WorldWideScience

Sample records for palaeogene temperature evolution

  1. Deltaic Depositional Systems, Evolution Characteristics, and Petroleum Potential, Palaeogene Sub-Basin, South China Sea

    Science.gov (United States)

    Li, Yuan; Wang, Hua; Zhang, Guotao

    2015-04-01

    Deltaic depositional systems are detailed characterized by morphology and facies in a Palaeogene continental sub-basin of Beibuwan Basin, South China Sea. Based on examination of 435 m of conventional cores from 30 wells, three major types of deltaic facies have been recognized: delta, beach and shoreface. Morphology and facies asymmetry between the down-drift and the up-drift sides present a typical asymmetric delta system:1) the down-rift, sourced primarily by the feeding river, are influenced by mixed river and wave processes. Deposits on this side are muddy and consist of barrier, bar, bay-fill, and bayhead delta facies with variable bioturbation intensity; 2)the up-rift, in contrast, is sourced by a second sediment source and typically consists of laterally continuous sandy beach and shoreface facies. Finally, two fundamentally different depositional models are established and reflect a different style of sequence stratigraphic patterns: 1) Multiple-stage faults slopes developed in the down-rift side feed fine grained sediment into two stages channelized front deltaic system; 2) Flexure slope break of the up-rift side, combining with deeper gradual slopes, conversely, feed coarser grained sediment from larger drainages into sandy beach and shoreface systems. Such a distinction has well explained the differentiation of the proven hydrocarbon reserves because the up-rift consists of well-sorted, mature, and laterally continuous homogeneous beach-shoreface reservoirs, whereas the down-rift, in contrast, is muddier and consists of less continuous, less mature, heterolithic reservoirs. The Delta asymmetry concepts and models don't only challenge the traditional definition of deltas in Fushan sub-basin, but also provides strong theoretical support for the future exploration. This process-based model may be applicable to many deep-water settings and provides a framework within which to interpret the stratigraphic and spatial distribution of these complex deposits.

  2. Palaeogene tectono-stratigraphic evolution of the Western Barents Sea, Svalbard and Northeast Greenland

    DEFF Research Database (Denmark)

    Petersen, Thomas Guldborg

    This thesis contains a detailed interpretation of seismic facies of the Paleogene sedimentary succession on the Northeast Greenland Shelf. Based on this, a model for the depostional environment and its interplay with the large scale plate tectonic evolution is produced. The model suggests...... is similar and by using the dated volcanic events onshore Greenland temporal constraints of the deposition on the Northeast Greenland Shelf are much improved. Based on this correlation, the succession can be subdivided into pre-, syn- and post- volcanic intervals. The provenance of the sedimentary succession...

  3. Palaeoclimate evolution across the Cretaceous-Palaeogene boundary in the Nanxiong Basin (SE China) recorded by red strata and its correlation with marine records

    Science.gov (United States)

    Ma, Mingming; Liu, Xiuming; Wang, Wenyan

    2018-03-01

    The climate during the Cretaceous Period represented one of the greenhouse states of Earth's history. Significant transformation of climate patterns and a mass extinction event characterised by the disappearance of dinosaurs occurred across the Cretaceous-Palaeogene boundary. However, most records of this interval are derived from marine sediments. The continuous and well-exposed red strata of the Nanxiong Basin (SE China) provide ideal material to develop continental records. Considerable research into stratigraphic, palaeontological, chronologic, palaeoclimatic, and tectonic aspects has been carried out for the Datang profile, which is a type section of a non-marine Cretaceous-Palaeogene stratigraphic division in China. For this study, we reviewed previous work and found that (1) the existing chronological framework of the Datang profile is flawed; (2) precise palaeoclimatic reconstruction is lacking because of the limitations of sampling resolution (e.g. carbonate samples) and/or the lack of efficient proxies; and (3) comparisons of climate changes between marine and continental records are lacking. To resolve these problems, detailed field observations and sampling, as well as environmental magnetic and rare earth element (REE) measurements, were carried out. The results show that (1) more accurate ages of the Datang profile range from 72 to 62.8 Ma based on a combination of the most recently published radiometric, palaeontological, and palaeomagnetic ages; (2) there is considerable evidence of palaeosol generation, which indicates that the red strata formed in a long-term hot, oxidising environment that lacked underwater conditions; (3) haematite was the dominant magnetic mineral in the red strata, and the variation trend of magnetic susceptibility was consistent with the oxygen isotope records from deep-sea sediments, which indicates that the content of haematite was controlled by the global climate; and (4) the palaeoclimate changes from 72 to 62.8 Ma in the

  4. Elastic deformation behaviour of Palaeogene clay from Fehmarn Belt area

    DEFF Research Database (Denmark)

    Awadalkarim, Ahmed; Foged, Niels Nielsen; Fabricius, Ida Lykke

    2014-01-01

    Palaeogene clay samples were obtained by high quality boring and sampling techniques (Geobore S-system), during the extensive site investigations for building a bridge in the Fehmarn Belt area to link between Rødbyhavn in Denmark and Puttgarden in Germany. The Palaeogene clay is rich in smectite...

  5. Temperature evolution during dissipative collapse

    Indian Academy of Sciences (India)

    Abstract. We investigate the gravitational collapse of a radiating sphere evolving into a final static configuration described by the interior Schwarzschild solution. The temperature profiles of this par- ticular model are obtained within the framework of causal thermodynamics. The overall temperature evolution is enhanced by ...

  6. Temperature evolution during compaction of pharmaceutical powders.

    Science.gov (United States)

    Zavaliangos, Antonios; Galen, Steve; Cunningham, John; Winstead, Denita

    2008-08-01

    A numerical approach to the prediction of temperature evolution in tablet compaction is presented here. It is based on a coupled thermomechanical finite element analysis and a calibrated Drucker-Prager Cap model. This approach is capable of predicting transient temperatures during compaction, which cannot be assessed by experimental techniques due to inherent test limitations. Model predictions are validated with infrared (IR) temperature measurements of the top tablet surface after ejection and match well with experiments. The dependence of temperature fields on speed and degree of compaction are naturally captured. The estimated transient temperatures are maximum at the end of compaction at the center of the tablet and close to the die wall next to the powder/die interface.

  7. Ising ferromagnet: zero-temperature dynamic evolution

    International Nuclear Information System (INIS)

    Oliveira, P M C de; Newman, C M; Sidoravicious, V; Stein, D L

    2006-01-01

    The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of 'chaotic time dependence' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest an equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit

  8. Mammal survival at the Cretaceous-Palaeogene boundary: metabolic homeostasis in prolonged tropical hibernation in tenrecs.

    Science.gov (United States)

    Lovegrove, Barry G; Lobban, Kerileigh D; Levesque, Danielle L

    2014-12-07

    Free-ranging common tenrecs, Tenrec ecaudatus, from sub-tropical Madagascar, displayed long-term (nine months) hibernation which lacked any evidence of periodic interbout arousals (IBAs). IBAs are the dominant feature of the mammalian hibernation phenotype and are thought to periodically restore long-term ischaemia damage and/or metabolic imbalances (depletions and accumulations). However, the lack of IBAs in tenrecs suggests no such pathology at hibernation Tbs > 22°C. The long period of tropical hibernation that we report might explain how the ancestral placental mammal survived the global devastation that drove the dinosaurs and many other vertebrates to extinction at the Cretaceous-Palaeogene boundary following a meteorite impact. The genetics and biochemistry of IBAs are of immense interest to biomedical researchers and space exploration scientists, in the latter case, those envisioning a hibernating state in astronauts for deep space travel. Unravelling the physiological thresholds and temperature dependence of IBAs will provide new impetus to these research quests. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Mammal survival at the Cretaceous–Palaeogene boundary: metabolic homeostasis in prolonged tropical hibernation in tenrecs

    Science.gov (United States)

    Lovegrove, Barry G.; Lobban, Kerileigh D.; Levesque, Danielle L.

    2014-01-01

    Free-ranging common tenrecs, Tenrec ecaudatus, from sub-tropical Madagascar, displayed long-term (nine months) hibernation which lacked any evidence of periodic interbout arousals (IBAs). IBAs are the dominant feature of the mammalian hibernation phenotype and are thought to periodically restore long-term ischaemia damage and/or metabolic imbalances (depletions and accumulations). However, the lack of IBAs in tenrecs suggests no such pathology at hibernation Tbs > 22°C. The long period of tropical hibernation that we report might explain how the ancestral placental mammal survived the global devastation that drove the dinosaurs and many other vertebrates to extinction at the Cretaceous–Palaeogene boundary following a meteorite impact. The genetics and biochemistry of IBAs are of immense interest to biomedical researchers and space exploration scientists, in the latter case, those envisioning a hibernating state in astronauts for deep space travel. Unravelling the physiological thresholds and temperature dependence of IBAs will provide new impetus to these research quests. PMID:25339721

  10. Global temperature evolution 1979–2010

    International Nuclear Information System (INIS)

    Foster, Grant; Rahmstorf, Stefan

    2011-01-01

    We analyze five prominent time series of global temperature (over land and ocean) for their common time interval since 1979: three surface temperature records (from NASA/GISS, NOAA/NCDC and HadCRU) and two lower-troposphere (LT) temperature records based on satellite microwave sensors (from RSS and UAH). All five series show consistent global warming trends ranging from 0.014 to 0.018 K yr −1 . When the data are adjusted to remove the estimated impact of known factors on short-term temperature variations (El Niño/southern oscillation, volcanic aerosols and solar variability), the global warming signal becomes even more evident as noise is reduced. Lower-troposphere temperature responds more strongly to El Niño/southern oscillation and to volcanic forcing than surface temperature data. The adjusted data show warming at very similar rates to the unadjusted data, with smaller probable errors, and the warming rate is steady over the whole time interval. In all adjusted series, the two hottest years are 2009 and 2010.

  11. Evolution of film temperature during magnetron sputtering

    International Nuclear Information System (INIS)

    Shaginyan, L.R.; Han, J.G.; Shaginyan, V.R.; Musil, J.

    2006-01-01

    We report on the results of measurements of the temperature T F surf which developed on the surface of films deposited by magnetron sputtering of chromium and copper targets on cooling and non-cooling silicon substrates. The T F surf and substrate temperature (T s ) were simultaneously measured using high-resolution IR camera and thermocouple, respectively. We revealed that the T F surf steeply grows, keeps constant when it achieves saturation level, and rapidly drops to the value of the T s after stopping the deposition. At the same time, the T s either does not change for the case of cooling substrate or increases to a certain level for noncooling substrate. However, in both cases the T s remains several times lower than the T F surf . The T F surf is proportional to the flux of energy delivered to the growth surface by sputtered atoms and other fast particles, weakly depends on the depositing metal and can achieve several hundreds of deg. C. This phenomenon is explained by a model assuming formation of a hot thin surface layer (HTSL) on the top of the growing film, which exists only during film deposition and exhibits extremely low thermal conductivity. Due to this unique property the temperature T F surf of HTSL is several times higher than the T s . Variations in the T F surf fairly correlate with structure changes of Cr films along thickness investigated in detail previously

  12. Temperature evolution in silver nanoparticle doped PETN composite

    Science.gov (United States)

    Kameswari, D. P. S. L.; Kiran, P. Prem

    2018-04-01

    Optical absorption and the associated spatio-temporal evolution of temperature silver nanoparticles doped energetic material composite is presented. Silver nanoparticles of radii 10 - 150 nm are doped in Penta Erythrtol Tetra Nitrate (PETN), a secondary energetic material to form the composite materials. Of all the composites the ones doped with 35 nm sized nanoparticles have shown maximum absorption at excitation wavelength of 532 nm. The spatio-temporal evolution of temperature within these composites up on excitation with ns laser pulses of energy density 0.5 J/cm2 is studied. The role of particle sizes on the temperature of composites is studied and a maximum temperature of 2200 K at the nanoparticle interface is observed for 35 nm doped PETN composite.

  13. Last interglacial temperature evolution – a model inter-comparison

    Directory of Open Access Journals (Sweden)

    P. Bakker

    2013-03-01

    Full Text Available There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG. This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in light of projected global warming. However, mainly because synchronizing the different palaeoclimatic records is difficult, there is no consensus on a global picture of LIG temperature changes. Here we present the first model inter-comparison of transient simulations covering the LIG period. By comparing the different simulations, we aim at investigating the common signal in the LIG temperature evolution, investigating the main driving forces behind it and at listing the climate feedbacks which cause the most apparent inter-model differences. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–125 ka BP with temperatures 0.3 to 5.3 K above present day. A Southern Hemisphere July temperature maximum, −1.3 to 2.5 K at around 128 ka BP, is only found when changes in the greenhouse gas concentrations are included. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. For these regions maximum January temperature anomalies of respectively −1 to 1.2 K and −0.8 to 2.1 K are simulated for the period after 121 ka BP. In both hemispheres these temperature maxima are in line with the maximum in local summer insolation. In a number of specific regions, a common temperature evolution is not found amongst the models. We show that this is related to feedbacks within the climate system which largely determine the simulated LIG temperature evolution in these regions. Firstly, in the Arctic region, changes in the summer sea-ice cover control the evolution of LIG winter

  14. Deformation properties of highly plastic fissured Palaeogene clay - Lack of stress memory?

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Hededal, Ole; Foged, Niels Nielsen

    2012-01-01

    are evaluated based on the degree of debonding caused by natural processes insitu as compared to processes induced during severe loading and unloading in laboratory. A long term oedometer test on Lillebælt Clay with a series of loading and unloading cycles was carried out. The test results are used to evaluate......The geological preconsolidation of the Palaeogene clays in Denmark is estimated to 5-8 MPa or more, whereas laboratory and field experiences indicate values between 100 and 3000 kPa. Presumably, the high plasticity clay loses its memory of earlier preloads due to swelling, or as an effect...

  15. Early Palaeogene planktic foraminiferal and carbon isotope stratigraphy, ODP hole 762C, Exmouth plateau, Northwest Australian margin

    International Nuclear Information System (INIS)

    Hancock, H.J.L.; Dickens, G.R.; Henderson, R.R.; Chaproniere, G.C.

    1999-01-01

    Full text: Although the North West Shelf of Australia is an important region for petroleum exploration and palaeoceanographic investigations the stratigraphy for the Palaeogene is poorly documented, especially for foraminifera. Ocean Drilling Program (ODP) Site 762 on the Exmouth Plateau contains an expanded Palaeogene sequence with abundant, calcareous microfossils. Early Palaeogene cores from this location were examined in this study for their planktic foraminiferal assemblages and carbon isotope compositions (Subbotina spp.). The sequence from 502.96 to 307.8 mbsf was deposited between the early Paleocene and Middle Eocene, and contains all planktic foraminiferal Zones Plc through P10 of the current global scheme, except Subzone P4b. Planktic foraminifera are generally very well preserved and 75 species belonging to 17 genera were identified. Despite a relatively high latitude Palaeogene location for Site 762, planktic foraminiferal biozones are generally in phase with those of the currently used global scheme for subtropical locations (Berggren et al., 1995). However, rare, patchy or non-occurrences of the zonal marker species Globanomalina pseudomenardii, Morozovella velascoensis, M formosa, Planorotalites palmerae and Hanfkenina nuttalli, make some correlations difficult. Planktic foraminiferal assemblages show three increasing diversity trends: at the P3a P3b boundary with the first appearance of muricate Acarinina species; in the middle of P4a b with the first appearances of many warm water Morozovella and Acarinina species and at the P8/P9 zonal boundary with the arrival of late early Eocene Acarinina species. Overall, trends in 13 C of planktic foraminifera are similar in shape to global isotope curves spanning the early Palaeogene, although the prominent short term negative excursion across the latest Paleocene thermal maximum (LPTM) is partly missing, probably because of a gap in core recovery. Combined with nannofossil biostratigraphy and a

  16. Unusual temperature evolution of superconductivity in LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Nag, Pranab Kumar; Schlegel, Ronny; Baumann, Danny; Grafe, Hans-Joachim; Beck, Robert [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany); Hess, Christian [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2016-07-01

    We have performed temperature dependent scanning tunneling spectroscopy on an impurity-free surface area of a LiFeAs single crystal. Our data reveal a highly unusual temperature evolution of superconductivity: at T{sub c}{sup *}=18 K a partial superconducting gap opens, as is evidenced by subtle, yet clear features in the tunneling spectra, i.e. particle-hole symmetric coherence peaks and dip-hump structures. At T{sub c}=16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, this is accompanied by an almost jump-like increase of the gap energy at T{sub c} to about 87% of its low-temperature gap value. The energy of the dip as measured by its distance to the coherence peak remains practically constant in the whole temperature regime T ≤ T{sub c}{sup *}. We compare these findings with established experimental and theoretical results.

  17. Lepidosaurian diversity in the Mesozoic-Palaeogene: the potential roles of sampling biases and environmental drivers

    Science.gov (United States)

    Cleary, Terri J.; Benson, Roger B. J.; Evans, Susan E.; Barrett, Paul M.

    2018-03-01

    Lepidosauria is a speciose clade with a long evolutionary history, but there have been few attempts to explore its taxon richness through time. Here we estimate patterns of terrestrial lepidosaur genus diversity for the Triassic-Palaeogene (252-23 Ma), and compare observed and sampling-corrected richness curves generated using Shareholder Quorum Subsampling and classical rarefaction. Generalized least-squares regression (GLS) is used to investigate the relationships between richness, sampling and environmental proxies. We found low levels of richness from the Triassic until the Late Cretaceous (except in the Kimmeridgian-Tithonian of Europe). High richness is recovered for the Late Cretaceous of North America, which declined across the K-Pg boundary but remained relatively high throughout the Palaeogene. Richness decreased following the Eocene-Oligocene Grande Coupure in North America and Europe, but remained high in North America and very high in Europe compared to the Late Cretaceous; elsewhere data are lacking. GLS analyses indicate that sampling biases (particularly, the number of fossil collections per interval) are the best explanation for long-term face-value genus richness trends. The lepidosaur fossil record presents many problems when attempting to reconstruct past diversity, with geographical sampling biases being of particular concern, especially in the Southern Hemisphere.

  18. Simulations of tokamak disruptions including self-consistent temperature evolution

    International Nuclear Information System (INIS)

    Bondeson, A.

    1986-01-01

    Three-dimensional simulations of tokamaks have been carried out, including self-consistent temperature evolution with a highly anisotropic thermal conductivity. The simulations extend over the transport time-scale and address the question of how disruptive current profiles arise at low-q or high-density operation. Sharply defined disruptive events are triggered by the m/n=2/1 resistive tearing mode, which is mainly affected by local current gradients near the q=2 surface. If the global current gradient between q=2 and q=1 is sufficiently steep, the m=2 mode starts a shock which accelerates towards the q=1 surface, leaving stochastic fields, a flattened temperature profile and turbulent plasma behind it. For slightly weaker global current gradients, a shock may form, but it will dissipate before reaching q=1 and may lead to repetitive minidisruptions which flatten the temperature profile in a region inside the q=2 surface. (author)

  19. Climate and sea-level changes across a shallow marine Cretaceous–Palaeogene boundary succession in Patagonia, Argentina

    NARCIS (Netherlands)

    Vellekoop, Johan; Holwerda, Femke; Prámparo, Mercedes B.; Willmott, Veronica; Schouten, Stefan; Cúneo, Nestor R.; Scasso, Roberto A.; Brinkhuis, Henk

    2017-01-01

    Upper Maastrichtian to lower Paleocene, coarse-grained deposits of the Lefipán Formation in Chubut Province, (Patagonia, Argentina) provide an opportunity to study environmental changes across the Cretaceous–Palaeogene (K–Pg) boundary in a shallow marine depositional environment. Marine

  20. Temperature-dependent structure evolution in liquid gallium

    International Nuclear Information System (INIS)

    Xiong, L.H.; Wang, X.D.; Yu, Q.; Zhang, H.; Zhang, F.; Sun, Y.; Cao, Q.P.; Xie, H.L.; Xiao, T.Q.; Zhang, D.X.; Wang, C.Z.; Ho, K.M.

    2017-01-01

    Temperature-dependent atomistic structure evolution of liquid gallium (Ga) has been investigated by using in situ high energy X-ray diffraction experiment and ab initio molecular dynamics simulation. Both experimental and theoretical results reveal the existence of a liquid structural change around 1000 K in liquid Ga. Below and above this temperature the liquid exhibits differences in activation energy for self-diffusion, temperature-dependent heat capacity, coordination numbers, density, viscosity, electric resistivity and thermoelectric power, which are reflected from structural changes of the bond-orientational order parameter Q_6, fraction of covalent dimers, averaged string length and local atomic packing. This finding will trigger more studies on the liquid-to-liquid crossover in metallic melts. - Graphical abstract: Atomistic structure evolution of liquid gallium has been investigated by using in situ high energy X-ray diffraction and ab initio molecular dynamics simulations, which both demonstrate the existence of a liquid structural change together with reported density, viscosity, electric resistivity and absolute thermoelectric power data.

  1. Evolution of sputtered tungsten coatings at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika; Rinnerbauer, Veronika; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan; Senkevich, Jay J. [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Tucker, Charles; Ives, Thomas; Shrader, Ronney [Materion Corporation, Buellton, California 93427 (United States)

    2013-11-15

    Sputtered tungsten (W) coatings were investigated as potential high temperature nanophotonic material to replace bulk refractory metal substrates. Of particular interest are materials and coatings for thermophotovoltaic high-temperature energy conversion applications. For such applications, high reflectance of the substrate in the infrared wavelength range is critical in order to reduce losses due to waste heat. Therefore, the reflectance of the sputtered W coatings was characterized and compared at different temperatures. In addition, the microstructural evolution of sputtered W coatings (1 and 5 μm thick) was investigated as a function of anneal temperature from room temperature to 1000 °C. Using in situ x-ray diffraction analysis, the microstrain in the two samples was quantified, ranging from 0.33% to 0.18% for the 1 μm sample and 0.26% to 0.20% for the 5 μm sample, decreasing as the temperature increased. The grain growth could not be as clearly quantified due to the dominating presence of microstrain in both samples but was in the order of 20 to 80 nm for the 1 μm sample and 50 to 100 nm for the 5 μm sample, as deposited. Finally, the 5 μm thick layer was found to be rougher than the 1 μm thick layer, with a lower reflectance at all wavelengths. However, after annealing the 5 μm sample at 900 °C for 1 h, its reflectance exceeded that of the 1 μm sample and approached that of bulk W found in literature. Overall, the results of this study suggest that thick coatings are a promising alternative to bulk substrates as a low cost, easily integrated platform for nanostructured devices for high-temperature applications, if the problem of delamination at high temperature can be overcome.

  2. Pb isotope evidence for contributions from different Iceland mantle components to Palaeogene East Greenland flood basalts

    DEFF Research Database (Denmark)

    Peate, David; Stecher, Ole

    2003-01-01

    We present new Pb isotope data on 21 samples of break-up-related flood basalts (56–54 Ma) from the Blosseville Kyst region of East Greenland. These samples show a considerable range in isotopic composition (206Pb/204Pb 17.6 to 19.3) that broadly correlates with compositional type. The ‘low-Ti’ type...... in the selected samples. Uncontaminated Palaeogene East Greenland flood basalts appear to have sampled the same broad range in mantle compositions seen in Recent Iceland basalts. In contrast to the peripheral lava suites from the British Isles and Southeast Greenland, where the inferred uncontaminated magmas have...... to the most radiogenic values found in recent Icelandic basalts. Furthermore, the main volume of lavas in East Greenland is displaced away from the NAEM towards this radiogenic Pb component. Thus, this ‘Iceland radiogenic Pb end-member’ component was a significant contributor to the break-up-related magmatism...

  3. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  4. Temperature, metabolic power and the evolution of endothermy.

    Science.gov (United States)

    Clarke, Andrew; Pörtner, Hans-Otto

    2010-11-01

    Endothermy has evolved at least twice, in the precursors to modern mammals and birds. The most widely accepted explanation for the evolution of endothermy has been selection for enhanced aerobic capacity. We review this hypothesis in the light of advances in our understanding of ATP generation by mitochondria and muscle performance. Together with the development of isotope-based techniques for the measurement of metabolic rate in free-ranging vertebrates these have confirmed the importance of aerobic scope in the evolution of endothermy: absolute aerobic scope, ATP generation by mitochondria and muscle power output are all strongly temperature-dependent, indicating that there would have been significant improvement in whole-organism locomotor ability with a warmer body. New data on mitochondrial ATP generation and proton leak suggest that the thermal physiology of mitochondria may differ between organisms of contrasting ecology and thermal flexibility. Together with recent biophysical modelling, this strengthens the long-held view that endothermy originated in smaller, active eurythermal ectotherms living in a cool but variable thermal environment. We propose that rather than being a secondary consequence of the evolution of an enhanced aerobic scope, a warmer body was the means by which that enhanced aerobic scope was achieved. This modified hypothesis requires that the rise in metabolic rate and the insulation necessary to retain metabolic heat arose early in the lineages leading to birds and mammals. Large dinosaurs were warm, but were not endotherms, and the metabolic status of pterosaurs remains unresolved. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  5. New Challenges for the Pressure Evolution of the Glass Temperature

    Directory of Open Access Journals (Sweden)

    Sylwester J. Rzoska

    2017-11-01

    Full Text Available The ways of portrayal of the pressure evolution of the glass temperature (Tg beyond the dominated Simon–Glatzel-like pattern are discussed. This includes the possible common description of Tg(P dependences in systems described by dTg/dP > 0 and dTg/dP < 0. The latter can be associated with the maximum of Tg(P curve hidden in the negative pressures domain. The issue of volume and density changes along the vitrification curve is also discussed. Finally, the universal pattern of vitrification associated with the crossover from the low density (isotropic stretching to the high density (isotropic compression systems is proposed. Hypothetically, it may obey any glass former, from molecular liquids to colloids.

  6. Explosive diversification of marine fishes at the Cretaceous-Palaeogene boundary.

    Science.gov (United States)

    Alfaro, Michael E; Faircloth, Brant C; Harrington, Richard C; Sorenson, Laurie; Friedman, Matt; Thacker, Christine E; Oliveros, Carl H; Černý, David; Near, Thomas J

    2018-04-01

    The Cretaceous-Palaeogene (K-Pg) mass extinction is linked to the rapid emergence of ecologically divergent higher taxa (for example, families and orders) across terrestrial vertebrates, but its impact on the diversification of marine vertebrates is less clear. Spiny-rayed fishes (Acanthomorpha) provide an ideal system for exploring the effects of the K-Pg on fish diversification, yet despite decades of morphological and molecular phylogenetic efforts, resolution of both early diverging lineages and enormously diverse subclades remains problematic. Recent multilocus studies have provided the first resolved phylogenetic backbone for acanthomorphs and suggested novel relationships among major lineages. However, these new relationships and associated timescales have not been interrogated using phylogenomic approaches. Here, we use targeted enrichment of >1,000 ultraconserved elements in conjunction with a divergence time analysis to resolve relationships among 120 major acanthomorph lineages and provide a new timescale for acanthomorph radiation. Our results include a well-supported topology that strongly resolves relationships along the acanthomorph backbone and the recovery of several new relationships within six major percomorph subclades. Divergence time analyses also reveal that crown ages for five of these subclades, and for the bulk of the species diversity in the sixth, coincide with the K-Pg boundary, with divergences between anatomically and ecologically distinctive suprafamilial clades concentrated in the first 10 million years of the Cenozoic.

  7. Topographic evolution of Yosemite Valley from Low Temperature Thermochronology

    Science.gov (United States)

    Tripathy-Lang, A.; Shuster, D. L.; Cuffey, K. M.; Fox, M.

    2014-12-01

    In this contribution, we interrogate the timing of km-scale topography development in the region around Yosemite Valley, California. Our goal is to determine when this spectacular glacial valley was carved, and how this might help address controversy surrounding the topographic evolution of the Sierra Nevada. At the scale of the range, two rival hypotheses are each supported by different datasets. Low-temperature thermochronology supports the idea that the range has been high-standing since the Cretaceous, whereas geomorphic evidence suggests that much of the elevation of the Sierra Nevada was attained during the Pliocene. Recent work by McPhillips and Brandon (2012) suggests instead that both ideas are valid, with the range losing much elevation during the Cenozoic, but regaining it during Miocene surface uplift.At the local scale, the classic study of Matthes (1930) determined that most of Yosemite Valley was excavated by the Sherwin-age glaciation that ended ~1 Ma. The consensus view is in agreement, although some argue that nearby comparable valleys comparable were carved long ago (e.g., House et al., 1998). If the Quaternary and younger glaciations were responsible for the bulk of the valley's >1 km depth, we might expect apatite (U-Th)/He ages at the valley floor to be histories at these locations, these data constrain patterns of valley topography development through time. We also supplement these data with zircon 4He/3He thermochronometry, which is a newly developed method that provides information on continuous cooling paths through ~120-220 °C. We will present both the apatite and zircon 4He/3He data and, in conjunction with thermo-kinematic modeling, discuss the ability and limitations of these data to test models of Sierra Nevada topography development through time. Matthes (1930) USGS Professional Paper House et al. (1998) Nature McPhillips and Brandon (2012) American Journal of Science

  8. Microstructural evolution under high temperature irradiation: fundamental aspects

    International Nuclear Information System (INIS)

    Martin, G.; Valentin, P.

    1984-01-01

    In view of the impossibility to propose theoretically established scaling laws for extrapolating microstructural evolutions to unknown irradiation conditions, a full modelization of microstructural evolution at the atomistic level cannot be avoided. We briefly review the main models available for describing: defect balance under irradiation, the nucleation of clusters of various types, the development of each of the components of the microstructure, synergistic effects among the latter. Attention is called on the problems which remain to be solved at each step. In particular, the swelling incubation phenomenon is just being studied from the fundamental viewpoint. A table of available relevant observations thereof is given. The existence of dose-rate thresholds accross which microstructural evolution undergoes a qualitative change is stressed. Such thresholds call for a detailed modelization of microstructural evolution in order to propose safe extrapolation techniques [fr

  9. Can evolution of sexual dimorphism be triggered by developmental temperatures?

    DEFF Research Database (Denmark)

    Ketola, Tarmo; Kristensen, Torsten Nygård; Kellermann, Vanessa M

    2012-01-01

    were split into four different developmental temperatures: two constant temperature treatments of 25 and 30oC and two cycling temperatures with means of 25 and 30oC, respectively. After emergence, we tested heat shock tolerance of adult flies. We found that sexual dimorphism was strongly affected...

  10. Microstructure evolution by neutron irradiation during cyclic temperature variation

    International Nuclear Information System (INIS)

    Kiritani, M.; Yoshiie, T.; Iseki, M.; Kojima, S.; Hamada, K.; Horiki, M.; Kizuka, Y.; Inoue, H.; Tada, T.; Ogasawara, Y.

    1994-01-01

    Utilizing a technique to control the temperature which is not influenced by the operation mode of a reactor, an irradiation during which the temperature was alternatively changed several times between two temperatures (T-cycle) has been performed. Some defect structures are understood as combinations of the defect processes at lower and higher temperatures, and some others are understood if the defect processes during the transient between the two temperatures are taken into consideration. However, the most remarkable characteristic of defect processes associated with the temperature variation is the reaction of point defect clusters induced by lower-temperature irradiation at the higher temperature. During lower-temperature irradiation, there is a greater accumulation of vacancy clusters as stacking fault tetrahedra in fcc metals than that of interstitial clusters as dislocation loops. Vacancies evaporated from the vacancy clusters at higher temperature can eliminate interstitial clusters completely, and the repetition of these processes leads to unexpectedly slow defect structure development by T-cycle irradiation. ((orig.))

  11. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

    KAUST Repository

    Nurlaela, Ela; Shinagawa, Tatsuya; Qureshi, Muhammad; Dhawale, Dattatray Sadashiv; Takanabe, Kazuhiro

    2016-01-01

    The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER

  12. Press/Pulse: Explaining selective terrestrial extinctions at the Cretaceous/Palaeogene boundary

    Science.gov (United States)

    Arens, Nan Crystal

    2010-05-01

    Single-cause mass extinction scenarios require extreme conditions to generate sufficiently strong kill mechanisms. Such dire effects are commonly at odds with the taxonomic selectivity that characterizes most extinction events. In response, some researchers have proposed that the interaction of a variety of factors typify episodes of elevated extinction. Previous work (Arens & West 2008 Paleobiology 34:456-471) has shown that a combination of press and pulse disturbances increases the probability of elevated extinction. The press/pulse contrast is borrowed from community ecology, where researchers have long recognized that the ecological response to long-term stress differs from that of an instantaneous catastrophe. Scaled to the macroevolutionary level, press disturbances alter community composition by placing multigenerational stress on populations. Press disturbances do not necessarily cause mortality, but reduce population size by a variety of mechanisms such as curtailed reproduction. Pulse disturbances are sudden catastrophic events that cause extensive mortality. Either press or pulse disturbances of sufficient magnitude can cause extinction, however elevated extinction occurs more commonly during the coincidence of lower-magnitude press and pulse events. The Cretaceous/Palaeogene (K/P) extinction is one of the best examples of a press/pulse extinction. Deccan Trap volcanism, which straddled the K/P boundary, altered atmospheric composition and climate. This episodic volcanism likely contributed to the climate instability observed in terrestrial ecosystems and exerted press stress. Pulse disturbance was produced by bolide impact, which punctuated the end of the Cretaceous. The press/pulse mechanism also more effectively explains selectivity in terrestrial vertebrate and plant extinctions at the K/P boundary than do single-mechanisms scenarios. For example, why do environmentally sensitive vertebrates such as amphibians experience no extinction? And why do

  13. Host Resistance and Temperature-Dependent Evolution of Aggressiveness in the Plant Pathogen Zymoseptoria tritici

    Directory of Open Access Journals (Sweden)

    Fengping Chen

    2017-06-01

    Full Text Available Understanding how habitat heterogeneity may affect the evolution of plant pathogens is essential to effectively predict new epidemiological landscapes and manage genetic diversity under changing global climatic conditions. In this study, we explore the effects of habitat heterogeneity, as determined by variation in host resistance and local temperature, on the evolution of Zymoseptoria tritici by comparing the aggressiveness development of five Z. tritici populations originated from different parts of the world on two wheat cultivars varying in resistance to the pathogen. Our results show that host resistance plays an important role in the evolution of Z. tritici. The pathogen was under weak, constraining selection on a host with quantitative resistance but under a stronger, directional selection on a susceptible host. This difference is consistent with theoretical expectations that suggest that quantitative resistance may slow down the evolution of pathogens and therefore be more durable. Our results also show that local temperature interacts with host resistance in influencing the evolution of the pathogen. When infecting a susceptible host, aggressiveness development of Z. tritici was negatively correlated to temperatures of the original collection sites, suggesting a trade-off between the pathogen’s abilities of adapting to higher temperature and causing disease and global warming may have a negative effect on the evolution of pathogens. The finding that no such relationship was detected when the pathogen infected the partially resistant cultivars indicates the evolution of pathogens in quantitatively resistant hosts is less influenced by environments than in susceptible hosts.

  14. Plastic Strain Induced Damage Evolution and Martensitic Transformation in Ductile Materials at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behaviour at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of thes...

  15. Initial evolution of nonlinear magnetic islands in high temperature plasmas

    International Nuclear Information System (INIS)

    Kotschenreuther, M.

    1988-06-01

    The evolution of nonlinear magnetic islands is computed in the kinetic collisionality regime called the semicollisional regime, which is appropriate to present fusion confinement devices. Realistic effects are included, such as the presence of small external field errors, radial electric fields, and omega. When present simultaneously, these effects can greatly change the stability of small amplitude nonlinear islands. Islands with Δ' > O can sometimes be prevented from growing to macroscopic size; it is also possible to produce moderate mode-number nonlinear instabilities in the plasma edge. Furthermore, island growth can be prevented by application of external fields with suitably chosen amplitude and frequency

  16. Temperature evolution, injury enhancement and treatment planning in cryosurgery

    Science.gov (United States)

    Rewcastle, John Cameron

    Cryosurgery is the in situ ablation of target tissues by exposing them to low subzero temperatures. The last ten years have seen a resurgence of the interest in low temperature medicine and an advancement in the technologies used to inflict a freezing injury. Based on a comparative study, a new Joule-Thompson based cryomachine was found to have superior control than the standard liquid nitrogen cryomachine tested. The ability of the new generation of machines to quickly change temperatures led to the hypothesis that Dynamic Cryosurgery, the generation of thermal waves by oscillating cryoprobe tip temperatures, may increase the direct injury to cells within a cryosurgical iceball. An alternative means of accomplishing the same goal is to hold the iceball at a constant size once the critical temperature has been reached by the target tissue thereby increasing the hold time of cells at subzero temperatures. This alternative was tested in-vivo with an AT-1 Dunning rat prostate model and was found to increase the lethality of the iceball. To further the understanding of the cell damage mechanisms occurring during cryosurgery freezing and thawing rates that would be experienced clinically were mimicked on a cryostage and an in-vitro map of cellular damage was created, again using the Dunning cell line. Single and double freeze-thaw cycle experiments were performed. No intracellular ice was observed during the first freeze thaw cycle and viable cells were found in all regions of the iceball. This finding supports the role of ischemia resulting from post-treatment vascular stasis as a major contributor to cell killing. Cryosurgery is currently preformed with the goal of enclosing the target tissue within a critical isotherm assumed to insure necrosis. A three dimensional model of temperatures about multiple cryoprobes was developed to predict temperatures during cryosurgery and compared to experimental data. Predictions of this model were found to be accurate within

  17. Structural evolution of calcite at high temperatures: Phase V unveiled

    Science.gov (United States)

    Ishizawa, Nobuo; Setoguchi, Hayato; Yanagisawa, Kazumichi

    2013-01-01

    The calcite form of calcium carbonate CaCO3 undergoes a reversible phase transition between Rc and Rm at ~1240 K under a CO2 atmosphere of ~0.4 MPa. The joint probability density function obtained from the single-crystal X-ray diffraction data revealed that the oxygen triangles of the CO3 group in the high temperature form (Phase V) do not sit still at specified positions in the space group Rm, but migrate along the undulated circular orbital about carbon. The present study also shows how the room temperature form (Phase I) develops into Phase V through an intermediate form (Phase IV) in the temperature range between ~985 K and ~1240 K. PMID:24084871

  18. White Dwarfs in Cataclysmic Variable Stars: Surface Temperatures and Evolution

    Directory of Open Access Journals (Sweden)

    Edward M. Sion

    2012-06-01

    Full Text Available A summary is presented of what is currently known about the surface temperatures of accreting white dwarfs (WDs detected in non-magnetic and magnetic cataclysmic variables (CVs based upon synthetic spectral analyses of far ultraviolet data. A special focus is placed on WD temperatures above and below the CV period gap as a function of the orbital period, Porb. The principal uncertainty of the temperatures for the CV WDs in the Teff - Porb distribution, besides the distance to the CV, is the mass of the WD. Only in eclipsing CV systems, an area of eclipsing binary studies, which was so central to Robert H. Koch’s career, is it possible to know CV WD masses with high precision.

  19. A model-data comparison of the Holocene global sea surface temperature evolution

    NARCIS (Netherlands)

    Lohmann, G.; Pfeiffer, M.; Laepple, T.; Leduc, G.; Kim, J.-H.

    2013-01-01

    We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere-ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate

  20. Temperature fluctuation effect on microstructural evolution of vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hideo; Ochiai, Kenso; Yoshida, Naoaki [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-01

    To compare the damage structure of vanadium and it`s alloy by irradiation at a constant and fluctuating temperature, the microstructure of samples irradiated by heavy ion were observed by an electron microscope. Pure vanadium (99.9%) from China was used as samples. After preparing the samples for the electron microscope, they are covered with Zr and Ta film, vacuum sealed and annealed for 2h at 1323K. Then the samples were irradiated by 3 MeV Cu ion of 0.75-100 dpa at 473-873K. Temperature was changed from low to high (473K/673K, 473K/873K, 673K/873K). On the irradiation experiments at constant temperature, the density of dislocation decreased with increasing temperature, but, more than 773K, the density became very low and the needle precipitation grown to <100> and void were observed. On the irradiation experiment at 673K/873K, the density of number of precipitation and void were decreased. (S.Y.)

  1. Temperature profile evolution in quenching high-Tc ...

    Indian Academy of Sciences (India)

    Abstract. Irreversible normal zones leading to quench is an important aspect of high-temperature superconductors (HTS) in all practical applications. As a consequence of quench, transport current gets diverted to the matrix stabilizer material of the high-Tc composite and causes Joule heating till the original conditions are ...

  2. Sea surface temperature contributes to marine crocodylomorph evolution.

    Science.gov (United States)

    Martin, Jeremy E; Amiot, Romain; Lécuyer, Christophe; Benton, Michael J

    2014-08-18

    During the Mesozoic and Cenozoic, four distinct crocodylomorph lineages colonized the marine environment. They were conspicuously absent from high latitudes, which in the Mesozoic were occupied by warm-blooded ichthyosaurs and plesiosaurs. Despite a relatively well-constrained stratigraphic distribution, the varying diversities of marine crocodylomorphs are poorly understood, because their extinctions neither coincided with any major biological crises nor with the advent of potential competitors. Here we test the potential link between their evolutionary history in terms of taxic diversity and two abiotic factors, sea level variations and sea surface temperatures (SST). Excluding Metriorhynchoidea, which may have had a peculiar ecology, significant correlations obtained between generic diversity and estimated Tethyan SST suggest that water temperature was a driver of marine crocodylomorph diversity. Being most probably ectothermic reptiles, these lineages colonized the marine realm and diversified during warm periods, then declined or became extinct during cold intervals.

  3. Evolution of nuclear collectivity at high spins and temperatures

    International Nuclear Information System (INIS)

    Baktash, C.

    1989-01-01

    In the past few years, we have utilized the Spin Spectrometer and a variety of complementary probes (continuum γrays, proton-γ coincidence spectroscopy and γ decay of GDR) to study the nuclear response to the DIFFERENTIAL effects of increasing spin and temperature for constant values of excitation energy or spin, respectively. In this paper we shall describe two of the experiments that trace the properties of rapidly-rotating nuclei at small to moderate excitation energies. 22 refs., 7 figs

  4. Evolution of giant dipole resonance width at low temperatures ...

    Indian Academy of Sciences (India)

    techniques. Several experiments have been performed by bombarding 7–12 MeV/nucleon alpha beam on various targets (63Cu, 115In and 197Au) and new datasets ... appears to be constant at its ground state value until a critical temperature is reached and subse- ..... it was 38.6 MeV for 63Cu at 35 MeV incident energy.

  5. High Temperature Transducers for Online Monitoring of Microstructure Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Tittmann, Bernhard [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-03-30

    A critical technology gap exists relative to online condition monitoring (CM) of advanced nuclear plant components for damage accumulation; there are not capable sensors and infrastructure available for the high temperature environment. The sensory system, monitoring methodology, data acquisition, and damage characterization algorithm that comprise a CM system are investigated here. Thus this work supports the DOE mission to develop a fundamental understanding of advanced sensors to improve physical measurement accuracy and reduce uncertainty. The research involves a concept viability assessment, a detailed technology gap analysis, and a technology development roadmap.

  6. Brightness temperature simulation of snow cover based on snow grain size evolution using in situ data

    Science.gov (United States)

    Wu, Lili; Li, Xiaofeng; Zhao, Kai; Zheng, Xingming; Jiang, Tao

    2016-07-01

    Snow depth parameter inversion from passive microwave remote sensing is of great significance to hydrological process and climate systems. The Helsinki University of Technology (HUT) model is a commonly used snow emission model. Snow grain size (SGS) is one of the important input parameters, but SGS is difficult to obtain in broad areas. The time series of SGS are first evolved by an SGS evolution model (Jordan 91) using in situ data. A good linear relationship between the effective SGS in HUT and the evolution SGS was found. Then brightness temperature simulations are performed based on the effective SGS and evolution SGS. The results showed that the biases of the simulated brightness temperatures based on the effective SGS and evolution SGS were -6.5 and -3.6 K, respectively, for 18.7 GHz and -4.2 and -4.0 K for 36.5 GHz. Furthermore, the model is performed in six pixels with different land use/cover type in other areas. The results showed that the simulated brightness temperatures based on the evolution SGS were consistent with those from the satellite. Consequently, evolution SGS appears to be a simple method to obtain an appropriate SGS for the HUT model.

  7. Evolution of the microstructure in nanocrystalline copper electrodeposits during room temperature storage

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2007-01-01

    The microstructure evolution in copper electrodeposits at room temperature (self-annealing) was investigated by means of X-ray diffraction analysis and simultaneous measurement of the electrical resistivity as a function of time. In-situ studies were started immediately after electrodeposition......, crystallographic texture changes by multiple twinning and a decrease of the electrical resistivity occurred as a function of time at room temperature. The kinetics of self-annealing is strongly affected by the layer thickness: the thinner the layer the slower is the microstructure evolution and self-annealing...

  8. Shape evolution of 72,74Kr with temperature in covariant density functional theory

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Yi-Fei Niu

    2017-01-01

    The rich phenomena of deformations in neutron-deficient krypton isotopes,such as shape evolution with neutron number and shape coexistence,have attracted the interest of nuclear physicists for decades.It is interesting to study such shape phenomena using a novel way,e.g.by thermally exciting the nucleus.In this work,we develop the finite temperature covariant density functional theory for axially deformed nuclei with the treatment of pairing correlations by the BCS approach,and apply this approach for the study of shape evolution in 72,74Kr with increasing temperature.For 72Kr,with temperature increasing,the nucleus firstly experiences a relatively quick weakening in oblate deformation at temperature T~0.9 MeV,and then changes from oblate to spherical at T~2.1 MeV.For 74Kr,its global minimum is at quadrupole deformationβ2 ~-0.14 and abruptly changes to spherical at T~ 1.7 MeV.The proton pairing transition occurs at critical temperature 0.6 MeV following the rule Tc=0.6Ap(0),where △p(0) is the proton pairing gap at zero temperature.The signatures of the above pairing transition and shape changes can be found in the specific heat curve.The single-particle level evolutions with temperature are presented.

  9. Microstructural evolution in a Ti-Ta high-temperature shape memory alloy during creep

    International Nuclear Information System (INIS)

    Rynko, Ramona; Marquardt, Axel; Pauksen, Alexander; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther

    2015-01-01

    Alloys based on the titanium-tantalum system are considered for application as high-temperature shape memory alloys due to their martensite start temperatures, which can surpass 200 C. In the present work we study the evolution of microstructure and the influence of creep on the phase transformation behavior of a Ti 70 Ta 30 (at.%) high-temperature shape memory alloy. Creep tests were performed in a temperature range from 470 to 530 C at stresses between 90 and 150 MPa. The activation energy for creep was found to be 307 kJ mol -1 and the stress exponent n was determined as 3.7. Scanning and transmission electron microscopy investigations were carried out to characterize the microstructure before and after creep. It was found that the microstructural evolution during creep suppresses subsequent martensitic phase transformations.

  10. Complex temperature evolution of the electronic structure of CaFe2As2

    International Nuclear Information System (INIS)

    Adhikary, Ganesh; Biswas, Deepnarayan; Sahadev, Nishaina; Bindu, R.; Kumar, Neeraj; Dhar, S. K.; Thamizhavel, A.; Maiti, Kalobaran

    2014-01-01

    Employing high resolution photoemission spectroscopy, we investigate the temperature evolution of the electronic structure of CaFe 2 As 2 , which is a parent compound of high temperature superconductors—CaFe 2 As 2 exhibits superconductivity under pressure as well as doping of charge carriers. Photoemission results of CaFe 2 As 2 in this study reveal a gradual shift of an energy band, α away from the chemical potential with decreasing temperature in addition to the spin density wave (SDW) transition induced Fermi surface reconstruction across SDW transition temperature. The corresponding hole pocket eventually disappears at lower temperatures, while the hole Fermi surface of the β band possessing finite p orbital character survives till the lowest temperature studied. These results, thus, reveal signature of complex charge redistribution among various energy bands as a function of temperature

  11. The Evolution of the Celsius and Kelvin Temperature Scales and the State of the Art

    Science.gov (United States)

    Pellicer, Julio; Amparo Gilabert, M.; Lopez-Baeza, Ernesto

    1999-07-01

    A physical analysis is given of the evolution undergone by the Celsius and Kelvin temperature scales, from their definition to the present day. It is shown that in the temperature interval between the melting point of ice and the boiling point of water, the Celsius and Kelvin scales, both born centigrade by definition and actually become so afterwards by experimental determination as well, are not so any longer, either by definition or by experimental determination.

  12. Numerical modeling of hydration process and temperature evolution in early age concrete

    NARCIS (Netherlands)

    Caggiano, A.; Pepe, M.; Koenders, E.A.B.; Martinelli, E.; Etse, G.J.

    2012-01-01

    Heat production induced by the hydration reaction and the resulting temperature evolution in the early phases of setting and hardening processes are critical phenomena, often leading to premature cracking of concrete members. However, the interest for simulating such phenomena is also related to the

  13. Plastic strain induced damage evolution and martensitic transformation in ductile materials at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garion, C.; Skoczen, B.T.

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behavior at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of these irreversible phenomena, associated with the dissipation of plastic power, are included into the constitutive model of stainless steels at cryogenic temperatures. The model is tested on the thin-walled corrugated shells (known as bellows expansion joints) used in the interconnections of the Large Hadron Collider, the new proton storage ring being constructed at present at CERN

  14. Heterogeneous Cenozoic cooling of central Britain: insights into the complex evolution of the North Atlantic passive margin

    Science.gov (United States)

    Łuszczak, Katarzyna; Persano, Cristina; Stuart, Finlay

    2015-04-01

    The western flank of the North Atlantic passive margin has experienced multiple episodes of rock uplift and denudation during the Cenozoic that have been locally variable in scale. Two regional scale exhumation events have been identified: early Palaeogene and Neogene [see 1 for review]. The former has been identified both onshore and offshore and it appears to be temporally coincident with basaltic magmatism related to the arrival of the proto-Iceland mantle plume beneath thinned continental lithosphere, which may have cause long wavelength, low amplitude dynamic uplift. Quantifying the amount of early Palaeogene exhumation using mineral thermochronometers may be complicated by elevated heat flow. The magnitude and timing of exhumation during the Neogene is even less clear, as is the driving mechanism. Quantifying the amount of early Palaeogene exhumation, determining the precise timing as well as the amount of uplift and erosion in the Neogene, require detailed application of low temperature thermochronometers. Here we present the first multiple low temperature thermochronometer study from S Scotland, N England and N Wales. New apatite fission track (AFT) data are integrated with apatite and zircon (U-Th-Sm)/He (AHe and ZHe, respectively) ages to establish regional rock cooling history from 200°C to 30°C. To precisely constrain the early Palaeogene cooling history, and to better define the possible Neogene cooling event, >20 single grain AHe ages have been produced on key samples and modelled using the newly codified HelFrag technique. The new AFT and AHe ages confirm earlier studies that show the Lake District and North Pennines experienced rapid cooling from >120°C in the Palaeogene. The amount of cooling/exhumation gradually decreases northwards into S Scotland and southwards in N Wales; there is no evidence for the rapid Palaeogene event in areas ~70 km from the Lake District centre. Inverse modelling of the AHe and AFT data suggest that the rapid cooling

  15. Study of the temperature evolution of defect agglomerates in neutron irradiated molybdenum single crystals

    International Nuclear Information System (INIS)

    Lambri, O.A.; Zelada-Lambri, G.I.; Cuello, G.J.; Bozzano, P.B.; Garcia, J.A.

    2009-01-01

    Small angle neutron scattering as a function of temperature, differential thermal analysis, electrical resistivity and transmission electron microscopy studies have been performed in low rate neutron irradiated single crystalline molybdenum, at room temperature, for checking the evolution of the defects agglomerates in the temperature interval between room temperature and 1200 K. The onset of vacancies mobility was found to happen in temperatures within the stage III of recovery. At around 550 K, the agglomerates of vacancies achieve the largest size, as determined from the Guinier approximation for spherical particles. In addition, the decrease of the vacancy concentration together with the dissolution of the agglomerates at temperatures higher than around 920 K was observed, which produce the release of internal stresses in the structure.

  16. Study of the temperature evolution of defect agglomerates in neutron irradiated molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lambri, O.A. [Instituto de Fisica Rosario. Member of the CONICET' s Research Staff, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina); Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Zelada-Lambri, G.I. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina); Cuello, G.J. [Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble (France); Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain); Bozzano, P.B. [Laboratorio de Microscopia Electronica. Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, (1650) San Martin (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2009-04-15

    Small angle neutron scattering as a function of temperature, differential thermal analysis, electrical resistivity and transmission electron microscopy studies have been performed in low rate neutron irradiated single crystalline molybdenum, at room temperature, for checking the evolution of the defects agglomerates in the temperature interval between room temperature and 1200 K. The onset of vacancies mobility was found to happen in temperatures within the stage III of recovery. At around 550 K, the agglomerates of vacancies achieve the largest size, as determined from the Guinier approximation for spherical particles. In addition, the decrease of the vacancy concentration together with the dissolution of the agglomerates at temperatures higher than around 920 K was observed, which produce the release of internal stresses in the structure.

  17. An attempt to reconstruct geodynamically the Belgian palaeogene basin from mineralogical clay data, from radioelement (U, Th, K2O) geochemistry and palynology

    International Nuclear Information System (INIS)

    Quinif, Yves; Mercier, Monique; Dupuis Christian; Roche, Emile

    1983-01-01

    By analysing clay mineralogy, U-Th-K 2 O geochemistry and palynology data, we find that the Belgian Palaeogene is dominated by the action of a biostasic period toward the end of the lower Eocene. At the middle Eocene starts a new phase, at least a rhexistasic one at the begining. In the Basin, the geochemical and mineralogical traces of this phase just start from the upper Eocene [fr

  18. Evolution of the microstructure in electrochemically deposited copper films at room temperature

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2007-01-01

    The room temperature evolution of the microstructure in copper electrodeposits (self-annealing) was investigated by means of X-ray diffraction analysis and simultaneous measurement of the electrical resistivity as a function of time with an unprecedented time resolution. Independent of the copper...... the crystallographic texture changes by a multiple twinning mechanism. The kinetics of self-annealing is strongly affected by the thickness of the deposit. Storage of the copper films at sub-zero temperatures effectively hinders self-annealing and does not affect the kinetics of self-annealing upon reheating to room...... temperature....

  19. Temperature-dependent evolution of chemisorbed digermane in Ge thin film growth

    International Nuclear Information System (INIS)

    Eres, D.; Sharp, J.W.

    1992-01-01

    The formation and evolution of chemisorbed digermane layers in context with germanium thin film growth was investigated by time- resolved surface reflectometry. Modulation of the source gas supply made possible the separation and independent study of the temperature dependence of the adsorption and desorption processes. The regeneration of active sites by molecular hydrogen desorption was identified as the rate-limiting step at low substrate temperatures. A dynamic method of thin film growth was demonstrated by repetitively replenishing the active film growth sites regenerated between two successive source gas pulses. The film growth rate was shown to be related to the substrate temperature and the delay time between successive source gas pulses

  20. Time evolution of temperature fluctuation in a non-equilibrated system

    International Nuclear Information System (INIS)

    Bhattacharyya, Trambak; Garg, Prakhar; Sahoo, Raghunath; Samantray, Prasant

    2016-01-01

    The evolution equation for inhomogeneous and anisotropic temperature fluctuation inside a medium is derived within the ambit of Boltzmann Transport Equation (BTE) for a hot gas of massless particles. Also, specializing to a situation created after a heavy-ion collision (HIC), we analyze the Fourier space variation of temperature fluctuation of the medium using its temperature profile. The effect of viscosity on the variation of fluctuations in the latter case is investigated and possible implications for early universe cosmology, and its connection with HICs are also explored. (orig.)

  1. Time evolution of temperature fluctuation in a non-equilibrated system

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Trambak; Garg, Prakhar; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Simrol (India); Samantray, Prasant [Indian Institute of Technology Indore, Centre of Astronomy, School of Basic Sciences, Simrol (India)

    2016-09-15

    The evolution equation for inhomogeneous and anisotropic temperature fluctuation inside a medium is derived within the ambit of Boltzmann Transport Equation (BTE) for a hot gas of massless particles. Also, specializing to a situation created after a heavy-ion collision (HIC), we analyze the Fourier space variation of temperature fluctuation of the medium using its temperature profile. The effect of viscosity on the variation of fluctuations in the latter case is investigated and possible implications for early universe cosmology, and its connection with HICs are also explored. (orig.)

  2. Temperature evolution during magma ascent in basaltic effusive eruptions: A numerical application to Stromboli volcano

    Science.gov (United States)

    La Spina, G.; Burton, M.; de'Michieli Vitturi, M.

    2015-09-01

    The dynamics of magma ascent are controlled by the complex, interdependent processes of crystallisation, rheological evolution, gas exsolution, outgassing, non-ideal gas expansion and temperature evolution. Temperature changes within the conduit, in particular, play a key role on ascent dynamics, since temperature strongly controls the crystallisation process, which in turn has an impact on viscosity and thus on magma ascent rate. The cooling produced by gas expansion is opposed by the heat produced by crystallisation, and therefore the temperature profile within the conduit is quite complex. This complexity means that unravelling the dynamics controlling magma ascent requires a numerical model. Unfortunately, comprehensive, integrated models with full thermodynamic treatment of multiple phases and rheological evolution are challenging to produce, due to the numerical challenges involved. Until now, models have tended to focus on aspects of the problem, without a holistic approach in which petrological, thermodynamic, rheological and degassing processes, and their interactions, were all explicitly addressed and quantified. Here, we present a new, multiphase steady-state model for magma ascent in which the main physical and chemical processes, such as crystallisation, degassing, outgassing, rheological evolution and temperature variations, are quantitatively calculated. Basaltic magma's crystallisation and flow are sensitive to initial temperature and volatile content, and therefore we investigate temperature variations during magma ascent in a basaltic system with a range of volatile contents. As a test case, we use one of the most well-studied recent basaltic effusive eruptions: the 2007 eruption of Stromboli, Italy. Assuming equilibrium crystallisation and exsolution, we compare the solutions obtained both with and without an isothermal constraint, finding that temperature variations within the conduit have a significant influence on the ascent dynamics and

  3. Microstructure evolution and mechanical properties of a particulate reinforced magnesium matrix composites forged at elevated temperatures

    International Nuclear Information System (INIS)

    Deng, K.K.; Wu, K.; Wang, X.J.; Wu, Y.W.; Hu, X.S.; Zheng, M.Y.; Gan, W.M.; Brokmeier, H.G.

    2010-01-01

    SiCp/AZ91 magnesium matrix composite was fabricated by stir casting. The as-cast ingots were cut into cylindrical billets, and then forged at different temperatures (320, 370, 420, 470 and 520 deg. C) at a constant RAM speed of 15 mm/s with 50% reduction. The microstructure evolution of the composites during forging was investigated by optical microscope, scanning electron microscope, and transmission electron microscope. The texture of the forged composites was measured by neutron diffraction. Mechanical properties of the composite at different forging temperatures were tested by tensile tests at room temperature. It was found that a strong basal plane texture formed during forging, and the intensity of basal plane texture weakened as forging temperatures increased. The particle distribution in the composite was significantly improved by hot forging. Typical microstructures were obtained after forging at different temperatures and the composite with different microstructures offered different mechanical properties during tensile test.

