomagnetically active periods. For magnetically quiet periods, the trough is not observed till after midnight, when its equatorward motion is comparatively slow. These results showed marked differences from those predicted from published empirical relationships describing variations in trough position with time, particularly before midnight. Changes in the position of the plasma pause with time, determined from two theoretical models and from observations are compared with these results for the trough. Also, one case study is presented in which there is determination of the positions of both the trough and the plasmapause over a 7 h period. Similarities and differences in their relative positions and movements of the two features are identified and their possible causes are briefly discussed. (author)

  8. The role of meltwater in high-latitude trough-mouth fan development : the Disko Trough-Mouth Fan, West Greenland.

    OpenAIRE

    Cofaigh, Colm Ó.; Hogan, Kelly A.; Jennings, Anne E.; Callard, S. Louise; Dowdeswell, Julian A.; Noormets, Riko; Evans, Jeff

    2018-01-01

    The Disko Trough-Mouth Fan (TMF) is a major submarine sediment fan located along the central west Greenland continental margin offshore of Disko Trough. The location of the TMF at the mouth of a prominent cross-shelf trough indicates that it is a product of repeated glacigenic sediment delivery from former fast-flowing outlets of the Greenland Ice Sheet, including an ancestral Jakobshavn Isbrae, which expanded to the shelf edge during successive glacial cycles. This study focuses on the upper...

  9. Rising hopes for vacuum tube collectors

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-06-01

    The performance, feasibility and use of vacuum tube solar collectors for domestic hot water (DHW) systems are discussed. An introduction to the design of vacuum tube collectors is presented and comparisons are made with flat plate collectors in terms of effectiveness in DHW applications and cost. The use of vacuum tube collectors is well established for high temperature use such as process heat and absorption cooling applications; there is considerable debate concerning their use in DHW and these arguments are presented. It is pointed out that the accepted standardized comparison test (ASHRAE 93-77) is apparently biased towards the flat plate collectors in direct comparisons of collector efficiencies. Recent developments among manufacturers with regard to vacuum tube collectors and their thinking (pro and con) are discussed in some detail. Breakage and other problems are pointed out although advocates look ahead to lower costs, higher efficiencies, and broader markets (particularly in DHW). It is concluded by some that flat plate collector technology has reached its peak and that vacuum tube collectors will be very prominent in the future. (MJJ)

  10. Layout of heating units for solar-heated gas turbine systems with paraboloid collectors. Die Auslegung von Erhitzern Solar beheizter Gasturbinenanlagen mit Paraboloidkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, P

    1983-07-04

    Solar energy is converted in a gas turbine plant, with solar radiation collected in a parabolic collector and reflected into a hollow receiver. The receiver, which is rigidly connected to the collector, consists of a conical bottom part and a cylindrical upper part. The highly focussed radiation enters through the aperture of the conus. The cool, compressed working fluid of the gas turbine flows through pipes arranged in front of the cylindrical inner wall. The distribution of the radiation was studied as well as the resulting receiver wall temperature, radiation losses and useful heat absorbed by the working fluid. Temperature distributions and three-dimensional fields of thermal stresses were calculated. The influence of geometric and thermodynamic parameters on the stresses inside the pipes was studied in consideration of thermal stresses and stresses due to working fluid pressure. The findings will help to optimize the heating surface load, material utilisation, and efficiency of the receiver. The interdependences between receiver characteristics and gas turbine operation are explained.

  11. The parabolic equation method for outdoor sound propagation

    DEFF Research Database (Denmark)

    Arranz, Marta Galindo

    The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations of the g......The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations...

  12. City sewer collectors biocorrosion

    Science.gov (United States)

    Ksiażek, Mariusz

    2014-12-01

    This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.

  13. Solar radiation on a catenary collector

    Science.gov (United States)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  14. Solar cooling between thermal and photovoltaic: An energy and economic comparative study in the Mediterranean conditions

    International Nuclear Information System (INIS)

    Noro, M.; Lazzarin, R.M.

    2014-01-01

    This paper considers different cooling systems and investigates the most promising alternatives when solar energy is to be used to supply the cooling demand. All the systems are evaluated during a summer cooling season by the energetic and economic point of view by dynamic simulation for two different climates. For Milan (Cfb climate) the highest OSE (overall system efficiency) is reached by LiBr (lithium-bromide) double effect absorption chiller driven by parabolic through collector (0.53). In terms of the collecting surface area, the best systems for Milan feature 0.08 m 2  MJ −1 per day both for electric system (mono-crystalline photovoltaic coupled to water cooled chiller) and thermal system (PTC (parabolic trough collectors) coupled to double effect water-LiBr absorption chiller). Southern latitudes like Trapani (Csa climate) allow a quite better performance for thermal solar cooling solutions. The NPV (net present worths) of electric solar cooling solutions are favorable with respect to the traditional solution and the DPV (discounted payback periods) are all lower than the period of economic analysis above all for water cooled chillers. Finally a sensitivity analysis of the specific investment cost (€ MJ −1 per day) is carried out regarding the investment cost of collectors, the solar ratio and the interest rate. - Highlights: • Solar cooling is obtained with solar thermal or PV (photovoltaic) with easy available equipment. • In the past PV driven systems for solar cooling were not considered as too expensive. • An energy/economic comparison is carried out for the various solar cooling systems. • Sensitivity analyses are carried out varying different parameters

  15. Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering

    1993-09-01

    Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

  16. Solar collector manufacturing activity, 1990

    International Nuclear Information System (INIS)

    1992-01-01

    The Solar Collector Manufacturing Activity 1990 report prepared by the Energy Information Administration (EIA) presents summary and detailed data provided by domestic manufacturers on shipments of solar thermal collectors and photovoltaic cells and modules. Summary data on solar thermal collector shipments are presented for the period 1974 through 1990. Summary data on photovoltaic cell and module shipments are presented for the period 1982 through 1990. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1990

  17. Design package for concentrating solar collector panels

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The Northrup concentrating solar collector is a water/glycol/working fluid type, dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, fiber glass insulation and weighs 98 pounds. The gross collector area is about 29.4/sup 2/ per collector. A collector assembly includes four collector units within a tracking mount array.

  18. Stability analysis of impulsive parabolic complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinliang, E-mail: wangjinliang1984@yahoo.com.cn [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China); Wu Huaining [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China)

    2011-11-15

    Highlights: > Two impulsive parabolic complex network models are proposed. > The global exponential stability of impulsive parabolic complex networks are considered. > The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  19. Stability analysis of impulsive parabolic complex networks

    International Nuclear Information System (INIS)

    Wang Jinliang; Wu Huaining

    2011-01-01

    Highlights: → Two impulsive parabolic complex network models are proposed. → The global exponential stability of impulsive parabolic complex networks are considered. → The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  20. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    Science.gov (United States)

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.

  1. Turning collectors for solar radiation

    Science.gov (United States)

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  2. Solar parabolic dish technology evaluation report

    Science.gov (United States)

    Lucas, J. W.

    1984-01-01

    The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.

  3. The study of the focal trough in panoramic radiograph

    International Nuclear Information System (INIS)

    Park, C. S.; Kim, H. P.

    1982-01-01

    In the study of the focal trough of panoramic radiograph, using the Moritta company Panex EC a series of 48 exposures were taken with the 6-18 brass pins placed in the holes of the plastic model plate, then evaluated by 4 observers. The author analyzed the focal trough defined by the sharpness criteria and calculated the vertical and horizontal magnification range in the corrected focal trough. The results were as follows; 1. Continuous focal trough was not defined in the anterior region using a very high degree of sharpness. 2. As degree of sharpness used in the analysis became less, focal trough was continuous in the anterior and posterior regions, symmetrized bilaterally, and the widths of the focal trough increased more in the posterior region. 3. As sharpness criteria were reduced, the percentage range of image magnification increased in both vertical and horizontal magnification, and especially the percentage range of horizontal magnification was greater than that of vertical magnification.

  4. Parabolic features and the erosion rate on Venus

    Science.gov (United States)

    Strom, Robert G.

    1993-01-01

    The impact cratering record on Venus consists of 919 craters covering 98 percent of the surface. These craters are remarkably well preserved, and most show pristine structures including fresh ejecta blankets. Only 35 craters (3.8 percent) have had their ejecta blankets embayed by lava and most of these occur in the Atla-Beta Regio region; an area thought to be recently active. parabolic features are associated with 66 of the 919 craters. These craters range in size from 6 to 105 km diameter. The parabolic features are thought to be the result of the deposition of fine-grained ejecta by winds in the dense venusian atmosphere. The deposits cover about 9 percent of the surface and none appear to be embayed by younger volcanic materials. However, there appears to be a paucity of these deposits in the Atla-Beta Regio region, and this may be due to the more recent volcanism in this area of Venus. Since parabolic features are probably fine-grain, wind-deposited ejecta, then all impact craters on Venus probably had these deposits at some time in the past. The older deposits have probably been either eroded or buried by eolian processes. Therefore, the present population of these features is probably associated with the most recent impact craters on the planet. Furthermore, the size/frequency distribution of craters with parabolic features is virtually identical to that of the total crater population. This suggests that there has been little loss of small parabolic features compared to large ones, otherwise there should be a significant and systematic paucity of craters with parabolic features with decreasing size compared to the total crater population. Whatever is erasing the parabolic features apparently does so uniformly regardless of the areal extent of the deposit. The lifetime of parabolic features and the eolian erosion rate on Venus can be estimated from the average age of the surface and the present population of parabolic features.

  5. International Workshop on Elliptic and Parabolic Equations

    CERN Document Server

    Schrohe, Elmar; Seiler, Jörg; Walker, Christoph

    2015-01-01

    This volume covers the latest research on elliptic and parabolic equations and originates from the international Workshop on Elliptic and Parabolic Equations, held September 10-12, 2013 at the Leibniz Universität Hannover. It represents a collection of refereed research papers and survey articles written by eminent scientist on advances in different fields of elliptic and parabolic partial differential equations, including singular Riemannian manifolds, spectral analysis on manifolds, nonlinear dispersive equations, Brownian motion and kernel estimates, Euler equations, porous medium type equations, pseudodifferential calculus, free boundary problems, and bifurcation analysis.

  6. Thermochemistry of ionic liquid heat-transfer fluids

    International Nuclear Information System (INIS)

    Van Valkenburg, Michael E.; Vaughn, Robert L.; Williams, Margaret; Wilkes, John S.

    2005-01-01

    Large-scale solar energy collectors intended for electric power generation require a heat-transfer fluid with a set of properties not fully met by currently available commercial materials. Ionic liquids have thermophysical and chemical properties that may be suitable for heat transfer and short heat term storage in power plants using parabolic trough solar collectors. Ionic liquids are salts that are liquid at or near room temperature. Thermal properties important for heat transfer applications are melting point, boiling point, liquidus range, heat capacity, heat of fusion, vapor pressure, and thermal conductivity. Other properties needed to evaluate the usefulness of ionic liquids are density, viscosity and chemical compatibility with certain metals. Three ionic liquids were chosen for study based on their range of solvent properties. The solvent properties correlate with solubility of water in the ionic liquids. The thermal and chemical properties listed above were measured or compiled from the literature. Contamination of the ionic liquids by impurities such as water, halides, and metal ions often affect physical properties. The ionic liquids were analyzed for those impurities, and the impact of the contamination was evaluated by standard addition. The conclusion is that the ionic liquids have some very favorable thermal properties compared to targets established by the Department of Energy for solar collector applications

  7. Exergoeconomic analysis of a solar-powered/fuel assisted Rankine cycle for power generation

    International Nuclear Information System (INIS)

    Cavalcanti, Eduardo J.C.; Motta, Henrique Pereira

    2015-01-01

    A Rankine System assisted for solar radiation and fuel combustion which produces 57 kW electrical power are evaluated from exergoeconomic point of view. The Parabolic trough collector efficiency has been performed to investigate its effect as heat source. The exergoeconomic parameters as the relative cost difference and the exergoeconomic factor for each component are evaluated. The analysis is based on the SPECO (Specific Exergy Costing) approach. The simulation of system on March, June, September and December 21st from 7 am to 4 pm for Natal/Brazil using real data was carried out. The results reveal the daily average values of collector efficiencies, ratio of the useful solar energy, electricity produced, the specific cost per exergy unit of the produced electricity and others heat rates. The system is advantageous for higher solar radiation. The outcome of the analysis can be useful in design, optimization of operating parameters and help to take decision of investment. - Highlights: • As the solar irradiation decreases, the electricity cost per exergy unit increases. • The cost rate is high at collector field due to higher purchase cost. • The system is advantageous when the solar radiation is high. • Further aspect as environmental impact is important

  8. Market potential for solar thermal energy supply systems in the United States industrial and commercial sectors: 1990--2030

    International Nuclear Information System (INIS)

    1991-12-01

    This report revises and extends previous work sponsored by the US DOE on the potential industrial market in the United States for solar thermal energy systems and presents a new analysis of the commercial sector market potential. Current and future industrial process heat demand and commercial water heating, space heating and space cooling end-use demands are estimated. The PC Industrial Model (PCIM) and the commercial modules of the Building Energy End-Use Model (BEEM) used by the DOE's Energy Information Administration (EIA) to support the recent National Energy Strategy (NES) analysis are used to forecast industrial and commercial end-use energy demand respectively. Energy demand is disaggregated by US Census region to account for geographic variation in solar insolation and regional variation in cost of alternative natural gas-fired energy sources. The industrial sector analysis also disaggregates demand by heat medium and temperature range to facilitate process end-use matching with appropriate solar thermal energy supply technologies. The commercial sector analysis disaggregates energy demand by three end uses: water heating, space heating, and space cooling. Generic conceptual designs are created for both industrial and commercial applications. Levelized energy costs (LEC) are calculated for industrial sector applications employing low temperature flat plate collectors for process water preheat; parabolic troughs for intermediate temperature process steam and direct heat industrial application; and parabolic dish technologies for high temperature, direct heat industrial applications. LEC are calculated for commercial sector applications employing parabolic trough technologies for low temperature water and space heating. Cost comparisons are made with natural gas-fired sources for both the industrial market and the commercial market assuming fuel price escalation consistent with NES reference case scenarios for industrial and commercial sector gas markets

  9. Thermal analysis of a compound parabolic concentrator for refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Naghelli; Best, Roberto [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    The refrigeration system designed at the Centro de Investigacion en Energia (CIE), Mexico is able to produce, in optimal conditions, one hundred kilograms per day of ice by means of solar energy. A continuous absorption ammonia-water refrigeration cycle is employed. In its actual state, heat supply to the system is provided through a bank of evacuated tube solar collectors. Their principal difficulties encountered in this system are the indirect heat losses due to the coupling of the falling film generator to the solar heating subsystem that requires a heat transfer gradient and higher collector operating temperatures. Also the high initial cost of the evacuated tube collectors is a barrier for an economical feasible system. Currently, new types of solar collectors are being considered, more efficient and reliable, with a potentially lower cost. This type of collectors known as Compound Parabolic Collectors (CPC) succeed in working at the required temperatures for absorption refrigeration systems. Therefore, a new system is suggested and it is proposed to use a CPC array, where heat losses by the indirect heating system are avoided. In this work a simple method was developed in order to establish the energy balances in a CPC, with a steel tubular receiver without an evacuated glass shell. The receptor's model considers a bidimensional system in stationary state and it supposes a continuous medium. Four nonlinear, simultaneous equations were obtained to predict heat exchange among various components in the system. These equations were utilized in a computer program to analyze the collector performance under various operating conditions. Consequently, the prediction of temperature distribution with respect to position permits to calculate length and arrangement of the CPC for a determined refrigeration application. [Spanish] El sistema de refrigeracion en el Centro de Investigacion en Energia (CIE) Mexico es capaz de producir en condiciones optimas 100

  10. Solar collector overheating protection

    NARCIS (Netherlands)

    Slaman, M.J.; Griessen, R.P.