  4. Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.

    Science.gov (United States)

    Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang

    2017-10-25

    Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.

  5. In-situ investigation of the microstructure evolution in nanocrystalline copper electrodeposits at room temperature

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2006-01-01

    The microstructure evolution in copper electrodeposits at room temperature (self-annealing) was investigated by means of x-ray diffraction analysis and simultaneous measurements of the electrical resistivity as a function of time. In situ studies were started immediately after deposition...... growth, crystallographic texture changes by multiple twinning, and a decrease of the electrical resistivity occurred as a function of time at room temperature. The kinetics of self-annealing is strongly affected by the layer thickness: the thinner the layer, the slower the microstructure evolution is......, and self-annealing is suppressed completely for a thin layer with 0.4 µm. The preferred crystallographic orientation of the as-deposited crystallites is suggested to cause the observed thickness dependence of the self-annealing kinetics. ©2006 American Institute of Physics...

  6. Temperature evolution in a magnetohydrodynamics simulation of a reversed-field pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2010-01-01

    The temperature evolution in a magnetohydrodynamics (MHD) simulation of a reversed-field pinch (RFP) is investigated including thermal conductivity. For numerical reasons, an isotropic thermal conductivity is used, even though in a RFP plasma the parallel conductivity is much larger than the perpendicular one so that magnetic field lines tend to become isothermal. The system shows alternating multiple helicity states and quasi-single helicity states. Single-helical-axis states are formed when the amplitude of the dominant mode is above a determined threshold, as observed in experiments. The relation between heat transport and magnetic field topology that is observed in RFP experiments cannot be found in the simulation, since thermal conductivity is independent of the magnetic field. This difficulty should be taken into account in the numerical investigation of the RFP dynamics. In this paper, the first description of the temperature evolution in a compressible MHD simulation of a RFP is given.

  7. Temperature and Pressure Evolution during Al Alloy Solidification at Different Squeeze Pressures

    International Nuclear Information System (INIS)

    Li, Junwen; Zhao, Haidong; Chen, Zhenming

    2015-01-01

    Squeeze casting is an advanced and near net-shape casting process, in which external high pressure is applied to solidifying castings. The castings are characterized with fine grains and good mechanical properties. In this study, a series of experiments were carried out to measure the temperature and pressure histories in cavity of Al-Si-Mg direct squeeze castings with different applied solidification pressures of 0.1, 50, 75, and 100 MPa. The evolution of the measured temperatures and pressures was compared and discussed. The effect of pressure change on formation of shrinkage defects was analyzed. Further the friction between the castings and dies during solidification was calculated. It is shown that the applied squeeze pressure has significant influence on the friction at die and casting interfaces, which affects the pressure evolution and transmission. The results could provide some benchmark data for future thermal-mechanics coupled modeling of squeeze castings. (paper)

  8. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Cheng, Sirui; Wang, Chunju; Ma, Mingzhen; Shan, Debin; Guo, Bin

    2016-01-01

    In the Zr_4_1_._2Ti_1_3_._8Cu_1_2_._5Ni_1_0Be_2_2_._5 (Vit1) alloy undergoing high temperature deformation, its thermal properties and microstructure are quite different from those in the annealing alloy. In order to research the coupled effect of temperature and plastic strain on microstructural evolution of Zr-based amorphous, uniaxial compression test of Vit1 alloy with good amorphous nature has been performed, and then the structural state and thermal properties of Vit1 alloy after thermal deformation and isothermal annealing in the supercooled liquid region were investigated. It is revealed that the deformed specimens possess higher characteristic temperature and lower enthalpy change of microstructural relaxation. In addition, the smaller inter-atomic distance and higher order degree of atomic arrangement can be observed in those deformed Vit1 alloy. That can be deduced that thermal deformation is in favor of the microstructural evolution from a metastable amorphous state to stable crystallization state, because plastic strain promotes the annihilation of free volume and provide excess driving force of atomic diffusion. However, upon increasing the ambient temperature, the influence of plastic deformation on microstructure gradually decreased owing to the decreasing proportion of the plastic deformation-induced annihilation of free volume during the whole thermal deformation process. - Highlights: • The deformed specimens possess closer microstructure and higher characteristic temperatures. • The order degree of microstructures in deformed specimens is higher than that in annealed specimens. • Thermal deformation accelerates the microstructural evolution of Zr-based BMGs. • The influence of thermal deformation on microstructure decreases with the temperature increasing.

  9. Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Sirui [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Chunju [Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Mingzhen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Shan, Debin, E-mail: shandebin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Bin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-15

    In the Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} (Vit1) alloy undergoing high temperature deformation, its thermal properties and microstructure are quite different from those in the annealing alloy. In order to research the coupled effect of temperature and plastic strain on microstructural evolution of Zr-based amorphous, uniaxial compression test of Vit1 alloy with good amorphous nature has been performed, and then the structural state and thermal properties of Vit1 alloy after thermal deformation and isothermal annealing in the supercooled liquid region were investigated. It is revealed that the deformed specimens possess higher characteristic temperature and lower enthalpy change of microstructural relaxation. In addition, the smaller inter-atomic distance and higher order degree of atomic arrangement can be observed in those deformed Vit1 alloy. That can be deduced that thermal deformation is in favor of the microstructural evolution from a metastable amorphous state to stable crystallization state, because plastic strain promotes the annihilation of free volume and provide excess driving force of atomic diffusion. However, upon increasing the ambient temperature, the influence of plastic deformation on microstructure gradually decreased owing to the decreasing proportion of the plastic deformation-induced annihilation of free volume during the whole thermal deformation process. - Highlights: • The deformed specimens possess closer microstructure and higher characteristic temperatures. • The order degree of microstructures in deformed specimens is higher than that in annealed specimens. • Thermal deformation accelerates the microstructural evolution of Zr-based BMGs. • The influence of thermal deformation on microstructure decreases with the temperature increasing.

  10. A new Late Eocene primate from the Krabi Basin (Thailand) and the diversity of Palaeogene anthropoids in southeast Asia.

    Science.gov (United States)

    Chaimanee, Yaowalak; Chavasseau, Olivier; Lazzari, Vincent; Euriat, Adélaïde; Jaeger, Jean-Jacques

    2013-11-22

    According to the most recent discoveries from the Middle Eocene of Myanmar and China, anthropoid primates originated in Asia rather than in Africa, as was previously considered. But the Asian Palaeogene anthropoid community remains poorly known and inadequately sampled, being represented only from China, Myanmar, Pakistan and Thailand. Asian Eocene anthropoids can be divided into two distinct groups, the stem group eosimiiforms and the possible crown group amphipithecids, but the phylogenetic relationships between these two groups are not well understood. Therefore, it is critical to understand their evolutionary history and relationships by finding additional fossil taxa. Here, we describe a new small-sized fossil anthropoid primate from the Late Eocene Krabi locality in Thailand, Krabia minuta, which shares several derived characters with the amphipithecids. It displays several unique dental characters, such as extreme bunodonty and reduced trigon surface area, that have never been observed in other Eocene Asian anthropoids. These features indicate that morphological adaptations were more diversified among amphipithecids than was previously expected, and raises the problem of the phylogenetic relations between the crown anthropoids and their stem group eosimiiforms, on one side, and the modern anthropoids, on the other side.

  11. Temporal evolutions of electron temperature and density of turbulently-heated tokamak plasmas in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Nakamura, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-04-01

    The temporal evolution of the electron temperature and density are measured in a turbulent heating experiment in TRIAM-1. Skin-like profiles of the electron temperature and density are clearly observed. The anomality in the electrical resistivity of the plasma in this skin-layer is estimated, and the plasma heating in this skin-layer is regarded as being due to anomalous joule heating arising from this anomalous resistivity. The ratio of drift velocity to electron thermal velocity in the layer is also calculated, and it is shown that the conditions needed to make the current-driven ion-acoustic instability triggerable are satisfied.

  12. Evolution of the electron temperature profile of ohmically heated plasmas in TFTR

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Arunasalam, V.

    1985-08-01

    Blackbody electron cyclotron emission was used to ascertain and study the evolution and behavior of the electron temperature profile in ohmically heated plasmas in the Tokamak Fusion Test Reactor (TFTR). The emission was measured with absolutely calibrated millimeter wavelength radiometers. The temperature profile normalized to the central temperature and minor radius is observed to broaden substantially with decreasing limiter safety factor q/sub a/, and is insensitive to the plasma minor radius. Sawtooth activity was seen in the core of most TFTR discharges and appeared to be associated with a flattening of the electron temperature profile within the plasma core where q less than or equal to 1. Two types of sawtooth behavior were identified in large TFTR plasmas (minor radius, a less than or equal to 0.8 m) : a typically 35 to 40 msec period ''normal'' sawtooth, and a ''compound'' sawtooth with 70 to 80 msec period

  13. Real time evolution at finite temperatures with operator space matrix product states

    International Nuclear Information System (INIS)

    Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine

    2014-01-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)

  14. Real time evolution at finite temperatures with operator space matrix product states

    Science.gov (United States)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  15. Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species

    Science.gov (United States)

    Gonçalves, Paula; Valério, Elisabete; Correia, Cláudia; de Almeida, João M. G. C. F.; Sampaio, José Paulo

    2011-01-01

    The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurrence in sympatry of Saccharomyces species, we screened Saccharomyces genomic data for protein divergence that might be correlated to distinct growth temperature preferences of the species, using the dN/dS ratio as a measure of protein evolution rates and pair-wise species comparisons. In addition to proteins previously implicated in growth at suboptimal temperatures, we found that glycolytic enzymes were among the proteins exhibiting higher than expected divergence when one cryotolerant and one thermotolerant species are compared. By measuring glycolytic fluxes and glycolytic enzymatic activities in different species and at different temperatures, we subsequently show that the unusual divergence of glycolytic genes may be related to divergent evolution of the glycolytic pathway aligning its performance to the growth temperature profiles of the different species. In general, our results support the view that growth temperature preference is a trait that may have undergone divergent selection in the course of ecological speciation in Saccharomyces. PMID:21674061

  16. Modelling the temperature evolution of bone under high intensity focused ultrasound

    Science.gov (United States)

    ten Eikelder, H. M. M.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B. J. T.; van Wijk, J. H.; van Dijk, E. V. M.; Modena, D.; Yeo, S. Y.; Grüll, H.

    2016-02-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  17. Modelling the temperature evolution of bone under high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Ten Eikelder, H M M; Bošnački, D; Breuer, B J T; Van Wijk, J H; Van Dijk, E V M; Modena, D; Yeo, S Y; Grüll, H; Elevelt, A; Donato, K; Di Tullio, A

    2016-01-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  18. Morphology evolution of gold nanoparticles as function of time, temperature, and Au(III)/sodium ascorbate molar ratio

    Energy Technology Data Exchange (ETDEWEB)

    Priolisi, Ornella, E-mail: ornella.priolisi@depretto.gov.it [ITIS “De Pretto” (Italy); Fabrizi, Alberto, E-mail: fabrizi@gest.unipd.it [University of Padova, Department of Management and Engineering (Italy); Deon, Giovanna, E-mail: giovanna.deon@depretto-vi.it [ITIS “De Pretto” (Italy); Bonollo, Franco, E-mail: bonollo@gest.unipd.it [University of Padova, Department of Management and Engineering (Italy); Cattini, Stefano, E-mail: stefano.cattini@unimore.it [University of Modena and Reggio Emilia, Department of Engineering Enzo Ferrari (Italy)

    2016-01-15

    In this work the morphology evolution of Au nanoparticles (AuNPs), obtained by direct reduction, was studied as a function of time, temperature, and Au(III)/sodium ascorbate molar ratio. The NPs morphology was examined by transmission electron microscope with image analysis, while time evolution was investigated by visible and near-infrared absorption spectroscopy and dynamic light scattering. It is found that initially formed star-like NPs transform in more spheroidal particles and the evolution appears more rapid by increasing the temperature while a large amount of reducing agent prevents the remodeling of AuNPs. An explication of morphology evolution is proposed.

  19. The evolution of temperature and bolometric luminosity in Type II supernovae

    Science.gov (United States)

    Faran, T.; Nakar, E.; Poznanski, D.

    2018-01-01

    In this work, we present a uniform analysis of the temperature evolution and bolometric luminosity of a sample of 29 Type II supernovae (SNe), by fitting a blackbody model to their multiband photometry. Our sample includes only SNe with high quality multiband data and relatively well-sampled time coverage. Most of the SNe in our sample were detected less than a week after explosion so their light curves cover the evolution both before and after recombination starts playing a role. We use this sample to study the signature of hydrogen recombination, which is expected to appear once the observed temperature drops to ≈7000 K. Theory predicts that before recombination starts affecting the light curve, both the luminosity and the temperature should drop relatively fast, following a power law in time. Once the recombination front reaches inner parts of the outflow, it sets the observed temperature to be nearly constant, and slows the decline of the luminosity (or even leads to a re-brightening). We compare our data to analytic studies and find strong evidence for the signature of recombination. We also find that the onset of the optical plateau in a given filter, is effectively the time at which the blackbody peak reaches the central wavelength of the filter, as it cools, and it does not correspond to the time at which recombination starts affecting the emission.

  20. Investigation on the Permeability Evolution of Gypsum Interlayer Under High Temperature and Triaxial Pressure

    Science.gov (United States)

    Tao, Meng; Yechao, You; Jie, Chen; Yaoqing, Hu

    2017-08-01

    The permeability of the surrounding rock is a critical parameter for the designing and assessment of radioactive waste disposal repositories in the rock salt. Generally, in the locations that are chosen for radioactive waste storage, the bedded rock salt is a sedimentary rock that contains NaCl and Na2SO4. Most likely, there are also layers of gypsum ( {CaSO}_{ 4} \\cdot 2 {H}_{ 2} {O)} present in the salt deposit. Radioactive wastes emit a large amount of heat and hydrogen during the process of disposal, which may result in thermal damage of the surrounding rocks and cause a great change in their permeability and tightness. Therefore, it is necessary to investigate the permeability evolution of the gypsum interlayer under high temperature and high pressure in order to evaluate the tightness and security of the nuclear waste repositories in bedded rock salt. In this study, a self-designed rock triaxial testing system by which high temperature and pressure can be applied is used; the μCT225kVFCB micro-CT system is also employed to investigate the permeability and microstructure of gypsum specimens under a constant hydrostatic pressure of 25 MPa, an increasing temperature (ranging from 20 to 650 °C), and a variable inlet gas pressure (1, 2, 4, 6 MPa). The experimental results show: (a) the maximum permeability measured during the whole experiment is less than 10-17 m2, which indicates that the gypsum interlayer has low permeability under high temperature and pressure that meet the requirements for radioactive waste repository. (b) Under the same temperature, the permeability of the gypsum specimen decreases at the beginning and then increases as the pore pressure elevates. When the inlet gas pressure is between 0 and 2 MPa, the Klinkenberg effect is very pronounced. Then, as the pore pressure increases, the movement behavior of gas molecules gradually changes from free motion to forced directional motion. So the role of free movement of gas molecules gradually

  1. Calculations of the Temperature Evolution of a Repository for Spent Fuel in Crystalline and Sedimentary Rocks

    International Nuclear Information System (INIS)

    Sato, R.; Sasaki, T.; Ando, K.; Smith, P.A.; Schneider, J.W.

    1998-08-01

    Thermal evolution is a factor influencing repository design, and must be considered in safety assessment, since many of the processes that affect the long-term safety are temperature dependent. This report presents calculations of the thermal evolution of a repository for spent nuclear fuel. The calculations are based on a provisional repository near-field design in which spent fuel is encapsulated in composite copper-steel canisters, which are emplaced centrally along the horizontal axes of repository tunnels, with the space around the canisters backfilled with bentonite. The temperature of these near-field components varies with time, due to the radiogenic heat produced by the spent fuel. The rate of heat production per canister depends on the initial composition of the fuel, its reactor history, the period of intermediate storage before final disposal and the loading of the canisters. The rate decreases with time, as shorter-lived radionuclides decay. The base-case calculation considers spent fuel that is assumed to generate 1000 W per canister, 40 years after unloading of the fuel from the reactor. The results of the base case calculation indicate that the temperatures at the bentonite/host rock interface, at the centre of the bentonite and at the bentonite/canister interface rise to 98 o C, 103 o C and 126 o C, respectively, before declining towards the ambient temperature of the host rock which, in the base case, is taken to be the crystalline basement of Northern Switzerland. In addition to the base case, parameter variations are examined that investigate the sensitivity of thermal evolution to alternative heat output, design specifications and to uncertainties in material properties. Key findings include (i), that an increase in heat generation to 1500 W per canister 40 years after unloading results in a significant increase of repository temperatures (e.g. at the bentonite/host rock interface, an increase of 22 o C is observed), (ii), that a decrease in

  2. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: Mineralogical and thermodynamic constraints on Palaeogene palaeotemperature conditions during low-grade metamorphism of basaltic lavas recovered from the Lopra-1/1A deep hole, Faroe Islands

    Directory of Open Access Journals (Sweden)

    Glassley, William E.

    2006-07-01

    Full Text Available The sequene of secondary minerals that are reported for the Lopra-1/1A well records progressive zeolite facies to prehnite–pumpellyite-facies mineral progressions consistent with those of other wellstudied hydrothermally altered rock sequences. Detailed comparison of the calc–silicate (zeolites and prehnite mineral distributions of the Lopra-1/1A sequence with those from other regions indicates that this sequence exhibits consistently longer down-hole intervals for secondary mineral species than reported elsewhere. When compared to measured down-hole temperatures reported in other hydrothermally altered regions, the results suggest that the Lopra-1/1A mineral progression formed under conditions typical of low temperature hydrothermal systems that form shortly after eruption of thick basaltic piles. Maximum temperatures achieved at the 3500 m level of the well were at or below 200°C. The implied geothermal gradient was less than 50°C/km. An analysis of prehnite – fluid composition relationships was also conducted in order to determine if results compatible with the paragenetic sequence study could be obtained from thermodynamic constraints. In this case, thelimiting temperature for prehnite formation in equilibrium with albite–quartz–calcite–laumontite (the mineral assemblage at the bottom of the hole was determined for a range of fluid compositions.The resulting calculations suggest temperatures of formation of prehnite in the range of 140°C to 205°C, a conclusion which is broadly consistent with those reached from study of the parageneticrelationships. Comparison of these results with other studies of palaeogeothermal gradients of the North Atlantic margins suggests a consistent pattern in which relatively low geothermal gradientspersisted in the Palaeogene rift basin.

  3. Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities

    Directory of Open Access Journals (Sweden)

    C. Bréant

    2017-07-01

    Full Text Available The transformation of snow into ice is a complex phenomenon that is difficult to model. Depending on surface temperature and accumulation rate, it may take several decades to millennia for air to be entrapped in ice. The air is thus always younger than the surrounding ice. The resulting gas–ice age difference is essential to documenting the phasing between CO2 and temperature changes, especially during deglaciations. The air trapping depth can be inferred in the past using a firn densification model, or using δ15N of air measured in ice cores. All firn densification models applied to deglaciations show a large disagreement with δ15N measurements at several sites in East Antarctica, predicting larger firn thickness during the Last Glacial Maximum, whereas δ15N suggests a reduced firn thickness compared to the Holocene. Here we present modifications of the LGGE firn densification model, which significantly reduce the model–data mismatch for the gas trapping depth evolution over the last deglaciation at the coldest sites in East Antarctica (Vostok, Dome C, while preserving the good agreement between measured and modelled modern firn density profiles. In particular, we introduce a dependency of the creep factor on temperature and impurities in the firn densification rate calculation. The temperature influence intends to reflect the dominance of different mechanisms for firn compaction at different temperatures. We show that both the new temperature parameterization and the influence of impurities contribute to the increased agreement between modelled and measured δ15N evolution during the last deglaciation at sites with low temperature and low accumulation rate, such as Dome C or Vostok. We find that a very low sensitivity of the densification rate to temperature has to be used in the coldest conditions. The inclusion of impurity effects improves the agreement between modelled and measured δ15N at cold East Antarctic sites during the last

  4. On the evolution of a two component, two temperature, fully ionised plasma in electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Oeien, A H

    1975-01-01

    When inhomogenities and fields are not too strong, transients of distribution function, correlation functions and fields which may appear when the plasma evolves from an initial state out of equilibrium are derived, applying the multiple time scale method to the BBGKY and field equations. It is also shown that, at the end of an initial stage, kinetic equations and sets of approximate field equations will govern the evolution further on. In part II a study of the evolution further on is performed when conditions are such that distribution functions to lowest order may reach local Maxwellians with different temperatures for electrons and ions. Using the same method as above, the transient behaviour into a state where macroscopic and field equations take over the leadership in the evolution is derived, and the governing equations further on, together with correcting kinetic equations, are obtained up to an order of approximation higher than before. In part III a set of lower order and a set of higher order correcting kinetic equations from part II, which correspond partly to equations for the Chapman-Enskog and the Burnett levels of approximations, are solved qualitatively. New results for various transports of a two temperature plasma are obtained.

  5. Microstrain temperature evolution in β-eucryptite ceramics: Measurement and model

    International Nuclear Information System (INIS)

    Bruno, G.; Garlea, V.O.; Muth, J.; Efremov, A.M.; Watkins, T.R.; Shyam, A.

    2012-01-01

    Mechanisms of microcracking and stress release in β-eucryptite ceramics were investigated by applying a combination of neutron diffraction (ND), dilatometry and the Integrity Factor Model (IFM). It was observed that the macroscopic thermal expansion of solid samples closely follows the lattice thermal expansion as a function of temperature, and both are dominated by microcracks closing (during heating) and opening (during cooling). Analogous experiments on powders showed that the stresses that manifest peak shift are indeed relieved by comminution, and that the resulting lattice thermal expansion can be considered as unconstrained. By means of Rietveld refinement of the ND data, the evolution with temperature of peak width parameters linked to strain distributions along the basal, pyramidal and axial planes could also be extracted. The peak width parameters S HKL correlated well with the strains calculated by peak shift and with the model results. Furthermore, while the peak shifts showed that the powders are basically stress free, the S HKL showed a strong evolution of the peak width. Powders carry, therefore, a measurable strain distribution inside the particles, owing to the thermal expansion anisotropy of the crystallites. The IFM allowed this behavior to be rationalized, and the effect of microcracking on thermal expansion to be quantified. Experimental data allowed accurate numerical prediction of microcracking on cooling and of the evolution of microstresses. They also allowed the derivation of the material elastic modulus from bulk thermal expansion curves through the IFM concept. Ultrasound resonance measurements of the elastic modulus strongly support these theoretical predictions.

  6. Deformation and structure evolution of glassy poly(lactic acid) below the glass transition temperature

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Yao

    2015-01-01

    , the onset of the mesocrystal formation is delayed to a higher strain value, whereas corresponding to the same critical orientation degree of amorphous chains (f(am) approximate to 0.45). The DSC results indicated that the post-T-g endothermic peak corresponding to the melting of mesocrystal appears...... and shifts to a higher temperature with increasing stretching temperature, followed by the down-shifts (to a lower temperature) of the exothermic peak of cold crystallization of PLA. The appearance of a small exothermic peak just before the melting peak related to the transition of the alpha' to alpha...... crystal implies the formation of an alpha' crystal during cold crystallization in the drawn PLA samples. The structure evolution of glassy PLA stretched below T-g was discussed in details....

  7. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    DEFF Research Database (Denmark)

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben

    2013-01-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular...... evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae...... species (Brachypodium distachyon, wheat (Triticum aestivum), barley (Hordeum vulgare), Lolium perenne and Festuca pratensis). Nonsynonymous substitution rate differences between Pooideae and warm habitat-adapted species were elevated in LTI trees compared with all trees. Furthermore, signatures...

  8. Rapid action in the Palaeogene, the relationship between phenotypic and taxonomic diversification in Coenozoic mammals

    Science.gov (United States)

    Raia, P.; Carotenuto, F.; Passaro, F.; Piras, P.; Fulgione, D.; Werdelin, L.; Saarinen, J.; Fortelius, M.

    2013-01-01

    A classic question in evolutionary biology concerns the tempo and mode of lineage evolution. Considered variously in relation to resource utilization, intrinsic constraints or hierarchic level, the question of how evolutionary change occurs in general has continued to draw the attention of the field for over a century and a half. Here we use the largest species-level phylogeny of Coenozoic fossil mammals (1031 species) ever assembled and their body size estimates, to show that body size and taxonomic diversification rates declined from the origin of placentals towards the present, and very probably correlate to each other. These findings suggest that morphological and taxic diversifications of mammals occurred hierarchically, with major shifts in body size coinciding with the birth of large clades, followed by taxonomic diversification within these newly formed clades. As the clades expanded, rates of taxonomic diversification proceeded independently of phenotypic evolution. Such a dynamic is consistent with the idea, central to the Modern Synthesis, that mammals radiated adaptively, with the filling of adaptive zones following the radiation. PMID:23173207

  9. Phase competition and anomalous thermal evolution in high-temperature superconductors

    Science.gov (United States)

    Yu, Zuo-Dong; Zhou, Yuan; Yin, Wei-Guo; Lin, Hai-Qing; Gong, Chang-De

    2017-07-01

    The interplay of competing orders is relevant to high-temperature superconductivity known to emerge upon suppression of a parent antiferromagnetic order typically via charge doping. How such interplay evolves at low temperature—in particular at what doping level the zero-temperature quantum critical point (QCP) is located—is still elusive because it is masked by the superconducting state. The QCP had long been believed to follow a smooth extrapolation of the characteristic temperature T* for the strange normal state well above the superconducting transition temperature. However, recently the T* within the superconducting dome was reported to unexpectedly exhibit back-bending likely in the cuprate Bi2Sr2CaCu2O8 +δ . Here we show that the original and revised phase diagrams can be understood in terms of weak and moderate competitions, respectively, between superconductivity and a pseudogap state such as d -density or spin-density wave, based on both Ginzburg-Landau theory and the realistic t -t'-t''-J -V model for the cuprates. We further found that the calculated temperature and doping-level dependence of the quasiparticle spectral gap and Raman response qualitatively agrees with the experiments. In particular, the T* back-bending can provide a simple explanation of the observed anomalous two-step thermal evolution dominated by the superconducting gap and the pseudogap, respectively. Our results imply that the revised phase diagram is likely to take place in high-temperature superconductors.

  10. Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woei-Shyan, E-mail: wslee@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Chi-Feng [National Center for High-Performance Computing, Hsin-Shi Tainan County 744, Taiwan (China); Chen, Tao-Hsing [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Chen, Hong-Wei [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2011-07-25

    A compressive split-Hopkinson pressure bar and transmission electron microscope (TEM) are used to investigate the mechanical behaviour and microstructural evolution of Inconel 718 at strain rates ranging from 1000 to 5000 s{sup -1} and temperatures between -150 and 550 deg. C. The results show that the flow stress increases with an increasing strain rate or a reducing temperature. The strain rate effect is particularly pronounced at strain rates greater than 3000 s{sup -1} and a deformation temperature of -150 deg. C. A significant thermal softening effect occurs at temperatures between -150 and 25 deg. C. The microstructural observations reveal that the strengthening effect in deformed Inconel 718 alloy is a result primarily of dislocation multiplication. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. By contrast, the dislocation cell size decreases with increasing strain rate, but increases with increasing temperature. It is shown that the correlation between the flow stress, the dislocation density and the dislocation cell size is well described by the Bailey-Hirsch constitutive equations.

  11. Research on the impacts of air temperature on the evolution of nanosecond pulse discharge products

    International Nuclear Information System (INIS)

    Yu, Jin-lu; He, Li-ming; Ding, Wei; Zhao, Zi-chen; Zhang, Hua-lei

    2016-01-01

    Highlights: • Most of the O_2 particles become O_2(V1) in high temperature. • The O_3 molecules are produced mainly by decayed O atoms. • NO molecules are obtained by decayed N_2(A3), N(2D) and N(2P) at the first stage, NO molecules are obtained by decayed N atoms at last. - Abstract: Based on nonequilibrium plasma dynamics of air discharge, the kinetic model simulating plasma discharge products induced by nanosecond pulse discharge in air is presented in this work. Then the paper compares the calculation of model with experimental results of references, and verifies the accuracy of the model. The evolution characteristics of nanosecond pulse discharge plasma under different air temperatures are obtained. Because the O, O_3 and NO have close relationship with the combustion, their formation mechanisms are discussed especially. With increasing temperature, there is no significant addition in O atoms and O_3 molecules. It is found that most of the O_2 molecules become O_2(V1) in higher temperature. The decreasing time of the O atoms is in accordance with the increasing time of O_3 molecules. Thus, the O_3 molecules are produced mainly by decayed O atoms. Increased air temperature will not produce more active particles which could assist the combustion. With the increasing temperature, the particle number density of NO increases fast. At last, they have reached an equilibrium value of the same.

  12. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry

    Science.gov (United States)

    Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Yancey, Thomas E.; Pérez-Huerta, Alberto

    2018-05-01

    Surface temperature is among the most important parameters describing planetary climate and habitability, and yet there remains considerable debate about the temperature evolution of the Earth's oceans during the Phanerozoic Eon (541 million years ago to present), the time during which complex metazoan life radiated on Earth. Here we critically assess the emerging record of Phanerozoic ocean temperatures based on carbonate clumped isotope thermometry of fossil brachiopod and mollusk shells, and we present new data that fill important gaps in the Late Paleozoic record. We evaluate and reject the hypothesis that solid-state reordering of 13C-18O bonds has destroyed the primary clumped isotope temperature signal of most fossils during sedimentary burial at elevated temperatures. The resulting Phanerozoic record, which shows a general coupling between tropical seawater temperatures and atmospheric carbon dioxide (CO2) levels since the Paleozoic, indicates that tropical temperatures during the icehouse climate of the Carboniferous period were broadly similar to present (∼25-30 °C), and suggests that benthic metazoans were able to thrive at temperatures of 35-40 °C during intervals of the early and possibly the latest Paleozoic when CO2 levels were likely 5-10× higher than present-day values. Equally important, there is no resolvable trend in seawater oxygen isotope ratios (δ18 O) over the past ∼500 million years, indicating that the average temperature of oxygen exchange between seawater and the oceanic crust has been high (∼270 °C) since at least the early Paleozoic, which points to mid-ocean ridges as the dominant locus of water-rock interaction over the past half-billion years.

  13. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

    Science.gov (United States)

    Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2018-05-01

    For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

  14. Provenance and post-depositional low-temperature evolution of the James Ross Basin sedimentary rocks (Antarctic Peninsula) based on fission track analysis

    Czech Academy of Sciences Publication Activity Database

    Svojtka, Martin; Nývlt, D.; Murakami, Masaki; Vávrová, J.; Filip, Jiří; Mixa, P.

    2009-01-01

    Roč. 21, č. 6 (2009), s. 593-607 ISSN 0954-1020 R&D Projects: GA MŠk 1K05030 Institutional research plan: CEZ:AV0Z30130516 Keywords : James Ross Island * Seymour Island * Cretaceous–Palaeogene succession * fission track dating * zircon * apatite Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.496, year: 2009

  15. Temperature-dependent evolution of the wetting layer thickness during Ge deposition on Si(001).

    Science.gov (United States)

    Bergamaschini, R; Brehm, M; Grydlik, M; Fromherz, T; Bauer, G; Montalenti, F

    2011-07-15

    The evolution of the wetting layer (WL) thickness during Ge deposition on Si(001) is analyzed with the help of a rate-equation approach. The combined role of thickness, island volume and shape-dependent chemical potentials is considered. Several experimental observations, such as WL thinning following the pyramid-to-dome transformation, are captured by the model, as directly demonstrated by a close comparison with photoluminescence measurements (PL) on samples grown at three different temperatures. The limitations of the model in describing late stages of growth are critically addressed.

  16. Evolution of precipitate in nickel-base alloy 718 irradiated with argon ions at elevated temperature

    International Nuclear Information System (INIS)

    Jin, Shuoxue; Luo, Fengfeng; Ma, Shuli; Chen, Jihong; Li, Tiecheng; Tang, Rui; Guo, Liping

    2013-01-01

    Alloy 718 is a nickel-base superalloy whose strength derives from γ′(Ni 3 (Al,Ti)) and γ″(Ni 3 Nb) precipitates. The evolution of the precipitates in alloy 718 irradiated with argon ions at elevated temperature were examined via transmission electron microscopy. Selected-area electron diffraction indicated superlattice spots disappeared after argon ion irradiation, which showing that the ordered structure of the γ′ and γ″ precipitates became disordered. The size of the precipitates became smaller with the irradiation dose increasing at 290 °C

  17. The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy

    Science.gov (United States)

    Guo, Qingmiao; Li, Defu; Guo, Shengli; Peng, Haijian; Hu, Jie

    2011-07-01

    Hot compression tests of Inconel 625 superalloy were conducted using a Gleeble-1500 simulator between 900 °C and 1200 °C with different true strains and a strain rate of 0.1 s -1. Scanning electron microscope (SEM) and electron backscatter diffraction technique (EBSD) were employed to investigate the effect of deformation temperature on the microstructure evolution and nucleation mechanisms of dynamic recrystallization (DRX). It is found that the relationship between the DRX grain size and the peak stress can be expressed by a power law function. Significant influence of deformation temperatures on the nucleation mechanisms of DRX are observed at different deformation stages. At lower deformation temperatures, continuous dynamic recrystallization (CDRX) characterized by progressive subgrain rotation is considered as the main mechanism of DRX at the early deformation stage. However, discontinuous dynamic recrystallization (DDRX) with bulging of the original grain boundaries becomes the operating mechanism of DRX at the later deformation stage. At higher deformation temperatures, DDRX is the primary mechanism of DRX, while CDRX can only be considered as an assistant mechanism at the early deformation stage. Nucleation of DRX can also be activated by the twinning formation. With increasing the deformation temperature, the effect of DDRX accompanied with twinning formation grows stronger, while the effect of CDRX grows weaker. Meanwhile, the position of subgrain formation shifts gradually from the interior of original grains to the vicinity of the original boundaries.

  18. Hydrophobicity Tuning by the Fast Evolution of Mold Temperature during Injection Molding

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2018-03-01

    Full Text Available The surface topography of a molded part strongly affects its functional properties, such as hydrophobicity, cleaning capabilities, adhesion, biological defense and frictional resistance. In this paper, the possibility to tune and increase the hydrophobicity of a molded polymeric part was explored. An isotactic polypropylene was injection molded with fast cavity surface temperature evolutions, obtained adopting a specifically designed heating system layered below the cavity surface. The surface topology was characterized by atomic force microscopy (AFM and, concerning of hydrophobicity, by measuring the water static contact angle. Results show that the hydrophobicity increases with both the temperature level and the time the cavity surface temperature was kept high. In particular, the contact angle of the molded sample was found to increase from 90°, with conventional molding conditions, up to 113° with 160 °C of cavity surface temperature kept for 18 s. This increase was found to be due to the presence of sub-micro and nano-structures characterized by high values of spatial frequencies which could be more accurately replicated by adopting high heating temperatures and times. The surface topography and the hydrophobicity resulted therefore tunable by selecting appropriate injection molding conditions.

  19. Experimental evaluation of rigor mortis. V. Effect of various temperatures on the evolution of rigor mortis.

    Science.gov (United States)

    Krompecher, T

    1981-01-01

    Objective measurements were carried out to study the evolution of rigor mortis on rats at various temperatures. Our experiments showed that: (1) at 6 degrees C rigor mortis reaches full development between 48 and 60 hours post mortem, and is resolved at 168 hours post mortem; (2) at 24 degrees C rigor mortis reaches full development at 5 hours post mortem, and is resolved at 16 hours post mortem; (3) at 37 degrees C rigor mortis reaches full development at 3 hours post mortem, and is resolved at 6 hours post mortem; (4) the intensity of rigor mortis grows with increase in temperature (difference between values obtained at 24 degrees C and 37 degrees C); and (5) and 6 degrees C a "cold rigidity" was found, in addition to and independent of rigor mortis.

  20. Expression of temperature-sensitive ion channel TRPM8 in sperm cells correlates with vertebrate evolution

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Majhi

    2015-10-01

    Full Text Available Transient Receptor Potential cation channel, subfamily Melastatin, member 8 (TRPM8 is involved in detection of cold temperature, different noxious compounds and in execution of thermo- as well as chemo-sensitive responses at cellular levels. Here we explored the molecular evolution of TRPM8 by analyzing sequences from various species. We elucidate that several regions of TRPM8 had different levels of selection pressure but the 4th–5th transmembrane regions remain highly conserved. Analysis of synteny suggests that since vertebrate origin, TRPM8 gene is linked with SPP2, a bone morphogen. TRPM8, especially the N-terminal region of it, seems to be highly variable in human population. We found 16,656 TRPM8 variants in 1092 human genomes with top variations being SNPs, insertions and deletions. A total of 692 missense mutations are also mapped to human TRPM8 protein of which 509 seem to be delateroiours in nature as supported by Polyphen V2, SIFT and Grantham deviation score. Using a highly specific antibody, we demonstrate that TRPM8 is expressed endogenously in the testis of rat and sperm cells of different vertebrates ranging from fish to higher mammals. We hypothesize that TRPM8 had emerged during vertebrate evolution (ca 450 MYA. We propose that expression of TRPM8 in sperm cell and its role in regulating sperm function are important factors that have guided its molecular evolution, and that these understandings may have medical importance.

  1. The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Guo Qingmiao [General Research Institute for Non-Ferrous Metals, Beijing 100088 (China); Li Defu, E-mail: lide_fu@163.com [General Research Institute for Non-Ferrous Metals, Beijing 100088 (China); Guo Shengli; Peng Haijian; Hu Jie [General Research Institute for Non-Ferrous Metals, Beijing 100088 (China)

    2011-07-31

    Highlights: > The relationship between the stable DRX grain size and peak stress can be expressed by a power law function. > Deformation temperature has a significant influence on the nucleation mechanisms of DRX at different deformation stages. > With increasing the deformation temperature, the effect of DDRX accompanied with twinning formation grows stronger, while the effect of CDRX grows weaker. -- Abstract: Hot compression tests of Inconel 625 superalloy were conducted using a Gleeble-1500 simulator between 900 deg. C and 1200 deg. C with different true strains and a strain rate of 0.1 s{sup -1}. Scanning electron microscope (SEM) and electron backscatter diffraction technique (EBSD) were employed to investigate the effect of deformation temperature on the microstructure evolution and nucleation mechanisms of dynamic recrystallization (DRX). It is found that the relationship between the DRX grain size and the peak stress can be expressed by a power law function. Significant influence of deformation temperatures on the nucleation mechanisms of DRX are observed at different deformation stages. At lower deformation temperatures, continuous dynamic recrystallization (CDRX) characterized by progressive subgrain rotation is considered as the main mechanism of DRX at the early deformation stage. However, discontinuous dynamic recrystallization (DDRX) with bulging of the original grain boundaries becomes the operating mechanism of DRX at the later deformation stage. At higher deformation temperatures, DDRX is the primary mechanism of DRX, while CDRX can only be considered as an assistant mechanism at the early deformation stage. Nucleation of DRX can also be activated by the twinning formation. With increasing the deformation temperature, the effect of DDRX accompanied with twinning formation grows stronger, while the effect of CDRX grows weaker. Meanwhile, the position of subgrain formation shifts gradually from the interior of original grains to the vicinity of the

  2. Microstructure evolution during cyclic tests on EUROFER 97 at room temperature. TEM observation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Giordana, M.F., E-mail: giordana@ifir-conicet.gov.ar [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 Bis, 2000 Rosario (Argentina); Giroux, P.-F. [Commissariat a l' Energie Atomique, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette Cedex (France); Alvarez-Armas, I. [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 Bis, 2000 Rosario (Argentina); Sauzay, M. [Commissariat a l' Energie Atomique, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette Cedex (France); Armas, A. [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 Bis, 2000 Rosario (Argentina); Kruml, T. [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno, 616 62 (Czech Republic)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer Low cycle fatigue test are carried out on EUROFER 97 at room temperature. Black-Right-Pointing-Pointer EUROFER 97 shows a pronounced cyclic softening accompanied by microstructural changes. Black-Right-Pointing-Pointer Cycling induces a decrement in dislocation density and subgrain growth. Black-Right-Pointing-Pointer A simple mean-field model based on crystalline plasticity is proposed. Black-Right-Pointing-Pointer The mean subgrain size evolution is predicted by modelling. - Abstract: The 9% Cr quenched and tempered reduced-activation ferritic/martensitic steel EUROFER 97 is one of the candidates for structural components of fusion reactors. Isothermal, plastic strain-controlled, low-cycle fatigue tests are performed. Tested at room temperature, this steel suffers a cyclic softening effect linked to microstructural changes observed by transmission electron microscopy, such as the decrease of dislocation density inside subgrains or the growth of subgrain size. From the assumed mechanisms of softening a simple mean-field model based on crystalline plasticity is proposed to predict these microstructure evolutions during cycling and monotonic deformation.

  3. Increases in both acute and chronic temperature potentiate tocotrienol concentrations in wild barley at 'Evolution Canyon'.

    Science.gov (United States)

    Shen, Yu; Lansky, Ephraim; Traber, Maret; Nevo, Eviatar

    2013-09-01

    Biosynthesis of tocols (vitamin E isoforms) is linked to response to temperature in plants. 'Evolution Canyon', an ecogeographical microcosm extending over an average of 200 meters (range 100-400) wide area in the Carmel Mountains of northern Israel, has been suggested as a model for studying global warming. Both domestic (Hordeum vulgare) and wild (Hordeum spontaneum) barley compared with wheat, oat, corn, rice, and rye show high tocotrienol/tocopherol ratios. Therefore, we hypothesized that tocol distribution might change in response to global warming. α-, β-, γ-, and δ-tocopherol, and α-, β-, γ-, and δ-tocotrienol concentrations were measured in wild barley (H. spontaneum) seeds harvested from the xeric (African) and mesic (European) slopes of Evolution Canyon over a six-year period from 2005-2011. Additionally, we examined seeds from areas contiguous to and distant from the part of the Canyon severely burned during the Carmel Fire of December 2010. Increased α-tocotrienol (pslope in contrast to the cooler 'European' slope, and 3) to propinquity to the fire. The study illustrates the role of α-tocotrienol in both chronic and acute temperature adaptation in wild barley and suggests future research into thermoregulatory mechanisms in plants. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Geological and radioactive study served for uranium exploration in the Palaeogene-Neogene sediments, Syrian Steppe

    International Nuclear Information System (INIS)

    Radwan, Y.; Kattaa, B.; Najjar, H.

    1988-01-01

    Paleo-Neogene terranes were geologically and radioactively surveyed over an area extends from T2-pump station to the east of As-Sukhneh, using 1/200000 satellite images and 1/25000 aerial photos. Five geological sheets and six major geological cross sections were performed. Rock facies were microscopically identified and the paleogeographical evolution of the immersed platform was extrapolated, which and due to the Palmyrdean Orogengy was undulated forming short and narrow depressions, some of them developed into isolated or semi-isolated basins by the Oligocene onset. Through out the Oligocene, two sedimentation regimes were dominant. The first, is marine-shallow platform one to the east becoming much shallower towards north-west with short swell in Wadi Slubi; the second, is subtidal-shoreline-deltaic westwards which turned lacustrine one in Rijm Al Qun by the end of Miocene persisting during the Palaeocene and Quaternary time. This facies differentiation is resulted by weak effect of Al-Rutbah - Al-Hamad uplift, which was once much stronger in the Senonian and Eocene, controlling phosphorite precipitation. Two very weak radioactive anomalies were registered. The first, was twice the intensity of normal field at the Upper Eocene chalky limestone. The second, was as much as four times the intensity of normal field. Some minor disperssed U-mineralizations were reported. The most favourable facies for hosting leached-U from the Eocene phosphorite in the south, which mobiled through lineaments-controlled drainage set, are the deltaic and shore line ones taking place in the isolated basins in north-west. The study of lateral and vertical facies changes, and the biophysiochemical conditions are very important to find out possible U-traps. The contribution of aerial and satellite images in surveying was too limited due to quality, scale and date of exposing. 6 refs., 5 figs. (author)

  5. Temperature Evolution of a 1 MA Triple-Nozzle Gas-Puff Z-Pinch

    Science.gov (United States)

    de Grouchy, Philip; Banasek, Jacob; Engelbrecht, Joey; Qi, Niansheng; Atoyan, Levon; Byvank, Tom; Cahill, Adam; Moore, Hannah; Potter, William; Ransohoff, Lauren; Hammer, David; Kusse, Bruce; Laboratory of Plasma Studies Team

    2015-11-01

    Mitigation of the Rayleigh-Taylor instability (RTI) plays a critical role in optimizing x-ray output at high-energy ~ 13 keV using the triple-nozzle Krypton gas-puff at Sandia National Laboratory. RTI mitigation by gas-puff density profiling using a triple-nozzle gas-puff valve has recently been recently demonstrated on the COBRA 1MA z-pinch at Cornell University. In support of this work we investigate the role of shell cooling in the growth of RTI during gas-puff implosions. Temperature measurements within the imploding plasma shell are recorded using a 527 nm, 10 GW Thomson scattering diagnostic for Neon, Argon and Krypton puffs. The mass-density profile is held constant at 22 microgram per centimeter for all three puffs and the temperature evolution of the imploding material is recorded. In the case of Argon puffs we find that the shell ion and electron effective temperatures remain in equilibrium at around 1keV for the majority of the implosion phase. In contrast scattered spectra from Krypton are dominated by of order 10 keV effective ion temperatures. Supported by the NNSA Stewardship Sciences Academic Programs.

  6. The effect of gamma radiation on hardness evolution in high density polyethylene at elevated temperatures

    International Nuclear Information System (INIS)

    Chen, Pei-Yun; Chen, C.C.; Harmon, Julie P.; Lee, Sanboh

    2014-01-01

    This research focuses on characterizing hardness evolution in irradiated high density polyethylene (HDPE) at elevated temperatures. Hardness increases with increasing gamma ray dose, annealing temperature and annealing time. The hardness change is attributed to the variation of defects in microstructure and molecular structure. The kinetics of defects that control the hardness are assumed to follow the first order structure relaxation. The experimental data are in good agreement with the predicted model. The rate constant follows the Arrhenius equation, and the corresponding activation energy decreases with increasing dose. The defects that control hardness in post-annealed HDPE increase with increasing dose and annealing temperature. The structure relaxation of HDPE has a lower energy of mixing in crystalline regions than in amorphous regions. Further, the energy of mixing for defects that influence hardness in HDPE is lower than those observed in polycarbonate (PC), poly(methyl methacrylate) (PMMA) and poly (hydroxyethyl methacrylate) (HEMA). This is due to the fact that polyethylene is a semi-crystalline material, while PC, PMMA and PHEMA are amorphous. - Highlights: • Hardness of HDPE increases with increasing gamma ray dose, annealing time and temperature. • The hardness change arises from defects in microstructure and molecular structure. • Defects affecting hardness follow a kinetics of structure relaxation. • The structure relaxation has a low energy of mixing in crystalline regime

  7. The effect of gamma radiation on hardness evolution in high density polyethylene at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Yun [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chen, C.C. [Institute of Nuclear Energy Research, Longtan, Taoyuan 325, Taiwan (China); Harmon, Julie P. [Department of Chemistry, University of South Florida, Tampa, FL 33620 (United States); Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2014-08-01

    This research focuses on characterizing hardness evolution in irradiated high density polyethylene (HDPE) at elevated temperatures. Hardness increases with increasing gamma ray dose, annealing temperature and annealing time. The hardness change is attributed to the variation of defects in microstructure and molecular structure. The kinetics of defects that control the hardness are assumed to follow the first order structure relaxation. The experimental data are in good agreement with the predicted model. The rate constant follows the Arrhenius equation, and the corresponding activation energy decreases with increasing dose. The defects that control hardness in post-annealed HDPE increase with increasing dose and annealing temperature. The structure relaxation of HDPE has a lower energy of mixing in crystalline regions than in amorphous regions. Further, the energy of mixing for defects that influence hardness in HDPE is lower than those observed in polycarbonate (PC), poly(methyl methacrylate) (PMMA) and poly (hydroxyethyl methacrylate) (HEMA). This is due to the fact that polyethylene is a semi-crystalline material, while PC, PMMA and PHEMA are amorphous. - Highlights: • Hardness of HDPE increases with increasing gamma ray dose, annealing time and temperature. • The hardness change arises from defects in microstructure and molecular structure. • Defects affecting hardness follow a kinetics of structure relaxation. • The structure relaxation has a low energy of mixing in crystalline regime.

  8. Evolution of Diurnal Asymmetry of Surface Temperature over Different Climatic Zones

    Science.gov (United States)

    Rajendran, V.; C T, D.; Chakravorty, A.; AghaKouchak, A.

    2016-12-01

    The increase in drought, flood, diseases, crop failure etc. in the recent past has created an alarm amongst the researchers. One of the main reasons behind the intensification of these environmental hazards is the recent revelation of climate change, which is generally attributed to the human induced global warming, represented by an increase in global mean temperature. However, in order to formulate policies to mitigate and prevent the threats due to global warming, its key driving factors should be analysed at high spatial and temporal resolution. Diurnal Temperature Range (DTR) is one of the indicators of global warming. The study of the evolution of the DTR is crucial, since it affects agriculture, health, ecosystems, transport, etc. Recent studies reveal that diurnal asymmetry has decreased globally, whereas a few regional studies report a contradictory pattern and attributed them to localized feedback processes. However, an evident conclusion cannot be made using the linear trend approaches employed in the past studies and the evolution of diurnal asymmetry should be investigated using non-linear trend approach for better perception. Hence, the regional evolution of DTR trend has been analysed using the spatially-temporally Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method over India and observed a positive trend in over-all mean of DTR, while its rate of increase has declined in the recent decades. Further, the grids showing negative trend in DTR is observed in arid deserts and warm-temperate grasslands and positive trend over the west coast and sub-tropical forest in the North-East. This transition predominantly began from the west coast and is stretched with an increase in magnitude. These changes are more pronounced during winter and post-monsoon seasons, especially in the arid desert and warm-temperate grasslands, where the rate of increase in minimum temperature is higher than that of the maximum temperature. These analyses suggest

  9. Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard

    Science.gov (United States)

    van der Bilt, Willem G. M.; D'Andrea, William J.; Bakke, Jostein; Balascio, Nicholas L.; Werner, Johannes P.; Gjerde, Marthe; Bradley, Raymond S.

    2018-03-01

    Situated at the crossroads of major oceanic and atmospheric circulation patterns, the Arctic is a key component of Earth's climate system. Compounded by sea-ice feedbacks, even modest shifts in the region's heat budget drive large climate responses. This is highlighted by the observed amplified response of the Arctic to global warming. Assessing the imprint and signature of underlying forcing mechanisms require paleoclimate records, allowing us to expand our knowledge beyond the short instrumental period and contextualize ongoing warming. However, such datasets are scarce and sparse in the Arctic, limiting our ability to address these issues. Here, we present two quantitative Holocene-length paleotemperature records from the High Arctic Svalbard archipelago, situated in the climatically sensitive Arctic North Atlantic. Temperature estimates are based on U37K unsaturation ratios from sediment cores of two lakes. Our data reveal a dynamic Holocene temperature evolution, with reconstructed summer lake water temperatures spanning a range of ∼6-8 °C, and characterized by four phases. The Early Holocene was marked by an early onset (∼10.5 ka cal. BP) of insolation-driven Hypsithermal conditions, likely compounded by strengthening oceanic heat transport. This warm interval was interrupted by cooling between ∼10.5-8.3 ka cal. BP that we attribute to cooling effects from the melting Northern Hemisphere ice sheets. Temperatures declined throughout the Middle Holocene, following a gradual trend that was accentuated by two cooling steps between ∼7.8-7 ka cal. BP and around ∼4.4-4.3 ka cal. BP. These transitions coincide with a strengthening influence of Arctic water and sea-ice in the adjacent Fram Strait. During the Late Holocene (past 4 ka), temperature change decoupled from the still-declining insolation, and fluctuated around comparatively cold mean conditions. By showing that Holocene Svalbard temperatures were governed by an alternation of forcings, this study

  10. Microstructural evolutions and mechanical behaviour of the nickel based alloys 617 and 230 at high temperature

    International Nuclear Information System (INIS)

    Chomette, S.

    2009-11-01

    High Temperature Reactors (HTR), is one of the innovative nuclear reactor designed to be inherently safer than previous generation and to produce minimal waste. The most critical metallic component in that type of reactor is the Intermediate Heat exchanger (IHX). The constraints imposed by the conception and the severe operational conditions (high temperature of 850 C to 950 C, lifetime of 20,000 h) have guided the IHX material selection toward two solid solution nickel base alloys, the Inconel 617 and the Haynes 230. Inconel 617 is the primary candidate alloy thanks to its good high temperature mechanical and corrosion properties and the large data base developed in previous programs. However, its high cobalt content has to be considered as an issue (nuclear activation). The more recent alloy Haynes 230, in which most of the cobalt has been replaced by tungsten, present characteristics similar to the 617 alloy. The objective of this thesis is to study the high temperature mechanical behaviour of both alloys in relation with their microstructural evolutions. The as received microstructural observations have revealed primary carbides (M 6 C). Most of this precipitates are evenly distributed in the materials. Few M 23 C 6 secondary carbides are observed in both alloys in the as received state. Thermal ageing treatments at 850 C lead to an important M 23 C 6 precipitation on slip lines and at grain boundaries. The size of this carbides increases and their number decreases with increasing ageing duration. The intragranular precipitation of secondary carbides at 950 C is more limited and the intergranular evolution more important than at 850 C. The microstructural observations and the hardness evolution of both alloys show that the main microstructural evolutions occur before 1,000 h at both studied temperatures. The mechanical properties of the Inconel 617 and the Haynes 230 have been studied using tensile, creep, fatigue and relaxation-fatigue tests. Particularly, the

  11. Temporal evolution of the spectral lines emission and temperatures in laser induced plasmas through characteristic parameters

    International Nuclear Information System (INIS)

    Bredice, F.; Pacheco Martinez, P.; Sánchez-Aké, C.; Villagrán-Muniz, M.

    2015-01-01

    In this work, we propose an extended Boltzmann plot method to determine the usefulness of spectral lines for plasma parameter calculations. Based on the assumption that transient plasmas are under ideal conditions during an specific interval of time Δt, (i.e. thin, homogeneous and in local thermodynamic equilibrium (LTE)), the associated Boltzmann plots describe a surface in the space defined by the coordinates X = Energy, Y = Time and Z = ln (λ jl I j /g j A jl ), where I j is the integrated intensity of the spectral line, g j is the statistical weight of the level j, λ jl is the wavelength of the considered line and A jl is its transition rate. In order to express the Boltzmann plot surface in terms of a reduced set of constants B i , and δ i , we developed as a power series of time, the logarithm of I n (t)/I n (t 0 ), where I n (t) is the integrated intensity of any spectral line at time t, and I n (t 0 ) at initial time. Moreover, the temporal evolution of the intensity of any spectral line and consequently the temperature of the plasma can be also expressed with these constants. The comparison of the temporal evolution of the line intensity calculated using these constants with their experimental values, can be used as a criterion for selecting useful lines in plasma analysis. Furthermore, this method can also be applied to determine self-absorption or enhancement of the spectral lines, to evaluate a possible departure of LTE, and to check or estimate the upper level energy value of any spectral line. An advantage of this method is that the value of these constants does not depend on the spectral response of the detection system, the uncertainty of the transition rates belonging to the analyzed spectral lines or any other time-independent parameters. In order to prove our method, we determined the constants B i and δ i and therefore the Boltzmann plot surface from the temporal evolution of carbon lines obtained from a plasma generated by a Nd:YAG laser

  12. Temporal evolution of the spectral lines emission and temperatures in laser induced plasmas through characteristic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bredice, F., E-mail: faustob@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas, P.O. Box 3 C. P.1897 Gonnet, La Plata (Argentina); Pacheco Martinez, P. [Grupo de Espectroscopía Óptica de Emisión y Láser, Universidad del Atlántico, Barranquilla (Colombia); Sánchez-Aké, C.; Villagrán-Muniz, M. [Laboratorio de Fotofísica, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, México D.F. 04510 (Mexico)

    2015-05-01

    In this work, we propose an extended Boltzmann plot method to determine the usefulness of spectral lines for plasma parameter calculations. Based on the assumption that transient plasmas are under ideal conditions during an specific interval of time Δt, (i.e. thin, homogeneous and in local thermodynamic equilibrium (LTE)), the associated Boltzmann plots describe a surface in the space defined by the coordinates X = Energy, Y = Time and Z = ln (λ{sub jl}I{sub j}/g{sub j}A{sub jl}), where I{sub j} is the integrated intensity of the spectral line, g{sub j} is the statistical weight of the level j, λ{sub jl} is the wavelength of the considered line and A{sub jl} is its transition rate. In order to express the Boltzmann plot surface in terms of a reduced set of constants B{sub i}, and δ{sub i}, we developed as a power series of time, the logarithm of I{sub n}(t)/I{sub n}(t{sub 0}), where I{sub n}(t) is the integrated intensity of any spectral line at time t, and I{sub n}(t{sub 0}) at initial time. Moreover, the temporal evolution of the intensity of any spectral line and consequently the temperature of the plasma can be also expressed with these constants. The comparison of the temporal evolution of the line intensity calculated using these constants with their experimental values, can be used as a criterion for selecting useful lines in plasma analysis. Furthermore, this method can also be applied to determine self-absorption or enhancement of the spectral lines, to evaluate a possible departure of LTE, and to check or estimate the upper level energy value of any spectral line. An advantage of this method is that the value of these constants does not depend on the spectral response of the detection system, the uncertainty of the transition rates belonging to the analyzed spectral lines or any other time-independent parameters. In order to prove our method, we determined the constants B{sub i} and δ{sub i} and therefore the Boltzmann plot surface from the temporal

  13. Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperatures

    International Nuclear Information System (INIS)

    Yapici, Guney Guven; Karaman, Ibrahim; Luo Zhiping

    2006-01-01

    We have investigated the deformation behavior and texture evolution of two-phase Ti-6Al-4V subjected to severe plastic deformation using equal channel angular extrusion (ECAE) at a high temperature (∼0.55T m ). Significant deformation twinning activity was observed after one and two ECAE passes in a 90 deg, die at 800 deg. C. Twinning activity at such a high temperature is a first-time observation in this material and is attributed to the high strain and stress levels imposed during ECAE. High stress levels and the stress state can affect the separation of twinning partials considerably. Resolved shear stress magnitudes on twin partials were found to be high during the ECAE process that helps the nucleation of mechanical twinning. The twinning mode was identified as the {101-bar 1} type using electron diffraction patterns which is one of the twinning modes observed in Ti at temperatures above 350 deg. C. Although only one twinning variant was mainly evident after one pass, multiple twin variants of the same mode were observed after the second pass with a significant increase in twin volume fraction. ECAE processing aligned the basal planes of the hexagonal close-packed α phase, initially having a random texture, with the ECAE shear plane. Texture evolution during ECAE was successfully predicted using a viscoplastic self-consistent crystal plasticity framework capturing the effect of the observed twinning mode on texture. Mechanical twins formed during ECAE and grain refinement led to a noteworthy improvement in flow stresses under tension and compression at room temperature. A strong directional anisotropy in yield strengths was also evident which cannot be explained only by crystallographic texture. It was speculated that the asymmetry of critical resolved shear stresses of deformation modes and the processing-induced deformation structure should play a role. With the supporting evidence from our previous works on the severe plastic deformation of other

  14. Numerical and experimental determination of surface temperature and moisture evolution in a field soil

    Science.gov (United States)

    Akinyemi, Olukayode D.; Mendes, Nathan

    2007-03-01

    Knowledge about the dynamics of soil moisture and heat, especially at the surface, provides important insights into the physical processes governing their interactions with the atmosphere, thereby improving the understanding of patterns of climate dynamics. In this context the paper presents the numerical and field experimental results of temperature and moisture evolution, which were measured on the surface of a sandy soil at Abeokuta, south-western Nigeria. An unconditionally stable numerical method was used, which linearizes the vapour concentration driving-potential term giving the moisture exchanged at the boundaries in terms of temperature and moisture content, and simultaneously solves the governing equations for each time step. The model avoids stability problems and limitations to low moisture contents and the usual assumption of constant thermal conductivity. Instantaneous temperature measurements were made at the surface using a thermocouple, while the gravimetric method was employed to determine the volumetric water contents at some specific hours of the experimental period. The observed experimental data compared fairly well with the predicted values, with both having correlation coefficients greater than 0.9 and consequently following a common diurnal trend. The sensitivity of the model was very high to the choice of simulation parameters, especially grid size refinement and time step. While the model underestimated the soil moisture content at 6 a.m. and 10 p.m., the measured temperatures were however overestimated. When compared to moisture content, average errors for temperature were low resulting in a minimal absolute difference in amplitude of 0.81 °C.

  15. Evolution of microstructures in nickel solid solution fatigued at high temperature: occurence of an intragranular cavitation

    International Nuclear Information System (INIS)

    Arnaud, B.

    1986-06-01

    We studied by T.E.M. the microstructures appearing in Nickel solid solution fatigued in push-pull between 0.4 Tm and 0.6 Tm (Tm=melting temperature), the maximum amplitude of stress was imposed: +- 100 MPa, three frequencies were used: 1.25 Hz, 2.5 Hz and 10 Hz. In Ni 6% at Ge the structure of dislocations evolves continuously with the number of cycles: homogeneous distribution of dislocations, cell structure, then development of sub-grains 5 times as big as the cell; these sub-grains are not stable, they break up into cells. This succession of structures suggests a cyclic evolution. The cavities appear for number of cycles greater than a threshold number depending on the temperature and the frequency. The cavities are not distributed uniformly, they are located in zone. According to the conditions of sollicitation, the shape (equiaxe of small stick) and the distribution (uniform, in band, in crown) of the cavities fluctuate. This cavitation exists equally in other materials (Ni 4% at Si, Ni). This intra-granular cavitation has been observed in the same domain of temperatures as the domain of swelling in the same material under bombardment with ions Ni + . Due to this similitude we searched for a segregation of solute (like the induced precipitation by irradiation) but this phenomenon did not occur with our experimental conditions [fr

  16. Analytical modeling of the temporal evolution of hot spot temperatures in silicon solar cells

    Science.gov (United States)

    Wasmer, Sven; Rajsrima, Narong; Geisemeyer, Ino; Fertig, Fabian; Greulich, Johannes Michael; Rein, Stefan

    2018-03-01

    We present an approach to predict the equilibrium temperature of hot spots in crystalline silicon solar cells based on the analysis of their temporal evolution right after turning on a reverse bias. For this end, we derive an analytical expression for the time-dependent heat diffusion of a breakdown channel that is assumed to be cylindrical. We validate this by means of thermography imaging of hot spots right after turning on a reverse bias. The expression allows to be used to extract hot spot powers and radii from short-term measurements, targeting application in inline solar cell characterization. The extracted hot spot powers are validated at the hands of long-term dark lock-in thermography imaging. Using a look-up table of expected equilibrium temperatures determined by numerical and analytical simulations, we utilize the determined hot spot properties to predict the equilibrium temperatures of about 100 industrial aluminum back-surface field solar cells and achieve a high correlation coefficient of 0.86 and a mean absolute error of only 3.3 K.

  17. Internal stress evolution in Fe laths deformed at low temperature analysed by dislocation dynamics simulations

    International Nuclear Information System (INIS)

    Chaussidon, Julien; Fivel, Marc; Robertson, Christian; Marini, Bernard

    2010-01-01

    Stress evolution in Fe laths undergoing plastic deformation is investigated using three-dimensional dislocation dynamics simulations adapted to body centred cubic crystals, in the ductile to brittle transition temperature range. The selected boundary conditions, applied stress tensor and initial dislocation structures account for the realistic microstructure observed in bainitic steels. The effective stress field projected in the three different {1 0 0}cleavage planes is calculated for two different temperatures (50 and 200 K) and presented quantitatively, in the form of stress/frequency diagrams. It is shown that plastic activity tends to relax the stress acting in certain cleavage planes (the (0 1 0) and (0 0 1) planes) while, at the same time, amplifying the stress acting in other cleavage planes (the (1 0 0) planes). The selective stress amplification in the latter planes depends on the applied load direction, in combination with the limited set of available slip systems and the lath geometry. In the examined configuration, this selection effect is more pronounced with decreasing temperature, emphasizing the role of thermally activated plasticity on deformation-induced stress concentrations

  18. Characterization of raw and burnt oil shale from Dotternhausen: Petrographical and mineralogical evolution with temperature

    International Nuclear Information System (INIS)

    Thiéry, Vincent; Bourdot, Alexandra; Bulteel, David

    2015-01-01

    The Toarcian Posidonia shale from Dotternhausen, Germany, is quarried and burnt in a fluidized bed reactor to produce electricity. The combustion residue, namely burnt oil shale (BOS), is used in the adjacent cement work as an additive in blended cements. The starting material is a typical laminated oil shale with an organic matter content ranging from 6 to 18%. Mineral matter consists principally of quartz, feldspar, pyrite and clays. After calcination in the range, the resulting product, burnt oil shale, keeps the macroscopic layered texture however with different mineralogy (anhydrite, lime, iron oxides) and the formation of an amorphous phase. This one, studied under STEM, reveals a typical texture of incipient partial melting due to a long retention time (ca. 30 min) and quenching. An in-situ high temperature X-ray diffraction (HTXRD) allowed studying precisely the mineralogical changes associated with the temperature increase. - Highlights: • We present oil shale/burnt oil shale characterization. • The Posidonia Shale is burnt in a fluidized bed. • Mineralogical evolution with temperature is complex. • The burnt oil shale is used in composite cements

  19. Second RPA dynamics at finite temperature: time-evolutions of dynamical operators

    International Nuclear Information System (INIS)

    Jang, S.

    1989-01-01

    Time-evolutions of dynamical operators, in particular the generalized density matrix comprising both diagonal and off-diagonal elements, are investigated within the framework of second RPA dynamics at finite temperature. The calculation of the density matrix previously carried out through the appliance of the second RPA master equation by retaining only the slowly oscillating coupling terms is extended to include in the interaction Hamiltonian both the rapidly and slowly oscillating coupling terms. The extended second RPA master equation, thereby formulated without making use of the so-called resonant approximation, is analytically solved and a closed expression for the generalized density matrix is extracted. We provide illustrative examples of the generalized density matrix for various specific initial conditions. We turn particularly our attention to the Poisson distribution type of initial condition for which we deduce specifically a particular form of the density matrix from the solution of the Fokker-Planck equation for the coherent state representation. The relation of the Fokker-Planck equation to the second RPA master equation and its properties are briefly discussed. The oversight incurred in the time-evolution of operators by the resonant approximation is elucidated. The first and second moments of collective coordinates are also computed in relation to the expectation value of various dynamical operators involved in the extended master equation

  20. Evolution of interphase and intergranular stresses in Zr-2.5Nb during room temperature deformation

    International Nuclear Information System (INIS)

    Cai, S.; Daymond, M.R.; Holt, R.A.; Gharghouri, M.A.; Oliver, E.C.

    2009-01-01

    Both in situ tension and compression tests have been carried out on textured Zr-2.5Nb plate material at room temperature. Deformation along all the three principle plate directions has been studied and the evolution of interphase and intergranular strains along the loading and the principle Poisson's directions has been investigated by neutron diffraction. The evolution of interphase and intergranular strain was determined by the relative phase properties, crystal properties and texture distribution. The average phase behaviors are similar during tension and compression, where the β-phase in this material is stronger than the α-phase. The asymmetric yielding of the α-{0 0 0 2} grain family results in a relatively large intergranular strain in the loading direction during compression and different dependence of strength during tension and compression on texture. The combination of the thermal residual stress and the asymmetric CRSS in the axis gives the {0 0 0 2} grain family a higher strength in compression than in tension

  1. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  2. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hara

    2017-08-01

    Full Text Available The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5–7.5 × 1013 cm−3. The UTA spectral structure was due to emission from 4d–4f transitions in highly charged ions with average charge states of q = 20–40. A numerical simulation successfully reproduced the observed spectral behavior.

  3. Numerical simulation of temperature field, microstructure evolution and mechanical properties of HSS during hot stamping

    International Nuclear Information System (INIS)

    Shi, Dongyong; Liu, Wenquan; Ying, Liang; Hu, Ping; Shen, Guozhe

    2013-01-01

    The hot stamping of boron steels is widely used to produce ultra high strength automobile components without any spring back. The ultra high strength of final products is attributed to the fully martensitic microstructure that is obtained through the simultaneous forming and quenching of the hot blanks after austenization. In the present study, a mathematical model incorporating both heat transfer and the transformation of austenite is presented. A FORTRAN program based on finite element technique has been developed which permits the temperature distribution and microstructure evolution of high strength steel during hot stamping process. Two empirical diffusion-dependent transformation models under isothermal conditions were employed respectively, and the prediction capability on mechanical properties of the models were compared with the hot stamping experiment of an automobile B-pillar part

  4. The evolution of the temperature field during cavity collapse in liquid nitromethane. Part I: inert case

    Science.gov (United States)

    Michael, L.; Nikiforakis, N.

    2018-02-01

    This work is concerned with the effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main objective is to understand the origin of localised temperature peaks (hot spots) which play a leading order role at the early stages of ignition. To this end, we perform two- and three-dimensional numerical simulations of shock-induced single gas-cavity collapse in liquid nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In order to understand the relative contribution between these two processes, we consider in this first part of the work the evolution of the physical system in the absence of chemical reactions. We employ a multi-phase mathematical formulation which can account for the large density difference across the gas-liquid material interface without generating spurious temperature peaks. The mathematical and physical models are validated against experimental, analytic, and numerical data. Previous inert studies have identified the impact of the upwind (relative to the direction of the incident shock wave) side of the cavity wall to the downwind one as the main reason for the generation of a hot spot outside of the cavity, something which is also observed in this work. However, it is also apparent that the topology of the temperature field is more complex than previously thought and additional hot spot locations exist, which arise from the generation of Mach stems rather than jet impact. To explain the generation mechanisms and topology of the hot spots, we carefully follow the complex wave patterns generated in the collapse process and identify specifically the temperature elevation or reduction generated by each wave. This enables tracking each hot spot back to its origins. It is shown that the highest hot spot temperatures can be more than twice the post-incident shock temperature of the neat material and can thus lead to ignition. By comparing two

  5. High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asqardoust, Sh.; Zarei-Hanzaki, A. [School of Metallurgical & Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Fatemi, S.M., E-mail: mfatemi@ut.ac.ir [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Moradjoy-Hamedani, M. [School of Metallurgical & Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-06-05

    Magnesium alloys containing RE elements (WE grade) are considered as potential materials for high temperature structural applications. To this end, it is crucial to study the flow behavior and the microstructural evolution of these alloys at high temperatures. In present work, the hot compression testing was employed to investigate the deformation behavior of a rolled WE54 magnesium alloy at elevated temperatures. The experimental material failed to deform to target strain of 0.6 at 250 and 300 °C, while the straining was successfully performed at 350 °C. A flow softening was observed at 350 °C, which was related to the depletion of RE strengthener elements, particularly Y atoms, from the solid solution and dynamic precipitation of β phases. It was suggested that the Zener pinning effect of the latter precipitates might retard the occurrence of dynamic recrystallization. As the temperature increased to 450 and 500 °C, the RE elements dissolved in the matrix and thus dynamic recrystallization could considerably progress in the microstructure. The comparative study of specimens cut along transverse ad normal direction (TD and ND specimens) implied that the presence of RE elements might effectively reduce the yield anisotropy in WE54 rolled alloy. Microstructural observations indicated a higher fraction of dynamically-recrystallized grains for the ND specimens. This was discussed relying on the different shares of deformation mechanism during compressing the TD and ND specimens. - Highlights: • Deformation behavior of a high Zr WE alloy was addressed at low strain rate. • Dynamic precipitation was realized at 350 °C. • The occurrence of DRX was retarded due to Zener pinning effect. • A higher DRX fraction was obtained in ND specimens comparing with TD ones.

  6. Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs.

    Directory of Open Access Journals (Sweden)

    Shigeru Saito

    2011-04-01

    Full Text Available Transient Receptor Potential (TRP channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.

  7. Surface temperature evolution and the location of maximum and average surface temperature of a lithium-ion pouch cell under variable load profiles

    DEFF Research Database (Denmark)

    Goutam, Shovon; Timmermans, Jean-Marc; Omar, Noshin

    2014-01-01

    This experimental work attempts to determine the surface temperature evolution of large (20 Ah-rated capacity) commercial Lithium-Ion pouch cells for the application of rechargeable energy storage of plug in hybrid electric vehicles and electric vehicles. The cathode of the cells is nickel...

  8. A model–data comparison of the Holocene global sea surface temperature evolution

    Directory of Open Access Journals (Sweden)

    G. Lohmann

    2013-08-01

    Full Text Available We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere–ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate Modelling Intercomparison Project. The general pattern of sea surface temperature (SST in the models shows a high-latitude cooling and a low-latitude warming. The proxy dataset comprises a global compilation of marine alkenone- and Mg/Ca-derived SST estimates. Independently of the choice of the climate model, we observe significant mismatches between modelled and estimated SST amplitudes in the trends for the last 6000 yr. Alkenone-based SST records show a similar pattern as the simulated annual mean SSTs, but the simulated SST trends underestimate the alkenone-based SST trends by a factor of two to five. For Mg/Ca, no significant relationship between model simulations and proxy reconstructions can be detected. We test if such discrepancies can be caused by too simplistic interpretations of the proxy data. We explore whether consideration of different growing seasons and depth habitats of the planktonic organisms used for temperature reconstruction could lead to a better agreement of model results with proxy data on a regional scale. The extent to which temporal shifts in growing season or vertical shifts in depth habitat can reduce model–data misfits is determined. We find that invoking shifts in the living season and habitat depth can remove some of the model–data discrepancies in SST trends. Regardless whether such adjustments in the environmental parameters during the Holocene are realistic, they indicate that when modelled temperature trends are set up to allow drastic shifts in the ecological behaviour of planktonic organisms, they do not capture the full range of reconstructed SST trends. Results indicate that modelled and reconstructed

  9. Temperature evolution of subharmonic gap structures in MgB{sub 2}/Nb point-contacts

    Energy Technology Data Exchange (ETDEWEB)

    Giubileo, F. [CNR-INFM Laboratorio Regionale SUPERMAT e Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, via Salvador Allende, 84081 Baronissi (Italy)], E-mail: giubileo@sa.infn.it; Bobba, F.; Scarfato, A.; Piano, S. [CNR-INFM Laboratorio Regionale SUPERMAT e Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, via Salvador Allende, 84081 Baronissi (Italy); Aprili, M. [Laboratoire de Spectroscopie en Lumiere Polarisee, ESPCI, 10 rue Vauquelin, 75005 Paris (France); CSNSM-CNRS, Bat. 108 Universite Paris-Sud, 91405 Orsay (France); Cucolo, A.M. [CNR-INFM Laboratorio Regionale SUPERMAT e Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, via Salvador Allende, 84081 Baronissi (Italy)

    2007-09-01

    We have performed point-contact spectroscopy experiments on superconducting micro-constrictions between Nb tips and high quality MgB{sub 2} pellets. We measured the temperature evolution (between 4.2 K and 300 K) of the current-voltage (I-V) and of the dynamical conductance (dI/dV-V) characteristics. Above the Nb critical temperature T{sub C}{sup Nb}, the conductance of the constrictions behaves as predicted by the BTK model for S/N contacts being Nb in its normal state below T{sub C}{sup Nb}, the contacts show Josephson current and subharmonic gap structures, due to multiple Andreev reflections. These observations clearly indicate the coupling of the MgB{sub 2} 3D {pi}-band with the Nb superconducting order parameter. We found {delta}{sub {pi}} = 2.4 {+-} 0.2 meV for the three-dimensional gap of MgB{sub 2}.

  10. Evolution of interphase and intergranular strain in zirconium-niobium alloys during deformation at room temperature

    Science.gov (United States)

    Cai, Song

    Zr-2.5Nb is currently used for pressure tubes in the CANDU (CANada Deuterium Uranium) reactor. A complete understanding of the deformation mechanism of Zr-2.5Nb is important if we are to accurately predict the in-reactor performance of pressure tubes and guarantee normal operation of the reactors. This thesis is a first step in gaining such an understanding; the deformation mechanism of ZrNb alloys at room temperature has been evaluated through studying the effect of texture and microstructure on deformation. In-situ neutron diffraction was used to monitor the evolution of the lattice strain of individual grain families along both the loading and Poisson's directions and to track the development of interphase and intergranular strains during deformation. The following experiments were carried out with data interpreted using elasto-plastic modeling techniques: (1) Compression tests of a 100%betaZr material at room temperature. (2) Tension and compression tests of hot rolled Zr-2.5Nb plate material. (3) Compression of annealed Zr-2.5Nb. (4) Cyclic loading of the hot rolled Zr-2.5Nb. (5) Compression tests of ZrNb alloys with different Nb and oxygen contents. The experimental results were interpreted using a combination of finite element (FE) and elasto-plastic self-consistent (EPSC) models. The phase properties and phase interactions well represented by the FE model, the EPSC model successfully captured the evolution of intergranular constraint during deformation and provided reasonable estimates of the critical resolved shear stress and hardening parameters of different slip systems under different conditions. The consistency of the material parameters obtained by the EPSC model allows the deformation mechanism at room temperature and the effect of textures and microstructures of ZrNb alloys to be understood. This work provides useful information towards manufacturing of Zr-2.5Nb components and helps in producing ideal microstructures and material properties for

  11. Petrophysics of Palaeogene sediments

    DEFF Research Database (Denmark)

    Awadalkarim, Ahmed

    defined and understood this would benefit various areas in petroleum industry. The three studied litholgoies are relatively soft and weak sediments, but they are economically important especially in petroleum industry. Drilling through intervals of shale or siliceous ooze sediments could result in severe...... and very costly borehole instability problems which are closely connected with the "bulk properties" of shale. In practice, the main technological challenge is to keep the borehole sufficiently stable until casing is set. Knowing the real in-situ effective stress is crucial to understand and to predict...... related to borehole stability. This Ph.D. study stressed on the importance of using correct β value in estimation of vertical effective stress especially on deep-sea sediments. To assess the geomechanical stability and the stiffness of the three studied lithologies, their β was found and used to calculate...

  12. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

    KAUST Repository

    Nurlaela, Ela

    2016-01-25

    The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER kinetics were investigated. For electrocatalysis, a NiFeOx catalyst was hydrothermally decorated on Ni foam. In 1 M KOH solution, the NiFeOx electrocatalyst achieved 10 mA cm-2 at an overpotential of 260 mV. The same catalyst was decorated on the surface of Ta3N5 photocatalyst powder. The reaction was conducted in the presence of 0.1 M Na2S2O8 as a strong electron scavenger, thus likely leading to the OER being kinetically relevant. When compared with the bare Ta3N5, NiFeOx/Ta3N5 demonstrated a 5-fold improvement in photocatalytic activity in the OER under visible light irradiation, achieving a quantum efficiency of 24 % at 480 nm. Under the conditions investigated, a strong correlation between the electrocatalytic and photocatalytic performances was identified: an improvement in electrocatalysis corresponded with an improvement in photocatalysis without altering the identity of the materials. The rate change at different pH was likely associated with electrocatalytic kinetics that accordingly influenced the photocatalytic rates. The sensitivity of the reaction rates with respective to the reaction temperature resulted in an apparent activation energy of 25 kJ mol-1 in electrocatalysis, whereas that in photocatalysis was 16 kJ mol-1. The origin of the difference in these activation energy values is likely attributed to the possible effects of temperature on the individual thermodynamic and kinetic parameters of the reaction process. The work described herein demonstrates a method of “transferring the knowledge of electrocatalysis to photocatalysis” as a strong tool to rationally and quantitatively understand the complex reaction schemes involved in photocatalytic reactions.

  13. Complex temperature evolution of the electronic structure of CaFe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Ganesh; Biswas, Deepnarayan; Sahadev, Nishaina; Bindu, R.; Kumar, Neeraj; Dhar, S. K.; Thamizhavel, A.; Maiti, Kalobaran, E-mail: kbmaiti@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

    2014-03-28

    Employing high resolution photoemission spectroscopy, we investigate the temperature evolution of the electronic structure of CaFe{sub 2}As{sub 2}, which is a parent compound of high temperature superconductors—CaFe{sub 2}As{sub 2} exhibits superconductivity under pressure as well as doping of charge carriers. Photoemission results of CaFe{sub 2}As{sub 2} in this study reveal a gradual shift of an energy band, α away from the chemical potential with decreasing temperature in addition to the spin density wave (SDW) transition induced Fermi surface reconstruction across SDW transition temperature. The corresponding hole pocket eventually disappears at lower temperatures, while the hole Fermi surface of the β band possessing finite p orbital character survives till the lowest temperature studied. These results, thus, reveal signature of complex charge redistribution among various energy bands as a function of temperature.

  14. Topographic Evolution of the Sierra Nevada Resolved by Inversion of Low-Temperature Thermochronology

    Science.gov (United States)

    McPhillips, D. F.; Brandon, M. T.

    2011-12-01

    At present, there are two competing ideas for the topographic evolution of the Sierra Nevada Range. One idea is that the Sierra Nevada was formed as a monocline in the Cretaceous, marking the transition from the Great Valley forearc basin to the west, and a high Nevadaplano plateau to the east, similar to the west flank of the modern Altiplano of the Andes. Both the thermochronologic signature of local relief and the stable isotopic evidence of a topographic rain shadow support this hypothesis. However, a suite of geomorphic observations suggests that the Sierra gained a large fraction of its present elevation as recently as the Pliocene. This recent surface uplift could have been driven by convective removal of in the lower part of the lithosphere and/or by changes in dynamic topography associated with deep subduction of the Farallon plate. Here we present the first comprehensive analysis of low-temperature thermochronology in the Sierra Nevada, which provides a definitive solution, which indicates that both ideas are likely correct. Our analysis is distinguished by three new factors: The first is that we allow for separate evolutions for the local relief and the long-wavelength topography. Second, we use Al-in-Hb paleobarometry to constrain the initial depth of emplacement for the Sierra Nevada plutons. Third, our analysis is tied to a sea-level reference by using the paleo-bathymetric record of the Great Valley basin, where it on-laps the Sierra Nevada batholith. According to our analysis, westward tilting of the Sierra accounts for 2 km of uplift since 20 Ma. Topographic relief increased by a factor of 2. These findings suggest that the Sierra Nevada lost elevation through most of the Tertiary but regained much of its initial elevation following the onset of surface uplift in the Miocene.

  15. Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature associated plastic recombination.

    Science.gov (United States)

    Kohl, Kathryn P; Singh, Nadia D

    2018-04-01

    Phenotypic plasticity is pervasive in nature. One mechanism underlying the evolution and maintenance of such plasticity is environmental heterogeneity. Indeed, theory indicates that both spatial and temporal variation in the environment should favor the evolution of phenotypic plasticity under a variety of conditions. Cyclical environmental conditions have also been shown to yield evolved increases in recombination frequency. Here, we use a panel of replicated experimental evolution populations of D. melanogaster to test whether variable environments favor enhanced plasticity in recombination rate and/or increased recombination rate in response to temperature. In contrast to expectation, we find no evidence for either enhanced plasticity in recombination or increased rates of recombination in the variable environment lines. Our data confirm a role of temperature in mediating recombination fraction in D. melanogaster, and indicate that recombination is genetically and plastically depressed under lower temperatures. Our data further suggest that the genetic architectures underlying plastic recombination and population-level variation in recombination rate are likely to be distinct. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  16. Differential Temporal Evolution Patterns in Brain Temperature in Different Ischemic Tissues in a Monkey Model of Middle Cerebral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Zhihua Sun

    2012-01-01

    Full Text Available Brain temperature is elevated in acute ischemic stroke, especially in the ischemic penumbra (IP. We attempted to investigate the dynamic evolution of brain temperature in different ischemic regions in a monkey model of middle cerebral artery occlusion. The brain temperature of different ischemic regions was measured with proton magnetic resonance spectroscopy (1H MRS, and the evolution processes of brain temperature were compared among different ischemic regions. We found that the normal (baseline brain temperature of the monkey brain was 37.16°C. In the artery occlusion stage, the mean brain temperature of ischemic tissue was 1.16°C higher than the baseline; however, this increase was region dependent, with 1.72°C in the IP, 1.08°C in the infarct core, and 0.62°C in the oligemic region. After recanalization, the brain temperature of the infarct core showed a pattern of an initial decrease accompanied by a subsequent increase. However, the brain temperature of the IP and oligemic region showed a monotonously and slowly decreased pattern. Our study suggests that in vivo measurement of brain temperature could help to identify whether ischemic tissue survives.

  17. Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition.

    Science.gov (United States)

    Shi, Jian; Li, Zhaodong; Kvit, Alexander; Krylyuk, Sergiy; Davydov, Albert V; Wang, Xudong

    2013-01-01

    Understanding the evolution of amorphous and crystalline phases during atomic layer deposition (ALD) is essential for creating high quality dielectrics, multifunctional films/coatings, and predictable surface functionalization. Through comprehensive atomistic electron microscopy study of ALD TiO2 nanostructures at designed growth cycles, we revealed the transformation process and sequence of atom arrangement during TiO2 ALD growth. Evolution of TiO2 nanostructures in ALD was found following a path from amorphous layers to amorphous particles to metastable crystallites and ultimately to stable crystalline forms. Such a phase evolution is a manifestation of the Ostwald-Lussac Law, which governs the advent sequence and amount ratio of different phases in high-temperature TiO2 ALD nanostructures. The amorphous-crystalline mixture also enables a unique anisotropic crystal growth behavior at high temperature forming TiO2 nanorods via the principle of vapor-phase oriented attachment.

  18. Temperature and Evolutionary Novelty as Forces behind the Evolution of General Intelligence

    Science.gov (United States)

    Kanazawa, Satoshi

    2008-01-01

    How did human intelligence evolve to be so high? Lynn [Lynn, R. (1991). The evolution of race differences in intelligence. Mankind Quarterly, 32, 99-173] and Rushton [Rushton, J.P. (1995). Race, evolution, and behavior: A life history perspective. New Brunswick: Transaction] suggest that the main forces behind the evolution of human intelligence…

  19. Development of Refractory Ceramics for The Oxygen Evolution Reaction (OER) Electrocatalyst Support for Water Electrolysis at elevated temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Prag, Carsten Brorson; Polonsky, J.

    2012-01-01

    Commercial TaC and Si3N4 powders were tested as possible electrocatalyst support materials for the Oxygen Evolution Reaction (OER) for PEM water electrolysers, operating at elevated temperatures. TaC and Si3N4 were characterised by thermogravimmetric and differential thermal analysis...

  20. Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Landi, S.; Hellinger, Petr; Pantellini, F.; Maksimovic, M.; Velli, M.; Goldstein, B. E.; Marsch, E.

    2007-01-01

    Roč. 34, č. 20 (2007), L20105/1-L20105/5 ISSN 0094-8276 Grant - others:ASI(IT) I/015/07/0 Institutional research plan: CEZ:AV0Z30420517 Keywords : Proton temperature anisotropy * solar wind * radial evolution * observations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.744, year: 2007

  1. Modelling the temperature evolution of permafrost and seasonal frost in southern Norway during the 20th and 21st century

    Science.gov (United States)

    Hipp, T.; Etzelmüller, B.; Farbrot, H.; Schuler, T. V.

    2011-03-01

    A heat flow model was used to simulate both past and future ground temperatures of mountain permafrost in Southern Norway. A reconstructed air temperature series back to 1860 was used to evaluate the permafrost evolution since the end of the Little Ice Age in the region. The impact of a changing climate on discontinuous mountain permafrost until 2100 is predicted by using downscaled temperatures from an ensemble of downscaled climate models for the A1B scenario. From 13 borehole locations two consecutive years of ground temperature, air temperature and snow cover data are available for model calibration and validation. The boreholes are located at different elevations and in substrates having different thermal properties. With an increase of air temperature of ~+1.5 °C over 1860-2010 and an additional warming of +2.8 °C towards 2100 in air temperature, we simulate the evolution of ground temperatures for the borehole locations. According to model results, the active-layer thickness has increased since 1860 by about 0.5-5 m and >10 m for the sites Juvvass and Tron, respectively. The simulations also suggest that at an elevation of about 1900 m a.s.l. permafrost will degrade until the end of this century with a likelihood of 55-75% given the chosen A1B scenario.

  2. Effects of Composition and Calcination Temperature on Photocatalytic Evolution over from Glycerol and Water Mixture

    Directory of Open Access Journals (Sweden)

    Cancan Fan

    2012-01-01

    Full Text Available A series of sulfide coupled semiconductors supported on SiO2, (, was prepared by incipient wet impregnation method. The photocatalysts were characterized by XRD, XPS, TPR, and UV/Vis DRS. Characterization results show that the chemical actions between ZnS and CdS resulted in the formation of solid solutions on the surface of the support and the formation of them is affected by the molar ratio of ZnS/CdS and calcination temperature. Performance of photocatalysts was tested in the home made reactor under both UV light and solar-simulated light irradiation by detecting the rate of the photocatalytic H2 evolution from glycerol solution. The hydrogen production rates are related to the catalyst composition, surface structure, photoabsorption property, as well as the amount of solid solution. The maximum rate of hydrogen production, 550 μmol·h−1 under UV light irradiation and 210 μmol·h−1 under solar-simulated light irradiation, was obtained over Cd0.8Zn0.2S/SiO2 solid solution calcined at 723 K.

  3. Evolution of sp2 networks with substrate temperature in amorphous carbon films: Experiment and theory

    International Nuclear Information System (INIS)

    Gago, R.; Vinnichenko, M.; Jaeger, H.U.; Maitz, M.F.; Belov, A.Yu.; Jimenez, I.; Huang, N.; Sun, H.

    2005-01-01

    The evolution of sp 2 hybrids in amorphous carbon (a-C) films deposited at different substrate temperatures was studied experimentally and theoretically. The bonding structure of a-C films prepared by filtered cathodic vacuum arc was assessed by the combination of visible Raman spectroscopy, x-ray absorption, and spectroscopic ellipsometry, while a-C structures were generated by molecular-dynamics deposition simulations with the Brenner interatomic potential to determine theoretical sp 2 site distributions. The experimental results show a transition from tetrahedral a-C (ta-C) to sp 2 -rich structures at ∼500 K. The sp 2 hybrids are mainly arranged in chains or pairs whereas graphitic structures are only promoted for sp 2 fractions above 80%. The theoretical analysis confirms the preferred pairing of isolated sp 2 sites in ta-C, the coalescence of sp 2 clusters for medium sp 2 fractions, and the pronounced formation of rings for sp 2 fractions >80%. However, the dominance of sixfold rings is not reproduced theoretically, probably related to the functional form of the interatomic potential used

  4. Rates of molecular evolution in tree ferns are associated with body size, environmental temperature, and biological productivity.

    Science.gov (United States)

    Barrera-Redondo, Josué; Ramírez-Barahona, Santiago; Eguiarte, Luis E

    2018-05-01

    Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  5. Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel

    Energy Technology Data Exchange (ETDEWEB)

    Vershinina, Tatyana, E-mail: vershinina@bsu.edu.ru [Belgorod State National Research University, Pobedy street 85, Belgorod 308015 (Russian Federation); Leont' eva-Smirnova, Maria, E-mail: smirnova@bochvar.ru [Bochvar High-Technology Research Institute of Inorganic Materials, ul. Rogova 5, Moscow 123098 (Russian Federation)

    2017-03-15

    X-ray diffraction has been used to study the dislocation structure in ferrite-martensite high-chromium steel EK-181 in the states after heat treatment and high-temperature creep. The influence of heat treatment and stress on evolution of lath martensite structure was investigated by and electron back-scattered diffraction. The effect of nitrogen content on the total dislocation density, fraction of edge and screw dislocation segments are analyzed. - Highlights: •Fraction of edge dislocation in quenched state depends on nitrogen concentration. •Nitrogen affects the character of dislocation structure evolution during annealing. •Edge dislocations fraction influences on dislocation density after aging and creep.

  6. Effect of Deformation Temperature on Microstructure Evolution and Mechanical Properties of Low-Carbon High-Mn Steel

    Directory of Open Access Journals (Sweden)

    Adam Grajcar

    2018-01-01

    Full Text Available This work addresses the influence of deformation temperature in a range from −40°C to 200°C on the microstructure evolution and mechanical properties of a low-carbon high-manganese austenitic steel. The temperature range was chosen to cope at the time during sheet processing or car crash events. Experimental results show that yield stress and ultimate tensile strength gradually deteriorate with an increase in the tensile testing temperature. The dominant mechanism responsible for the strain hardening of steel changes as a function of deformation temperature, which is related to stacking fault energy (SFE changes. When the deformation temperature rises, twinning decreases while a role of dislocation slip increases.

  7. The Effect of Prestrain Temperature on Kinetics of Static Recrystallization, Microstructure Evolution, and Mechanical Properties of Low Carbon Steel

    Science.gov (United States)

    Akbari, Edris; Karimi Taheri, Kourosh; Karimi Taheri, Ali

    2018-05-01

    In this research, the samples of a low carbon steel sheet were rolled up to a thickness prestrain of 67% at three different temperatures consisted of room, blue brittleness, and subzero temperature. Microhardness, SEM, and tensile tests were carried out to evaluate the static recrystallization kinetics defined by the Avrami equation, microstructural evolution, and mechanical properties. It was found that the Avrami exponent is altered with change in prestrain temperature and it achieves the value of 1 to 1. 5. Moreover, it was indicated that prestraining at subzero temperature followed by annealing at 600 °C leads to considerable enhancement in tensile properties and kinetics of static recrystallization compared to room and blue brittleness temperatures. The prestraining at blue brittleness temperature followed by annealing treatment caused, however, a higher strength and faster kinetics compared with that at room temperature. It was concluded that although from the steel ductility point of view, the blue brittleness temperature is called an unsuitable temperature, but it can be used as prestraining temperature to develop noticeable combination of strength and ductility in low carbon steel.

  8. Physicochemical Processes and the Evolution of Strength in Calcite Fault Gouge at Room Temperature

    Science.gov (United States)

    Carpenter, B. M.; Viti, C.; Collettini, C.

    2015-12-01

    The presence of calcite in and near faults, as the dominant material, cement, or vein fill, indicates that the mechanical behavior of carbonate-dominated material likely plays an important role in shallow- and mid-crustal faulting. Furthermore, a variety of physical and chemical processes control the evolution of strength and style of slip along seismogenic faults and thus play a critical role in the seismic cycle. Determining the role and contributions of these types of mechanisms is essential to furthering our understanding of the processes and timescales that lead to the strengthening of faults during interseismic periods and their behavior during the earthquake nucleation process. To further our understanding of these processes, we performed laboratory-shearing experiments on calcite gouge at normal stresses from 1 to 100 MPa, under conditions of saturation and at room temperature. We performed velocity stepping (0.1-1000μm/s) and slide-hold-slide (1-3000s) tests, to measure the velocity dependence of friction and the amount of frictional strengthening respectively, under saturated conditions with pore fluid that was in equilibrium with CaCO3. At 5 MPa normal stress, we also varied the environmental conditions by performing experiments under conditions of 5% RH and 50 % RH, and saturation with: silicone oil, demineralized water, and the equilibrated solution combined with 0.5M NaCl. Finally, we collected post experimental samples for microscopic analysis. Our combined analyses of rate-dependence, strengthening behavior, and microstructures show that calcite fault gouge transitions from brittle to semi-brittle behavior at high normal stress and low sliding velocities. Furthermore, our results also highlight how changes in pore water chemistry can have significant influence on the mechanical behavior of calcite gouge in both the laboratory and in natural faults. Our observations have important implications for earthquake nucleation and propagation on faults in

  9. Evolution of extreme temperature events in short term climate projection for Iberian Peninsula.

    Science.gov (United States)

    Rodriguez, Alfredo; Tarquis, Ana M.; Sanchez, Enrique; Dosio, Alessandro; Ruiz-Ramos, Margarita

    2014-05-01

    Extreme events of maximum and minimum temperatures are a main hazard for agricultural production in Iberian Peninsula. For this purpose, in this study we analyze projections of their evolution that could be valid for the next decade, represented in this study by the 30-year period 2004-2034 (target period). For this purpose two kinds of data were used in this study: 1) observations from the station network of AEMET (Spanish National Meteorological Agency) for five Spanish locations, and 2) simulated data at a resolution of 50 ×50 km horizontal grid derived from the outputs of twelve Regional Climate Models (RCMs) taken from project ENSEMBLES (van der Linden and Mitchell, 2009), with a bias correction (Dosio and Paruolo, 2011; Dosio et al., 2012) regarding the observational dataset Spain02 (Herrera et al., 2012). To validate the simulated climate, the available period of observations was compared to a baseline period (1964-1994) of simulated climate for all locations. Then, to analyze the changes for the present/very next future, probability of extreme temperature events for 2004-2034 were compared to that of the baseline period. Although only minor changes are expected, small variations in variability may have a significant impact in crop performance. The objective of the work is to evaluate the utility of these short term projections for potential users, as for instance insurance companies. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116,D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research,Volume 117, D17, doi: 0.1029/2012JD017968 Herrera et. al. (2012) Development and Analysis of a 50 year high

  10. Evolution of low-temperature phases in a low-temperature structural transition of a La cuprate

    International Nuclear Information System (INIS)

    Inoue, Y.; Horibe, Y.; Koyama, Y.

    1997-01-01

    The microstructure produced by a low-temperature structural phase transition in La 1.5 Nd 0.4 Sr 0.1 CuO 4 has been examined by transmission electron microscopy with the help of imaging plates. The low-temperature transition was found to be proceeded not only by the growth of the Pccn/low-temperature-tetragonal phases nucleated along the twin boundary but also by the nucleation and growth of the phases in the interior of the low-temperature-orthorhombic domain. In addition, because the map of the octahedron tilt as an order parameter is not identical to that of the spontaneous strain accompanied by the transition, the microstructure below the transition is understood to be a very complex mixture of the low-temperature phases. copyright 1997 The American Physical Society

  11. Evolution of Near-Surface Internal and External Oxide Morphology During High-Temperature Selective Oxidation of Steels

    Science.gov (United States)

    Story, Mary E.; Webler, Bryan A.

    2018-05-01

    In this work we examine some observations made using high-temperature confocal scanning laser microscopy (HT-CSLM) during selective oxidation experiments. A plain carbon steel and advanced high-strength steel (AHSS) were selectively oxidized at high temperature (850-900°C) in either low oxygen or water vapor atmospheres. Surface evolution, including thermal grooving along grain boundaries and oxide growth, was viewed in situ during heating. Experiments investigated the influence of the microstructure and oxidizing atmosphere on selective oxidation behavior. Sequences of CSLM still frames collected during the experiment were processed with ImageJ to obtain histograms that showed a general darkening trend indicative of oxidation over time with all samples. Additional ex situ scanning electron microscopy and energy dispersive spectroscopy analysis supported in situ observations. Distinct oxidation behavior was observed for each case. Segregation, grain orientation, and extent of internal oxidation were all found to strongly influence surface evolution.

  12. STRUCTURAL EVOLUTION AND COMPOSITION CHANGE IN THE SURFACE REGION OF POLYPROPYLENE/CLAY NANOCOMPOSITES ANNEALED AT HIGH TEMPERATURES

    Institute of Scientific and Technical Information of China (English)

    唐涛

    2009-01-01

    A model experiment was done to clear the formation mechanism of protective layers during combustion of polypropylene(PP)/organically modified montmorillonite(OMMT) nanocomposites.The investigation was focused on the effects of annealing temperature on the structural changes and protective layer formation.The decomposition of OMMT and degradation of PP/OMMT nanocomposites were characterized by means of thermogravimetric analysis(TGA).The structural evolution and composition change in the surface region of...

  13. Evolution of Principle and Practice of Electrodeposited Thin Film: A Review on Effect of Temperature and Sonication

    Directory of Open Access Journals (Sweden)

    A. Mallik

    2011-01-01

    Full Text Available This review discusses briefly the important aspects of thin films. The introduction of the article is a summary of evolution of thin films from surface engineering, their deposition methods, and important issues. The fundamental aspects of electrochemical deposition with special emphasis on the effect of temperature on the phase formation have been reviewed briefly. The field of sonoelectrochemistry has been discussed in the paper. The literature regarding the effects of temperature and sonication on the structure and morphology of the deposits and nucleation mechanisms, residual stress, and mechanical properties has also been covered briefly.

  14. Temperature dependence of microstructure and strain evolution in strained ZnO films on Al2O3(0001)

    International Nuclear Information System (INIS)

    Kim, In-Woo; Lee, Kyu-Mann

    2008-01-01

    We have studied the temperature dependence of the growth mode and microstructure evolution in highly mismatched sputter-grown ZnO/Al 2 O 3 (0001) heteroepitaxial films. The growth mode was studied by real-time synchrotron x-ray scattering. We find that the growth mode changes from a two-dimensional (2D) layer to a 3D island in the early growth stage with temperature (300-600 deg. C), in sharp contrast to the reported transition from three dimensions to two dimensions in metal-organic vapor phase epitaxy. At around 400 deg. C intermediate 2D platelets nucleate in the early stage, which act as nucleation cores of 3D islands and transform to a misaligned state during further growth. Meanwhile, at high temperature (above 500 deg. C), the spinel structure of ZnAl 2 O 4 grows in the early stage, and it undergoes a transition to wurtzite-ZnO (w-ZnO) with thickness. The spinel formation is presumably driven by high temperature and large incident energy of impacting atoms during sputtering. The results of the strain evolution as functions of temperature and thickness during growth suggest that the surface diffusion is a major factor determining the microstructural properties in the strained ZnO/Al 2 O 3 (0001) heteroepitaxy

  15. Surveillance of evolution of defects in stainless steel piping subject to fatigue cycles in temperature

    International Nuclear Information System (INIS)

    Marini, J.

    1976-01-01

    The surveillance of internal crack growth in austenitic ICL 167 CN steel is possible by using ultrasonic techniques. The fracture mechanics allows to predict the evolution of these cracks under fatigue loading [fr

  16. Microstructure evolution during cyclic tests on EUROFER 97 at room temperature. TEM observation and modelling

    Czech Academy of Sciences Publication Activity Database

    Giordana, M. F.; Giroux, P. F.; Alvarez; Armas, I.; Sauzay, M.; Armas, A.; Kruml, Tomáš

    2012-01-01

    Roč. 550, JUL (2012), s. 103-111 ISSN 0921-5093 Institutional support: RVO:68081723 Keywords : martensitic steels * softening behaviour * microstructural evolution * modelling Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.108, year: 2012

  17. ATLASGAL-selected massive clumps in the inner Galaxy. V. Temperature structure and evolution

    Science.gov (United States)

    Giannetti, A.; Leurini, S.; Wyrowski, F.; Urquhart, J.; Csengeri, T.; Menten, K. M.; König, C.; Güsten, R.

    2017-07-01

    Context. Observational identification of a solid evolutionary sequence for high-mass star-forming regions is still missing. Spectroscopic observations give the opportunity to test possible schemes and connect the phases identified to physical processes. Aims: We aim to use the progressive heating of the gas caused by the feedback of high-mass young stellar objects to prove the statistical validity of the most common schemes used to observationally define an evolutionary sequence for high-mass clumps, and characterise the sensitivity of different tracers to this process. Methods: From the spectroscopic follow-ups carried out towards submillimeter continuum (dust) emission-selected massive clumps (the ATLASGAL TOP100 sample) with the IRAM 30 m, Mopra, and APEX telescopes between 84 GHz and 365 GHz, we selected several multiplets of CH3CN, CH3CCH, and CH3OH emission lines to derive and compare the physical properties of the gas in the clumps along the evolutionary sequence, fitting simultaneously the large number of lines that these molecules have in the observed band. Our findings are compared with results obtained from optically thin CO isotopologues, dust, and ammonia from previous studies on the same sample. Results: The chemical properties of each species have a major role on the measured physical properties. Low temperatures are traced by ammonia, methanol, and CO (in the early phases), the warm and dense envelope can be probed with CH3CN, CH3CCH, and, in evolved sources where CO is abundant in the gas phase, via its optically thin isotopologues. CH3OH and CH3CN are also abundant in the hot cores, and we suggest that their high-excitation transitions are good tools to study the kinematics in the hot gas associated with the inner envelope surrounding the young stellar objects that these clumps are hosting. All tracers show, to different degrees according to their properties, progressive warming with evolution. The relation between gas temperature and the

  18. On the spin-temperature evolution during the epoch of reionization

    NARCIS (Netherlands)

    Thomas, Rajat M.; Zaroubi, Saleem

    Simulations estimating the brightness temperature (delta T-b) of the redshifted 21 cm from the epoch of reionization (EoR) often assume that the spin temperature (T-s) is decoupled from the background cosmic microwave background (CMB) temperature and is much larger than it, i.e. T-s T-CMB. Although

  19. Analysis of reworked sediments as a basis of the Palaeogene-Neogene palaeogeography reinterpretation: Case study of the Roztocze region (SE Poland)

    Science.gov (United States)

    Margielewski, Włodzimierz; Jankowski, Leszek; Krąpiec, Marek; Garecka, Małgorzata; Hałas, Stanisław; Urban, Jan

    2017-05-01

    Radiometric K/Ar dating of glauconite and nanno- and micropaleontologic analyses of calcareous nannoplankton, foraminifers and dinoflagellates isolated from the Miocene rocks in the Polish part of the Roztocze region, a northeastern part of the fore-bulge of the Carpathian Foreland Basin System - CFBS), SE Poland, reveal that these strata contain numerous microfossils and glauconite grains of the Upper Eocene and Lower Oligocene age. Such occurrences clearly indicate that these materials were redeposited from the Upper Eocene and Lower Oligocene marine rocks that must have originally covered most of the Roztocze and the surrounding area. It is therefore proposed herein that the geographical extent of the boreal, epi-continental basin during the Eocene-Oligocene was much greater than previously considered. Moreover, it appears that this basin was connected with the back-bulge zone of the warm Carpathian Basin (originally a northern part of the Tethys Basin which since Eocene/Oligocene boundary remained isolated as the Paratethys Basin). Hence, it is unlikely that the Roztocze region was uplifted during the Palaeogene as part of the Meta-Carpathian Swell, as it was earlied hypothesized. Instead, the Roztocze Swell formed during the Sarmatian, in the last stage of the development of the fore-bulge structure in the foreland of the up-thrust Carpathian orogenic belt. Multiple redeposition of sediments is the reason that the absolute dating (K/Ar) of glauconite, as well as incomprehensive palaeontological analysis could result in erroneous stratigraphic and palaeogeographic interpretations.

  20. 3D Online Submicron Scale Observation of Mixed Metal Powder's Microstructure Evolution in High Temperature and Microwave Compound Fields

    Directory of Open Access Journals (Sweden)

    Dan Kang

    2014-01-01

    Full Text Available In order to study the influence on the mechanical properties caused by microstructure evolution of metal powder in extreme environment, 3D real-time observation of the microstructure evolution of Al-Ti mixed powder in high temperature and microwave compound fields was realized by using synchrotron radiation computerized topography (SR-CT technique; the spatial resolution was enhanced to 0.37 μm/pixel through the designed equipment and the introduction of excellent reconstruction method for the first time. The process of microstructure evolution during sintering was clearly distinguished from 2D and 3D reconstructed images. Typical sintering parameters such as sintering neck size, porosity, and particle size of the sample were presented for quantitative analysis of the influence on the mechanical properties and the sintering kinetics during microwave sintering. The neck size-time curve was obtained and the neck growth exponent was 7.3, which indicated that surface diffusion was the main diffusion mechanism; the reason was the eddy current loss induced by the external microwave fields providing an additional driving force for mass diffusion on the particle surface. From the reconstructed images and the curve of porosity and average particle size versus temperature, it was believed that the presence of liquid phase aluminum accelerated the densification and particle growth.

  1. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2015-01-01

    adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses...... in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures....... In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance...

  2. Evolution of elevated containment temperatures at Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Branch, R.D. Jr.

    1991-01-01

    In this paper the author describes the events which caused Calvert Cliffs Nuclear Power Plant engineers to recognize a need for monitoring of ambient temperatures within containment. The early attempts at temperature monitoring programs are discussed and critiqued. Primary failings of these early programs included a failure to collect temperature data under a variety of external conditions and a lack of quality assurance to make the data useful for design change. From these early attempts Calvert Cliffs developed a new, extensive temperature monitoring program designed to collect data over a two-year period. The author outlines the planned temperature monitoring program and discusses its expected results

  3. Application of neutron diffraction in characterization of texture evolution during high-temperature creep in magnesium alloys

    International Nuclear Information System (INIS)

    Sediako, A.; Shook, S.; Vogel, S.; Sediako, D.

    2010-01-01

    A good combination of room-temperature and elevated temperature strength and ductility, good salt-spray corrosion resistance and excellent diecastability are frequently among the main considerations in development of a new magnesium alloy for automotive industry. Unfortunately, there has been much lesser effort in development of wrought-stock alloys for high temperature applications. Extrudability and high temperature performance of wrought material become important factors in an effort to develop new wrought alloys and processing technologies. This paper shows some results received in creep testing and studies of in-creep texture evolution for several wrought magnesium alloys developed for use in elevated- temperature applications. Along with others 'traditional' characterization techniques of metals' performance in high- temperature creep, neutron diffraction was employed in this study to analyze evolution of crystallographic texture during creep deformation. The paper compares two methods of texture analysis in neutron diffraction studies: based on monochromatic (reactor-source) beam and white neutron beam (time-of-flight method, synchrotron). The time-of-flight (TOF) spectrometer illuminates the sample with a non-filtered beam of neutrons and captures the readings with an encircled detector array. This provides a very fast and detailed picture of the crystallographic texture for the bulk of the sample. As the white beam retains all neutron wavelengths, it takes much less time to collect statistically-valid dataset for the diffraction pattern. On the other hand, the monochromatic beam setup includes a monochromatic crystal that filters out a specific wavelength. The diffracted beam is then captured by a much simpler neutron detector. This setup is more flexible, allowing for choosing various wavelengths (depending on the sample material) but obviously requiring more time for statistically viable data collection. These studies were performed using E3 neutron

  4. Experimental study of discontinuous plastic flow, phase transformation and micro-damage evolution in ductile materials at cryogenic temperatures

    CERN Document Server

    Marcinek, Dawid Jarosław; Sgobba, S

    2009-01-01

    The present Thesis deals with three low temperature phenomena occurring in ductile materials subjected to mechanical loads: serrated yielding, plastic strain induced γ-α’ phase transformation and evolution of micro-damage: - the Thesis explains the physical mechanisms governing each phenomenon at the micro and macroscopic levels; - the document describes in detail the advanced laboratory equipment needed for cryogenic experiments; - the results of tests carried out with unique precision and focused on serrated yielding and evolution of micro-damage (the observations were made with different strain rates and with the use of different materials) are presented; - validation of suitable kinetic laws and identification of parameters for tested materials is carried out.

  5. Temporal evolutions of electron temperature and density with edge localized mode in the JT-60U divertor plasma

    International Nuclear Information System (INIS)

    Nakano, T; Kubo, H; Asakura, N

    2010-01-01

    From the intensity ratios of the three He I lines measured at 20 kHz, the temporal evolutions of the electron temperature and density during and after the power and the particle flow into the divertor plasma caused by edge localized modes are determined. The electron temperature increases from 70 eV to 80 eV with increasing D α intensity. Then, at the peak of D α intensity, the electron temperature starts decreasing down to 60 eV. The electron density increases from 0.1 x 10 19 m -3 to 0.3 x 10 19 m -3 with increasing D α intensity, and then starts to decrease more gradually compared with the electron temperature after the peak of D α intensity. It is interpreted that the increase of the electron temperature is ascribed to the power and the particle flow into the divertor plasma, and that the decrease of the electron temperature and the increase of the electron density are ascribed to the ionization of the recycled neutrals, which consumes the electron energy and produces electrons.

  6. An energy stable evolution method for simulating two-phase equilibria of multi-component fluids at constant moles, volume and temperature

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu; Wang, Xiuhua

    2016-01-01

    In this paper, we propose an energy-stable evolution method for the calculation of the phase equilibria under given volume, temperature, and moles (VT-flash). An evolution model for describing the dynamics of two-phase fluid system is based on Fick

  7. Modelling of the evolution of ground waters in a granite system at low temperature: the Stripa ground waters, Sweden

    International Nuclear Information System (INIS)

    Grimaud, D.; Michard, G.; Beaucaire, C.

    1990-01-01

    From chemical data on the Stripa ground waters we have tried to model the evolution of the chemical composition of a ground water in a granitic system at low temperature. The existence of two end-member ground water compositions made it possible first, to test the conventional model of a geothermal system according to which an overall equilibrium between the waters and a given mineral assemblage can be defined, and then to show that such a model could be extended to low temperatures (10 o C). Conversely, if we know the mineral assemblage, the equilibration temperature and the charge of the mobile ions (in this case, Cl), the composition of the solution is entirely fixed. In our model of the Stripa ground waters, the existence of two end-member ground water compositions can be explained by an evolution from a ''kaolinite-albite-laumontite'' equilibrium to a ''prehnite-albite-laumontite'' equilibrium, the latter requiring less Al than the former. We have also emphasized the importance of the Cl ion concentrations of the ground waters, because they can be considered as indicators of the degree of reaction progress between rock and water, thus determining the degree of equilibration of the system. (author)

  8. Setting temperature evolution of nitrate radwaste immobilized in ordinary portland cement

    International Nuclear Information System (INIS)

    Rzyski, B.M.; Suarez, A.A.

    1988-01-01

    Materials based on hydraulic cements such as ordinary Portland cement (OPC) have many applications in the radioactive waste disposal field. Cement hydration process is an exothermic reaction and can cause a considerable temperature rise in the cemented waste form. Specially when large blocks of waste forms are produced it is necessary to have some information about the temperature build up which occurs inside the mass, because this effect may have some influences on the ultimate properties of the hardened cement paste. This temperature rise cause expansion while the cement paste is hardening. When the cooling process takes place, to the surrounding temperature, crackings and contractions may then occur. Whether cracking arise it depends both on the magnitude of the temperature induced stress and on the capacity of the mixture to accommodate the strain. This paper compares the temperature growth in pastes into two different geometries: one uses a waste container with 3.8 dm 3 (one US gallon) capacity placed inside a 0.21 m 3 (55 gallons) concrete lined drum, which acts as a radiation shielding, and the other the same container placed in ambient at room temperature. Correlations between the time of temperature occurrence, maximum temperature, the water to cement ratio and salt content were observed

  9. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.

    Science.gov (United States)

    Caspeta, Luis; Nielsen, Jens

    2015-07-21

    A major challenge for the production of ethanol from biomass-derived feedstocks is to develop yeasts that can sustain growth under the variety of inhibitory conditions present in the production process, e.g., high osmolality, high ethanol titers, and/or elevated temperatures (≥ 40 °C). Using adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40 °C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses. Thermotolerant yeast strains showed horizontal displacement of their thermal reaction norms to higher temperatures. Hence, their optimal and maximum growth temperatures increased by about 3 °C, whereas they showed a growth trade-off at temperatures below 34 °C. Computational analysis of the physical properties of proteins showed that the lethal temperature for yeast is around 49 °C, as a large fraction of the yeast proteins denature above this temperature. Our analysis also indicated that the number of functions involved in controlling the growth rate decreased in the thermotolerant strains compared with the number in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures. In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance to inhibitory conditions found in industrial ethanol production processes. Yeast thermotolerance can significantly reduce the production costs of biomass

  10. Effects of fast mold temperature evolution on micro features replication quality during injection molding

    DEFF Research Database (Denmark)

    Liparoti, S.; Calaon, M.; Speranza, V.

    2017-01-01

    lithography and subsequent nickel electroplating. The mold temperature was controlled by a thin heating device (composed by polyimide as insulating layer and polyimide carbon black loaded as electrical conductive layer) able to increase the temperature on mold surface in a few seconds (40°C/s) by Joule...

  11. Fast Mold Temperature Evolution on Micro Features Replication Quality during Injection Molding

    DEFF Research Database (Denmark)

    Liparoti, S.; Calaon, Matteo; Speranza, V.

    2016-01-01

    lithography and subsequent nickel electroplating. The mold temperature was controlled by a thin heating device (composed by polyimide as insulating layer and polyimide carbon black loaded aselectrical conductive layer) able to increase the temperature on mold surface in a few seconds (40°C/s) by Joule effect...

  12. Evolution of Surface Temperature of a 13 Amp Hour Nano Lithium-Titanate Battery Cell under Fast Charging

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    Lithium-ion batteries have already gained acceptability for Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) applications because of several reasons such as high theoretical capacity, their cycle-life, and high specific energy density. The intention of this experimental research...... is to study the surface temperature evolution of a 13 Ah Nano Lithium-Titanate battery cell for the usage of rechargeable energy storage system under fast charging conditions. The nominal voltage of the cell is 2.26V and the nominal capacity is 13.4 Ah. In this research, contact thermocouples were employed...

  13. Radiation clusters formation and evolution in FCC metals at low-temperature neutron irradiation up to small damage fluences

    International Nuclear Information System (INIS)

    Kozlov, A.V.; Shcherbakov, E.N.; Asiptsov, O.I.; Skryabin, L.A.; Portnykh, I.A.