    Prismatic structures in a thermal solar collector are used as overheating protection. Such structures reflect incoming light efficiently back whenever less thermal power is extracted from the solar collector. Maximum thermal power is generated when the prismatic structure is surrounded by a

  11. Manufacturing parabolic mirrors

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)

  12. Design package for concentrating solar collector panels

    Science.gov (United States)

    1978-01-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.

  13. Solar-driven Joule cycle reciprocating Ericsson engines for small scale applications. From improper operation to high performance

    International Nuclear Information System (INIS)

    Stanciu, Dorin; Bădescu, Viorel

    2017-01-01

    Highlights: • New dynamic model for parabolic trough collector (PTC) coupled to Ericsson engine (EE). • Design procedure of the PTC-EE system which avoid malfunction. • Variation of PTC-EE system performance during a day for different engine rotation speeds. • Strategy to switch between different rotation speeds to maximize daily output work. - Abstract: The paper focuses on a Joule cycle reciprocating Ericsson engine (JCREE) coupled with a solar parabolic trough collector (PTC). A small scale application located at mid Northern Hemisphere latitude (44°25″N) is considered. A new dynamic (time-dependent) model is developed and used to design the geometry and estimate the performance of the PTC-JCREE system under the most favorable weather conditions (i.e. summer day and clear sky). The paper brings two main contributions. First, specific constraints on the design parameters have been identified in order to avoid improper JCREE operation, such as gas under-compression in the compressor cylinder and gas over-compression and/or over-expansion in the expander cylinder. Second, increasing the work generated per day requires using a proper strategy to switch between different rotation speeds. Specific results are as follows. For the (reference) constant engine rotation speed 480 rpm, the output work per day is 39,270 kJ and the overall efficiency is 0.134. The output work decreases by increasing the rotation speed, since the operation interval during a day diminishes. A better operation strategy is to switch among three rotation speed values, namely 480, 540 and 600 rpm. In this case the output work is 40,322 kJ and the overall efficiency is 0.137. The performance improvement is quite small and the reference constant rotation speed 480 rpm may be a suitable choice, easier to use in practice. For both the constant and variable rotation speed strategies, the overall efficiency is almost constant along the effective operation time interval, which is from 8:46 to

  14. Simulation of a solar collector array consisting of two types of solar collectors, with and without convection barrier

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon; Perers, Bengt

    2015-01-01

    The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small performance improvements may lead to a large increase in the overall energy production. Both collectors with and without polymer foil, functioning as convection...... barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the behavior of a 14 solar collector row made of these two different kinds of collectors, in order to optimize...... the composition of the row. Actual solar collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in Braedstrup. A parametric...

  15. Four-collector flux sensor

    International Nuclear Information System (INIS)

    Wiegand, W.J. Jr.; Bullis, R.H.; Mongeon, R.J.

    1980-01-01

    A flowmeter based on ion drift techniques was developed for measuring the rate of flow of a fluid through a given cross-section. Ion collectors are positioned on each side of an immediately adjacent to ion source. When air flows axially through the region in which ions are produced and appropriate electric fields are maintained between the collectors, an electric current flows to each collector due to the net motion of the ions. The electric currents and voltages and other parameters which define the flow are combined in an electric circuit so that the flux of the fluid can be determined. (DN)

  16. The sedimentation rates in the Okinawa Trough during the Late Quaternary

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On the basis of accelerator mass spectrometer radiocarbon (AMS 14C) dating, sedimentation rates of 11 cores collected from the northern to southern Okinawa Trough are discussed. The sedimentation rates in the Okinawa Trough roughly range from 11 to 39 cm/ka, and the average is 23.0 cm/ka. China's continental matter is the main sediment source of the middle Okinawa Trough and has important contribution to the northern and southern Okinawa Trough. The sedimentation rates during the marine oxygen isotope (MIS)2 are uniformly higher than those during MIS 1 in the northern and middle Okinawa Trough while they are on the contrary in the southern Okinawa Trough. Sedimentation rates in the Okinawa Trough can be one of the proxies of sediment source and an indicator of cooling events.

  17. Linear magnetic anomalies and tectonic development of the middle Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    -By analyzing the magnetic anomalies, the linear magnetic anomalies in the middle Okinawa Trough are identified. It means that the crust along the spreading axis is broken, and new oceanic crust is formed. Geophysical data have revealed that a model of three extensive episodes occurs in the Okinawa Trough, which can be named as "doming episode" from the Middle to Late Miocene (Phase I), the episode from the Pliocence to Early Pleistocene (Phase Ⅱ ), and the recent "spreading episode" (Phase Ⅲ ). The magnetic anomalies in the middle Okinawa Trough are very similar to those found in the middle Red Sea, indicating that the Okinawa Trough is developing towards the "Red Sea stage". Similar to the Red Sea, there are a "main trough" and a "axial trough" in the Okinawa Trough.

  18. A distributed garbage collector for active objects

    OpenAIRE

    Puaut , Isabelle

    1993-01-01

    This paper introduces an algorithm that performs garbage collection in distributed systems of active objects (i.e., objects having their own threads of control). The proposed garbage collector is made of a set of local garbage collectors, one per node, loosely coupled to a global garbage collector. The novelties of the proposed garbage collector come from the fact that local garbage collectors need not be synchronized with each other for detecting garbage objects and that faulty communication...

  19. Aeolian sand transport over complex intertidal bar-trough beach topography

    Science.gov (United States)

    Anthony, Edward J.; Ruz, Marie-Hélène; Vanhée, Stéphane

    2009-04-01

    Aeolian sand transport on macrotidal beaches with complex intertidal bar-trough topography (ridge-and-runnel beaches) was assessed from experiments in northern France that involved measurements of wind speed, saltation, surface moisture contents, and rates of sand trapping across surveyed portions of the upper beach profile. Beaches exhibiting intertidal bars and troughs are much more complex, topographically, than simple reflective or dissipative beaches. Furthermore, the intertidal bar-trough morphology commonly exhibits strong cross-shore variations in the moisture contents of the beach surface and in patterns of bedform development. The results of four 30-minute experiments, conducted along topographically surveyed portions of the upper beach-dune toe profile, show that troughs act as extremely efficient sand interceptors, because of their permanently saturated state, which also inhibits sand mobilisation. Troughs, thus, limit or segment the dry fetch during conditions of intermittent saltation. Flow lines, inferred from the wind profiles, suggest that complex interactions at the boundary layer are generated by the bar-trough topography. Troughs systematically appear to be characterised by air expansion, while bar faces generate ramp wind acceleration for onshore winds, and sometimes immediate downwind deceleration for offshore winds. These effects may also contribute to cross-shore variations in the rates of sand trapping. Finally, a simple conceptual model of effective fetch development, integrating the effects of the spring-neap tidal range and of gross bar-trough morphological variability over time, is proposed for bar-trough beaches. The model highlights the key theme of fetch segmentation induced by cross-shore differentiation in the moisture contents of the beach surface hinged on the complex topography of multiple bars and troughs.

  20. Standardized performance tests of collectors of solar thermal energy: Prototype moderately concentrating grooved collectors

    Science.gov (United States)

    1976-01-01

    Prototypes of moderately concentrating grooved collectors were tested with a solar simulator for varying inlet temperature, flux level, and incident angle. Collector performance is correlated in terms of inlet temperature and flux level.

  1. Solving Variable Coefficient Fourth-Order Parabolic Equation by ...

    African Journals Online (AJOL)

    Solving Variable Coefficient Fourth-Order Parabolic Equation by Modified initial guess Variational ... variable coefficient fourth order parabolic partial differential equations. The new method shows rapid convergence to the exact solution.

  2. New collectors from all over the world

    Energy Technology Data Exchange (ETDEWEB)

    Augsten, Eva

    2008-07-01

    Flat-plate collectors are fashionable, even among customers in Shanghai, although China is considered the land of evacuated tubes. Elsewhere, fashion is also a consideration, which partly explains the switch from fin collectors to full-surface collectors. Sun and Wind Energy has put together a list of new collectors from various countries. (orig.)

  3. THERMAL PERFORMANCE OF FLAT PLATE SOLAR COLLECTOR

    Directory of Open Access Journals (Sweden)

    TABET I.

    2017-06-01

    Full Text Available In this paper, a theoretical and experimental studyof flat platesolar water collector with reflectors.A mathematical model based on energy balance equations saw the thermal behavior of the collector is investigated. The experimental test was made at the unit research applies in renewable energy (URAER located in southern Algeria.An increase of 23% for solar radiation incident on the collector surface with the addition of the planers reflectors in the day of May, this increase causes an improvement of the performance of the collector,the fluid temperature increases with an average of 5%. Thetests conducted on the flat plate solar water collector in open circuit enabled the determination of thermal performance of the collector by estimating the daily output The thermal efficiency of the collector ranges from 1% -63% during the day, a mean value of 36%obtained.

  4. Exergy analysis of photovoltaic solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Othman, M.Y.Hj.

    1998-01-01

    The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)

  5. Recommendations for the market introduction of solar thermal power stations

    International Nuclear Information System (INIS)

    Trieb, F.; Nitsch, J.

    1998-01-01

    Until 2010, solar thermal power stations based on parabolic trough concentrating collectors can become a competitive option on the world's electricity market, if the market extension of this mature technology is supported by a concerted, long-term programme capable of bundling the forces of industry, finance, insurance and politics. Technical improvements based on the experience of over ten years of successful operation, series production and economies of scale will lead to a further cost reduction of 50% and to electricity costs of 0.06 - 0.04 US$/kWh for hybrid steam cycles and hybrid combined cycles, respectively. Until 2010, a capacity of 7 GW will be installed, avoiding 16 million tons of carbon dioxide per year. The programme comprises an investment of 16 billion US$ and requires external funding of 6%. (author)

  6. Photocathalytic degradation of organic micropollutants in aqueous phase

    International Nuclear Information System (INIS)

    Driussi, D.

    2009-01-01

    The aim of this study was to design, construct and test a small system for the photo catalytic degradation of organic micropollutants in aqueous phase using solar radiation. The system is a parabolic linear trough type with automatic one-axis (N-S) tracking of the apparent movement of the sun. The tracking algorithm foresees two dispositions of the collector named horizontal and polar, the last is necessary for installations in locations that are higher than 50 o in latitude. The idea that brought to mind this project was to offer the possibility of treat herbicides polluted waters by means of a simple system without using particular oxidizing chemicals (for example hydrogen peroxide) or components (for example mercury vapour UV lamps) and therefore in an eco-sustainable way. [it

  7. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    OpenAIRE

    Cisneros, Jesus

    2010-01-01

    The objective of this thesis is to perform a preliminary optical assessment of the external compound parabolic concentrator (XCPC) component in three concentrating solar thermal units. Each solar thermal unit consists an optical element (the non-imaging concentrating reflector) and a thermal element (the evacuated glass tube solar absorber). The three concentrating solar thermal units discussed in this work are DEWAR 58, a direct flow all-glass dewar, DEWAR 47 an indirect flow ...

  8. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A [French Camp, CA

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  9. Parabolic solar concentrators with fully illuminated inverted V absorber; Coletor concentrador parabolico composto (CPC) com absorvedor V invertido completamente iluminado

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Braulio Bezerra

    2004-10-01

    Although literature on parabolic solar concentrators is numerically considerable, there are no publications regarding CPC with fully illuminate, inverted V absorber, nothing is mentioned about optical and geometric properties or, collected thermal energy. This type of solar concentrator exists in the international market, but with little known divulgence of its properties, perhaps explained because of industrial protection. In the first part of this work, the equations that define the concentrator cavity curve and its optical and geometric properties were deduced and studied in detail, by a numeric simulation program, elaborated in Meatball language. Additionally, optimization studies about the viability of the construction of this collector were carried out, relative truncation effects (the elimination of the upper part of the cavity) on the optics and geometric properties and the annual energy generated by the equipment. For the CPC concentrator collectors with fully illuminated inverted V absorbers and ideal (without truncation) it was concluded that in the configuration in which the angle of angular acceptance of the CPC is equal to the apex angle of the absorber, there occurs a minimum perimeter of the reflector cavity, when the nominal concentration and the size of the absorber are constant. Regarding the CPC concentrator collectors fully illuminated with inverted V absorber and with optimized truncation, it is shown, for a concentrator of 1.2 concentration, a good related reflector surface length and opening, and a mean number of reflections and generated thermal energy that this occurs for concentrators arising from concentrators with acceptance angles among 33.75 up to 45.58 degrees. (author)

  10. Bioinspired plate-based fog collectors.

    Science.gov (United States)

    Heng, Xin; Luo, Cheng

    2014-09-24

    In a recent work, we explored the feeding mechanism of a shorebird to transport liquid drops by repeatedly opening and closing its beak. In this work, we apply the corresponding results to develop a new artificial fog collector. The collector includes two nonparallel plates. It has three advantages in comparison with existing artificial collectors: (i) easy fabrication, (ii) simple design to scale up, and (iii) active transport of condensed water drops. Two collectors have been built. A small one with dimensions of 4.2 × 2.1 × 0.05 cm(3) (length × width × thickness) was first built and tested to examine (i) the time evolution of condensed drop sizes and (ii) the collection processes and efficiencies on the glass, SiO2, and SU-8 plates. Under similar experimental conditions, the amount of water collected per unit area on the small collector is about 9.0, 4.7, and 3.7 times, respectively, as much as the ones reported for beetles, grasses, and metal wires, and the total amount of water collected is around 33, 18, and 15 times. On the basis of the understanding gained from the tests on the small collector, a large collector with dimensions of 26 × 10 × 0.2 cm(3) was further built and tested, which was capable of collecting 15.8 mL of water during a period of 36 min. The amount of water collected, when it is scaled from 36 to 120 min, is about 878, 479, or 405 times more than what was collected by individual beetles, grasses, or metal wires.

  11. Single-stage depressed collectors for gyrotrons

    International Nuclear Information System (INIS)

    Piosczyk, B.; Iatrou, C.T.; Dammertz, G.; Thumm, M.; Univ. Karlsruhe

    1996-01-01

    Two 140 GHz gyrotrons with a single-step depressed collector have been operated. The different position of the isolating collector gap in the stray magnetic field causes the electron motion in the retarding region to be in one case adiabatic and in the other case nonadiabatic. The kind of motion within the retarding field influences strongly the behavior of the gyrotron with a depressed collector. In the case of nonadiabatic motion a significant amount of transverse momentum is given to the electrons reflected at the collector potential. This causes the reflected electrons to be trapped between the magnetic mirror and the collector. The electrons escape from the trap by diffusion across the magnetic field to the body of the tube thus contributing to the body current. Despite the high body current there is no observable influence of the collector voltage on the RF output power. In the case of adiabatic motion the reflected electrons do not gain a sufficient amount of transverse momentum to be trapped by the magnetic mirror. They pass the cavity toward the gun and they are trapped between the negative gun potential and the collector. The interaction with the RF field by electrons traveling through the cavity enhances the diffusion in the velocity space thus enabling the trapped electrons to overcome the potential barrier and escape toward the collector. Therefore the body current stays at low values since in this case the reflected electrons do not contribute to it. However, at higher collector voltages a reduction of RF power occurred and some noise in the electron beam was observed. The main motivation for the development of gyrotrons in the frequency range above 100 GHz with power levels in excess of several hundreds kW per tube, is the application in magnetic fusion devices for plasma heating and for electron current drive

  12. ANALYSIS AND MODELING OF SOLAR EVAPORATOR-COLLECTOR

    Directory of Open Access Journals (Sweden)

    Zakaria Mohd. Amin

    2015-11-01

    Full Text Available Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector.   At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i water heating, (ii drying and (iii desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.