    2006-01-01

    Methods of transmission electron microscopy and precision size measurements are used to study the formation of radiation-induced clusters in FCC metals (Ni, Pt, austenitic steels EhI-844, ChS-68) irradiated with fast neutron (E>0.1 MeV) fluences from 7 x 10 21 up to 3.5 x 10 22 m -2 at a temperature of 310 K. Using statistical thermodynamic methods the process of radiation clusters formation and evolution is described quantitatively. The change in the concentration of point defects under irradiation as well as size variations of irradiated specimens on annealing are calculated [ru

  14. Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution

    Energy Technology Data Exchange (ETDEWEB)

    Yadroitsev, I., E-mail: ihar.yadroitsau@enise.fr [Université de Lyon, Ecole Nationale d’Ingénieurs de Saint-Etienne, 58 rue Jean Parot, 42023 Saint-Etienne (France); Krakhmalev, P. [Karlstad University, Department of Mechanical and Materials Engineering, SE-651 88 Karlstad (Sweden); Yadroitsava, I. [Université de Lyon, Ecole Nationale d’Ingénieurs de Saint-Etienne, 58 rue Jean Parot, 42023 Saint-Etienne (France)

    2014-01-15

    Highlights: • Temperature measurements of molten pool were done using CCD camera. • Temperature of molten pool versus scanning speed and laser power was determined. • Microstructures and microhardness of SLM samples were analyzed. • Influence of heat treatment on microstructure were discussed and presented. -- Abstract: Selective laser melting (SLM) is a kind of additive manufacturing where parts are made directly from 3D CAD data layer-by-layer from powder material. SLM products are used in various industries including aerospace, automotive, electronic, chemical, biomedical and other high-tech areas. The properties of the parts produced by SLM depend strongly on the material nature, characteristics of each single track and each single layer, as well as the strength of the connections between them. Studying the temperature distribution during SLM is important because temperature gradient and heat transfer determine the microstructure and finally mechanical properties of the SLM part. In this study a CCD camera was applied for determination of the surface temperature distribution and the molten pool size of Ti6Al4V alloy. The investigation of the microstructure evolution after different heat treatments was carried out to determine the microstructure in terms of applicability for the biomedical industry.

  15. The long-range correlation and evolution law of centennial-scale temperatures in Northeast China.

    Science.gov (United States)

    Zheng, Xiaohui; Lian, Yi; Wang, Qiguang

    2018-01-01

    This paper applies the detrended fluctuation analysis (DFA) method to investigate the long-range correlation of monthly mean temperatures from three typical measurement stations at Harbin, Changchun, and Shenyang in Northeast China from 1909 to 2014. The results reveal the memory characteristics of the climate system in this region. By comparing the temperatures from different time periods and investigating the variations of its scaling exponents at the three stations during these different time periods, we found that the monthly mean temperature has long-range correlation, which indicates that the temperature in Northeast China has long-term memory and good predictability. The monthly time series of temperatures over the past 106 years also shows good long-range correlation characteristics. These characteristics are also obviously observed in the annual mean temperature time series. Finally, we separated the centennial-length temperature time series into two time periods. These results reveal that the long-range correlations at the Harbin station over these two time periods have large variations, whereas no obvious variations are observed at the other two stations. This indicates that warming affects the regional climate system's predictability differently at different time periods. The research results can provide a quantitative reference point for regional climate predictability assessment and future climate model evaluation.

  16. THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Benson, B. A.; Vikhlinin, A.; Aird, K. A.; Allen, S. W.; Bautz, M.; Bayliss, M.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Miller, E. D.; Mocanu, L.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zahn, O.; Zenteno, A.

    2014-09-24

    We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg(2) South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ~20 clusters based on redshift and central density, performing a joint X-ray spectral fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0 < r < 1.5R (500), which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z = 0 to z = 1.2. We find that high-z (0.6 < z < 1.2) clusters are slightly (~30%) cooler both in the inner (r < 0.1R (500)) and outer (r > R (500)) regions than their low-z (0.3 < z < 0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Confirming earlier results from this data set, we find an absence of strong cool cores at high z, manifested in this analysis as a significantly lower observed pressure in the central 0.1R (500) of the high-z cool-core subset of clusters compared to the low-z cool-core subset. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at r lsim 0.7R (500)—this may reflect a long-standing balance between cooling and feedback over long timescales and large physical scales. We observe a slight flattening of the entropy profile at r gsim R (500) in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (~3×) rate at which group-mass (~2

  17. Green Compact Temperature Evolution during Current-Activated Tip-Based Sintering (CATS of Nickel

    Directory of Open Access Journals (Sweden)

    Khaled Morsi

    2013-04-01

    Full Text Available Current-activated tip-based sintering (CATS is a novel process where spark plasma sintering conditions are applied through an electrically conducting tip on a locally controlled area on a green powder compact/bed. The localization of electric current in CATS allows for unique temporal and spatial current and temperature distributions within the tip and powder compact. In this paper, special experimental setups were used to monitor the temperature profiles in the tip and at multiple locations on the surface of nickel powder compacts. A variation in the initial green density was found to have a significant effect on the maximum temperature in the tip as well as the temperature distribution across the powder compact. In general, the lowest green density specimens displayed the best conditions for localized densification. The concept of effective current density is introduced and results are discussed in relation to the densification parameter.

  18. Evolution of microstructural defects with strain effects in germanium nanocrystals synthesized at different annealing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minghuan; Cai, Rongsheng; Zhang, Yujuan; Wang, Chao [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); College of Chemistry and Chemical Engineering, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); Wang, Yiqian, E-mail: yqwang@qdu.edu.cn [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); College of Physics Science, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); Ross, Guy G.; Barba, David [INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2014-07-01

    Ge nanocrystals (Ge-ncs) were produced by implantation of {sup 74}Ge{sup +} into a SiO{sub 2} film on (100) Si, followed by high-temperature annealing from 700 °C to 1100 °C. Transmission electron microscopy (TEM) studies show that the average size of Ge-ncs increases with the annealing temperature. High-resolution TEM (HRTEM) investigations reveal the presence of planar and linear defects in the formed Ge-ncs, whose relative concentrations are determined at each annealing temperature. The relative concentration of planar defects is almost independent of the annealing temperature up to 1000 °C. However, from 1000 °C to 1100 °C, its concentration decreases dramatically. For the linear defects, their concentration varies considerably with the annealing temperatures. In addition, by measuring the interplanar spacing of Ge-ncs from the HRTEM images, a strong correlation is found between the dislocation percentage and the stress field intensity. Our results provide fundamental insights regarding both the presence of microstructural defects and the origin of the residual stress field within Ge-ncs, which can shed light on the fabrication of Ge-ncs with quantified crystallinity and appropriate size for the advanced Ge-nc devices. - Highlights: • Growth of Ge nanocrystals at different annealing temperatures was investigated. • Strain field has great effects on the formation of dislocations. • Different mechanisms are proposed to explain growth regimes of Ge nanocrystals.

  19. Sedimentological characteristics and depositional processes of sediment gravity flows in rift basins: The Palaeogene Dongying and Shahejie formations, Bohai Bay Basin, China

    Science.gov (United States)

    Liu, Lei; Chen, Hongde; Zhong, Yijiang; Wang, Jun; Xu, Changgui; Chen, Anqing; Du, Xiaofeng

    2017-10-01

    Sediment gravity flow deposits are common, particularly in sandy formations, but their origin has been a matter of debate and there is no consensus about the classification of such deposits. However, sediment gravity flow sandstones are economically important and have the potential to meet a growing demand in oil and gas exploration, so there is a drive to better understand them. This study focuses on sediment gravity flow deposits identified from well cores in Palaeogene deposits from the Liaodong Bay Depression in Bohai Bay Basin, China. We classify the sediment gravity flow deposits into eight lithofacies using lithological characteristics, grain size, and sedimentary structures, and interpret the associated depositional processes. Based on the scale, spatial distribution, and contact relationships of sediment gravity flow deposits, we defined six types of lithofacies associations (LAs) that reflect transformation processes and depositional morphology: LA1 (unconfined proximal breccia deposits), LA2 (confined channel deposits), LA3 (braided-channel lobe deposits), LA4 (unconfined lobe deposits), LA5 (distal sheet deposits), and LA6 (non-channelized sheet deposits). Finally, we established three depositional models that reflect the sedimentological characteristics and depositional processes of sediment gravity flow deposits: (1) slope-apron gravel-rich depositional model, which involves cohesive debris flows deposited as LA1 and dilute turbidity currents deposited as LA5; (2) non-channelized surge-like turbidity current depositional model, which mainly comprises sandy slumping, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA5 and LA6; and (3) channelized subaqueous-fan depositional model, which consists of non-cohesive bedload dominated turbidity currents, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA2-LA5, originating from sustained extrabasinal turbidity currents

  20. Microstructural evolution in Fe-0.13P-0.05C steel during compression at elevated temperatures

    Science.gov (United States)

    Mehta, Y.; K, Rajput S.; P, Chaudhari G.; V, Dabhade V.

    2018-03-01

    The microstructural evolution was studied in order to adjust the processing parameters for hot forming. Fe-0.13P-0.05C steel was subjected to hot compression tests using a thermo-mechanical simulator. The tests were performed at the temperatures ranging from 800°C-950°C. The strain rates chosen at all these temperatures were 0.01, 0.1 and 1 s‑1. The effects of the strain rates and hot compression temperatures on the microstructural aspects of the steel were examined using optical microscopy. The outcomes indicate that the mean grain dimension of the hot compressed Fe-0.13P-0.05C steel escalates with increases in the deformation temperature and also with decreases in strain rate. Dynamic recrystallization was observed to be the instrument of grain refinement. The minimum grain dimension of 5.6 μm was attained at 800°C and 0.1s‑1.

  1. Study of electron temperature evolution during sawtoothing and pellet injection using thermal electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Gomez, C.C.

    1986-05-01

    A study of the electron temperature evolution has been performed using thermal electron cyclotron emission. A six channel far infrared polychromator was used to monitor the radiation eminating from six radial locations. The time resolution was <3 μs. Three events were studied, the sawtooth disruption, propagation of the sawtooth generated heatpulse and the electron temperature response to pellet injection. The sawtooth disruption in Alcator takes place in 20 to 50 μs, the energy mixing radius is approx. 8 cm or a/2. It is shown that this is inconsistent with single resonant surface Kadomtsev reconnection. Various forms of scalings for the sawtooth period and amplitude were compared. The electron heatpulse propagation has been used to estimate chi e(the electron thermal diffusivity). The fast temperature relaxation observed during pellet injection has also been studied. Electron temperature profile reconstructions have shown that the profile shape can recover to its pre-injection form in a time scale of 200 μs to 3 ms depending on pellet size

  2. Evolution of the spin hall magnetoresistance in Cr2O3/Pt bilayers close to the Néel temperature

    Science.gov (United States)

    Schlitz, Richard; Kosub, Tobias; Thomas, Andy; Fabretti, Savio; Nielsch, Kornelius; Makarov, Denys; Goennenwein, Sebastian T. B.

    2018-03-01

    We study the evolution of magnetoresistance with temperature in thin film bilayers consisting of platinum and antiferromagnet Cr2O3 with its easy axis out of the plane. We vary the temperature from 20 °C to 60 °C, in the vicinity of the Néel temperature of Cr2O3 of approximately 37 °C. The magnetoresistive response is recorded during rotations of the external magnetic field in three mutually orthogonal planes. A large magnetoresistance having a symmetry consistent with a positive spin Hall magnetoresistance is observed in the paramagnetic phase of Cr2O3, which however vanishes when cooling to below the Néel temperature. Compared to analogous experiments in a Gd3Ga5O12/Pt bilayer, we conclude that a paramagnetic moment in the insulator induced by an applied magnetic field is not sufficient to explain the observed magnetoresistance. We speculate that the type of magnetic moment at the interface qualitatively impacts the spin angular momentum transfer, with the 3d moments of Cr sinking angular momentum much more efficiently as compared to the more localized 4f moments of Gd.

  3. High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution.

    Science.gov (United States)

    Lecavalier, Benoit S; Fisher, David A; Milne, Glenn A; Vinther, Bo M; Tarasov, Lev; Huybrechts, Philippe; Lacelle, Denis; Main, Brittany; Zheng, James; Bourgeois, Jocelyne; Dyke, Arthur S

    2017-06-06

    We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4-5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800-7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland.

  4. Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air

    International Nuclear Information System (INIS)

    Thiyagarajan, Magesh; Scharer, John

    2008-01-01

    We present measurements and analysis of laser induced plasma neutral densities and temperatures in dry air by focusing 200 mJ, 10 MW high power, 193 nm ultraviolet ArF (argon fluoride) laser radiation to a 30 μm radius spot size. We examine these properties that result from multiphoton and collisional cascade processes for pressures ranging from 40 Torr to 5 atm. A laser shadowgraphy diagnostic technique is used to obtain the plasma electron temperature just after the shock front and this is compared with optical emission spectroscopic measurements of nitrogen rotational and vibrational temperatures. Two-color laser interferometry is employed to measure time resolved spatial electron and neutral density decay in initial local thermodynamic equilibrium (LTE) and non-LTE conditions. The radiating species and thermodynamic characteristics of the plasma are analyzed by means of optical emission spectroscopy (OES) supported by SPECAIR, a special OES program for air constituent plasmas. Core plasma rotational and vibrational temperatures are obtained from the emission spectra from the N 2 C-B(2+) transitions by matching the experimental spectrum results with the SPECAIR simulation results and the results are compared with the electron temperature just behind the shock wave. The plasma density decay measurements are compared with a simplified electron density decay model that illustrates the dominant three-and two-body recombination terms with good correlation

  5. Microstructure and hardness evolution of nanochannel W films irradiated by helium at high temperature

    Science.gov (United States)

    Qin, Wenjing; Wang, Yongqiang; Tang, Ming; Ren, Feng; Fu, Qiang; Cai, Guangxu; Dong, Lan; Hu, Lulu; Wei, Guo; Jiang, Changzhong

    2018-04-01

    Plasma facing materials (PFMs) face one of the most serious challenges in fusion reactors, including unprecedented harsh environment such as 14.1 MeV neutron and transmutation gas irradiation at high temperature. Tungsten (W) is considered to be one of the most promising PFM, however, virtually insolubility of helium (He) in W causes new material issues such as He bubbles and W "fuzz" microstructure. In our previous studies, we presented a new strategy using nanochannel structure designed in the W film to increase the releasing of He atoms and thus to minimize the He nucleation and "fuzz" formation behavior. In this work, we report the further study on the diffusion of He atoms in the nanochannel W films irradiated at a high temperature of 600 °C. More specifically, the temperature influences on the formation and growth of He bubbles, the lattice swelling, and the mechanical properties of the nanochannel W films were investigated. Compared with the bulk W, the nanochannel W films possessed smaller bubble size and lower bubble areal density, indicating that noticeable amounts of He atoms have been released out along the nanochannels during the high temperature irradiations. Thus, with lower He concentration in the nanochannel W films, the formation of the bubble superlattice is delayed, which suppresses the lattice swelling and reduces hardening. These aspects indicate the nanochannel W films have better radiation resistance even at high temperature irradiations.

  6. Mean and variance evolutions of the hot and cold temperatures in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Parey, Sylvie [EDF/R and D, Chatou Cedex (France); Dacunha-Castelle, D. [Universite Paris 11, Laboratoire de Mathematiques, Orsay (France); Hoang, T.T.H. [Universite Paris 11, Laboratoire de Mathematiques, Orsay (France); EDF/R and D, Chatou Cedex (France)

    2010-02-15

    In this paper, we examine the trends of temperature series in Europe, for the mean as well as for the variance in hot and cold seasons. To do so, we use as long and homogenous series as possible, provided by the European Climate Assessment and Dataset project for different locations in Europe, as well as the European ENSEMBLES project gridded dataset and the ERA40 reanalysis. We provide a definition of trends that we keep as intrinsic as possible and apply non-parametric statistical methods to analyse them. Obtained results show a clear link between trends in mean and variance of the whole series of hot or cold temperatures: in general, variance increases when the absolute value of temperature increases, i.e. with increasing summer temperature and decreasing winter temperature. This link is reinforced in locations where winter and summer climate has more variability. In very cold or very warm climates, the variability is lower and the link between the trends is weaker. We performed the same analysis on outputs of six climate models proposed by European teams for the 1961-2000 period (1950-2000 for one model), available through the PCMDI portal for the IPCC fourth assessment climate model simulations. The models generally perform poorly and have difficulties in capturing the relation between the two trends, especially in summer. (orig.)

  7. Evolution of silicate dust in interstellar, circumstellar and cometary environments: the role of irradiation and temperature

    International Nuclear Information System (INIS)

    Davoisne, Carine

    2006-01-01

    Due to the development of observational and analytical tools, our knowledge of the silicate dust has considerably increased these last years. Dust is formed around evolved stars and injected in the interstellar medium (ISM) in which it travels. Dust is then incorporated in the proto-planetary disks around young stars. During its life cycle, the silicate dust is subjected by numerous processes. The aim of this PhD work is firstly to study the chemical and morphological modifications of silicate dust in supernovae shock waves then to indicate its evolution when it is incorporated around young stars. We have developed low energy ion irradiations in situ in a photoelectron spectrometer (XPS). The chemical and morphological changes have been measured respectively by XPS and atomic force microscopy. We have also carried out thermal annealing under controlled atmosphere of amorphous silicates. The structural and chemical modifications have been observed by analytical transmission electron microscopy. We have shown that ion irradiation induces chemical and morphological changes in silicate. In the ISM, supernovae shock waves are thus a major process which could affect the silicate dust evolution. The microstructure obtained after thermal annealing strongly depends on oxygen fugacity. They often offer a good comparison with those observed in primitive materials present in our solar system. The recrystallization of amorphous interstellar precursors in the inner accretion disk is thus an efficient process to form crystalline silicates which are furthermore incorporated in small parent bodies (asteroids or comets). (author) [fr

  8. Mantle temperature as a control on the time scale of thermal evolution of extensional basins

    DEFF Research Database (Denmark)

    Petersen, Kenni Dinesen; Armitage, J.J.; Nielsen, S.B.

    2015-01-01

    Abstract Extension of the lithosphere, the thermo-mechanical boundary layer above the convecting mantle, is followed by cooling and subsidence. The timescale of oceanic basin subsidence is ∼100 Myr whereas basins of the continental interior often subside continuously for more than 200 Myr after...... rifting. Using numerical modelling, we show how these diverse rifting scenarios are unified when accounting for varying mantle potential temperature. At a temperature of 1300 °C, cooling is plate-like with nearly exponential subsidence as observed in oceanic basins. At 1200 °C, subsidence is almost linear...... and continues for more than 800 Myr. The longevity of basin subsidence in the continental interior can therefore be explained by variation of mantle temperature. An additional cause of the longevity of subsidence is related to the equilibrium thickness of the lithosphere which is increased by the local...

  9. Long term evolution of temperature in the venus upper atmosphere at the evening and morning terminators

    Science.gov (United States)

    Krause, P.; Sornig, M.; Wischnewski, C.; Kostiuk, T.; Livengood, T. A.; Herrmann, M.; Sonnabend, G.; Stangier, T.; Wiegand, M.; Pätzold, M.; Mahieux, A.; Vandaele, A. C.; Piccialli, A.; Montmessin, F.

    2018-01-01

    This paper contains a comprehensive dataset of long-term observations between 2009 and 2015 at the upper mesosphere/lower thermosphere providing temperature values at different locations of the morning and evening side of the terminator of Venus. Temperature information is obtained by line-resolved spectroscopy of Doppler broadened CO2 transitions features. Results are restricted to a pressure level of 1 μbar, ∼110 km altitude due the nature of the addressed non-LTE CO2 emission line at 10 μm. The required high spectral resolution of the instrumentation is provided by the ground-based spectrometers THIS (University of Cologne) and HIPWAC (NASA GSFC). For the first time upper mesosphere/lower thermosphere temperatures at the Venusian terminator derived from IR-het spectroscopy between 2009 and 2015 are investigated in order to clarify the local-time dependences, latitudinal dependences and the long-term trend. Measured temperatures were distributed in the range between 140 K and 240 K, with mean values equal to 199 K ± 17 K for the morning side of the terminator and 195 K ± 19 K for the evening side of the terminator. Within the uncertainty no difference between the averaged morning and evening terminator side temperature is found. In addition, no strong latitudinal dependency is observed at these near terminator local times. In contrast IR-het data from 2009 show a strong latitudinal dependency at noon, with a temperature difference of around 60 K between the equatorial and polar region (Sonnabend et al., 2012). Accord with the instruments of the Venus Express mission a northern-southern hemispherical symmetry is observed (Mahieux et al., 2012; Piccialli et al., 2015). The data shows no consistent long-term temperature trend throughout the six years of observation, but a variability in the order of tens of Kelvin for the different observing runs representing a time step of few month to two years. This is about the same order of magnitude as the variability

  10. Temperature evolution of the quantum gap in CsNiCl3

    DEFF Research Database (Denmark)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.

    2001-01-01

    excitation, by a factor of three between 5 and 70 K, is more than enough to overcome its decreasing lifetime. We find that the gap lifetime is substantially shorter than that predicted by the scaling theory of Damle and Sachdev based on a classical dispersion for the Haldane excitations, but when we include...... their expected relativistic dispersion, the theory, in its low-temperature range of validity, gives a good account of experiment. The upward gap renormalization agrees with the nonlinear sigma model at low temperatures and even up to T of order 2 Delta provided an upper momentum cutoff is included....

  11. WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2012-01-01

    Tungsten carbide (WC) nanopowder was tested as a non-platinum cathode electrocatalyst for polymer electrolyte membrane (PEM) water electrolysers, operating at elevated temperatures. It was prepared in thermal plasma reactor with confined plasma jet from WO3 precursor in combination with CH4...

  12. Mantle temperature as a control on the time scale of thermal evolution of extensional basins

    DEFF Research Database (Denmark)

    Petersen, K. D.; Armitage, J. J.; Nielsen, S. B.

    2015-01-01

    and continues for more than 800 Myr. The longevity of basin subsidence in the continental interior can therefore be explained by variation of mantle temperature. An additional cause of the longevity of subsidence is related to the equilibrium thickness of the lithosphere which is increased by the local...

  13. Evolution of the cyclic plastic response of Sanicro 25 steel cycled at ambient and elevated temperatures

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Petráš, Roman; Heczko, Milan; Kruml, Tomáš; Chai, G.

    2016-01-01

    Roč. 83, FEB (2016), s. 75-83 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Cyclic plastic ity * Hysteresis loop analysis * Heat resistant steel * Dislocation structure * Effect of temperature Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  14. Evolution of temperature and humidity in an underground repository over the exploitation period

    International Nuclear Information System (INIS)

    Benet, L.V.; Tulita, C.; Calsyn, L.; Wendling, J.

    2012-01-01

    Document available in extended abstract form only. The ANDRA waste repository will be operated for about a hundred years. During this period, the ventilation scheme will follow the development of the different storage zones. The ventilation system will ensure adequate air condition for the staff in the working zone and prevent high humidity and temperature damageable for the infrastructures. The untreated incoming air is characterized by great temperature and humidity variations in time, between day and night as well as between winter and summer time. The air from the surface enters the repository through the supply shaft and flows in full section along the main galleries of the central zone until the storage zones. In each storage zone, the air is distributed between storage modules via access galleries and collected at the outflow of each module before being extracted from the repository, retreated and finally released into the atmosphere. Throughout its journey within the repository, the ventilation air will undergo a set of temperature and moisture changes by interacting with its host environment. The aim of this study is to foresee how the air condition will evolve in time all over the exploitation period, along the ventilation network. Air condition assessment in the waste repository has been achieved by means of numerical simulation and analyzed in terms of bulk temperature and moisture in the air and on contact with walls. The physical modeling takes into account (i) air/wall heat exchanges due to forced and free advection, (ii) advection flux in the air, (iii) thermal storage and conduction flux into concrete structure and host rock, (iv) condensation flux on the wall, (v) time functions of wall evaporation flux and (vi) climate variations data from 7 years of meteorological measurements at the site of Bure. In bi-flux galleries, air/air heat exchanges between incoming air in full section and outgoing air through ceiling ducts are modeled. Temperature and

  15. submitter Damage evolution in a stainless steel bar undergoing phase transformation under torsion at cryogenic temperatures

    CERN Document Server

    Ortwein, R; Skoczen, B

    2016-01-01

    Phase transformation driven by plastic strains is commonly observed in austenitic stainless steels. In the present paper, this phenomenon is addressed in connection with damage evolution. A three-dimensional constitutive model has been derived, and scalar variables for damage and the volume fraction of the transformed phase were used. The model was solved using Abaqus UMAT user defined procedure, as well as by means of simplified one-dimensional approach for a twisted circular bar. Large experimental campaign of tests was performed, including martensite content measurements within the cross-section and on the surface of the bar during monotonic and cyclic loading. Based on the residual angle of twist, damage variable was calculated. The global response of torque versus the angle of twist was measured as well. Comparison between the experimental results and the results obtained from the simplified one-dimensional approach and from the full three-dimensional approach are presented. It turns out that one-dimensi...

  16. The evolution of the temperature field during cavity collapse in liquid nitromethane. Part II: reactive case

    Science.gov (United States)

    Michael, L.; Nikiforakis, N.

    2018-02-01

    This work is concerned with the effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main objective is to understand the origin of localised temperature peaks (hot spots) which play a leading order role at the early stages of ignition. To this end, we perform two- and three-dimensional numerical simulations of shock-induced single gas-cavity collapse in liquid nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In the first part of this work, we focused on the hydrodynamic effects in the collapse process by switching off the reaction terms in the mathematical formulation. In this part, we reinstate the reactive terms and study the collapse of the cavity in the presence of chemical reactions. By using a multi-phase formulation which overcomes current challenges of cavity collapse modelling in reactive media, we account for the large density difference across the material interface without generating spurious temperature peaks, thus allowing the use of a temperature-based reaction rate law. The mathematical and physical models are validated against experimental and analytic data. In Part I, we demonstrated that, compared to experiments, the generated hot spots have a more complex topological structure and that additional hot spots arise in regions away from the cavity centreline. Here, we extend this by identifying which of the previously determined high-temperature regions in fact lead to ignition and comment on the reactive strength and reaction growth rate in the distinct hot spots. We demonstrate and quantify the sensitisation of nitromethane by the collapse of the isolated cavity by comparing the ignition times of nitromethane due to cavity collapse and the ignition time of the neat material. The ignition in both the centreline hot spots and the hot spots generated by Mach stems occurs in less than half the ignition time of the neat material. We compare

  17. Bonding evolution with sintering temperature in low alloyed steels with chromium

    Directory of Open Access Journals (Sweden)

    Fuentes-Pacheco L.

    2009-01-01

    Full Text Available At present, high performance PM steels for automotive applications follow a processing route that comprises die compaction of water-atomized powder, followed by sintering and secondary treatments, and finishing operations. This study examines Cr-alloyed sintered steels with two level of alloying. In chromium-alloyed steels, the surface oxide on the powder is of critical importance for developing the bonding between the particles during sintering. Reduction of this oxide depends mainly on three factors: temperature, dew point of the atmosphere, and carbothermic reduction provided by the added graphite. The transformation of the initial surface oxide evolves sequence as temperature increases during sintering, depending on the oxide composition. Carbothermic reduction is supposed to be the controlling mechanism, even when sintering in hydrogen-containing atmospheres. The effect of carbothermic reduction can be monitored by investigating the behavior of the specimens under tensile testing, and studying the resultant fracture surfaces.

  18. Temperature and direction dependence of internal strain and texture evolution during deformation of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W., E-mail: dbrown@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M.; Clausen, B.; Korzekwa, D.R.; Korzekwa, R.C.; McCabe, R.J.; Sisneros, T.A.; Teter, D.F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2009-06-25

    Depleted uranium is of current programmatic interest at Los Alamos National Lab due to its high density and nuclear applications. At room temperature, depleted uranium displays an orthorhombic crystal structure with highly anisotropic mechanical and thermal properties. For instance, the coefficient of thermal expansion is roughly 20 x 10{sup -6} deg. C{sup -1} in the a and c directions, but near zero or slightly negative in the b direction. The innate anisotropy combined with thermo-mechanical processing during manufacture results in spatially varying residual stresses and crystallographic texture, which can cause distortion, and failure in completed parts, effectively wasting resources. This paper focuses on the development of residual stresses and textures during deformation at room and elevated temperatures with an eye on the future development of computational polycrystalline plasticity models based on the known micro-mechanical deformation mechanisms of the material.

  19. Physical properties evolution of sputtered zirconium oxynitride films: effects of the growth temperature

    International Nuclear Information System (INIS)

    Rizzo, A; Signore, M A; Mirenghi, L; Piscopiello, E; Tapfer, L

    2009-01-01

    Zirconium oxynitride (ZrNO) films were deposited by RF reactive magnetron sputtering in water vapour-nitrogen atmosphere varying the deposition temperature from RT to 600 0 C. Optical analysis, x-ray diffraction, x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) are the employed characterization techniques to investigate the influence of the substrate temperature on the films physical properties. It was found that the variation of the substrate temperature from RT to 600 0 C caused a structural transition from cubic phase of Zr 2 ON 2 to ZrN one, as confirmed by TEM observations too. In particular, Forouhi-Bloomer dispersion equations for optical parameters (n and k) and deconvolution of XPS spectra allowed further chemical properties be elucidated. They also permitted identification of two oxynitride phases, γ phase (E g = 1.94 eV) and β phase (E g = 1.7 eV), and an over-stoichiometric nitride one. The use of [E c - E v ] values helped to confirm further the distinction between (γ, β)-phases and N-rich zirconium nitride compound, which is unachievable by using only E g values.

  20. Quench evolution and hot spot temperature in the ATLAS B0 model coil

    CERN Document Server

    Dudarev, A; Boxman, H; Broggi, F; Dolgetta, N; Juster, F P; Tetteroo, M; ten Kate, H H J

    2004-01-01

    The 9-m long superconducting model coil B0 was built to verify design parameters and exercise the construction of the Barrel Toroid magnet of ATLAS Detector. The model coil has been successfully tested at CERN. An intensive test program to study quench propagation through the coil windings as well as the temperature distribution has been carried out. The coil is well equipped with pickup coils, voltage taps, superconducting quench detectors and temperature sensors. The current is applied up to 24 kA and about forty quenches have been induced by firing internal heaters. Characteristic numbers at full current of 24 kA are a normal zone propagation of 15 m/s in the conductor leading to a turn-to-turn propagation of 0.1 m/s, the entire coil in normal state within 5.5 s and a safe peak temperature in the windings of 85 K. The paper summarizes the quench performance of the B0 coil. Based on this experience the full-size coils are now under construction and first test results are awaited by early 2004. 7 Refs.

  1. Physical properties evolution of sputtered zirconium oxynitride films: effects of the growth temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, A; Signore, M A; Mirenghi, L; Piscopiello, E; Tapfer, L [ENEA, Department of Physical Technologies and New Materials, SS7, Appia, km 706, 72100 Brindisi (Italy)

    2009-12-07

    Zirconium oxynitride (ZrNO) films were deposited by RF reactive magnetron sputtering in water vapour-nitrogen atmosphere varying the deposition temperature from RT to 600 {sup 0}C. Optical analysis, x-ray diffraction, x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) are the employed characterization techniques to investigate the influence of the substrate temperature on the films physical properties. It was found that the variation of the substrate temperature from RT to 600 {sup 0}C caused a structural transition from cubic phase of Zr{sub 2}ON{sub 2} to ZrN one, as confirmed by TEM observations too. In particular, Forouhi-Bloomer dispersion equations for optical parameters (n and k) and deconvolution of XPS spectra allowed further chemical properties be elucidated. They also permitted identification of two oxynitride phases, {gamma} phase (E{sub g} = 1.94 eV) and {beta} phase (E{sub g} = 1.7 eV), and an over-stoichiometric nitride one. The use of [E{sub c} - E{sub v}] values helped to confirm further the distinction between ({gamma}, {beta})-phases and N-rich zirconium nitride compound, which is unachievable by using only E{sub g} values.

  2. Evolution of Self-Assembled Au NPs by Controlling Annealing Temperature and Dwelling Time on Sapphire (0001).

    Science.gov (United States)

    Lee, Jihoon; Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar

    2015-12-01

    Au nanoparticles (NPs) have been utilized in a wide range of device applications as well as catalysts for the fabrication of nanopores and nanowires, in which the performance of the associated devices and morphology of nanopores and nanowires are strongly dependent on the size, density, and configuration of the Au NPs. In this paper, the evolution of the self-assembled Au nanostructures and NPs on sapphire (0001) is systematically investigated with the variation of annealing temperature (AT) and dwelling time (DT). At the low-temperature range between 300 and 600 °C, three distinct regimes of the Au nanostructure configuration are observed, i.e., the vermiform-like Au piles, irregular Au nano-mounds, and Au islands. Subsequently, being provided with relatively high thermal energy between 700 and 900 °C, the round dome-shaped Au NPs are fabricated based on the Volmer-Weber growth model. With the increased AT, the size of the Au NPs is gradually increased due to a more favorable surface diffusion while the density is gradually decreased as a compensation. On the other hand, with the increased DT, the size and density of Au NPs decrease due to the evaporation of Au at relatively high annealing temperature at 950 °C.

  3. High Temperature Deformation Behavior and Microstructure Evolution of Ti-4Al-4Fe-0.25Si Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Woo; Lee, Yongmoon; Lee, Chong Soo [Pohang University of Science and Technology, Pohang (Korea, Republic of); Yeom, Jong-Taek [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lee, Gi Yeong [KPCM Incorporated, Gyeongsan (Korea, Republic of)

    2016-05-15

    Hot deformation behavior of Ti-4Al-4Fe-0.25Si alloy with martensite microstructure was investigated by compression tests at temperatures of 1023 – 1173 K (α+β phase region) and strain rates of 10{sup -3} – 1 s{sup -1}. By analyzing the deformation behavior, plastic deformation instability parameters including strain rate sensitivity, deformation temperature sensitivity, efficiency of power dissipation, and Ziegler’s instability were evaluated as a function of deformation temperature and strain rate, and they were further examined by drawing deformation processing maps. The microstructure evolution was also studied to determine the deformation conditions under which equiaxed α phase was formed in the microstructure without remnants or kinked α phase platelets and shear bands, these last two of which cause severe cracks during post-forming process. Based on the combined results of the processing maps and the microstructure analysis, the optimum α+β forging conditions for Ti-4Al-4Fe-0.25Si alloy were determined.

  4. Temperature effect on the photoinduced reduction of methyl viologen with several sensitizers and the evolution of hydrogen from water

    Energy Technology Data Exchange (ETDEWEB)

    Nenadovic, M.T.; Micic, O.I.; Rajh, T.; Savic, D.

    1983-01-01

    Irradiation by visible light of an aqueous solution containing a photosensitizer, methyl viologen (MV/sup 2 +/) and ethylenediaminetetraacetic acid leads to the formation of the reduced form of methyl viologen (MV/sup +/). The quantum yield for the formation of MV/sup +/ depends strongly on the time during which the formation is observed owing to the reaction of MV/sup +/ with oxidative products and its reduction to MV/sup 0/. Proflavin, acridine yellow and ruthenium(II)tris(2,2-bipyridyl) were used as photosensitizers and showed the same ability to promote hydrogen evolution. When CdS was used as a sensitizer a factor of 10 less hydrogen was obtained than when the dyes were used. The redox catalysts platinum, Pt-TiO/sub 2/-RuO/sub 2/ and Pt-CdS in colloidal systems showed approximately the same activity towards the reduction of water. The reduction of MV/sup 2 +/ and the evolution of hydrogen were enhanced at higher temperatures (70/sup 0/C). The optimum conditions for water reduction on redox catalysts in colloidal system under continuous illumination are analysed.

  5. Thermal evolution of low-temperature manganese centers in X-irradiated CaF2:Mn

    International Nuclear Information System (INIS)

    Jahan, M.S.; Cooke, D.W.

    1984-01-01

    Thermal evolution of the radiation-induced defects in CaF 2 :Mn (0.1% by weight) are investigated by ESR techniques. The Mn + resonance is found to decay at 200 K with an activation energy of 0.44 eV and frequency factor 2.8 x 10 8 s -1 which agree with previous luminescence and optical absorption measurements. This activation energy and decay temperature also agree with that of the previously described H center. It is concluded that the luminescence in CaF 2 :Mn results from thermal release of holes at H centers with ultimate recombination at Mn + ions producing excited state Mn 2+ (*). Relaxation yields the observed 500 nm emission characteristic of Mn 2+ . A second defect which decays at 150 K is observed but not identified. (author)

  6. Modelling the evolution of composition-and stress-depth profiles in austenitic stainless steels during low-temperature nitriding

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard; Hattel, Jesper Henri; Somers, Marcel A. J.

    2016-01-01

    . In the present paper solid mechanics was combined with thermodynamics and diffusion kinetics to simulate the evolution of composition-depth and stress-depth profiles resulting from nitriding. The model takes into account a composition-dependent diffusion coefficient of nitrogen in expanded austenite, short range......Nitriding of stainless steel causes a surface zone of expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behaviour. During nitriding huge residual stresses are introduced in the treated zone, arising from the volume expansion...... that accompanies the dissolution of high nitrogen contents in expanded austenite. An intriguing phenomenon during low-temperature nitriding is that the residual stresses evoked by dissolution of nitrogen in the solid state, affect the thermodynamics and the diffusion kinetics of nitrogen dissolution...

  7. Strength and Permeability Evolution of Compressed Bentonite in Response to Salinity and Temperature Changes

    Science.gov (United States)

    Winnard, B. R.; Mitchell, T. M.; Browning, J.; Cuss, R. J.; Norris, S.; Meredith, P. G.

    2017-12-01

    Deep geological repositories are the preferred solution to dispose of radioactive waste; design concepts for these disposal facilities include compacted, saturated bentonite as a buffer between waste canister and host rock. Bentonite is favoured for its high swelling capacity, low permeability, and radionuclide retention properties. However, its thermo-hydro-mechanical tolerances must be thoroughly tested to ensure adequate long term performance. Climate variations are likely to induce periods of permafrost, and consequently, changes in groundwater salinity at depth. We performed laboratory experiments investigating effects of temperature and salinity change on uniaxial compressive strength (UCS), and permeability of compacted MX-80 bentonite cylinders. These specimens (moisture content = 22.9±0.1%, dry density = 1.66±0.02 g.cm-3) were compacted with deionised water, and a range of wt% NaCl, CaCl2, or KCl, to compare the effects of compaction fluid. Samples of compressed bentonite were cooled to -20 °C, and heated to 90 ºC, a possible temperature forecast for a repository dependent on factors such as geographical location, waste type, and facility design. Tests were all performed at room temperature, however in situ temperature tests are planned. The UCS of samples that experienced freeze thaw, and 40 ºC treatment failed at 6.5 MPa, with 4% strain, maintaining the same values as untreated bentonite compacted with deionised water. Samples compacted with saline solutions also yielded similar strengths, of 7 MPa, and failed at 4%. However, the 90 ºC, regardless of compaction fluid, failed at 15-18 MPa, at just 2% strain. In all experiments, the spread of strain accommodated varied inconsistently, however, peak stress was uniform. Further experiments into heterogeneity are needed to understand the responsible mechanisms. To obtain permeability, we utilised the pore pressure oscillation (PPO) technique with argon as the pore fluid. We also tested water as the pore

  8. Projected evolution of circulation types and their temperatures over Central Europe in climate models

    Czech Academy of Sciences Publication Activity Database

    Plavcová, Eva; Kyselý, Jan

    2013-01-01

    Roč. 114, 3-4 (2013), s. 625-634 ISSN 0177-798X R&D Project s: GA ČR GAP209/10/2265 Grant - others:ENSEMBLES: EU-FP6(XE) 505539 Program:FP6 Institutional support: RVO:68378289 Keywords : Regional climate models * Atmospheric circulation * Climate change scenarios * Surface air temperature * ENSEMBLES * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.742, year: 2013 http://link.springer.com/article/10.1007%2Fs00704-013-0874-4#page-1

  9. Thermodynamic modelling of clay dehydration, stability and compositional evolution with temperature, pressure and H2O activity

    International Nuclear Information System (INIS)

    Vidal, O.; Dubacq, B.

    2010-01-01

    Document available in extended abstract form only. Full text of publication follows: The evaluation of the performance of clay-rich barrier considered for the disposal of radioactive waste and a reliable prediction of the impact of repository-induced disturbances upon the confinement properties of clay-rich geological formations requires reliable thermodynamic models for clay minerals. Such models have to take into account the variation of the hydration state of smectite as a function of temperature, pressure and water activity. We propose the first macroscopic thermodynamic model that account for the stepwise dehydration with increasing temperature or decreasing H 2 O activity of K, Na, Ca and Mg-smectite. The model relies on the relative stability of the different solid-solutions that describe the hydration of di- or tri-octahedral-smectites containing 0, 1, 2 or 3 interlayer water layers. The inclusion of anhydrous mica end-members makes it possible to cover, with the same solid-solution model, the entire range of composition from low-charge to high-charge smectite, through illite to mica. Non-ideal Margules parameters were used to describe the non-ideality of the solid solutions between the hydrated and dehydrated smectite end-members. Standard state properties of all smectite end-members as well as Ca- and Mg-muscovite and -phlogopite were initially estimated by oxide summation. These values were then refined and the other non-ideal interactions were estimated on the basis of different experimental data. The stepwise dehydration of smectite, and its stability and compatibility relations were calculated by Gibbs free energy minimizing. Our results account for the progressive evolution of smectite to inter-layered illite/smectite and then to mica, as observed in nature and experiments, and our model provides an explanation for the thermodynamic stability of smectite and illite/ smectite compared to mica + kaolinite or pyrophyllite assemblages. The results

  10. Constraining the evolution of the CMB temperature with SZ measurements from Planck data

    Energy Technology Data Exchange (ETDEWEB)

    Luzzi, G.; Petris, M. De; Lamagna, L. [Dept. of Physics, Sapienza, University of Rome, Piazzale Aldo Moro 2, Rome, I-00185 Italy (Italy); Génova-Santos, R.T. [Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, La Laguna, Tenerife (Spain); Martins, C.J.A.P., E-mail: gemma.luzzi@roma1.infn.it, E-mail: rgs@iac.es, E-mail: carlos.martins@astro.up.pt, E-mail: marco.depetris@roma1.infn.it, E-mail: luca.lamagna@roma1.infn.it [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, Porto, 4150-762 Portugal (Portugal)

    2015-09-01

    The CMB temperature-redshift relation, T{sub CMB}(z)=T{sub 0}(1+z), is a key prediction of the standard cosmology but is violated in many non-standard models. Constraining possible deviations from this law is an effective way to test the ΛCDM paradigm and to search for hints of new physics. We have determined T{sub CMB}(z), with a precision up to 3%, for a subsample (103 clusters) of the Planck SZ cluster catalog, at redshifts in the range 0.01–0.94, using measurements of the spectrum of the Sunyaev-Zel'dovich (SZ) effect obtained from Planck temperature maps at frequencies from 70 to 353 GHz. The method adopted to provide individual determinations of T{sub CMB}(z) at cluster redshift relies on the use of SZ intensity change, Δ I{sub SZ}(ν) at different frequencies and on a Monte Carlo Markov chain approach. By applying this method to the sample of 103 clusters, we limit possible deviations of the form T{sub CMB}(z)=T{sub 0}(1+z){sup 1−β} to be β= 0.012 ± 0.016, at 1σ uncertainty, consistent with the prediction of the standard model. Combining these measurements with previously published results, we get β=0.013±0.011.

  11. Evolution of wave patterns and temperature field in shock-tube flow

    Science.gov (United States)

    Kiverin, A. D.; Yakovenko, I. S.

    2018-05-01

    The paper is devoted to the numerical analysis of wave patterns behind a shock wave propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock wave is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock wave and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting waves. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.

  12. Melting temperature evolution of non-reorganized crystals. Poly(3-hydroxybutyrate)

    International Nuclear Information System (INIS)

    Righetti, Maria Cristina; Di Lorenzo, Maria Laura

    2011-01-01

    In the present study the correlation between the melting behaviour of poly(3-hydroxybutyrate) (PHB) original, non-reorganized crystals and the crystallinity increase during isothermal crystallization is presented and discussed. Since the reorganization processes modify the melting curve of original crystals, it is necessary to prevent and hinder all the processes that influence and increase the lamellar thickness. PHB exhibits melting/recrystallization on heating, the occurring of lamellar thickening in the solid state being excluded. The first step of the study was the identification of the scanning rate which inhibits PHB recrystallization at sufficiently high T c . For the extrapolated onset and peak temperatures of the main melting endotherm, which is connected to fusion of dominant lamellae, a double dependence on the crystallization time was found. The crystallization time at which T onset and T peak change their trends was found to correspond to the spherulite impingement time, so that the two different dependencies were put in relation with primary and secondary crystallizations respectively. The increase of both T onset and T peak at high crystallization times after spherulite impingement was considered an effect due to crystal superheating and an indication of a stabilization process of the crystalline phase. Such stabilization, which produces an increase of the melting temperature, is probably connected with the volume filling that occurs after spherulite impingement.

  13. Morphology evolution of hierarchical ZnO nanostructures modulated by supersaturation and growth temperature

    Science.gov (United States)

    Yan, Youguo; Zhou, Lixia; Yu, Lianqing; Zhang, Ye

    2008-07-01

    Three kinds of ZnO hierarchical structures, nanocombs with tube- and needle-shaped teeth and hierarchical nanorod arrays, were successfully synthesized through the chemical vapor deposition method. Combining the experimental parameters, the microcosmic growing conditions (growth temperature and supersaturation) along the flux was discussed at length, and, based on the conclusions, three reasonable growth processes were proposed. The results and discussions were beneficial to further realize the relation between the growing behavior of the nanomaterial and microcosmic conditions, and the hierarchical nanostructures obtained were also expected to have potential applications as functional blocks in future nanodevices. Furthermore, the study of photoluminescence further indicated that the physical properties were strongly dependent on the crystal structure.

  14. Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution.

    Science.gov (United States)

    Kailasam, Kamalakannan; Schmidt, Johannes; Bildirir, Hakan; Zhang, Guigang; Blechert, Siegfried; Wang, Xinchen; Thomas, Arne

    2013-06-25

    Two emerging material classes are combined in this work, namely polymeric carbon nitrides and microporous polymer networks. The former, polymeric carbon nitrides, are composed of amine-bridged heptazine moieties and showed interesting performance as a metal-free photocatalyst. These materials have, however, to be prepared at high temperatures, making control of their chemical structure difficult. The latter, microporous polymer networks have received increasing interest due to their high surface area, giving rise to interesting applications in gas storage or catalysis. Here, the central building block of carbon nitrides, a functionalized heptazine as monomer, and tecton are used to create microporous polymer networks. The resulting heptazine-based microporous polymers show high porosity, while their chemical structure resembles the ones of carbon nitrides. The polymers show activity for the photocatalytic production of hydrogen from water, even under visible light illumination. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pressure-temperature evolution of Neoproterozoic metamorphism in the Welayati Formation (Kabul Block), Afghanistan

    Science.gov (United States)

    Collett, Stephen; Faryad, Shah Wali

    2015-11-01

    The Welayati Formation, consisting of alternating layers of mica-schist and quartzite with lenses of amphibolite, unconformably overlies the Neoarchean Sherdarwaza Formation of the Kabul Block that underwent Paleoproterozoic granulite-facies and Neoproterozoic amphibolite-facies metamorphic events. To analyze metamorphic history of the Welayati Formation and its relations to the underlying Sherdarwaza Formation, petrographic study and pressure-temperature (P-T) pseudosection modeling were applied to staurolite- and kyanite-bearing mica-schists, which crop out to the south of Kabul City. Prograde metamorphism, identified by inclusion trails and chemical zonation in garnet from the micaschists indicates that the rocks underwent burial from around 6.2 kbar at 525 °C to maximum pressure conditions of around 9.5 kbar at temperatures of around 650 °C. Decompression from peak pressures under isothermal or moderate heating conditions are indicated by formation of biotite and plagioclase porphyroblasts which cross-cut and overgrow the dominant foliation. The lack of sillimanite and/or andalusite suggests that cooling and further decompression occurred in the kyanite stability field. The results of this study indicate a single amphibolite-facies metamorphism that based on P-T conditions and age dating correlates well with the Neoproterozoic metamorphism in the underlying Sherdarwaza Formation. The rocks lack any paragenetic evidence for a preceding granulite-facies overprint or subsequent Paleozoic metamorphism. Owing to the position of the Kabul Block, within the India-Eurasia collision zone, partial replacement of the amphibolite-facies minerals in the micaschist could, in addition to retrogression of the Neoproterozoic metamorphism, relate to deformation associated with the Alpine orogeny.

  16. Microstructure evolution of Mo–Si–Al system during self-propagation high-temperature synthesis

    International Nuclear Information System (INIS)

    Jia, Lei; Xie, Hui; Lu, Zhen-lin; Zhang, Chao

    2013-01-01

    Highlights: ► Phase transformation subsequence of the reaction system was given by a sketch. ► Transformation of MoSi 2 to Mo(Si, Al) 2 phase was observed by XRD analysis. ► Variation of diffraction peaks was discussed by lattice parameters calculation. -- Abstract: The microstructure and phase constitution of Mo(Si 1−x , Al x ) 2 alloys (x = 0.03, 0.1 and 0.4) prepared by self-propagation high-temperature synthesis is first investigated using SEM, EDS and XRD analysis. Then the lattice parameters and adiabatic temperature are calculated. Based on the above experimental and calculated results, the variation mechanism of diffraction peaks and phase transformation subsequence of the Mo–MoO 3 –Si–Al powders is discussed. Results show that, when the self-propagation reaction is over, there are a homogeneous Mo–Si–Al alloy melt and a fused Al 2 O 3 with lower density at top. Subsequently, MoSi 2 or Mo(Si, Al) 2 phase nucleates and grows as a primary phase in the Mo–Si–Al alloy melts, and then Al, Si substances are generated from the intergranular residual Al–Si liquid according to Al–Si binary phase diagram. The Al increase in the starting powder mixtures leads to the Al concentration increase in the Mo–Si–Al alloy melt. Consequently, MoSi 2 is transformed to Mo(Si, Al) 2 to phase in which Si is replaced by Al atoms and Al substance in the intergranular zones increased accordingly

  17. Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz

    Science.gov (United States)

    Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET

    2017-12-01

    Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.

  18. Nuclear magnetic resonance in solids: evolution of spin temperature under multipulse irradiation and high symmetry molecular motions

    International Nuclear Information System (INIS)

    Quiroga, Luis

    1982-01-01

    In a first part, autocorrelation functions are calculated taking into account the symmetry of molecular motions by group theoretical techniques. This very general calculation method is then used to evaluate the NMR spin-lattice relaxation times T 1 and T 1 p as a function of the relative orientations of the magnetic field, the crystal and the rotation axis, in particular for cyclic, dihedral and cubic groups. Models of molecular reorientations such as jumps between a finite number of allowed orientations, rotational diffusion and superimposed reorientations are all investigated with the same formalism. In part two, the effect of the coherent excitation of spins, by multipulse sequences of the WHH-4 type, on the evolution of the heat capacity and spin temperature of the dipolar reservoir is analysed. It is shown both theoretically and experimentally that adiabatic (reversible) reduction of the dipolar Hamiltonian and its spin temperature is obtained when the amplitude of pulses (rotation angle) is slowly raised. The sudden switching on and off of the HW-8 sequence is then shown to lead to the same reversible reduction in a shorter time. It is also shown that, by this way, sensibility and selectivity of double resonance measurements of weak gyromagnetic ratio nuclei are strongly increased. This is experimentally illustrated in some cases. (author) [fr

  19. Evolution of Interhemispheric Sea-Surface Temperature Contrast in the Tropical Atlantic During Termination I

    Science.gov (United States)

    Kim, J.

    2001-12-01

    Meteorological and oceanographic studies show that interannual and decadal variability in tropical Atlantic sea-surface temperature (SST) strongly influences the climates over northeast Brazil, sub-Saharan Africa, as well as the Central American and Caribbean regions. In this context, it is worthwhile to reconstruct spatial temperature patterns for the longer-term tropical Atlantic SST history. In this study, a high-resolution alkenone-derived SST record from the subtropical eastern South Atlantic (core GeoB 1023-5) is compared with one from the tropical western North Atlantic (core M35003-4). This comparison reveals synchronous SST variations between both near equatorial Atlantic regions during the Heinrich Event 1 (H1) (18-15.5 cal kyr B.P.), but dipole-like SST variations during the Younger Dryas (YD) (13-11.5 cal kyr B.P.). To assess the relationship of SST variations between both regions, we calculated SST differences between cores GeoB 1023-5 and M35003-4, and compared it with the coccolithophorid Florisphaera profunda abundance record from the equatorial eastern Atlantic (core RC24-08) as an indicator of variations in intensity of south-easterly trade winds [McIntyre and Molfino, 1996]. This comparison suggests that synchronous warming in both regions during the H1 can be attributed to a reduced northward heat transport from the warm equatorial Atlantic to the cold high-latitude North Atlantic linked to the slowdown of thermohaline circulation overturning during cold events under full glacial conditions. However, dipole-like SST variations during the YD is probably more associated with strengthened south-easterly trade winds, which led to a strong upwelling-related cooling in the eastern South Atlantic region and concurrently enhanced advection of warm subtropical South Atlantic waters to the tropical western Atlantic during that time. Accordingly, a coupled oceanic-atmospheric process created a warm pool in the tropical western Atlantic and thus a dipole

  20. An Angle Resolved Photoemission Study of a Mott Insulator and Its Evolution to a High Temperature Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip

    2002-03-19

    One of the most remarkable facts about the high temperature superconductors is their close proximity to an antiferromagnetically ordered Mott insulating phase. This fact suggests that to understand superconductivity in the cuprates we must first understand the insulating regime. Due to material properties the technique of angle resolved photoemission is ideally suited to study the electronic structure in the cuprates. Thus, a natural starting place to unlocking the secrets of high Tc would appears to be with a photoemission investigation of insulating cuprates. This dissertation presents the results of precisely such a study. In particular, we have focused on the compound Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}. With increasing Na content this system goes from an antiferromagnetic Mott insulator with a Neel transition of 256K to a superconductor with an optimal transition temperature of 28K. At half filling we have found an asymmetry in the integrated spectral weight, which can be related to the occupation probability, n(k). This has led us to identify a d-wave-like dispersion in the insulator, which in turn implies that the high energy pseudogap as seen by photoemission is a remnant property of the insulator. These results are robust features of the insulator which we found in many different compounds and experimental conditions. By adding Na we were able to study the evolution of the electronic structure across the insulator to metal transition. We found that the chemical potential shifts as holes are doped into the system. This picture is in sharp contrast to the case of La{sub 2-x}Sr{sub x}CuO{sub 4} where the chemical potential remains fixed and states are created inside the gap. Furthermore, the low energy excitations (ie the Fermi surface) in metallic Ca{sub 1.9}Na{sub 0.1}CuO{sub 2}Cl{sub 2} is most well described as a Fermi arc, although the high binding energy features reveal the presence of shadow bands. Thus, the results in this dissertation provide a

  1. Temperatures and isotopic evolution of silicic magmas, Taupo Volcanic Zone and Coromandel, New Zealand

    International Nuclear Information System (INIS)

    Blattner, P.; Rui-Zhong H.; Graham, I.J.; Houston-Eleftheriadis, C.

    1996-01-01

    A new set of oxygen and strontium isotope data on rhyolitic lavas and ignimbrites of the Taupo Volcanic Zone (TVZ) and the Coromandel Peninsula provides new limits for petrogenic models. For oxygen isotopes, the rock matrix is frequently altered, so that values for magma need to be phenocryst based. Within TVZ a trend towards more negative δ 1 8O values for more recent magmas appears likely (average before about 1 Ma and for Coromandel near 8.0 per mille; after 1 Ma near 7.5 per mille). This could indicate the gradual removal of supracrustal contaminants from the zones of magma accumulation and extrusion. Similar trends within Coromandel cannot yet be resolved. A generally positive correlation is found for oxygen and strontium isotopes of magmas. Most magmas have a limited range of isotopic values, which then becomes a fingerprint (e.g., the Mamaku, Matahina, and Waiotapu Ignimbrites). A narrow range of eruption temperatures of 880 ± 60 o C is derived from quartz-plagioclase fractionations of 0.98 ± 0.25 per mille δ 1 8O values of quartz and feldspar phenocrysts are sufficiently low to suggest interaction between surface water and magma. However, large negative oxygen isotope anomalies (such as known from Yellowstone), could be no more than partially concealed by the isotopically less depleted meteoric water of New Zealand, and have not yet been found in New Zealand. (authors). 45 refs., 6 figs., 3 tabs

  2. Temperatures and isotopic evolution of silicic magmas, Taupo Volcanic Zone and Coromandel, New Zealand

    International Nuclear Information System (INIS)

    Blattner, P.; Rui-Zhong, Hu; Graham, I.J.; Houston-Eleftheriadis, C.

    1996-01-01

    A new set of oxygen and strontium isotope data on rhyolitic lavas and ignimbrites of the Taupo Volcanic Zone (TVZ) and the Coromandel Peninsula provides new limits for petrogenetic models. For oxygen isotopes, the rock matrix is frequently altered, so that values for magma need to be phenocryst based. Within TVZ a trend towards more negative delta 1 8 O values for more recent magmas appears likely (average before about 1 Ma and for Coromandel near 8.0 per thousand; after 1 Ma near 7.5 per thousand). This could indicate the gradual removal of supracrustal contaminants from the zones of magma accumulation and extrusion. Similar trends within Coromandel cannot yet be resolved. A generally positive correlation is found for oxygen and strontium isotopes of magmas. Most magmas have a limited range of isotopic values, which then becomes a useful fingerprint (e.g., the Mamaku, Matahina, and Waiotapu Ignimbrites). A narrow range of eruption temperatures of 880 plus or minus 60degC is derived from quartz-plagioclase fractionations of 0.98 plus or minus 0.25 per thousand delta 1 8 O for 15 magmas. Some delta 1 8 O values of quartz and feldspar phenocrysts are sufficiently low to suggest interaction between surface water and magma. However, large negative oxygen isotope anomalies (such as known from Yellowstone), could be no more than partially concealed by the isotopically less depleted meteoric water of New Zealand, and have not yet been found in New Zealand. (author). 45 refs., 3 tabs., 6 figs

  3. An energy stable evolution method for simulating two-phase equilibria of multi-component fluids at constant moles, volume and temperature

    KAUST Repository

    Kou, Jisheng

    2016-02-25

    In this paper, we propose an energy-stable evolution method for the calculation of the phase equilibria under given volume, temperature, and moles (VT-flash). An evolution model for describing the dynamics of two-phase fluid system is based on Fick’s law of diffusion for multi-component fluids and the Peng-Robinson equation of state. The mobility is obtained from diffusion coefficients by relating the gradient of chemical potential to the gradient of molar density. The evolution equation for moles of each component is derived using the discretization of diffusion equations, while the volume evolution equation is constructed based on the mechanical mechanism and the Peng-Robinson equation of state. It is proven that the proposed evolution system can well model the VT-flash problem, and moreover, it possesses the property of total energy decay. By using the Euler time scheme to discretize this evolution system, we develop an energy stable algorithm with an adaptive choice strategy of time steps, which allows us to calculate the suitable time step size to guarantee the physical properties of moles and volumes, including positivity, maximum limits, and correct definition of the Helmhotz free energy function. The proposed evolution method is also proven to be energy-stable under the proposed time step choice. Numerical examples are tested to demonstrate efficiency and robustness of the proposed method.

  4. The evolution of the englacial temperature distribution in the superimposed ice zone of a polar ice cap during a summer season

    NARCIS (Netherlands)

    Greuell, W.; Oerlemans, J.

    1989-01-01

    The aim of the present investigation was to provide more insight into the processes affecting the evolution of the englacial temperature distribution at a non-temperate location on a glacier. Measurements were made in the top 10 m of the ice at the summit of Laika Ice Cap (Canadian Arctic)

  5. Evolution of Ternary AuAgPd Nanoparticles by the Control of Temperature, Thickness, and Tri-Layer

    Directory of Open Access Journals (Sweden)

    Sundar Kunwar

    2017-11-01

    Full Text Available Metallic alloy nanoparticles (NPs possess great potential to enhance the optical, electronic, chemical, and magnetic properties for various applications by the control of morphology and elemental composition. This work presents the fabrication of ternary AuAgPd alloy nanostructures on sapphire (0001 via the solid-state dewetting of sputter-deposited tri-metallic layers. Based on the systematic control of temperature, thickness, and deposition order of tri-layers, the composite AuAgPd alloy nanoparticles (NPs with various shape, size, and density are demonstrated. The metallic tri-layers exhibit various stages of dewetting based on the increasing growth temperatures between 400 and 900 °C at 15 nm tri-layer film thickness. Specifically, the nucleation of tiny voids and hillocks, void coalescence, the growth and isolated nanoparticle formation, and the shape transformation with Ag sublimation are observed. With the reduced film thickness (6 nm, tiny alloy NPs with improved structural uniformity and spatial arrangement are obtained due to enhanced dewetting. The growth trend of alloy NPs is drastically altered by changing the deposition order of metallic tri-layers. The overall evolution is governed by the surface diffusion and inter-mixing of metallic atoms, Rayleigh-like instability, surface and interface energy minimization, and equilibrium state of the system. The UV-VIS-NIR reflectance spectra reveal the formation of an absorption band and reflectance maxima at specific wavelengths based on the morphology and composition of AuAgPd alloy NPs. In addition, Raman spectra analysis shows the modulation of intensity and peak position of natural vibration modes of sapphire (0001.

  6. Effects of sintering temperature on the microstructural evolution and wear behavior of WCp reinforced Ni-based coatings

    Science.gov (United States)

    Chen, Chuan-hui; Bai, Yang; Ye, Xu-chu

    2014-12-01

    This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175°C is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225°C, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175°C, while the effect of adhesive wear is predominant in the coating sintered at 1225°C.

  7. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term and Elevated Temperature Irradiation: Modeling and Experimental Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian; Morgan, Dane; Kaoumi, Djamel; Motta, Arthur

    2013-12-01

    The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, their evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under

  8. STRUCTURAL EVOLUTION AND COMPOSITION CHANGE IN THE SURFACE REGION OF POLYPROPYLENE/CLAY NANOCOMPOSITES ANNEALED AT HIGH TEMPERATURES

    Institute of Scientific and Technical Information of China (English)

    Zhe Wang; Rong-jun Song; Xiao-hua Du; Xiao-yu Meng; Zhi-wei Jiang; Tao Tang

    2009-01-01

    A model experiment was done to clear the formation mechanism of protective layers during combustion of polypropylene (PP)/organically modified montmorillonite (OMMT) nanocomposites. The investigation was focused on the effects of annealing temperature on the structural changes and protective layer formation. The decomposition of OMMT and degradation of PP/OMMT nanocomposites were characterized by means of thermogravimetric analysis (TGA). The structural evolution and composition change in the surface region of PP/OMMT nanocomposites during heating were monitored by means of X-ray photoelectron spectroscopy (XPS), ATR-FTIR and field emission scanning electron microscopy (FESEM). The results showed that the formation of the carbonaceous silicate barrier in the surface region of PP/OMMT nanocomposites resulted from the following three processes: (1) The formation of strong acid sites on the MMT sheets, which could promote the degradation of PP and the carbonization of its degradation products; (2) The gases and gas bubbles formed by decomposition of the surfactant and degradation of PP, which pushed the molten sample to the surface; (3) The degradation of PP and the carbonization of the degradation products, which led to accumulation of MMT sheets tightly linked by the char in the surface region.

  9. Accurate Masses, Radii, and Temperatures for the Eclipsing Binary V2154 Cyg, and Tests of Stellar Evolution Models

    Science.gov (United States)

    Bright, Jane; Torres, Guillermo

    2018-01-01

    We report new spectroscopic observations of the F-type triple system V2154 Cyg, in which two of the stars form an eclipsing binary with a period of 2.6306303 ± 0.0000038 days. We combine the results from our spectroscopic analysis with published light curves in the uvby Strömgren passbands to derive the first reported absolute dimensions of the stars in the eclipsing binary. The masses and radii are measured with high accuracy to better than 1.5% precision. For the primary and secondary respectively, we find that the masses are 1.269 ± 0.017 M⊙ and 0.7542 ± 0.0059 M⊙, the radii are 1.477 ± 0.012 R⊙ and 0.7232 ± 0.0091R⊙, and the temperatures are 6770 ± 150 K and 5020 ± 150 K. Current models of stellar evolution agree with the measured properties of the primary, but the secondary is larger than predicted. This may be due to activity in the secondary, as has been shown for other systems with a star of similar mass with this same discrepancy.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution. GT acknowledges partial support for this work from NSF grant AST-1509375.

  10. Low temperature heat treatments of AA5754-Ti6Al4V dissimilar laser welds: Microstructure evolution and mechanical properties

    Science.gov (United States)

    Leo, P.; D'Ostuni, S.; Casalino, G.

    2018-03-01

    This paper presents the effects of the post welding heat treatments (PWHT) performed at 350 °C and 450 °C on the microstructure evolution and mechanical properties of AA5754 and Ti6Al4V dissimilar laser welds. The microstructure and tensile properties of the welds before and after low temperature treatment were analyzed. The off-set welding technique was applied to limit the formation of brittle intermetallic compounds during the welding process. The laser beam was directed onto the titanium side at a small distance from the aluminum edge. The keyhole formed and the full penetration was reached in the titanium side of the weld. Thereafter, the aluminum side melted as the heat that formed the keyhole transferred from the titanium fused zone. Two different energy lines (32 J/mm and 76 J/mm) were used. In this manner, a fused and a heat affected zones was revealed on both sides of the weld. Several intermetallic compounds formed in the intermetallic layer between the two metals. The thickness and the composition of the intermetallic layer depended on the welding parameters and the post welding heat treatment. The hardness and tensile properties of the welds before and after the post welding heat treatment were measured and analyzed.

  11. The evolution of the dust temperatures of galaxies in the SFR-M∗ plane up to z ∼ 2

    Science.gov (United States)

    Magnelli, B.; Lutz, D.; Saintonge, A.; Berta, S.; Santini, P.; Symeonidis, M.; Altieri, B.; Andreani, P.; Aussel, H.; Béthermin, M.; Bock, J.; Bongiovanni, A.; Cepa, J.; Cimatti, A.; Conley, A.; Daddi, E.; Elbaz, D.; Förster Schreiber, N. M.; Genzel, R.; Ivison, R. J.; Le Floc'h, E.; Magdis, G.; Maiolino, R.; Nordon, R.; Oliver, S. J.; Page, M.; Pérez García, A.; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Rosario, D.; Roseboom, I.; Sanchez-Portal, M.; Scott, D.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wang, L.; Wuyts, S.

    2014-01-01

    We study the evolution of the dust temperature of galaxies in the SFR- M∗ plane up to z ~ 2 using far-infrared and submillimetre observations from the Herschel Space Observatory taken as part of the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time key programmes. Starting from a sample of galaxies with reliable star-formation rates (SFRs), stellar masses (M∗) and redshift estimates, we grid the SFR- M∗parameter space in several redshift ranges and estimate the mean dust temperature (Tdust) of each SFR-M∗ - z bin. Dust temperatures are inferred using the stacked far-infrared flux densities (100-500 μm) of our SFR-M∗ - z bins. At all redshifts, the dust temperature of galaxies smoothly increases with rest-frame infrared luminosities (LIR), specific SFRs (SSFR; i.e., SFR/M∗), and distances with respect to the main sequence (MS) of the SFR- M∗ plane (i.e., Δlog (SSFR)MS = log [SSFR(galaxy)/SSFRMS(M∗,z)]). The Tdust - SSFR and Tdust - Δlog (SSFR)MS correlations are statistically much more significant than the Tdust - LIR one. While the slopes of these three correlations are redshift-independent, their normalisations evolve smoothly from z = 0 and z ~ 2. We convert these results into a recipe to derive Tdust from SFR, M∗ and z, valid out to z ~ 2 and for the stellar mass and SFR range covered by our stacking analysis. The existence of a strong Tdust - Δlog (SSFR)MS correlation provides us with several pieces of information on the dust and gas content of galaxies. Firstly, the slope of the Tdust - Δlog (SSFR)MS correlation can be explained by the increase in the star-formation efficiency (SFE; SFR/Mgas) with Δlog (SSFR)MS as found locally by molecular gas studies. Secondly, at fixed Δlog (SSFR)MS, the constant dust temperature observed in galaxies probing wide ranges in SFR and M∗ can be explained by an increase or decrease in the number of star-forming regions with comparable SFE enclosed in

  12. Low temperature thermochronology and topographic evolution of the South Atlantic passive continental margin in the region in eastern Argentina

    Science.gov (United States)

    Pfister, Sabrina; Kollenz, Sebastian; Glasmacher, Ulrich A.

    2014-05-01

    To understand the evolution of the passive continental margin in Argentina low temperature thermochronology is an appropriate method, which will lead to new conclusions in this area. The Tandilia System, also called Sierras Septentrionales, is located south of the Río de la Plato Craton in eastern Argentina in the state of Buenos Aires. North of the hills Salado basin is located whereas the Claromecó basin is situated south of the mountain range. In contrary to most basins along the southamerican passive continental margin the Tandilia-System and the neighbouring basins trend perpendicular to the coast line. The topography is fairly flat with altitudes of. The igneous-metamorphic basement is pre-proterozoic in age and build up of mainly granitic-tonalitic gneisses, migmatites, amphibolites, some ultramafic rocks and granitoid plutons it is overlain by a series of Neoproterozoic to early Paleozoic sediments (Cingolani, 2010), like siliciclastics, dolostones, shales and limestones (Demoulin et al., 2005). The aim of the study is to quantify the long-term landscape evolution of the passive continental margin in eastern Argentina in terms of thermal history, exhumation and tectonic activities. For that purpose, samples were taken from the Sierra Septentrionales and analyzed with the apatite fission-track method. Further 2-D thermokinematic modeling was conducted with the computer code HeFTy (Ketcham, 2005; Ketcham 2007; Ketcham et al., 2009). The results indicate apatite fission track ages between 101.6 (9.4) to 228.9 (22.3) Ma, what means all measured ages are younger as their formation age. That shows all samples have been reset. Six samples accomplished enough confined tracks and were used to test geological t-T models against the AFT data set. These models give a more detailed insight on the cooling history and tectonic activities in the research area. References: Cingolani C. A. (2010): The Tandilia System of Argentina as a southern extension of the Río de la

  13. Spectral evolution of Eu{sup 3+} doped Y{sub 3}NbO{sub 7} niobate induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K-Y.; Durand, A. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Heintz, J-M.; Veillere, A. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Bordeaux INP, ICMCB, UPR 9048, F-33600 Pessac (France); Jubera, V., E-mail: veronique.jubera@u-bordeaux.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2016-03-15

    A Eu{sup 3+} doped Y{sub 3}NbO{sub 7} niobate powder was synthetized using a polymerizable complex route. It gave rise to nanometric particles that crystallized in the fluorine structure, corresponding to the Y{sub 3}NbO{sub 7} phase. The thermal evolution of this powder was followed up to 1600 °C, using X-ray diffraction and optical characterizations. The fluorine structure was maintained in the whole temperature range. However, spectral evolution of the samples calcined above 900 °C showed a more complex situation. Emission spectra of powders heat treated at different temperatures showed an evolution of the emission lines that can be attributed first to a better crystallization of the niobate phase and second to its partial decomposition in favor of the formation of YNbO{sub 4} and Y{sub 2}O{sub 3}. Although the Y{sub 3}NbO{sub 7} phase appeared stable up to 1650 °C, from X-ray diffraction analysis, spectral analysis showed that the local environment of the doping element is modified from 1100 °C. - Graphical abstract: Spectral evolution of Eu{sup 3+} doped Y{sub 3}NbO{sub 7} niobate induced by temperature.

  14. Microstructural evolution of nanochannel CrN films under ion irradiation at elevated temperature and post-irradiation annealing

    Science.gov (United States)

    Tang, Jun; Hong, Mengqing; Wang, Yongqiang; Qin, Wenjing; Ren, Feng; Dong, Lan; Wang, Hui; Hu, Lulu; Cai, Guangxu; Jiang, Changzhong

    2018-03-01

    High-performance radiation tolerance materials are crucial for the success of future advanced nuclear reactors. In this paper, we present a further investigation that the "vein-like" nanochannel films can enhance radiation tolerance under ion irradiation at high temperature and post-irradiation annealing. The chromium nitride (CrN) nanochannel films with different nanochannel densities and the compact CrN film are chosen as a model system for these studies. Microstructural evolution of these films were investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Elastic Recoil Detection (ERD) and Grazing Incidence X-ray Diffraction (GIXRD). Under the high fluence He+ ion irradiation at 500 °C, small He bubbles with low bubble densities are observed in the irradiated nanochannel CrN films, while the aligned large He bubbles, blistering and texture reconstruction are found in the irradiated compact CrN film. For the heavy Ar2+ ion irradiation at 500 °C, the microstructure of the nanochannel CrN RT film is more stable than that of the compact CrN film due to the effective releasing of defects via the nanochannel structure. Under the He+ ion irradiation and subsequent annealing, compared with the compact film, the nanochannel films have excellent performance for the suppression of He bubble growth and possess the strong microstructural stability. Basing on the analysis on the sizes and number densities of bubbles as well as the concentrations of He retained in the nanochannel CrN films and the compact CrN film under different experimental conditions, potential mechanism for the enhanced radiation tolerance are discussed. Nanochannels play a crucial role on the release of He/defects under ion irradiation. We conclude that the tailored "vein-like" nanochannel structure may be used as advanced radiation tolerance materials for future nuclear reactors.

  15. Evolution of oxygenated cadmium sulfide (CdS:O) during high-temperature CdTe solar cell fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Meysing, Daniel M.; Reese, Matthew O.; Warren, Charles W.; Abbas, Ali; Burst, James M.; Mahabaduge, Hasitha P.; Metzger, Wyatt K.; Walls, John M.; Lonergan, Mark C.; Barnes, Teresa M.; Wolden, Colin A.

    2016-12-01

    Oxygenated cadmium sulfide (CdS:O) produced by reactive sputtering has emerged as a promising alternative to conventional CdS for use as the n-type window layer in CdTe solar cells. Here, complementary techniques are used to expose the window layer (CdS or CdS:O) in completed superstrate devices and combined with a suite of materials characterization to elucidate its evolution during high temperature device processing. During device fabrication amorphous CdS:O undergoes significant interdiffusion with CdTe and recrystallization, forming CdS1-yTey nanocrystals whose Te fraction approaches solubility limits. Significant oxygen remains after processing, concentrated in sulfate clusters dispersed among the CdS1-yTey alloy phase, accounting for ~30% of the post-processed window layer based on cross-sectional microscopy. Interdiffusion and recrystallization are observed in devices with un-oxygenated CdS, but to a much lesser extent. Etching experiments suggest that the CdS thickness is minimally changed during processing, but the CdS:O window layer is reduced from 100 nm to 60-80 nm, which is confirmed by microscopy. Alloying reduces the band gap of the CdS:O window layer to 2.15 eV, but reductions in thickness and areal density improve its transmission spectrum, which is well matched to device quantum efficiency. The changes to the window layer in the reactive environments of device fabrication are profoundly different than what occurs by thermal annealing in an inert environment, which produced films with a band gap of 2.4 eV for both CdS and CdS:O. These results illustrate for the first time the significant changes that occur to the window layer during processing that are critical to the performance of CdTe solar cells.

  16. The onset of massive star formation: The evolution of temperature and density structure in an infrared dark cloud

    Energy Technology Data Exchange (ETDEWEB)

    Battersby, Cara [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ginsburg, Adam; Bally, John; Darling, Jeremy [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Longmore, Steve [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Dunham, Miranda [Department of Astronomy, Yale University, New Haven, CT 06520 (United States)

    2014-06-01

    We present new NH{sub 3} (1, 1), (2, 2), and (4, 4) observations from the Karl G. Jansky Very Large Array compiled with work in the literature to explore the range of conditions observed in young, massive star-forming regions. To sample the effects of evolution independent from those of distance/resolution, abundance, and large-scale environment, we compare clumps in different evolutionary stages within a single infrared dark cloud (IRDC), G32.02+0.06. We find that the early stages of clustered star formation are characterized by dense, parsec-scale filamentary structures interspersed with complexes of dense cores (<0.1 pc cores clustered in complexes separated by ∼1 pc) with masses from about 10 to 100 M {sub ☉}. The most quiescent core is the most extended while the star forming cores are denser and more compact, showing very similar column density structure before and shortly after the onset of massive star formation, with peak surface densities Σ ≳ 1 g cm{sup –2}. Quiescent cores and filaments show smoothly varying temperatures from 10 to 20 K, rising to over 40 K in star-forming cores. We calculate virial parameters for 16 cores and find that the level of support provided by turbulence is generally insufficient to support them against gravitational collapse ((α{sub vir}) ∼ 0.6). The star-forming filaments show smooth velocity fields, punctuated by discontinuities at the sites of active star formation. We discuss the massive molecular filament (M ∼ 10{sup 5} M {sub ☉}, length >60 pc) hosting the IRDC, hypothesizing that it may have been shaped by previous generations of massive stars.

  17. Evolution of extended defects in polycrystalline Au-irradiated UO{sub 2} using in situ TEM: Temperature and fluence effects

    Energy Technology Data Exchange (ETDEWEB)

    Onofri, C., E-mail: claire.onofri@cea.fr [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Sabathier, C. [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Baumier, C.; Bachelet, C. [CSNSM/CNRS, PARIS-SUD University, F-91400 Orsay (France); Palancher, H. [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Legros, M. [CEMES/CNRS, F-31055 Toulouse Cedex 4 (France)

    2016-12-15

    In situ Transmission Electron Microscopy irradiations were performed on polycrystalline UO{sub 2} thin foils with 4 MeV gold ions at three different temperatures: 600 °C, room and liquid nitrogen temperature. In order to study the dislocation evolution and to determine the growth mechanisms, the dislocation loop and line densities and the loop size repartition were monitored as a function of fluence, and irradiation temperature. We show that dislocation loops, with Burgers vectors along the <110> directions, evolve into dislocation lines with increasing fluence by a loop overlapping mechanism. Furthermore, a fluence offset is highlighted between the irradiations performed at high and low temperature due to an increase of the defect mobility. Indeed, a growth by Oswald ripening is probably activated at room temperature and 600 °C and changes the kinetic evolution of loops into lines. After this transformation, and for all the irradiation temperatures, a steady state equilibrium is reached where both extended defects (dislocation lines and small dislocations loops -around 5 nm in size-) are observed simultaneously. A continuous nucleation of small dislocation loops and of nanometer-sized cavities formed directly by irradiation is also highlighted.

  18. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak, Ercan [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Vogel, Sven C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Choo, Hahn, E-mail: hchoo@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions.

  19. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Cakmak, Ercan; Vogel, Sven C.; Choo, Hahn

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions

  20. La coupe d'Ouled Haddou (Rif externe oriental) : un affleurement continu de la transition Crétacé Paléogène au Maroc, révélé par les Foraminifères planctoniquesThe Ouled Haddou section (oriental external Rif): a continuous outcrop of the Cretaceous Palaeogene transition in Morocco, revealed by planktonic Foraminifera

    Science.gov (United States)

    Toufiq, Abdelkabir; Bellier, Jean-Pierre; Boutakiout, Mohamed; Feinberg, Hugues

    2002-10-01

    In the Ouled Haddou section, deposits of the Uppermost Maastrichtian correspond to the Abathomphalus mayaroensis Biozone. The index species is regularly present until the Cretaceous-Palaeogene boundary, which is marked by a mass extinction affecting 41 species (large and complex). Some Cretaceous small species persist in the Lowermost Danian. The first levels of the Danian are assigned to the Guembelitria cretacea Biozone, in which the species index persist without being affected, and the first species of the Tertiary appear. The upper part of the Lower Danian corresponds to the succession of Parvularugoglobigerina eugubina, Parasubbotina pseudobulloides, and Subbotina triloculinoides Biozones. From the P. eugubina Biozone, associations of Danian vary to undergo a complete renewal in the upper zones. The Ouled Haddou section, described for the first time, presents, according to planktonic Foraminifera, a complete record of the Cretaceous-Palaeogene transition. To cite this article: A. Toufiq et al., C. R. Geoscience 334 (2002) 995-1001.

  1. Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO3 investigated by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Selbach, Sverre M.; Tolchard, Julian R.; Fossdal, Anita; Grande, Tor

    2012-01-01

    The crystal structure, anisotropic thermal expansion and structural phase transition of the perovskite LaFeO 3 has been studied by high-temperature X-ray diffraction from room temperature to 1533 K. The structural evolution of the orthorhombic phase with space group Pbnm and the rhombohedral phase with R3 ¯ c structure of LaFeO 3 is reported in terms of lattice parameters, thermal expansion coefficients, atomic positions, octahedral rotations and polyhedral volumes. Non-linear lattice expansion across the antiferromagnetic to paramagnetic transition of LaFeO 3 at T N =735 K was compared to the corresponding behavior of the ferroelectric antiferromagnet BiFeO 3 to gain insight to the magnetoelectric coupling in BiFeO 3 , which is also multiferroic. The first order phase transition of LaFeO 3 from Pbnm to R3 ¯ c was observed at 1228±9 K, and a subsequent transition to Pm3 ¯ m was extrapolated to occur at 2140±30 K. The stability of the Pbnm and R3 ¯ c polymorphs of LaFeO 3 is discussed in terms of the competing enthalpy and entropy of the two crystal polymorphs and the thermal evolution of the polyhedral volume ratio V A /V B . - Graphical abstract: Aniostropic thermal evolution of the lattice parameters and phase transition of LaFeO 3 . Highlights: ► The crystal structure of LaFeO 3 is studied by HTXRD from RT to 1533 K. ► A non-linear expansion across the Néel temperature is observed for LaFeO 3 . ► The ratio V A /V B is used to rationalize the thermal evolution of the structure.

  2. Pyrolysis of Lantana camara and Mimosa pigra: Influences of temperature, other process parameters and incondensable gas evolution on char yield and higher heating value.

    Science.gov (United States)

    Mundike, Jhonnah; Collard, François-Xavier; Görgens, Johann F

    2017-11-01

    Pyrolysis of invasive non-indigenous plants, Lantana camara (LC) and Mimosa pigra (MP) was conducted at milligram-scale for optimisation of temperature, heating rate and hold time on char yield and higher heating value (HHV). The impact of scaling-up to gram-scale was also studied, with chromatography used to correlate gas composition with HHV evolution. Statistically significant effects of temperature on char yield and HHV were obtained, while heating rate and hold time effects were insignificant. Milligram-scale maximised HHVs were 30.03MJkg -1 (525°C) and 31.01MJkg -1 (580°C) for LC and MP, respectively. Higher char yields and HHVs for MP were attributed to increased lignin content. Scaling-up promoted secondary char formation thereby increasing HHVs, 30.82MJkg -1 for LC and 31.61MJkg -1 for MP. Incondensable gas analysis showed that temperature increase beyond preferred values caused dehydrogenation that decreased HHV. Similarly, CO evolution profile explained differences in optimal HHV temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Morphological, Structural and Optical Evolution of Ag Nanostructures on c-Plane GaN Through the Variation of Deposition Amount and Temperature

    Science.gov (United States)

    Sui, Mao; Li, Ming-Yu; Pandey, Puran; Zhang, Quanzhen; Kunwar, Sundar; Lee, Jihoon

    2018-03-01

    Owing to their tunable properties, Ag nanostructures have been widely adapted in various applications and the morphological control can determine their performance and effectiveness. In this work, we demonstrate the morphological and optical evolution of Ag nanostructures on GaN (0001) by the systematic control of deposition amount at two distinctive annealing temperatures. Based on the Volmer-Weber and coalescence growth models, the nanostructure growth commenced by the thermal solid-state-dewetting evolve in terms of size, density and configuration. At 450 °C, the round-dome shaped Ag nanoparticles (regime I), irregular Ag nano-mounds (regime II) and void-layer structures (regime III) are observed along with the gradually increased deposition amount. As a sharp distinction, the solid state dewetting process occur more radically at 700 °C and also, the Ag sublimation and the effect on the nanostructure formation are observed in a clear regime shift scaled by the deposition amount. Meanwhile, a strong dependency of reflectance spectra evolution on the Ag nanostructure morphology is witnessed for both sets. In particular, Ag dipolar resonance peaks are significantly red-shifted from VIS to NIR regions along with the nanostructure evolution. The reflectance, PL and Raman intensity variation are also observed and discussed based on the evolution of Ag nanostructures.

  4. Effect of Systematic Control of Pd Thickness and Annealing Temperature on the Fabrication and Evolution of Palladium Nanostructures on Si (111) via the Solid State Dewetting.

    Science.gov (United States)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Li, Ming-Yu; Lee, Jihoon

    2017-12-01

    Si-based optoelectronic devices embedded with metallic nanoparticles (NPs) have demonstrated the NP shape, size, spacing, and crystallinity dependent on light absorption and emission induced by the localized surface plasmon resonance. In this work, we demonstrate various sizes and configurations of palladium (Pd) nanostructures on Si (111) by the systematic thermal annealing with the variation of Pd thickness and annealing temperature. The evolution of Pd nanostructures are systematically controlled by the dewetting of thin film by means of the surface diffusion in conjunction with the surface and interface energy minimization and Volmer-Weber growth model. Depending on the control of deposition amount ranging between 0.5 and 100 nm at various annealing temperatures, four distinctive regimes of Pd nanostructures are demonstrated: (i) small pits and grain formation, (ii) nucleation and growth of NPs, (iii) lateral evolution of NPs, and (iv) merged nanostructures. In addition, by the control of annealing between 300 and 800 °C, the Pd nanostructures show the evolution of small pits and grains, isolated NPs, and finally, Pd NP-assisted nanohole formation along with the Si decomposition and Pd-Si inter-diffusion. The Raman analysis showed the discrepancies on phonon modes of Si (111) such that the decreased peak intensity with left shift after the fabrication of Pd nanostructures. Furthermore, the UV-VIS-NIR reflectance spectra revealed the existence of surface morphology dependent on absorption, scattering, and reflectance properties.

  5. Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff

    Science.gov (United States)

    Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Larose, E.; Valentin, J.; Vinciguerra, S.

    2018-06-01

    Monitoring the temporal evolution of resonance frequencies and velocity changes detected from ambient seismic noise recordings can help in recognizing reversible and irreversible modifications within unstable rock volumes. With this aim, the long-term ambient seismic noise data set acquired at the potentially unstable cliff of Madonna delSasso (NW Italian Alps) was analysed in this study, using both spectral analysis and cross-correlation techniques. Noise results were integrated and compared with direct displacement measurements and meteorological data, to understand the long-term evolution of the cliff. No irreversible modifications in the stability of the site were detected over the monitored period. Conversely, daily and seasonal air temperature fluctuations were found to control resonance frequency values, amplitudes and directivities and to induce reversible velocity changes within the fractured rock mass. The immediate modification in the noise parameters due to temperature fluctuations was interpreted as the result of rock mass thermal expansion and contraction, inducing variations in the contact stiffness along the fractures isolating two unstable compartments. Differences with previous case studies were highlighted in the long-term evolution of noise spectral amplitudes and directivities, due to the complex 3-D fracture setting of the site and to the combined effects of the two unstable compartments.

  6. Simulation of nanostructural evolution under irradiation in Fe-9%CrC alloys: An object kinetic Monte Carlo study of the effect of temperature and dose-rate

    Directory of Open Access Journals (Sweden)

    M. Chiapetto

    2016-12-01

    Full Text Available This work explores the effects of both temperature and dose-rate on the nanostructural evolution under irradiation of the Fe-9%CrC alloy, model material for high-Cr ferritic/martensitic steels. Starting from an object kinetic Monte Carlo model validated at 563K, we investigate here the accumulation of radiation damage as a function of temperature and dose-rate, attempting to highlight its connection with low-temperature radiation-induced hardening. The results show that the defect cluster mobility becomes high enough to partially counteract the material hardening process only above ∼290°C, while high fluxes are responsible for higher densities of defects, so that an increase of the hardening process with increasing dose-rates may be expected.

  7. SIMS and thermal evolution analysis of oxygen in Zr-1%Nb alloy after high-temperature transitions

    Czech Academy of Sciences Publication Activity Database

    Lorinčík, Jan; Klouček, V.; Negyesi, M.; Kabátová, J.; Novotný, L.; Vrtílková, V.

    2011-01-01

    Roč. 43, 1-2 (2011), s. 618-620 ISSN 0142-2421 Institutional research plan: CEZ:AV0Z20670512 Keywords : SIMS * Thermal evolution analysis * Zirconium alloy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.180, year: 2011

  8. Influence of temperature histories during reactor startup periods on microstructural evolution and mechanical properties of austenitic stainless steel irradiated with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Shigeki, E-mail: kasahara.shigeki@jaea.go.jp [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kitsunai, Yuji [Nippon Nuclear Fuel Development, 2163 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1313 (Japan); Chimi, Yasuhiro [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chatani, Kazuhiro; Koshiishi, Masato [Nippon Nuclear Fuel Development, 2163 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1313 (Japan); Nishiyama, Yutaka [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2016-11-15

    This paper addresses influence of two different temperature profiles during startup periods in the Japan Materials Testing Reactor and a boiling water reactor upon microstructural evolution and mechanical properties of austenitic stainless steel irradiated with neutrons to about 1 dpa and 3 dpa. One of the temperature profiles was that the specimens experienced neutron irradiation in both reactors, under which the irradiation temperature transiently increased to 290 °C from room temperature with increasing reactor power during reactor startup periods. Another was that the specimens were pre-heated to about 150 °C prior to the irradiation to suppress the transient temperature increase. Tensile tests at 290 °C and Vickers hardness tests at room temperature were carried out, and their microstructures were observed by FEG-TEM. Difference of the temperature profiles was observed obviously in interstitial cluster formation, in particular, growth of Frank loops. Although influence of neutron irradiation involving transient temperature increase to 290 °C from room temperature on the yield strength and the Vickers hardness is buried in the trend curves of existing data, the influence was also found certainly in increment of in yield strength, existence of modest yield drop, and loss of strain hardening capacity and ductility. As a result, Frank loops, which were observed in austenitic stainless steel irradiated at doses of 1 dpa or more, seemed to have important implications regarding the interpretation of not irradiation hardening, but deformation of the austenitic stainless steel.

  9. Photometric analysis of the structure evolution on the Pb-19.4%Sn melt surface in the S-L temperature range

    Directory of Open Access Journals (Sweden)

    Lyakhovitskii M.M.

    2011-05-01

    Full Text Available The structure evolution of alloys in solidification range is considered as the first-order phase transformation from the solid state to the liquid one, which occurs by the mechanism of nucleation and growth of more symmetrical phase to less symmetrical crystalline phase. The kinetic regularities of this transformation are studied by the method of the photometric analysis of structure images (PHASI, which makes it possible to establish the temperature dependence of the relationship between the solid and liquid phases and their distribution on the melt surface. The PHASI method is based on the combined analysis of the brightness spectra of the visible light reflections from the sample surface and of the distribution of its scattering centers in different intensity intervals. The data on the structure evolution of the Sn+19.4%Pb alloy upon melting and solidification were considered in parallel with the measured spectra of sound signals. It was revealed that a distinct maximum is observed in the temperature dependence of radiation energy in the temperature range of phase transformation from the liquid into the solid state and hot crack formation occurs near the transition zone in the region of the contact of the ingot with the crucible.

  10. Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: Near edge x-ray absorption fine structure study

    International Nuclear Information System (INIS)

    Roy, S. S.; Papakonstantinou, P.; Okpalugo, T. I. T.; Murphy, H.

    2006-01-01

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has been employed to obtain the temperature dependent evolution of the electronic structure of acid treated carbon nanotubes, which were further modified by dielectric barrier discharge plasma processing in an ammonia atmosphere. The NEXAFS studies were performed from room temperature up to 900 deg. C. The presence of oxygen and nitrogen containing functional groups was observed in C K edge, N K edge, and O K edge NEXAFS spectra of the multiwalled carbon nanotubes. The N K edge spectra revealed three types of π* features, the source of which was decisively identified by their temperature dependent evolution. It was established that these features are attributed to pyridinelike, NO, and graphitelike structures, respectively. The O K edge indicated that both carbonyl (C=O), π*(CO), and ether C-O-C, σ*(CO), functionalities were present. Upon heating in a vacuum to 900 deg. C the π*(CO) resonances disappeared while the σ*(CO) resonances were still present confirming their higher thermal stability. Heating did not produce a significant change in the π* feature of the C K edge spectrum indicating that the tabular structure of the nanotubes is essentially preserved following the thermal decomposition of the functional groups on the nanotube surface

  11. Thermotectonic evolution of the Apuseni mountains (Romania) based on structural and geothermochronological data

    Science.gov (United States)

    Reiser, M. K.; Fügenschuh, B.; Schuster, R.

    2012-04-01

    The Apuseni Mountains in Romania take a central position in the Alpine Carpathian Dinaride system between the Pannonian basin in the West and the Transylvanian basin in the East. Following the final Mid-Cretaceous obduction of the East Vardar ophiolite a NW-vergent nappe stack formed, which involves from bottom to top: Tisza- (Bihor and Codru) and Dacia-derived (Biharia) units, overlain by the South Apuseni or Transylvanian ophiolite belt (see Schmid et al, 2008). This study tries to provide new and additional information on the complex structural and metamorphic evolution of these units, from the onset of obduction during Jurassic times, to the (final?) exhumation processes observed during the Eocene (according to Merten, 2011). Based on observed stretching lineations, kinematic indicators such as porphyroclasts, shearbands etc. were analyzed to establish a relative chronological order of deformation and tectonic transport. Microstructural studies provided additional data on the relative succession of events and the relevant synkinematic temperatures. A thermochronological study, based on the integration of newly aquired Rb-Sr, Sm-Nd, Ar-Ar and fission track ages with existing data allowed the construction of a time-temperature deformation path. Our data indicate three major events, a Late Jurassic-Earliest Cretaceous exhumation event, which cannot be directly constrained by structural data so far. Yet the position of the Transsylvanian ophiolites tectonically overlying the Biharia unit as well as distinct thermochronological data are self-explaining. The second event ("Austrian Phase" in local nomenclature), documented by structural and thermochronological data, is related to the top to the NE thrusting (i.e. in present-day coordinates) of Tisza over Dacia during the Mid-Cretaceous. This penetrative event in the Biharia unit is overprinted at the contact between nappes by a third, top to the NW event during the Turonian, which relates to the NW directed

  12. Residual stresses evolution in hardening, cold drawn or shot-peening carbon steel as a function of the heating temperature

    International Nuclear Information System (INIS)

    Vannes, A.-B.; Parisot, Alain; Fougeres, Roger; Theolier, Maurice

    1977-01-01

    Residual stress variations are studied in hardening, cold-drawn, shot-peening carbon steel samples as a function of heating temperature or the tempering one. For temperatures between 100 0 C and 250 0 C, a relative maximum is observed for the mean level of the residual stresses. These results are explained on the basis of two antagonistic mechanisms: restoration and ageing [fr

  13. Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, L.; Wang, H.; Liaw, P. K.; Brooks, C. R.; Klarstrom, D. L.

    2001-09-01

    High-speed, high-resolution infrared thermography, as a noncontact, full-field, and nondestructive technique, was used to study the temperature variations of a cobalt-based ULTIMET alloy subjected to high-cycle fatigue. During each fatigue cycle, the temperature oscillations, which were due to the thermal-elastic-plastic effects, were observed and related to stress-strain analyses. A constitutive model was developed for predicting the thermal and mechanical responses of the ULTIMET alloy subjected to cyclic deformation. The model was constructed in light of internal-state variables, which were developed to characterize the inelastic strain of the material during cyclic loading. The predicted stress-strain and temperature responses were found to be in good agreement with the experimental results. In addition, the change of temperature during fatigue was employed to reveal the accumulation of fatigue damage, and the measured temperature was utilized as an index for fatigue-life prediction.

  14. Effect of expansion temperature of expandable graphite on microstructure evolution of expanded graphite during high-energy ball-milling

    International Nuclear Information System (INIS)

    Yue Xueqing; Li Liang; Zhang Ruijun; Zhang Fucheng

    2009-01-01

    Two expanded graphites (EG), marked as EG-1 and EG-2, were prepared by rapid heating of expandable graphite to 600 and 1000 deg. C, respectively, and ball milled in a high-energy mill (planetary-type) under air atmosphere. The microstructure evolution of the ball-milled samples was characterized by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD analysis shows that the evolution degree of the average crystallite thickness along the c-axis (L c ) of EG-2 is lower than that of EG-1 during the milling process. From the HRTEM images of the samples after 100 h ball-milling, slightly curved graphene planes can be frequently observed both in the two EGs, however, EG-1 and EG-2 exhibit sharply curved graphene planes and smoothly curved graphene planes with high bending angles, respectively.

  15. Evolution of magnetic and microstructural properties of thick sputtered NdFeB films with processing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Walther, A. [Institut Neel, CNRS-UJF, 25 rue de Martyrs, 38042 Grenoble (France); CEA Leti - MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Khlopkov, K. [IFW Dresden, Institute of Metallic Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Gutfleisch, O. [IFW Dresden, Institute of Metallic Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Givord, D. [Institut Neel, CNRS-UJF, 25 rue de Martyrs, 38042 Grenoble (France); Dempsey, N.M. [Institut Neel, CNRS-UJF, 25 rue de Martyrs, 38042 Grenoble (France)]. E-mail: nora.dempsey@grenoble.cnrs.fr

    2007-09-15

    Ta (100 nm)/NdFeB (5 {mu}m)/Ta (100 nm) films have been deposited onto Si substrates using triode sputtering (deposition rate {approx}18 {mu}m/h). A 2-step procedure was used: deposition at temperatures up to 400 deg. C followed by ex-situ annealing at higher temperatures. Post-deposition annealing temperatures above 650 deg. C are needed to develop high values of coercivity. The duration of the annealing time is more critical in anisotropic samples deposited onto heated substrates than in isotropic samples deposited at lower temperatures. For a given set of annealing conditions (750 deg. C/10'), high heating rates ({>=}2000 deg. C/h) favour high coercivity in both isotropic and anisotropic films. The shape and size of Nd{sub 2}Fe{sub 14}B grains depend strongly on the heating rate.

  16. Probing the critical behavior in the evolution of GDR width at very low temperatures in A∼100 mass region

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Balaram; Mondal, Debasish; Pandit, Deepak; Mukhopadhyay, S.; Pal, Surajit [Variable Energy Cyclotron Centre, 1/AF-Bidhannagar, Kolkata 700064 (India); Bhattacharya, Srijit [Department of Physics, Barasat Govt. College, Barasat, N 24 Pgs, Kolkata 700124 (India); De, A. [Department of Physics, Raniganj Girls' College, Raniganj 713358 (India); Banerjee, K. [Variable Energy Cyclotron Centre, 1/AF-Bidhannagar, Kolkata 700064 (India); Dinh Dang, N. [Theoretical Nuclear Physics Laboratory, RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako city, Saitama 351-0198 (Japan); Quang Hung, N. [School of Engineering, Tan Tao University, Tan Tao University Avenue, Tan Duc Ecity, Duc Hoa, Long An Province (Viet Nam); Banerjee, S.R., E-mail: srb@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF-Bidhannagar, Kolkata 700064 (India)

    2014-04-04

    The influence of giant dipole resonance (GDR) induced quadrupole moment on GDR width at low temperatures is investigated experimentally by measuring GDR width systematically in the unexplored temperature range T=0.8–1.5 MeV, for the first time, in A∼100 mass region. The measured GDR widths, using alpha induced fusion reaction, for {sup 97}Tc confirm that the GDR width remains constant at the ground state value up to a critical temperature and increases sharply thereafter with increase in T. The data have been compared with the adiabatic Thermal Shape Fluctuation Model (TSFM), phenomenological Critical Temperature Fluctuation Model (CTFM) and microscopic Phonon Damping Model (PDM). Interestingly, CTFM and PDM give similar results and agree with the data, whereas the TSFM differs significantly even after incorporating the shell effects.

  17. Probing the critical behavior in the evolution of GDR width at very low temperatures in A∼100 mass region

    International Nuclear Information System (INIS)

    Dey, Balaram; Mondal, Debasish; Pandit, Deepak; Mukhopadhyay, S.; Pal, Surajit; Bhattacharya, Srijit; De, A.; Banerjee, K.; Dinh Dang, N.; Quang Hung, N.; Banerjee, S.R.

    2014-01-01

    The influence of giant dipole resonance (GDR) induced quadrupole moment on GDR width at low temperatures is investigated experimentally by measuring GDR width systematically in the unexplored temperature range T=0.8–1.5 MeV, for the first time, in A∼100 mass region. The measured GDR widths, using alpha induced fusion reaction, for 97 Tc confirm that the GDR width remains constant at the ground state value up to a critical temperature and increases sharply thereafter with increase in T. The data have been compared with the adiabatic Thermal Shape Fluctuation Model (TSFM), phenomenological Critical Temperature Fluctuation Model (CTFM) and microscopic Phonon Damping Model (PDM). Interestingly, CTFM and PDM give similar results and agree with the data, whereas the TSFM differs significantly even after incorporating the shell effects.

  18. Doping evolution of spin fluctuations and their peculiar suppression at low temperatures in Ca(Fe 1 -xCox)2As2

    Science.gov (United States)

    Sapkota, A.; Das, P.; Böhmer, A. E.; Ueland, B. G.; Abernathy, D. L.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.

    2018-05-01

    Results of inelastic neutron scattering measurements are reported for two annealed compositions of Ca(Fe 1 -xCox)2As2,x =0.026 and 0.030, which possess stripe-type antiferromagnetically ordered and superconducting ground states, respectively. In the AFM ground state, well-defined and gapped spin waves are observed for x =0.026 , similar to the parent CaFe2As2 compound. We conclude that the well-defined spin waves are likely to be present for all x corresponding to the AFM state. This behavior is in contrast to the smooth evolution to overdamped spin dynamics observed in Ba(Fe 1 -xCox)2As2 , wherein the crossover corresponds to microscopically coexisting AFM order and SC at low temperature. The smooth evolution is likely absent in Ca(Fe 1 -xCox)2As2 due to the mutual exclusion of AFM ordered and SC states. Overdamped spin dynamics characterize paramagnetism of the x =0.030 sample and high-temperature x =0.026 sample. A sizable loss of magnetic intensity is observed over a wide energy range upon cooling the x =0.030 sample, at temperatures just above and within the superconducting phase. This phenomenon is unique amongst the iron-based superconductors and is consistent with a temperature-dependent reduction in the fluctuating moment. One possible scenario ascribes this loss of moment to a sensitivity to the c -axis lattice parameter in proximity to the nonmagnetic collapsed tetragonal phase and another scenario ascribes the loss to a formation of a pseudogap.

  19. Hydrochemical Characteristics and Evolution of Geothermal Fluids in the Chabu High-Temperature Geothermal System, Southern Tibet

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-01-01

    Full Text Available This study defines reasonable reservoir temperatures and cooling processes of subsurface geothermal fluids in the Chabu high-temperature geothermal system. This system lies in the south-central part of the Shenzha-Xietongmen hydrothermal active belt and develops an extensive sinter platform with various and intense hydrothermal manifestations. All the geothermal spring samples collected systematically from the sinter platform are divided into three groups by cluster analysis of major elements. Samples of group 1 and group 3 are distributed in the central part and northern periphery of the sinter platform, respectively, while samples of group 2 are scattered in the transitional zone between groups 1 and 3. The hydrochemical characteristics show that the geothermal waters of the research area have generally mixed with shallow cooler waters in reservoirs. The reasonable reservoir temperatures and the mixing processes of the subsurface geothermal fluids could be speculated by combining the hydrochemical characteristics of geothermal springs, calculated results of the chemical geothermometers, and silica-enthalpy mixing models. Contour maps are applied to measured emerging temperatures, mass flow rates, total dissolved solids of spring samples, and reasonable subsurface temperatures. They indicate that the major cooling processes of the subsurface geothermal fluids gradually transform from adiabatic boiling to conduction from the central part to the peripheral belt. The geothermal reservoir temperatures also show an increasing trend. The point with the highest reservoir temperature (256°C appears in the east-central part of the research area, which might be the main up-flow zone. The cooling processes of the subsurface geothermal fluids in the research area can be shown on an enthalpy-chloride plot. The deep parent fluid for the Chabu geothermal field has a Cl− concentration of 290 mg/L and an enthalpy of 1550 J/g (with a water temperature of

  20. Effects of annealing temperature and duration on the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire.

    Science.gov (United States)

    Sui, Mao; Li, Ming-Yu; Kunwar, Sundar; Pandey, Puran; Zhang, Quanzhen; Lee, Jihoon

    2017-01-01

    Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.

  1. Evolution of grain boundary character distributions in alloy 825 tubes during high temperature annealing: Is grain boundary engineering achieved through recrystallization or grain growth?

    International Nuclear Information System (INIS)

    Bai, Qin; Zhao, Qing; Xia, Shuang; Wang, Baoshun; Zhou, Bangxin; Su, Cheng

    2017-01-01

    Grain boundary engineering (GBE) of nickel-based alloy 825 tubes was carried out with different cold drawing deformations by using a draw-bench on a factory production line and subsequent annealing at various temperatures. The microstructure evolution of alloy 825 during thermal-mechanical processing (TMP) was characterized by means of the electron backscatter diffraction (EBSD) technique to study the TMP effects on the grain boundary network and the evolution of grain boundary character distributions during high temperature annealing. The results showed that the proportion of ∑ 3 n coincidence site lattice (CSL) boundaries of alloy 825 tubes could be increased to > 75% by the TMP of 5% cold drawing and subsequent annealing at 1050 °C for 10 min. The microstructures of the partially recrystallized samples and the fully recrystallized samples suggested that the proportion of low ∑ CSL grain boundaries depended on the annealing time. The frequency of low ∑ CSL grain boundaries increases rapidly with increasing annealing time associating with the formation of large-size highly-twinned grains-cluster microstructure during recrystallization. However, upon further increasing annealing time, the frequency of low ∑ CSL grain boundaries decreased markedly during grain growth. So it is concluded that grain boundary engineering is achieved through recrystallization rather than grain growth. - Highlights: •The grain boundary engineering (GBE) is applicable to 825 tubes. •GBE is achieved through recrystallization rather than grain growth. •The low ∑ CSL grain boundaries in 825 tubes can be increased to > 75%.

  2. In operando neutron diffraction study of the temperature and current rate-dependent phase evolution of LiFePO4 in a commercial battery

    Science.gov (United States)

    Sharma, N.; Yu, D. H.; Zhu, Y.; Wu, Y.; Peterson, V. K.

    2017-02-01

    In operando NPD data of electrodes in lithium-ion batteries reveal unusual LiFePO4 phase evolution after the application of a thermal step and at high current. At low current under ambient conditions the LiFePO4 to FePO4 two-phase reaction occurs during the charge process, however, following a thermal step and at higher current this reaction appears at the end of charge and continues into the next electrochemical step. The same behavior is observed for the FePO4 to LiFePO4 transition, occurring at the end of discharge and continuing into the following electrochemical step. This suggests that the bulk (or the majority of the) electrode transformation is dependent on the battery's history, current, or temperature. Such information concerning the non-equilibrium evolution of an electrode allows a direct link between the electrode's functional mechanism that underpins lithium-ion battery behavior and the real-life operating conditions of the battery, such as variable temperature and current, to be made.

  3. On the problem of time evolution of the particle distribution function in a high-temperature plasma

    International Nuclear Information System (INIS)

    Agaronyan, F.A.; Atoyan, A.M.

    1983-01-01

    Time evolution of a one-particle distribution function in nonrelativistic plasma is considered in the absence of an external field. A linear differential equation describing the high-energy part of the distribution function is derived. The approximated analytical solution to this equation yields thermalization time (maxwellization time) of particles in the energy range epsilon >> kT: tsub(epsilon) approximately 0.64 (epsilon/kT)sup(3/2)tsub(0), t 0 being relaxation time in the range of mean energies (epsilon approximately kT). The significance of the results is discussed on the example of γ-luminosity of accretion plasma around a black hole

  4. The structure of phosphate and borosilicate glasses and their structural evolution at high temperatures as studied with solid state NMR spectroscopy: Phase separation, crystallisation and dynamic species exchange

    International Nuclear Information System (INIS)

    Wegner, S.; Van Wullen, L.; Tricot, G.; Tricot, G.

    2010-01-01

    In this contribution we present an in-depth study of the network structure of different phosphate based and borosilicate glasses and its evolution at high temperatures. Employing a range of advanced solid state NMR methodologies, complemented by the results of XPS, the structural motifs on short and intermediate length scales are identified. For the phosphate based glasses, at temperatures above the glass transition temperature Tg, structural relaxation processes and the devitrification of the glasses were monitored in situ employing MAS NMR spectroscopy and X-ray diffraction. Dynamic species exchange involving rapid P-O-P and P-O-Al bond breaking and reforming was observed employing in situ 27 Al and 31 P MAS NMR spectroscopy and could be linked to viscous flow. For the borosilicate glasses, an atomic scale investigation of the phase separation processes was possible in a combined effort of ex situ NMR studies on glass samples with different thermal histories and in situ NMR studies using high temperature MAS NMR spectroscopy including 11 B MAS, 29 Si MAS and in situ 29 Si{ 11 B} REAPDOR NMR spectroscopy. (authors)

  5. Study on the temperature gradient evolution of large size nonlinear crystal based on the fluid-solid coupling theory

    Science.gov (United States)

    Sun, F. Z.; Zhang, P.; Liang, Y. C.; Lu, L. H.

    2014-09-01

    In the non-critical phase-matching (NCPM) along the Θ =90° direction, ADP and DKDP crystals which have many advantages, including a large effective nonlinear optical coefficient, a small PM angular sensitivity and non beam walk-off, at the non-critical phase-matching become the competitive candidates in the inertial confinement fusion(ICF) facility, so the reasonable temperature control of crystals has become more and more important .In this paper, the fluid-solid coupling models of ADP crystal and DKDP crystal which both have anisotropic thermal conductivity in the states of vacuum and non-vacuum were established firstly, and then simulated using the fluid analysis software Fluent. The results through the analysis show that the crystal surface temperature distribution is a ring shape, the temperature gradients in the direction of the optical axis both the crystals are 0.02°C and 0.01°C due to the air, the lowest temperature points of the crystals are both at the center of surface, and the temperatures are lower than 0.09°C and 0.05°C compared in the vacuum and non-vacuum environment, then propose two designs for heating apparatus.

  6. THE EVOLUTION OF ANNUAL MEAN TEMPERATURE AND PRECIPITATION QUANTITY VARIABILITY BASED ON ESTIMATED CHANGES BY THE REGIONAL CLIMATIC MODELS

    Directory of Open Access Journals (Sweden)

    Paula Furtună

    2013-03-01

    Full Text Available Climatic changes are representing one of the major challenges of our century, these being forcasted according to climate scenarios and models, which represent plausible and concrete images of future climatic conditions. The results of climate models comparison regarding future water resources and temperature regime trend can become a useful instrument for decision makers in choosing the most effective decisions regarding economic, social and ecologic levels. The aim of this article is the analysis of temperature and pluviometric variability at the closest grid point to Cluj-Napoca, based on data provided by six different regional climate models (RCMs. Analysed on 30 year periods (2001-2030,2031-2060 and 2061-2090, the mean temperature has an ascending general trend, with great varability between periods. The precipitation expressed trough percentage deviation shows a descending general trend, which is more emphazied during 2031-2060 and 2061-2090.

  7. Stresses evolution at high temperature (200°C on the interface of thin films in magnetic components

    Directory of Open Access Journals (Sweden)

    Doumit Nicole

    2014-07-01

    Full Text Available In the field of electronics, the increase of operating temperatures is a major industrial and scientific challenge because it allows reducing mass and volume of components especially in the aeronautic domain. So minimizing our components reduce masses and the use of cooling systems. For that, the behaviours and interface stresses of our components (in particular magnetic inductors and transformers that are constituted of one magnetic layer (YIG or an alumina substrate (Al2O3 representing the substrate and a thin copper film are studied at high temperature (200°C. COMSOL Multiphysics is used to simulate our work and to validate our measurements results. In this paper, we will present stresses results according to the geometrical copper parameters necessary for the component fabrication. Results show that stresses increase with temperature and copper’s thickness while remaining always lower than 200MPa which is the rupture stress value.

  8. Temperature-dependent evolution of RbBSi2O6 glass into crystalline Rb-boroleucite according to X-ray diffraction data

    International Nuclear Information System (INIS)

    Levin, Aleksandr A.; Filatov, Stanislav K.; Krzhizhanovskaya, Maria G.; Paufler, Peter; Bubnova, Rimma S.; Russian Academy of Sciences, St. Petersburg; Meyer, Dirk C.; Technische Univ. Bergakademie Freiberg

    2013-01-01

    The temperature-dependent evolution of the glass into a crystalline phase is studied for a rubidium borosilicate glass of composition 16.7 Rb 2 O . 16.7 B 2 O 3 . 66.6 SiO 2 employing X-ray diffraction (XRD) data. A glass sample was prepared by melt quenching from 1500 within 0.5 hour. The glass sample was step-wise annealed at 13 distinct temperatures from 300 C up to 900 C for 1 h at every annealing step. To investigate changes in the glass structure, angle-dispersive XRD was applied by using an energy-resolving semiconductor detector. The radial distribution functions (RDFs) were calculated at every stage. For polycrystalline states the crystal structure of the samples with different thermal history was refined using the Rietveld method. Comparing correlation distances estimated from RDFs of glass and polycrystalline samples and mean interatomic distances calculated for polycrystalline samples by using atomic coordinates after Rietveld refinement, it is concluded that the borosilicate glass under study is converted into the crystalline state in the temperature range of 625-750 C (i.e. in the temperature range close to the glass transition range 620-695 C as determined by differential scanning calorimetry by using of heating rate of 20 K/min) at an average heating rate of about 0.35 K/min. When the heating rate is increased up to 10 or 20 K/min, the crystallisation temperature shifts sharply up to 831-900 C and 878-951 C, respectively. XRD data give evidence that distinctive traces of cubic RbBSi 2 O 6 appear from glass at about 625 C and a two-phase range exists up to 750 C. After annealing at higher temperatures (800-900 C) the crystal structure practically does not change any more. (orig.)

  9. The effect of prior deformation on subsequent microplasticity and damage evolution in an austenitic stainless steel at elevated temperature

    International Nuclear Information System (INIS)

    Li, Dong-Feng; Davies, Catrin M.; Zhang, Shu-Yan; Dickinson, Calum; O’Dowd, Noel P.

    2013-01-01

    The micromechanical deformation of an austenitic stainless steel under uniaxial tension at elevated temperature (550 °C) following room-temperature compression has been examined in this work. The study combines micromechanical finite-element modelling and in situ neutron diffraction measurements. Overall, good agreement has been achieved between the measured and simulated stress vs. lattice strain response, when prestrain is accounted for. The results indicate that the introduction of prestrain can significantly influence subsequent microscale deformation and damage development associated with microplasticity and that an appropriate representation of strain history can improve the predictive accuracy at the microscale for a polycrystalline material

  10. Replication of micro and nano-features on iPP by injection molding with fast cavity surface temperature evolution

    DEFF Research Database (Denmark)

    Speranzaa, Vito; Liparotia, Sara; Calaon, Matteo

    2017-01-01

    The production of polymeric components with functional structures in the micrometer and sub-micrometer range is a complex challenge for the injection molding process, since it suffers the use of low cavity surface temperatures that induce the fast formation of a frozen layer, thus preventing...... was sufficient to obtain accurate replication, with adequate surface temperatures. In the case of nano-features, the replication accuracy was affected by the morphology developed on the molding surface, that is aligned along the flow direction with dimensions comparable with the dimension of the nano...

  11. The role of elevated temperature exposure on structural evolution and fatigue strength of eutectic AlSi12 alloys

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Nicoletto, G.; Kunz, Ludvík; Riva, E.

    2016-01-01

    Roč. 83, č. 1 (2016), s. 24-35 ISSN 0142-1123 Institutional support: RVO:68081723 Keywords : Piston * Al-Si alloy * Elevated temperature * Fatigue strength Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  12. Evolution of the phases in Cu 18at.% Li alloy under different atmospheres as a function of temperature

    International Nuclear Information System (INIS)

    Cano, J.A; Lambri, O.A; Perez-Landazabal, J.J; Penaloza, A; Recarte, V; Campo, J; Worner, C.H

    2004-01-01

    The behavior of powders from an alloy of Cu 18at.% Li was studied, in temperatures ranging from room temperature to 973K, under four types of atmospheres. The test techniques used for this study were: Neutron Diffraction (ND) and Differential Scanning Calorimetry (DSC). After reaching 973K, the content of residual lithium in the alloy was 15 at.% and 13 at.% for the tests carried out with argon and vacuum, respectively. However, if the heating is done in air or nitrogen, the lithium content in solid solution in the alloy is very much reduced (3 at.%), generating a survival of the alloy in solid state at temperatures greater than 1273K. After heating in air, lithium peroxide is formed, which is explained by over oxidation. Additionally, the heating of these powders in nitrogen and in air at normal pressures, leads to the growth of lithium nitride, which was not expected. These characteristics are important in determining the temperature and atmospheric conditions for the sinterized treatment for the production of components for later technological applications (CW)

  13. Evolution of temperature responses in the Cladophora vagabunda complex and the C-albida/sericea complex (Chlorophyta)

    NARCIS (Netherlands)

    Breeman, AM; Oh, YS; Hwang, MS; Van den Hoek, C

    Differentiation in temperature responses (survival and growth) was investigated among isolates of two tropical to temperate green algal lineages: the Cladophora vagabunda complex and the C. albida/sericea complex. The results were analysed in relation to published data on 18S rRNA and ITS sequence

  14. Evolution of temperature-induced strain and doping of double-layer graphene: an in situ Raman spectral mapping study

    Czech Academy of Sciences Publication Activity Database

    Verhagen, Timotheus; Valeš, Václav; Kalbáč, Martin; Vejpravová, Jana

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2401-2406 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 ; RVO:61388955 Keywords : graphene * isotope labelling * low temperature * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.522, year: 2015

  15. Properties of ammonium ion-water clusters: analyses of structure evolution, noncovalent interactions, and temperature and humidity effects.