  13. Vancomycin AUC/MIC and Corresponding Troughs in a Pediatric Population.

    Science.gov (United States)

    Kishk, Omayma A; Lardieri, Allison B; Heil, Emily L; Morgan, Jill A

    2017-01-01

    Adult guidelines suggest an area under the curve/minimum inhibitory concentration (AUC/MIC) > 400 corresponds to a vancomycin trough serum concentration of 15 to 20 mg/L for methicillin-resistant Staphylococcus aureus infections, but obtaining these troughs in children are difficult. The primary objective of this study was to assess the likelihood that 15 mg/kg of vancomycin every 6 hours in a child achieves an AUC/MIC > 400. This retrospective chart review included pediatric patients >2 months to AUCs were calculated four times using three pharmacokinetic methods. A total of 36 patients with 99 vancomycin trough serum concentrations were assessed. Baseline characteristics were similar between groups. For troughs in group 1 (n = 55), the probability of achieving an AUC/MIC > 400 ranged from 16.4% to 90.9% with a median trough concentration of 11.4 mg/L, while in group 2 (n = 44) the probability of achieving AUC/MIC > 400 ranged from 15.9% to 54.5% with mean trough concentration of 9.2 mg/L. The AUC/MICs were not similar between the different pharmacokinetic methods used; however, a trapezoidal equation (Method A) yielded the highest correlation coefficient (r 2 = 0.59). When dosing every 6 hours, an AUC/MIC of 400 correlated to a trough serum concentration of 11 mg/L. The probability of achieving an AUC/MIC > 400 using only a trough serum concentration and an MIC with patients receiving 15 mg/kg every 6 hours is variable based on the method used to calculate the AUC. An AUC/MIC of 400 in children correlated to a trough concentration of 11 mg/L using a trapezoidal Method to calculate AUC.

  14. Evaluation of Test Method for Solar Collector Efficiency

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximat...... and the sky temperature. Based on the investigations, recommendations for change of the test methods and test conditions are considered. The investigations are carried out within the NEGST (New Generation of Solar Thermal Systems) project financed by EU.......The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximated...... equation where Tin is the inlet temperature to the collector and Tout is the outlet temperature from the collector. The specific heat of the solar collector fluid is in the test method as an approximation determined as a constant equal to the specific heat of the solar collector fluid at the temperature Tm...

  15. Study on radiation flux of the receiver with a parabolic solar concentrator system

    International Nuclear Information System (INIS)

    Mao, Qianjun; Shuai, Yong; Yuan, Yuan

    2014-01-01

    Highlights: • The idea of integral dish and multi-dishes in a parabolic solar collector has been proposed. • The impacts of three factors of the receiver have been investigated. • The radiation flux distribution can benefit from a large system error. - Abstract: The solar receiver plays a key role in the performance of a solar dish electric generator. Its radiation flux distribution can directly affect the efficiency of the parabolic solar concentrator system. In this paper, radiation flux distribution of the receiver is simulated successfully using MCRT method. The impacts of incident solar irradiation, aspect ratio (the ratio of the receiver height to the receiver diameter), and system error on the radiation flux of the receiver are investigated. The parameters are studied in the following ranges: incident solar irradiation from 100 to 1100 W/m 2 , receiver aspect ratio from 0.5 to 1.5, and the system error from 0 to 10 mrad. A non-dimensional parameter Θ is defined to represent the ratio of radiation flux to incident solar irradiation. The results show that the maximum of Θ is about 200 in simulation conditions. The aspect ratio and system error have a significant impact on the radiation flux. The optimal receiver aspect ratio is 1.5 at a constant incident solar irradiation, and the maximum of radiation flux increases with decreasing system error, however, the radiation flux distribution can benefit from a large system error. Meanwhile, effects of integral dish and multi-dishes on the radiation flux distribution have been investigated. The results show that the accuracy of two cases can be ignored within the same parameters

  16. Behavior of a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon

    2015-01-01

    A mathematical model simulating the emptying behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed and validated with measured data. The calculated results are in good agreement with the measured results. The developed simulation model...... is therefore suitable to determine the behavior of a solar collector loop during stagnation. A volume ratio R, which is the ratio of the volume of the vapour in the upper pipes of the solar collector loop during stagnation and the fluid content of solar collectors, is introduced to determine the mass...... of the collector fluid pushed into the expansion vessel during stagnation, Min. A correlation function for the mass Min and the volume ratio R for solar collector loops is obtained. The function can be used to determine a suitable size of expansion vessels for solar collector loops....

  17. Study on the Instability of Two-Phase Flow in the Heat-Absorbing Tube of Trough Solar Collector

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2017-01-01

    Full Text Available The Marangoni effect and Rayleigh-Benard effect in the two-phase region of solar trough heat-absorbing tube are simulated by FTM (front tracking method. Considering the Marangoni effect alone, although surface tension gradient and surface tension affect the interface wave, the two effects have different characteristics. The surface tension gradient caused by the temperature gradient is one of the factors that swing the interface. The amplitude attenuation of the interface wave decreases with the increase of the Marangoni number (Ma. In general, the surface tension gradient enhances the convection opposite to the temperature gradient. Under the gravity field, the Rayleigh-Benard effect influences the development of the vortex structure in the flow field, which in turn affects the velocity gradient near the interface to influence the evolution of the interface fluctuation. In a small Rayleigh number (Ra, the buoyancy convection reduces the velocity gradient, thus suppressing the evolution of the interfacial wave. In the range of Ra  4.0E4, the situation is just the opposite. The larger the Ra is, the stronger the promoting effect is.

  18. The F-region trough: seasonal morphology and relation to interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Voiculescu

    2006-03-01

    Full Text Available We present here the results of a statistical study of the ionospheric trough observed in 2003 by means of satellite tomography. We focus on the seasonal morphology of the trough occurrence and investigate the trough latitude, width and the horizontal gradients at the edges, at different magnetic local times, as well as their relations to geomagnetic activity and the interplanetary magnetic field. A seasonal effect is noticed in the diurnal variation of the trough latitude, indicating that summer clearly differs from the other seasons. In winter the troughs seem to follow the solar terminator. The width of the trough has a diurnal variation and it depends on the season, as well. The broadest troughs are observed in winter and the narrowest ones in summer. A discontinuity in the diurnal variation of the trough latitude is observed before noon. It is suggested that this is an indication of a difference between the generation mechanisms of morningside and eveningside troughs. The density gradients at the edges have a complex dependence on the latitude of the trough and on geomagnetic activity. The photoionization and the auroral precipitation are competing in the formation of the trough walls at different magnetic local times. An important finding is that the interplanetary magnetic field plays a role in the occurrence of the trough at different levels of geomagnetic activity. This is probably associated with the topology of the polar cap convection pattern, which depends on the directions of the IMF components By and Bz.

  19. The F-region trough: seasonal morphology and relation to interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Voiculescu

    2006-03-01

    Full Text Available We present here the results of a statistical study of the ionospheric trough observed in 2003 by means of satellite tomography. We focus on the seasonal morphology of the trough occurrence and investigate the trough latitude, width and the horizontal gradients at the edges, at different magnetic local times, as well as their relations to geomagnetic activity and the interplanetary magnetic field. A seasonal effect is noticed in the diurnal variation of the trough latitude, indicating that summer clearly differs from the other seasons. In winter the troughs seem to follow the solar terminator. The width of the trough has a diurnal variation and it depends on the season, as well. The broadest troughs are observed in winter and the narrowest ones in summer. A discontinuity in the diurnal variation of the trough latitude is observed before noon. It is suggested that this is an indication of a difference between the generation mechanisms of morningside and eveningside troughs. The density gradients at the edges have a complex dependence on the latitude of the trough and on geomagnetic activity. The photoionization and the auroral precipitation are competing in the formation of the trough walls at different magnetic local times. An important finding is that the interplanetary magnetic field plays a role in the occurrence of the trough at different levels of geomagnetic activity. This is probably associated with the topology of the polar cap convection pattern, which depends on the directions of the IMF components By and Bz.

  20. Hybrid Solar-Geothermal Energy Absorption Air-Conditioning System Operating with NaOH-H2O—Las Tres Vírgenes (Baja California Sur, “La Reforma” Case

    Directory of Open Access Journals (Sweden)

    Yuridiana Rocio Galindo-Luna

    2018-05-01

    Full Text Available Solar and geothermal energies are considered cleaner and more useful energy sources that can be used to avoid the negative environmental impacts caused by burning fossil fuels. Several works have reported air-conditioning systems that use solar energy coupled to geothermal renewable energy as a thermal source. In this study, an Absorption Air-Conditioning System (AACS used sodium hydroxide-water (NaOH-H2O instead of lithium bromide-water to reduce the cost. Low enthalpy geothermal heat was derived from two shallow wells, 50 and 55 m deep. These wells are of interest due to the thermal recovery (temperature vs. time of 56.2 °C that was possible at the maximum depth, which can be used for the first stage of the process. These wells were coupled with solar energy as a geothermal energy application for direct uses such as air-conditioning systems. We studied the performance of an absorption cooling system operating with a NaOH-H2O mixture and using a parabolic trough plant coupled with a low enthalpy geothermal heat system as a hybrid heat source, as an alternative process that can help reduce operating costs and carbon dioxide emissions. The numerical heat transfer results showed the maximum convective heat transfer coefficient, as function of fluid velocity, and maximum temperature for a depth higher than 40 m. The results showed that the highest temperatures occur at low fluid velocities of less than or equal to 5.0 m/s. Under these conditions, reaching temperatures between 51.0 and 56.2 °C in the well was possible, which is required of the geothermal energy for the solar energy process. A water stream was used as the working fluid in the parabolic trough collector field. During the evaluation stage, the average experimental storage tank temperature achieved by the parabolic trough plant was 93.8 °C on October 23 and 92.9 °C on October 25, 2017. The numerical simulation used to evaluate the performance of the absorption cycle used a generator

  1. Standardized performance tests of collectors of solar thermal energy: A selectively coated, steel collector with one transparent cover

    Science.gov (United States)

    1976-01-01

    Basic test results are presented of a flat-plate solar collector whose performance was determined in solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency was correlated in terms of inlet temperature and flux level.

  2. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  3. Analysis of collector-emitter offset voltage of InGaP/GaAs composite collector double heterojunction bipolar transistor

    Science.gov (United States)

    Lew, K. L.; Yoon, S. F.

    2002-04-01

    The Ebers-Moll-like terminal current expressions of a composite collector double heterojunction bipolar transistor (DHBT), which takes the recombination effect into account, have been formulated and an expression for collector-emitter offset voltage [VCE(offset)] has been derived. Factors affecting the VCE(offset) of a composite collector DHBT are investigated and good agreement between the calculated and reported experimental results is shown. Analytical results showed that the transmission coefficient of the base-collector (B-C) junction does not have a considerable effect on the VCE(offset), provided that the B-C junction is of good quality. Thus, despite its asymmetric structure, the VCE(offset) of an optimally designed composite collector DHBT could be as low as that of a conventional DHBT. Hence a composite collector DHBT with low saturation voltage and negligible VCE(offset) is possible if the two conditions: (i) good quality B-C junction, (ii) base transport factor, α≈1, are fulfilled.

  4. Acoustically damped metal oil trough for internal combustion engines. Schallgedaempfte Blech-Oelwanne fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, H.

    1991-03-28

    The invention refers to an acoustically damped oil trough. As there are strict requirements for reducing the noise emission from internal combustion engines, according to the invention it is proposed that the oil trough should be surrounded by an outer trough, where the outer trough is made of plastic or sheet steel in one or more layers. To avoid noise bridges, the oil trough and outer trough are separated by elastomer elements. The outer trough achieves a reasonably priced increase in sound insulation. It is also possible to backfit an outer trough on engines.

  5. Depressed collectors for millimeter wave gyrotrons

    International Nuclear Information System (INIS)

    Singh, A.; Granatstein, V.L.

    1992-01-01

    The main issues relating to design of depressed collectors for millimeter wave gyrotrons are discussed. A flow diagram is presented and the interlinking steps are outlined. Design studies are given for two kinds of gyrotrons on which severe constraints on the maximum radii of the collectors had been imposed; namely, for a cavity type and a quasi-optical gyrotron. A collector efficiency of the order of 70 percent is shown to be feasible for either case using careful tailoring of magnetic field profiles. A code has been developed to assist in doing this. A general approach toward initial placement of collectors has been indicated

  6. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...

  7. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    Science.gov (United States)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  8. Experimental Analysis of the Thermo-Hydraulic Performance on a Cylindrical Parabolic Concentrating Solar Water Heater with Twisted Tape Inserts in an Absorber Tube

    Science.gov (United States)

    Kumar, Birendra; Nayak, Rajen Kumar; Singh, S. N.

    2018-05-01

    A twisted tape inserted in an absorber tube may be an excellent option to enhance the performance of a cylindrical parabolic concentrating solar collector (CPC). The present work is an experimental study of the flow and heat transfer with and without twisted tape inserts in the absorber tube of a CPC. Results are presented for mass flow rates of water, ṁ=0.0198-0.0525 kg/s, twist ratio, y=5-10 and Reynolds number, Re=2577.46-6785.55. In the present study, we found that the outlet water temperature, collector efficiency and Nusselt number (Nu) are higher in the twisted tapes as compared to those without the twisted tape inserts in the absorber tube of the CPC. For fixed mass flow rate of water ṁ, the To and η increased with the decrease in twist ratio, y, and is higher in lower twist ratio, y=5, of the twisted tapes. The whole experiment was performed at the Indian Institute of Technology (ISM) in Dhanbad, India during the months of March-April 2017. Based on the experimental data, the correlations for the Nu and friction factor were also developed.

  9. COMPARATIVE FIELD EXPERIMENTAL INVESTIGATIONS OF DIFFERENT FLAT PLATE SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Guangming Chen

    2015-12-01

    Full Text Available Full-scale traditional metal solar collectors and solar collector specimens fabricated from polymeric materials were investigated in the present study. A polymeric collector is 67.8% lighter than a traditional metal solar collector, and a metal solar collector with transparent plastic covering is 40.3% lighter than a traditional metal solar collector. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. A test rig for the natural circulation of the working fluid in a solar collector was built for a comparative experimental investigation of various solar collectors operating at ambient conditions. It was shown experimentally that the efficiency of a polymeric collector is 8–15% lower than the efficiency of a traditional collector.