    Science.gov (United States)

    Pei, Shi-Tu; Jiang, Shuai; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Wen, Hui; Zhu, Yu-Peng; Huang, Wei

    2015-03-26

    Although ammonium ion-water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion-water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters of different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion-water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion-water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH4(+)(H2O)n and M(H2O)n (where M represents an alkali metal ion or water molecule); when n = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G(3df, 3pd) level and is consistent with the experimentally determined values.

  16. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.

    Science.gov (United States)

    Wang, Dong-Hong; Wang, Lei; Xu, An-Wu

    2012-03-21

    Visible light photocatalytic H(2) production from water splitting is of great significance for its potential applications in converting solar energy into chemical energy. In this study, a series of Zn(1-x)Cd(x)S solid solutions with a nanoporous structure were successfully synthesized via a facile template-free method at room temperature. The obtained solid solutions were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and N(2) adsorption-desorption analysis. The solid solutions show efficient photocatalytic activity for H(2) evolution from aqueous solutions containing sacrificial reagents S(2-) and SO(3)(2-) under visible-light irradiation without a Pt cocatalyst, and loading of the Pt cocatalyst further improves the visible-light photocatalytic activity. The optimal photocatalyst with x = 0.20 prepared at pH = 7.3 displays the highest activity for H(2) evolution. The bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S nanoparticles exhibit a high H(2) evolution rate of 193 μmol h(-1) and 458 μmol h(-1) under visible-light irradiation (λ ≥ 420 nm), respectively. In addition, the bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S catalysts show a high H(2) evolution rate of 252 and 640 μmol h(-1) under simulated solar light irradiation, respectively. Moreover, the Zn(0.80)Cd(0.20)S catalyst displays a high photocatalytic stability for H(2) evolution under long-term light irradiation. The incorporation of Cd in the solid solution leads to the visible light absorption, and the high content of Zn in the solid solution results in a relatively negative conduction band, a modulated band gap and a rather wide valence bandwidth, which are responsible for the excellent photocatalytic performance of H(2) production and for the high photostability

  17. Using finite element modelling to examine the flow process and temperature evolution in HPT under different constraining conditions

    International Nuclear Information System (INIS)

    Pereira, P H R; Langdon, T G; Figueiredo, R B; Cetlin, P R

    2014-01-01

    High-pressure torsion (HPT) is a metal-working technique used to impose severe plastic deformation into disc-shaped samples under high hydrostatic pressures. Different HPT facilities have been developed and they may be divided into three distinct categories depending upon the configuration of the anvils and the restriction imposed on the lateral flow of the samples. In the present paper, finite element simulations were performed to compare the flow process, temperature, strain and hydrostatic stress distributions under unconstrained, quasi-constrained and constrained conditions. It is shown there are distinct strain distributions in the samples depending on the facility configurations and a similar trend in the temperature rise of the HPT workpieces

  18. Evolution of the surface plasmon resonance of Au:TiO{sub 2} nanocomposite thin films with annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Universidade do Minho, Centro/Departamento de Física (Portugal); Buljan, M.; Sancho-Parramon, J.; Bogdanovic-Radovic, I.; Siketic, Z. [Rudjer Boskovic Institute (Croatia); Scherer, T.; Kübel, C. [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility - KNMF (Germany); Bernstorff, S. [Elettra-Sincrotrone Trieste (Italy); Cavaleiro, A. [University of Coimbra, SEG-CEMUC, Mechanical Engineering Department (Portugal); Vaz, F.; Rolo, A. G. [Universidade do Minho, Centro/Departamento de Física (Portugal)

    2014-12-15

    This paper reports on the changes in the structural and morphological features occurring in a particular type of nanocomposite thin-film system, composed of Au nanoparticles (NPs) dispersed in a host TiO{sub 2} dielectric matrix. The structural and morphological changes, promoted by in-vacuum annealing experiments of the as-deposited thin films at different temperatures (ranging from 200 to 800 °C), resulted in a well-known localized surface plasmon resonance (LSPR) phenomenon, which gave rise to a set of different optical responses that can be tailored for a wide number of applications, including those for optical-based sensors. The results show that the annealing experiments enabled a gradual increase of the mean grain size of the Au NPs (from 2 to 23 nm), and changes in their distributions and separations within the dielectric matrix. For higher annealing temperatures of the as-deposited films, a broad size distribution of Au NPs was found (sizes up to 100 nm). The structural conditions necessary to produce LSPR activity were found to occur for annealing experiments above 300 °C, which corresponded to the crystallization of the gold NPs, with an average size strongly dependent on the annealing temperature itself. The main factor for the promotion of LSPR was the growth of gold NPs and their redistribution throughout the host matrix. On the other hand, the host matrix started to crystallize at an annealing temperature of about 500 °C, which is an important parameter to explain the shift of the LSPR peak position to longer wavelengths, i.e. a red-shift.

  19. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures

    International Nuclear Information System (INIS)

    Arteaga-Pérez, Luis E.; Segura, Cristina; Bustamante-García, Verónica; Gómez Cápiro, Oscar; Jiménez, Romel

    2015-01-01

    Torrefaction is a thermal pretreatment leading to the improvement of most of the fuel properties of biomass, namely energy density, HHV (higher heating value), grindability and hydrophobicity. The aim of this study is to identify the most feasible temperature to carry out torrefaction of Eucalyptus globulus and nitens, based on chemical evidences associated to the release of volatiles during thermal treatment of biomass. With that end: (i) Devolatilization kinetics, (ii) Effects of temperature and residence time and (iii) volatiles composition during torrefaction of both wood and bark were analyzed. In all cases DTG (derivative thermogravimetric curves) exhibited the typical shape of lignocellulosic materials, with three decomposition phases and two reaction zones. Values of activation energies for hemicellulose decomposition, were in agreement with those reported in the literature (121–170 kJ/mol). Carboxylic acids, water and phenolic compounds showed two peaks, which were associated to torrefaction (below 310 °C) and pyrolysis (310–410 °C) respectively. The most feasible temperatures for torrefaction were estimated as a function of these peaks, and it ranged between 295 °C and 310°C for all samples. Main volatile species at the torrefaction peaks were distributed as Water > Acetic Acid > CO_2 > Others, while Levoglucosan formation was marginal, due to the catalytic effect of inorganics. - Highlights: • Identification of torrefaction peaks for E. globulus and E. nitens using dynamic TGA-MS. • Devolatilization kinetics of E. globulus and E. nitens (wood and bark). • Effect of operation parameters on torrefaction of E. globulus and E. nitens. • Most feasible temperatures for torrefaction based on chemical and thermal evidences. • Definition of atomic indicator to estimate degradation degree based on TGA-MS.

  20. Microstructure Evolution in Mg-Zn-Zr-Gd Biodegradable Alloy: The Decisive Bridge Between Extrusion Temperature and Performance.

    Science.gov (United States)

    Yao, Huai; Wen, Jiu-Ba; Xiong, Yi; Lu, Yan; Huttula, Marko

    2018-01-01

    Being a biocompatible metal with similar mechanical properties as bones, magnesium bears both biodegradability suitable for bone substitution and chemical reactivity detrimental in bio-ambiences. To benefit its biomaterial applications, we developed Mg-2.0Zn-0.5Zr-3.0Gd (wt%) alloy through hot extrusion and tailored its biodegradability by just varying the extrusion temperatures during alloy preparations. The as-cast alloy is composed of the α-Mg matrix, a network of the fish-bone shaped and ellipsoidal (Mg, Zn) 3 Gd phase, and a lamellar long period stacking ordered phase. Surface content of dynamically recrystallized (DRXed) and large deformed grains increases within 330-350°C of the extrusion temperature, and decreases within 350-370°C. Sample second phase contains the (Mg, Zn) 3 Gd nano-rods parallel to the extrusion direction, and Mg 2 Zn 11 nanoprecipitation when temperature tuned above 350°C. Refining microstructures leads to different anticorrosive ability of the alloys as given by immersion and electrochemical corrosion tests in the simulated body fluids. The sample extruded at 350°C owns the best anticorrosive ability thanks to structural impacts where large DRXed portions and uniform nanosized grains reduce chemical potentials among composites, and passivate the extruded surfaces. Besides materials applications, the in vitro mechanism revealed here is hoped to inspire similar researches in biometal developments.

  1. Effect of microstructural evolution and elevated temperature on the mechanical properties of Ni–Cr–Mo alloys

    International Nuclear Information System (INIS)

    Karaköse, Ercan; Keskin, Mustafa

    2015-01-01

    Highlights: • A ternary Ni–Cr–Mo alloy is the crucial for many industrial applications. • Microstructure of Ni–25Cr–18Mo alloy mostly depends upon the undercooling rate. • Increasing the applied undercooling range the average dendrite arm thickness decreases from 5 to 0.5 μm. - Abstract: This paper characterizes the impact of solidification rate on the morphology and type of microstructural and mechanical properties of a nickel-based superalloy with a nominal composition of Ni–25Cr–18Mo (at.%) in a wide cooling range (5–100 K/s). The microstructures of the alloys were identified by scanning electron microscopy (SEM) and the phase composition was examined by X-ray diffractometry (XRD). The phase transitions during the solidification process were investigated by differential thermal analysis (DTA) under an Ar atmosphere. It was found that the final microstructure of Ni–25Cr–18Mo alloy mostly depends upon the solidification rate; the microstructures evolve from a coarse dendritic structure to a refined dendritic structure. The mechanical properties of Ni–25Cr–18Mo alloys were examined by using Vickers and Rockwell hardness tests at room temperature and at elevated temperatures from 400 °C to 800 °C. It was found that the hardness values of the samples were connected with the cooling rate and test temperatures

  2. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    Energy Technology Data Exchange (ETDEWEB)

    Nuevo, Federico A.; Vasquez, Alberto M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67-Suc 28, Ciudad de Buenos Aires (Argentina); Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-08-10

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of {beta} than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfven waves in the photosphere, and mode conversion and damping in the low corona.

  3. Effect of microstructural evolution and elevated temperature on the mechanical properties of Ni–Cr–Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Karaköse, Ercan, E-mail: ekarakose@karatekin.edu.tr [Karatekin University, Faculty of Sciences, Department of Physics, 18100 Çankırı (Turkey); Keskin, Mustafa [Erciyes University, Faculty of Sciences, Department of Physics, 38039 Kayseri (Turkey)

    2015-01-15

    Highlights: • A ternary Ni–Cr–Mo alloy is the crucial for many industrial applications. • Microstructure of Ni–25Cr–18Mo alloy mostly depends upon the undercooling rate. • Increasing the applied undercooling range the average dendrite arm thickness decreases from 5 to 0.5 μm. - Abstract: This paper characterizes the impact of solidification rate on the morphology and type of microstructural and mechanical properties of a nickel-based superalloy with a nominal composition of Ni–25Cr–18Mo (at.%) in a wide cooling range (5–100 K/s). The microstructures of the alloys were identified by scanning electron microscopy (SEM) and the phase composition was examined by X-ray diffractometry (XRD). The phase transitions during the solidification process were investigated by differential thermal analysis (DTA) under an Ar atmosphere. It was found that the final microstructure of Ni–25Cr–18Mo alloy mostly depends upon the solidification rate; the microstructures evolve from a coarse dendritic structure to a refined dendritic structure. The mechanical properties of Ni–25Cr–18Mo alloys were examined by using Vickers and Rockwell hardness tests at room temperature and at elevated temperatures from 400 °C to 800 °C. It was found that the hardness values of the samples were connected with the cooling rate and test temperatures.

  4. Microstructure evolution in Mg-Zn-Zr-Gd biodegradable alloy: the decisive bridge between extrusion temperature and performance

    Science.gov (United States)

    Yao, Huai; Wen, Jiu-Ba; Xiong, Yi; Lu, Yan; Huttula, Marko

    2018-03-01

    Being a biocompatible metal with similar mechanical properties as bones, magnesium bears both biodegradability suitable for bone substitution and chemical reactivity detrimental in bio-ambiences. To benefit its biomaterial applications, we developed Mg-2.0Zn-0.5Zr-3.0Gd (wt%) alloy through hot extrusion and tailored its biodegradability by just varying the extrusion temperatures during alloy preparations. The as-cast alloy is composed of the α-Mg matrix, a network of the fish-bone shaped and ellipsoidal (Mg, Zn)3Gd phase, and a lamellar long period stacking ordered phase. Surface content of dynamically recrystallized (DRXed) and large deformed grains increases within 330-350 C of the extrusion temperature, and decreases within 350-370 C. Sample second phase contains the (Mg, Zn)3Gd nano-rods parallel to the extrusion direction, and Mg2Zn11 nanoprecipitation when temperature tuned above 350 C. Refining microstructures leads to different anticorrosive ability of the alloys as given by immersion and electrochemical corrosion tests in the simulated body fluids. The sample extruded at 350 C owns the best anticorrosive ability thanks to structural impacts where large DRXed portions and uniform nanosized grains reduce chemical potentials among composites, and passivate the extruded surfaces. Besides materials applications, the in vitro mechanism revealed here is hoped to inspire similar researches in biometal developments.

  5. Microstructure Evolution in Mg-Zn-Zr-Gd Biodegradable Alloy: The Decisive Bridge Between Extrusion Temperature and Performance

    Directory of Open Access Journals (Sweden)

    Huai Yao

    2018-03-01

    Full Text Available Being a biocompatible metal with similar mechanical properties as bones, magnesium bears both biodegradability suitable for bone substitution and chemical reactivity detrimental in bio-ambiences. To benefit its biomaterial applications, we developed Mg-2.0Zn-0.5Zr-3.0Gd (wt% alloy through hot extrusion and tailored its biodegradability by just varying the extrusion temperatures during alloy preparations. The as-cast alloy is composed of the α-Mg matrix, a network of the fish-bone shaped and ellipsoidal (Mg, Zn3Gd phase, and a lamellar long period stacking ordered phase. Surface content of dynamically recrystallized (DRXed and large deformed grains increases within 330–350°C of the extrusion temperature, and decreases within 350–370°C. Sample second phase contains the (Mg, Zn3Gd nano-rods parallel to the extrusion direction, and Mg2Zn11 nanoprecipitation when temperature tuned above 350°C. Refining microstructures leads to different anticorrosive ability of the alloys as given by immersion and electrochemical corrosion tests in the simulated body fluids. The sample extruded at 350°C owns the best anticorrosive ability thanks to structural impacts where large DRXed portions and uniform nanosized grains reduce chemical potentials among composites, and passivate the extruded surfaces. Besides materials applications, the in vitro mechanism revealed here is hoped to inspire similar researches in biometal developments.

  6. A DLTS study of the evolution of oxygen precipitates in Si at high temperature and high pressure

    International Nuclear Information System (INIS)

    Antonova, I.V.; Popov, V.P.; Fedina, L.I.; Shaimeev, S.S.; Misiuk, A.

    1996-01-01

    The effect of high hydrostatic pressure on the dissolution of oxygen precipitates introduced beforehand into Si at temperatures of 920-1000 K (over period of 96 h) is investigated by the DLTS method. A measurement procedure, based on the formation of electrically active complexes (interstitial oxygen atom-vacancy) during electron irradiation of the samples, is proposed. It is shown that the precipitates do not decompose when point defects are introduced at room temperature. As the treatment temperature increases (to 1220-1650 K), for the same values of the hydrostatic pressure (up to 1.3 GPa) the intensity of the decomposition of oxygen precipitates increases and at 1650 K they are completely dissolved. Study of the decomposition kinetics showed that hydrostatic pressure raises the limit of solubility of the oxygen atoms Oi and slows down their diffusion. It is determined that the diffusion activation energy Ea, just as the preexponential factor D0, in the expression for the diffusion decrease with increasing hydrostatic pressure, resulting in a lower diffusion. Possible mechanisms for the effect of hydrostatic pressure on oxygen diffusion near a precipitate are discussed

  7. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    International Nuclear Information System (INIS)

    Nuevo, Federico A.; Vásquez, Alberto M.; Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng

    2013-01-01

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of β than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfvén waves in the photosphere, and mode conversion and damping in the low corona

  8. Thermal evolution of the spin ordering at the concomitant spin–orbital rearrangement temperature in RVO{sub 3} (R=Lu, Yb and Tm)

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Tapati, E-mail: tapati.sarkar@angstrom.uu.se [Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Ivanov, Sergey A. [Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Center of Materials Science, Karpov Institute of Physical Chemistry, 105064 Moscow K-64 (Russian Federation); Bazuev, G.V. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Science, 620999 Ekaterinburg GSP-145 (Russian Federation); Nordblad, Per; Mathieu, Roland [Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala (Sweden)

    2016-07-01

    Synthesis, crystal structure and magnetization measurements of phase pure polycrystalline RVO{sub 3} (R=Lu, Yb and Tm) are reported. The compounds were stabilized in the orthorhombic structure by thermal treatment of the respective precursors (RVO{sub 4}) in a reducing atmosphere. Special pressure treatment was carried out during the synthesis to ensure phase pure samples without secondary phases. Magnetization measurements reveal the presence of two spin ordering temperatures in the samples. Interestingly, at the lower spin ordering temperature, T{sub SO2}, the uncompensated excess moment of the antiferromagnetic spin structure has different field dependences above and below T{sub SO2}, causing a jump in the thermal evolution of the magnetization that changes sign with increasing field strength. This jump is associated with the reported magnetic and orbital rearrangement in the samples, and the different spin configurations in the C- and G-type antiferromagnetic structures. - Highlights: • Magnetization measurements of polycrystalline RVO{sub 3} (R=Lu, Yb, Tm) are reported. • The samples have two spin ordering temperatures, T{sub SO1} and T{sub SO2} (T{sub SO1}>T{sub SO2}). • A magnetic field dependent jump of the excess magnetization, ΔM is observed at T{sub SO2.} • The jump in ΔM is associated with magnetic and orbital rearrangement in the samples. • ΔM is probably affected by possible phase coexistence in the samples.

  9. Thickness optimization of the ZnO based TCO layer in a CZTSSe solar cell. Evolution of its performance with thickness when external temperature changes.

    Science.gov (United States)

    Chadel, Meriem; Moustafa Bouzaki, Mohammed; Chadel, Asma; Aillerie, Michel; Benyoucef, Boumediene

    2017-07-01

    The influence of the thickness of a Zinc Oxide (ZnO) transparent conductive oxide (TCO) layer on the performance of the CZTSSe solar cell is shown in detail. In a photovoltaic cell, the thickness of each layer largely influence the performance of the solar cell and optimization of each layer constitutes a complete work. Here, using the Solar Cell Capacitance Simulation (SCAPS) software, we present simulation results obtained in the analyze of the influence of the TCO layer thickness on the performance of a CZTSSe solar cell, starting from performance of a CZTSSe solar cell commercialized in 2014 with an initial efficiency equal to 12.6%. In simulation, the temperature was considered as a functioning parameter and the evolution of tthe performance of the cell for various thickness of the TCO layer when the external temperature changes is simulated and discussed. The best efficiency of the solar cell based in CZTSSe is obtained with a ZnO thickness equal to 50 nm and low temperature. Based on the considered marketed cell, we show a technological possible increase of the global efficiency achieving 13% by optimization of ZnO based TCO layer.

  10. The ecology and evolution of temperature-dependent reaction norms for sex determination in reptiles: a mechanistic conceptual model.

    Science.gov (United States)

    Pezaro, Nadav; Doody, J Sean; Thompson, Michael B

    2017-08-01

    Sex-determining mechanisms are broadly categorised as being based on either genetic or environmental factors. Vertebrate sex determination exhibits remarkable diversity but displays distinct phylogenetic patterns. While all eutherian mammals possess XY male heterogamety and female heterogamety (ZW) is ubiquitous in birds, poikilothermic vertebrates (fish, amphibians and reptiles) exhibit multiple genetic sex-determination (GSD) systems as well as environmental sex determination (ESD). Temperature is the factor controlling ESD in reptiles and temperature-dependent sex determination (TSD) in reptiles has become a focal point in the study of this phenomenon. Current patterns of climate change may cause detrimental skews in the population sex ratios of reptiles exhibiting TSD. Understanding the patterns of variation, both within and among populations and linking such patterns with the selection processes they are associated with, is the central challenge of research aimed at predicting the capacity of populations to adapt to novel conditions. Here we present a conceptual model that innovates by defining an individual reaction norm for sex determination as a range of incubation temperatures. By deconstructing individual reaction norms for TSD and revealing their underlying interacting elements, we offer a conceptual solution that explains how variation among individual reaction norms can be inferred from the pattern of population reaction norms. The model also links environmental variation with the different patterns of TSD and describes the processes from which they may arise. Specific climate scenarios are singled out as eco-evolutionary traps that may lead to demographic extinction or a transition to either male or female heterogametic GSD. We describe how the conceptual principles can be applied to interpret TSD data and to explain the adaptive capacity of TSD to climate change as well as its limits and the potential applications for conservation and management

  11. Evolution of microstructure in 100Cr6 steel after cooling from a thixoforming temperature to bainitic transformation ranges

    Energy Technology Data Exchange (ETDEWEB)

    Rogal, Łukasz, E-mail: l.rogal@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow (Poland); Korpala, Grzegorz [Institut für Metallformung, TU Bergakademie Freiberg, 4 Bernhard-von-Cotta-Straße, 09596 Freiberg (Germany); Dutkiewicz, Jan [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow (Poland)

    2015-01-29

    A new concept for the isothermal heat treatment of thixo-elements, consisting of controlled cooling from a semi-solid metal processing (SSM) range, was proposed. 100Cr6 steel (0.97% C, 1.4% Cr, 0.4% Si, 0.4% Mn bal. Fe) after forging was used as the starting material. The DSC analysis was used to determine the liquid phase fraction vs temperature in the solidus–liquidus range. The temperatures and kinetics of bainite transformation after cooling the steel in the semi-solid state were calculated based on the Chester and Bhadeshia models. The steel was heated up to 1425 °C in order to obtain about 25% of the liquid fraction. Then it was cooled in oil at three different temperatures: 135 °C, 235 °C and 335 °C, at which the samples were held for 5 h. The microstructure of the samples annealed at 135 °C consisted of globular grains (the average size of 323 µm), where coarse needles of martensite were observed. They were surrounded by an eutectic mixture of chemical composition different from that of the globular grains. The electron diffraction pattern (SAEDP) showed reflections from α′-Fe and from Fe{sub 3}C carbides. The X-ray diffraction confirmed the presence of martensite, austenite and carbides to the amount of 74.5%, 22% and 3.5% respectively. The average hardness of samples was 735HV{sub 10}, while the compression strength attained 3810 MPa at the plastic strain of 8.6%. The samples cooled down to 235 °C also showed globular grains surrounded by the eutectic mixture. The TEM studies allowed researchers to identify lower bainite with a plate thickness of about 500 nm (SAEDP from that area showed reflections from α-Fe and Fe{sub 3}C carbides). X-ray diffraction confirmed the presence of 90% ferrite, 6% austenite and 4% carbide. The average hardness of samples annealed at 235 °C decreased to 627HV{sub 10}, while the compression strength decreased to 3100 MPa. The plastic strain increased to 32%. The microstructure of the samples after cooling and

  12. Microstructure Evolution and Mechanical Behavior of Ultrafine Ti-6Al-4V During Low Temperature Superplastic Deformation (Postprint)

    Science.gov (United States)

    2016-09-13

    J. Cui, L. Ma, A cavity nucleation model during high temperature creep deformation of metals, Acta Metall. Mater. 41 (1993) 539e542. [49] A.H. Chokshi...dislocation activity, and diffusional creep [2]. However, the contribution of these elease (PA): distribution unlimited. S.V. Zherebtsov et al. / Acta...interval 2 105 s1e2 103 s1 at 550 C. The strain rate sensitivity m was evaluated using the slope of log s log _ε curves or strain-rate-change

  13. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001) by the systematic control of composition, annealing temperature and time.

    Science.gov (United States)

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2017-01-01

    Multi-metallic alloy nanoparticles (NPs) can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25) hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa.

  14. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001 by the systematic control of composition, annealing temperature and time.

    Directory of Open Access Journals (Sweden)

    Puran Pandey

    Full Text Available Multi-metallic alloy nanoparticles (NPs can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25 hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa.

  15. Microstructure evolution and its influence on deformation mechanisms during high temperature creep of a nickel base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Javad [Materials Science and Engineering Department, Shahid Chamran University, Ahwaz (Iran, Islamic Republic of)], E-mail: javadsafari@yahoo.com; Nategh, Saeed [Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)], E-mail: nategh@sharif.edu

    2009-01-15

    The interaction of dislocation with strengthening particles, including primary and secondary {gamma}', during different stages of creep of Rene-80 was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During creep of the alloy at 871 deg. C under stress of 290 MPa, the dislocation network was formed during the early stages of creep, and the dislocation glide and climb process were the predominant mechanism of deformation. The density of dislocation network became more populated during the later stages of the creep, and at the latest stage of the creep, primary particles shearing were observed alongside with the dislocation glide and climb. Shearing of {gamma}' particles in creep at 871 deg. C under stress of 475 MPa was commenced at the earlier creep times and governed the creep deformation mechanism. In two levels of examined stresses, as far as the creep deformation was controlled by glide and climb, creep curves were found to be at the second stage of creep and commence of the tertiary creep, with increasing creep rate, were found to be in coincidence with the particles shearing. Microstructure evolution, with regard to {gamma}' strengthening particles, led to particles growth and promoted activation of other deformation mechanisms such as dislocation bypassing by orowan loop formation. Dislocation-secondary {gamma}' particles interaction was detected to be the glide and climb at the early stages of creep, while at the later stages, the dislocation bypassed the secondary precipitation by means of orowan loops formation, as the secondary particle were grown and the mean inter-particle distance increased.

  16. Temperature dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1-xSrxMnO3

    International Nuclear Information System (INIS)

    Arenholz, Elke; Mannella, N.; Booth, C.H.; Rosenhahn, A.; Sell, B.C.; Nambu, A.; Marchesini, S.; Mun, B. S.; Yang, S.-H.; Watanabe, M.; Ibrahim, K.; Arenholz, E.; Young, A.; Guo, J.; Tomioka, Y.; Fadley, C.S.

    2007-01-01

    We have studied the temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La 1-x Sr x MnO 3 (x= 0.3-0.4) with core and valence level photoemission (PE), x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), resonant inelastic x-ray scattering (RIXS), extended x-ray absorption fine structure (EXAFS) spectroscopy and magnetometry. As the temperature is varied across the Curie temperature T c , our PE experiments reveal a dramatic change of the electronic structure involving an increase in the Mn spin moment from ∼ 3 (micro)B to ∼ 4 (micro)B, and a modification of the local chemical environment of the other constituent atoms indicative of electron localization on the Mn atom. These effects are reversible and exhibit a slow-timescale ∼200 K-wide hysteresis centered at T c . Based upon the probing depths accessed in our PE measurements, these effects seem to survive for at least 35-50 (angstrom) inward from the surface, while other consistent signatures for this modification of the electronic structure are revealed by more bulk sensitive spectroscopies like XAS and XES/RIXS. We interpret these effects as spectroscopic fingerprints for polaron formation, consistent with the presence of local Jahn-Teller distortions of the MnO 6 octahedra around the Mn atom, as revealed by the EXAFS data. Magnetic susceptibility measurements in addition show typical signatures of ferro-magnetic clusters formation well above the Curie temperature

  17. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Adil, Muhammad, E-mail: muhammadadil86@hotmail.com; Zaid, Hasnah Mohd, E-mail: hasnamz@petronas.com.my; Chuan, Lee Kean, E-mail: lee.kc@petronas.com.my; Latiff, Noor Rasyada Ahmad, E-mail: syasya.latiff@gmail.com [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Alta’ee, Ali F., E-mail: ali-mangi@petronas.com.my [Geoscience and Petroleum Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify the formation of nanoparticles by revealing the presence of required elements.

  18. Evolution of Western Mediterranean Sea Surface Temperature between 1985 and 2005: a complementary study in situ, satellite and modelling approaches

    Science.gov (United States)

    Troupin, C.; Lenartz, F.; Sirjacobs, D.; Alvera-Azcárate, A.; Barth, A.; Ouberdous, M.; Beckers, J.-M.

    2009-04-01

    In order to evaluate the variability of the sea surface temperature (SST) in the Western Mediterranean Sea between 1985 and 2005, an integrated approach combining geostatistical tools and modelling techniques has been set up. The objectives are: underline the capability of each tool to capture characteristic phenomena, compare and assess the quality of their outputs, infer an interannual trend from the results. Diva (Data Interpolating Variationnal Analysis, Brasseur et al. (1996) Deep-Sea Res.) was applied on a collection of in situ data gathered from various sources (World Ocean Database 2005, Hydrobase2, Coriolis and MedAtlas2), from which duplicates and suspect values were removed. This provided monthly gridded fields in the region of interest. Heterogeneous time data coverage was taken into account by computing and removing the annual trend, provided by Diva detrending tool. Heterogeneous correlation length was applied through an advection constraint. Statistical technique DINEOF (Data Interpolation with Empirical Orthogonal Functions, Alvera-Azc

  19. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    International Nuclear Information System (INIS)

    Adil, Muhammad; Zaid, Hasnah Mohd; Chuan, Lee Kean; Latiff, Noor Rasyada Ahmad; Alta’ee, Ali F.

    2015-01-01

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify the formation of nanoparticles by revealing the presence of required elements

  20. Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit

    DEFF Research Database (Denmark)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.

    2002-01-01

    We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion....

  1. Light particle probes of expansion and temperature evolution: Coalescence model analyses of heavy ion collisions at 47A MeV

    International Nuclear Information System (INIS)

    Hagel, K.; Wada, R.; Cibor, J.; Lunardon, M.; Marie, N.; Alfaro, R.; Shen, W.; Xiao, B.; Zhao, Y.; Majka, Z.

    2000-01-01

    The reactions 12 C+ 116 Sn, 22 Ne+Ag, 40 Ar+ 100 Mo, and 64 Zn+ 89 Y have been studied at 47A MeV projectile energy. For these reactions the most violent collisions lead to increasing amounts of fragment and light particle emission as the projectile mass increases. This is consistent with quantum molecular dynamics (QMD) model simulations of the collisions. Moving source fits to the light charged particle data have been used to gain a global view of the evolution of the particle emission. Comparisons of the multiplicities and spectra of light charged particles emitted in the reactions with the four different projectiles indicate a common emission mechanism for early emitted ejectiles even though the deposited excitation energies differ greatly. The spectra for such ejectiles can be characterized as emission in the nucleon-nucleon frame. Evidence that the 3 He yield is dominated by this type of emission and the role of the collision dynamics in determining the 3 H/ 3 He yield ratio are discussed. Self-consistent coalescence model analyses are applied to the light cluster yields, in an attempt to probe emitter source sizes and to follow the evolution of the temperatures and densities from the time of first particle emission to equilibration. These analyses exploit correlations between ejectile energy and emission time, suggested by the QMD calculations. In this analysis the degree of expansion of the emitting system is found to increase with increasing projectile mass. The double isotope yield ratio temperature drops as the system expands. Average densities as low as 0.36ρ 0 are reached at a time near 100 fm/c after contact. Calorimetric methods were used to derive the mass and excitation energy of the excited nuclei which are present after preequilibrium emission. The derived masses range from 102 to 116 u and the derived excitation energies increase from 2.6 to 6.9 MeV/nucleon with increasing projectile mass. A caloric curve is derived for these expanded A∼110

  2. Effects of calcining temperature on photocatalysis of g-C{sub 3}N{sub 4}/TiO{sub 2} composites for hydrogen evolution from water

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ailan, E-mail: elainqal@163.com; Xu, Xinmei; Xie, Haolong; Zhang, Yangyu; Li, Yuyu; Wang, Junxian

    2016-08-15

    Highlights: • TiO{sub 2} promotes melon to form at 400 °C, whereas it forms at 500 °C for only melamine. • The highest photocatalytic activity was achieved when calcination was performed at 400 °C. • Coordinated N−Ti−N bonds were formed in MA/TiO{sub 2} (400) and disappeared at high temperature. • The surface area decreased and the pore size increased with increasing of temperature. • Only MA/TiO{sub 2} (400) has a narrower band gap than pure g-C{sub 3}N{sub 4}. - Abstract: A composite of graphitic carbon nitride and TiO{sub 2} (g-C{sub 3}N{sub 4}/TiO{sub 2}) with enhanced photocatalytic hydrogen evolution capacity was achieved by calcining melamine and TiO{sub 2} sol-gel precursor. Characterization results reveal that heating temperature had a great influence on the structure, surface area and properties of the composites. Compared with the polycondensation of pure melamine, the presence of TiO{sub 2} precursor can promote the formation of melon at a low temperature. The highest photocatalytic activity of g-C{sub 3}N{sub 4}/TiO{sub 2}(400) was achieved when the calcination was performed at 400 °C, exhibiting H{sub 2} production rate of 76.25 μmol/h under UV–vis light irradiation (λ > 320 nm) and 35.44 μmol/h under visible light irradiation (λ > 420 nm). The highest photocatalytic performance of g-C{sub 3}N{sub 4}/TiO{sub 2}(400) can be attributed to: (1) the strong UV–vis light absorption due to the narrow bandgap caused by synergic effect of TiO{sub 2} and g-C{sub 3}N{sub 4}, (2) high surface area and porosity, (3) the effective separation of photo-generated electron-holes owing to the favorable heterojunction between TiO{sub 2} and g-C{sub 3}N{sub 4}.

  3. Geochemical simulation of the evolution of granitic rocks and clay minerals submitted to a temperature increase in the vicinity of a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Fritz, B.; Kam, M.; Tardy, Y.

    1984-07-01

    The alteration of a granitic rock around a repository for spent nuclear fuel has been simulated considering the effect of an increase of temperature due to this kind of induced geothermal system. The results of the simulation have been interpreted in terms of mass transfer and volumic consequences. The alteration proceeds by dissolution of minerals (with an increase of the volumes of fissures and cracks) and precipitation of secondary miminerals as calcite and clay minerals particularly (with a decrease of the porosity). The increase of the temperature from 10 degrees C to about 100 degrees C will favour the alteration of the granitic rock around the repository by the solution filling the porosity. The rock is characterized by a very low fissure porosity and a consequent very low water velocity. This too, favours intense water rock interactions and production of secondary clays and the total possible mass transfer will decrease the porosity. A combination of these thermodynamic mass balance calculations with a kinetic approach of mineral dissolutions gives a first attempt to calibrate the modelling in the time scale: the decrease of porosity can be roughly estimated between 2 and 20% for 100,000 years. The particular problem of Na-bentonites behaviour in the proximate vicinity of the repository has been studied too. One must distinguish between two types of clay-water interactions: -within the rock around the repository, Na-bentonites should evolute with illitization in slighltly open system with low clay/water ratios, -within the repository itself, the clay reacts in a closed system for a long time with high clay/water ratios and a self-buffering effect should maintain the bentonite type. This chemical buffering effect is a positive point for the use of this clay as chemical barrier. (Author)

  4. Determination of the time evolution of the electron-temperature profile of reactor-like plasmas from the measurement of blackbody electron-cyclotron emission

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Arunasalam, V.; Bitzer, R.A.; Hosea, J.C.

    1982-04-01

    Plasma characteristics (i.e., n/sub e/ greater than or equal to 1 x 10 13 cm -3 , T/sub e/ greater than or equal to 10 7 0 K, B/sub psi/ greater than or equal to 20 kG) in present and future magnetically confined plasma devices, e.g., Princeton Large Torus (PLT) and Tokamak Fusion Test Reactor (TFTR), meet the conditions for blackbody emission near the electron cyclotron frequency and at few harmonics. These conditions, derived from the hot plasma dielectric tensor, have been verified by propagation experiments on PLT and the Princeton Model-C Stellarator. Blackbody emission near the fundamental electron cyclotron frequency and the second harmonic have been observed in PLT and is routinely measured to ascertain the time evolution of the electron temperature profile. These measurements are especially valuable in the study of auxiliary heating of tokamak plasma. Measurement and calibration techniques will also be discussed with special emphasis on our fast-scanning heterodyne receiver concept

  5. One-step and low-temperature synthesis of iodine-doped graphene and its multifunctional applications for hydrogen evolution reaction and electrochemical sensing

    International Nuclear Information System (INIS)

    Chu, Ke; Wang, Fan; Zhao, Xiao-lin; Wei, Xiao-ping; Wang, Xin-wei; Tian, Ye

    2017-01-01

    Iodine (I) has emerged as a powerful heteroatom dopant for efficiently tailoring the electrocatalytic properties of graphene. However, the preparation methods of I-doped graphene (I-G) and its electrocatalysis applications remain largely unexplored. Herein, a one-step and low-temperature hydrothermal approach was developed for the successful synthesis of I-G with a high I-doping level (0.52 at.%). The resulting I-G was then applied as a metal-free catalyst for hydrogen evolution reaction (HER) and electrochemical sensing. It was shown that the I-G exhibited a dramatically enhanced HER activity compared to undoped graphene, attributed to the critical role of I-doping in offering large exposed active sites and high electron transfer capability. Furthermore, I-G also displayed attractive sensing performances for highly sensitive and selective detection of dopamine. These findings demonstrate that the hydrothermally synthesized I-G can be a promising electrocatalyst for multifunctional applications in water-splitting and electrochemical sensing.

  6. Distinct metamorphic evolution of alternating silica-saturated and silica-deficient microdomains within garnet in ultrahigh-temperature granulites: An example from Sri Lanka

    Directory of Open Access Journals (Sweden)

    P.L. Dharmapriya

    2017-09-01

    Full Text Available Here we report the occurrence of garnet porphyroblasts that have overgrown alternating silica-saturated and silica deficient microdomains via different mineral reactions. The samples were collected from ultrahigh-temperature (UHT metapelites in the Highland Complex, Sri Lanka. In some of the metapelites, garnet crystals have cores formed via a dehydration reaction, which had taken place at silica-saturated microdomains and mantle to rim areas formed via a dehydration reaction at silica-deficient microdomains. In contrast, some other garnets in the same rock cores had formed via a dehydration reaction which occurred at silica-deficient microdomains while mantle to rim areas formed via a dehydration reaction at silica-saturated microdomains. Based on the textural observations, we conclude that the studied garnets have grown across different effective bulk compositional microdomains during the prograde evolution. These microdomains could represent heterogeneous compositional layers (paleobedding/laminations in the precursor sediments or differentiated crenulation cleavages that existed during prograde metamorphism. UHT metamorphism associated with strong ductile deformation, metamorphic differentiation and crystallization of locally produced melt may have obliterated the evidence for such microdomains in the matrix. The lack of significant compositional zoning in garnet probably due to self-diffusion during UHT metamorphism had left mineral inclusions as the sole evidence for earlier microdomains with contrasting chemistry.

  7. Effect of milling time and annealing temperature on nanoparticles evolution for 13.5% Cr ODS ferritic steel powders by joint application of XAFS and TEM

    Science.gov (United States)

    He, P.; Hoffmann, J.; Möslang, A.

    2018-04-01

    The characteristics of strengthening nanoparticles have a major influence on the mechanical property and irradiation resistance of oxide dispersion strengthened (ODS) steels. To determine how to control nanoparticles evolution, 0.3% Ti with 0.3% Y2O3 were added in 13.5%Cr pre-alloyed steel powders via different milling and consolidation conditions, then characterized by transmission electron microscopy (TEM) and X-ray absorption fine structure (XAFS) at synchrotron irradiation facility. The dissolution of Y2O3 is greatly dependent on the milling time at fixed milling speeds. After 24 h of milling, only minor amounts of the initially added Y2O3 dissolve into the steel matrix whereas TEM results reveal nearly complete dissolution of Y2O3 in 80-h-milled powder. The annealed powder FT-A800 (at 800 °C for 1 h) exhibits a structure near to the initially added Y2O3. The slightly deviation may be accounted for considerable lattice distortion related to the presence of atomic vacancies or formation of Y-Ti-O nucleus. The annealed powders FT-A1000 and FT-A1100 contain complex mixtures of Y-O/Y-Ti-O oxides, which cannot be fitted by any single thermally stable compounds. The coordination numbers of these first two shells in the annealed powders significantly raise as a function of the annealing temperature, indicating the formation of more ordered Y-O or Y-Ti-O particles. The extended X-ray absorption fine structure (EXAFS) spectrum could not necessarily distinguish the dominant oxide species.

  8. Low-temperature thermochronology of the Mt Painter Province, South Australia

    International Nuclear Information System (INIS)

    Mitchell, M.M.; Kohn, B.P.; O'Sullivan, P.B.; Hartley, M.J.; University of Florida, FL

    2002-01-01

    Apatite fission track results are reported for 26 outcrop samples from the Mt Painter Inlier, Mt Babbage Inlier and adjacent Neoproterozoic rocks of the northwestern Curnamona Craton of South Australia. Forward modelling of the data indicates that the province experienced variable regional cooling from temperatures >110deg C during the Late Palaeozoic (Late Carboniferous to Early Permian). The timing of this cooling is similar to that previously reported from elsewhere in the Adelaide Fold Belt and the Curnamona Craton, suggesting that the entire region underwent extensive Late Palaeozoic cooling most likely related to the waning stages of the Alice Springs or Kanimblan Orogenies. Results from the Paralana Fault Zone indicate that the eastern margin of the Mt Painter Inlier experienced a second episode of cooling (∼40-60deg C) during the Paleocene to Eocene. The entire region also experienced significant cooling (less than ∼40deg C) during the Late Cretaceous to Palaeogene in response to unroofing and/or a decrease in geothermal gradient. Regional cooling/erosion during this time is supported by: geomorphological and geophysical evidence indicating Tertiary exhumation of at least 1 km; Eocene sedimentation initiated in basins adjacent to the Flinders and Mt Lofty Ranges sections of the Adelaide Fold Belt; and Late Cretaceous - Early Tertiary cooling previously reported from apatite fission track studies in the Willyama Inliers and the southern Adelaide Fold Belt. Late Cretaceous to Palaeogene cooling is probably related to a change in stress field propagated throughout the Australian Plate, and driven by the initiation of sea-floor spreading in the Tasman Sea in the Late Cretaceous and the Eocene global plate reorganisation. Copyright (2002) Geological Society of Australia

  9. Palaeogene to Early Miocene sedimentary history of the Sierra Espuña (Malaguide complex, internal zone of the Betic cordilleras, SE Spain. Evidence for extra-Malaguide (Sardinian? provenance of oligocene conglomerates: Palaeogeographic implications

    Directory of Open Access Journals (Sweden)

    Geel, T.

    1996-12-01

    Full Text Available The Sierra Espuña is situated at the northern edge of the Internal Zone in the eastern Betic Cordilleras and is part of the unmetamorphosed Malaguide Complex. Palaeontological and sedimentological analysis of the Eocene to Aquitanian sediments on the northwest side of the Espuña yielded unexpected new information of importance for the reconstruction of the history of the Espuña itself and the Malaguides in general. The socalled Upper Eocene (Auversian rocks are of Early Oligocene (P20 age and contain supermature detritus derived from outside the Malaguide realm. The hundreds of meters thick limestone conglomerate formation of the Espuña is of Middle Oligocene (P21 age and represents a backstepping fan delta complex at the margin of a carbonate platform situated to the northeast of the Espuña. Analysis of the clasts suggests that this platform was a part of the north Sardinian block given the majority of fragments of Upper Jurassic sheltered inner platform (Clypeina-Trocholina limestones and dolomites. Contrary to former views (Paquet, 1966; Lonergan, 1993, the conglomerates cannot be considered to be the erosional products of Malaguide imbricated units. Therefore, one of the main arguments for early (Late Eocene to Oligocene thrusting and nappe emplacement in the Espuña area is not valido Other arguments for early kinematics are discussed, among others the allegedly continuous sedimentation from the Late Eocene until the Langhian northwest of the Espuña. Our data indicate the existence of a stratigraphic gap, comprising the middle Aquitanian to middle Burdigalian. A new model for the development of the Espuña within the Malaguide realm during the Palaeogene to Early Miocene is presented. Main thrusting and nappe emplacement is thought to have been taken place during the late Aquitanian. Finally, the recently proposed 2000 clockwise rotation of the Espuña as a coherent block during the Early to Middle Miocene (AlIerton el al., 1993 is

  10. Evolution of the specific-heat anomaly of the high-temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7} under the influence of doping through application of pressure up to 10 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Lortz, Rolf [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Junod, Alain [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Jaccard, Didier [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Wang, Yuxing [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Meingast, Christoph [Forschungszentrum Karlsruhe, Institut fuer Festkoerperphysik, 76021 Karlsruhe (Germany); Masui, Takahiko [Superconductivity Research Laboratory-ISTEC, 10-13 Shinonome I-Chome, Koto-ku, Tokyo 135 (Japan); Tajima, Setsuko [Superconductivity Research Laboratory-ISTEC, 10-13 Shinonome I-Chome, Koto-ku, Tokyo 135 (Japan)

    2005-07-06

    The evolution of the specific-heat anomaly in the overdoped range of a single crystal of the high-temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7} has been studied under the influence of pressure up to 10 GPa, using AC calorimetry in a Bridgman-type pressure cell. We show that the specific-heat jump as well as the bulk T{sub c} are reduced with increasing pressure in accordance with a simple charge-transfer model. This new method enables us through pressure-induced charge transfer to study the doping dependence of the superconducting transition, as well as the evolution of the superconducting condensation energy on a single stoichiometric sample without adding atomic disorder.

  11. Evolution of the specific-heat anomaly of the high-temperature superconductor YBa2Cu3O7 under the influence of doping through application of pressure up to 10 GPa

    International Nuclear Information System (INIS)

    Lortz, Rolf; Junod, Alain; Jaccard, Didier; Wang, Yuxing; Meingast, Christoph; Masui, Takahiko; Tajima, Setsuko

    2005-01-01

    The evolution of the specific-heat anomaly in the overdoped range of a single crystal of the high-temperature superconductor YBa 2 Cu 3 O 7 has been studied under the influence of pressure up to 10 GPa, using AC calorimetry in a Bridgman-type pressure cell. We show that the specific-heat jump as well as the bulk T c are reduced with increasing pressure in accordance with a simple charge-transfer model. This new method enables us through pressure-induced charge transfer to study the doping dependence of the superconducting transition, as well as the evolution of the superconducting condensation energy on a single stoichiometric sample without adding atomic disorder

  12. Evolution of cell resistance, threshold voltage and crystallization temperature during cycling of line-cell phase-change random access memory

    NARCIS (Netherlands)

    Oosthoek, J. L. M.; Attenborough, K.; Hurkx, G. A. M.; Jedema, F. J.; Gravesteijn, D. J.; Kooi, B. J.

    2011-01-01

    Doped SbTe phase change (PRAM) line cells produced by e-beam lithography were cycled 100 million times. During cell cycling the evolution of many cell properties were monitored, in particular the crystalline and amorphous resistance, amorphous resistance drift exponent, time-dependent threshold

  13. Pressure-temperature condition and hydrothermal-magmatic fluid evolution of the Cu-Mo Senj deposit, Central Alborz: fluid inclusion evidence

    Directory of Open Access Journals (Sweden)

    Ebrahim Tale Fazel

    2017-02-01

    Full Text Available Introduction The Senj deposit has significant potential for different types of mineralization, particularly porphyry-like Cu deposits, associated with subduction-related Eocene–Oligocene calc-alkaline porphyritic volcano-plutonic rocks. The study of fluid inclusions in hydrothermal ore deposits aims to identify and characterize the pressure, temperature, volume and fluid composition, (PTX conditions of fluids under which they were trapped (Heinrich et al., 1999; Ulrich and Heinrich, 2001; Redmond et al., 2004. Different characteristics of the deposit such as porphyrtic nature, alteration assemblage and the quartz-sulfide veins of the stockwork were poorly known. In this approach on the basis of alterations, vein cutting relationship and field distribution of fluid inclusions, the physical and chemical evolution of the hydrothermal system forming the porphyry Cu-Mo (±Au-Ag deposit in Senj is reconstructed. Materials and Methods Over 1000 m of drill core was logged at a scale of 1:1000 by Pichab Kavosh Co. and samples containing various vein and alteration types from different depths were collected for laboratory analyses. A total of 14 samples collected from the altered and least altered igneous rocks in the Senj deposit were analyzed for their major oxide concentrations by X-ray fluorescence in the SGS Mineral Services (Toronto, Canada. The detection limit for major oxide analysis is 0.01%. Trace and rare earth elements (REE were analyzed using inductively coupled plasma-mass spectrometery (ICP-MS, in the commercial laboratory of SGS Mineral Services. The analytical error for most elements is less than 2%. The detection limit for trace elements and REEs analysis is 0.01 to 0.1 ppm. Fluid inclusion microthermometry was conducted using a Linkam THMS600 heating–freezing stage (-190 °C to +600 °C mounted on a ZEISS Axioplan2 microscope in the fluid inclusion laboratory of the Iranian Mineral Processing Research Center (Karaj, Iran. Results

  14. Effect of wheel speed and annealing temperature on microstructure and texture evolution of Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yan, E-mail: yanfeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Chen, Hong [State Key Laboratory of Solidification Processing Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Gao, Li [College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306 (China); Wang, Haibo [College of Physics and Electronic Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Bian, Xiaohai; Gong, Mingjie [State Key Laboratory of Solidification Processing Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2016-12-15

    Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} magnetic shape memory alloy was successfully produced as preferentially textured ribbon by melting spinning with different wheel speed. X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) were used to study structure and texture evolution of these melt-spun ribbons. The thickness of melt-spun ribbon is 42 μm, 65 μm and 30 μm depending on wheel speed of 1 0 m/s, 15 m/s and 20 m/s, respectively. Density of α fiber texture (〈100〉//ND) vary with wheel speed changes, and is most intensive in the ribbon with wheel speed of 15 m/s. Grains of the ribbons grow after being annealed at 873 K, 973 K, 1073 K and 1173 K, recrystallization was not observed in ribbons after being annealed at 873 K but occurred in ribbons after being annealed at higher temperatures. The α fiber texture becomes weaker to some extent after annealing at different temperatures, due to new recrystallization texture formed at the process of annealing. - Highlights: •Sectional part of shape memory ribbon is firstly investigated by EBSD method. •Thickness and texture of ribbons vary with wheel speed. •Annealing temperature affect texture and microstructure evolution greatly. •Recrystallization textures were observed in ribbons after being annealed.

  15. Effect of surrounding gas temperature on the morphological evolution of TiO2 nanoparticles generated by laser ablation in tubular furnace

    International Nuclear Information System (INIS)

    Tsuji, Masayuki; Seto, Takafumi; Otani, Yoshio

    2012-01-01

    Titanium oxide nanoparticles are synthesized by laser ablation of Ti target in oxygen atmosphere under well-controlled temperature profiles in a tubular furnace. The size and the shape of generated nanoparticles are varied by changing the temperature of furnace. The mobility-based size distributions of generated air-borne nanoparticles are measured using a scanning mobility particle sizer, and the size distributions of primary particles are analyzed by a scanning electron microscope. When the particles are generated by laser ablation at the room temperature, the particles are agglomerates in gas phase with the average mobility diameter of 117 nm and the mean diameter of primary particles of 11 nm. The primary particle diameter increases from 11 to 24 nm by raising the furnace temperature up to 800 °C. Since the mass of Ti vapor ablated from a target is found to be constant regardless of the furnace temperature, this particle growth may be attributed to the reduction in nuclei number as a result of mild quenching at higher temperatures. As the temperature reaches higher than 1,000 °C, the mobility diameter suddenly drops and the primary particle diameter increases due to sintering, and at 1,200 °C the mobility diameter coincides with the primary particle diameter. Since the laser oven method offers an independent control of vapor concentration and the temperature of surrounding atmosphere, it is an effective tool to study the formation process of nanoparticles from primary particles with a given size.

  16. Evolution of the specific-heat anomaly of the high-temperature superconductor YBa2Cu3O7 under influence of doping through application of pressure up to 10 GPa

    OpenAIRE

    Lortz, Rolf; Junod, Alain; Jaccard, Didier; Wang, Yuxing; Meingast, Christoph; Masui, Takahiko; Tajima, Setsuko

    2005-01-01

    The evolution of the specific-heat anomaly in the overdoped range of a single crystal of the high-temperature superconductor YBa2Cu3O7 has been studied under influence of pressure up to 10 GPa, using AC calorimetry in a Bridgman-type pressure cell. We show that the specific-heat jump as well as the bulk Tc are reduced with increasing pressure in accordance with a simple charge-transfer model. This new method enables us through pressure-induced charge transfer to study the doping dependence of...

  17. Nanoparticle Metamorphosis: An in Situ High-Temperature Transmission Electron Microscopy Study of the Structural Evolution of Heterogeneous Au:Fe 2 O 3 Nanoparticles

    KAUST Repository

    Baumgardner, William J.

    2014-05-27

    High-temperature in situ electron microscopy and X-ray diffraction have revealed that Au and Fe2O3 particles fuse in a fluid fashion at temperatures far below their size-reduced melting points. With increasing temperature, the fused particles undergo a sequence of complex structural transformations from surface alloy to phase segregated and ultimately core-shell structures. The combination of in situ electron microscopy and spectroscopy provides insights into fundamental thermodynamic and kinetic aspects governing the formation of heterogeneous nanostructures. The observed structural transformations present an interesting analogy to thin film growth on the curved surface of a nanoparticle. Using single-particle observations, we constructed a phase diagram illustrating the complex relationships among composition, morphology, temperature, and particle size. © 2014 American Chemical Society.

  18. Nanoparticle Metamorphosis: An in Situ High-Temperature Transmission Electron Microscopy Study of the Structural Evolution of Heterogeneous Au:Fe 2 O 3 Nanoparticles

    KAUST Repository

    Baumgardner, William J.; Yu, Yingchao; Hovden, Robert; Honrao, Shreyas; Hennig, Richard G.; Abruñ a, Hé ctor D.; Muller, David; Hanrath, Tobias

    2014-01-01

    High-temperature in situ electron microscopy and X-ray diffraction have revealed that Au and Fe2O3 particles fuse in a fluid fashion at temperatures far below their size-reduced melting points. With increasing temperature, the fused particles undergo a sequence of complex structural transformations from surface alloy to phase segregated and ultimately core-shell structures. The combination of in situ electron microscopy and spectroscopy provides insights into fundamental thermodynamic and kinetic aspects governing the formation of heterogeneous nanostructures. The observed structural transformations present an interesting analogy to thin film growth on the curved surface of a nanoparticle. Using single-particle observations, we constructed a phase diagram illustrating the complex relationships among composition, morphology, temperature, and particle size. © 2014 American Chemical Society.

  19. Impact of temperature inversions on SST evolution in the South-Eastern Arabian Sea during the pre-summer monsoon season

    Digital Repository Service at National Institute of Oceanography (India)

    Durand, F.; Shetye, S.R.; Vialard, J.; Shankar, D.; Shenoi, S.S.C.; Ethe, C.; Madec, G.

    Temperature inversions are known to occur in the near-surface ocean regime where salinity stratification is large enough to influence the density field. However, they have not been known as features that alter near-surface processes significantly...

  20. Long-lived Control of Sierras Pampeanas Ranges on Andean Foreland Basin Evolution Revealed by Coupled Low-temperature Thermochronology and Sedimentology

    Science.gov (United States)

    Stevens Goddard, A.; Carrapa, B.; Larrovere, M.; Aciar, R. H.

    2017-12-01

    The Sierras Pampeanas ranges of west-central Argentina (28º- 31ºS) are a classic example of thick-skinned style basement block uplifts. The style and timing of uplift in these mountain ranges has widely been attributed to the onset of flat-slab subduction in the middle to late Miocene. However, the majority of low-temperature thermochronometers in the Sierras Pampeanas have much older cooling dates. Thermal modeling derived from new low-temperature thermochronometers in Sierra de Velasco, one of the highest relief (> 4 km) mountains in the Sierras Pampeanas, suggest that the rocks in these ranges have been at near-surface temperatures (history of long-lived topography illustrated in Sierra de Velasco can be expanded to other ranges in the Sierras Pampeanas by integrating multiple data sets.

  1. Carbon dioxide evolution and temperature factors in early growth of plastic mulched plants. [Cucumis melo L. var. reticulatus; Lactuca sativa L. var. crispa

    Energy Technology Data Exchange (ETDEWEB)

    Betts, C.; Ruf, R.H. Jr.

    1966-01-01

    Cantaloupe (Cucumis melo L. var. reticulatus) and lettuce (Lactuca sativa L. var. crispa) were grown in the greenhouse in redwood boxes with bare and plastic mulched soil. Soil temperature in the bare boxes was equated to the plastic mulch with buried temperature coils. Bottled CO/sub 2/ was used to bring the concentration around the plants in bare soil up to the concentration around mulched plants. Carbon dioxide was sampled in leaf canopy. The temperature treatment increased the yields of the bare soil so that they were comparable to those of the plastic mulched soil. Yields from the soil with the auxiliary CO/sub 2/ were lower than those of the mulched treatment.

  2. A metabolic hypothesis for the evolution of temperature effects on the arterial PCO2  and pH of vertebrate ectotherms.

    Science.gov (United States)

    Hillman, Stanley S; Hedrick, Michael S

    2018-01-04

    Body temperature increases in ectothermic vertebrates characteristically lead to both increases in arterial P CO 2  ( P a CO 2 ) and declines in resting arterial pH (pHa) of about 0.017 pH units per 1°C increase in temperature. This 'alphastat' pH pattern has previously been interpreted as being evolutionarily driven by the maintenance of a constant protonation state on the imidazole moiety of histidine protein residues, hence stabilizing protein structure-function. Analysis of the existing data for interclass responses of ectothermic vertebrates shows different degrees of P a CO 2  increases and pH declines with temperature between the classes, with reptiles>amphibians>fish. The P a CO 2  at the temperature where maximal aerobic metabolism ( V̇ O 2 ,max ) is achieved is significantly and positively correlated with temperature for all vertebrate classes. For ectotherms, the P a CO 2  where V̇ O 2 ,max is greatest is also correlated with V̇ O 2 ,max , indicating there is an increased driving force for CO 2 efflux that is lowest in fish, intermediate in amphibians and highest in reptiles. The pattern of increased P a CO 2  and the resultant reduction of pHa in response to increased body temperature would serve to increase CO 2 efflux, O 2 delivery and blood buffering capacity and maintain ventilatory scope. This represents a new hypothesis for the selective advantage of arterial pH regulation from a systems physiology perspective in addition to the advantages of maintenance of protein structure-function. © 2018. Published by The Company of Biologists Ltd.

  3. Structure evolution of multilayer materials of heat-resistant intermetallic compounds under the influence of temperature in the process of diffusion welding under pressure and their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Korzhov, Valeriy P.; Karpov, Michael I.; Prokhorov, Dmitriy V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation)

    2013-07-01

    Multilayer materials of high-resistant intermetallic compounds of some transition metals with aluminum and silicon were obtained by diffusion welding of packages, collected from a large number of the respective foils, such as niobium and aluminum. Materials of intermetallics with silicon were obtained by the welding of packages built from metal foils with Si-coating. The change in the structure according to the temperature of the welding was studied, and the high-temperature bending strength was determined. Key words: multilayer composite, high-resistant material, intermetallic compound, diffusion welding, package rolling, layered structure, bending strength.

  4. Microstructural evolution and hardening of GH3535 alloy under energetic Xe ion irradiation at room temperature and 650 °C

    Science.gov (United States)

    Huang, Hefei; Gao, Jie; Radiguet, Bertrand; Liu, Renduo; Li, Jianjian; Lei, Guanhong; Huang, Qing; Liu, Min; Xie, Ruobing

    2018-02-01

    The GH3535 alloy was irradiated with 7 MeV Xe26+ ions to a dose of 10 dpa at room temperature (RT) and 650 °C, and subsequently examined using Transmission Electron Microscopy (TEM) and nanoindentation. High numbers of nano-sized black dots, identified as dislocation loops were observed in both irradiated samples. The dislocation loops detected at the high temperature irradiated sample (size/number density: 9.5 nm/1.9 × 1021 m-3) were found to be larger in size but less in amount as compared to that of the case of RT irradiation (6.9 nm/18.7 × 1021 m-3). In addition, the large-sized Mo-Cr rich precipitates (16.4 nm/3.7 × 1021 m-3) were observed in the sample irradiated at 650 °C. Moreover, the Xe bubbles, with smaller size (2.9 nm) but higher number density (77.8 × 1021 m-3) among the irradiated induced defects, were also detected in the case of high temperature irradiated sample via the diffusion and aggregation of Xe atoms. Nanoindentaion measurements showed a hardening phenomenon for the irradiated sample, and the hardness increment is higher in the case of high temperature irradiated sample. Dispersed barrier-hardening (DBH) model was applied to predict the hardening produced from the irradiation induced defects. The yield strength increment calculated based on TEM observations and the nanohardness increment measured using nanoindentation are in excellent agreement.

  5. Evolution of tetragonal phase of ZrO2 in the corrosion of Zry-4 and Zr-2.5Nb at high pressure and temperature

    International Nuclear Information System (INIS)

    Bordoni, Roberto A.; Olmedo, Ana M.; Villegas, Marina; Maroto, Alberto J. G.; Lin, J.; Szpunar, J. A.

    1999-01-01

    The corrosion kinetics of Zr-2.5 Nb and Zircaloy-4 was studied at 350 C degrees in lithiated heavy water. The oxides grown on both alloys during the exposures were found to be strongly textured. The pole figures showed that the major orientation components of the oxide formed on Zr-2.5 Nb were (10-3) [0-10] and (10-3)[301] while (10-3) fiber was formed on Zircaloy-4. No significant change in texture was found in either alloy when increasing the thickness of the oxide film. The phases present in the film were determined and their evolution with the exposure time was followed. The results indicated that the tetragonal volume fraction decreased with increasing the thickness of the oxide layers of both materials. The tetragonal volume fraction of Zircaloy-4 was higher than that of Zr-2.5 Nb for the same oxide thickness. (author)

  6. Effects of tempering temperature on microstructural evolution and mechanical properties of high-strength low-alloy D6AC plasma arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Ming, E-mail: chunming@ntut.edu.tw [Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Lu, Chi-Hao [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10673, Taiwan (China)

    2016-10-31

    This study prepared high-strength low-alloy (HSLA) D6AC weldments using a plasma arc welding (PAW) process. The PAW weldments were then tempered at temperatures of 300 °C, 450 °C, and 600 °C for 1000 min. Microstructural characteristics of the weld in as-welded HSLA-D6AC, tempered D6AC, and tensile-tested D6AC were observed via optical microscopy (OM). We also investigated the hardness, tensile strength, and V-notched tensile strength (NTS) of the tempered specimens using a Vickers hardness tester and a universal testing machine. The fracture surfaces of the specimens were observed using a scanning electron microscope (SEM). Our results show that the mechanical properties and microstructural features of the HSLA weldments are strongly dependent on tempering temperature. An increase in tempering temperature led to a decrease in the hardness and tensile strength of the weldments but led to an increase in ductility. These effects can be attributed to the transformation of the microstructure and its effect on fracture characteristics. The specimens tempered at 300 °C and 450 °C failed in a ductile-brittle manner due to the presence of inter-lath austenite in the microstructure. After tempering at a higher temperature of 600 °C, martensite embrittlement did not occur, such that specimens failure was predominantly in a ductile manner. In the NTS specimens, an increase in tempering temperature led to a reduction in tensile strength due to notch embrittlement and the effects of grain boundary thickening and sliding. Our findings provide a valuable reference for the application of HSLA-D6AC steel in engineering and other fields.

  7. Magnetic hysterysis evolution of Ni-Al alloy with Fe and Mn substitution by vacuum arc melting to produce the room temperature magnetocaloric effect material

    Energy Technology Data Exchange (ETDEWEB)

    Notonegoro, Hamdan Akbar [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435 (Indonesia); Kurniawan, Budhy; Manaf, Azwar, E-mail: azwar@sci.ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Setiawan, Jan [Center for Nuclear Fuel Tecnology-Badan Tenaga Atom Nasional, Tangerang Selatan 15310 (Indonesia)

    2016-06-17

    The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD) reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.

  8. From chemical mapping to pressure temperature deformation micro-cartography: mineralogical evolution and mass transport in thermo-mechanic disequilibrium systems: application to meta-pelites and confinement nuclear waste materials

    International Nuclear Information System (INIS)

    Andrade, V. de

    2006-03-01

    The mineralogical composition of metamorphic rocks or industrial materials evolves when they are submitted to thermomechanical disequilibria, i.e. a spatial or temporal pressure and temperature evolution, or chemical disequilibria as variations in redox conditions, pH... For example, during low temperature metamorphic processes, rocks re-equilibrate only partially, and thus record locally thermodynamic equilibria increasing so the spatial chemical heterogeneities. Understanding the P-T evolution of such systems and deciphering modalities of their mineralogical transformation imply to recognize and characterize the size of these local 'paleo-equilibria', and so to have a spatial chemical information at least in 2 dimensions. In order to get this information, microprobe X-ray fluorescence maps have been used. Computer codes have been developed with Matlab to quantify these maps in view of thermo-barometric estimations. In this way, P-T maps of mineral crystallisation were produced using the multi-equilibria thermodynamic technique. Applications on two meta-pelites from the Sambagawa blue-schist belt (Japan) and from the Caledonian eclogitic zone in Spitsbergen, show that quantitative chemical maps are a powerful tool to retrieve the metamorphic history of rocks. From these chemical maps have been derived maps of P-T-time-redox-deformation that allow to characterize P-T conditions of minerals formation, and so, the P-T path of the sample, the oxidation state of iron in the chlorite phase. As a result, we underline the relation between deformation and crystallisation, and propose a relative chronology of minerals crystallisation and deformations. The Fe 3+ content map in chlorite calculated by thermodynamic has also been validated by a μ-XANES mapping at the iron K-edge measured at the ESRF (ID24) using an innovative method. Another application relates to an experimental study of clay materials, main components of an analogical model of a nuclear waste storage site

  9. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    Science.gov (United States)

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  10. Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy.

    Science.gov (United States)

    Wu, Changzheng; Zhang, Xiaodong; Ning, Bo; Yang, Jinlong; Xie, Yi

    2009-07-06

    Solid templates have been long regarded as one of the most promising ways to achieve single-shelled hollow nanostructures; however, few effective methods for the construction of multishelled hollow objects from their solid template counterparts have been developed. We report here, for the first time, a novel and convenient route to synthesizing double-shelled hollow spheres from the solid templates via programming the reaction-temperature procedures. The programmed temperature strategy developed in this work then provides an essential and general access to multishelled hollow nanostructures based on the designed extension of single-shelled hollow objects, independent of their outside contours, such as tubes, hollow spheres, and cubes. Starting from the V(OH)(2)NH(2) solid templates, we show that the relationship between the hollowing rate and the reaction temperature obey the Van't Hoff rule and Arrhenius activation-energy equation, revealing that it is the chemical reaction rather than the diffusion process that guided the whole hollowing process, despite the fact that the coupled reaction/diffusion process is involved in the hollowing process. Using the double-shelled hollow spheres as the PCM (CaCl(2).6H(2)O) matrix grants much better thermal-storage stability than that for the nanoparticles counterpart, revealing that the designed nanostructures can give rise to significant improvements for the energy-saving performance in future "smart house" systems.

  11. Examining the microhardness evolution and thermal stability of an Al–Mg–Sc alloy processed by high-pressure torsion at a high temperature

    Directory of Open Access Journals (Sweden)

    Pedro Henrique R. Pereira

    2017-10-01

    Full Text Available An Al–3% Mg–0.2% Sc alloy was solution treated and processed through 10 turns of high-pressure torsion (HPT at 450 K. Afterwards, the HPT-processed alloy was annealed for 1 h at temperatures ranging from 423 to 773 K and its mechanical properties and microstructural evolution were examined using microhardness measurements and electron backscattered diffraction (EBSD analysis. The results demonstrate that HPT processing at an elevated temperature leads to a more uniform microhardness distribution and to an early saturation in the hardness values in the Al alloy compared with high-pressure torsion at room temperature. In addition, detailed EBSD analysis conducted on the HPT-processed samples immediately after annealing revealed that the Al–Mg–Sc alloy subjected to HPT processing at 450 K exhibits superior thermal stability by comparison with the same material subjected to HPT at 300 K. Keywords: Aluminium alloys, Hall–Petch relationship, Hardness, High-pressure torsion, Severe plastic deformation, Thermal stability

  12. Defect evolution in a Ni−Mo−Cr−Fe alloy subjected to high-dose Kr ion irradiation at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Massey de los [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234 (Australia); Nuclear Fuel Cycle Royal Commission (NFCRC), 50 Grenfell Street Adelaide South Australia, 5000 (Australia); Voskoboinikov, Roman [The National Research Centre ‘Kurchatov Institute’, Kurchatov Sq 1, Moscow 123182 (Russian Federation); Kirk, Marquis A. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Huang, Hefei [Shanghai Institute of Applied Physics, Chinese Academy of Science (CAS), 2019 Jialuo Road, Jiading District, Shanghai 201800 (China); Lumpkin, Greg [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234 (Australia); Bhattacharyya, Dhriti, E-mail: dhriti.bhattacharyya@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234 (Australia)

    2016-06-15

    A candidate Ni−Mo−Cr−Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr{sup 2+} ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.

  13. From chemical mapping to pressure temperature deformation micro-cartography: mineralogical evolution and mass transport in thermo-mechanic disequilibrium systems: application to meta-pelites and confinement nuclear waste materials; De l'imagerie chimique a la micro-cartographie Pression-Temperature-Deformation: evolution mineralogique et transport de matiere dans des systemes en desequilibre thermomecanique. Applications aux metapelites et aux materiaux de stockage de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, V. de

    2006-03-15

    The mineralogical composition of metamorphic rocks or industrial materials evolves when they are submitted to thermomechanical disequilibria, i.e. a spatial or temporal pressure and temperature evolution, or chemical disequilibria as variations in redox conditions, pH... For example, during low temperature metamorphic processes, rocks re-equilibrate only partially, and thus record locally thermodynamic equilibria increasing so the spatial chemical heterogeneities. Understanding the P-T evolution of such systems and deciphering modalities of their mineralogical transformation imply to recognize and characterize the size of these local 'paleo-equilibria', and so to have a spatial chemical information at least in 2 dimensions. In order to get this information, microprobe X-ray fluorescence maps have been used. Computer codes have been developed with Matlab to quantify these maps in view of thermo-barometric estimations. In this way, P-T maps of mineral crystallisation were produced using the multi-equilibria thermodynamic technique. Applications on two meta-pelites from the Sambagawa blue-schist belt (Japan) and from the Caledonian eclogitic zone in Spitsbergen, show that quantitative chemical maps are a powerful tool to retrieve the metamorphic history of rocks. From these chemical maps have been derived maps of P-T-time-redox-deformation that allow to characterize P-T conditions of minerals formation, and so, the P-T path of the sample, the oxidation state of iron in the chlorite phase. As a result, we underline the relation between deformation and crystallisation, and propose a relative chronology of minerals crystallisation and deformations. The Fe{sup 3+} content map in chlorite calculated by thermodynamic has also been validated by a {mu}-XANES mapping at the iron K-edge measured at the ESRF (ID24) using an innovative method. Another application relates to an experimental study of clay materials, main components of an analogical model of a nuclear

  14. Evolution of the thickness of the aluminum oxide film due to the pH of the cooling water and surface temperature of the fuel elements clad of a nuclear reactor

    International Nuclear Information System (INIS)

    Babiche, Ivan

    2013-01-01

    This paper describes the mechanism of growth of a film of aluminum oxide on an alloy of the same material, which serves as a protective surface being the constituent material of the RP-10 nuclear reactor fuel elements clads. The most influential parameters on the growth of this film are: the pH of the cooling water and the clad surface temperature of the fuel element. For this study, a mathematical model relating the evolution of the aluminum oxide layer thickness over the time, according to the same oxide film using a power law is used. It is concluded that the time of irradiation, the heat flux at the surface of the aluminum material, the speed of the coolant, the thermal conductivity of the oxide, the initial thickness of the oxide layer and the solubility of the protective oxide are parameters affecting in the rate and film formation. (author).

  15. Schumpeter's Evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    reworking of his basic theory of economic evolution in Development from 1934, and this reworking was continued in Cycles from 1939. Here Schumpeter also tried to handle the statistical and historical evidence on the waveform evolution of the capitalist economy. Capitalism from 1942 modified the model...

  16. Galactic evolution

    International Nuclear Information System (INIS)

    Pagel, B.

    1979-01-01

    Ideas are considered concerning the evolution of galaxies which are closely related to those of stellar evolution and the origin of elements. Using information obtained from stellar spectra, astronomers are now able to consider an underlying process to explain the distribution of various elements in the stars, gas and dust clouds of the galaxies. (U.K.)

  17. Darwinian evolution

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.; Spijkerboer, Hendrik Pieter; Koelewijn, Hans Peter

    2016-01-01

    Darwinian evolution is a central tenet in biology. Conventionally, the defi nition of Darwinian evolution is linked to a population-based process that can be measured by focusing on changes in DNA/allele frequencies. However, in some publications it has been suggested that selection represents a

  18. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    Science.gov (United States)

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  19. Evolution of the microstructure and hardness of a rapidly solidified/melt-spun AZ91 alloy upon aging at different temperatures

    International Nuclear Information System (INIS)

    Wang Baishu; Liu Yongbing; An Jian; Li Rongguang; Su Zhenguo; Su Guihua; Lu You; Cao Zhanyi

    2009-01-01

    The effect of aging at different temperatures on a rapidly solidified/melt-spun AZ91 alloy has been investigated in depth. The microstructures of as-spun and aged ribbons with a thickness of approximately 60 μm were characterized using X-ray diffraction, transmission electron microscopy and laser optical microscopy; microhardness measurements were also conducted. It was found that the commercial AZ91 alloy undergoes a cellular/dendritic transition during melt-spinning at a speed of 34 m/s. A strengthening effect due to aging was observed: a maximum hardness of 110 HV/0.05 and an age-hardenability of 50% were obtained when the ribbon was aged at 200 deg. C for 20 min. The β-Mg 17 Al 12 phase exhibits net and dispersion types of distribution during precipitation. The dispersion of precipitates in dendritic grains or cells is the main source of strengthening

  20. Amoebal endosymbiont Parachlamydia acanthamoebae Bn9 can grow in immortal human epithelial HEp-2 cells at low temperature; an in vitro model system to study chlamydial evolution.

    Science.gov (United States)

    Yamane, Chikayo; Yamazaki, Tomohiro; Nakamura, Shinji; Matsuo, Junji; Ishida, Kasumi; Yamazaki, Sumire; Oguri, Satoshi; Shouji, Natsumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Yimin; Yamaguchi, Hiroyuki

    2015-01-01

    Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7-1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37 °C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30 °C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30 °C compared to at 37 °C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells.

  1. Elaboration and evolution in temperature of the amorphous alloy Tb65Cu35, study of short and medium range atomic order and low temperature magnetic order related to the elaboration process

    International Nuclear Information System (INIS)

    El Gadi, M.

    1986-12-01

    The thesis presents the study of the amorphous metallic alloy Tb 65 Cu 35 prepared by rapid quenching and sputtering. Differential scanning calorimetry (DSC) measurements establish the annealing procedure needed to obtain a stable amorphous state through structural relaxation. Nearest neighbour distances as determined by neutron diffraction measurements shows a high coordination for Tb atom and a relatively low one for Cu atom. In addition, small-angle neutron scattering (SANS) experiments carried out as a function of temperature show the existence of Tb bubbles with very high magnetization at low-temperature. The region between the bubbles shows composition fluctuations. The SANS measurements also indicate the coexistence of phases with compositions bordering the eutectic value and in the form of domains having sizes of a few thousand Angstroms. An unexpected result in the observation of an hundred fold increase in the intensity of low-angle magnetic scattering when the samples are hand-polished with simple sand paper. This clearly indicates the importance of sample surface state. Finally, this work establishes that samples prepared by two different techniques show identical properties [fr

  2. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  3. MRI-guided Therapeutic Ultrasound : In vitro Validation of a New MR Compatible, Phased Array, Contact Endorectal Ultrasound Transducer with Active Feedback Control of Temperature Evolution

    Science.gov (United States)

    Salomir, Rares; Rata, Mihaela; Lafon, Cyril; Melodelima, David; Chapelon, Jean-Yves; Mathias, Adrien; Cotton, François; Bonmartin, Alain; Cathignol, Dominique

    2006-05-01

    Contact application of high intensity ultrasound was demonstrated to be suitable for thermal ablation of sectorial tumours of the digestive duct. Experimental validation of a new MR compatible ultrasonic device is described here, dedicated to the minimal invasive therapy of localized colorectal cancer. This is a cylindrical 1D 64-element phased array transducer of 14 mm diameter and 25 mm height (Imasonic, France) allowing electronic rotation of the acoustic beam. Operating frequency ranges from 3.5 to 4.0 MHz and up to 5 effective electrical watts per element are available. A plane wave is reconstructed by simultaneous excitation of eigth adjacent elements with an appropriate phase law. Driving electronics operates outside the Faraday cage of the scanner and provides fast switching capabilities. Excellent passive and active compatibility with the MRI data acquisition has been demonstrated. In addition, feasibility of active temperature control has been demonstrated based on real-time data export out of the MR scanner and a PID feedback algorithm. Further studies will address the in-vivo validation and the integration of a miniature NMR coil for increased SNR in the near field.

  4. Atividade respiratória e evolução de etileno em alface crespa minimamente processada armazenada sob duas temperaturas Respiratory activity and ethylene evolution of fresh-cut crisphead lettuce stored under two temperatures

    Directory of Open Access Journals (Sweden)

    Leonora Mansur Mattos

    2008-12-01

    process in which organic compounds are oxidized to carbon dioxide and water, with energy release. Ethylene evolution is also very important and can be observed in fresh-cut vegetables crops. In the present work we studied the physiological effects associated with fresh-cut lettuce (Lactuca sativa L. searching the best temperature for storage as well as how the stress caused by processing affects the product. It was observed that right after processing respiratory rates of the materials sliced at 5 and 10mm thick were statistically different from the lettuce processed for both 5 ºC and 10 ºC storage temperatures. Storage at 5 ºC was capable of reducing the metabolism faster when compared to the storage at 10 ºC. The respiratory activity and ethylene evolution curves profile for the lettuce processed at 10 mm were the same for both the studied temperatures, differing only for the values, that were higher, as expected, for 10 ºC. Ethylene evolution reduced for the material processed at 10 mm and stored at 5 ºC, but did not reduce for the material processed at 5 mm at the first two hours after processing. The best temperature for fresh-cut lettuce storage was 5 ºC and the material processed as whole leaves showed the lowest levels of carbon dioxide and ethylene evolution.

  5. Topotactic oxidation pathway of ScTiO3 and high-temperature structure evolution of ScTiO3.5 and Sc4Ti3O12-type phases.

    Science.gov (United States)

    Shafi, Shahid P; Hernden, Bradley C; Cranswick, Lachlan M D; Hansen, Thomas C; Bieringer, Mario

    2012-02-06

    The novel oxide defect fluorite phase ScTiO(3.5) is formed during the topotactic oxidation of ScTiO(3) bixbyite. We report the oxidation pathway of ScTiO(3) and structure evolution of ScTiO(3.5), Sc(4)Ti(3)O(12), and related scandium-deficient phases as well as high-temperature phase transitions between room temperature and 1300 °Cusing in-situ X-ray diffraction. We provide the first detailed powder neutron diffraction study for ScTiO(3). ScTiO(3) crystallizes in the cubic bixbyite structure in space group Ia3 (206) with a = 9.7099(4) Å. The topotactic oxidation product ScTiO(3.5) crystallizes in an oxide defect fluorite structure in space group Fm3m (225) with a = 4.89199(5) Å. Thermogravimetric and differential thermal analysis experiments combined with in-situ X-ray powder diffraction studies illustrate a complex sequence of a topotactic oxidation pathway, phase segregation, and ion ordering at high temperatures. The optimized bulk synthesis for phase pure ScTiO(3.5) is presented. In contrast to the vanadium-based defect fluorite phases AVO(3.5+x) (A = Sc, In) the novel titanium analogue ScTiO(3.5) is stable over a wide temperature range. Above 950 °C ScTiO(3.5) undergoes decomposition with the final products being Sc(4)Ti(3)O(12) and TiO(2). Simultaneous Rietveld refinements against powder X-ray and neutron diffraction data showed that Sc(4)Ti(3)O(12) also exists in the defect fluorite structure in space group Fm3m (225) with a = 4.90077(4) Å. Sc(4)Ti(3)O(12) undergoes partial reduction in CO/Ar atmosphere to form Sc(4)Ti(3)O(11.69(2)).

  6. Animal evolution

    DEFF Research Database (Denmark)

    Nielsen, Claus

    This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes it possi......This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes...

  7. Representing Evolution

    DEFF Research Database (Denmark)

    Hedin, Gry

    2012-01-01

    . This article discusses Willumsen's etching in the context of evolutionary theory, arguing that Willumsen is a rare example of an artist who not only let the theory of evolution fuel his artistic imagination, but also concerned himself with a core issue of the theory, namely to what extent it could be applied...

  8. Security Evolution.

    Science.gov (United States)

    De Patta, Joe

    2003-01-01

    Examines how to evaluate school security, begin making schools safe, secure schools without turning them into fortresses, and secure schools easily and affordably; the evolution of security systems into information technology systems; using schools' high-speed network lines; how one specific security system was developed; pros and cons of the…

  9. Cepheid evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1984-05-01

    A review of the phases of stellar evolution relevant to Cepheid variables of both Types I and II is presented. Type I Cepheids arise as a result of normal post-main sequence evolutionary behavior of many stars in the intermediate to massive range of stellar masses. In contrast, Type II Cepheids generally originate from low-mass stars of low metalicity which are undergoing post core helium-burning evolution. Despite great progress in the past two decades, uncertainties still remain in such areas as how to best model convective overshoot, semiconvection, stellar atmospheres, rotation, and binary evolution as well as uncertainties in important physical parameters such as the nuclear reaction rates, opacity, and mass loss rates. The potential effect of these uncertainties on stellar evolution models is discussed. Finally, comparisons between theoretical predictions and observations of Cepheid variables are presented for a number of cases. The results of these comparisons show both areas of agreement and disagreement with the latter result providing incentive for further research

  10. Venom Evolution

    Indian Academy of Sciences (India)

    IAS Admin

    Therefore, the platypus sequence was studied to quantify the role of gene duplication in the evolution of venom. ... Platypus venom is present only in males and is used for asserting dominance over com- petitors during the ... Certain toxin gene families are known to re- peatedly evolve through gene duplications. The rapidly ...

  11. Study of microstructural evolution at high temperature according to the initial contents of Y Ti and O and their impact on deformation heterogeneities in Fe-14Cr1W ODS alloys

    International Nuclear Information System (INIS)

    Zhong, S.Y.

    2012-01-01

    This PhD work focused on the study of Fe-14%Cr alloys nano-reinforced by oxide dispersion obtained by high energy milling from pre-alloyed powders of the matrix and Y 2 O 3 .The main objectives were: (i) the study of the precipitation kinetics of oxides, in particular the coarsening, according to the content of added elements (Ti, Y, O) after consolidation and after heat treatments at high temperature. (ii) The elastoplastic and elastic deformations heterogeneities analyze in these alloys, depending on the progress of the precipitation. Microstructure and nano-structure were studied by Transmission Electron Microscopy (TEM) and Small angles neutron scattering (SANS). All of these techniques allowed identifying different behaviors depending on the added element contents. In particular, the addition of titanium induced a marked deceleration of oxide coarsening in contrast to those samples added oxygen and yttrium. These variations of initial contents have an influence on the form, the crystallographic structure of the particles, the orientation relationships with the matrix and consequently, the precipitation kinetics. Therefore, ensuring the ratio Ti/Y greater than 1 and, limiting the oxygen can guarantee the stability of the nano-particles at high temperatures in the ODS alloys. The recrystallization phenomenon was also observed at high temperature in the materials of which the oxides coarsening is fast. In order to correlate the evolution of microstructure with the mechanical properties, a macroscopic model of hardening was then carried out by distinguishing the different contributions (nano-particles, grain size and dislocations). The hardening calculated from experimental observations, is in good agreement with measured values. These calculations demonstrate the high influence of particle size on the hardness of materials. Finally, a detailed study of deformation heterogeneities of the grains according to their crystallographic orientation was carried out by

  12. Technological Evolution of High Temperature Superconductors

    Science.gov (United States)

    2015-12-01

    added support for tablet computers and semantic searches in Mandarin Chinese. IHS released a stand-alone, online, cloud-based version of the Goldfire... MRI APPARATUS AND NMR APPARATUS H01F 006/06 WO- 2015120113 A1 WEINBERG MEDICAL PHYSICS LLC (United States) 8/13/2015 ELECTROMAGNETIC DEVICES WITH

  13. Nudging Evolution?

    OpenAIRE

    Katharine N. Farrell; Andreas Thiel

    2013-01-01

    This Special Feature, "Nudging Evolution? Critical Exploration of the Potential and Limitations of the Concept of Institutional Fit for the Study and Adaptive Management of Social-Ecological Systems," aims to contribute toward the development of social theory and social research methods for the study of social-ecological system dynamics. Our objective is to help strengthen the academic discourse concerning if, and if so, how, to what extent, and in what concrete ways the concept of institut...

  14. Community Evolution

    OpenAIRE

    Saganowski, Stanisław; Bródka, Piotr; Kazienko, Przemysław

    2016-01-01

    The continuous interest in the social network area contributes to the fast development of this field. The new possibilities of obtaining and storing data facilitate deeper analysis of the entire social network, extracted social groups and single individuals as well. One of the most interesting research topic is the network dynamics and dynamics of social groups in particular, it means analysis of group evolution over time. It is the natural step forward after social community extraction. Havi...

  15. Impacts of the leading modes of tropical Indian Ocean sea surface temperature anomaly on sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer

    Science.gov (United States)

    Liu, Senfeng; Duan, Anmin

    2017-02-01

    The two leading modes of the interannual variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) anomaly are the Indian Ocean basin mode (IOBM) and the Indian Ocean dipole mode (IODM) from March to August. In this paper, the relationship between the TIO SST anomaly and the sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer is investigated by using correlation analysis and composite analysis based on multi-source observation data from 1979 to 2013, together with numerical simulations from an atmospheric general circulation model. The results indicate that the impacts of the IOBM on the circulation and rainfall over East Asia vary remarkably from spring to summer. The anomalous anticyclone over the tropical Northwest Pacific induced by the warm IOBM is closely linked with the Pacific-Japan or East Asia-Pacific teleconnection pattern, which persists from March to August. In the upper troposphere over East Asia, the warm phase of the IOBM generates a significant anticyclonic response from March to May. In June and July, however, the circulation response is characterized by enhanced subtropical westerly flow. A distinct anomalous cyclone is found in August. Overall, the IOBM can exert significant influence on the western North Pacific subtropical high, the South Asian high, and the East Asian jet, which collectively modulate the precipitation anomaly over East Asia. In contrast, the effects of the IODM on the climate anomaly over East Asia are relatively weak in boreal spring and summer. Therefore, studying the impacts of the TIO SST anomaly on the climate anomaly in East Asia should take full account of the different sub-seasonal response during boreal spring and summer.

  16. Evolution of supernova remnants. III. Thermal waves

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1975-01-01

    The effect of heat conduction on the evolution of supernova remnants is investigated. A thermal wave, or electron conduction front, can travel more rapidly than a shock wave during the first thousand years of the remnant's evolution. A self-similar solution describing this phase has been found by Barenblatt. Numerical computations verify the solution and give the evolution past the thermal wave phase. While shell formation is not impeded, the interior density and temperature profiles are smoothed by the action of conduction

  17. Cluster evolution

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  18. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  19. ENVIRONMENT AND PROTOSTELLAR EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yichen [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Tan, Jonathan C., E-mail: yczhang.astro@gmail.com [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

    2015-04-01

    Even today in our Galaxy, stars form from gas cores in a variety of environments, which may affect the properties of the resulting star and planetary systems. Here, we study the role of pressure, parameterized via ambient clump mass surface density, on protostellar evolution and appearance, focusing on low-mass Sun-like stars and considering a range of conditions from relatively low pressure filaments in Taurus, to intermediate pressures of cluster-forming clumps like the Orion Nebula Cluster, to very high pressures that may be found in the densest infrared dark clouds or in the Galactic center. We present unified analytic and numerical models for the collapse of prestellar cores, accretion disks, protostellar evolution, and bipolar outflows, coupled with radiative transfer calculations and a simple astrochemical model to predict CO gas-phase abundances. Prestellar cores in high-pressure environments are smaller and denser and thus collapse with higher accretion rates and efficiencies, resulting in higher luminosity protostars with more powerful outflows. The protostellar envelope is heated to warmer temperatures, affecting infrared morphologies (and thus classification) and astrochemical processes like CO depletion onto dust grain ice mantles (and thus CO morphologies). These results have general implications for star and planet formation, especially via their effect on astrochemical and dust grain evolution during infall to and through protostellar accretion disks.

  20. Frost evolution in tailings

    International Nuclear Information System (INIS)

    1991-04-01

    A review was carried out on the physical and thermal mechanisms of permafrost evaluation in soils and uranium tailings. The primary mechanism controlling permafrost evolution is conductive heat transfer with the latent heat of fusion of water being liberated as phase change occurs. Depending on the soil properties and freezing rate, pore water can be expelled from the frost front or pore water can migrate towards the frost front. Solute redistribution may occur as the frost front penetrates into the soil. The rate of frost penetration is a function of the thermal properties of the tailings and the climatic conditions. Computer modelling programmes capable of modelling permafrost evolution were reviewed. The GEOTHERM programme was selected as being the most appropriate for this study. The GEOTHERM programme uses the finite element method of thermal analysis. The ground surface temperature is determined by solving the energy balance equations a the ground surface. The GEOTHERM programme was used to simulate the permafrost evolution in the Key Lake Mine tailings located in north central Saskatchewan. The analyses indicated that the existing frozen zones in the tailing pond will eventually thaw if an average snow depth covers the tailings. Hundreds of years are required to thaw the tailings. If minimal snow cover is present the extent of the frozen zone in the tailings will increase

  1. Concrete Chemical Evolution

    Energy Technology Data Exchange (ETDEWEB)

    D.H. Tang

    1998-07-31

    The objectives of this analysis are to discuss and evaluate testing results that were performed for the M&O by the Pennsylvania State University (PSU) to evaluate the potential long-term evolution of organic admixtures in cementitious materials at elevated temperatures. The testing was designed to help provide a basis for a determination by the Performance Assessment group (PA) of the long-term acceptability and longevity of cementitious materials for repository use. The main purpose of the testing was to assess the evolution of gases (especially CO{sub 2}) from hydrated cement paste at elevated temperatures and to determine the impact on alkalinity, i.e., the pH value of cement paste pore solution. This information in turn can be used as scoping information to determine if further tests of this nature are needed to support PA. As part of this discussion and evaluation of the PSU results, an assessment of alkalinity in a ''cementitious repository'' and an evaluation of organic materials are presented.

  2. Concrete Chemical Evolution

    International Nuclear Information System (INIS)

    D.H. Tang

    1998-01-01

    The objectives of this analysis are to discuss and evaluate testing results that were performed for the M andO by the Pennsylvania State University (PSU) to evaluate the potential long-term evolution of organic admixtures in cementitious materials at elevated temperatures. The testing was designed to help provide a basis for a determination by the Performance Assessment group (PA) of the long-term acceptability and longevity of cementitious materials for repository use. The main purpose of the testing was to assess the evolution of gases (especially CO 2 ) from hydrated cement paste at elevated temperatures and to determine the impact on alkalinity, i.e., the pH value of cement paste pore solution. This information in turn can be used as scoping information to determine if further tests of this nature are needed to support PA. As part of this discussion and evaluation of the PSU results, an assessment of alkalinity in a ''cementitious repository'' and an evaluation of organic materials are presented

  3. Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets

    Science.gov (United States)

    Yang, Liu; Li, Dongmei; Wang, Cong; Yao, Wei; Wang, Hao; Huang, Kaixiang

    2017-07-01

    Currently, all-inorganic cesium lead-halide perovskite nanocrystals have attracted enormous attentions owing to their excellent optical performances. While great efforts have been devoted to CsPbBr3 nanocrystals, the perovskite-related Cs4PbBr6 nanocrystals, which were newly reported, still remained poorly understood. Here, we reported a novel room-temperature reaction strategy to synthesize pure perovskite-related Cs4PbBr6 nanocrystals. Size of the products could be adjusted through altering the amount of ligands, simply. A mixture of two good solvents with different polarity was innovatively used as precursor solvent, being one key to the high-yield Cs4PbBr6 nanocrystals synthesis. Other two keys were Cs+ precursor concentration and surface ligands. Ingenious experiments were designed to reveal the underlying reaction mechanism. No excitonic emission was observed from the prepared Cs4PbBr6 nanocrystals in our work. We considered the green emission which was observed in other reports originated from the avoidless transformation of Cs4PbBr6 into CsPbBr3 nanocrystals. Indeed, the new-prepared Cs4PbBr6 nanocrystals could transform into CsPbBr3 nanosheets with surface ligands mediated. The new-transformed two-dimensional CsPbBr3 nanosheets could evolve into large-size nanosheets. The influences of surface ligand density on the fluorescent intensity and stability of transformed CsPbBr3 nanosheets were also explained. Notably, the photoluminescence quantum yield of the as-transformed CsPbBr3 nanosheets could reach as high as 61.6% in the form of thin film. The fast large-scale synthesis of Cs4PbBr6 nanocrystals and their ligand-mediated transformation into high-fluorescent CsPbBr3 nanosheets will be beneficial to the future optoelectronic applications. Our work provides new approaches to understand the structural evolution and light-emitting principle of perovskite nanocrystals. [Figure not available: see fulltext.

  4. Nitrogen evolution during rapid hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.-C.; Kumagai, M. [Institute of Research and Innovation, Kashiwa (Japan)

    2002-12-01

    The behavior of nitrogen evolution during rapid hydropyrolysis of coal has been investigated at temperatures ranging from 923 to 1123 K and hydrogen pressure up to 5 MPa using a continuous free fall pyrolyzer. Three coals have been tested in this study. The dominant nitrogen gaseous species is ammonia, together with a little amount of HCN because most of HCN is converted to NH{sub 3} through secondary reactions. The results show that the evolution of nitrogen in coal is caused mainly by devolatilization at temperatures below 973 K, while the evolution of volatile nitrogen in char is accelerated with increasing temperature and hydrogen pressure. The mineral matter in coal act as catalysts to promote the evolution of volatile nitrogen in char to N{sub 2} apparently at high temperatures of 1123 K, as found during pyrolysis of coal by Ohtsuka et al. A pseudo-first-order kinetic model was applied to the evolution of nitrogen in coal during rapid hydropyrolysis. The model shows the activation energy for the nitrogen evolution from coal is 36.6 58.6 kJ/mol while the rate of the nitrogen evolution depends on hydrogen pressure in the order of 0.16 0.24. 41 refs., 11 figs., 3 tabs.

  5. (Cretaceous-Palaeogene transition) of central India: implications for ...

    Indian Academy of Sciences (India)

    2009-11-02

    Nov 2, 2009 ... Higher up in the stratigraphic sequence, similar forms continued with simultaneous appearance of new taxa including Scabrastephanocolpites spp. At still higher stratigraphic levels, abundance of fungi especially the mycorrhizal fungi, concurrent with sharp decline in pollen/spore recovery was observed.

  6. Age of the youngest Palaeogene flood basalts in East Greenland

    DEFF Research Database (Denmark)

    Heilmann-Clausen, C.; Piasecki, Stefan; Abrahamsen, Niels

    2008-01-01

    results, this constrains the termination of the East Greenland Paleogene Igneous Province to the Early-Middle Eocene transition (nannoplankton chronozones NP13-NP14/earliest NP15). This is 6-8 Ma younger than according to previous biostratigraphic age assignments. The new data show that flood basalt...

  7. Induration and Biot’s Coefficient of Palaeogene Limestone

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling

    2017-01-01

    In engineering geology and classification of rock masses for civil engineering purposes, the degree of induration for a rock serves as a useful classification parameter. Induration is a measure of how well the grains of a sedimentary rock are cemented together - from loosely cemented/soft rock...... to very competent/slightly metamorphic rock. The Biot coefficient links to the degree of cementation in the capacity of how it relates the elastic deformations with the change in pore pressure. A hypothesis is that the degree of induration could be correlated to the magnitude of the Biot coefficient....... This is tested on 11 Copenhagen Limestone specimens of varying porosity and densities obtained from one borehole with a limestone interval of 30 m. Their induration varies from H2 to H5. Elastic wave propagation measurements are used to establish the Biot coefficient and determination of the mineralogy for H5...

  8. Om religion og evolution

    DEFF Research Database (Denmark)

    Geertz, Armin W.

    2011-01-01

    for kulturens kausale virkning på den menneskelige kognition og ikke mindst den hominine evolution. Ud fra, hvad vi ved om den menneskelige evolution, ses det, at den hominine evolution har en dybde, som sjældent medtænkes i teorier og hypoteser om den menneskelige evolution. Den menneskelige evolution er...

  9. Quasars and galactic evolution

    CERN Document Server

    Woltjer, L

    1978-01-01

    The evolution of quasars is discussed. It is noted that substantial clustering may be present at faint magnitudes. The relationship between quasar evolution and galactic evolution is considered. (4 refs).

  10. Nudging Evolution?

    Directory of Open Access Journals (Sweden)

    Katharine N. Farrell

    2013-12-01

    Full Text Available This Special Feature, "Nudging Evolution? Critical Exploration of the Potential and Limitations of the Concept of Institutional Fit for the Study and Adaptive Management of Social-Ecological Systems," aims to contribute toward the development of social theory and social research methods for the study of social-ecological system dynamics. Our objective is to help strengthen the academic discourse concerning if, and if so, how, to what extent, and in what concrete ways the concept of institutional "fit" might play a role in helping to develop better understanding of the social components of interlinkages between the socioeconomic-cultural and ecological dynamics of social-ecological systems. Two clearly discernible patterns provide a map of this Special Feature: (1 One pattern is the authors' positions regarding the place and role of normativity within their studies and assessment of institutional fit. Some place this at the center of their studies, exploring phenomena endogenous to the process of defining what constitutes institutional fit, whereas others take the formation of norms as a phenomenon exogenous to their study. (2 Another pattern is the type of studies presented: critiques and elaborations of the theory, methods for judging qualities of fit, and/or applied case studies using the concept. As a body of work, these contributions highlight that self-understanding of social-ecological place, whether explicit or implicit, constitutes an important part of the study object, i.e., the role of institutions in social-ecological systems, and that this is, at the same time, a crucial point of reference for the scholar wishing to evaluate what constitutes institutional fit and how it might be brought into being.

  11. STATISTICAL ANALYSIS OF STELLAR EVOLUTION

    OpenAIRE

    van Dyk, DA; DeGennaro, S; Stein, N; Jefferys, WH; von Hippel, T

    2009-01-01

    Color-Magnitude Diagrams (CMDs) are plots that compare the magnitudes (luminosities) of stars in different wavelengths of light (colors). High nonlinear correlations among the mass, color, and surface temperature of newly formed stars induce a long narrow curved point cloud in a CMD known as the main sequence. Aging stars form new CMD groups of red giants and white dwarfs. The physical processes that govern this evolution can be described with mathematical models and explored using complex co...

  12. Evolution of structure and magnetic properties for BaFe{sub 11.9}Al{sub 0.1}O{sub 19} hexaferrite in a wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Trukhanov, A.V., E-mail: truhanov86@mail.ru [National University of Science and Technology MISiS, Leninsky Prospekt, 4, 119049 Moscow (Russian Federation); SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, P. Brovki str., 19, 220072 Minsk, Belorussia (Belarus); Trukhanov, S.V. [National University of Science and Technology MISiS, Leninsky Prospekt, 4, 119049 Moscow (Russian Federation); SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, P. Brovki str., 19, 220072 Minsk, Belorussia (Belarus); Panina, L.V.; Kostishyn, V.G. [National University of Science and Technology MISiS, Leninsky Prospekt, 4, 119049 Moscow (Russian Federation); Kazakevich, I.S. [SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, P. Brovki str., 19, 220072 Minsk, Belorussia (Belarus); Trukhanov, An.V. [National University of Science and Technology MISiS, Leninsky Prospekt, 4, 119049 Moscow (Russian Federation); SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, P. Brovki str., 19, 220072 Minsk, Belorussia (Belarus); Trukhanova, E.L.; Natarov, V.O. [SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, P. Brovki str., 19, 220072 Minsk, Belorussia (Belarus); Turchenko, V.A. [Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 141980 Dubna (Russian Federation); Donetsk Institute of Physics and Technology named after A.A. Galkin of the NAS of Ukraine, 72 R.Luxemburg Str., 83114 Donetsk (Ukraine); Salem, M.M. [National University of Science and Technology MISiS, Leninsky Prospekt, 4, 119049 Moscow (Russian Federation); and others

    2017-03-15

    M-type BaFe{sub 11.9}Al{sub 0.1}O{sub 19} hexaferrite was successfully synthesized by solid state reactions. Precision investigations of crystal and magnetic structures of BaFe{sub 11.9}Al{sub 0.1}O{sub 19} powder by neutron diffraction in the temperature range 4.2–730 K have been performed. Magnetic and electrical properties investigations were carried out in the wide temperature range. Neutron powder diffraction data were successfully refined in approximation for both space groups (SG): centrosymmetric #194 (standard non-polar phase) and non-centrosymmetric #186 (polar phase). It has been shown that at low temperatures (below room temperature) better fitting results (value χ{sup 2}) were for the polar phase (SG: #186) or for the two phases coexistence (SG: #186 and SG: #194). At high temperatures (400–730 K) better fitting results were for SG: #194. It was established coexistence of the dual ferroic properties (specific magnetization and spontaneous polarization) at room temperature. Strong correlation between magnetic and electrical subsystems was demonstrated (magnetoelectrical effect). Temperature dependences of the spontaneous polarization, specific magnetization and magnetoelectrical effect were investigated.

  13. Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system

    International Nuclear Information System (INIS)

    Wang, Yiliang; Chen, Xiuli; Zhou, Huanfu; Fang, Liang; Liu, Laijun; Zhang, Hui

    2013-01-01

    Highlights: ► (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 ceramics were synthesized. ► A systematic structural change was observed near x = 0.07 and x = 0.4. ► A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. ► (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range. - Abstract: (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 [(1 − x)BT–xBZZ, 0.01 ⩽ x ⩽ 0.6] ceramics were synthesized by solid-state reaction technique. Based on the X-ray diffraction data analysis, a systematic structure change from the ferroelectric tetragonal phase to pseudocubic phase and the pseudocubic phase to orthorhombic phase was observed near x = 0.07 and x = 0.4 at room temperature, respectively. Dielectric measurements show a dielectric anomaly, over the temperature range from 50 to 200 °C for the compositions with 0.03 ⩽ x ⩽ 0.09. A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. Moreover, (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range, which indicates that these ceramics can be applied in the temperature stability devices.

  14. Adaptive evolution in ecological communities.

    Directory of Open Access Journals (Sweden)

    Martin M Turcotte

    Full Text Available Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.

  15. Inlet Geomorphology Evolution

    Science.gov (United States)

    2015-04-01

    APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Inlet Geomorphology Evolution 5a. CONTRACT NUMBER 5b...Std Z39-18 Coastal Inlets Research Program Inlet Geomorphology Evolution The Inlet Geomorphology Evolution work unit of the CIRP evaluates

  16. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures

    DEFF Research Database (Denmark)

    Meyer, Simon; Nikiforov, Aleksey V.; Petrushina, Irina M.

    2015-01-01

    One limitation for large scale water electrolysis is the high price of the Pt cathode catalyst. Transition metal carbides, which are considered as some of the most promising non-Pt catalysts, are less active than Pt at room temperature. The present work demonstrates that the situation is different......C > TaC. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved....

  17. Development of a PIGE-Detection System for in-situ Inspection and Quality Assurance in the Evolution of Fast Rotating Parts in High Temperature Environment Manufactured from TiAl

    Directory of Open Access Journals (Sweden)

    S. Neve

    2013-04-01

    Full Text Available Intermetallic -titanium aluminides are a promising material in high temperature technologies. Their high specific strength at temperatures above 700°C offers the possibility for their use as components of aerospace and automotive industries. With a specific weight of 50% of that of the widely used Ni-based superalloys TiAl is very suitable as material for fast rotating parts like turbine blades in aircraft engines and land based power stations or turbocharger rotors. Thus lower mechanical stresses and a reduced fuel consumption and CO2-emission are expected. To overcome the insufficient oxidation protection the halogen effect offers an innovative way. After surface doping using F-implantation or liquid phase-treatment with an F-containing solution and subsequent oxidation at high temperatures the formation of a protective alumina scale can be achieved. By using non-destructive ion beam analyses (PIGE, RBS F was found at the metal/oxide interface. For analysis of large scale components a new vacuum chamber at the IKF was installed and became operative. With this prototype of in-situ quality assurance system for the F-doping of manufactured parts from TiAl some performance test measurements were done and presented in this paper

  18. Development of a PIGE-Detection System for in-situ Inspection and Quality Assurance in the Evolution of Fast Rotating Parts in High Temperature Environment Manufactured from TiAl

    International Nuclear Information System (INIS)

    Neve, S.; Zschau, H. E.; Masset, P.J.; Schütze, M.

    2013-01-01

    Intermetallic γ-titanium aluminides are a promising material in high temperature technologies. Their high specific strength at temperatures above 700 O C offers the possibility for their use as components of aerospace and automotive industries. With a specific weight of 50% of that of the widely used Ni-based superalloys TiAl is very suitable as material for fast rotating parts like turbine blades in aircraft engines and land based power stations or turbocharger rotors. Thus lower mechanical stresses and a reduced fuel consumption and CO 2 -emission are expected. To overcome the insufficient oxidation protection the halogen effect offers an innovative way. After surface doping using F-implantation or liquid phase-treatment with an F-containing solution and subsequent oxidation at high temperatures the formation of a protective alumina scale can be achieved. By using non-destructive ion beam analyses (PIGE, RBS) F was found at the metal/oxide interface. For analysis of large scale components a new vacuum chamber at the IKF was installed and became operative. With this prototype of in-situ quality assurance system for the F-doping of manufactured parts from TiAl some performance test measurements were done and presented in this paper. (author)

  19. On the evolution of stars

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1989-01-01

    A popular survey is given of the present knowledge on evolution and ageing of stars. Main sequence stars, white dwarf stars, and red giant stars are classified in the Hertzsprung-Russell (HR)-diagram by measurable quantities: surface temperature and luminosity. From the HR-diagram it can be concluded to star mass and age. Star-forming processes in interstellar clouds as well as stellar burning processes are illustrated. The changes occurring in a star due to the depletion of the nuclear energy reserve are described. In this frame the phenomena of planetary nebulae, supernovae, pulsars, neutron stars as well as of black holes are explained

  20. Evolution of Edge Pedestal Profiles Between ELMs

    Science.gov (United States)

    Floyd, J. P.; Stacey, W. M.; Groebner, R. J.

    2012-10-01

    The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).

  1. Effect of the Temperature, External Magnetic Field, and Transport Current on Electrical Properties, Vortex Structure Evolution Processes, and Phase Transitions in Subsystems of Superconducting Grains and "Weak Links" of Granular Two-Level High-Temperature Superconductor YBa2Cu3O7-δ

    Science.gov (United States)

    Derevyanko, V. V.; Sukhareva, T. V.; Finkel', V. A.

    2018-03-01

    The temperature dependences of the resistivity of granular high-temperature superconductor YBa2Cu3O7-δ ρ( T) are measured at various transverse external magnetic fields 0 ≤ H ext ≤ 100 Oe in the temperature range from the resistivity onset temperature T ρ = 0 to the superconducting transition critical temperature T c at the transport current density from 50 to 2000 mA/cm2. The effect of the external magnetic field and transport current density on the kinetics of phase transitions in both subsystems of granular two-level HTSC ( T = T c2J, T c1g, T c ) is determined. The feasibility of the topological phase transition, i.e., the Berezinsky-Kosterlitz-Thouless transition, in the Josephson medium at T c2J < T BKT < T c1g "in transport current" is established, and its feasibility conditions are studied.

  2. Has Human Evolution Stopped?

    Directory of Open Access Journals (Sweden)

    Alan R. Templeton

    2010-07-01

    Full Text Available It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important implications for infectious diseases, Mendelian genetic diseases, and systemic diseases in current human populations. Moreover, evolution proceeds by mechanisms other than natural selection. The recent growth in human population size has greatly increased the reservoir of mutational variants in the human gene pool, thereby enhancing the potential for human evolution. The increase in human population size coupled with our increased capacity to move across the globe has induced a rapid and ongoing evolutionary shift in how genetic variation is distributed within and among local human populations. In particular, genetic differences between human populations are rapidly diminishing and individual heterozygosity is increasing, with beneficial health effects. Finally, even when cultural evolution eliminates selection on a trait, the trait can still evolve due to natural selection on other traits. Our traits are not isolated, independent units, but rather are integrated into a functional whole, so selection on one trait can cause evolution to occur on another trait, sometimes with mildly maladaptive consequences.

  3. Biodiversity and evolution of lactic acid bacteria in deferent periods ...

    African Journals Online (AJOL)

    f e c

    2013-04-03

    Apr 3, 2013 ... Key words: Lactic acid bacteria, identification, silage, sorghum, evolution, amylolytic, .... milk was checked which indicates the presence of LAB (Sengun et ..... pH, temperature and salinity cannot be used as reference.

  4. Estimates of the temperature flux-temperature gradient relation above a sea floor

    NARCIS (Netherlands)

    Cimatoribus, A.; van Haren, H.

    2016-01-01

    The relation between the ux of temperature (or buoyancy), the verti-cal temperature gradient and the height above the bottom, is investigatedin an oceanographic context, using high-resolution temperature measure-ments. The model for the evolution of a strati?ed layer by Balmforthet al. (1998) is

  5. PHASE EVOLUTION AND MICROWAVE DIELECTRIC PROPERTIES OF (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) CERAMICS WITH ULTRA-LOW SINTERING TEMPERATURES

    Science.gov (United States)

    Zhou, Di; Guo, Jing; Yao, Xi; Pang, Li-Xia; Qi, Ze-Ming; Shao, Tao

    2012-11-01

    The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics were prepared via the solid state reaction method. The sintering temperature decreased almost linearly from 755°C for (Li0.5Bi0.5)WO4 to 560°C for (Li0.5Bi0.5)MoO4. When the x≤0.3, a wolframite solid solution can be formed. For x = 0.4 and x = 0.6 compositions, both the wolframite and scheelite phases can be formed from the X-ray diffraction analysis, while two different kinds of grains can be revealed from the scanning electron microscopy and energy-dispersive X-ray spectrometer results. High performance of microwave dielectric properties were obtained in the (Li0.5Bi0.5)(W0.6Mo0.4)O4 ceramic sintered at 620°C with a relative permittivity of 31.5, a Qf value of 8500 GHz (at 8.2 GHz), and a temperature coefficient value of +20 ppm/°C. Complex dielectric spectra of pure (Li0.5Bi0.5)WO4 ceramic gained from the infrared spectra were extrapolated down to microwave range, and they were in good agreement with the measured values. The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics might be promising for low temperature co-fired ceramic technology.

  6. Multicolour Observations, Inhomogeneity & Evolution

    OpenAIRE

    Hellaby, Charles

    2000-01-01

    We propose a method of testing source evolution theories that is independent of the effects of inhomogeneity, and thus complementary to other studies of evolution. It is suitable for large scale sky surveys, and the new generation of large telescopes. In an earlier paper it was shown that basic cosmological observations - luminosity versus redshift, area distance versus redshift and number counts versus redshift - cannot separate the effects of cosmic inhomogeneity, cosmic evolution and sourc...

  7. Oxygen evolution reaction catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  8. Stellar structure and evolution

    International Nuclear Information System (INIS)

    Kippernhahn, R.; Weigert, A.

    1990-01-01

    This book introduces the theory of the internal structure of stars and their evolution in time. It presents the basic physics of stellar interiors, methods for solving the underlying equations, and the most important results necessary for understanding the wide variety of stellar types and phenomena. The evolution of stars is discussed from their birth through normal evolution to possibly spectacular final stages. Chapters on stellar oscillations and rotation are included

  9. Adaptability and evolution.

    Science.gov (United States)

    Bateson, Patrick

    2017-10-06

    The capacity of organisms to respond in their own lifetimes to new challenges in their environments probably appeared early in biological evolution. At present few studies have shown how such adaptability could influence the inherited characteristics of an organism's descendants. In part, this has been because organisms have been treated as passive in evolution. Nevertheless, their effects on biological evolution are likely to have been important and, when they occurred, accelerated the pace of evolution. Ways in which this might have happened have been suggested many times since the 1870s. I review these proposals and discuss their relevance to modern thought.

  10. Guess-Work and Reasonings on Centennial Evolution of Surface Air Temperature in Russia. Part III: Where is the Joint Between Norms and Hazards from a Bifurcation Analysis Viewpoint?

    Science.gov (United States)

    Kolokolov, Yury; Monovskaya, Anna

    2016-06-01

    The paper continues the application of the bifurcation analysis in the research on local climate dynamics based on processing the historically observed data on the daily average land surface air temperature. Since the analyzed data are from instrumental measurements, we are doing the experimental bifurcation analysis. In particular, we focus on the discussion where is the joint between the normal dynamics of local climate systems (norms) and situations with the potential to create damages (hazards)? We illustrate that, perhaps, the criteria for hazards (or violent and unfavorable weather factors) relate mainly to empirical considerations from human opinion, but not to the natural qualitative changes of climate dynamics. To build the bifurcation diagrams, we base on the unconventional conceptual model (HDS-model) which originates from the hysteresis regulator with double synchronization. The HDS-model is characterized by a variable structure with the competition between the amplitude quantization and the time quantization. Then the intermittency between three periodical processes is considered as the typical behavior of local climate systems instead of both chaos and quasi-periodicity in order to excuse the variety of local climate dynamics. From the known specific regularities of the HDS-model dynamics, we try to find a way to decompose the local behaviors into homogeneous units within the time sections with homogeneous dynamics. Here, we present the first results of such decomposition, where the quasi-homogeneous sections (QHS) are determined on the basis of the modified bifurcation diagrams, and the units are reconstructed within the limits connected with the problem of shape defects. Nevertheless, the proposed analysis of the local climate dynamics (QHS-analysis) allows to exhibit how the comparatively modest temperature differences between the mentioned units in an annual scale can step-by-step expand into the great temperature differences of the daily

  11. Thermomechanical behavior and microstructural evolution of a Ni(Pd)-rich Ni{sub 24.3}Ti{sub 49.7}Pd{sub 26} high temperature shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Benafan, O., E-mail: othmane.benafan@nasa.gov [NASA Glenn Research Center, Structures and Materials Division, Cleveland, OH 44135 (United States); Garg, A. [University of Toledo, Toledo, OH 43606 (United States); NASA Glenn Research Center, Structures and Materials Division, Cleveland, OH 44135 (United States); Noebe, R.D.; Bigelow, G.S.; Padula, S.A. [NASA Glenn Research Center, Structures and Materials Division, Cleveland, OH 44135 (United States); Gaydosh, D.J. [Ohio Aerospace Institute, Cleveland, OH 44142 (United States); NASA Glenn Research Center, Structures and Materials Division, Cleveland, OH 44135 (United States); Vaidyanathan, R. [Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B.; Vogel, S.C. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-09-15

    Highlights: • A Ni(Pd)-rich Ni{sub 24.3}Ti{sub 49.7}Pd{sub 26} high temperature shape memory alloy was characterized. • Aging resulted in fine dispersion of nano-sized precipitates. • Thermomechanical cycling resulted in dimensional instabilities due to lattice defects. • A two-way shape memory effect strain of 2% strain was obtained after cycling. - Abstract: The effect of thermomechanical cycling on a slightly Ni(Pd)-rich Ni{sub 24.3}Ti{sub 49.7}Pd{sub 26} (near stochiometric Ni–Ti basis with Pd replacing Ni) high temperature shape memory alloy was investigated. Aged tensile specimens (400 °C/24 h/furnace cooled) were subjected to constant-stress thermal cycling in conjunction with microstructural assessment via in situ neutron diffraction and transmission electron microscopy (TEM), before and after testing. It was shown that in spite of the slightly Ni(Pd)-rich composition and heat treatment used to precipitation harden the alloy, the material exhibited dimensional instabilities with residual strain accumulation reaching 1.5% over 10 thermomechanical cycles. This was attributed to insufficient strengthening of the material (insufficient volume fraction of precipitate phase) to prevent plasticity from occurring concomitant with the martensitic transformation. In situ neutron diffraction revealed the presence of retained martensite while cycling under 300 MPa stress, which was also confirmed by transmission electron microscopy of post-cycled samples. Neutron diffraction analysis of the post-thermally-cycled samples under no-load revealed residual lattice strains in the martensite and austenite phases, remnant texture in the martensite phase, and peak broadening of the austenite phase. Texture developed in the martensite phase was composed mainly of those martensitic tensile variants observed during thermomechanical cycling. Presence of a high density of dislocations, deformation twins, and retained martensite was revealed in the austenite state via in

  12. A cold-adapted endoglucanase from camel rumen with high catalytic activity at moderate and low temperatures: an anomaly of truly cold-adapted evolution in a mesophilic environment.