  10. Partial differential equations of parabolic type

    CERN Document Server

    Friedman, Avner

    2008-01-01

    This accessible and self-contained treatment provides even readers previously unacquainted with parabolic and elliptic equations with sufficient background to understand research literature. Author Avner Friedman - Director of the Mathematical Biosciences Institute at The Ohio State University - offers a systematic and thorough approach that begins with the main facts of the general theory of second order linear parabolic equations. Subsequent chapters explore asymptotic behavior of solutions, semi-linear equations and free boundary problems, and the extension of results concerning fundamenta

  11. Plataforma Solar de Almeria. Annual report 1997-1998. Final report; Plataforma Solar de Almeria. Haushaltsjahre 1997-1998. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The performance and yields of thes following units and components are described: (a) Tower focus power plants and their components (TSA; RAS; Large Heliostat technology Program; Volumetric Receivers; REFOS); (b) Solar trough power stations and their components (DISS - Direct solar evaporation; ARDISS/PAREX test facility; EUROTROUGH - development of a cost-optimized European parabolic trough collector); (c) Solar chemistry (photocatalytic detoxification; solar synthesis of fine chemicals); (d) Dish/Stirling systems (HYHPIRE); (e) AP solar thermal technology transfer in the Mediterranean (THESEUS 50 MW{sub el} THErmal Solar European Power Statio at Frangokastello, Crete; SolWin; World-wide market introduction of solar thermal power stations). [German] Der bisher erzielter Erfolg und seine Auswirkungen wird fuer die folgenden Anlagen und Komponenten beschrieben. Diese sind: (a) Turmkraftwerke und deren Komponenten (TSA; RAS; Large Heliostat Technology Program; Volumetrische Receiver; REFOS), (b) Rinnenkraftwerke und deren Komponenten (DISS - Solare Direktverdampfung; ARDISS/PAREX Versuchsanlage; EUROTROUGH - Entwicklung eines kostenoptimierten europaeischen Parabolrinnenkollektors), (c) Solare Chemie (Photokatalytische Detoxifikation; Solare Synthese von Feinchemikalien), (d) Dish/Stirling Systeme (HYHPIRE), (e) AP Solarthermischer Technologietransfer im Mittelmeerraum (THESEUS - 50 MW{sub el} THErmal Solar European Power Station in Frangokastello, Kreta; SolWin; Weltweite Markteinfuehrung solarthermischer Kraftwerkstechnologie). (orig./AKF)

  12. Mixed hyperbolic-second-order-parabolic formulations of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios

    2008-01-01

    Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt-Deser-Misner formulation and is derived by the addition of combinations of the constraints and their derivatives to the right-hand side of the Arnowitt-Deser-Misner evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic--second-order parabolic. The second formulation is a parabolization of the Kidder-Scheel-Teukolsky formulation and is a manifestly mixed strongly hyperbolic--second-order-parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint-violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.

  13. Comparison of three different collectors for process heat applications

    Science.gov (United States)

    Brunold, Stefan; Frey, R.; Frei, Ulrich

    1994-09-01

    In general vacuum tube collectors are used in solar process heat systems. Another possibility is to use transparent insulated flat plate collectors. A critical point however, is that most of the common transparent insulating materials can not withstand high temperatures because they consist of plastics. Thus, temperature resistive collector covers combining a high tranmisivity with a low U-value are required. One possibility is to use capillaries made of glass instead of plastics. Measurement results of collector efficiency and incident angle modifier will be presented as well as calculated energy gains for three different collectors: a vacuum tube collector (Giordano Ind., France), a CPC vacuum tube collector (microtherm Energietechnik Germany; a new flat plate collector using glass capillary as transparent insulation (SET, Germany).

  14. Modelling of Microclimate in collectors

    DEFF Research Database (Denmark)

    Holck, Ole

    1996-01-01

    Abstract It is important to avoid condensation in solar collectors, most of all because wetness of the absorber can damage the selective surface and cause corrosion on the absorber plate. During night time the cover of collectors will cool below ambient temperature due to thermal radiation...

  15. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  16. Solar thermal organic rankine cycle for micro-generation

    Science.gov (United States)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  17. Moduli of Parabolic Higgs Bundles and Atiyah Algebroids

    DEFF Research Database (Denmark)

    Logares, Marina; Martens, Johan

    2010-01-01

    In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid over the moduli space of parabolic vector bundle...

  18. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  19. Non-linear signal response functions and their effects on the statistical and noise cancellation properties of isotope ratio measurements by multi-collector plasma mass spectrometry

    International Nuclear Information System (INIS)

    Doherty, W.

    2013-01-01

    A nebulizer-centric response function model of the analytical inductively coupled argon plasma ion source was used to investigate the statistical frequency distributions and noise reduction factors of simultaneously measured flicker noise limited isotope ion signals and their ratios. The response function model was extended by assuming i) a single gaussian distributed random noise source (nebulizer gas pressure fluctuations) and ii) the isotope ion signal response is a parabolic function of the nebulizer gas pressure. Model calculations of ion signal and signal ratio histograms were obtained by applying the statistical method of translation to the non-linear response function model of the plasma. Histograms of Ni, Cu, Pr, Tl and Pb isotope ion signals measured using a multi-collector plasma mass spectrometer were, without exception, negative skew. Histograms of the corresponding isotope ratios of Ni, Cu, Tl and Pb were either positive or negative skew. There was a complete agreement between the measured and model calculated histogram skew properties. The nebulizer-centric response function model was also used to investigate the effect of non-linear response functions on the effectiveness of noise cancellation by signal division. An alternative noise correction procedure suitable for parabolic signal response functions was derived and applied to measurements of isotope ratios of Cu, Ni, Pb and Tl. The largest noise reduction factors were always obtained when the non-linearity of the response functions was taken into account by the isotope ratio calculation. Possible applications of the nebulizer-centric response function model to other types of analytical instrumentation, large amplitude signal noise sources (e.g., lasers, pumped nebulizers) and analytical error in isotope ratio measurements by multi-collector plasma mass spectrometry are discussed. - Highlights: ► Isotope ion signal noise is modelled as a parabolic transform of a gaussian variable. ► Flicker

  20. Ionospheric trough Model used for Telecommunication Purposes

    International Nuclear Information System (INIS)

    Rothkaehl, H.; Stanislawska, I.

    1999-01-01

    The mid-latitude trough is dynamical phenomena influenced the COST 251 area. Modelled parameters in COST 251 project are critically dependent on its location and magnitude. The particular importance to HF propagation assessments involving off-great-circle modes of incorporating a representation of the position of the trough is noted. ITU-R prediction maps (ITU-R, 1997) which are currently used in most international propagation assessments do not include this fact. (author)

  1. Thermal performance of a transpired solar collector updraft tower

    International Nuclear Information System (INIS)

    Eryener, Dogan; Hollick, John; Kuscu, Hilmi

    2017-01-01

    Highlights: • Transpired solar collector updraft tower has been studied experimentally. • Transpired solar collector updraft tower efficiency ranges from 60 to 80%. • A comparison has been made with other SUT prototypes. • Three times higher efficiency compared to the glazed collectors of conventional solar towers. - Abstract: A novel solar updraft tower prototype, which consists of transpired solar collector, is studied, its function principle is described and its experimental thermal performance is presented for the first time. A test unit of transpired solar collector updraft tower was installed at the campus of Trakya University Engineering Faculty in Edirne-Turkey in 2014. Solar radiation, ambient temperature, collector cavity temperatures, and chimney velocities were monitored during summer and winter period. The results showed that transpired solar collector efficiency ranges from 60% to 80%. The maximum temperature rise in the collector area is found to be 16–18 °C on the typical sunny day. Compared to conventional solar tower glazed collectors, three times higher efficiency is obtained. With increased thermal efficiency, large solar collector areas for solar towers can be reduced in half or less.

  2. Current collectors for improved safety

    Science.gov (United States)

    Abdelmalak, Michael Naguib; Allu, Srikanth; Dudney, Nancy J.; Li, Jianlin; Simunovic, Srdjan; Wang, Hsin

    2017-12-19

    A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, and methods for operating a battery.

  3. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  4. Effect of the phase change material in a solar receiver on thermal performance of parabolic dish collector

    Directory of Open Access Journals (Sweden)

    Senthil Ramalingam

    2017-01-01

    Full Text Available In this work, the use of phase change material in the circular tank solar receiver is proposed for a 16 m2 Scheffler parabolic dish solar concentrator to improve the heat transfer in the receiver. Magnesium chloride hexahydrate with melting temperature of 117°C is selected as the phase change material in the annular space of the receiver with rectangular fins inside the phase change material. Experimental work is carried out to analyze heat transfer from the receiver to heat transfer fluid with and without phase change material in the inner periphery. Energy and exergy efficiency are determined from the measurements of solar radiation intensity, receiver temperature, surroundings temperature, heat transfer fluid inlet and outlet temperatures, storage tank temperature, and wind speed. The experiments were conducted in SRM University, Chennai, India (latitude: 13° 5′ N, longitude: 80°16′ E in April 2014. Use of phase change material in receiver periphery increased energy efficiency by 5.62%, exergy efficiency by 12.8% and decreased time to reach the boiling point of water by 20% when compared with the receiver without phase change material.

  5. Optimal nonimaging integrated evacuated solar collector

    Science.gov (United States)

    Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland

    1993-11-01

    A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.

  6. Moduli space of Parabolic vector bundles over hyperelliptic curves

    Indian Academy of Sciences (India)

    27

    This has been generalized for higher dimensional varieties by Maruyama ... Key words and phrases. Parabolic structure .... Let E be a vector bundle of rank r on X. Recall that a parabolic ..... Let us understand this picture geometrically. Let ω1 ...

  7. The Thermal Collector With Varied Glass Covers

    International Nuclear Information System (INIS)

    Luminosu, I.; Pop, N.

    2010-01-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  8. Pathways toward a low cost evacuated collector system

    Science.gov (United States)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.; Ogallagher, J. J.; Winston, R.

    The goal of widespread use of solar thermal collectors will only be achieved when they are proven to be economically superior to competing energy sources. Evacuated tubular collectors appear to have the potential to achieve this goal. An advanced evacuated collector using nonimaging concentration under development at the University of Chicago and Argonne can achieve a 50% seasonal efficiency at heat delivery temperatures in excess of 170C. The same collector has an optical efficiency so that low temperature performance is also excellent. In this advanced collector design all of the critical components are enclosed in the vacuum, and the collector has an inherently long lifetime. The current cost of evacuated systems is too high, mainly because the volume of production has been too low to realize economies of mass production. It appears that certain design features of evacuated collectors can be changed (e.g., use of heat pipe absorbers) so as to introduce new system design and market strategy options that can reduce the balance of system cost.

  9. Air solar collectors in building use - A review

    Science.gov (United States)

    Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana; Catalina, Tiberiu

    2018-02-01

    In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  10. Air solar collectors in building use - A review

    Directory of Open Access Journals (Sweden)

    Bejan Andrei-Stelian

    2018-01-01

    Full Text Available In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  11. A compact representation of drawing movements with sequences of parabolic primitives.

    Directory of Open Access Journals (Sweden)

    Felix Polyakov

    2009-07-01

    Full Text Available Some studies suggest that complex arm movements in humans and monkeys may optimize several objective functions, while others claim that arm movements satisfy geometric constraints and are composed of elementary components. However, the ability to unify different constraints has remained an open question. The criterion for a maximally smooth (minimizing jerk motion is satisfied for parabolic trajectories having constant equi-affine speed, which thus comply with the geometric constraint known as the two-thirds power law. Here we empirically test the hypothesis that parabolic segments provide a compact representation of spontaneous drawing movements. Monkey scribblings performed during a period of practice were recorded. Practiced hand paths could be approximated well by relatively long parabolic segments. Following practice, the orientations and spatial locations of the fitted parabolic segments could be drawn from only 2-4 clusters, and there was less discrepancy between the fitted parabolic segments and the executed paths. This enabled us to show that well-practiced spontaneous scribbling movements can be represented as sequences ("words" of a small number of elementary parabolic primitives ("letters". A movement primitive can be defined as a movement entity that cannot be intentionally stopped before its completion. We found that in a well-trained monkey a movement was usually decelerated after receiving a reward, but it stopped only after the completion of a sequence composed of several parabolic segments. Piece-wise parabolic segments can be generated by applying affine geometric transformations to a single parabolic template. Thus, complex movements might be constructed by applying sequences of suitable geometric transformations to a few templates. Our findings therefore suggest that the motor system aims at achieving more parsimonious internal representations through practice, that parabolas serve as geometric primitives and that non

  12. Solar collector design with respect to moisture problems

    DEFF Research Database (Denmark)

    Holck, Ole; Svendsen, Svend; Brunold, Stefan

    2003-01-01

    more ventilation openings should be made and what influence the insulation material has. Guidelines for collector designers are proposed. The design guidelines provide some suggestions to be considered during the design of solar collectors.The work was carried out within the framework of the working...... group Materials in Solar Thermal Collectors of the International Energy Agency-Solar Heating and Cooling Programme....... the design of the collector, the location and size of ventilation holes, properties of the insulation materials and dimension of the solar collector box are parameters that have to be taken into account for the optimisation in order to achieve the most favourable microclimate to prevent corrosion...

  13. A solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' yev, L.L.; Avakyan, Yu.V.; Bogdanov, V.M.; Gagiyan, L.A.; Grakovich, L.P.; Karapetyan, G.S.; Morgun, V.A.

    1984-01-01

    A collector whose primary component is a heating pipe is proposed. The evaporation zone located in the lower half of the heating pipe has an external absorption coating. Chambers that open upward and contain the evaporating fluid are mounted within this region along the top. In order to improve operational reliability of the collector, these chambers are mounted on one coated wall; the area of projection of each of the chambers onto the horizontal plane is greater than the area of the projection of each of the chambers placed above it. The coating may be in the form of photocells; a filter is mounted on the chamber side inside the evaporation zone. The evaporation zone may take the form of a cylinder with a segmented base; the photocells are mounted on a flat section of the lateral surface. The collector may be used to cool the photocells.

  14. Isotopic feature and uranium dating of the volcanic rocks in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Volcanic rocks from the northern and middle Okinawa Trough were dated by uranium-series dating method. Differential fractions using magnetic procedure were designed to separate samples. New report on the ages and isotopic data of rocks in the northern trough (especially black pumice) was discussed. Based on the uranium dates and Sr-Nd isotopic ratio, magmatic evolution process of the Okinawa Trough was noted. Firstly, there have been wide silicic volcanic activities in the Okinawa Trough from late Pleistocene to present, and the volcanic rocks can be divided into three subgroups. Secondly, magma generally came from PREMA source area under the Okinawa Trough. Magmatic evolution in the northern trough was similar to the middle, but different to the south. Finally, volcanic activities indicated that opening of the southern Okinawa Trough did not happen due to the collision between Luson Arc and Eurasian Plate until the early Pleistocene.

  15. Flat plate collector. Solarflachkollektor

    Energy Technology Data Exchange (ETDEWEB)

    Raab, N

    1979-03-29

    The invention refers to a flat solar collector with an absorber plate, which is arranged on a support and is covered by a transparent window, between which and the plate there is an air space. The previously known structures of this type had the disadvantage that the thermal expansion of the enclosed air caused considerable difficulties. The purpose of the invention is therefore to create a collector, which can be used on the modular system, retains its properties and is safe in spite of the great temperature variations. According to the invention this problem is solved by providing a compensating space in the collector, which is separated by a diaphragm from the airspace between the plate and the covering window. The airspace therefore remains sealed against the atmosphere, so that no dirt, corrosion of the inside and no condensation can reduce the efficiency of the collector. A rise in pressure due to an increase in temperature is immediately reduced by expansion of the diaphragm, which enters the compensation space. In order to increase the pressure in the airspace above the plate for increases in temperature, the compensation space is connected to the atmosphere. The diaphragm can be mirrored on the side towards the absorber, which makes the diaphragm into an insulating element, as it reflects radiated heat from the absorber.