    Science.gov (United States)

    Khalili Ghadikolaei, Kamran; Gharechahi, Javad; Haghbeen, Kamahldin; Akbari Noghabi, Kambiz; Hosseini Salekdeh, Ghasem; Shahbani Zahiri, Hossein

    2018-03-01

    Endoglucanases are important enzymes in plant biomass degradation. They have current and potential applications in various industrial sectors including human and animal food processing, textile, paper, and renewable biofuel production. It is assumed that the cold-active endoglucanases, with high catalytic rates in moderate and cold temperatures, can improve the cost-effectiveness of industrial processes by lowering the need for heating and, thus, energy consumption. In this study, the endoglucanase CelCM3 was procured from a camel rumen metagenome via gene cloning and expression in Escherichia coli BL21 (DE3). The maximum activity of the enzyme on carboxymethyl cellulose (CMC) was obtained at pH 5 and 30 °C with a V max and K m of 339 U/mg and 2.57 mg/ml, respectively. The enzyme with an estimated low melting temperature of 45 °C and about 50% activity at 4 °C was identified to be cold-adapted. A thermodynamic analysis corroborated that CelCM3 with an activation energy (E a ), enthalpy of activation (ΔH), and Gibb's free energy (ΔG) of, respectively, 18.47 kJ mol -1 , 16.12 kJ mol -1 , and 56.09 kJ mol -1 is a cold-active endoglucanase. In addition, CelCM3 was tolerant of metal ions, non-ionic detergents, urea, and organic solvents. Given these interesting characteristics, CelCM3 shows promise to meet the requirements of industrial applications.

  13. Crowdsourcing urban air temperatures from smartphone battery temperatures

    Science.gov (United States)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  14. Temperature Pill

    Science.gov (United States)

    1988-01-01

    Ingestible Thermal Monitoring System was developed at Johns Hopkins University as means of getting internal temperature readings for treatments of such emergency conditions as dangerously low (hypothermia) and dangerously high (hyperthermia) body temperatures. ITMS's accuracy is off no more than one hundredth of a degree and provides the only means of obtaining deep body temperature. System has additional applicability in fertility monitoring and some aspects of surgery, critical care obstetrics, metabolic disease treatment, gerontology (aging) and food processing research. Three-quarter inch silicone capsule contains telemetry system, micro battery, and a quartz crystal temperature sensor inserted vaginally, rectally, or swallowed.

  15. Evolution of Constructivism

    Science.gov (United States)

    Liu, Chu Chih; Chen, I Ju

    2010-01-01

    The contrast between social constructivism and cognitive constructivism are depicted in different ways in many studies. The purpose of this paper is to summarize the evolution of constructivism and put a focus on social constructivism from the perception of Vygotsky. This study provides a general idea of the evolution of constructivism for people…

  16. Evolution: Theory or Dogma?

    Science.gov (United States)

    Mayer, William V.

    In this paper the author examines the question of whether evolution is a theory or a dogma. He refutes the contention that there is a monolithic scientific conspiracy to present evolution as dogma and suggests that his own presentation might be more appropriately entitled "Creationism: Theory or Dogma." (PEB)

  17. Kognition, evolution og Bibel

    DEFF Research Database (Denmark)

    Jensen, Hans Jørgen Lundager

    2012-01-01

    En opfordring til, at Bibelvidneskaberne oprienterer sig i retning af aktuelle teorier om bio-kulturel evolution (Merlin Donald, aksetids-teori hos fx Robert Bellah)......En opfordring til, at Bibelvidneskaberne oprienterer sig i retning af aktuelle teorier om bio-kulturel evolution (Merlin Donald, aksetids-teori hos fx Robert Bellah)...

  18. Evolution for Young Victorians

    Science.gov (United States)

    Lightman, Bernard

    2012-01-01

    Evolution was a difficult topic to tackle when writing books for the young in the wake of the controversies over Darwin's "Origin of Species." Authors who wrote about evolution for the young experimented with different ways of making the complex concepts of evolutionary theory accessible and less controversial. Many authors depicted presented…

  19. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  20. Evolution, epigenetics and cooperation

    Indian Academy of Sciences (India)

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the ...

  1. Recessed and influence evolution of inside temperatures of buildings in warm moist climates; El retranqueo y su influencia en la evolucion de las temperaturas interiores de edificios en climas calidos humedos

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Maria V; Quiros, Carlos; Rubio, Dalmary [Instituto de Investigaciones de la Facultad de Arquitectura de la Universidad del Zulia, Maracaibo (Venezuela)

    2000-07-01

    The use of combined solar protections and recessed windows in buildings, evidentially reduces the heat gain towards the interior of spaces, because the greatest part of the building's heat gain is received by solar radiation that penetrates through the windows. In this investigation the influence of the dimension of recessed windows in the heat and temperature gain of interior air will be determined. In order to simulate interior conditions CODYBA software was used, applied to a model room of 9 m{sup 2} with one facade exposed to the exterior and a window 2/3 the size of the facade. [Spanish] El uso de protecciones solares y del retranqueo en las aberturas en las edificaciones evidentemente reduce la ganancia de calor hacia el interior de los espacios, ya que la mayor parte del aporte calorifico a las edificaciones lo constituye la radiacion solar que penetra a traves de las ventanas. En este trabajo se determinara la influencia que tiene la dimension del retranqueo de las ventanas en las ganancias de calor y las temperaturas del aire interior. Para simular las condiciones interiores se ha utilizado el programa de computacion CODYBA, aplicado a una habitacion de 9 m{sup 2} , con una sola fachada expuesta al exterior y una abertura igual a 2/3 del tamano de la fachada.

  2. Evolution of complex dynamics

    Science.gov (United States)

    Wilds, Roy; Kauffman, Stuart A.; Glass, Leon

    2008-09-01

    We study the evolution of complex dynamics in a model of a genetic regulatory network. The fitness is associated with the topological entropy in a class of piecewise linear equations, and the mutations are associated with changes in the logical structure of the network. We compare hill climbing evolution, in which only mutations that increase the fitness are allowed, with neutral evolution, in which mutations that leave the fitness unchanged are allowed. The simple structure of the fitness landscape enables us to estimate analytically the rates of hill climbing and neutral evolution. In this model, allowing neutral mutations accelerates the rate of evolutionary advancement for low mutation frequencies. These results are applicable to evolution in natural and technological systems.

  3. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  4. Pricing of temperature index insurance

    Directory of Open Access Journals (Sweden)

    Che Mohd Imran Che Taib

    2012-01-01

    Full Text Available The aim of this paper is to study pricing of weather insurance contracts based on temperature indices. Three different pricing methods are analysed: the classical burn approach, index modelling and temperature modelling. We take the data from Malaysia as our empirical case. Our results show that there is a significant difference between the burn and index pricing approaches on one hand, and the temperature modelling method on the other. The latter approach is pricing the insurance contract using a seasonal autoregressive time series model for daily temperature variations, and thus provides a precise probabilistic model for the fine structure of temperature evolution. We complement our pricing analysis by an investigation of the profit/loss distribution from the contract, in the perspective of both the insured and the insurer.

  5. Evolution of Particle Bed Reactor Fuel

    Science.gov (United States)

    Jensen, Russell R.; Evans, Robert S.; Husser, Dewayne L.; Kerr, John M.

    1994-07-01

    To realize the potential performance advantages inherent in a particle bed reactor (PBR) for nuclear thermal propulsion (NTP) applications, high performance particle fuel is required. This fuel must operate safely and without failure at high temperature in high pressure, flowing hydrogen propellant. The mixed mean outlet temperature of the propellant is an important characteristic of PBR performance. This temperature is also a critical parameter for fuel particle design because it dictates the required maximum fuel operating temperature. In this paper, the evolution in PBR fuel form to achieve higher operating temperatures is discussed and the potential thermal performance of the different fuel types is evaluated. It is shown that the optimum fuel type for operation under the demanding conditions in a PBR is a coated, solid carbide particle.

  6. Chromosomal Evolution in Chiroptera.

    Science.gov (United States)

    Sotero-Caio, Cibele G; Baker, Robert J; Volleth, Marianne

    2017-10-13

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae), focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  7. Chromosomal Evolution in Chiroptera

    Directory of Open Access Journals (Sweden)

    Cibele G. Sotero-Caio

    2017-10-01

    Full Text Available Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62. As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae, focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  8. Contemporary evolution strategies

    CERN Document Server

    Bäck, Thomas; Krause, Peter

    2013-01-01

    Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies. This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the a

  9. Weathering and landscape evolution

    Science.gov (United States)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.

  10. Dual phase evolution

    CERN Document Server

    Green, David G; Abbass, Hussein A

    2014-01-01

    This book explains how dual phase evolution operates in all these settings and provides a detailed treatment of the subject. The authors discuss the theoretical foundations for the theory, how it relates to other phase transition phenomena and its advantages in evolutionary computation and complex adaptive systems. The book provides methods and techniques to use this concept for problem solving. Dual phase evolution concerns systems that evolve via repeated phase shifts in the connectivity of their elements. It occurs in vast range of settings, including natural systems (species evolution, landscape ecology, geomorphology), socio-economic systems (social networks) and in artificial systems (annealing, evolutionary computing).

  11. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  12. Gas evolution behavior of aluminum in mortar

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs

  13. Science, evolution, and creationism

    National Research Council Canada - National Science Library

    Committee on Revising Science and Creationism

    ... are more comfortable. In the book Science, Evolution, and Creationism, a group of experts assembled by the National Academy of Sciences and the Institute of Medicine explain the fundamental methods of science, document...

  14. Co-Evolution.

    Science.gov (United States)

    McGhee, Robert

    2002-01-01

    Discusses the role of techniques of DNA analysis in assessing the genetic relationships between various species. Focuses on wolf-dog evolution using DNA evidence and historical data about human/wolf-dog relationships. (DDR)

  15. Evolution of dosimetric phantoms

    International Nuclear Information System (INIS)

    Reddy, A.R.

    2010-01-01

    In this oration evolution of the dosimetric phantoms for radiation protection and for medical use is briefly reviewed. Some details of the development of Indian Reference Phantom for internal dose estimation are also presented

  16. Evolution of microbial pathogens

    National Research Council Canada - National Science Library

    DiRita, Victor J; Seifert, H. Steven

    2006-01-01

    ... A. Hogan vvi ■ CONTENTS 8. Evolution of Pathogens in Soil Rachel Muir and Man-Wah Tan / 131 9. Experimental Models of Symbiotic Host-Microbial Relationships: Understanding the Underpinnings of ...

  17. Evolution, epigenetics and cooperation.

    Science.gov (United States)

    Bateson, Patrick

    2014-04-01

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the organism and higher-order assemblages of organisms. These ideas impact on the theories of how cooperation might have evolved. Two of the theories, i.e. that cooperating individuals are genetically related or that they cooperate for self-interested reasons, have been accepted for a long time. The idea that adaptation takes place at the level of groups is much more controversial. However, bringing together studies of development with those of evolution is taking away much of the heat in the debate about the evolution of group behaviour.

  18. Chemical evolution and life

    Directory of Open Access Journals (Sweden)

    Malaterre Christophe

    2015-01-01

    Full Text Available In research on the origins of life, the concept of “chemical evolution” aims at explaining the transition from non-living matter to living matter. There is however strong disagreement when it comes to defining this concept more precisely, and in particular with reference to a chemical form of Darwinian evolution: for some, chemical evolution is nothing but Darwinian evolution applied to chemical systems before life appeared; yet, for others, it is the type of evolution that happened before natural selection took place, the latter being the birthmark of living systems. In this contribution, I review the arguments defended by each side and show how both views presuppose a dichotomous definition of “life”.

  19. Precambrian Surface Temperatures and Molecular Phylogeny

    Science.gov (United States)

    Schwartzman, David; Lineweaver, Charles H.

    2004-06-01

    The timing of emergence of major organismal groups is consistent with the climatic temperature being equal to their upper temperature limit of growth (T_{max}), implying a temperature constraint on the evolution of each group, with the climatic temperature inferred from the oxygen isotope record of marine cherts. Support for this constraint comes from the correlation of T_{max} with the rRNA molecular phylogenetic distance from the last common ancestor (LCA) for both thermophilic Archaea and Bacteria. In particular, this correlation for hyperthermophilic Archaea suggests a climatic temperature of about 120°C at the time of the LCA, likely in the Hadean.

  20. Time evolution of laser-induced breakdown spectrometry of lead

    International Nuclear Information System (INIS)

    Li Zhongwen; Zhang Jianhui

    2011-01-01

    The plasma have been generated by a pulsed Nd: YAG laser at the fundamental wavelength of 1.06 μm ablating a metal lead target in air at atmospheric pressure, and the time resolved emission spectra were gotten. Time evolution of electron temperatures were measured according to the wavelength and relative intensity of spectra; then the electron densities were obtained from the Stark broadening of Pb-line; the time evolution of electron temperatures and electron densities along the direction plumbing the target surface were imaged. The analysis of results showed that electron temperature averaged to 14500 K, electron densities up to 10 17 cm -3 . The characteristics of time evolution of electron temperature and electron density were qualitatively explained from the aspect of generation mechanism of laser-induced plasmas. (authors)

  1. Temperature metrology

    Science.gov (United States)

    Fischer, J.; Fellmuth, B.

    2005-05-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

  2. Temperature metrology

    International Nuclear Information System (INIS)

    Fischer, J; Fellmuth, B

    2005-01-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

  3. Evolution of interstellar grains

    International Nuclear Information System (INIS)

    Greenberg, J.M.

    1984-01-01

    The principal aim of this chapter is to derive the properties of interstellar grains as a probe of local physical conditions and as a basis for predicting such properties as related to infrared emissivity and radiative transfer which can affect the evolution of dense clouds. The first sections will develop the criteria for grain models based directly on observations of gas and dust. A summary of the chemical evolution of grains and gas in diffuse and dense clouds follows. (author)

  4. Evolution of Things

    OpenAIRE

    Eiben, A. E.; Ferreira, N.; Schut, M.; Kernbach, S.

    2011-01-01

    Evolution is one of the major omnipresent powers in the universe that has been studied for about two centuries. Recent scientific and technical developments make it possible to make the transition from passively understanding to actively mastering evolution. As of today, the only area where human experimenters can design and manipulate evolutionary processes in full is that of Evolutionary Computing, where evolutionary processes are carried out in a digital space, inside computers, in simulat...

  5. Manipulation of quantum evolution

    Science.gov (United States)

    Cabera, David Jose Fernandez; Mielnik, Bogdan

    1994-01-01

    The free evolution of a non-relativistic charged particle is manipulated using time-dependent magnetic fields. It is shown that the application of a programmed sequence of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 'go back in time' to recover its past shape. The possibility of more general operations upon the Schrodinger wave packet is discussed.

  6. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Matteucci, F.; Consiglio Nazionale delle Ricerche, Frascati

    1989-01-01

    In principle, a good model of galactic chemical evolution should fulfil the majority of well established observational constraints. The goal of this paper is to review the observational data together with the existing chemical evolution models for the Milky Way (the disk), Blue Compact and Elliptical galaxies and to show how well the models can account for the observations. Some open problems and future prospects are also discussed. (author)

  7. Developing theology for evolution

    Directory of Open Access Journals (Sweden)

    Chris Wiltsher

    2013-07-01

    Full Text Available This speculative paper explores one idea for approaching some of the problems which arise when the doctrines of Christian theology meet the current scientific understanding of evolution through natural selection. The main suggestion is that Christian theology should relax the requirement that God controls everything. Some implications of this move are explored, with a brief look at how similar ideas might be of use for non-Christian religions entering into dialogue with the theory of evolution

  8. Software evolution with XVCL

    DEFF Research Database (Denmark)

    Zhang, Weishan; Jarzabek, Stan; Zhang, Hongyu

    2004-01-01

    This chapter introduces software evolution with XVCL (XML-based Variant Configuration Language), which is an XML-based metaprogramming technique. As the software evolves, a large number of variants may arise, especially whtn such kinds of evolutions are related to multiple platforms as shown in our...... case study. Handling variants and tracing the impact of variants across the development lifecycle is a challenge. This chapter shows how we can maintain different versions of software in a reuse-based way....

  9. Evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  10. Divergent Cumulative Cultural Evolution

    OpenAIRE

    Marriott, Chris; Chebib, Jobran

    2016-01-01

    Divergent cumulative cultural evolution occurs when the cultural evolutionary trajectory diverges from the biological evolutionary trajectory. We consider the conditions under which divergent cumulative cultural evolution can occur. We hypothesize that two conditions are necessary. First that genetic and cultural information are stored separately in the agent. Second cultural information must be transferred horizontally between agents of different generations. We implement a model with these ...

  11. Passive Scalar Evolution in Peripheral Region

    OpenAIRE

    Lebedev, V. V.; Turitsyn, K. S.

    2003-01-01

    We consider evolution of a passive scalar (concentration of pollutants or temperature) in a chaotic (turbulent) flow. A universal asymptotic behavior of the passive scalar decay (homogenization) related to peripheral regions (near walls) is established. The passive scalar moments and its pair correlation function in the peripheral region are analyzed. A special case investigated in our paper is the passive scalar decay along a pipe.

  12. Microstructural evolution of hydroformed Inconel 625 bellows

    Energy Technology Data Exchange (ETDEWEB)

    Pavithra, E., E-mail: epavithrasenthil@gmail.com; Senthil Kumar, V.S., E-mail: vsskumar@annauniv.edu

    2016-06-05

    Fatigue cycle tests of Inconel 625 superalloy bellows expansion joints were conducted using a Fatigue testing machine at both room and elevated (650 °C) temperatures. Optical Microscope, Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were employed to investigate the microstructure evolution of grains and its boundaries. The intermetallic phases like γ″ were found and carbide precipitates were observed on the grain boundaries at elevated temperature. The recrystallization of the grains and its growth at the elevated temperature is characterized. - Highlights: • The fatigue test is conducted for Inconel 625 bellows in both room and elevated (650 °C) temperatures. • The investigation on the microstructural study of Fatigue behaviour of Inconel 625 Bellows Expansion joints. • The characterisation studies were done by Optical microscope and SEM/EDAS.

  13. Microstructural evolution of hydroformed Inconel 625 bellows

    International Nuclear Information System (INIS)

    Pavithra, E.; Senthil Kumar, V.S.

    2016-01-01

    Fatigue cycle tests of Inconel 625 superalloy bellows expansion joints were conducted using a Fatigue testing machine at both room and elevated (650 °C) temperatures. Optical Microscope, Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were employed to investigate the microstructure evolution of grains and its boundaries. The intermetallic phases like γ″ were found and carbide precipitates were observed on the grain boundaries at elevated temperature. The recrystallization of the grains and its growth at the elevated temperature is characterized. - Highlights: • The fatigue test is conducted for Inconel 625 bellows in both room and elevated (650 °C) temperatures. • The investigation on the microstructural study of Fatigue behaviour of Inconel 625 Bellows Expansion joints. • The characterisation studies were done by Optical microscope and SEM/EDAS.

  14. The theory of evolution

    Directory of Open Access Journals (Sweden)

    Oleg Bazaluk

    2015-06-01

    Full Text Available The book The Theory of Evolution: from the Space Vacuum to Neural Ensembles and Moving Forward, an edition of 100 copies, was published in Russian language, in December 2014 in Kiev. Its Russian version is here: http://en.bazaluk.com/journals.html. Introduction, Chapter 10 and Conclusion published in English for the first time. Since 2004 author have been researching in the field of theory of Evolution, Big History. The book was written on the base of analysis of more than 2000 primary sources of this research topic. The volume is 90,000 words (with Reference. The book is for a wide range of professionals, from students to professors and researchers working in the fields of: philosophical anthropology, philosophy, Big History, cosmology, biology, neuroscience and etc. In the book, the author defines the evolution as continuous and nonlinear complication of the structure of matter, the types of interaction and environments; analyzes existing in modern science and philosophy approaches to the research of the process of evolution, degree of development of the factors and causes of evolution. Unifying interdisciplinary researches of evolution in cosmology, biology, neuroscience and philosophy, the author presents his vision of the model of «Evolving Matter», which allows us to consider not only the laws of transition of space vacuum in neural ensembles but also to see our Universe as a complication, heterogeneous organization. Interdisciplinary amount of information on the theory of evolution is systematized and a new method of world perception is proposed in the book.

  15. Evolution: from cosmogenesis to biogenesis

    International Nuclear Information System (INIS)

    Lukacs, B.; Berczi, Sz.; Molnar, I.; Paal, G.

    1990-11-01

    The volume contains the material of an interdisciplinary evolution symposium. The purpose was to shed some light on possible connections between steps of evolution of matter on different levels of organisation. The topics involved are as follow: cosmogenesis; galactic and stellar evolution; formation and evolution of the solar system; global atmospheric and tectonic changes of Earth; viral evolution; phylogeny and evolution of terrestrial life; evolution of neural system; hominization. The material also includes some discussions of the underlying phenomena and laws of nature. (author)

  16. Temperature effects on the Davydov soliton

    DEFF Research Database (Denmark)

    Cruzeiro, L.; Halding, J.; Christiansen, Peter Leth

    1988-01-01

    As a possible mechanism for energy storage and transport in proteins, Davydov has proposed soliton formation and propagation. In this paper we investigate the stability of Davydov solitons at biological temperatures. From Davydov’s original theory evolution equations are derived quantum mechanica......As a possible mechanism for energy storage and transport in proteins, Davydov has proposed soliton formation and propagation. In this paper we investigate the stability of Davydov solitons at biological temperatures. From Davydov’s original theory evolution equations are derived quantum...

  17. Lossless Conditional Schema Evolution

    DEFF Research Database (Denmark)

    Jensen, Ole Guttorm; Bøhlen, Michael Hanspeter

    2003-01-01

    The paper considers conditional schema evolution, where schema changes change the schema of the tuples that satisfy the change condition. When the schema of a relation change some tuples may no longer fit the current schema. Handling the mismatch between the intended schema of tuples and the reco......The paper considers conditional schema evolution, where schema changes change the schema of the tuples that satisfy the change condition. When the schema of a relation change some tuples may no longer fit the current schema. Handling the mismatch between the intended schema of tuples...... and the recorded schema of tuples is at the core of a DBMS that supports schema evolution. We propose to keep track of schema mismatches at the level of individual tuples, and prove that conditionally evolving schemas, in contrast to current commercial database systems, are lossless when the schema evolves...

  18. Evolution of Scale Worms

    DEFF Research Database (Denmark)

    Gonzalez, Brett Christopher

    ) caves, and the interstitium, recovering six monophyletic clades within Aphroditiformia: Acoetidae, Aphroditidae, Eulepethidae, Iphionidae, Polynoidae, and Sigalionidae (inclusive of the former ‘Pisionidae’ and ‘Pholoidae’), respectively. Tracing of morphological character evolution showed a high degree...... of adaptability and convergent evolution between relatively closely related scale worms. While some morphological and behavioral modifications in cave polynoids reflected troglomorphism, other modifications like eye loss were found to stem from a common ancestor inhabiting the deep sea, further corroborating...... the deep sea ancestry of scale worm cave fauna. In conclusion, while morphological characterization across Aphroditiformia appears deceptively easy due to the presence of elytra, convergent evolution during multiple early radiations across wide ranging habitats have confounded our ability to reconstruct...

  19. Education and Evolution

    DEFF Research Database (Denmark)

    Hjermitslev, Hans Henrik

    2015-01-01

    Herbert Spencer’s ideas were first introduced to a Scandinavian audience in the early 1870s when the Danish philosopher Harald Høffding published and lectured on his evolutionary philosophy. At this time, Høffding also played an important role in disseminating Charles Darwin’s theory of evolution...... and in discussing the philosophical consequences of an evolutionary worldview. In the late 1870s and 1880s several of Spencer’s works were translated into Danish and Swedish and he became a household name among liberal intellectuals who primarily discussed his views on education and evolution. His most influential...... known foreign thinkers in the general public at the time of his death in 1903. Moreover, in the decades around 1900 Spencer’s thoughts on education were part of the curricula at many colleges of education. Spencer’s ideas on evolution and education were thus widely circulated and positively received...

  20. Quantum evolution across singularities

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg

    2008-01-01

    Attempts to consider evolution across space-time singularities often lead to quantum systems with time-dependent Hamiltonians developing an isolated singularity as a function of time. Examples include matrix theory in certain singular time-dependent backgounds and free quantum fields on the two-dimensional compactified Milne universe. Due to the presence of the singularities in the time dependence, the conventional quantum-mechanical evolution is not well-defined for such systems. We propose a natural way, mathematically analogous to renormalization in conventional quantum field theory, to construct unitary quantum evolution across the singularity. We carry out this procedure explicitly for free fields on the compactified Milne universe and compare our results with the matching conditions considered in earlier work (which were based on the covering Minkowski space)

  1. Boussinesq evolution equations

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Schaffer, H.; Madsen, Per A.

    2004-01-01

    This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...

  2. Software architecture evolution

    DEFF Research Database (Denmark)

    Barais, Olivier; Le Meur, Anne-Francoise; Duchien, Laurence

    2008-01-01

    Software architectures must frequently evolve to cope with changing requirements, and this evolution often implies integrating new concerns. Unfortunately, when the new concerns are crosscutting, existing architecture description languages provide little or no support for this kind of evolution....... The software architect must modify multiple elements of the architecture manually, which risks introducing inconsistencies. This chapter provides an overview, comparison and detailed treatment of the various state-of-the-art approaches to describing and evolving software architectures. Furthermore, we discuss...... one particular framework named Tran SAT, which addresses the above problems of software architecture evolution. Tran SAT provides a new element in the software architecture descriptions language, called an architectural aspect, for describing new concerns and their integration into an existing...

  3. Temperature profile evolution in quenching high-Tc ...

    Indian Academy of Sciences (India)

    2015-11-27

    Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: Anurag Srivastava, C. S. Praveen, H. S. Tewari. © 2015 Indian Academy of Sciences, Bengaluru. Contact | Site index.

  4. RADIATION MODEL FOR PREDICTING TEMPERATURE EVOLUTION IN SOLAR COOKER

    Directory of Open Access Journals (Sweden)

    FARID CHEJNE

    2011-01-01

    Full Text Available Un modelo matemático que describe y simula el comportamiento térmico de una estufa solar fue desarrollado en base en la analogía de resistencias aléctricas. El modelo matemático incluye los tres diferentes mecanismos de transferencia de calor entre las diferentes superfi cies de la cocina solar y su entorno. El modelo matemático se utilizó para predecir la generación de entropía y de su efi ciencia; tambien, fue utilizado para evaluar los parametros de diseño de una estufa solar tipo caja. Los datos experimentales y teóricos fueron comparados satisfactoriamente.

  5. Last interglacial temperature evolution – a model inter-comparison

    NARCIS (Netherlands)

    Bakker, P.; Stone, E.J.; Charbit, S.; Gröger, M.; Krebs-Kanzow, U.; Ritz, S.P.; Varma, V.; Khon, S.; Lunt, D.J.; Mikolajewicz, U.; Prange, M.; Renssen, H.; Schneider, B.; Schulz, M.

    2013-01-01

    There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG). This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an

  6. Validering av Evolution 220

    OpenAIRE

    Krakeli, Tor-Arne

    2013-01-01

    - Det har blitt kjøpt inn et nytt spektrofotometer (Evolution 220, Thermo Scientific) til BioLab Nofima. I den forbindelsen har det blitt utført en validering som involverer kalibreringsstandarder fra produsenten og en test på normal distribusjon (t-test) på to metoder (Total fosfor, Tryptofan). Denne valideringen fant Evolution 220 til å være et akseptabelt alternativ til det allerede benyttede spektrofotometeret (Helios Beta). På bakgrunn av noen instrumentbegrensninger må de aktuelle an...

  7. TMDs: Evolution, modeling, precision

    Directory of Open Access Journals (Sweden)

    D’Alesio Umberto

    2015-01-01

    Full Text Available The factorization theorem for qT spectra in Drell-Yan processes, boson production and semi-inclusive deep inelastic scattering allows for the determination of the non-perturbative parts of transverse momentum dependent parton distribution functions. Here we discuss the fit of Drell-Yan and Z-production data using the transverse momentum dependent formalism and the resummation of the evolution kernel. We find a good theoretical stability of the results and a final χ2/points ≲ 1. We show how the fixing of the non-perturbative pieces of the evolution can be used to make predictions at present and future colliders.

  8. Emergence and Evolution

    DEFF Research Database (Denmark)

    Bullwinkle, Tammy J; Ibba, Michael

    2013-01-01

    ancestor and as such they provide insights into the evolution and development of the extant genetic code. Although the aaRSs have long been viewed as a highly conserved group of enzymes, findings within the last couple of decades have started to demonstrate how diverse and versatile these enzymes really...... are. Beyond their central role in translation, aaRSs and their numerous homologs have evolved a wide array of alternative functions both inside and outside translation. Current understanding of the emergence of the aaRSs, and their subsequent evolution into a functionally diverse enzyme family...

  9. Evolution 2.0

    DEFF Research Database (Denmark)

    Andersen, Casper; Bek-Thomsen, Jakob; Clasen, Mathias

    2013-01-01

    Studies in the history of science and education have documented that the reception and understanding of evolutionary theory is highly contingent on local factors such as school systems, cultural traditions, religious beliefs, and language. This has important implications for teaching evolution...... audiences readily available. As more and more schools require teachers to use low cost or free web-based materials, in the research community we need to take seriously how to facilitate that demand in communication strategies on evolution. This article addresses this challenge by presenting the learning...

  10. Methylome evolution in plants.

    Science.gov (United States)

    Vidalis, Amaryllis; Živković, Daniel; Wardenaar, René; Roquis, David; Tellier, Aurélien; Johannes, Frank

    2016-12-20

    Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over long timescales is largely a byproduct of genomic changes. By contrast, methylome evolution over short timescales appears to be driven mainly by spontaneous epimutational events. We argue that novel methods based on analyses of the methylation site frequency spectrum (mSFS) of natural populations can provide deeper insights into the evolutionary forces that act at each timescale.

  11. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Vigroux, Laurent

    1979-01-01

    This research thesis addresses theories on the chemical evolution of galaxies which aim at explaining abundances of different elements in galaxies, and more particularly aims at improving the model by modifying hypotheses. After a description of the simple model and of its uncertainties, the author shows how it is possible to understand the evolution of the main elements. Predictions obtained with this model are then compared with the present knowledge on galaxies by considering them according to an increasing complexity: Sun's neighbourhood, our galaxy, other spiral galaxies, elliptical galaxies, and finally galaxy clusters. A specific attention is given to irregular galaxies which are the simplest systems [fr

  12. Evolution of permeability in diatomaceous rocks mediated by pressure solution

    International Nuclear Information System (INIS)

    Yasuhara, Hideaki; Kinoshita, Naoki; Kurikami, Hiroshi; Kishida, Kiyoshi

    2007-01-01

    A conceptual model is presented to follow the evolution of permeability in diatomaceous rocks mediated by pressure solution. The progress of compaction and the evolution of permeability may be followed with time. Specifically, the main minerals of diatomaceous rocks that are quartz, cristobalite, and amorphous silica, are focused to examine differences of the permeability evolutions among them at effective stresses of 5, and 10 MPa, and temperatures of 20 and 90degC. The rates and magnitudes of permeability reduction increase with increase of the dissolution rate constants. Ultimate permeabilities reduce to the order of 90% at the completion of dissolution-mediated compaction. (author)

  13. Numerical modelling of the atmospheric mixing-layer diurnal evolution

    International Nuclear Information System (INIS)

    Molnary, L. de.

    1990-03-01

    This paper introduce a numeric procedure to determine the temporal evolution of the height, potential temperature and mixing ratio in the atmospheric mixing layer. The time and spatial derivatives were evaluated via forward in time scheme to predict the local evolution of the mixing-layer parameters, and a forward in time, upstream in space scheme to predict the evolution of the mixing-layer over a flat region with a one-dimensional advection component. The surface turbulent fluxes of sensible and latent heat were expressed using a simple sine wave that is function of the hour day and kind of the surface (water or country). (author) [pt

  14. temperature overspecification

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghan

    2001-01-01

    Full Text Available Two different finite difference schemes for solving the two-dimensional parabolic inverse problem with temperature overspecification are considered. These schemes are developed for indentifying the control parameter which produces, at any given time, a desired temperature distribution at a given point in the spatial domain. The numerical methods discussed, are based on the (3,3 alternating direction implicit (ADI finite difference scheme and the (3,9 alternating direction implicit formula. These schemes are unconditionally stable. The basis of analysis of the finite difference equation considered here is the modified equivalent partial differential equation approach, developed from the 1974 work of Warming and Hyett [17]. This allows direct and simple comparison of the errors associated with the equations as well as providing a means to develop more accurate finite difference schemes. These schemes use less central processor times than the fully implicit schemes for two-dimensional diffusion with temperature overspecification. The alternating direction implicit schemes developed in this report use more CPU times than the fully explicit finite difference schemes, but their unconditional stability is significant. The results of numerical experiments are presented, and accuracy and the Central Processor (CPU times needed for each of the methods are discussed. We also give error estimates in the maximum norm for each of these methods.

  15. Mantle flow influence on subduction evolution

    Science.gov (United States)

    Chertova, Maria V.; Spakman, Wim; Steinberger, Bernhard

    2018-05-01

    The impact of remotely forced mantle flow on regional subduction evolution is largely unexplored. Here we investigate this by means of 3D thermo-mechanical numerical modeling using a regional modeling domain. We start with simplified models consisting of a 600 km (or 1400 km) wide subducting plate surrounded by other plates. Mantle inflow of ∼3 cm/yr is prescribed during 25 Myr of slab evolution on a subset of the domain boundaries while the other side boundaries are open. Our experiments show that the influence of imposed mantle flow on subduction evolution is the least for trench-perpendicular mantle inflow from either the back or front of the slab leading to 10-50 km changes in slab morphology and trench position while no strong slab dip changes were observed, as compared to a reference model with no imposed mantle inflow. In experiments with trench-oblique mantle inflow we notice larger effects of slab bending and slab translation of the order of 100-200 km. Lastly, we investigate how subduction in the western Mediterranean region is influenced by remotely excited mantle flow that is computed by back-advection of a temperature and density model scaled from a global seismic tomography model. After 35 Myr of subduction evolution we find 10-50 km changes in slab position and slab morphology and a slight change in overall slab tilt. Our study shows that remotely forced mantle flow leads to secondary effects on slab evolution as compared to slab buoyancy and plate motion. Still these secondary effects occur on scales, 10-50 km, typical for the large-scale deformation of the overlying crust and thus may still be of large importance for understanding geological evolution.

  16. Temperature dependence of radiation effects in polyethylene

    International Nuclear Information System (INIS)

    Wu, G; Katsumura, Y.; Kudoh, H.; Morita, Y.; Seguchi, T.

    2000-01-01

    Temperature dependence of crosslinking and gas evolution under γ-irradiation was studied for high-density and low-density polyethylene samples in the 30-360degC range. It was found that crosslinking was the predominant process up to 300degC and the gel point decreased with increasing temperature. At above 300degC, however, the gel fraction at a given dose decreased rapidly with temperature and the action of radiation turned to enhance polyethylene degradation. Yields of H 2 and hydrocarbon gases increased with temperature and the compositions of hydrocarbons were dose dependent. (author)

  17. Evolution of housing

    NARCIS (Netherlands)

    Slob, C.; Mohammadi, S.; Geraedts, R.P.

    2012-01-01

    ‘Perfection means something is complete and stands still and what stands still doesn’t change or evolve and is automatically dead. Everything in the universe changes, evolution implies that the creation is not complete hence the possibility of evolving’ (Osho, 1985). Our society and economy are

  18. The Evolution of Empathy

    Science.gov (United States)

    Hackney, Harold

    1978-01-01

    Therapeutic empathy has been an often-used construct by counseling professionals. Through that usage, the term has evolved in meaning and significance from its original presentation by Carl Rogers. This article traces that evolution by identifying its users and contributors over the past 20 years. (Author)

  19. Evolution Perception with Metaphors

    Science.gov (United States)

    Yilmaz, Fatih

    2016-01-01

    The main objective of this research is to find out how the teacher candidates who graduated from the Faculty of Theology and study in pedagogical formation program perceive the theory of evolution. Having a descriptive characteristic, this research is conducted with 63 Faculty of Theology graduate teacher candidates of which 36 is women and 27 is…

  20. Evolution of Business Models

    DEFF Research Database (Denmark)

    Antero, Michelle C.; Hedman, Jonas; Henningsson, Stefan

    2013-01-01

    The ERP industry has undergone dramatic changes over the past decades due to changing market demands, thereby creating new challenges and opportunities, which have to be managed by ERP vendors. This paper inquires into the necessary evolution of business models in a technology-intensive industry (e...

  1. Evolution of subsidiary competences

    DEFF Research Database (Denmark)

    Geisler Asmussen, Christian; Pedersen, Torben; Dhanaraj, Charles

    of competitive advantage of nations, we hypothesize the contingencies under which heterogeneity in host environments influences subsidiary competence configuration. We test our model with data from more than 2,000 subsidiaries in seven Western European countries. Our results provide new insights on the evolution...

  2. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  3. Kinship and Human Evolution

    DEFF Research Database (Denmark)

    Bergendorff, Steen

    This book offers a exiting new explanation of human evolution. Based on insight from Anthropology is shows that human became 'cultured' beings capable of symbolic thought by developing rasting kinship based between groups that could not other wise survive in the harah climate condition during...

  4. Software Architecture Evolution

    Science.gov (United States)

    Barnes, Jeffrey M.

    2013-01-01

    Many software systems eventually undergo changes to their basic architectural structure. Such changes may be prompted by new feature requests, new quality attribute requirements, changing technology, or other reasons. Whatever the causes, architecture evolution is commonplace in real-world software projects. Today's software architects, however,…

  5. Open-Ended Evolution

    DEFF Research Database (Denmark)

    Taylor, Tim; Bedau, Mark A.; Channon, Alastair

    2016-01-01

    This report describes the First Workshop on Open-Ended Evolution: Recent Progress and Future Milestones (OEE1), held during the ECAL 2015 conference at the University of York, U.K., in July 2015. We briefly summarise the content of the talks and discussions and the workshop, and provide links...

  6. The Evolution of Galaxies

    Czech Academy of Sciences Publication Activity Database

    Palouš, Jan

    2007-01-01

    Roč. 17, - (2007), s. 34-40 ISSN 1220-5168. [Heliospere and galaxy. Sinaia, 03.05.2007-05.05.2007] R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : ISM structure * stars formation * evolution of galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  7. MDSplus evolution continues

    International Nuclear Information System (INIS)

    Manduchi, G.; Fredian, T.W.; Stillerman, J.A.

    2012-01-01

    Highlights: ► The paper describes the recent evolution of the MDSplus data system. ► It presents a Use Case to explain MDSplus expressions. ► It presents the features recently developed. ► It presents the features under development. - Abstract: The MDSplus data system has been in operation on several fusion machines since 1991 and it is currently in use at over 30 sites spread over 5 continents. A consequence is the extensive feedback provided by the MDSplus user community for bug fixes and improvements and therefore the evolution of MDSplus is keeping pace with the evolution in data acquisition and management techniques. In particular, the recent evolution of MDSplus has been driven by the change in the paradigm for data acquisition in long lasting plasma discharges, where a sustained data stream is transferred from the acquisition devices into the database. Several new features are currently available or are being implemented in MDSplus. The features already implemented include a comprehensive Object-Oriented interface to the system, the python support for data acquisition devices and the full integration in EPICS. Work is in progress for the integration of multiple protocols and security systems in remote data access, a new high level data view layer and a new version of the jScope tool for online visualization and the optimized visualization of very large signals.

  8. Common envelope evolution

    NARCIS (Netherlands)

    Taam, Ronald E.; Ricker, Paul M.

    2010-01-01

    The common envelope phase of binary star evolution plays a central role in many evolutionary pathways leading to the formation of compact objects in short period systems. Using three dimensional hydrodynamical computations, we review the major features of this evolutionary phase, focusing on the

  9. Methylome evolution in plants

    NARCIS (Netherlands)

    Vidalis, Amaryllis; Živković, Daniel; Wardenaar, René; Roquis, David; Tellier, Aurélien; Johannes, Frank

    2016-01-01

    Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over

  10. The Evolution of Darwinism.

    Science.gov (United States)

    Stebbins, G. Ledyard; Ayala, Francisco J.

    1985-01-01

    Recent developments in molecular biology and new interpretations of the fossil record are gradually altering and adding to Charles Darwin's theory, which has been the standard view of the process of evolution for 40 years. Several of these developments and interpretations are identified and discussed. (JN)

  11. Darwinism: Evolution or Revolution?

    Science.gov (United States)

    Holt, Niles R.

    1989-01-01

    Maintains that Darwin's theory of evolution was more than a science versus religion debate; rather it was a revolutionary concept that influenced numerous social and political ideologies and movements throughout western history. Traces the impact of Darwin's work historically, utilizing a holistic approach. (RW)

  12. Modeling shoreface profile evolution

    NARCIS (Netherlands)

    Stive, M.J.F.; De Vriend, H.J.

    1995-01-01

    Current knowledge of hydro-, sediment and morpho-dynamics in the shoreface environment is insufficient to undertake shoreface-profile evolution modelling on the basis of first physical principles. We propose a simple, panel-type model to map observed behaviour. The internal dynamics are determined

  13. Modelling shoreface profile evolution

    NARCIS (Netherlands)

    Stive, Marcel J.F.; de Vriend, Huib J.

    1995-01-01

    Current knowledge of hydro-, sediment and morpho-dynamics in the shoreface environment is insufficient to undertake shoreface-profile evolution modelling on the basis of first physical principles. We propose a simple, panel-type model to map observed behaviour. The internal dynamics are determined

  14. The Idea of Evolution

    Science.gov (United States)

    Mathison, Jane

    1976-01-01

    The idea of evolution is examined in a historical perspective in this article. Considerable discussion is given to the works of Lamarck and Darwin. The evolutionary process is also examined with respect to philosophy, art and music history, and man's place in nature. References are included. (MA)

  15. Evolution and Education

    Science.gov (United States)

    Washburn, S. L.

    1974-01-01

    Education should give an understanding of the world and of man, as well as offer the vocational training, at which the university excells. The use of case studies to provide immediate insight into advancing knowledge and the study of evolution have important instructional and educational implication for the goal of understanding man. (JH)

  16. Evolution, Insight and Truth?

    Science.gov (United States)

    Newall, Emma

    2017-01-01

    Evolution has been positioned at the centre of conflict between scientific and religious explanations of the workings of the world. However, little research has examined other possible reasons for some people rejecting scientific explanations. The author's research indicates that for some people, irrespective of faith, the ideas associated with…

  17. Evolution. Teacher's Guide.

    Science.gov (United States)

    Bershad, Carol

    This teacher's guide was developed to assist teachers in the use of multimedia resources for the Public Broadcasting System (PBS) program, "Evolution." Each unit uses an inquiry-based approach to meet the National Science Education Standards. Units include: (1) "What is the Nature of Science?"; (2) "Who Was Charles Darwin?"; (3) "What is the…

  18. Relations between the galactic evolution and the stellar evolution

    International Nuclear Information System (INIS)

    Audouze, J.

    1984-01-01

    After a quick definition of the galactic evolution and a summary of the basic ingredients (namely the abundances of the chemical elements observed in different astrophysical sites), the parameters directly related to the stellar evolution which govern the galactic evolution are outlined. They are the rates of star formation, the initial mass functions and the various nucleosynthetic yields. The 'classical' models of chemical evolution of galaxies are then briefly recalled. Finally, attention is drawn to three recent contributions concerning both the galactic evolution and the stellar evolution. They are (i) some prediction of the rate of star formation for low mass stars made from the planetary nebula abundance distribution (ii) the chemical evolution of C, O and Fe and (iii) the chemical evolution of the galactic interstellar medium. (Auth.)

  19. Highly Effective Thermal Regenerator for Low Temperature Cryocoolers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future missions to investigate the structure and evolution of the universe require highly efficient, low-temperature cryocoolers for low-noise detector systems. We...

  20. When climate twitches, evolution takes great leaps

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1992-01-01

    Earth's climate system has ridden a slow roller coaster for the past 60 million years. It warmed gradually until about 53 million years ago, reaching a peak that brought crocodiles to northern Canada; then it entered a long, undulating downgrade toward the ice-age world of the past few million years. Because the same span of time brought major evolutionary changes, including the rise of modern mammals, paleontologists have long assumed that these slow temperature changes helped spur the processes of evolution. But recent findings have suggested that another, more potent mechanisms was also at work: Abrupt climate excursions, superimposed on these long-term trends, have now been linked to rapid periods of mammal evolution. The evidence for short, sharp evolutionary shocks comes from studies of a pair of mirror-image climate shifts at opposite ends of the Eocene epoch, 55 million and 33.5 million years ago. In both cases, researchers studying the record of climate preserved in sea-floor sediments have found that a gradual climate change-warming in the first case, cooling in the second - suddenly steepened into a short-lived pulse of extreme warming or cooling. The short time scale of these events and their clear coincidence with turning points in the evolution of mammals are providing the tightest links yet between global climate change and evolution on land

  1. Anomalous heat evolution of deuteron implanted Al on electron bombardment

    International Nuclear Information System (INIS)

    Kamada, K.; Kinoshita, H.; Takahashi, H.

    1994-05-01

    Anomalous heat evolution was observed in deuteron implanted Al foils on 175 keV electron bombardment. Local regions with linear dimension of several 100nm showed simultaneous transformation from single crystalline to polycrystalline structure instantaneously on the electron bombardment, indicating the temperature rise up to more than melting point of Al from room temperature. The amount of energy evolved was more than 180 MeV for each transformed region. The transformation was never observed in proton implanted Al foils. The heat evolution was considered due to a nuclear reaction in D 2 molecular collections. (author)

  2. Temperature-Dependent Evolution of the Oxidation States of Cobalt and Platinum in Co 1–x Pt x Clusters under H 2 and CO + H 2 Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bing; Khadra, Ghassan; Tuaillon-Combes, Juliette; Tyo, Eric C.; Pellin, Michael J.; Reinhart, Benjamin; Seifert, Sönke; Chen, Xinqi; Dupuis, Veronique; Vajda, Stefan

    2016-09-29

    Co1-xPtx clusters of 2.9-nm size with a range of atomically precise Pt/Co atomic ratios (x = 0, 0.25, 0.5, 0.75, 1) were synthesized using the mass-selected low-energy cluster beam deposition (LECBD) technique and soft-landed onto an amorphous alumina thin film prepared by atomic layer deposition (ALD). Utilizing ex situ X-ray photoemission spectroscopy (XPS), the oxidation state of the as-made clusters supported on Al2O3 was determined after both a 1-h-long exposure to air and aging for several weeks while exposed to air. Next, the aged duster samples were characterized by grazing-incidence X-ray absorption spectroscopy (GIXAS) and then pretreated with diluted hydrogen and further exposed to the mixture of diluted CO and H-2 up to 225 degrees C at atmospheric pressure, and the temperature-dependent evolutions of the particle size/shape and the oxidation states of the individual metal components within the dusters were monitored using in situ grazing-incidence small-angle X-ray scattering and X-ray absorption spectroscopy (GISAXS/GIXAS). The changes in the oxidation states of Co and Pt exhibited a nonlinear dependence on the Pt/Co atomic ratio of the dusters. For example, a low Pt/Co ratio (x <= 0.5) facilitates the formation of Co(OH)(2), whereas a high Pt/Co ratio (x = 0.75) stabilizes the Co3O4 composition instead through the formation of a Co-Pt core-shell structure where the platinum shell inhibits the reduction of cobalt in the core of the Co1-xPtx alloy dusters. The obtained results indicate methods for optimizing the composition and structure of binary alloy clusters for catalysis.

  3. Effect of Boron Addition on Microstructural Evolution and Room-Temperature Mechanical Properties of Novel Fe66- x CrNiB x Si ( x = 0, 0.25, 0.50 and 0.75 Wt Pct) Advanced High-Strength Steels

    Science.gov (United States)

    Askari-Paykani, Mohsen; Shahverdi, Hamid Reza; Miresmaeili, Reza

    2016-11-01

    In this study, the Vickers hardnesses and room-temperature uniaxial tensile behaviors of four Fe66- x CrNiB x Si ( x = 0 (0B), 0.25 (25B), 0.50 (50B), and 0.75 (75B) wt pct) advanced high-strength steels (AHSSs) in the as-hot-rolled and heat-treated (1373 K (1100 °C)/2 h + 973 K (700 °C)/20 min) conditions were investigated. Microstructural evolution after solidification, hot rolling, heat treatment, and uniaxial tensile tests of 0B, 25B, 50B, and 75B AHSSs was also characterized using field emission gun scanning electron microscopy and X-ray diffraction. The tensile behaviors of the 0B, 25B, 50B, and 75B AHSSs were manifested by an excellent combination of strength and ductility over 34.7 and 47.1 GPa pct, 36.9 and 42.3 GPa pct, 45.9 and 46.4 GPa pct, and 11.9 and 47.8 GPa pct, respectively, arising from microband-induced plasticity in the 0B, 50B, and 75B AHSSs and transformation-induced plasticity in the 25B specimens. All specimens in the as-hot-rolled and heat-treated states showed an austenitic matrix grain. Adding boron to the base alloy (0B) resulted in grain refinement, M2B dispersion, precipitation hardening, and solid solution strengthening, which led to an increase in strength. The results of the present work show promise for automotive applications that require excellent properties and reduced specific weight.

  4. Effective Strategies for Teaching Evolution: The Primary Evolution Project

    Science.gov (United States)

    Hatcher, Chris

    2015-01-01

    When Chris Hatcher joined the Primary Evolution Project team at the University of Reading, his goal was to find effective strategies to teach evolution in a way that keeps children engaged and enthused. Hatcher has collaborated with colleagues at the University's Institute of Education to break the evolution unit down into distinct topics and…

  5. Microstructural evolution of castable during firing

    International Nuclear Information System (INIS)

    Santos, E.M.B.; Ribeiro, S.

    2011-01-01

    Castable are materials used for high temperature industrial applications, containing one or more binding agents, aggregates and additives. Calcium aluminate cement (CAC) is one of the most used binding agents, mainly due to his abundance, low cost, refractoriness and high mechanical and chemical resistance. During high temperature processes, these materials exhibit microstructural evolution that changes their properties and affect the performance. The purpose of this work was to study the microstructural changes presented by a castable, containing CAC and alumina aggregates, during heat treatment. For that, was used X-ray diffraction, thermal analyses, electron microscopy and energy dispersive spectroscopy to characterize concretes after heat treatment up to 1000 deg C. The results allowed to understand the microstructural changes at high temperature and its influence in mechanical properties of the castable. (author)

  6. 3-D nonlinear evolution of MHD instabilities

    International Nuclear Information System (INIS)

    Bateman, G.; Hicks, H.R.; Wooten, J.W.

    1977-03-01

    The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed

  7. Viral Evolution Core | FNLCR Staging

    Science.gov (United States)

    Brandon F. Keele, Ph.D. PI/Senior Principal Investigator, Retroviral Evolution Section Head, Viral Evolution Core Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research Frederick, MD 21702-1201 Tel: 301-846-173

  8. The physics of evolution

    Science.gov (United States)

    Eigen, Manfred

    1988-12-01

    The Darwinian concept of evolution through natural selection has been revised and put on a solid physical basis, in a form which applies to self-replicable macromolecules. Two new concepts are introduced: sequence space and quasi-species. Evolutionary change in the DNA- or RNA-sequence of a gene can be mapped as a trajectory in a sequence space of dimension ν, where ν corresponds to the number of changeable positions in the genomic sequence. Emphasis, however, is shifted from the single surviving wildtype, a single point in the sequence space, to the complex structure of the mutant distribution that constitutes the quasi-species. Selection is equivalent to an establishment of the quasi-species in a localized region of sequence space, subject to threshold conditions for the error rate and sequence length. Arrival of a new mutant may violate the local threshold condition and thereby lead to a displacement of the quasi-species into a different region of sequence space. This transformation is similar to a phase transition; the dynamical equations that describe the quase-species have been shown to be analogous to those of the two-dimensional Ising model of ferromagnetism. The occurrence of a selectively advantageous mutant is biased by the particulars of the quasi-species distribution, whose mutants are populated according to their fitness relative to that of the wild-type. Inasmuch as fitness regions are connected (like mountain ridges) the evolutionary trajectory is guided to regions of optimal fitness. Evolution experiments in test tubes confirm this modification of the simple chance and law nature of the Darwinian concept. The results of the theory can also be applied to the construction of a machine that provides optimal conditions for a rapid evolution of functionally active macromolecules. An introduction to the physics of molecular evolution by the author has appeared recently.1 Detailed studies of the kinetics and mechanisms of replication of RNA, the most

  9. Toward Documentation of Program Evolution

    DEFF Research Database (Denmark)

    Vestdam, Thomas; Nørmark, Kurt

    2005-01-01

    The documentation of a program often falls behind the evolution of the program source files. When this happens it may be attractive to shift the documentation mode from updating the documentation to documenting the evolution of the program. This paper describes tools that support the documentatio....... It is concluded that our approach can help revitalize older documentation, and that discovery of the fine grained program evolution steps help the programmer in documenting the evolution of the program....

  10. Expanding the Understanding of Evolution

    Science.gov (United States)

    Musante, Susan

    2011-01-01

    Originally designed for K-12 teachers, the Understanding Evolution (UE) Web site ("www.understandingevolution.org") is a one-stop shop for all of a teacher's evolution education needs, with lesson plans, teaching tips, lists of common evolution misconceptions, and much more. However, during the past five years, the UE project team learned that…

  11. Inlet Geomorphology Evolution Work Unit

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program Inlet Geomorphology Evolution Work Unit The Inlet Geomorphology Evolution work unit of the CIRP develops methods...morphologic response. Presently, the primary tool of the Inlet Geomorphology Evolution work unit is the Sediment Mobility Tool (SMT), which allows the user

  12. Evolution and transitions in complexity

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.

    2016-01-01

    This book discusses several recent theoretic advancements in interdisciplinary and transdisciplinary integration in the field of evolution. While exploring novel views, the text maintains a close link with one of the most broadly held views on evolution, namely that of "Darwinian evolution." This

  13. Physics of stellar evolution and cosmology

    International Nuclear Information System (INIS)

    Goldberg, H.S.; Scadron, M.D.

    1981-01-01

    Astrophysical phenomena are examined on a fundamental level, stressing basic physical laws, in a textbook suitable for a one-semester intermediate course. The ideal gas law, the meaning of temperature, black-body radiation, discrete spectra, and the Doppler effect are introduced and used to study such features of the interstellar medium as 21-cm radiation, nebulae and dust, and the galactic magnetic field. The phases of stellar evolution are discussed, including stellar collapse, quasi-hydrostatic equilibrium, the main sequence, red giants, white dwarves, neutron stars, supernovae, pulsars, and black holes. Among the cosmological topics covered are the implications of Hubble's constant, the red-shift curve, the steady-state universe, the evolution of the big bang (thermal equilibrium, hadron era, lepton era, primordial nucleosynthesis, hydrogen recombination, galaxy formation, and the cosmic fireball), and the future (cold end or big crunch). 72 references

  14. Chemical evolution of the early Martian hydrosphere

    International Nuclear Information System (INIS)

    Schaefer, M.W.

    1990-01-01

    The chemical evolution of the early Martian hydrosphere is discussed. The early Martian ocean can be modeled as a body of relatively pure water in equilibrium with a dense carbon dioxide atmosphere. The chemical weathering of lavas, pyroclastic deposits, and impact melt sheets would have the effect of neutralizing the acidity of the juvenile water. As calcium and other cations are added to the water by chemical weathering, they are quickly removed by the precipitation of calcium carbonate and other minerals, forming a deposit of limestone beneath the surface of the ocean. As the atmospheric carbon dioxide pressure and the temperature decrease, the Martian ocean would be completely frozen. Given the scenario for the chemical evolution of the northern lowland plains of Mars, it should be possible to draw a few conclusions about the expected mineralogy and geomorphology of this regions

  15. The evolution of dinosaurs.

    Science.gov (United States)

    Sereno, P C

    1999-06-25

    The ascendancy of dinosaurs on land near the close of the Triassic now appears to have been as accidental and opportunistic as their demise and replacement by therian mammals at the end of the Cretaceous. The dinosaurian radiation, launched by 1-meter-long bipeds, was slower in tempo and more restricted in adaptive scope than that of therian mammals. A notable exception was the evolution of birds from small-bodied predatory dinosaurs, which involved a dramatic decrease in body size. Recurring phylogenetic trends among dinosaurs include, to the contrary, increase in body size. There is no evidence for co-evolution between predators and prey or between herbivores and flowering plants. As the major land masses drifted apart, dinosaurian biogeography was molded more by regional extinction and intercontinental dispersal than by the breakup sequence of Pangaea.

  16. Evolution of energy structures

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2005-01-01

    Because of the big inertia and long time constants of energy systems, their long-time behaviour is mainly determined by their present day state and by the trends of their recent evolution. For this reason, it is of prime importance to foresee the evolution of the different energy production sources which may play an important role in the future. A status of the world energy consumption and production is made first using the energy statistics of the IEA. Then, using the trends observed since 1973, the consequences of a simple extrapolation of these trends is examined. Finally, the scenarios of forecasting of energy structures, like those supplied by the International institute for applied systems analysis (IIASA) are discussed. (J.S.)

  17. Evolution of Mobile Applications

    Directory of Open Access Journals (Sweden)

    Phongtraychack Anachack

    2018-01-01

    Full Text Available Currently, we can see the rapid evolution of mobile technology, which involves mobile communication, mobile hardware, and mobile software. Features of mobile phones largely depend on software. In contemporary information and communication age [1–4], mobile application is one of the most concerned and rapidly developing areas. At the same time, the development of mobile application undergoes great changes with the introduction of new software, service platforms and software development kits (SDK. These changes lead to appearance of many new service platforms such as Google with Android and Apple with iOS. This article presents the information about the evolution of mobile application, gives some statistical data on the past and present situation, demonstrates how individual users of mobile devices can benefit, and shows how mobile applications affect society from the ethical perspective.

  18. Evolution to Autonomy

    Directory of Open Access Journals (Sweden)

    Horace Lockwood Fairlamb

    2007-08-01

    Full Text Available Since both modern moral theory and evolutionary theory arose in the shadow of Newtonian and Humean conceptions of nature, debates about evolutionary ethics have typically been vexed by deeper problems with the nature of evolution itself as well as meta-ethical questions about the link between facts and values. Humean skepticism and mechanistic selectionism have recently coincided in postmodern attacks on essentialism,on meta-narratives of progress, on models of human nature, and on moral collectivism. Against this most recent wave of skepticism, however, contemporary reconstructions of evolution in light of complex systems science suggest useful ways of reinterpreting both evolutionary causation, the biology of human nature, and their implications for ethics.

  19. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  20. Managing Software Process Evolution

    DEFF Research Database (Denmark)

    This book focuses on the design, development, management, governance and application of evolving software processes that are aligned with changing business objectives, such as expansion to new domains or shifting to global production. In the context of an evolving business world, it examines...... the complete software process lifecycle, from the initial definition of a product to its systematic improvement. In doing so, it addresses difficult problems, such as how to implement processes in highly regulated domains or where to find a suitable notation system for documenting processes, and provides...... essential insights and tips to help readers manage process evolutions. And last but not least, it provides a wealth of examples and cases on how to deal with software evolution in practice. Reflecting these topics, the book is divided into three parts. Part 1 focuses on software business transformation...