  16. Environmental Controls and Eco-geomorphic Interactions of the Barchan-to-parabolic Dune Stabilisation and the Parabolic-to-barchan Dune Reactivation

    Science.gov (United States)

    Yan, Na; Baas, Andreas

    2015-04-01

    Parabolic dunes are one of a few common aeolian landforms which are highly controlled by eco-geomorphic interactions. Parabolic dunes, on the one hand, can be developed from highly mobile dune landforms, barchans for instance, in an ameliorated vegetation condition; or on the other hand, they can be reactivated and transformed back into mobile dunes due to vegetation deterioration. The fundamental mechanisms and eco-geomorphic interactions controlling both dune transformations remain poorly understood. To bridge the gap between complex processes involved in dune transformations on a relatively long temporal scale and real world monitoring records on a very limited temporal scale, this research has extended the DECAL model to incorporate 'dynamic' growth functions and the different 'growth' of perennial shrubs between growing and non-growing seasons, informed by field measurements and remote sensing analysis, to explore environmental controls and eco-geomorphic interactions of both types of dune transformation. A non-dimensional 'dune stabilising index' is proposed to capture the interactions between environmental controls (i.e. the capabilities of vegetation to withstand wind erosion and sand burial, the sandy substratum thickness, the height of the initial dune, and the sand transport potential), and establish the linkage between these controls and the geometry of a stabilising dune. An example demonstrates how to use the power-law relationship between the dune stabilising index and the normalised migration distance to assist in extrapolating the historical trajectories of transforming dunes. The modelling results also show that a slight increase in vegetation cover of an initial parabolic dune can significantly increase the reactivation threshold of climatic impact (both drought stress and wind strength) required to reactivate a stabilising parabolic dune into a barchan. Four eco-geomorphic interaction zones that govern a barchan-to-parabolic dune transformation

  17. Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type

    Science.gov (United States)

    Hashira, Takahiro; Ishida, Sachiko; Yokota, Tomomi

    2018-05-01

    This paper deals with the quasilinear degenerate Keller-Segel systems of parabolic-parabolic type in a ball of RN (N ≥ 2). In the case of non-degenerate diffusion, Cieślak-Stinner [3,4] proved that if q > m + 2/N, where m denotes the intensity of diffusion and q denotes the nonlinearity, then there exist initial data such that the corresponding solution blows up in finite time. As to the case of degenerate diffusion, it is known that a solution blows up if q > m + 2/N (see Ishida-Yokota [13]); however, whether the blow-up time is finite or infinite has been unknown. This paper gives an answer to the unsolved problem. Indeed, the finite-time blow-up of energy solutions is established when q > m + 2/N.

  18. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    Science.gov (United States)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  19. Flux form Semi-Lagrangian methods for parabolic problems

    Directory of Open Access Journals (Sweden)

    Bonaventura Luca

    2016-09-01

    Full Text Available A semi-Lagrangian method for parabolic problems is proposed, that extends previous work by the authors to achieve a fully conservative, flux-form discretization of linear and nonlinear diffusion equations. A basic consistency and stability analysis is proposed. Numerical examples validate the proposed method and display its potential for consistent semi-Lagrangian discretization of advection diffusion and nonlinear parabolic problems.

  20. Foldable Frame Supporting Electromagnetic Radiation Collectors

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to flexible frames supporting electromagnetic radiation collectors, such as antennas, antenna reflectors, deflectors or solar collectors, for celestial or terrestrial applications, which can be folded to be stored and/or transported. The method for stowing deforms...

  1. OUT Success Stories: Transpired Solar Collectors

    International Nuclear Information System (INIS)

    Clyne, R.

    2000-01-01

    Transpired solar collectors are a reliable, low-cost technology for preheating building ventilation air. With simple payback periods ranging from 3 to 12 years and an estimated 30-year life span, transpired collector systems offer building owners substantial cost savings

  2. Efficiency of the Fermilab Electron Cooler's Collector

    CERN Document Server

    Prost, L R

    2005-01-01

    The newly installed high-energy Recycler Electron Cooling system (REC) at Fermilab will work at an electron energy of 4.34 MeV and a DC beam current of 0.5 A in an energy recovery scheme. For reliable operation of the system, the relative beam current loss must be maintained to levels < 3.e-5. Experiments have shown that the loss is determined by the performance of the electron beam collector, which must retain secondary electrons generated by the primary beam hitting its walls. As a part of the Electron cooling project, the efficiency of the collector for the REC was optimized, both with dedicated test bench experiments and on two versions of the cooler prototype. We find that to achieve the required relative current loss, an axially-symmetric collector must be immersed in a transverse magnetic field with certain strength and gradient prescriptions. Collector efficiencies in various magnetic field configurations, including without a transverse field on the collector, are presented and discussed

  3. An improved dynamic test method for solar collectors

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Wang, Zhifeng; Fan, Jianhua

    2012-01-01

    A comprehensive improvement of the mathematical model for the so called transfer function method is presented in this study. This improved transfer function method can estimate the traditional solar collector parameters such as zero loss coefficient and heat loss coefficient. Two new collector...... parameters t and mfCf are obtained. t is a time scale parameter which can indicate the heat transfer ability of the solar collector. mfCf can be used to calculate the fluid volume content in the solar collector or to validate the regression process by comparing it to the physical fluid volume content...... for the second-order differential term with 6–9min as the best averaging time interval. The measured and predicted collector power output of the solar collector are compared during a test of 13days continuously both for the ITF method and the QDT method. The maximum and averaging error is 53.87W/m2 and 5.22W/m2...

  4. Movable air solar collector and its efficiency

    International Nuclear Information System (INIS)

    Lauva, A.; Aboltinš, A.; Palabinskis, J.; Karpova Sadigova, N.

    2008-01-01

    Implementing the guidelines of the Latvian National Programme for Energy in the field of alternative energy, intensive research shall be carried on regarding the use of solar energy, as it can be successfully used not only for the purposes of water heating and production of electrical energy, but also for air warming. The amount of heat necessary for the drying of rough forage and grain drying by active aeration in June, July and August can be obtained using solar radiation. The Latvian Guidelines for the Energy Development 2006-2016 state that the solar radiance in Latvia is of quite low intensity. The total amount of solar energy is 1109 kWh m -2 per year. The period of usage of the solar thermal energy is beginning from the last decade of April, when the intensity of radiation is 120 kWh m -2 , until the first decade of September. Within this period (approximately 1800 hours), it is possible to use the solar thermal energy by placing solar collectors. The usage of solar collectors for in drying of agricultural production is topical from the viewpoint of decreasing the consumption of energy used for the drying, as electrical energy and fossil energy resources become more expensive and tend to run out. In the processes that concern drying of agricultural production, efficiently enough solar radiation energy can be used. Due to this reason researching continues and expands in the field of usage of solar energy for the processes of drying and heating. The efficiency factor of the existing solar collectors is not high, but they are of simple design and cheep for production and exploitation. By improving the design of the solar collectors and choosing modern materials that absorb the solar radiation energy, it is possible the decrease the efficiency factor of solar collectors and decrease the production costs. In the scientific laboratory of grain drying and storage of Latvia University of Agriculture, a pilot device movable folding solar collector pilot device

  5. Thermal analysis of gyrotron traveling-wave tube collector

    International Nuclear Information System (INIS)

    Zheng Zhiqing; Luo Yong; Jiang Wei; Tang Yong

    2013-01-01

    In order to solve cooling problem of the gyrotron traveling-wave tube(TWT) collector and guarantee the gyrotron TWT's reliability and stability, the electron trajectories in the gyrotron TWT are simulated using CST electron simulation software. Thermal analysis of the collector with finite element software ANSYS is performed. The ways of applying boundary that affects the distribution of collector temperature are compared. The influence of the water temperature and flow rate on collector temperature distribution under actual heat fluxes (boundary condition) is researched. The size and number of collector fins are optimized, and a relatively perfect structure is obtained finally. The result estimated by simulation is consistent with the experiment and proves that the model and method employed in this work are suitable. (authors)

  6. Weak Lensing by Galaxy Troughs in DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, D. [Ludwig Maximilian Univ., Munich (Germany); Max Planck Inst. for Extraterrestrial Physics, Garching (Germany). et al.

    2015-09-29

    We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. Furthermore, the prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. Finally, the lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.

  7. Optimal design of orientation of PV/T collector with reflectors

    International Nuclear Information System (INIS)

    Kostic, Lj.T.; Pavlovic, T.M.; Pavlovic, Z.T.

    2010-01-01

    Hybrid conversion of solar radiation implies simultaneous solar radiation conversion into thermal and electrical energy in the PV/Thermal collector. In order to get more thermal and electrical energy, flat solar radiation reflectors have been mounted on PV/T collector. To obtain higher solar radiation intensity on PV/T collector, position of reflectors has been changed and optimal position of reflectors has been determined by both experimental measurements and numerical calculation so as to obtain maximal concentration of solar radiation intensity. The calculated values have been found to be in good agreement with the measured ones, both yielding the optimal position of the flat reflector to be the lowest (5 o ) in December and the highest (38 o ) in June. In this paper, the thermal and electrical efficiency of PV/T collector without reflectors and with reflectors in optimal position have been calculated. Using these results, the total efficiency and energy-saving efficiency of PV/T collector have been determined. Energy-saving efficiency for PV/T collector without reflectors is 60.1%, which is above the conventional solar thermal collector, whereas the energy-saving efficiency for PV/T collector with reflectors in optimal position is 46.7%, which is almost equal to the values for conventional solar thermal collector. Though the energy-saving efficiency of PV/T collector decreases slightly with the solar radiation intensity concentration factor, i.e. the thermal and electrical efficiency of PV/T collector with reflectors are lower than those of PV/T collector without reflectors, the total thermal and electrical energy generated by PV/T collector with reflectors in optimal position are significantly higher than total thermal and electrical energy generated by PV/T collector without reflectors.

  8. Next Generation Solar Collectors for CSP

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Attila [3M Company, St. Paul, MN (United States); Charles, Ruth [3M Company, St. Paul, MN (United States)

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  9. Molecular design of flotation collectors: A recent progress.

    Science.gov (United States)

    Liu, Guangyi; Yang, Xianglin; Zhong, Hong

    2017-08-01

    The nature of froth flotation is to selectively hydrophobize valuable minerals by collector adsorption so that the hydrophobized mineral particles can attach air bubbles. In recent years, the increasing commercial production of refractory complex ores has been urgent to develop special collectors for enhancing flotation separation efficiency of valuable minerals from these ores. Molecular design methods offer an effective way for understanding the structure-property relationship of flotation collectors and developing new ones. The conditional stability constant (CSC), molecular mechanics (MM), quantitative structure-activity relationship (QSAR), and first-principle theory, especially density functional theory (DFT), have been adopted to build the criteria for designing flotation collectors. Azole-thiones, guanidines, acyl thioureas and thionocarbamates, amide-hydroxamates, and double minerophilic-group surfactants such as Gemini, dithiourea and dithionocarbamate molecules have been recently developed as high-performance collectors. To design hydrophobic groups, the hydrophilic-hydrophobic balance parameters have been extensively used as criteria. The replacement of aryl group with aliphatic group or CC single bond(s) with CC double bond(s), reduction of carbon numbers, introduction of oxygen atom(s) and addition of trisiloxane to the tail terminal have been proved to be useful approaches for adjusting the surface activity of collectors. The role of molecular design of collectors in practical flotation applications was also summarized. Based on the critical review, some comments and prospects for further research on molecular design of flotation collectors were also presented in the paper. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Experimental study on a solar air heater with various perforated covers

    Indian Academy of Sciences (India)

    Raheleh Nowzari

    2017-08-08

    Aug 8, 2017 ... ... counter-flow collectors. The average efficiencies of the double-pass solar collector with ...... and thermal performance of a three-dimensional compound parabolic concentrator for spherical absorber. Sadhana—. Acad. Proc.

  11. Integrated Design of Undepressed Collector for Low Power Gyrotron

    Science.gov (United States)

    Kumar, Anil; Goswami, Uttam K.; Poonia, Sunita; Singh, Udaybir; Kumar, Nitin; Alaria, M. K.; Bera, A.; Khatun, Hasina; Sinha, A. K.

    2011-06-01

    A 42 GHz, 200 kW continuous wave (CW) gyrotron, operating at TE03 mode is under development for the electron cyclotron resonance plasma heating of the Indian TOKAMAK system. The gyrotron is made up of an undepressed collector. The undepressed collector is simple to design and cost effective. In this paper, a detailed design study of the undepressed collector for the 42 GHz gyrotron is presented. The EGUN code is used to analyze the spent electron beam trajectory for the maximum spread to reduce the power loading on the collector surface. To achieve wall loading ≤1 kW/cm2, a collector with a length of 800 mm and a radius of 42.5 mm is designed. The design also includes the three magnet systems around the collector for maximum and uniform beam spread. The thermal and the structural analyses are done using the ANSYS code to optimize the collector structure and dimensions with tolerance.

  12. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system

    International Nuclear Information System (INIS)

    Bai, Zhang; Liu, Qibin; Lei, Jing; Wang, Xiaohe; Sun, Jie; Jin, Hongguang

    2017-01-01

    Highlights: • A solar-biomass hybrid power system with zero carbon dioxide emission is proposed. • The internal mechanisms of the solar-biomass utilization are discussed. • The on-design and off-design properties of the system are numerically investigated. • The configurations of the proposed system are optimized. - Abstract: A solar-biomass hybrid power generation system, which integrates a solar thermal energy collection subsystem, a biomass steam boiler and a steam turbine power generation block, is developed for efficiently utilizing renewable energies. The solar thermal energy is concentrated by parabolic trough collectors and is used to heat the feed-water to the superheated steam of 371 °C, then the generated solar steam is further heated to a higher temperature level of 540 °C via a second-stage heating process in a biomass boiler, the system power generation capacity is about 50 MW. The hybrid process of the solar energy and biomass contributes to ameliorating the system thermodynamic performances and reducing of the exergy loss within the steam generation process. The off-design evaluation results indicate that the annual net solar-to-electric efficiency of the hybrid power system is improved to 18.13%, which is higher than that of the typical parabolic trough solar power system as 15.79%. The levelized cost of energy drops to 0.077 $/(kW h) from 0.192 $/(kW h). The annual biomass consumption rate is reduced by 22.53% in comparison with typical biomass power systems. The research findings provide a promising approach for the efficient utilization of the abundant renewable energies resources and the reduction of carbon dioxide emission.

  13. The Shenandoah concentrator

    Science.gov (United States)

    Poche, A. J.

    1980-01-01

    A 7 meter diameter, parabolic dish solar collector was designed and developed for first application at Shenandoah, Georgia. Key features and requirements for the collector are outlined. Performance test results for collector testing at Sandia Laboratories in Albuquerque are summarized. The key features, requirements and performance of the solar collector subassemblies/subsystems are discussed: mount and drives, reflector, receiver, and collector control unit. Problems experienced during collector testing in Albuquerque are identified and solutions described.

  14. Efficiency improvement of flat plate solar collector using reflector

    Directory of Open Access Journals (Sweden)

    Himangshu Bhowmik

    2017-11-01

    Full Text Available Solar collectors are the main components of a solar heating system. The collectors collect the sun’s energy, transform this radiation into heat, and then transfer this heat into a fluid, water or air, which has many household or industrial applications. This paper introduces a new technology to improve the performance of the solar thermal collectors. The solar reflector used here with the solar collector to increase the reflectivity of the collector. Thus, the reflector concentrates both direct and diffuse radiation of the sun toward the collector. To maximize the intensity of incident radiation, the reflector was allowed to change its angle with daytime. The radiations coming from the sun’s energy were converted into heat, and then this heat was transferred to the collector fluid, water. A prototype of a solar water heating system was constructed and obtained the improvement of the collector efficiency around 10% by using the reflector. Thus, the present solar water heating systems having the best thermal performance compared to the available systems.

  15. Photoionization cross section in a spherical quantum dot: Effects of some parabolic confining electric potentials

    Directory of Open Access Journals (Sweden)

    M. Tshipa

    2017-12-01

    Full Text Available A theoretical investigation of the effects of spatial variation of confining electric potential on photoionization cross section (PCS in a spherical quantum dot is presented. The potential profiles considered here are the shifted parabolic potential and the inverse lateral shifted parabolic potential compared with the well-studied parabolic potential. The primary findings are that parabolic potential and the inverse lateral shifted parabolic potential blue shift the peaks of the PCS while the shifted parabolic potential causes a red shift.

  16. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  17. Hermitian-Einstein metrics on parabolic stable bundles

    International Nuclear Information System (INIS)

    Li Jiayu; Narasimhan, M.S.

    1995-12-01

    Let M-bar be a compact complex manifold of complex dimension two with a smooth Kaehler metric and D a smooth divisor on M-bar. If E is a rank 2 holomorphic vector bundle on M-bar with a stable parabolic structure along D, we prove the existence of a metric on E' = E module MbarD (compatible with the parabolic structure) which is Hermitian-Einstein with respect to the restriction of Kaehler metric of M-barD. A converse is also proved. (author). 24 refs

  18. Direct-heating solar-collector dump valve

    Science.gov (United States)

    Howikman, T. C.

    1977-01-01

    Five-port ganged valve isolates collector from primary load system pressure and drains collectors, allowing use of direct heating with all its advantages. Valve is opened and closed by same switch that controls pump or by temperature sensor set at O C, while providing direct dump option.

  19. Flat-plate solar collector - installation package

    Science.gov (United States)

    1978-01-01

    Package includes installation, operation and maintenance manual for collector, analysis of safety hazards, special handling instructions, materials list, installation drawings, and warranty and certification statement. Manual includes instructions for roof preparation and for preparing collector for installation. Several pages are devoted to major and minor repairs.

  20. Paleocene Pacific Plate reorganization mirrored in formation of the Suvarov Trough, Manihiki Plateau

    Science.gov (United States)

    Pietsch, Ricarda; Uenzelmann-Neben, Gabriele

    2016-10-01

    The Suvarov Trough is a graben structure that deviates from the Danger Islands Troughs within the Manihiki Plateau, a Large Igneous Province (LIP) located in the Central Pacific. New high-resolution seismic reflection data provide evidence that the graben formed in two phases during the Paleocene (65-45 Ma). In a first phase extension occurred in southwestward direction, pulling apart the northern part of the Suvarov Trough and a parallel trending unnamed trough. In a second phase a change of extensional force direction occurred from southwest to west-northwest, forming the southern part of the Suvarov Trough that extends onto the High Plateau. The formation of the Suvarov Trough is accompanied by a series of normal fault systems that apparently formed simultaneously. Comparing the seismic results to existing Pacific paleo strain reconstructions, the timing of increased strain and local deformation direction fits well to our findings. We thus suggest that the multiple strike directions of the Suvarov Trough represent an extensional structure that was caused by the major, stepwise Pacific Plate reorganization during the Paleocene.

  1. Linear and quasi-linear equations of parabolic type

    CERN Document Server

    Ladyženskaja, O A; Ural′ceva, N N; Uralceva, N N

    1968-01-01

    Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.

  2. Efficiencies of flat plate solar collectors at different flow rates

    DEFF Research Database (Denmark)

    Chen, Ziqian; Furbo, Simon; Perers, Bengt

    2012-01-01

    Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rate are obtained. The calculated efficiencies are in good agreement...

  3. Modeling of solar polygeneration plant

    Science.gov (United States)

    Leiva, Roberto; Escobar, Rodrigo; Cardemil, José

    2017-06-01

    In this work, a exergoeconomic analysis of the joint production of electricity, fresh water, cooling and process heat for a simulated concentrated solar power (CSP) based on parabolic trough collector (PTC) with thermal energy storage (TES) and backup energy system (BS), a multi-effect distillation (MED) module, a refrigeration absorption module, and process heat module is carried out. Polygeneration plant is simulated in northern Chile in Crucero with a yearly total DNI of 3,389 kWh/m2/year. The methodology includes designing and modeling a polygeneration plant and applying exergoeconomic evaluations and calculating levelized cost. Solar polygeneration plant is simulated hourly, in a typical meteorological year, for different solar multiple and hour of storage. This study reveals that the total exergy cost rate of products (sum of exergy cost rate of electricity, water, cooling and heat process) is an alternative method to optimize a solar polygeneration plant.

  4. Quantitative measurement of 222Rn in water by the activated charcoal passive collector method: 1. The effect of water in a collector

    International Nuclear Information System (INIS)

    Yoneda, Minoru; Inoue, Yoriteru; Yoshimoto, Keizo

    1994-01-01

    The activated charcoal passive collector method can be applied to measure the concentration of 222 Rn in river water. The 222 Rn collector is composed of dry activated charcoal sealed in a polyethylene bag. However, we found it very difficult to keep activated charcoal in a collector dry during the period the collector was left in a river. The degree of dampness and the time lapsed when activated charcoal became wet were thought to affect the quantity of 222 Rn collected. First, we studied the effect of some parameters in the activated charcoal passive collector method qualitatively in three experiments. We found that the quantity of 222 Rn collected in a collector was not so sensitive to the quantity of activated charcoal in the collector or the thickness of polyethylene film under the condition of wet activated charcoal, and that wet activated charcoal accumulated less 222 Rn than dry activated charcoal. We present some equations which could explain how much 222 Rn was collected in a collector when activated charcoal was submerged directly in water and when activated charcoal was packed in a polyethylene bag but completely wet. These equations were proved effective by being compared with the results of the other experiments. Finally, we recommended some conditions which proved useful when measuring at an actual river

  5. Dust collector

    Energy Technology Data Exchange (ETDEWEB)

    Sahourin, H.

    1988-03-22

    This invention relates to a dust collector or filter which may be used for large volume cleaning air for gases or for separating out industrial byproducts such as wood chips, sawdust, and shavings. It relies on filtration or separation using only a uniquely configured medium. A primary, but not exclusive, purpose of the invention is to enable very large throughput, capable of separating or filtering of gases containing up to three or more tons of byproduct with a minimum pressure-drop across the device. No preliminary cycloning, to remove major particulates is necessary. The collector generally comprises a continuous and integral filter medium which is suspended from a plurality of downwardly extending frames forming a series of separate elements having a triangular cross-section, each element being relatively wide at the top and narrow at the bottom to define, between adjacent elements, a divergent collecting space which is wide at the bottom. 11 figs.

  6. Patient-reported non-adherence and immunosuppressant trough levels are associated with rejection after renal transplantation.

    Science.gov (United States)

    Scheel, Jennifer; Reber, Sandra; Stoessel, Lisa; Waldmann, Elisabeth; Jank, Sabine; Eckardt, Kai-Uwe; Grundmann, Franziska; Vitinius, Frank; de Zwaan, Martina; Bertram, Anna; Erim, Yesim

    2017-03-29

    Different measures of non-adherence to immunosuppressant (IS) medication have been found to be associated with rejection episodes after successful transplantation. The aim of the current study was to investigate whether graft rejection after renal transplantation is associated with patient-reported IS medication non-adherence and IS trough level variables (IS trough level variability and percentage of sub-therapeutic IS trough levels). Patient-reported non-adherence, IS trough level variability, percentage of sub-therapeutic IS trough levels, and acute biopsy-proven late allograft rejections were assessed in 267 adult renal transplant recipients who were ≥12 months post-transplantation. The rate of rejection was 13.5%. IS trough level variability, percentage of sub-therapeutic IS trough levels as well as patient-reported non-adherence were all significantly and positively associated with rejection, but not with each other. Logistic regression analyses revealed that only the percentage of sub-therapeutic IS trough levels and age at transplantation remained significantly associated with rejection. Particularly, the percentage of sub-therapeutic IS trough levels is associated with acute rejections after kidney transplantation whereas IS trough level variability and patient-reported non-adherence seem to be of subordinate importance. Patient-reported non-adherence and IS trough level variables were not correlated; thus, non-adherence should always be measured in a multi-methodological approach. Further research concerning the best combination of non-adherence measures is needed.

  7. Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations

    DEFF Research Database (Denmark)

    Sørensen, Dan Erik Krarup

    1996-01-01

    We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...

  8. Seasonal variation and solar activity dependence of the quiet-time ionospheric trough

    Science.gov (United States)

    Ishida, T.; Ogawa, Y.; Kadokura, A.; Hiraki, Y.; Häggström, I.

    2014-08-01

    We have conducted a statistical analysis of the ionospheric F region trough, focusing on its seasonal variation and solar activity dependence under geomagnetically quiet and moderate conditions, using plasma parameter data obtained via Common Program 3 observations performed by the European Incoherent Scatter (EISCAT) radar between 1982 and 2011. We have confirmed that there is a major difference in frictional heating between the high- and low-latitude sides of the EISCAT field of view (FOV) at ~73°0'N-60°5'N (geomagnetic latitude) at an altitude of 325 km, which is associated with trough formation. Our statistical results show that the high-latitude and midlatitude troughs occur on the high- and low-latitude sides of the FOV, respectively. Seasonal variations indicate that dissociative recombination accompanied by frictional heating is a main cause of trough formation in sunlit regions. During summer, therefore, the occurrence rate is maintained at 80-90% in the postmidnight high-latitude region owing to frictional heating by eastward return flow. Solar activity dependence on trough formation indicates that field-aligned currents modulate the occurrence rate of the trough during the winter and equinox seasons. In addition, the trough becomes deeper via dissociative recombination caused by an increased ion temperature with F10.7, at least in the equinox and summer seasons but not in winter.

  9. Performance of non-conventional solar collectors in local market of Nawabshah

    International Nuclear Information System (INIS)

    Memon, M.; Tanwani, N.K.; Memon, A.H.

    1998-01-01

    This paper presents experimental studies concerning the performance of solar collectors using sand-bed as absorbing surface and a collector. These collectors were designed, manufactured locally and tested in meteorological conditions of Nawabshah, Sindh, Pakistan. The ordinary tap water was used as working fluid and tests were carried out in open space during day time. The effect of collector area and tubing diameter on collector performance was investigated. For each test run ambient, inlet and outlet water temperature together with flow rate of collector fluid was recorded. Two collectors connected in series showed an increase of about 20 deg. C in outlet temperature of water. Thus an average increase of 15 deg. C in the temperature was observed for each collector. The temperature was raised to 90 deg. C using the concentrator in combination with the two non-conventional flat collectors. (author)

  10. Performance of solar collectors under low temperature conditions

    DEFF Research Database (Denmark)

    Bunea, Mircea; Eicher, Sara; Hildbrand, Catherine

    The performance of four solar thermal collectors (flat plate, evacuated tube, unglazed with rear insulation and unglazed without rear insulation) was experimentally measured and simulated for temperatures below ambient. The influence of several parameters (e.g. collector inlet temperature, air...... evaluated and results compared to experimental measurements. A mathematical model is also under development to include, in addition to the condensation phenomena, the frost, the rain and the long-wave radiation gains/losses on the rear of the solar collector. While the potential gain from rain was estimated...... to be around 2%, frost heat gains were measured to be up to 40% per day, under specific conditions. Overall, results have shown that unglazed collectors are more efficient than flat plate or evacuated tube collectors at low operation temperatures or for night conditions, making them more suitable for heat pump...

  11. Arrangement, manufacturing process and use of solar heat collectors

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, H W

    1978-03-30

    Solar collectors generally have a timber or metal frame where the transparent front cover, usually of glass, is replaceable. In order to prevent great deformation, such a frame must be relatively stable and of heavy construction, which may lead to difficulties in mounting the collector on the roofs or front walls of houses. The present invention proposes a light but nevertheless rigid collector frame, which consists of plastic material and is constructed so that the installation and replacement of collectors can be realized. Further, collectors are proposed which guarantee a minimum of reflection and are so designed that an optimum architectural effect is produced.

  12. Cheap effective thermal solar-energy collectors

    Energy Technology Data Exchange (ETDEWEB)

    Highgate, D.J.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). Dept. of Applied Energy

    1996-04-01

    A light-weight flexible solar-collector, with a wavelength-selective absorption surface and an insolation-transparent thermal-insulation protecter for its aperture, was built and tested. Its cheapness and high performance, relative to a conventional flat-plate solar-collector, provide a prima-facie case for the more widespread adoption of its design. (author)

  13. Probabilistic tsunami hazard assessment considering time-lag of seismic event on Nankai trough

    International Nuclear Information System (INIS)

    Sugino, Hideharu; Sakagami, Masaharu; Ebisawa, Katsumi; Korenaga, Mariko

    2011-01-01

    In the area in front of Nankai trough, tsunami wave height may increase if tsunamis attacking from some wave sources overlap because of time-lag of seismic event on Nankai trough. To evaluation tsunami risk of the important facilities located in front of Nankai trough, we proposed the probabilistic tsunami hazard assessment considering uncertainty on time-lag of seismic event on Nankai trough and we evaluated the influence that the time-lag gave to tsunami hazard at the some representative points. (author)

  14. INVESTIGATION OF PROPERTIES OF CURRENT COLLECTOR ELEMENTS AND THEIR EFFECT ON THE PERFORMANCE OF TRIBOSYSTEM «CONTACT WIRE - CURRENT COLLECTOR ELEMENT»

    Directory of Open Access Journals (Sweden)

    Yu. L. Bolshakov

    2015-11-01

    Full Text Available Purpose. The paper is devoted to the detailed analysis of interrelations at the contact point of friction pair «contact wire – current collector insert». In the work it is necessary: 1 to examine quality of manufacturing of specimens of current collector elements from different manufacturers; 2 to narrow the range of hardness for carbon inserts; 3 to develop a technique of sorting carbon current collector inserts for the structural parameters. Methodology. The executed work was based on the use of the theory of reliability of technical systems and electromechanical processes. Findings. The paper studies the interrelation at the contact point of friction pair «contact wire – current col lector insert», the connection was established between the hardness and electrical resistivity. It is proposed to narrow the range of carbon inserts hardness. The method of sorting coal collector inserts in hardness was developed, and the research has revealed the discrepancy of current collector inserts with existing regulations. It was proposed to equip the pantographs slide with current collector elements using special scheme and to develop a specialized research facility, which will be possible to conduct studies of the interaction of the friction pair «contact wire – current collector insert». Originality. In the course of the study the current collector inserts the sharp structural heterogeneity and fluctuations of the density of the material along the length of the insert were established. The dependence between hardness of inserts and electrical resistivity was established. It was analyzed and concluded about the need to reduce the values of the normal range of hardness. Based on the results of the research, the experimental dependences were obtained and proposed the method for sorting carbon current collector inserts for the structural parameters. Practical value. The obtained results of coal current collector inserts define the need to use

  15. Numerical performance of the parabolized ADM (PADM) formulation of General Relativity

    OpenAIRE

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2007-01-01

    In a recent paper the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a mixed hyperbolic - second-order parabolic, well-posed system. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation...

  16. Estimating the potential for solar thermal applications in the industrial process heat market 1990-2030

    International Nuclear Information System (INIS)

    Demeter, C.P.; Gray, E.E.; Carwile, C.

    1991-01-01

    This paper reports the results of a preliminary evaluation of the potential domestic market for solar thermal energy supply technologies matched to industrial process heat applications. The study estimates current and projects future industrial process heat demand to the year 2030 by two-digit standard industrial classification code for the manufacturing industrial sector and discusses the potential to displace conventional fossil fuel sources such as natural gas with alternative sources of supply. The PC Industrial Model, used by DOE's Energy Information Administration in support of the National Energy Strategy (NES) is used for forecast industrial energy demand. Demand is disaggregated by census region to account for geographic variations in solar insolation, and by heat medium and temperature to facilitate end-use matching with appropriate solar energy supply technologies. Levelized energy costs (LEC) are calculated for flat plate collectors for low- temperature preheat applications, parabolic troughs for intermediate temperature process steam and direct heat, and parabolic dish technologies for high-temperature, direct heat applications. LEC is also developed for a conventional natural gas-fueled Industrial Process Heat (IPH) supply source assuming natural gas price escalation consistent with NES forecasts to develop a relative figure of merit used in a market penetration model

  17. Main ionospheric trough in the daytime sector studied on the basis of vertical sounding data

    Energy Technology Data Exchange (ETDEWEB)

    Benkova, N.P.; Kozlov, E.F.; Mozhaev, A.M.; Osipov, N.K.; Samorokin, N.I.

    1980-09-01

    Data for 1969-1973 are used to study the displacement of the main ionospheric trough during daytime magnetic storms. The depth of the trough and electron density gradients on the sides of the trough are determined. The trough is found to move in a southeasterly direction during daytime storms. The results agree with theoretical conclusions that explain the formation of the trough by the collective transport of ionospheric plasma in a sunward direction.

  18. Engineering design of 500KW CW collector

    International Nuclear Information System (INIS)

    Kumar, Ramesh; Mishra, Deepak; Prasad, M.; Hannuarakar, P.R.

    2006-01-01

    An electron beam collector for 500kW beam power has been designed to test the electron gun. The gun is designed for 250kW, 350MHz CW Klystron with 50% efficiency. This will also help in preliminary studies related to final collector design for Klystron. This paper presents the design parameters, thermal analysis and mechanical features of the design. Electron trajectory on inside wall of the collector is determined with EGUN and computational flow dynamics simulation was done on ANSYS for cooling requirements. (author)

  19. A tool for standardized collector performance calculations including PVT

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus

    2012-01-01

    A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations...... can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations....

  20. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL ABSORBER STRIPS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... collector fluid, and by increased collector tilt and inlet temperature, the flow distribution gets worse resulting in a decreased collector efficiency and an increased risk of boiling in the upper part of the collector panel. Keywords: Solar collector; Flow distribution; Computational Fluid Dynamics (CFD...

  1. Heat Pumps With Direct Expansion Solar Collectors

    Science.gov (United States)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  2. Determination of source terms in a degenerate parabolic equation

    International Nuclear Information System (INIS)

    Cannarsa, P; Tort, J; Yamamoto, M

    2010-01-01

    In this paper, we prove Lipschitz stability results for inverse source problems relative to parabolic equations. We use the method introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates. What is new here is that we study a class of one-dimensional degenerate parabolic equations. In our model, the diffusion coefficient vanishes at one extreme point of the domain. Instead of the classical Carleman estimates obtained by Fursikov and Imanuvilov for non degenerate equations, we use and extend some recent Carleman estimates for degenerate equations obtained by Cannarsa, Martinez and Vancostenoble. Finally, we obtain Lipschitz stability results in inverse source problems for our class of degenerate parabolic equations both in the case of a boundary observation and in the case of a locally distributed observation

  3. Interaction Potential between Parabolic Rotator and an Outside Particle

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-01-01

    Full Text Available At micro/nanoscale, the interaction potential between parabolic rotator and a particle located outside the rotator is studied on the basis of the negative exponential pair potential 1/Rn between particles. Similar to two-dimensional curved surfaces, we confirm that the potential of the three-dimensional parabolic rotator and outside particle can also be expressed as a unified form of curvatures; that is, it can be written as the function of curvatures. Furthermore, we verify that the driving forces acting on the particle may be induced by the highly curved micro/nano-parabolic rotator. Curvatures and the gradient of curvatures are the essential elements forming the driving forces. Through the idealized numerical experiments, the accuracy of the curvature-based potential is preliminarily proved.

  4. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    OpenAIRE

    M. Norhafana; Ahmad Faris Ismail; Z. A. A. Majid

    2015-01-01

    Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of...

  5. Two-axis movable concentrating solar energy collector

    Science.gov (United States)

    Perkins, G. S.

    1977-01-01

    Proposed solar-tracker collector assembly with boiler in fixed position, allows use of hard line connections, capable of withstanding optimum high temperature fluid flow. System thereby eliminates need for flexible or slip connection previously used with solar collector systems.

  6. Installation package for concentrating solar collector panels

    Science.gov (United States)

    1978-01-01

    The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.

  7. Advances in design of air-heating collectors

    CSIR Research Space (South Africa)

    Johannsen, A

    1982-11-01

    Full Text Available Principles of the operation of air-heating collectors are discussed. The fundamental differences between the design principles of air-heating as opposed to water-heating collectors are highlighted. The main requirement is the transfer of heat from...

  8. Selective flotation of phosphate minerals with hydroxamate collectors

    Science.gov (United States)

    Miller, Jan D.; Wang, Xuming; Li, Minhua

    2002-01-01

    A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

  9. Analysis of a solar collector field water flow network

    Science.gov (United States)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  10. Nanofocusing parabolic refractive x-ray lenses

    International Nuclear Information System (INIS)

    Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Frehse, F.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A.S.; Snigirev, A.; Snigireva, I.; Schug, C.; Schroeder, W.H.

    2003-01-01

    Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100 nm range even at a short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 380 nm by 210 nm at 25 keV in a distance of 42 m from the synchrotron radiation source. Using diamond as the lens material, microbeams with a lateral size down to 20 nm and below are conceivable in the energy range from 10 to 100 keV

  11. Flat solar collector an approach to its evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sonino, T [Israel Atomic Energy Commission, Yavne. Soreq Nuclear Research Center

    1977-01-01

    The flat solar collector is the most widely used device for the utilization of solar energy, but its energetic and economic values are still debated. A preliminary energy and economic analysis is presented. The energy analysis indicates that the energy needed to produce one solar collector is equivalent to the electricity consumed by an electric water heater in roughly three months. The economic analysis indicates that the pay-back time for a solar collector varies from 5.5 to 7.7 yr. according to the discount rate. The economic analysis from a national point of view indicates that the use of solar collectors for domestic purposes could only reduce electricity consumption in Israel by 10%.

  12. Performance of jet impingement in unglazed air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Belusko, M.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia)

    2008-05-15

    Jet impingement is effective at improving the heat transfer between air and a heated surface. Studies have shown that jet impingement can marginally improve the thermal efficiency of a glazed collector. However, little attention has been placed on applying jet impingement to an unglazed solar air collector. This paper presents a theoretical and experimental investigation identifying the performance characteristics of jet impingement. Overall, jet impingement was able to improve the thermal efficiency of the collector by 21%. An increase in the pressure loss was also measured but found to be small. The flow distribution of jets along the collector was the most significant factor in determining the efficiency. Increasing the hole spacing was found to improve the efficiency. (author)

  13. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  14. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Ratha Z. Mathkor

    2015-08-01

    Full Text Available This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC, an organic Rankine cycle (ORC, single-effect desalination (SED, and single effect LiBr-H2O absorption chiller (ACH was electrical power, distilled water, and refrigerant load. The electrical power was produced by the ORC which used cyclopentane as working fluid and Therminol VP-1 was specified as the heat transfer oil (HTO in the collectors with thermal storage. The absorption chiller and the desalination unit were utilize the waste heat exiting from the steam turbine in the ORC to provide the necessary cooling energy and drinking water respectively. The modelling, which includes an exergetic analysis, focuses on the performance of the solar tri-generation system. The simulation results of the tri-generation system and its subsystems were produced using IPSEpro software and were validated against experimental data which showed good agreement. The tri-generation system was able to produce about 194 Ton of refrigeration, and 234 t/day distilled water.

  15. Computer aided FEA simulation of EN45A parabolic leaf spring

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2013-04-01

    Full Text Available This paper describes computer aided finite element analysis of parabolic leaf spring. The present work is an improvement in design of EN45A parabolic leaf spring used by a light commercial automotive vehicle. Development of a leaf spring is a long process which requires lots of test to validate the design and manufacturing variables. A three-layer parabolic leaf spring of EN45A has been taken for this work. The thickness of leaves varies from center to the outer side following a parabolic pattern. These leaf springs are designed to become lighter, but also provide a much improved ride to the vehicle through a reduction on interleaf friction. The CAD modeling of parabolic leaf spring has been done in CATIA V5 and for analysis the model is imported in ANSYS-11 workbench. The finite element analysis (FEA of the leaf spring has been carried out by initially discretizing the model into finite number of elements and nodes and then applying the necessary boundary conditions. Maximum displacement, directional displacement, equivalent stress and weight of the assembly are the output targets of this analysis for comparison & validation of the work.

  16. Daily efficiency of flat-plate solar air collectors for grain drying

    Energy Technology Data Exchange (ETDEWEB)

    Ting, K.C.; Shove, G.C.

    1983-01-01

    Single cover flat-plate solar collectors incorporated into walls and roofs of farm buildings have been used to heat ambient air for low temperature grain drying systems. Large surface area and high airflow rate are common features of these collectors. The drying period may range from several days to several weeks. Therefore, a knowledge of the variations of the collectors' daily efficiencies with respect to their design parameters would be helpful in applying solar collectors to grain drying. The objective of this study was to develop a simpler means of direct calculation of a collector's daily efficiency based on its design parameters. Many factors, such as configuration of the collector, airflow rate, weather conditions, etc. will affect the performance of solar collectors. A large number of varied conditions need to be tested in order to investigate the effect of different parameters on the collector performance. To facilitate this investigation, a computer simulation model developed by Ting was used to calculate the daily efficiencies of collectors under different operating conditions. The computer model was verified by Morrison's experimental data. Based on the simulation results, a functional relationship was developed between the daily efficiencies of collectors and their design parameters.

  17. Concurrent immunomodulator therapy is associated with higher adalimumab trough levels during scheduled maintenance therapy.

    Science.gov (United States)

    Bond, Ashley; Dodd, Susanna; Fisher, Gareth; Skouras, Thomas; Subramanian, Sreedhar

    2017-02-01

    Combination therapy with infliximab and immunomodulators is superior to monotherapy, resulting in better outcomes and higher trough levels of infliximab. The role of concurrent immunomodulatory therapy on adalimumab trough levels has not been adequately investigated. We evaluated the impact of concomitant immunomodulation on adalimumab trough levels in patients on scheduled maintenance therapy. We conducted a prospective observational, cross-sectional study of all inflammatory bowel disease patients on maintenance therapy who had adalimumab trough levels measured between January 2013 and January 2016. Drug level and anti-drug antibody measurements were performed on sera using a solid phase assay. Pairwise comparison of means was used to compare trough levels in patients with and without concomitant immune modulator therapy. In total, 79 patients were included. Twenty-three patients (29.1%) were on weekly dosing whereas 56 (70.9%) were on alternate weeks. Median adalimumab trough levels were comparable in patients with and without clinical remission (6.8 μg/ml (IQR 5.6-8.1) versus 6.7 μg/ml (IQR 3.9-8.1), respectively. Patients with an elevated faecal calprotectin >250 μg/g had lower adalimumab trough levels (median 6.7, IQR 3.9-8) compared to patients with faecal calprotectin <250 μg/g (median 7.7, IQR 6.1-8.1) though this did not achieve statistical significance (p = .062). Median adalimumab trough levels among patients on concurrent immunomodulators was 7.2 μg/ml (IQR 5.7-8.1) compared to those not on concurrent immunomodulator, 6.1 μg/ml (IQR 2.7-7.7, p = .0297). Adalimumab trough levels were significantly higher in patients on concurrent immunomodulators during maintenance therapy. There was a trend towards a lower adalimumab trough level in patients with elevated calprotectin.

  18. Well-posedness of nonlocal parabolic differential problems with dependent operators.

    Science.gov (United States)

    Ashyralyev, Allaberen; Hanalyev, Asker

    2014-01-01

    The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.

  19. Dual curvature acoustically damped concentrating collector. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.A.; Rausch, R.A.

    1980-05-01

    A development program was conducted to investigate the design and performance parameters of a novel, dual curvature, concentrating solar collector. The reflector of the solar collector is achieved with a stretched-film reflective surface that approximates a hyperbolic paraboloid and is capable of line-focusing at concentration ratios ranging from 10 to 20X. A prototype collector was designed based on analytical and experimental component trade-off activities as well as economic analyses of solar thermal heating and cooling systems incorporating this type of collector. A prototype collector incorporating six 0.66 x 1.22 m (2 x 4 ft) was fabricated and subjected to a limited thermal efficiency test program. A peak efficiency of 36% at 121/sup 0/C (250/sup 0/F) was achieved based upon the gross aperture area. Commercialization activities were conducted, including estimated production costs of $134.44/m/sup 2/ ($12.49/ft/sup 2/) for the collector assembly (including a local suntracker and controls) and $24.33/m/sup 2/ ($2.26/ft/sup 2/) for the reflector subassembly.

  20. Coercive properties of elliptic-parabolic operator

    International Nuclear Information System (INIS)

    Duong Min Duc.

    1987-06-01

    Using a generalized Poincare inequality, we study the coercive properties of a class of elliptic-parabolic partial differential equations, which contains many degenerate elliptic equations considered by the other authors. (author). 16 refs

  1. Simulation of HPIB propagation in biased charge collector

    International Nuclear Information System (INIS)

    Li Hongyu; Qiu Aici

    2004-01-01

    A 2.5D PIC simulation using KARAT code for inner charge propagation within biased charge collector for measuring HPIB is presented. The simulation results indicate that the charges were neutralized but the current non-neutralized in the biased charge collector. The influence of ions collected vs biased voltage of the collector was also simulated. -800 V biased voltage can meet the measurement of 500 keV HPIB, and this is consistent with the experimental results

  2. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough

    Science.gov (United States)

    Zhang, Xia; Zhai, Shikui; Yu, Zenghui; Wang, Shujie; Cai, Zongwei

    2018-04-01

    The study of hydrothermal deposits in the Okinawa Trough can help us to uncover the hydrothermal mineralization characteristics in the back-arc basin during the early expanding stage. Mineralogy and geological significance of hydrothermal deposits from both the middle and southern trough are studied in this paper. First of all, using optical microscope to confirm the mineral compositions, characteristics of crystal shape, paragenetic relationship and minerals crystallization order. Then the minerals chemical composition were analyzed in virtue of electron microprobe. On these basis, the paragenetic sequence and the mineralization characteristics of the hydrothermal deposits were discussed. The results show that the hydrothermal deposit from the mid-Okinawa Trough belongs to Zn-Cu-rich type, consisting dominantly of sulfide minerals such as sphalerite, chalcopyrite, pyrite, etc. The minerals crystallization order is first generation pyrite(PyI)-sphalerite-chalcopyrite-galena-second generation pyrite(PyII)-amorphous silica. While the deposit from the southern Okinawa Trough is Ba-Zn-Pb-rich type mainly composing of barite, sphalerite, galena, etc. The minerals crystallization order is barite-pyrite-sphalerite-tetrahedrite-galena-chalcopyrite-amorphous silica. Hydrothermal fluid temperature in the mid-Okinawa Trough undergoes a process from high to low, which is high up to 350 °C in the early stage, but decreasing gradually with the evolution of hydrothermal fluid. On the contrary, the hydrothermal activity in the southern Okinawa Trough is low temperature dominated, but the mineralization environment is unstable and the fluid temperature changes drastically during the period of hydrothermal activity.

  3. Performance analysis of photovoltaic thermal (PVT) water collectors

    International Nuclear Information System (INIS)

    Fudholi, Ahmad; Sopian, Kamaruzzaman; Yazdi, Mohammad H.; Ruslan, Mohd Hafidz; Ibrahim, Adnan; Kazem, Hussein A.

    2014-01-01

    Highlights: • Performances analysis of PVT collector based on energy efficiencies. • New absorber designs of PVT collectors were presented. • Comparison present study with other absorber collector designs was presented. • High efficiencies were obtained for spiral flow absorber. - Abstract: The electrical and thermal performances of photovoltaic thermal (PVT) water collectors were determined under 500–800 W/m 2 solar radiation levels. At each solar radiation level, mass flow rates ranging from 0.011 kg/s to 0.041 kg/s were introduced. The PVT collectors were tested with respect to PV efficiency, thermal efficiency, and a combination of both (PVT efficiency). The results show that the spiral flow absorber exhibited the highest performance at a solar radiation level of 800 W/m 2 and mass flow rate of 0.041 kg/s. This absorber produced a PVT efficiency of 68.4%, a PV efficiency of 13.8%, and a thermal efficiency of 54.6%. It also produced a primary-energy saving efficiency ranging from 79% to 91% at a mass flow rate of 0.011–0.041 kg/s

  4. Integrated collector storage solar water heater: Temperature stratification

    International Nuclear Information System (INIS)

    Garnier, C.; Currie, J.; Muneer, T.

    2009-01-01

    An analysis of the temperature stratification inside an Integrated Collector Storage Solar Water Heater (ICS-SWH) was carried out. The system takes the form of a rectangular-shaped box incorporating the solar collector and storage tank into a single unit and was optimised for simulation in Scottish weather conditions. A 3-month experimental study on the ICS-SWH was undertaken in order to provide empirical data for comparison with the computed results. Using a previously developed macro model; a number of improvements were made. The initial macro model was able to generate corresponding water bulk temperature in the collector with a given hourly incident solar radiation, ambient temperature and inlet water temperature and therefore able to predict ICS-SWH performance. The new model was able to compute the bulk water temperature variation in different SWH collectors for a given aspect ratio and the water temperature along the height of the collector (temperature stratification). Computed longitudinal temperature stratification results obtained were found to be in close agreement with the experimental data.

  5. Colored solar collectors - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J.-L.

    2007-12-15

    The architectural integration of thermal solar collectors into buildings is often limited by their black color, and the visibility of tubes and corrugations of the absorber sheets. A certain freedom in color choice would be desirable, but the colored appearance should not cause an excessive degradation of the collector efficiency. Multilayered thin film interference filters on the collector glazing can produce a colored reflection, hiding the corrugated metal sheet, while transmitting the non-reflected radiation entirely to the absorber. These interference filters are designed and optimized by numerical simulation, and are manufactured by sol-gel dip-coating or magnetron sputtering. The novel colored glazed solar collectors will be ideally suited for architectural integration into buildings, e.g. as solar active glass facades. Due to the tunability of the refractive index, nanostructured materials such as SiO{sub 2}:TiO{sub 2} composites and porous SiO{sub 2} are very useful for application in multilayer interference stacks. Novel quaternary Mg-F-Si-O films exhibit a surprisingly low refractive index and are therefore promising candidates for highly transparent coatings on solar collector glazing. The nanostructure of these thin films is studied by transmission electron microscopy, while the optical constants are measured precisely by ellipsometry. For a convincing demonstration, sufficiently large samples of high quality are imperatively needed. The fabrication of nanocomposite SiO{sub 2}:TiO{sub 2} films has been demonstrated by sol-gel dip-coating of A4-sized glass panes. The produced coatings exhibit a colored reflection in combination with a high solar transmittance, a homogenous appearance, and are free of visible defects. Film hardening by UV exposure will result in speeding up the sol-gel process and saving energy, thereby reducing costs significantly. The infrastructure for UV-curing has been established. A UV C radiation source can now be attached to the

  6. Development of a Polymer-carbon Nanotubes based Economic Solar Collector

    OpenAIRE

    Kim, S. I.; Kissick, John; Spence, Stephen; Boyle, Christine

    2014-01-01

    A low cost solar collector was developed by using polymeric components as opposed to metal and glass components of traditional solar collectors. In order to utilize polymers for the absorber of the solar collector, Carbon Nanotubes (CNT) has been added as a filler to improve the thermal conductivity and the solar absorptivity of polymers. The solar collector was designed as a multi-layer construction with considering the economic manufacturing. Through the mathematical heat transfer analysis,...

  7. Solar energy captured by a curved collector designed for architectural integration

    International Nuclear Information System (INIS)

    Rodríguez-Sánchez, D.; Belmonte, J.F.; Izquierdo-Barrientos, M.A.; Molina, A.E.; Rosengarten, G.; Almendros-Ibáñez, J.A.

    2014-01-01

    Highlights: • We present a new prototype of solar collector for architectural integration. • Equations of the solar radiation on a curved surface. • We compare the energy intercepted by the prototype with the energy intercepted by conventional collectors. • The prototype can be competitive compared with conventional collectors. - Abstract: In this paper we present a prototype for a new type of solar thermal collector designed for architectural integration. In this proposal, the conventional geometry of a flat solar thermal collector is changed to a curved geometry, to improve its visual impact when mounted on a building facade or roof. The mathematical equations for the beam and diffuse solar radiation received by a collector with this geometry are developed for two different orientations, horizontal and vertical. The performance of this curved prototype, in terms of solar radiation received, is compared with a conventional tilted-surface collector for different orientations in Madrid (Spain). The comparison is made for typical clear-sky days in winter and summer as well as for an entire year. The results demonstrate that the curved collector only receives between 12% and 25% less radiation than the conventional tilted-surface collectors when oriented horizontally, depending on the azimuth of the curved surface, although these percentages are reduced to approximately 50% when the collector is oriented vertically

  8. On the Influence of Collector Size on the Solar Chimneys Performance

    Directory of Open Access Journals (Sweden)

    Al-Azawiey Sundus S.

    2017-01-01

    Full Text Available Performance of solar chimney power plant system is highly influenced by the design geometries. The collector size is logically enhances the solar chimney performance, but the trend of enhancement is not yet investigated. In the present work, experimental and numerical investigations have been carried out to ascertain, in terms of qualitative and quantitative evaluation, the effect of the collector diameter. Daily thermal efficiency has been determined at four different collector diameter. Two different collector diameters, 3.0 and 6.0 m, have been investigated experimentally, and then scaled up, to 9.0 and 12.0 m, by numerical simulation using ANSYS-FLUENT®15 software. Results demonstrated that collector diameter has effectively influenced the system performance. Larger collector diameter imposed increase in the velocity, temperature and the daily average thermal efficiency of the system. From the experimental results, increasing the collector diameter from 3.0 to 6.0 m has increased the daily average thermal efficiency of the collector from 9.81 to 12.8. Simulation results at 800 W/m2 irradiation revealed that the velocity in the chimney have increased from 1.66 m/s at 3.0 m collector diameter to 2.34, 2.47 and 2.63 m/s for 6.0, 9.0 and 12.0 m collector diameters, respectively.

  9. Results of IEA SHC Task 45: Large Scale Solar Heating and Cooling Systems. Subtask A: “Collectors and Collector Loop”

    DEFF Research Database (Denmark)

    Bava, Federico; Nielsen, Jan Erik; Knabl, Samuel

    2016-01-01

    . Within this project, subtask A had the more specific objectives of investigating ways to evaluate the influence that different operating conditions can have on the collector performance, assure proper and safe installation of large solar collector fields, and guarantee their performance and yearly energy......The IEA SHC Task 45 Large Scale Solar Heating and Cooling Systems, carried out between January 2011 and December 2014, had the main objective to assist in the development of a strong and sustainable market of large solar heating systems by focusing on high performance and reliability of systems...... output. The results of the different investigations are presented, with a particular focus on how different parameters such as tilt, flow rate and fluid type, can affect the collector efficiency. Other presented results include methods to guarantee and check the thermal performance of a solar collector...

  10. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  11. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  12. Use of a Parabolic Microphone to Detect Hidden Subjects in Search and Rescue.

    Science.gov (United States)

    Bowditch, Nathaniel L; Searing, Stanley K; Thomas, Jeffrey A; Thompson, Peggy K; Tubis, Jacqueline N; Bowditch, Sylvia P

    2018-03-01

    This study compares a parabolic microphone to unaided hearing in detecting and comprehending hidden callers at ranges of 322 to 2510 m. Eight subjects were placed 322 to 2510 m away from a central listening point. The subjects were concealed, and their calling volume was calibrated. In random order, subjects were asked to call the name of a state for 5 minutes. Listeners with parabolic microphones and others with unaided hearing recorded the direction of the call (detection) and name of the state (comprehension). The parabolic microphone was superior to unaided hearing in both detecting subjects and comprehending their calls, with an effect size (Cohen's d) of 1.58 for detection and 1.55 for comprehension. For each of the 8 hidden subjects, there were 24 detection attempts with the parabolic microphone and 54 to 60 attempts by unaided listeners. At the longer distances (1529-2510 m), the parabolic microphone was better at detecting callers (83% vs 51%; P<0.00001 by χ 2 ) and comprehension (57% vs 12%; P<0.00001). At the shorter distances (322-1190 m), the parabolic microphone offered advantages in detection (100% vs 83%; P=0.000023) and comprehension (86% vs 51%; P<0.00001), although not as pronounced as at the longer distances. Use of a 66-cm (26-inch) parabolic microphone significantly improved detection and comprehension of hidden calling subjects at distances between 322 and 2510 m when compared with unaided hearing. This study supports the use of a parabolic microphone in search and rescue to locate responsive subjects in favorable weather and terrain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Identifying the principal coefficient of parabolic equations with non-divergent form

    International Nuclear Information System (INIS)

    Jiang, L S; Bian, B J

    2005-01-01

    We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well

  14. Identifying the principal coefficient of parabolic equations with non-divergent form

    Science.gov (United States)

    Jiang, L. S.; Bian, B. J.

    2005-01-01

    We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well.

  15. Experimentation of a Solar Water Heater with Integrated Storage Tank

    International Nuclear Information System (INIS)

    Elhmidi, I; Frikha, N; Chaouchi, B; Gabsi, S

    2009-01-01

    An integrated collector storage (ICS) solar water heater was constructed in 2004 and studied its optical and thermal performance. It was revealed that it has some thermal shortcomings of thermal performances. The ICS system consists of one cylindrical horizontal tank properly mounted in a stationary symmetrical Compound Parabolic Concentrating (CPC) reflector trough. The main objective was to delimit the causes of these deficiencies and trying to diagnose them. A rigorous experimentation of the solar water heater has been done over its daily energetic output as well as the evolution of the nocturnal thermal losses. In fact, three successive days, including nights, of operation have permitted to obtain diagrams describing the variations of mean temperature in the tank and the thermal loss coefficient during night of our installation. The experimental results, compared with those obtained by simulation, showed a perfecting of thermal performances of system which approach from those of other models introduced on the international market

  16. VALIDATION OF SIMULATION MODELS FOR DIFFERENTLY DESIGNED HEAT-PIPE EVACUATED TUBULAR COLLECTORS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Dragsted, Janne; Furbo, Simon

    2007-01-01

    Differently designed heat-pipe evacuated tubular collectors have been investigated theoretically and experimentally. The theoretical work has included development of two TRNSYS [1] simulation models for heat-pipe evacuated tubular collectors utilizing solar radiation from all directions. One model...... coating on both sides. The input to the models is thus not a simple collector efficiency expression but the actual collector geometry. In this study, the TRNSYS models are validated with measurements for four differently designed heat-pipe evacuated tubular collectors. The collectors are produced...

  17. Sasakian and Parabolic Higgs Bundles

    Science.gov (United States)

    Biswas, Indranil; Mj, Mahan

    2018-03-01

    Let M be a quasi-regular compact connected Sasakian manifold, and let N = M/ S 1 be the base projective variety. We establish an equivalence between the class of Sasakian G-Higgs bundles over M and the class of parabolic (or equivalently, ramified) G-Higgs bundles over the base N.

  18. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  19. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  20. Crustal and upper mantle velocity structure of the Salton Trough, southeast California

    Science.gov (United States)

    Parsons, T.; McCarthy, J.

    1996-01-01

    This paper presents data and modelling results from a crustal and upper mantle wide-angle seismic transect across the Salton Trough region in southeast California. The Salton Trough is a unique part of the Basin and Range province where mid-ocean ridge/transform spreading in the Gulf of California has evolved northward into the continent. In 1992, the U.S. Geological Survey (USGS) conducted the final leg of the Pacific to Arizona Crustal Experiment (PACE). Two perpendicular models of the crust and upper mantle were fit to wide-angle reflection and refraction travel times, seismic amplitudes, and Bouguer gravity anomalies. The first profile crossed the Salton Trough from the southwest to the northeast, and the second was a strike line that paralleled the Salton Sea along its western edge. We found thin crust (???21-22 km thick) beneath the axis of the Salton Trough (Imperial Valley) and locally thicker crust (???27 km) beneath the Chocolate Mountains to the northeast. We modelled a slight thinning of the crust further to the northeast beneath the Colorado River (???24 km) and subsequent thickening beneath the metamorphic core complex belt northeast of the Colorado River. There is a deep, apparently young basin (???5-6 km unmetamorphosed sediments) beneath the Imperial Valley and a shallower (???2-3 km) basin beneath the Colorado River. A regional 6.9-km/s layer (between ???15-km depth and the Moho) underlies the Salton Trough as well as the Chocolate Mountains where it pinches out at the Moho. This lower crustal layer is spatially associated with a low-velocity (7.6-7.7 km/s) upper mantle. We found that our crustal model is locally compatible with the previously suggested notion that the crust of the Salton Trough has formed almost entirely from magmatism in the lower crust and sedimentation in the upper crust. However, we observe an apparently magmatically emplaced lower crust to the northeast, outside of the Salton Trough, and propose that this layer in part